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Abstract

The widespread use of user-carried devices with short-range communication leads to networks
characterized by high dynamics, sporadic connectivity, and strong partitioning. In such
networks, connectivity between mobile nodes is strongly influenced by sociological aspects.
To enable the evaluation of mobile applications which communicate in such networks, we
require an appropriate mobility model.

In this thesis, we have designed and implemented a mobility model which focuses on the
simulation of social context. It takes an arbitrary weighted social network as input and
reflects its structural properties in its mobility scheme. Based on this approach, our model
allows to integrate recent advances in the research of complex social networks. In addition,
we focus on the simulation of different typical human characteristics such as the periodical
reappearance at preferred locations and movement in groups. Furthermore, our model allows
the integration of mobility models which concentrate on geographical aspects such as modeling
obstacles or realistic movement between locations.

We provide experimental results that show that our model reflects the input social network with
an accuracy of up to 99%. In addition, we show that our model captures the characteristics
measured in traces of human mobility, which shows the validity of our approach. The
generalizational character of our model enables the fast integration of future research results
in the areas of human mobility and complex social networks.
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Chapter 1

Introduction

1.1 Motivation

In recent years, powerful and yet wearable devices with wireless network interfaces have
become affordable and are already in widespread use among the populace. By utilizing only
wireless short range communication, a disconnected adhoc network emerges. Connectivity
between mobile nodes is created only sporadically dependent on the movement of the users
wearing such devices. However, human movement is strongly influenced by social relations.
We do not meet other people on a random basis but meet some people more frequently and
regularly, e.g. friends, colleagues, family, or more general, people who are part of our social
context.

In such a very dynamic network, end-to-end connectivity between two arbitrary nodes
cannot be assumed. Nevertheless, communication is still possible, using a store-and-forward
approach. The disadvantage of this approach is that significant delays are introduced.
However, not all mobile applications depend on the real time delivery of messages. A
prominent application of this class is the e-mail service.

One may argue that infrastructure could be used for a faster communication such as GSM
cell towers for mobile phones. Yet, in many cases, the use of such an infrastructure involves
costs. In other cases, infrastructure may not be available at all.

Mobile applications and distributed algorithms which run on wireless wearable devices may
exploit knowledge about the social context of its carrier, e.g. for forwarding decisions if a
message must be transmitted between two arbitrary mobile nodes. Consider the scenario
that we want to deliver a message from user A’s device to user B’s device and know that
another user C has a social relation with both A and B. In this case, the device of C may
be a good candidate as the next hop for the message since C meets frequently with both
users.

1



1 Introduction

As we will discuss in more detail over the course of this thesis, social networks, i.e. networks
of users and their relations, have characteristic structural properties. Because the social
network directly influences the mobility of nodes, mobile applications (which includes
protocols and distributed algorithms) may exploit the structural properties of a social
network. For example, some devices carried by users characterized by many social relations
may be utilized for a fast information dissemination among the participants.

To enable the research of mobile applications which exploit knowledge about the social
context of its carrier or exploit structural properties of the social network, a thorough
evaluation is necessary. An evaluation in real environments based on human-carried devices
is very elaborate and costly. Hence, the evaluation of such mobile applications depends in
most cases on simulations. In this thesis, we propose a discrete event simulator based on a
mobility model which simulates the movement of human-carried devices influenced by their
social context, i.e. a social mobility model.

1.2 Goals and Focus of the Thesis

The goals behind the design of our model are the following:

• It is important that a mobility model is as realistic as possible. Thus, it should
capture characteristics observed in real measurements of human mobility. This avoids
a subjective evaluation of realism.

• Many mobility models focus on micro-mobility aspects such as speed, direction, or
restriction through obstacles, i.e. geographical concepts. Other models focus on the
simulation of sociolocial aspects. However, so far, both strands are separate. To
provide for more realism and to adapt the simulation to specific target scenarios, it is
imperative to integrate geographical concepts into a social mobility model. This thesis
represents the first steps towards this integration.

• Different existing (social) mobility models typically are coined by a fixed scale of
space and time. In addition, they focus on the simulation of specific aspects of human
behavior. To avoid that researchers have to employ several different mobility models,
we advocate that existing approaches should be generalized. The researcher may then
change the behavior of the model by simply adjusting the parameters.

• The structure of social networks has been intensively researched in the last ten years.
However, many different models exist and only few results about the mapping between
the social network and the mobility of users are known. Thus, a mobility model should
be independent of specific assumptions about the structure of social networks. Instead,
we focus on enabling the integration of results in this research area into our mobility
model.
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1.3 Outline

We separate our approach from other approaches which focus on creating connectivity
between nodes on the individual user level such as shared agendas [ZHL06, EKKO08] or
common membership in a social community [GGP08]. We argue that it is questionable
whether such properties result in the realistic reflection of the structural properties of social
networks. Our approach behind incorporating social context is to use a specific weighted
social network as a basis to create our mobility scheme. Hence, we create connectivity
between mobile nodes on the social network level. This social network is provided as the
primary input of the model. We reflect this network by creating meetings between simulated
mobile nodes whose users share a social relation. By generating connectivity based on an
input social network, possibly generated from well researched models or extracted from real
data, we avoid making decisions on the user-level. Instead, we separate such decisions from
our model.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 gives some background
information on mobility models and the research results on the analysis of social networks.
We also discuss mobile applications which may benefit from our model. In Chapter 3, we
analyze and identify important characteristics of human mobility that should be captured by
a realistic social mobility model. In Chapter 4, we critically review existing social mobility
models based on the identified requirements and point out possible improvements.

In the main part of this thesis, we propose our social mobility model (Chapter 5) and its
prototypical implementation (Chapter 6). Subsequently, we validate our model based on
the identified requirements (Chapter 7). During the evaluation, we compare characteristics
exhibited by our model to the characteristics of real measurements of human mobility. To
finish the main part of this thesis, we sketch some possible improvements to obtain further
realism (Chapter 8).

To conclude this thesis, in Chapter 9, we first summarize our work and point out its
contributions. Additionally, we give a critical review of the results and an outlook on
possible further work.
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Chapter 2

Background

After the introduction of some basic definitions, we provide an overview of the structural
properties discovered in social networks and introduce corresponding models. Then, we
look at mobile applications which may utilize those properties and may benefit from our
proposed model. Furthermore, we give some background information on mobility models
and argue why we require them for the evaluation of the discussed applications.

2.1 Definitions and Terminology

In this section, we give some basic definitions and discuss a number of terms which are
frequently used over the course of this thesis.

By a social relation between two individuals, we refer to an arbitrary type of relationship,
like partner, family, friend, colleague, or client. A social relation may be measured by a
single numeric weight, which represents a measure of the strength of the relationship.

A social network consists of a number of actors and their social relations. It can be
represented by a graph or an adjacency matrix, known in sociology as a sociogram [Sco00].
Formally, we use a graph representation where the actors are represented by nodes and their
social relations are represented by edges. This yields the following definition:

Definition 1 (Social Network) A social network is an undirected graph G = (V,E,w)
where V = {v1, .., vn} denotes the set of nodes or actors, and E ⊆ {{x, y} | x, y ∈ V } defines
the social relations with {u, v} ∈ E if nodes u and v share a social relation. Each pair of
nodes may be annotated with a weight w : V × V → [0, 1] with w(u, v) > 0 if {u, v} ∈ E and
w(u, v) = 0 else.

5



2 Background

In particular, if two nodes do not share a social relation, their corresponding weight is zero.
We use the same definition without the weight function w for a general (not necessarily
social) network. We call a node v ∈ V a social acquaintance of u ∈ V if {u, v} ∈ E.
This is equivalent with the definition of ’neighbor’, used for general networks. The distance
d(v, u) between two nodes u, v ∈ V is defined as the length of the shortest path (i.e. the
geodesic distance) between u and v.

The term ’social context’ is used very ambiguously among different researchers. Adams et
al. include three components in their definition of social context: Locations of significance,
regularities of the user behavior, and social ties [APV08]. Smith et al. differentiate between
the personal social context, which includes the user’s friends and communities, and the
community social context, which includes the user’s role and identity in different communities
[SBGL08]. De Choudhury et al. refer by social context to the ’degree of overlap of friends
between two people’ and their ’patterns of participation in communication’ [DCSJS08].

Other authors do not provide a definition of social context at all [MT07, SSX07, KJRN05],
but simply use the term, implicitly assuming that the reader has the same notion on ’social
context’. Based on the use of the term, the authors typically refer either to the social
acquaintances of a user in general, or only to social acquaintances which are physically
co-located with the user. Note that most authors include many different concepts in their
definition of social context. We advocate a more narrow and precise definition and the
employment of other terms for different concepts. Furthermore, we note that community
information and overlap of friends is implicitly encoded in the social network. Thus, we
introduce the following informal definition of social context:

Definition 2 (Social Context) The social context of an individual i defines i’s local
view of the social network. This includes i’s immediate social acquaintances and possibly
incomplete information about the structure of the social network within a distance of d > 1
around i.

We do not only include the immediate social acquaintances in our definition since additional
information may be exploited by mobile applications, e.g. knowledge about the friend of a
friend.

In the remaining thesis, we use the term ’mobile node’ or ’node’ both for mobile wireless
devices and the user who carries the device. The individual meaning may be recognized
by the context. Furthermore, we use the term ’mobile applications’ to refer to all kinds
of software that runs on human-carried devices. This includes protocols and algorithms of
arbitrary network layers.

6



2.2 The Structure of Social Networks

2.2 The Structure of Social Networks

In the last decade, the study of complex networks [BLM+06, New03] has received great
attention. Complex networks are large-scale networks with non-trivial statistical properties
compared to the well-known random graph model. In this section, we focus on recent
advances in the research of social networks, which belong to the class of complex networks.
In particular, after defining some basic metrics on graphs, important structural properties of
social networks are discussed and compared to the properties of random graphs. Subsequently,
we introduce social network models which try to capture the discussed properties. We will
later use these models to generate input networks for the implementation of our proposed
social mobility model. This section also shows the variety of network models existing today
and, thus, further motivates the choice of using a network as input of our model.

2.2.1 Basic Graph Metrics

The following metrics, among others, are used to characterize the structural properties of
complex networks. The average length of all shortest paths in a graph is denoted as the
average path length L(G) [New03]:

L(G) =
1

n(n− 1)

∑
v,u∈V

d(v, u).

From a social network perspective, the clustering coefficient is a measure for the probability
that two individuals which share a common social acquaintance know each other [New03],
i.e. the probability that the statement

{u, v} ∈ E ∧ {u,w} ∈ E ⇒ {v, w} ∈ E

holds. Several definitions for the clustering coefficient exist in the literature. A widely
used definition for the local clustering coefficient of a single node v ∈ V is the following
[BLM+06]:

C(v) =
2 |{{u,w} ∈ E | {v, u}, {v, w} ∈ E}|

k(v)(k(v)− 1)
,

where k(v) denotes the degree of v, i.e. the number of neighbors. In other words, C(v)
represents the ratio between the actual and the maximum possible number of edges between
all neighbors of v. The clustering coefficient of a network G is then defined as the mean
clustering coefficient of all nodes:

C(G) =
1
n

∑
v∈V

C(v).
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2 Background

2.2.2 Properties of Random Graphs

As will become apparent in the following sections, the properties of social networks differ
compared to the well known random graphs. A common model for random graphs is the
Erdös-Renyi model [ER59]. An instance GR(n, p) of this model represents a graph of n
nodes with a probability of p that an edge exists between two arbitrary nodes. The node
degree distribution, i.e. the probability that an arbitrary node has the degree k, is well
approximated by the Poisson distribution

P (k) =
λke−λ

k!

where λ denotes the expected node degree λ = pn. If p > ln(n)
n , the graph is expected to be

totally connected. The average path length is asymptotic to

L(GR(n, p)) ∼ ln(n)
ln(λ)

and thus logarithmic for a fixed p. The mean clustering coefficient of Erdös-Renyi graphs
corresponds to C(GR(n, p)) = λ/n = p.

2.2.3 Properties of Social Networks

The following structural properties have been discovered in social networks.

Small World Property

Networks characterized by a small average path length with respect to their size are known
as ’small world’ networks. The ’Small World Phenomenon’ was originally discovered by Pool
and Kochen in the 1950ies, but was not published until two decades later [PK78]. In the
meanwhile, Milgram learned about the work of Pool and Kochen and conducted a today
famous experiment [Mil67]. He gave 296 individuals a letter with the recipient being a
certain stock broker living in Boston. He told them to forward the letter to acquaintances
who they knew on a first name basis and who would be (presumably) closer to the final
recipient. The immediate recipients forwarded the letter again until the letter reached the
final recipient. In every forwarding step, the forwarders wrote down their names. About
20% of the letters reached the final recipient. However, only an average of 5.5 forwarders
were required. This was a surprising result and Milgram concluded that the people in the
U.S. are only separated by about 6 links of acquaintanceship.

Milgrams result was later confirmed by many other experiments on social networks, for
example in networks of scientific collaboration [New01] and e-mail networks [DMW03]. The
small world property can also be observed in real traces of human mobility [HH06a].
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2.2 The Structure of Social Networks

High Clustering Coefficient

Social networks typically exhibit a high clustering coefficient compared to random graphs
with an equal number of nodes and edges [WS98]. This property of social networks is
actually not surprising. It may be explained by the theory of triadic closure [Rap57, Gra73],
which originates from the social sciences: individuals having two social acquaintances who
do not know each other are compelled to close the triangle, for example, by introducing the
social acquaintances to each other.

Power-law Node Degree Distribution

A property frequently observed in social networks is the power-law distribution of the node
degree [BA99]. A power-law distribution can be approximated by

P (k) ∼ k−λ with λ > 0.

Networks characterized by a power-law node degree distribution are called scale-free networks.
In such networks, the majority of nodes have a small node degree. However, a small number
of nodes called hubs have a large number of edges. Hubs play an important role because
they connect different groups of nodes. This characteristic may be utilized. For example,
Adamic et al. describe methods to exploit the power-law degree distribution to efficiently
search in scale-free networks [ALPH01]. Figure 2.1 shows the node degree distribution of
scale-free networks (solid) in comparison to the node degree distribution of random graphs
(dashed). Note that a power-law corresponds to a straight line if a log-log scale is used.

The class of scale-free networks contains (among others) the social networks of movie-actors
[BA99], sexual contacts [LEA+01], phone-calls [ACL00], and science collaboration [BJN+02].
Albert et al. [AB02] describe further examples.
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Figure 2.1: Power-law and Poisson node degree distribution.
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Though many social networks are scale-free networks, this is not always the case. An
example of this class is the network of Fortune 1000 (the thousand companies with the
highest revenues in the U.S.) company directors of 1999 [DYB03]. In this network, two
directors share a social relation if they sat on the same board together in the year 1999.
Thus, the degree of a node measures the number of others with whom a director sat on
boards. The node degree distribution of this network follows an approximately exponential
tail [NWS02]. Similar results have been observed during the investigation of a friendship
network of 417 high school students [FS64]. Another class of social networks is characterized
by a power-law distribution followed by a sharp cut-off [ASBS00].

The literature explains the difference between social networks with and without the scale-
free property due to the presence of ’costs’ associated with the creation of social relations
[JGN01, ASBS00, NWS02]. In the network of movie-actors, an edge between two nodes is
created by simply starring once in a movie together or in the telephone network by making
a single phone call. There is no need for further action to maintain a created edge in such
networks. However, it involves time to maintain a friendship or to work on a company board.
Since the available time of the actors is limited, there exists an upper bound on the number
of edges one person can actively ’maintain’. This results in the typical sharp cut-off found
in several social networks. Results from Hill and Dunbar [HD03], which show that a typical
human is only able to maintain about 150 relationships (Dunbar’s Number) based on the
size of their neocortex, confirm these results.

Assortative Mixing

Newman reports that a variety of social networks are assortative mixed [New02]. This
property describes the preference for high-degree nodes (hubs) to be connected to other
high-degree nodes. Newman also investigates technical and biological networks and observes
that this property does not hold for them. He states that networks with assortative mixing
percolate better and are more robust against the removal of nodes. Thus, he argues that
models should capture assortative mixing.

Community Structure

Community structure is another property of social networks [GN02] [GDDG+03]. A com-
munity can informally be described as a highly connected subgraph. Communities in
social networks are hierarchical [ZSHD05]. According to Newman and Park, community
structure can explain the strong clustering and assortative mixing observed in social net-
works [NP03]. Great effort is put in the research of community detection algorithms
[New06, RCC+04, DDGDA05]. Recent work focuses on the detection of overlapping com-
munities [WLZ08, PDFV05].
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2.2 The Structure of Social Networks

2.2.4 Models for Social Networks

Several models have been proposed which try to capture different properties of social
networks.

Caveman Model

A very simple model for social networks has been proposed by Watts [Wat99], called the
caveman model. Initially, nodes are partitioned into disjoint, fully connected subgraphs
(caves). Because the subgraphs are completely isolated, Watts compares them to primitive
humans in caves. Subsequently, each node is rewired to a node in another cave with
probability p. Figure 2.2 shows three initial caves (left) and the result after the rewiring
process (right).

Obviously, this model creates a strong community structure. p controls the degree of isolation
between two caves. Because of the initial fully connected subgraphs, the model results in a
high clustering coefficient. However, the average path length is comparable with that of a
lattice i.e. linear in the number of nodes. Hence, the caveman model does not resemble a
small world.

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

    

 

 

 

Figure 2.2: Example for the rewiring process in the caveman model.

Barabasi-Albert Model

In 1999, Barabasi and Albert [BA99] proposed a model for growing scale-free networks. The
basic principle is the combination of two mechanisms:
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1. Growing Network. The network is initialized with a small number m0 of nodes, for
example created by the random graph model. For every subsequent step, a node joins
the graph and attaches (i.e. creates edges) to m ≤ m0 existing nodes.

2. Preferential attachment. Newly added nodes attach preferably to nodes which already
have a high degree. More precisely, the probability to create an edge to a node v is
defined by

P (attach to node v) =
k(v)∑
u∈V k(u)

In other words, the probability for an attachment to v is proportional to the degree of v
(the rich get richer). This leads to a power-law distribution of the node degree with λ ≈ 3.
Subsequent investigations show that the average path length approximates L ∼ logn

log logn [AB02].
Thus, the Barabasi-Albert model satisfies the small world property. However, the clustering
coefficient follows a power law C(G) ∼ n−0.75 and therefore decays towards zero for n→∞.
This is considered to be unrealistic for many networks, including social networks. The
following model addresses this issue.

Holme-Kim Model

The Holme-Kim (HK) model [HK02] aims to produce networks which are characterized
by a scale-free node degree distribution and a high clustering coefficient. It is based on
the Barabasi-Albert model. The basic idea is that nodes not only attach by preferential
attachment (PA) but also attach to neighbors of already connected nodes, which creates a
closed triad. The latter is called a triad formation (TF) step. More precisley, if a node joins
the network and should attach to m nodes, a PA step is performed initially. For the next
m− 1 attachments, either a TF or a PA step is performed with probability pt and 1− pt,
respectively.

Figure 2.3 shows an example with m = 5. Node v joins the network and performs two
PA steps (thick dashed lines) selecting nodes i and j. Subsequently, three TF steps are
performed, which leads to the additional attachment to three different neighbors (thin
dashed lines) of i and j.

The degree distribution of the HK model yields a power-law distribution P (k) ∼ k−3.
The parameter pt controls the strength of the clustering up to a clustering coefficient of
C(G) = 0.5 for n→∞. The average path length scales logarithmic, similar compared to
the Barabasi-Albert model.
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Figure 2.3: Example for two preferential attachment steps (thick dashed lines) combined
with three triad formation steps (thin dashed lines).

Toivonen Model

The model proposed by Toivonen et al. [TOS+06] bears some similarity to the HK model.
The main difference is that instead of preferential attachment, a random attachment is
employed. An instance of the Toivonen model is constructed as follows:

1. Start with a small network of m0 nodes (similar to the BA/HK model)

2. Attach to an average of mr ≥ 1 random nodes (initial contacts)

3. Attach to an average of ms ≥ 0 neighbours of nodes selected in the previous step
(secondary contacts)

4. Repeat steps 2 and 3 to reach the desired network size

Roughly speaking, the initial contacts create bridges between communities, and the secondary
contacts strengthen the community structure. According to the authors, it is important
that mr and ms are not constant for each iteration (in constrast to the BA/HK model)
to obtain the desired properties. The model shows strong assortative mixing, significant
clustering, and a logarithmic path length. The degree distribution can be approximated by
a power-law followed by an exponential decay. The authors have compared the community
structure to real world social networks and show a strong match in terms of community size
distribution.
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Discussion

As shown, different social network models capture different properties. Because properties
of social networks differ to some degree, in particular in terms of the scale-free property, it
is not possible to identify the ’best’ social network model. We summarize the properties of
the discussed social network models in Table 2.1.

Model Log. L(G) High C(G) Scale-free Comm. Ass. Mixed
Random Yes No No No No
Caveman No Yes No Yes No

BA Yes No Yes No No
HK Yes Yes Yes No No

Toivonen Yes Yes with cut-off Yes Yes

Table 2.1: Properties captured by the discussed network models [New02, TOS+06, BLM+06].

2.3 Mobile Applications using Social Context

In Chapter 1, we have outlined a system model for mobile applications which may benefit
from the evaluation based on a social mobility model. The described scenario falls into
several research areas:

• Opportunistic Networks [PPC06] do not assume any complete end-to-end path
between two nodes. Instead, connectivity is utilized in an opportunistic manner.

• Delay tolerant networks (DTNs) [Fal03], in contrast to opportunistic networks,
assume existing connected regions (e.g. groups of people). Mobile nodes provide
periodic connectivity between regions. It can be argued that the class of opportunistic
networks contains the class of DTNs. However, the terms ’opportunistic network’ and
’delay tolerant network’ are often used interchangeably [PPC06].

• Pocket Switched Networks (PSNs) [HCS+05] fall under the DTN space. PSNs
aim to utilize the resources of heterogeneous devices like laptops, PDAs, or mobile
phones transparently. Such devices may be carried in the pockets of people, hence the
name. The research in this area concentrates specifically on the problems related to
this heterogeneity.

In such networks, communication between two arbitrary nodes is typically conducted by
buffering messages and waiting for connectivity opportunities. Of course, this comes at
the price of an increased delay. Most work in the described areas focuses on opportunistic
routing [MGC+07, SNT08, SHR08, LDS04]. Because of sparse connectivity, efficient routing
poses a challenging problem. Many protocols focus on epidemic routing, which leads to
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an optimal delivery delay. However, since a message is flooded over the network, such a
strategy is very expensive and not scalable. Thus, efficient protocols must forward data by
employing only a small subset of nodes as forwarders. Random selection of nodes leads to
huge delays. Thus, possible forwarders must be selected according to some other information,
e.g. statistical data or knowledge about social context.

In the following, we give some examples of mobile applications which may benefit from a
social mobility model. Many focus on opportunistic routing, but other classes of applications
are introduced as well. They are all based on a system model similar to the above described
research areas.

2.3.1 Exploiting the Structure of Social Networks

Daly and Haahr propose a technique for routing in DTNs [DH07]. This technique exploits,
among others, the small world property of social networks by using two metrics known from
the research on social network analysis. Betweeness centrality is a measure of how many
shortest paths in the network flow through a given node. A node with a high betweeness
centrality plays an important role for forwarding information between different clusters of
nodes. The similarity between two nodes measures the degree of common neighbors. Two
nodes have a high similarity if they share a large number of common social acquaintances
with respect to their total number of social acquaintances. The intuition behind this is that
if the similarity between a potential forwarder F and the target node is high, F may be
a good candidate for the next hop because it is very likely that F meets the target node.
Both metrics are approximated in a distributed manner, and their weighted sum is utilized
for forwarding decisions. Different betweeness measures are also used by Cuevas et al. for
content distribution in DTNs [CJGS08].

Publish-subscribe systems feature nodes which publish information and subscriber, which
receive information according to some criteria. Costa et al. employ the change degree of
connectivity for routing in a publish-subscribe system, based on DTNs [CMMP08]. The
change degree of connectivity is high, if a node has frequent encounters with many neighbors.
Such nodes correspond to hubs in a social network.

Hui et al. use distributed community detection mechanisms to infer local communities
[HCY08]. The hierarchical structure of communities is subsequently used for forwarding
decisions. Yoneki et al. use similar mechanisms to create an overlay for a publish-subscribe
system based on delay tolerant networks [YHCC07]. They identify nodes with a high
centrality (i.e. hubs) within the detected communities and structure the overlay to utilize
them. Boldrini et al. use detected communities to disseminate data in opportunistic networks
[BCP08].
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2.3.2 Utilizing Information about Social Context

Miklas et al. have investigated the benefit of incorporating knowledge about social context
in routing decisions [MGC+07]. They simulated different simple routing protocols using a
globally known social network. These protocols forward a message from a source to the first
f encountered friends of either the destination or the source. However, these first hops may
forward the message only directly to the destination, which leads to maximum path length
of two hops. They report a significant performance benefit compared to protocols which
do not use information about social context with respect to the network bandwidth used.
Furthermore, the authors show that other applications like firewalls or p2p-systems may
benefit from exploiting information about social context.

Recently, Mtibaa et al. have performed a similar study, but implemented more complex multi-
hop routing protocols, which exploit knowledge about the social context of the destination
node [MCL+08]. The protocols were simulated based on measurements of human mobility,
using a self-reported social network, i.e. a network obtained by asking the participants about
their social ties. Their protocols focus on selecting a next hop that is closer to the target in
the social network in terms of the shortest path. Furthermore, they evaluated protocols which
favor nodes with a high centrality. Their experiments show that the combined utilization
of both metrics yields results that are close to the optimum while requiring relatively low
bandwidth.

Another class of mobile applications for wearable devices detects the (physical) presence of
specific devices and informs the user accordingly. For example, Serendepty [EP05] uses a
database with profile information about the users. If the application detects the presence
of another user, it queries the database for profile information. The profiles are compared
using a scoring system and if a sufficient match is detected, the software alerts both users
about their similarity. The goal is to initiate contacts between users who would otherwise
be unaware of their similarity. Pietilainen et al. have generalized the idea of Serendepty to
a general architecture for developing applications using a social network and corresponding
profiles for initiating contacts between nearby users [POL+08].

Socio-Graph [APV08] is a media browser which focuses on the exploration and sharing
of personal media. Social-Graph collects and exploits knowledge about social context to
filter media items. For example, a user can filter media dependent on the strength of the
social relation with the publisher. The knowledge about social context is collected from
human-carried GPS devices.

2.3.3 Conclusion

As we have shown in this section, there are a growing number of applications exploiting
social context or the structure of social networks. Thus, respective simulation environments
are required that focus specifically on the accurate simulation of sociological aspects. In
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the following section, we will give some background information on the methods used to
perform simulations in this area.

2.4 Mobile Wireless Network Simulation

In this section, we discuss two common ways to simulate mobile wireless networks: Simulation
based on recorded measurements of human mobility and the use of mobility models.

2.4.1 Simulation based on Mobility Traces

One way to simulate mobility is by using traces of human mobility recorded in real envi-
ronments. Essentially, such mobility traces contain the begin- and end-timestamp for each
time interval in which two arbitrary nodes were in wireless range of each other. This time
interval is denoted as a contact between two nodes. Some traces additionally contain GPS
coordinates [CBD02]. Different kinds of traces exist that differ in the way they determine if
two nodes were in contact at a specific instant of time. The Dartmouth College has started
a project which aims to provide an online repository for mobility traces [Dar].

Many publicly available traces [HH06a, CHD+07, EP06] are access point (AP) logs, i.e.
recorded time intervals in which nodes were connected to different APs. To yield device-
to-device contacts, the following simplification is used: Two nodes are considered to be in
contact at time t if both nodes are connected to the same AP at t. Clearly, this is only an
approximation of real mobility. Despite being in range of the same AP, both nodes may still
be out of range of each other. Furthermore, two nodes may be in range of each other but
out of range of any AP. In this case, the contact will not be recorded at all. Traces created
from AP logs are called AP-based traces.

On the other hand, direct contact traces [CHD+07] measure human mobility in a more
realistic way. Wireless devices running a special mobile application are distributed among
participants of an experiment. The devices perform scans at periodic intervals to discover
and record the presence of other nodes. For example, Hui et al. distributed Intel iMotes
among 41 participants of the INFOCOM 2005 conference [HCS+05]. Each iMote performed
a five second long Bluetooth based ’inquiry’ scan every 120 seconds. Other nearby devices
responded with their MAC addresses to such an inquiry. Each newly encountered node is
placed in an ’in-contact’ list and the begin of the contact interval is recorded. If a node in
the ’in-contact’ list misses to respond to a subsequent inquiry, the connection is considered
to be lost and a timestamp is recorded, which approximates the end of the contact.

Still, even direct contact traces are only an approximation of human mobility. Devices miss
to record very short encounters with high probability due to the relatively long scan period.
However, a shorter scan period would drain the batteries of mobile devices too fast. This
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is the reason why similar experiments used even higher scan intervals, e.g. 300 seconds in
experiments performed at the MIT [EP06].

 

Inter-Contact Time 

 

Contact Duration 

Time during the Measurement 

Figure 2.4: Contact duration and inter-contact time for a pair of nodes (cf. [CHC+05]).

Both, the contact duration and inter-contact times are used to characterize different
mobility scenarios [CHC+05]. An inter-contact time is defined as the time elapsed between
two successive contacts of two fixed nodes. Figure 2.4 shows the relation between contact
duration and inter-contact time. The distribution of contact durations represents the capacity
of an opportunistic network. Because in sparsely connected networks long delays between
contacts are most common, the aggregated inter-contact time distribution (short: inter-
contact distribution) is of special importance. The inter-contact distribution characterizes
the frequency of contact between two arbitrary nodes. Hence, it represents the delay of an
opportunistic network.

For a long time, the inter-contact distribution has been assumed to be short-tailed (i.e.
exponential) [Cai07], which means that nodes meet frequently and long time intervals
without any contact are very rare. However, Chaintreau et al. have recently investigated the
CCDF (complementary cumulative distribution function) of inter-contact times using eight
different traces, both AP- and direct contact based [CHD+07]. They report an interesting
observation: The tail of all traces is well approximated by a power-law until an order of
magnitude of about one day. Power-law coefficients are typically found to be in the range
λ ∈ [0.2, 0.6]. The discovery of a heavy-tailed inter-contact distribution has the consequence
that ’simple’ forwarding algorithms that do not keep a history of previous contacts with
other nodes do not have a finite expected delay. Intuitively, this is due to the relatively high
probability of long periods without connectivity between nodes compared to a short-tailed
(e.g. exponential) distribution.

Karagannis et al. later confirmed and refined these results [KBV07]. They discovered that
the CCDF of inter-contact times is characterized by a power-law until a characteristic time
of about half a day, followed by an exponential decay. This dichotomy seems to be an
invariant of human mobility, independent of the length or source of the trace. However, the
length of the exponential tail seems to be approximately proportional to the total time a
given trace was recorded [CHD+07].

Figure 2.5 shows the described dichotomy for the above described trace from the INFOCOM
2005. The probability that an arbitrary inter-contact time is longer than t (y-axis) over a
range of times t (x-axis) is depicted on a log-log scale. A distinct power-law until about half
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Figure 2.5: Inter-contact CCDF of a trace, measured during the INFOCOM 2005 conference.

a day is observable, followed by an exponential degradation. Because the experiment lasted
only for three days, the exponential degradation is very short compared to other traces.

Although real traces of human mobility can be used for the evaluation of mobile applications,
they have their limits. Especially direct contact traces are, unfortunately, very scarce and
all publicly available traces feature only a small number of nodes. Furthermore, traces
are typically of short duration and measure only specific scenarios such as conference or
campus environments. No variation of parameters is possible, like the number of nodes
or distribution of speed [MM08]. Thus, we need appropriate and realistic mobility models
which compensate for these disadvantages.

2.4.2 Simulation based on Mobility Models

Essentially, a mobility model consists of a set of rules which define the movement of mobile
nodes on the simulated area. From this information, a connectivity graph [MCL+08] emerges.
A connectivity graph is a temporal network [KKK00], i.e. edges between nodes change over
time. An edge between two nodes in the connectivity graph exists at time t if both nodes
are in contact (i.e. in wireless range) at time t. In most situations, only the connectivity
graph is required for simulation. However, applications exploiting geographical information
(e.g. geographical routing) require the actual geographical position of each node.
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Recently emerging connectivity models [KPR06] try to simulate a connectivity graph directly.
However, such models are very rare because it is difficult to make any assumption on realism
at this level. Most connectivity models are based on results from real connectivity traces
[MM08].

Synthetic Mobility Models

The most simple and widely used mobility models are random mobility models [CBD02].
One prominent model of this class is the Random Walk mobility model, first described by
Einstein as the Brownian motion [Ein56]. In this model, nodes move at a random speed
and towards a random direction for a certain distance or time. After that, a new random
speed and direction is chosen for the next trajectory. The Random Waypoint Model extends
the Random Walk mobility model by adding pause times, i.e. after each trajectory, nodes
stay for a certain duration at a random point on the simulation area before choosing a new
speed and direction [JM96]. Numerous further variants of random mobility models have
been proposed [CBD02].

Although being simple, random mobility models are not a very realistic approximation of
human mobility. After the discovery of the heavy tailed inter-contact distribution of human
mobility (see Section 2.4.1) many of the early random mobility models were invalidated
by this result because they are characterized by an exponential inter-contact distribution.
Because of this surprising invariant, most recent mobility models are validated by comparing
their inter-contact distribution to the characteristic of real mobility traces.

To reflect human mobility in a more realistic way, numerous improved mobility models
were proposed. The Gauss-Markov model [LH99, CBD02] concentrates on avoiding sudden
stops or sharp changes in direction. Speed and pause times may be selected to reflect
real scenarios [KKK06]. For example, cars have different mobility patterns compared to
pedestrians [DNS08, HFB08]. Other models constrain the movement of nodes, e.g. by
incorporating streets like in the city section model [Dav00] and the manhattan/freeway
mobility model [BSH03]. To improve the realism further, streets can be extracted from
real maps [ATB08]. In addition, humans do not walk through walls, thus other models
introduce obstacles to constrain the movement of nodes [JBRAS03]. Obstacles not only have
an impact on the movement of humans, but also on radio propagation. Hence, advanced
radio propagation models have been proposed [SHR05, SR06]. Because such models concern
themselves with geographical aspects, we call them geographical mobility models [Her03].
Geographical mobility models are typically very scenario-dependent and concentrate on
modeling ’micro-mobility’.

So far, all discussed mobility models have in common that the movement of nodes is
completely independent of each other. Since the movement of humans is strongly influenced
by their social relationships, the new generation of social mobility models emerged
recently. We will discuss the research in this area in Chapter 4.
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Group mobility models concern themselves not with the movement of individual nodes,
but with the movement of groups of nodes. For example, in the column mobility model,
groups are represented by nodes which move together in a line [CBD02]. Nodes in the
reference point group mobility model [HGPC99] move relative to a reference point, which
represents the logical center of the group. The reference point moves around the simulation
area while the nodes within the group move in a random fashion around the reference
point. In the boids model [Rey87], nodes move as a flock based on three simple rules.
Many additional group mobility models exist [MM08, CBD02]. Because they focus on node
movement on a microscopic scale, we consider group mobility models as belonging to the
class of geographical mobility models.

Trace-based Mobility Models

Trace-based mobility models concentrate on the enrichment of a synthetic mobility model
with data extracted from real mobility traces.

The WLAN mobility model [TG05] uses data retrieved from an AP-based trace recorded at
the ETH in Zurich. The authors divide the simulation area into cells. Each cell corresponds
to an area captured by an AP. Nodes are initially placed using a uniform random distribution.
Subsequently, nodes move probabilistically between cells. Only cells are visited that were
also visited in the trace. The probability to move to a neighboring cell is calculated based
on data extracted from the trace. Nodes stay at cells for a certain time drawn from the
distribution of the session duration of the corresponding AP.

Kim et al. propose a very similar approach by using an AP-based trace from the Dartmouth
College [KKK06]. In addition, a speed distribution is extracted from the trace. For each
node trajectory, a random speed is chosen from this speed distribution.

Other models use data retrieved from user surveys to create probabilistic mobility traces
[ZHL06, BRS+04, HMS+05]. Essentially, they are similar to the examples discussed above.

Conclusions

As we have discussed, a multitude of different mobility models exist that focus on different
aspects. Researchers have to make a decision on which model should be used for his
individual requirements. If these requirements change or if a single model does not satisfy
them, this creates a problem. Thus, in order to avoid this situation and to obtain a simulation
which is as realistic as possible, it is important to design more general models that can be
parameterized for specific target scenarios.
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Chapter 3

Requirements Analysis for Realistic

Mobility Models

One of the primary goals of this thesis is to design a mobility model which is realistic. In this
chapter, we elaborate on the implications this goal has on the requirements of the model.

As shown by many authors, the mobility model has a strong impact on the simulation
results [PHO02, JBRAS03, CBD02, BSH03]. Thus, it is sensible and important to develop
mobility models which are as realistic as possible. However, the level of detail must be
limited to some point. Too much details increases the simulation run-time, complexity of
the implementation and hence the probability of bugs [HBE+01].

Thus, we identify a small set of properties of human behavior which we consider important
enough to be captured by a realistic social mobility model. In this process, we focus on
properties related to social context and avoid to constrain properties related to geographical
mobility models, like speed or pause times. Note that we already have discussed that real
mobility traces are characterized by an inter-contact distribution which features a power-law,
followed by an exponential degradation. Besides this empirically measured characteristic,
human mobility is shaped by the following mobility patterns.

3.1 Social Context

An important property of human behavior is that we are strongly influenced by our social
context. In this section, we advocate the use of a social network as input and its accurate
reflection, as discussed in Section 1.2. We have identified the following reasons:

• Social networks directly influence human mobility. Only few researchers have
investigated the influence of the underlying social network on the connectivity graph.
Mtibaa et al. have compared a mobility trace of a conference environment to the
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self-reported social network of the participants [MCL+08]. The degree of nodes in
the social network correlates to the average degree of nodes in the connectivity graph.
However, the average node degree in the connectivity graph is significantly smaller
compared to the node degree in the social network. Strong correlations have also been
observed in terms of node centrality. These results show that important structural
properties of the social network are mapped to the connectivity graph.

Mtibaa et al. report further that contact durations between social acquaintances are
typically a magnitude longer compared to contact durations between nodes which did
not report themselves as friends. Hui extracted social networks from multiple mobility
traces [Hui07]. He inferred social relations by using a formula based on the frequency
and duration of contacts. He used a community detection algorithm to compare the
communities of the extracted social network to the actual communities and observed
a good match. Furthermore, he reports that the contact duration correlates with the
contact frequency, that is, nodes which meet often typically also spend much time in
contact.

The work of these authors suggests that the social network has a strong impact on the
mobility patterns of humans.

• Model independent simulation. The fact that so many different network models
exist (cf. Section 2.2.3), shows that having a model-independent simulator is a key
feature. Using an arbitrary social network as input, possibly obtained from a connec-
tivity graph, and having a simulator that reflects this network makes the simulator
independent of any specific properties of human social behavior. It can reproduce
any properties found in the input network. Thus, it enables the integration of future
findings in this area without changing the simulator itself. In additions, this approach
provides much more control over the simulation.

• Reference for comparison. As discussed in Section 2.3, existing work shows that
mobile applications can benefit from exploiting knowledge about the social context
of users. Much of the results assume a globally known social network. However, we
argue that if no knowledge about the underlying social network is known, mobile
applications still may detect and collect (partial) information about the social context
of nodes. For example, individual nodes may maintain statistical information about
the contact frequency, duration, and/or inter-contact times with other nodes and hence
infer knowledge about their social context. This information may be shared with other
nodes in an opportunistic manner, thus acquiring partial knowledge about the social
network. To evaluate algorithms and protocols which collect and/or exploit knowledge
about the social context of nodes, researchers should be able to compare their results
to the underlying social network. The reflection of an input social network provides
such a reference.

• Integration of realistic structural properties. As discussed in Section 2.3, mobile
applications may exploit structural properties of the underlying social network. For

24



3.2 Active Social Relationships

example, we have seen that some applications utilize nodes with a high betweenness
measure, which is a characteristic shown by nodes connecting different social commu-
nities. However, it was discovered already over three decades ago that such ’weak’
links between social communities play a vital role in dissimating information in social
networks [Gra73]. Recent work confirms that weak links in the social network are
also of high importance on the level of connectivity for content dissemination systems
[IC09].

To enable the research of mobile applications exploiting the structures of social networks,
a social mobility model must create mobility based on these structural properties. An
input social network allows the integration of arbitrary structural properties into the
mobility scheme.

3.2 Active Social Relationships

Intuition tells us that relationships between humans are not equally important at each point
in time. For example, two individuals who share a ’colleague’ relationship meet typically
during work hours. Two individuals sharing a ’family’ relationship, on the other hand, rather
meet in their free time, but not during work hours.

The analysis of real mobility traces confirms this intuition behind human social behavior:
Very heterogeneous inter-contact times have been observed between the same pair of nodes
[CLF07]. In other words, two individuals sometimes meet very frequently and sometimes
meet not at all during certain periods of time. This motivates the following two definitions:

Definition 3 (Active Social Relation/Acquaintance) We call a social relation active
at time t, if two individuals typically meet at t with a significant probability. A social
acquaintance u of a node v is called active social acquaintance at time t, if the social relation
between u and v is active at t.

Note that since it is difficult to analyze human social behavior analytically, it is not possible
to quantify what ’significant probability’ means in the general case. Nevertheless, based on
this and the following definition, we advocate that the probability for connectivity between
two nodes is not uniformly distributed over time.

Definition 4 (Active Social Context) The set of all active social acquaintances of a
node v at time t is called the active social context at t.

The integration of this concept into a mobility model is of significance for mobile applications
which exploit knowledge about the social context of users. For example, we consider an
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application which collects statistical information about the average inter-contact time for all
encountered nodes. Assume that a message m must be transmitted from node A to node
B. A knows that the average inter-contact time between A and B so far is 1 hour. Yet,
this does not necessarily mean that A and B meet roughly once every hour at any given
time. Instead, if A and B are office-mates, they may meet on average every 20 minutes
during office hours, but only very seldom outside the office, which may result in about 1
hour of average inter-contact time. Based on this relatively short average inter-contact time,
the application running on node A decides to directly transmit m from A to B i.e. to wait
for the next contact opportunity with B. However, if the time of this decision is Friday
night, the time until the next contact may be more than two days with a high probability
since A and B do not work at weekends. Thus, it might be better to utilize another node as
the next hop for m. Instead of only measuring the average inter-contact time, our example
application could measure the average inter-contact time for different periods of time. This
would allow the application to infer that the inter-contact time between A and B is relatively
high between Friday evening and Monday morning. More generally, an intelligent mobile
application may keep track of the active social context over time.

3.3 Spatial Regularity

There seems to exist a strong dependency between individuals and specific locations. In
particular, the probability to visit an arbitrary location is not uniformly distributed as many
mobility models assume. Instead, each individual is associated with several locations of
significance which he visits frequently and regularly, like the working place, home, etc. Thus,
humans are characterized by a spatial regularity. This motivates the following definition
based on Adams et al. [APV08]:

Definition 5 (Social Sphere) A social sphere of a node defines a set of important locations
for the corresponding user which he visits frequently and regularly.

Locations of the social sphere also act as a place where individuals meet other individuals
with whom they share social relations and thus play a geo-social role.

Some research focuses on the study of human spatial regularity. Gonzales et al. have
investigated the reappearance of humans at specific locations in the trajectories of 100000
mobile phone users [GHB08]. For each location, they ranked the number of visits where L
represents the L-most visited location. They report that the probability to find a user at a
location of rank L is well approximated by P (L) ∼ L−1 independent of the total number of
locations a user has visited. This heavy-tailed distribution suggests that a typical human
individual spends most of his time at a few locations while visiting a large range of locations
with low probability.
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Hsu and Helmy [HH06b] have performed a similar investigation using several different
mobility traces. They have ranked the time users spend associated to different APs and
calculated the average over all users. The results are shown in Figure 3.1. In particular, an
average individual spent more than 95% of his online time associated with only five APs.
Very similar results were observed in a study conducted at the ETH Zurich [TG05].

Figure 3.1: Average fraction of the time a user spent associated with a given AP for different
mobility traces (semi-log scale) [HH06b].

These results confirm the existence of social spheres. Other work aims at actually collecting
the social sphere of users by analyzing GPS-based mobility traces [GBNQ06, CHK05].

If a node spends most of its time at a few locations, it will often meet the same mobile
nodes, which also tend to follow this pattern. Such regularly emerging locality-induced
social groups may be exploited by mobile applications [JS09].

3.4 Temporal Regularity

Humans are also characterized by a temporal regularity. The probability that a user is
located at a specific location is not constant over time but very heterogeneous. In addition,
this temporal dependency seems to be periodic, which leads to a temporal regularity. More
precisely, there exist time gaps tg such that the probability that an individual reappears
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at a certain location after tg is significantly increased compared to other time gaps. This
confirms the intuition that humans follow daily and weekly schedules.

To study the temporal regularity in mobility traces, Hsu and Helmy [HH06b, HH05] have
defined a metric called network similarity index (NSI). To study the tendency of users to
reappear after a certain time gap (e.g. 24 hours), the authors evaluated if a user was located
at the same location for two points in time t and t+ tg. The authors evaluated this for each
minute during the measurement. The location similarity index for a user and time gap is
then defined as the fraction of times the statements holds. Finally, the network similarity
index for a specific time gap is calculated as the average location similarity index over all
users for this time gap. Figure 3.2 shows the NSI (y-axis) over a range of time gaps (x-axis)
for different mobility traces. Distinct peaks after multiples of a day are observable. This
result suggests the tendency of users to return to certain locations after a period of one day
with high probability. Other work shows similar results [GHB08, SA03].

Figure 3.2: Network similarity index for a range of time gaps using five different mobility
traces. The peaks suggest a period of one day [HH06b].

If the movement of mobile nodes is based on repetitive patterns, the connectivity of two
nodes can be predicted with a certain probability. Thus, mobile applications may keep track
of the connectivity over time and identify time intervals in which there is a high probability
to encounter specific nodes. This knowledge may then be exploited, e.g. for forwarding
decisions.
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3.5 Group Movement

Frequently, humans do not move independent of each other from location to location, but
rather move as a group. We argue that group movement is a realistic mobility pattern
and may be exploited by mobile applications, e.g. by identifying groups and utilizing their
combined resources.

Several examples of mobile applications which explicitly consider group movement exists.
For example, Thomas et al. [TGK06] propose a routing protocol in a mobile network in
which most nodes move in groups. These groups are identified by a distributed algorithm and
utilized for routing on the group-level. The authors report improved performance compared
to traditional approaches. As another example, the Social Rope [NYBK06] runs on wireless
mobile phones and keeps track of groups in which users move. If a group member gets lost,
the Social Rope informs the other users. This resembles a rope, which ties together a group
of people and gives immediate physical feedback if a group member moves away.

To enable the research of mobile applications which consider moving groups of individuals,
a realistic mobility model should feature group mobility. To capture different mobility
scenarios, the number of group movements should be controlled by a parameter.

3.6 Conclusions

In this chapter, we have identified several important realistic human mobility patterns that
lead to the following requirements to achieve our goal of realism:

• Social context must be explicitly simulated. The global social context of all nodes is
provided by using a social network as input for the model.

• The probability for connectivity between two nodes must not be constant over time
since in the real world, people meet during certain periods of time with increased
probability.

• The movement of mobile nodes must be characterized by spatial and temporal depen-
dencies.

• Nodes must not always move completely independent of each other but rather move
as a group. A parameter should control the number of group movements.

• A realistic mobility model should satisfy the characteristic dichotomy of the inter-
contact distribution measured in real mobility traces (cf. Section 2.4.1).

A mobility model that satisfies these requirements captures a strong degree of realism. We
have also discussed examples of applications which may utilize these patterns. This shows
their importance in evaluating such applications. The identified requirements are later
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implemented in the construction of the model (Chapter 5). In Chapter 7, we show that the
model satisfies these requirements.
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Chapter 4

Related Work

In recent years, several mobility models incorporating the fact that social relations influence
the movement of humans have been proposed. In this section, we discuss these models.
However, several of the models focus rather on the simulation of (unstructured) communities
than individual social relations. In each of the following sections, we first illustrate the main
concepts of the different approaches. Then, we discuss their realism as well as advantages
and disadvantages. In addition, we discuss the fulfillment of the requirements identified in
the last section. To conclude this chapter, we discuss the implications of the existing social
mobility models on the design of our proposed model.

4.1 First Social Mobility Model

Herrmann proposed the first mobility model which focuses on the simulation of sociological
aspects [Her03]. The model takes a non-weighted network as input and aims to reflect this
network in its mobility scheme by producing frequent encounters between nodes which share
a social relation.

The simulation is conducted in multiple simulation periods which are time intervals of
constant length. Each clique of nodes in the social network is associated with a time interval
in which its members meet at a fixed location within the simulation area. Based on this
schedule, nodes move from location to location to meet all cliques of whom they are member
over the course of one simulation period. Subsequently, the predefined schedule is repeated.

The author validates his model by the creation of an output social network, which is
extracted from the connectivity graph based on the number of encounters. By comparing
input and output social network, the author observes that the structure of the social network
is preserved quite well.

The model set the first steps towards the integration of sociological aspects into a mobility
model. As will become apparent in the following sections, it successfully triggered many
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further models. However, the model is very simplistic. We argue that a deterministic model
based on fixed schedules is not very realistic. In particular, the model is not suited to
evaluate mobile applications which exploit spatial or temporal regularities. Because each
node always meets again after the same constant time interval, the inter-contact distribution
cannot match characteristics found in real mobility traces.

4.2 Community-based Mobility Model

The community based mobility model (CMM) employs a social network generated using the
caveman model (cf. Section 2.2.4) to create its mobility scheme [MHM04, MM06, MM07].
Each pair of nodes in the social network is assigned a constant weight, which represents
the strength of the social relation (cf. Definition 1). The weight is zero if two nodes do not
share a social relation.

An algorithm proposed by Newman and Girvan [NG04] is used to identify communities in
the social network and to partition the set of nodes into non-overlapping communities. Each
community is placed initially on a random cell in a grid, which represents the simulation
area. At each simulation tick, every node is associated with a single point on the grid. This
point is called the goal of the node. Nodes always move directly towards the direction
of their associated goal with a constant velocity until they reach it. Subsequently, a new
goal (possibly within the same cell) is selected based on the social attraction of each cell.
The social attraction a cell C exerts towards a node v is calculated as the average weight
between v and nodes currently associated with C. If no node is associated with C, the social
attraction of C is zero per definition. After the calculation of the social attraction for each
cell, a random point within the cell that exerts the strongest social attraction is chosen as
the next goal.

To implement the concept of active social relationships (see Section 3.2), the social network
is periodically regenerated (e.g. every 8 hours). After such a social network reconfiguration,
all nodes in a newly formed community are immediately associated with a new goal within
the same random cell on the grid.

The authors have validated their model by showing that its inter-contact distribution matches
the characteristic of real traces, but depicted their results only for roughly one third of a
day. This does not show if it matches the dichotomy observed in real traces. Furthermore,
the CMM does not feature temporal regularities. The periodic reconfiguration of the social
network leads to a sudden change of the active social context of all nodes at the same time.
We consider both this and the fact that the different generated active social contexts are
completely unrelated to be not very realistic.

The model does not focus on the reflection of the social network. However, we have
performed experiments and observed that the social network is reflected rather poorly. We
have identified the following reasons:
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• The cell selection algorithm creates the following problem: If the last node leaves a
cell C, no other node will move to C again because the social attraction towards C is
zero for all nodes. We have performed many simulations with different parameters and
observed that this leads to an monotonic decrease of the number of groups until only
two or three groups are left, independent of the original number of communities. This
leads to a ’blurring’ of the social network structure between and within communities
on the level of connectivity because they are deemed to be grouped together until the
next reconfiguration of the social network.

• In other cases, some or all nodes did not move at all because their currently asso-
ciated cell is the cell with the highest social attraction. This leads to a (possibly
infinite) stationary behavior, which prevents further meetings between many social
acquaintances.

• Social relations between members of different communities are not properly reflected.
Consider the case that a node A has only a single social acquaintance B in an external
community (cave) Ce. Because most of the time B is co-located with members of
Ce, B’s cell typically exerts a lower attraction towards A than other cells to whose
members of A’s own community are associated. Thus, A meets only very seldom (or
even never) with B despite the fact that their relationship may be as strong as any
relationship within A’s community.

4.3 Home-cell Community-based Mobility Model

Because the movement of humans is not only driven by social relations but also by physical
locations, Boldrini et al. proposed the home-cell community-based mobility model (HCMM)
[BCP07], which is based on the CMM. In this model, all members of a community share a
single home cell, which corresponds to the cell where the community is randomly placed
after each social network reconfiguration.

In the HCMM, goals are selected based on a probabilistic goal selection algorithm. The
probability that a node v chooses the cell C as the next destination anchor is proportional
to the average weight between v and nodes having their home at C. Note that this is in
contrast to the CMM, where the attraction depends on the current node association. If a
node reaches an external cell, i.e. the home cell of another node, it stays there until the next
time step with probability pe and returns to its home cell with probability 1− pe. Thus, pe
controls the average pause time pe/(1− pe) at an external cell. The authors show that their
model creates a heavy tailed inter-contact distribution. However, this distribution does not
resemble the dichotomy observed in real traces.

Like the CMM, the HCMM does not focus on the reflection of the social network. Because
the members of a community share a single home cell, the structure within a community
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(e.g. hierarchical) is completely ’blurred’ because all nodes of a community share the same
attraction towards their home cell and therefore meet each other with the same probability.
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Figure 4.1: Reflection of the social network in the HCMM.

We use the excerpt of a social network, shown in Figure 4.1 (left), to illustrate further reasons
why the model does not reflect the social network properly. We assume equal weights for all
social relations. Based on the shown social network, node A will stay at the home-cell of
B’s community with a probability which is significantly less than the probability to stay
at the home-cell of A’s community. This is due to the fact that A has no social relation
with most of the members of B’s community, which results in a weak home-cell attraction.
Hence, A meets B very seldom compared to other nodes of its community, independent of
the strength of their relationship. Furthermore, A will meet each member of B’s community
with equal probability at B’s home cell, despite the fact that A has no social relation with
them. Similarly, A will meet members of its own community with the same probability
at their common home cell, independent of their relationship. Figure 4.1 (right) shows
schematically the effect of this behavior on the connectivity graph. The brighter we have
depicted the social relation, the lower the contact probability. As shown, the structure of the
social network between nodes in the same community is ’blurred’. The contact probability
between A and B is too weak with respect to the strength of their social relation, and A
meets with equal probability with each of B’s community members and vice versa.

4.4 Time-variant Community Mobility Model

The time-variant community mobility model (TVC) [Hsu08, HSPH08] and its predecessor
[HSPH07] aim to reproduce the spatial and temporal regularities observed in real traces of
human movement. In the TVC model, the time is structured into time-periods. Different
time-periods may be defined and chained together in a recurrent structure, e.g. TP1, TP2,
TP3, TP1, TP2, TP3, TP1, . . . In each time period, a number of communities are defined.
A community is a square-shaped geographical area on the simulation plane. Communities
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are very similar to the concept of home-cells in the HCMM. Node movement is created
by a sequence of epochs. An epoch involves the random movement of a node within the
geographical boundaries of a community, similar to the random waypoint model. The
probability to perform an epoch in a specific community is dependent on the node and the
current time-period. The number and geographical assignment of communities may differ in
different time-periods.

The use of this mobility model involves extensive configuration. For each time period, the
user of the TVC model must specify the following (among others):

• The duration of the time epoch

• The number of communities and corresponding geographical assignment

• For each node v and each community c:

– The probability that v performs an epoch within the geographical boundaries of c

– Average pause time for epochs in c

– Average epoch length for epochs in c

While time consuming, this configuration allows the TVC model to capture the spatial and
temporal regularities as measured in real traces quite well. The authors have also shown
that their model captures the dichotomy of real mobility traces for several configuration
scenarios.

However, the use of discrete time periods to create spatial and temporal regularities leads to
a sudden change of spatial and temporal behavior for all nodes at the same time. In the
real world, however, this change happens more gradually. Thus, we employed a different
mechanism in our model which leads to a continuous change of spatial and temporal
behavior.

4.5 Two-level Social Mobility Model

In the two-level social mobility model [GGP08], nodes are partitioned into disjoint com-
munities. They move between fixed locations on the simulation area, similar to the CMM.
However, the probability for a node to choose a certain location as the next goal is based on a
fixed heavy-tailed Zipf distribution. Nodes of the same community share the same probability
distribution, which leads to frequent meetings between nodes of the same community.

Each location is partitioned into several so called aggregation points. During their stay at a
specific location, nodes move between aggregation points. Pause times on the location and
aggregation point level are selected based on a log-normal distribution, with a smaller mean
value for the latter. The model introduces a circadian rhythm by stopping all nodes for a
certain period of time (i.e. at night).
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By only measuring contacts created at aggregation points (i.e. neglecting random encounters
on the way), the model captures the dichotomy of the inter-contact distribution of real
mobility traces quite well. The idea of a heavy tailed location visiting distribution should
resemble the spatial regularity of human mobility quite well, though the authors did not
evaluate this property explicitly. However, the model does not capture temporal regularities,
nor does it focus on the reflection of the communities.

4.6 Sociological Interaction Mobility for Population Simulation

This model [BLdAF06], which we call SIMPS in the following, is based on two sociological
findings:

• Intrinsicality: Humans have a fixed sociability need dependent on intrinsic factors like
social class and age.

• Interactivity: Humans try to satisfy their level of sociability by encountering social
acquaintances or forming new social acquaintances.

SIMPS is based on a weighted social network generated by the Barabasi-Albert model (see
Section 2.2.4). Fixed sociability needs of nodes are generated based on a normal distribution.
The current level of sociability of a node is calculated as a running average over the number
of social acquaintances within a constant radius around the node.

A node always tries to satisfy its sociability need by alternating between two states: Socialize
and isolate. In the socialize state, a node is attracted by social acquaintances. In the isolate
state, a node is repulsed by strangers. If the current level of sociability drops below a certain
threshold, a node changes into the socialize state. Similar, if the current level of sociability
exceeds another threshold, a node enters the isolate state.

The attraction (repulsion) a node exerts towards another node translates into an attraction
(repulsion) vector in the direction of the node. The length of this vector is proportional
to the weight (1-weight) of the social relation and inversely proportional to the Euclidian
distance. The linear combination of either all attraction or repulsion vectors, dependent
on the current state, yields the social motion influence of a node. Nodes always move in
the direction of the social motion influence in socialize mode and in the reverse direction in
isolate mode. In either case, the acceleration of a node is proportional to the length of the
social motion influence.

The authors report realistic characteristics of the inter-contact distribution. However, we
question the realism of the concept behind nodes which try to constantly keep a fixed number
of social acquaintances around them. Other work shows that the connectivity of nodes in
mobility scenarios is very heterogeneous [MGC+07]. Furthermore, nodes are in constant
motion despite the fact that much stationary behavior has been observed in real mobility
traces [HH06b]. Thus, the model does not capture the spatial and temporal regularities
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measured in real traces. This and the fact that aspects of the geographical model like
acceleration (and thus speed) are dependent on factors of the social mobility model, may
lead to a challenging integration of geographical mobility models. Although using a social
network as input, the authors did not focus on its reflection.

4.7 Discussion

For reasons discussed in Section 3.1, we consider the reflection of a social network as being
an important requirement for a social mobility model. Only one mobility model [Her03]
satisfies this requirement. However, this model is very simple and thus leaves room for
further improvements. No social mobility model tries to capture the movement of nodes in
groups.

Some models try to focus on producing meetings between nodes based on the shared
membership in a community. However, this is a simplification of the structure of real social
networks. Hence, we do not consider such an approach as being suited for the evaluation
of mobile applications. In addition, no community-based model even tries to show the
reflection of the community membership on the level of connectivity.

We adopt the idea behind the reflection of an input social network from the first mobility
model [Her03]. However, rather than creating fixed schedules, we focused on a probabilistic
approach. To reach this goal, we borrowed the idea of attractions towards nodes which are
associated with locations on the simulation area. We did not use an approach based on
the TVC or two-level social mobility model because both create meetings between nodes
based on the user-level, i.e. shared community membership. Although we think that the
idea behind SIMPS is quite interesting, we think that the integration of specific locations to
create spatial and temporal dependencies is necessary. However, we consider this integration
into a mobility model which depends on the constant, dynamic movement of nodes to create
contacts as being very difficult.

We have designed our model to generalize other probabilistic social mobility models [GGP08,
Hsu08, MM06] which feature attraction between nodes and/or attraction towards certain
locations. This enables the evaluation of different concepts such as user prediction, group
movements, social aspects, etc. without changing the used model.

37





Chapter 5

The Social Mobility Model

In this chapter, we introduce our proposed social mobility model. First, we start by providing
an overview of the important model elements and their relations (Section 5.1). We go on
by giving a formal definition (Section 5.2). Afterwards, we explain how group mobility is
created (Section 5.3) and discuss the factors that dictate the movement of simulated nodes
in more detail (Section 5.4). In Section 5.5, we introduce concepts to improve the reflection
of arbitrary social networks despite some ’disruptive’ factors (e.g. geographical aspects).
These concepts can be regarded as an extension of our basic model. Then, we sketch how
geographical concepts can be integrated (Section 5.6). In Section 5.7, we discuss several
social mobility models which are generalized by our approach and show how our model can
be specialized to recreate their behavior. Finally, we summarize the contents of this chapter
(Section 5.8).

5.1 Overview

In the following, we take an abstract look at the elements of our model and illustrate the
basic idea behind its design. We will discuss the individual concepts in more detail in the
subsequent sections.

5.1.1 The Big Picture

We use a social network as the primary input for the model. This network represents the
individuals and their relationships whose movements we simulate. For each node in the input
social network, a mobile node (or short: node) is created assuming that the corresponding
user carries a single mobile device. The simulation occurs on a two dimensional rectangular
area. Social interactions take place at so-called anchors which are placed randomly on the
simulation area. Anchors are abstract locations that may represent, for example, a bus stop
or a coffee table. Nodes move across the simulation area between them. If a node reaches
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an anchor, it stays there for a specific duration. This creates connectivity between nodes
co-located at the same anchor, which we call a meeting between those nodes.

After a node stayed at an anchor for a specific duration, it starts to move towards a new
destination anchor. Probabilistically, the next destination anchor is not selected by a single
node independently, but by several nodes at the same time. Subsequently, those nodes
move together to their new destination, which creates group mobility. The movement of
nodes is dictated by different types of attractions. Abstract locations, represented by an
anchor, exert an attraction in order to create spatial and temporal regularities (cf. Chapter
3). More precisely, nodes prefer to visit a small subset of all anchors and they reappear after
periodic time intervals with high probability. Nodes are also attracted by other nodes to
yield frequent meetings between social acquaintances. In some cases, it is necessary that
nodes are repulsed by each other in order to reflect the input social network appropriately
(cf. Section 1.2).
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Figure 5.1: Example for a typical simulation scenario with nodes (circles) and anchors
(squares).

An example for a typical snapshot during the simulation of the model is shown in Figure
5.1. The input social network is shown at the left side. The simulation area with anchors
(squares) and nodes (circles) is shown to the right. Nodes 2 and 4 and nodes 1 and 3 are
currently meeting at an anchor. This represents a typical situation because both pairs of
nodes share a strong social relation. Node 5, however, is moving from the lower to the upper
anchor. This is a typical situation as well since node 5 has strong ties with both pairs of
nodes.
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5.1.2 Idea behind the Model

The mobility scheme of our model is based on the following real-world abstraction. As
introduced in Section 5.1.1, there are essentially two types of attractions that dictate the
movement of humans. First, humans are attracted by certain locations such as their home,
working place, or favorite restaurant. The strength of this attraction is not constant over
time but very heterogeneous and periodic. For example, assume that a team of colleagues
has a weekly team meeting. Every week during the time of the meeting, the participants
are co-located at the meeting room with a high probability. One possible interpretation of
this behavior is that such locations exert a weekly attraction peak towards some specific
individuals, in this case the participants of the meeting. However, during other time intervals
(e.g. at night), locations do not exert any significant attraction. The attraction peak follows
a weekly pattern, hence, it is periodic. This heterogeneous, periodic attraction can be
regarded as the reason for the temporal regularity of human movement (cf. Section 3.4).
Second, humans are also attracted to other humans. Note that we regard the repulsion
between individuals (see Section 5.1.1) as a generalized kind of attraction between humans,
i.e. a negative attraction. As the analysis of real traces suggests, encounters between social
acquaintances are usually more frequent and of a longer duration compared to encounters
between unrelated individuals (cf. Section 3.1).

The fundamental principle behind our model is to combine these different types of attraction:
Locations exert an even greater attraction in the presence of some social acquaintances.
Other locations may become only meaningful in the first place if some specific individuals
are located at them. For example, a meeting room is in most cases not attractive as long
as no other colleague is within the room. Thus, we let nodes move between locations (i.e.
anchors), guided by the combined attraction towards locations themselves and nodes residing
at them. This allows nodes to meet their social acquaintances creating long and frequent
contacts between them on the level of connectivity.

Furthermore, in the context of a social relation, certain locations are of special significance
that are meaningless in the context of other social relations. For example, the meeting room
is significant in the context of two team members who meet there frequently. However,
a team-member would hardly meet with his family in this meeting room. We show this
geo-social relationship, i.e. the relation between social acquaintances and the social sphere,
in Figure 5.2. The social acquaintances of X (center) meet at certain locations of X’s social
sphere (left). These locations may overlap for some social acquaintances. For example, A
and B share location L as a place to meet X. Since A and B are also social acquaintances,
L may represent a typical place to meet each other, too.

The idea behind the integration of geographical concepts is the following: We advocate that
each mobility model should consist of two submodels: a social and a geographical mobility
model. In this thesis, we only specify the former and provide certain integration points for
the latter. Geographical concepts can then be specified to complement the social mobility
model. For example, we do not specify how nodes move from one anchor to the next. This
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Figure 5.2: Relation between an individual’s social acquaintances and social sphere.

is considered as a part of the geographical mobility model. We also propose concepts which
enable the reflection of the social network despite the integration of geographical aspects.

5.2 Formal Definition of the Elements and their Dynamics

5.2.1 Elements of the Model

Let V = {v1, v2, ..., vn} denote the set of nodes and A = {A1, A2, ..., Am} with m ≥ n denote
the set of anchors. Every node is associated with a nonempty set of home anchors. Nodes
share their home anchors with social acquaintances as a place to meet them. The social
sphere of a node may be regarded as the set of home anchors of all its social acquaintances
and its own home anchors. The home anchor association function

A : V → P(A) \ ∅,

where P(A) denotes the power set of A, maps every node to its set of home anchors. Every
anchor is only home anchor of a single node, i.e. it is required that A(v) ∩ A(v′) = ∅ for all
v, v′ ∈ V with v 6= v′. Note that by assigning multiple anchors the same coordinates on the
simulation area, we still can simulate that several nodes may share a single ’home location’.
Initially, all nodes are placed randomly within the geographical boundaries of one (if several
exist) of their home anchors.
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A simulation run is executed in discrete time steps T = [0, 1, 2, ..., tmax]. The total simulation
duration tmax is partitioned into periodic time intervals (e.g. days) of length tp. We call such
a time interval a simulation period. The idea behind dividing the simulation duration
into multiple simulation periods is to create temporal regularities with a periodicity of tp.

The proposed model is based on an input social network G = (V,E,w, χ). We use weights (cf.
Definition 1 on page 5), since relationships of individuals are not all of equal strength. Thus,
some individuals may have a stronger influence towards each other than other individuals.
This fact is of importance for mobile applications, which exploit knowledge about the social
context.

Note that in addition to Definition 1, each social relation is annotated with a set of simulation
ticks χ : E → P(T ). If {u, v} ∈ E and t ∈ χ(u, v), the social relation between u and v is
considered to be active at time t (see Section 3.1). Hence, the active social context of a
node v at time t can now be formally defined by

Cactive(v, t) := {u ∈ V | {v, u} ∈ E ∧ t ∈ χ(u, v)}

Our explicit assumption is that nodes which share a strong social relation meet more
frequently and regularly than nodes which share only a weak social relation (or none). As
discussed in Section 3.1, this is supported by existing work. Based on this assumption, we
define the following requirement for our model:

Definition 6 (Reflection Requirement) The number of meetings (i.e. two nodes are
at the same time at the same anchor) between two arbitrary nodes v, u ∈ V should be
proportional to the strength of their relationship w(u, v), for t→∞.

If this requirement is fulfilled, we say that the input social network is reflected in our
mobility scheme. Note that this is only one possible interpretation for the strength of the
social relation. For the sake of simplicity, we use the reflection requirement as defined above.
We will later show how a generalized interpretation may be integrated in a simple way
(discussed in Section 8.1).

In general, our model may take an arbitrary network as input, for example extracted from
real mobility traces or generated using a model for social networks like those introduced in
Section 2.2.4. In Section 7.1, we will describe how we generated χ and w for the evaluation
of our model.

5.2.2 Dynamics of the Model

Each node can be associated with an anchor. This association does not necessarily mean
that a node is located at the anchor, but that it intends to reach it. In particular, a node
always moves towards a so called goal. A goal is a point uniform randomly selected within
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the geographical boundaries of the associated anchor. For the sake of simplicity, we represent
an anchor by a rectangular area. In general, this simplification may be easily extended to
support arbitrary shapes.

The anchor association function
L : A× T → V

specifies the set of nodes associated with an anchor a ∈ A at time t ∈ T . In other words, we
have v ∈ L(a, t) if v is either on the way to or stays at a at time t.

After the chosen goal within an anchor a ∈ A is reached, a probabilistic dwell time is
selected from the dwell time distribution Da. Da is a parameter of the anchor and can
be modeled to capture specific target scenarios. For example, the average dwell time for a
bakery may be low in comparison to the average dwell time of a theatre.

After a node v stayed with an anchor for the selected dwell time, other nodes may decide to
join v on its way to the next anchor, which creates a group of nodes G ⊆ V . Subsequently,
all nodes in G (possibly only v) choose a common destination anchor d ∈ A. Finally,
each node in the group gets associated with d and selects a new goal randomly within d’s
geometrical boundaries. Finally the group begins to move towards their common destination
anchor. In the following section, we illustrate the creation of groups in more detail.

5.3 Group Movements

As discussed in Section 3.5, group mobility represents an important human movement
pattern that can also be exploited by mobile applications. We have integrated probabilistic
group movements into our social mobility model. More precisely, if the dwell time of a
node w ∈ L(a, t) expires, other nodes v ∈ L(a, t) may decide to join w for a potential group
movement with probability pjoin(v, a, t).

In real life, individuals move to locations to perform some activity. As discussed in the last
section, we define the time to perform such an activity by employing the anchor-specific
distribution Da. To comply with that parameter, pjoin(v, a, t) increases as the remaining
dwell time of v at a decreases. Thus, nodes stay with a high probability for most of their
originally chosen dwell time at the corresponding anchor. This is important since we consider
the dwell time as being a parameter of the geographical mobility model.

In Figure 5.3, we show the probability that a node v joins a group movement (y-axis)
dependent on v’s remaining dwell time (x-axis). ∆dwell denotes v’s dwell time at a, selected
from Da. As shown, the probability to join increases linearly for ∆dwell → 0 after v has
stayed at least for a fraction gthresh ∈ [0, 1] of its original dwell time at an anchor. Thus, the
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Figure 5.3: Probability to join a group, dependent on the remaining dwell time ∆dwell.

probability that a node v ∈ V at a ∈ A joins the group movement at time t ∈ T is defined
as follows:

pjoin(v, a, t) =

{
0, if remDwellT ime(v, a, t) > ∆dwell(1− gthresh)

1− remDwellT ime(v,a,t)
∆dwell(1−gthresh) , else.

where remDwellT ime(v, a, t) denotes the remaining dwell time of v at anchor a at time
t.

Note that we define no micro-mobility behavior within the group because we consider
this as being part of the geographical mobility model. We simply define that nodes move
from the same source anchor to the same destination anchor. Based on our prototypical
implementation, nodes start to move at the same time with the same constant speed. Thus,
nodes are typically very close to each other, dependent on the randomly generated source
and destination goals within the geometrical boundaries of the corresponding anchors.

In the following section, we illustrate how probabilistically created groups of nodes select
their common destination anchor.

5.4 Probabilistic Destination Anchor Selection

A Node stays for the duration of the selected dwell time within the geometrical boundaries
of an anchor. As soon as this duration expires, a new destination anchor is selected
probabilistically by the node and (potentially) other nodes that join the group movement.
This selection is based on different types of attraction exerted by an anchor towards a node.
The higher the combined attraction of an anchor, the higher the probability to select this
specific anchor as the next destination.

If an anchor is member of a node’s social sphere, it exerts a location attraction. Nodes
are also attracted by social acquaintances located at an anchor, that is, an anchor exerts
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5 The Social Mobility Model

a node attraction. Finally, nodes have a repelling effect on other nodes if no significant
social relation exists. This is called node respulsion and may be regarded as a generalized
type of attraction towards nodes, i.e. a negative attraction. The overall attraction of an
anchor is then represented by a weighted sum over these three types of attraction. The node
repulsion may diminish the node/location attraction, however, the overall attraction of an
anchor cannot be negative.

We provide more details about the calculation of the individual types of attractions and
their influence on the destination anchor selection in the following. The prerequisite for
calculating either type of attraction towards anchors is to define the social attraction
between two nodes u, v ∈ V at time t ∈ T as follows:

(5.1) s(u, v, t) =

{
w(u, v), if t ∈ χ(u, v)

0, else.

In other words, the social attraction between two arbitrary nodes corresponds to the weight
of their social relation if the relation is active. The attraction is zero if no social relation
exists (thus w(u, v) = 0, see Definition 1 on page 5) or if the relation is not active. Note
that the social attraction specifies the (symmetric) attraction between two individual nodes.
Both the location and node attraction/repulsion, on the other hand, are defined for a node
towards an anchor. In particular, the latter are dependent on the nodes which are associated
with that anchor and thereby dependent on the social attraction towards those nodes.

This was our initial approach to calculate the social attraction between two nodes. Later,
we will introduce an advanced formula for calculating the social attraction. This advanced
formula may replace Equation (5.1) to yield a more robust reflection of the social network
in the presence of some ’disturbing’ factors, as we will explain in Section 5.5 in more detail.
However, this results in additional complexity. Thus, we consider the advanced calculation
of the social attraction as an (optional) extension of the basic model.

5.4.1 Location Attraction

The attraction an anchor exerts towards a node is dependent on the node and the current
simulation tick. To support the time-dependent periodic location attraction, every anchor
a ∈ A is associated with a characteristic anchor function

fa : T → [0, 1].

fa is a tp-periodic function, i.e.

fa(t) = fa(t+ tp) for all t ∈ T : t+ tp ≤ tmax.
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The basic idea behind employing a periodic anchor function rather than a constant attraction
is to introduce a temporal dependency (see Section 3.4). This dependency is periodic which
results in the habitual behavior of nodes with periodicity tp, as we will show in the evaluation
of our model.

In general, the shape of the anchor function may be arbitrary. However, to actually yield
habitual behavior, the anchor function should not be constant. In our implementation
of the social mobility model, the anchor function is randomly generated for each anchor
using different simple models. Two examples are depicted in Figure 5.4. Two functions,
one with a periodic peak (black) and one with a periodic plateau (grey), are depicted. The
peak-function may be a good representation for a canteen while the plateau-function may
rather be used to represent an office building. We generate the position of the peak/plateau
randomly for each anchor.

 

tp 

t 

1 

fa(t) 

Figure 5.4: Example for two characteristic anchor functions.

In order to yield spatial regularities (cf. Section 3.3), each node is only affected by the
location attraction of a subset of all anchors. This subset corresponds to the social sphere
of this node. Basically, nodes share the location attraction of their home anchor(s) with all
members of their active social context. This reflects the real world where, for example, we
seldom let strangers in our house. For each node v, the influence of the location attraction
exerted by the home anchor of another node u is proportional to the social attraction
between u and v. Thus, the probability to spend time at a foreign anchor and therefore
possibly with the associated node reflects the strength of their relationship. In particular,
this complies with the reflection requirement.
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Based on this discussion, the location attraction an anchor a ∈ A exerts towards a node
v ∈ V is defined as follows:

(5.2) Aloc(v, a, t) :=

{
s(v, vh, t) · fa(t), if v 6= vh

γ · fa(t), else.

where a is a home anchor of vh, i.e. a ∈ A(vh), and γ ∈ [0, 1] is a constant factor to avoid
that the attraction towards the home anchor(s) dominates the attraction towards other
anchors. γ allows to control the time a node spends at its own home anchor(s). We used
γ = 1 for our basic model. However, we will later introduce an advanced calculation of the
social attraction which makes it necessary to use a γ < 1.
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Figure 5.5: Example for the social sphere of node v.

Figure 5.5 illustrates the social sphere of a node v, created by the location attraction. On
the left, we show an excerpt of a social network. In the center, we depict the simulation area
with several anchors. Home anchors of nodes shown in the excerpt of the social network are
captioned with the associated node. The darker we have depicted the color of an anchor,
the greater its influence on v.

5.4.2 Node Attraction

An anchor a exerts a node attraction towards a node v if at least one node of v’s active
social context is located at a. The strength of this attraction, however, depends on the
social attraction towards all nodes which are associated with a.

First, we propose a simple formula (AInode) for the calculation of the node attraction. Then,
we discuss some difficulties that may arise from the integration of a geographical mobility
model. As a consequence, the existing formula is refined which yields an alternative formula
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(AIInode) that enables better results if geographical concepts are integrated, but at the price
of requiring additional computing power.

Simple Calculation

To satisfy the reflection requirement, the probability to produce a meeting between two
nodes must be proportional to the strength of their social relation. At the same time, the
presence of nodes to which no social relation exists should lead to a rather weak attraction.
Hence, the node attraction an anchor a ∈ A exerts towards a node v ∈ V at time t ∈ T , is
calculated as follows:

(5.3) AInode(v, a, t) :=
1

|L(a, t)|
∑

u∈L(a,t)

s(v, u, t).

In other words, the node attraction is proportional to the mean social attraction towards all
nodes which are associated with a at time t.

Enhanced Calculation

In the presence of geographical concepts, some nodes may require a long time to travel
between anchors. For example, obstacles and streets may constrain the movement of nodes
which leads to long travel times. Long distances or heterogeneous speed distributions may
create a similar effect. A specific behavior can be observed under such conditions: A node
v may be attracted by another node u, staying currently at an anchor a. By the time v
reaches a, u is already on its way to another anchor. Hence, v misses the opportunity to
meet u, though this was the reason to visit a in the first place (Case A). The greater the
time to travel between anchors compared to the average dwell time, the more frequently
this behavior can be observed.

In addition to case A, we have identified another similar case. Consider the following
situation: u is associated with an anchor a, but has not reached it. v may be attracted to a
based on the node attraction towards u. We assume that u requires a lot of time to reach
a. Thus, by the time u finally reaches a, v has already chosen a new destination anchor.
Hence, they miss the opportunity to meet each other (Case B).

To make the integration of geographical mobility models easy, nodes should be able to meet
each other even in the presence of long travel times. Therefore, we introduce an enhanced
formula to calculate the node attraction. This formula is quite similar to Equation (5.3),
but differs in the set of nodes considered in the calculation. More precisely, a node is only
considered in the calculation if a meeting will (presumably) occur.

In the following, we discuss the example shown in Figure 5.6. Node u considers anchor
a as a potential destination anchor. Thus, the node attraction of a towards u has to be
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Figure 5.6: Example Scenario: Node u considers anchor a as a potentiell destination. Travel
and dwell times are shown above the arrows. In this scenario, only node y is
considered for the calculation of the social attraction.

calculated. We assume that u would require 30 simulation ticks to reach a. A potential
dwell time of 150 simulation ticks is selected from Da. If u actually chooses a as the new
destination anchor later, this potential dwell time will become the actual dwell time for the
next stay. Three nodes are currently associated with a. Node x is already located at a and
will choose a new destination anchor in 20 simulation ticks. Hence, no meeting between u
and x will occur (case A) and x is not considered in the calculation of the social attraction.
Nodes v and y are both on their way to reach a. v will reach a not until 190 simulation ticks
later. At this time, u will already have chosen a new destination anchor (case B), thus v is
not considered either in the calculation of the social attraction. The only node considered is
y because a meeting with u will presumably occur 30 simulation ticks later.

To determine if two nodes will meet at an anchor, it is required to choose a potential dwell
time at the time of the selection of the new destination anchor. This way, the entire time
window a node will stay at an anchor is known. Hence, a node may determine if a meeting
with other associated nodes will occur. We denote the remaining time it takes v to reach a
at time t as travelT ime(v, a, t). In particular, if v has already reached its goal within the
geometrical boundaries of a at time t, we have travelT ime(v, a, t) = 0. Hence, we propose
the following enhanced formula as an alternative for Equation (5.3):

AIInode(v, a, t) :=
1
w

∑
v′∈L̂(a,t′)

s(v, v′, t)

with w = |L̂(a, t′)| and t′ = t+ travelT ime(v, a, t),
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where L̂(a, t′) is an approximation of L(a, t′) at the future time t′ > t. Note that the only
difference compared to Equation (5.3) is the set of nodes considered in the sum. To combine
the cases A and B, we define that u ∈ L̂(a, t+ travelT ime(v, a, t)) if and only if

travelT ime(u, a, t) + remDwellT ime(u, a, t) > travelT ime(v, a, t) (Case A)

∧ travelT ime(u, a, t) < travelT ime(v, a, t) + ∆pot
dwell (Case B)

where ∆pot
dwell denotes the potential dwell time of v in the case that v chooses a as the new

destination anchor. Just like in the case of the simple calculation, ∆pot
dwell is selected from

the distribution Da. Another approach may be to choose ∆pot
dwell in a way that v meets as

many nodes as possible. However, this would constrain the geographical mobility model and
the ability to parameterize the simulation for different scenarios.

Note that at a time t′′ with t′ > t′′ > t, another node may decide to select anchor a as a
new destination anchor. Or, a node u ∈ L̂(a, t′) may leave a before its dwell time expired
because u joined a group movement. Thus, L̂(a, t′) is only an approximation of the actual
L(a, t′) at time t′.

The illustrated enhanced calculation of the node attraction causes additional costs in terms
of computing power. In the following, these costs are enumerated, based on the scenario
that an arbitrary node v chooses a new destination anchor.

• For every potential destination anchor, i.e. for all a ∈ A with ∃u ∈ L(a, t) : u ∈
Cactive(v, t), a potential dwell time has to be selected from the distribution Da. If
the generation of values according to Da is simple, like in the case of a Gaussian or
uniform distribution, these costs are negligible.

• For every potential destination anchor, the potential travel route and time have to be
calculated. This is strongly dependent on the geographical mobility model. However,
many mobility models use a graph to represent pathways. In this case, efficient
algorithms exist which calculate the shortest path between two arbitrary locations.

• For every node, the remaining travel time and dwell time have to be known at any point
in time. But even if the simple approach is used, the route to the next destination and
the dwell time have to be calculated at some point. Thus, additional overhead is only
created by maintaining and decrementing these values, which is negligible compared
to the overall complexity of our model.

Thus, in typical cases, the enhanced calculation increases the costs only slightly.
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5.4.3 Node Repulsion

To satisfy the reflection requirement, pairs of nodes sharing a weak social relation and
pairs of nodes without any social relation should meet with low probability. However, in
experiments we have observed that this is not always the case. More precisely, we have
implemented the destination anchor selection based only on the location and node attraction
as discussed so far. We have discovered that certain pairs of nodes meet frequently despite
sharing only a weak social relation or no social relation at all. In particular, this happens if
both nodes share a common social acquaintance v. The reason for this behavior is that both
nodes are indirectly attracted by v and v’s home anchor(s). The general case of multiple
common social acquaintances is shown in Figure 5.7. Two nodes without any social relation
(u and v) are depicted, which are strongly attracted to each other due to multiple common
social acquaintances. The more common social acquaintances two nodes have, the more
pronounced is this behavior.
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Figure 5.7: Typical scenario in which a node repulsion is necessary.

To prevent meetings between nodes based only on the attraction towards common social
acquaintances, we introduce a node repulsion. The reader may argue that it might be
a realistic human behavior that two individuals sharing a common friend also share a
social relation and meet frequently. Indeed, as discussed in Section 2.2.3, this is a common
characteristic of social networks. However, it is not the goal of our mobility model to make
any assumptions about how relationships between individuals are structured (cf. Section 1.2).
Such assumptions can be integrated into our mobility model by providing an appropriate
social network as input. Furthermore, in the evaluation of our model (Section 7.3), we
will show that the node repulsion also plays a vital role for the emergence of realistic
characteristics of the inter-contact distribution.

First, we assume that the simple formula for the social attraction is employed and illustrate
the calculation of the node repulsion in this case. Afterwards, we will explain how to change
the calculation if the enhanced formula is used.
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The further discussion is based on the following scenario: At time t, a node v considers an
anchor a as a potential next destination. A node vweak is associated with a at time t, i.e.
vweak ∈ L(a, t). We assume that either no social relation between v and vweak exists, the
social relation is not active, or that the weight of the relation is below the so called penalty
threshold wweak > 0. In other words, we assume ∃vweak ∈ L(a, t) : s(v, vweak, t) < wweak.

Of course, two nodes sharing a weak relation should also meet on occasion. We only want to
avoid meetings between nodes based on the attraction towards a common social acquaintance.
Therefore, the node repulsion is only considered in two cases:

1. In addition to vweak, at least one node which shares a strong, active social relation
with v stays at a, i.e.

∃vstrong ∈ L(a, t) : s(v, vstrong, t) ≥ wweak.

This represents the case in which v and vweak are attracted not by each other, but
by their common social acquaintance vstrong. Although we make no assumption on
the relationship between vstrong and vweak, their co-location implies that they share a
significant social relation with high probability.

2. a is neither home anchor of v, nor home anchor of vweak, i.e.

a /∈ A(v) ∧ a /∈ A(vweak).

This represents the case in which the attraction between v and vweak is based on their
common attraction towards a home anchor of a common social acquaintance.

If at least one of the above described cases is satisfied, we calculate the node repulsion as
follows:

Arep(v, a, t) := − 0.5
wweak

·
∑

v′∈L(a,t))

max(wweak − s(v, v′, t), 0).

If neither case is satisfied, we define Arep(v, a, t) = 0. In other words, each node vweak
with s(v, vweak, t) < wweak creates a penalty inversely proportional to the weight of the
social relation, and all such penalties are accumulated to yield the node repulsion. We have
employed the fraction 0.5

wweak
such that a node u with w(u, v) = 0 always creates a penalty

of 0.51, independent of the definition of a ’weak’ social relation (i.e. the penalty threshold
wweak).

If the enhanced formula for the social attraction is used, L(a, t) is simply replaced by L̂(a, t′)
with t′ = t+ travelT ime(v, a, t) for each occurrence.

1Note that the value of 0.5 is completely arbitrary. A change of this value only changes the optimal value
of the parameter φ that weightens the influence of the node repulsion, which we will introduce in the
following.
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5.4.4 Selection of the Destination Anchor

After a node’s dwell time has expired, a new destination anchor is chosen by the node or
group of nodes. This probabilistic selection is based on the discussed types of attraction.
We use a weighted sum to represent an anchor’s overall attraction.

Let G ⊆ V be the group created by the algorithm described in Section 5.3. We note that
in particular, G may contain only a single node. The overall attraction an anchor a exerts
towards a group of nodes G at time t, is calculated as follows:

Aoverall(G, a, t) := max(0,
∑
v∈G

[αAnode(v, a, t) + (1− α)Aloc(v, a, t) + φArep(v, a, t)])g

with φ, α ∈ [0, 1], g ∈ [0,∞[, and Anode ∈ {AInode, AIInode}. In other words, we accumulate
the attraction an anchor exerts towards the individual nodes in G.

g controls the ’greediness’ of the destination anchor selection. g → 0 implicates a completely
random selection while g →∞ represents the case of a deterministic selection of the anchor
that exerts the highest overall attraction.

α controls the weight between location and node attraction. For α→ 0, a node chooses its
destination primarily based on the current value of the anchor function. Thus, the movement
of nodes is strongly dictated by habitual behavior. For α → 1, on the other hand, the
movement of nodes is mostly based on the current location of social acquaintances. Hence,
α controls the degree of randomness.

φ, which we call the penalty factor, controls the strength of the node repulsion. A low φ
may lead to a poor reflection for some pairs of nodes. A high φ may lead to less meetings
between nodes.

After the calculation of the overall attraction of all anchors, we can finally define the
probability that a group of nodes G chooses an anchor a as the next destination anchor at
time t:

P (Next Destination Anchor = a) =
Aoverall(G, a, t)∑

a′∈AAoverall(G, a′, t)

Hence, the probability of choosing an anchor as the next destination is proportional to its
overall attraction towards the group.

5.5 Robust Reflection of the Social Network

The probabilistic selection of the destination anchor as discussed so far results in a good
overall reflection, i.e. averaged over all social relations, as we will show in the evaluation

54



5.5 Robust Reflection of the Social Network

of our model (Chapter 7). However, we observed a rather poor reflection for some specific
social relations. Either considerable too many or too few contacts were produced between
such nodes with respect to their social relation. First, we analyze and identify the reason for
this behavior (Section 5.5.1). In Section 5.5.2, we give an overview of our generic solution.
Afterwards, we discuss the solution in more detail (Sections 5.5.3 and 5.5.4). We consider the
results in this section to be an extension of the basic model proposed so far. The concepts
can be integrated without much change. They improve the reflection of the social network
at the cost of additional complexity.

5.5.1 Motivation for further Improvement

The poor reflection of some social relations is caused by three different factors. We discuss
these factors in the following.

Structural Properties of the Social Network

In our experiments we found a correlation between the probability that two nodes meet and
their similarity, i.e. the degree of common social acquaintances (cf. Section 2.3.1). We use
an example shown in Figure 5.8 to illustrate the reason for this correlation. A simple excerpt
of a social network is depicted. All existing edges between the four illustrated nodes are
shown and their weights are assumed to be equal. We observe that nodes A, B, C and D
form a clique. Node E has only a relation to a single member of the clique (node A). Every
node is assumed to have a single home anchor. Thus, the social sphere of A includes the
home anchors of A,B,C,D and E. Four of these anchors are also part of the social sphere of
B. Thus, A may encounter B on any of these four anchors. However, there are only two
anchors at which A may meet E. In addition, A is able to meet with C or D and at the
same time meet with B since all are social acquaintances of each other. Thus, based on
the probabilistic destination selection described in Section 5.4, the probability to meet E is
smaller than the probability to meet B. This problem occurs only because A shares some
(in this case two) common social acquaintances with B, but none with E.
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Figure 5.8: The strong similarity between A and B leads to an increased meeting probability.
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As illustrated by this example, the general problem is that two social acquaintances sharing
an above-average similarity meet with increased probability because they may meet at
a larger number of anchors compared to social acquaintances which share a rather low
similarity. Additionally, meetings between multiple nodes at the same time may be produced
within strongly clustered subgraphs. Thus, the reflection of the social network may be
degraded due to structural properties.

Concepts of the Geographical Mobility Model

The integration of concepts of the geographical mobility model may cause a poor reflection
of some social relations.

We consider the case that node u has a social relation of equal weight with the nodes x
and y. We assume that x requires a above-average time to travel between anchors because
of long distances, low speed, or obstacles. y on the other hand, travels very fast between
anchors. Thus, u may produce much more meetings with x than with y, despite the fact
that both social relations have the same weight.

We assume that there are many other geographical concepts which may lead to a similar
disruption of the reflection of the social network.

Heterogenous Sociability

In a typical social network, the node degree is very heterogeneous. Some nodes have many
more social relations than other nodes. Thus, to satisfy the reflection requirement, a node
which has many social relations, e.g. a hub in a scale-free network, has to produce much
more meetings per time with its social acquaintances compared to a node which has only
few social relations. This may lead to a poor reflection between pairs of nodes characterized
by a very different node degree.

We illustrate this problem by considering the example social network shown in Figure 5.9.
For the sake of simplicity, we assume that all social relations have a weight of 1 and are
active during the whole simulation duration. As depicted, node B has only a single social
acquaintance and may, so to speak, dedicate all its time to meet node A. Node C, however,
has many social acquaintances and may have only a limited time to meet with A. Thus, A
may produce much more meetings with B than with C, although both social relations have
an equal strength.

We have not considered so far that social relations may have different weights. Furthermore,
social relations are not active all the time. Thus, we propose a measure for the number of
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Figure 5.9: A Social network characterized by an asymmetric node degree.

weighted social relations at a given time during the simulation. We define the sociability
of a node v ∈ V at time t ∈ T as follows:

soc(v, t) :=
∑

x∈Cactive(v,t)

w(v, x)

In other words, the sociability measures the sum of the weights of all active social acquain-
tances at a given time. To avoid the above described problem related to the heterogeneous
sociability, we introduce the following definition.

Definition 7 (Sociability Requirement) The sociability of a node must be proportional
to the number of produced meetings per time.

The real-world intuition behind this is that individuals characterized by many social relations
typically meet more frequently with other individuals. If Definition 7 is satisfied, all nodes
produce the same number of meetings for social relations of comparable weight. This is
required to satisfy the reflection property as we have demonstrated in the example above.
Unfortunately, this is not the case based on the basic model we have proposed so far. Indeed,
measurements in experiments show that the number of produced meetings per time unit
correlates to the average sociability of a node. However, this correlation is significantly
below a proportional relationship. Thus, we require concepts to ensure that the sociability
requirement is satisfied.

5.5.2 Overview

In the following, we give an overview of the concepts to solve the discussed problems and
show how they are related.
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Isolation Phase

The idea to satisfy the sociability requirement is the following: Individuals characterized
by few social relations typically spend more of their time in isolation compared to hubs,
which are frequently surrounded by social acquaintances. To simulate this typical behavior,
we introduce a so-called isolation phase. If a node v selects a new destination anchor,
it may probabilistically enter into an isolation phase. In this case, v moves to a randomly
chosen point on the map that is outside of the boundaries of any anchor. This point is
called the isolation location. v stays at the isolation location for a specific time interval.
During this time interval, no other node is attracted by v. Thus, a node in an isolation
phase produces no meetings with other nodes. After this duration expires, v may select a
new destination anchor again and thus leave the isolation phase. Or, v may enter into an
isolation phase again. The isolation phase may be regarded as a regular visit of an anchor
without producing any explicit meetings with other nodes.

In our prototypical implementation, the isolation locations are randomly selected on the
map. On the level of connectivity, the geographic position is of no importance because no
connectivity is supposed to be created during an isolation phase. The use of an isolation
location is just the means to force a node to be isolated for some time. If a mobile application
explicitly requires geographical data such as GPS coordinates, the isolation locations have
to be placed according to a scenario-dependent, realistic scheme.

The challenge to satisfy the sociability requirement lies in the calculation of the isolation
probability piso(v, t) which specifies the probability that a node v ∈ V enters into an
isolation phase if its current dwell time expires at time t ∈ T . As discussed above, the goal
is to create a proportional relation between the sociability and the number of meetings
per time. Thus, piso(v, t) must dependent both on v’s current sociability and the number
of meetings between v and active social acquaintances u ∈ Cactive(v, t). For example, the
isolation probability of node B in Figure 5.9 is usually higher than the isolation probability
of node C.

Correction Factor

As discussed above, some structural properties and geographical concepts may create
disruptions in the reflection of the input social network. Some nodes may have too few or
too many encounters, compared to the weight of their social relation. Concepts like group
movement may also create such disruptions. We propose the following as a generic solution:
At periodic time intervals, the number of meetings between all pairs of social acquaintances
is compared to the weight of the corresponding social relation. If too many (few) meetings
between two nodes have been produced, their social attraction is decreased (increased). By
employing this feedback control loop in the presence of disruptions, eventually a stable
equilibrium (as defined by the reflection requirement) is reached again. This feedback control
loop is shown in Figure 5.10.
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Figure 5.10: Feedback control loop to update the social attraction between nodes.

To adjust the social attraction between two nodes, we introduce the so-called correction
factor. This numeric value is multiplied with the weight of the social relation to yield the
advanced social attraction. Thus, we replace Equation (5.1) on page 46 by the following
formula:

s(u, v, t) =

{
c(u, v, t) · w(u, v), if {u, v} ∈ E ∧ t ∈ χ(u, v)

0, else.

where c(u, v, t) ∈ [0, 1] denotes the correction factor at time t for the social relation between
u and v. At the beginning of the simulation, the correction factor is initialized to 1 for all
social acquaintances. If too many (too few) meetings between to nodes have taken place,
for instance because of above described disruptions, d decreases (increases) towards 0 (1).
Thus, the probability to meet decreases (increases) and eventually the number of meetings
approaches the desired value with respect to other social relations and the corresponding
weights. We used a constant factor of γ = 0.4 for the calculation of the location attraction
(Equation (5.2) on page 48) to avoid that a node spends all its time at its home anchor
because, as we will become apparent in the following, on average we have c(u, v, t) ≈ 0.5.
This value turned out to yield better results.

Note that there is also a real-world intuition behind the correction factor: Real people also
try to balance their social activities based on the strengths of their social relationships.
For example, people remember that they have not met a certain social acquaintance lately
although they value this relationship. Thus, they make plans to meet this individual more
frequently in the near future.
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A Combined Approach

The idea behind calculating both the correction factor and the isolation probability is the
following: During the simulation, we maintain the number of meetings between each pair of
social acquaintances. Periodically, it is determined how many meetings should have been
produced if the input social network was reflected perfectly, based on the sum of all meetings
a node has produced. We call the number of produced meetings between two nodes u, v ∈ V
in the theoretical case of a perfect reflection the meeting-quota between u and v. To
yield the meeting quota, essentially, all produced meetings of a node (at the time of the
calculation) are redistributed as defined by the reflection requirement.

Based on a theoretical/actual comparison, it is possible to calculate the correction factor
which implements the described feedback control loop.

In general, the sum of all meeting-quotas for a node may be less than the total sum of
produced meetings for this node. This is a typical sign that the node has produced too
many meetings, based on the sociability requirement. The difference between the sum
of meeting-quotas and the total sum of meetings is then used to calculate the isolation
probability.

5.5.3 Calculation of the Meeting-Quota

We employ a simple example to motivate the algorithm behind the calculation of the
meeting-quotas. Afterwards, we present the algorithm in a formal way.

Motivational Example
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Figure 5.11: Example social network to illustrate the calculation of the meeting-quotas.

We consider the example social network shown in Figure 5.11. All depicted social relations
are assumed to be active. In Table 5.1, we show the sociability and the total number of
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Node Sociability Total Number of Meetings Social Influence
A 1.5 150 100
B 1.25 140 112
C 1.0 120 120
D 0.75 100 125

Table 5.1: Different quantities at time ti for the example social network shown in Figure
5.11

meetings for each node at some time ti ∈ T . Though constructed, this example represents
typical situations we have observed in our experiments.

Node A has a social relation with a weight of 0.5 with node B and a social relation of
weight 1 with node C. Thus, the perfect reflection of the social network would yield twice
as much meetings with C than with B. Hence, to satisfy this requirement, A should
have produced 100 meetings with C and 50 meetings with B at time ti. However, this
calculation is based on the perspective of A. The same calculation, based on the perspective
of B yields different results. In particular, one could argue that B should have produced
140 · (0.5)/(0.5 + 0.75) = 56 meetings with A at time ti. This contradicts the value that we
have calculated from A’s perspective (50 meetings). However, both A and B should adapt
to the same quantity. Otherwise, B would try to produce more meetings with A while A
would ’avoid’ to meet B. This is no desired behavior. Thus, we consider it a requirement to
calculate symmetric meeting-quotas.

To gain symmetric quota values, we identify a unique quantity, which assigns a symmetric
meeting-quota to each social relation dependent on the weight. However, as discussed, some
nodes may produce more meetings per time and social relation than others. At his point,
the calculation of the isolation probability comes in. Based on the sum of meetings for each
node, B is able to dedicate more meetings per time than A into a social relation of a fixed
weight, as we have calculated. This may be measured by the following fraction, which we
call the social influence of a node:

Social Influence =
Total Number of Meetings

Sociability
.

We will later give a more formal definition. A node with a below-average social influence
(such as A) may have difficulties to reflect its social relations properly. On the other hand, a
node with an above-average social influence (such as D) may produce too many meetings
with its social acquaintances with respect to the weight of the social relation. This results
in the violation of the reflection requirement (cf. Section 5.5.1). Assume that the social
influence is equal among all nodes. Then, by definition, for each node v, the total number of
meetings with social acquaintances is proportional to the sociability of v, thus satisfying
the sociability requirement. Hence, our goal is to adjust the isolation probability to yield a
constant social influence among all nodes.
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In our example (see Table 5.1), the social influence of A is smaller than the social influence
of B. Thus, we let B enter into an isolation phase more often than A. This decreases the
social influence deviation between A and B and eventually leads to a balance between those
nodes.

In general, we identify the node with the smallest social influence. We call the social influence
of this node the reference social influence, which corresponds to the unique quantity we
have mentioned above. All other nodes adjust to the reference social influence by entering
probabilistically into an isolation phase, dependent on how much their social influence differs
from the reference social influence. We use the smallest social influence since it is always
possible to force a node to produce less meetings (due to isolation phases) but not vice versa.
In our example (see Table 5.1), the reference social influence corresponds to 100.

The difference between the total sum of meetings and the sum of meeting-quotas may be
used as a measure for the intended number of isolation phases. The higher the difference,
the stronger the deviation from the reference social influence. In the following, we will define
the concepts behind the isolation probability and the correction factor in a more formal
way.

Formal Definition of the Algorithm

For each node, the number of meetings with every other node is maintained. The function

m : V × V × T → N

keeps track of the number of meetings between two nodes at a given simulation tick. In
particular, m is symmetric in the first two arguments. For convenience, we define

(5.4) M(v, t) :=
∑

u∈Cactive(v,t)

m(v, u, t)

as the total number of meetings a node v has produced with its active social acquaintances
at time t.

In the above described example, all social relations where assumed to be active. In general,
some relations may not be active and should therefore not be included in the calculation
because no meeting between such nodes should be produced at this time. Hence, we define
the social influence at time t ∈ T formally as follows:

i(v, t) :=
M(v, t)
soc(v, t)

.

We assume that at least one social relation is active at any given time for each node.
At t ∈ {tupdate, 2tupdate, 3tupdate, . . .}, for each pair of social acquaintance {u, v} ∈ E,
we calculate the meeting-quota quota(v, u, t), which represents the number of meetings
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between u and v in the theoretical case of a perfect reflection at time t, as defined by the
reflection requirement. The meeting-quota must satisfy the following requirements:

• (Requirement 1) Every meeting-quota for active social acquaintances has to be
proportional to the weight of the relation, i.e.

(5.5) ∀v ∈ V, ∀x, y ∈ Cactive(v, t) :
quota(v, x, t)
quota(v, y, t)

=
w(v, x)
w(v, y)

This is required to satisfy the reflection requirement.

• (Requirement 2) The meeting-quota for two social acquaintances must be symmetric
in the first two arguments, i.e. both nodes must have the same notion on how many
meetings they should have produced in the case of a perfect reflection at time t. Thus,
we require that

∀{u, v} ∈ E : quota(u, v, t) = quota(v, u, t).

We have discussed the reasons for this requirement in the motivational example.

• (Requirement 3) For each node, the sum of all meeting-quotas should be less than
or equal the sum of actual meetings, i.e.

∀v ∈ V : M(v, t) ≥
∑

u∈Cactive(v,t)

quota(v, u, t).

If this would not be the case, a node may be unable to produce enough meetings per
time to reach the meeting-quota.

After setting up the requirements, we can illustrate the calculation of the meeting-quota.
First, we define the above discussed reference social influence formally as follows:

q(t) := min
v∈V

i(v, t)

In particular, q(t) represents the meeting-quota for social acquaintances having a weight of
1. To assign a meeting-quota to arbitrary social relations {u, v} ∈ E, we use the following
formula:

(5.6) quota(v, u, t) :=

{
w(v, u) · q(t), if t ∈ χ(u, v)

0, else.

In particular, the meeting-quota for two nodes whose relation is not active is zero. Based on
the symmetry of m(., ., t) and w(., .), the meeting-quota is symmetric as well (Requirement
2). By putting Equation (5.6) into Equation (5.5), it can be easily verified that Requirement
1 is satisfied. Since we defined q(t) as the minimum social influence, we have M(v, t) ≥∑

u∈V quota(v, u, t) for all v ∈ V which satisfies Requirement 3.

In our motivational example (Figure 5.11 and Table 5.1), node A corresponds to the node
with the smallest social influence, i.e. q(ti) = 100. Thus, it follows that quota(A,C, ti) = 100,
quota(A,B, ti) = 50, and quota(B,D, ti) = 75.

63



5 The Social Mobility Model

5.5.4 Calculation of the Correction Factor and the Isolation Probability

As discussed, the greater the difference between the total number of meetings and the sum
of assigned quota values, the higher the deviation from the reference social influence. We
use a probability to enter into an isolation phase which is proportional to this difference.
Thus, the probability that a node v enters into an isolation phase if its dwell time expires at
time t is calculated as follows:

(5.7) piso(v, t) :=
M(v, t)−

∑
u∈V quota(v, u, t)
M(v, t)

.

Due to Requirement 3, we have piso(v, t) ∈ [0, 1] for all v ∈ V, t ∈ T . The calculation
based on our motivational example yields piso(A, ti) = 0, piso(B, ti) = 15/140 ≈ 0.10,
piso(C, ti) = 20/120 ≈ 0.167 and piso(D, ti) = 25/100 = 0.25.

To adjust the correction factor for two social acquaintances {v, u} ∈ E, the meeting-quota
has to be compared to the actual number of meetings at t ∈ T . Hence, we determine the
following deviation from the meeting-quota

δ(v, u, t) := quota(v, u, t)−m(v, u, t).

If too few meetings between two nodes u, v ∈ V were produced at time t, we have δ(u, v, t) > 0.
Respectively, if too many meetings were produced, we have δ(u, v, t) < 0. δ(u, v, t) = 0
represents the ideal case of a perfect reflection.

To obtain a correction factor c(v, u, t) ∈ [0, 1], we map all deviations to the interval [0, 1] as
follows:

c(v, u, t) :=
δ(v, u, t)− δmin
δmax − δmin

with δmin = min(I), δmax = max(I) where I = {δ(v, x, t)|x ∈ Cactive(v, t)} ∪ {δ(u, x, t)|x ∈
Cactive(u, t)}. Note that this is simply a linear transformation from I to [0, 1]. We chose I
in this way to obtain symmetric correction factors that are at the same time distributed
over the whole interval [0, 1].

Figure 5.12 shows a typical example for the behavior of the social attraction between two
social acquaintances u, v with w(u, v) = 1. This example was measured in an experiment.
We show both the social attraction (solid black) and the deviaton δ (dashed grey) on the
y-axis against simulated time (x-axis). We display the exact value of the social attraction,
while the deviaton was scaled down to fit the plot. As defined, the social attraction starts
out with a value of 1. For t < 40000, too few meetings between v and u have been produced
(deviation > 0), thus s(u, v, t) stays close to 1. This leads to frequent meetings between u
and v, and hence towards a perfect reflection (deviation → 0). After t = 40000, eventually
too many meetings have been produced (deviation drops below zero). Thus, the social
attraction decreases. During the interval [80000, 155000] the social attraction is reduced to
zero because the relation between u and v was not active during this time interval. In the
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Figure 5.12: Example for the time-dependent behavior of the social attraction.

meantime, u and v produced many meetings with other nodes. Thus, afterwards, we observe
a positive deviation peak because the number of produced meetings between u and v were
too few compared to the number of meetings with other social acquaintances. Hence, the
social attraction stays close to 1 which reduces the deviation and eventually leads to a good
reflection (deviation drops down to zero) at t = 205000. Afterwards, the social attraction
stabilizes at a value around 0.75.

5.6 Integration of Geographical Mobility Models

In the following, we identify several integration points for geographical mobility models and
discuss the parameters that can be adjusted to match specific target scenarios.

In our prototypical implementation, nodes move directly from one anchor to the next in a
straight line at constant velocity. At this point, one could integrate concepts of a geographical
mobility model. For example, obstacles could be placed (e.g. buildings, walls, ...) between
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anchor points, which force nodes to move around them. Nodes may also be constrained by
streets.

Because a constant speed among nodes may not be realistic in many scenarios, speed
and acceleration models could be integrated. Note, however, that such models are highly
dependent on the target scenario. For example, it was discovered that the speed distribution
in campus environments follows a log-normal distribution [KKK06]. On the other hand,
in a city simulation, nodes may move by car using other speed/acceleration models than
pedestrians. Some nodes may be confined to streets, others to walkways.

Our model defines probabilistic group movements between anchors. However, we do not
specify any micro-mobility behavior during the group movement. At this point, group
mobility models could be integrated. For example, a reference point could be employed
which moves from the source to the destination anchor. Nodes may move around this
reference point randomly like in the reference point group mobility model (cf. Section
2.4.2).

Based on the current implementation of our model, nodes select a random goal within the
geometrical boundaries of an anchor and move to this point. They stay there until their
dwell time expires. This dwelling at anchors represents another possible integration point
for a geographical mobility model. For example, some or all nodes could move within the
anchor, based on some model (e.g. random walk). Or, one could integrate hierarchical
models, similar to the two-level social mobility model (see Section 4.5). In such a model,
macro-anchors may represent buildings. Within the geometrical boundaries of a macro-
anchor, we could place micro-anchors which are visited by nodes currently dwelling at the
corresponding macro-anchor. However, independent of the used geographical mobility model,
it is important that nodes within the boundaries of the same anchor are in wireless range
with significant probability or frequency. This is required to yield a proper reflection of the
social network. For example, a random walk within the boundaries of the anchors would
satisfy this requirement.

In the implementation of our proposed model, we place anchors randomly on the simulation
area. However, the placement of anchors could be tailored to a specific target scenario.
For example, if one would want to evaluate the use of a mobile application in a hospital
environment, anchors could be created according to operating rooms, waiting rooms, or
coffee machines. The geometrical boundaries of different anchors could be specified based on
the locations they represent. Similar, anchor functions and dwell time distributions could
be modeled with respect to the corresponding locations.

Even if no target scenario is known, empirical research could be used to create a probabilistic
model for the placement of anchors. For example, it was discovered that at the macro-level
(e.g. in a city), the length of human trajectories is well approximated by a truncated power-
law distribution [GHB08]. Thus, one could implement an anchor placement algorithm which
places anchors of the social sphere of a node such that their distances follow a truncated
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power-law distribution. This would essentially create an instance of our model that is coined
for the simulation of city scenarios.

Some location may not be stationary, for example a bus. To model such ’locations’, we could
allow some anchors to move through the simulation area, e.g. based on regular schedules.
In this case, the nodes dwelling at such an anchor would move relative to the anchor within
its geographical boundaries.

In many scenarios, stationary infrastructure (e.g. access points) may be present in addition
to nodes. If such a system model is used, our model could be adjusted to integrate a set
of stationary nodes at specific locations, e.g. at anchors. For example, Chaintreau et al.
defined a system model which consists of static and mobile nodes [CFL08]. They showed
that social aspects might be utilized for efficient spatial gossip in such a system model.

 

Social / Macro-

Mobility Model 

Geographical / Micro-

Mobility Model 

Figure 5.13: Integration of geographical aspects into the social mobility model.

We argue that the integration of concepts discussed in this section does not prevent the
reflection of the social network. By employing the enhanced calculation of the node attraction
proposed in Section 5.4.2, even if some nodes require much time between anchors caused by
geographical concepts, they will still meet their social acquaintances. Based on concepts
illustrated in the last section, some ’disturbances’ in the reflection based on geographical
concepts are balanced over time by adjusting the correction factor accordingly. We will
verify this statement in the evaluation of our model.

Figure 5.13 visualizes the relation between the geographical and social mobility submodels.
The social mobility model (lower plane) specifies that nodes move between anchors in order
to reflect the input network. Thus, it defines the macro-mobility of nodes. The geographical
mobility model (upper plane) on the other hand, focuses on micro-mobility. It specifies
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how abstract locations, i.e. anchors, are mapped to concrete locations. In this case, they
are shaped according to real locations on a map. The geographical mobility model also
maps the abstract movement between and within anchors to a geographical pathway. In
our example, node movement is constrained to streets on a map and nodes move within the
geographical boundaries of anchors according to some scheme (e.g. between rooms).

5.7 Generalized Social Mobility Models

As shown in the last section, we have designed our model to allow the integration of
geographical concepts. In addition, we provide a large number of tunable parameters
(summarized in Table 7.1 on page 81). By adapting these parameters and by integrating
geographical concepts, our model may be specialized to yield the behavior described by
other mobility models. We will demonstrate this ability in the following by describing how
three existing social mobility models, discussed in Chapter 4, can be viewed as special cases
of our model.

Note that in the following configuration descriptions, we assume that the simple calculation
of the node attraction is employed. Since none of the generalized models features group
movements, we set piso(v, t) = 0 ∀v ∈ V,∀t ∈ T .

The parameters of our model can be adjusted to yield the behavior specified by the CMM
(cf. Section 4.2). First, we have to generate social networks using the caveman model. By
setting α = 1 and φ = 0 we let nodes move only according to the (simple) node attraction
formula. To obtain a deterministic selection of the destination anchor, we have to set g =∞.
Thus, nodes always move to the anchor that exhibits the highest social attraction, which we
calculate using the same way as in the CMM (cf. Equation 5.3). Initially, the positions of
home anchors have to be randomly generated under the constraint that all home anchors of
members of the same community share the same coordinates on the simulation area. Thus,
all members of a community are initially grouped together like in the CMM. The dwell time
of all anchors has to be set to zero since the CMM features no pause times.

To specialize our model to yield the HCMM (cf. Section 4.3), home anchors have to be
placed as described above. In the HCMM, the probability that a node v choses the cell C
as the next destination is proportional to the average weight between v and nodes having
their home at C. This can be emulated by using α = 0, φ = 0, g = 1, and the same
constant anchor function for each anchor. Because the home anchors of a community c are
all placed on the same location on the simulation area, the probability to visit this location
is proportional to the average weight of the social relation with nodes at c.

Finally, our model is also able to emulate the behavior of the two-level social mobility
model (cf. Section 4.5). In this case, the social network consists of completely disjoint fully
connected subgraphs which represent the communities. The dwell time distribution has to be
set to a normal distribution. As defined by the two-level social mobility model, nodes must
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select their target anchor based on a Zipf distribution, which is shared among community
members. Thus, we must set α = 0, g = 1, and assign each anchor the same constant anchor
attraction. The weights of the relationships with other members have to be selected from
the corresponding Zipf distribution. Thus, the probability to move to a certain home anchor
is heavy tailed as well. If all members of a community share the same attraction towards
the same social acquaintances, they all share the same probability to visit certain anchors.
Note that home anchors of members of different communities must be placed at the same
location if both nodes have a non-zero probability to visit that location. In the previous
section, we have already sketched how to integrate a geographical mobility model that adds
aggregation points (i.e. a second level).

5.8 Summary

In this chapter, we have introduced our proposal for a social mobility model, which satisfies
the requirements we have identified in Chapter 3.

The primary elements of the model are anchors, which represent abstract locations, and nodes,
which move between anchors and stay there for a specific dwell time. To define the reflection
of an input social network in a formal way, we have proposed the reflection requirement.
The model produces meetings between nodes with a probability that is proportional to the
weight of their social relations. The movement of nodes is driven by the attraction towards
locations and nodes. However, nodes are attracted only to a subset of all anchors, which
creates a spatial regularity. The location attraction exhibits a time-dependent characteristic,
which creates temporal regularities. The node attraction towards nodes which stay at an
anchor results in frequent meetings with social acquaintances. In some cases, nodes are
repulsed by other each other to avoid meetings between nodes that would be based on the
shared attraction towards common social acquaintances. Nodes do not always move alone
from one anchor to the next. Instead, nodes probabilistically join other nodes to move as a
group to a new destination anchor.

To improve the reflection of the input social network further, we identified several reasons
why some social relations may be poorly reflected. We then have proposed concepts that
extend the basic model described so far to cope with these problems. First, some structural
properties of the input social network as well as geographical concepts may lead to a poor
reflection of some social relations. The idea behind our solution is to employ a feedback
control loop: We compare the number of meetings between nodes and adjust their social
attraction according to the reflection requirement. This leads to a convergence towards a
perfect reflection, even if some ’disturbances’ are created, i.e. due to nodes traveling with
different speed. Second, in a typical social network, the node degree is very heterogeneous
among nodes (e.g. scale-free). Some nodes may only need to meet a few social acquaintances
while hubs must produce many more meetings. This leads to a poor reflection of the social
relation between pairs of nodes characterized by a very different node degree. To deal with

69



5 The Social Mobility Model

this, nodes enter probabilistically into isolation phases. During an isolation phase, a node
does not meet with other nodes for a specified duration. In general, the probability to
enter an isolation phase is increased for nodes with only few social relations. This leads to
a balance among the number of meetings per social relation and thus enables an optimal
reflection of the social network. Algorithm 5.1 on the next page presents this extended
model in pseudocode.

We have also sketched how geographical mobility models may be integrated into our social
mobility model and reasoned, why this does not prevent the reflection of the social network.
Finally, we have shown how to specialize our model to yield several existing social mobility
models.
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Algorithm 5.1 The Social Mobility Simulation Algorithm
procedure RunSimulation()

RandomPlaceAnchors()
V ← InitializeNodes() . Place each node at one of its home anchors
for t = 0, 1, .., tmax do

if t ∈ {tupdate, 2tupdate, 3tupdate, . . .} then
CalculateMeetingQuota()

end if
for all v ∈ V do

if ReachedGoal(v) then
. Count meetings with other nodes for the meet-quota calculation

ReportMeetings(v)
end if
if LocatedAtGoal(v) ∧DwellDuration(v) = 0 then . Choose a new goal

if Random() < piso(v, t) then . Probabilistic isolation phase
EnterIsolationPhase(v)
DwellDuration(v)← GetIsolationDwellDuration()

else
G← DetermineGroupMembers(v)

. Probabilistic Goal Selection
Anchor(G)← SelectNewDestination(G)
for all vg ∈ G do

Anchor(vg)← Anchor(G)
DwellDuration(vg)← SelectDwellDuration(Anchor(G))

end for
end if

else if LocatedAtGoal(v) ∧DwellDuration(v) > 0 then
DwellDuration(v)← DwellDuration(v)− 1

. Integration point for geographical mobility models
else

. Move towards goal according to the geographical mobility model
MoveTowardsGoal(v, Goal(v))

end if
end for

end for
end procedure
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Chapter 6

Implementation

We have developed a prototypical implementation of our proposed model in C++. The
implementation generates mobility traces which may be used by the NS2 simulator [NS2].
The implementation is originally based on the C implementation of the community-based
mobility model [Uni] by Mirco Musolesi. We have modified and extended this implementation
significantly to serve our needs. Our simulator may run either in a Windows or in a Linux
environment.

In this section, we first show the generated trace format and illustrate how this trace integrates
with NS2 (Section 6.1). Afterwards, we provide some details about the implementation of
several selected concepts (Section 6.2). To conclude this chapter, we show an evaluation of
the performance of the implementation (Section 6.2).

6.1 Trace Format and Integration with NS2

NS2 is a discrete event network simulator, which supports, among others, mobile adhoc
networks. NS2 takes an OTcl script as input. OTcl is a simple object oriented script language.
Such a script defines the topology of the network and the protocol/applications one wishes
to simulate. The script is then used by NS2 to generate different kinds of output such as
transmission delay, traffic, or lost packets.

In this thesis, we focus on creating a very dynamic topology. This may be realized by
explicitly telling NS2 at which time two nodes may be connected, i.e. to simulate the
connectivity graph. Another approach is to describe the movement of mobile nodes over
time on a two dimensional rectangular area, using a specified transmission range. Based on
this description, NS2 may simulate the emerging connectivity between nodes. In addition,
this approach allows the integration of more sophisticated concepts like radio propagation
models. Our implementation generates an OTcl script that describes the movement of mobile
nodes. Listing 6.1 shows an example of such a generated output script.
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Listing 6.1 Example for an OTcl movement trace, generated by our implementation.

$node_(0) set X_ 300.0
$node_(0) set Y_ 230.0
$node_(0) set Z_ 0.000000
$node_(1) set X_ 400.0
$node_(1) set Y_ 350.0
$node_(1) set Z_ 0.000000
...
$ns_ at 2.000000 "$node_(0) setdest 412.0 333.0 7.0"
$ns_ at 11.000000 "$node_(9) setdest 266.0 240.0 7.0"
...

First, the initial coordinates for each node are specified. For example, node 0 is placed at
the coordinates (300, 230) on the simulation area. The remaining lines in the script define
the movement of the nodes. For example, node 0 starts to move towards the destination
(412, 333) at time t = 2 with a speed of 7m/s.

This movement-trace may then again be imported by an OTcl script which defines the
protocol/application layer based on the provided topology. Such a script is sketched in
Listing 6.2. After setting some options, an instance of the NS2 simulator is created as well
as the set of nodes. Afterwards, the simulation area is defined and the generated mobility
trace is imported. Finally, a TCP connection between nodes 0 and 1 is simulated.

In addition to a NS2-specific output, our implementation is able to generate a general
XML-based meta-format, provided by the original implementation of the CMM. This trace
may then be parsed and transformed into arbitrary formats, for example by employing
XSLT. In Listing 6.3, we show the same trace as described above using the corresponding
XML output.

6.2 Implementational Details

We represented the input social network as an adjacency matrix, i.e. a two dimensional array.
This network either may be provided as a plain text file or generated using several social
network models. We chose this data structure because it allows for an efficient access to the
weights of the individual relations. Note that the use of an adjacency list as representation
for the social network may require less memory. However, based on the complexity of our
model and the corresponding number of simulated nodes (< 150), we do not consider the
memory requirements to be significant compared to the created performance improvement.
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Listing 6.2 Example for an OTcl script, provided as input for NS2.

#set options
set val(chan) Channel/WirelessChannel
set val(prop) Propagation/TwoRayGround
set val(netif) Phy/WirelessPhy
set val(mac) Mac/802_11
set val(nn) 80 #num. nodes
...
set ns_ [new Simulator] #Creates an instance of the simulator

for {set i 0} {$i < $val(n) } {incr i} {
set node_($i) [$ns_ node] #create nodes

}

set topo [new Topography] # setup topography object
$topo load_flatgrid 1000 1000 #create simulation area
...
#Load movement trace
source $val("movement_trace.tr")
...
# TCP connections between node_(0) and node_(1)
set tcp [new Agent/TCP]
$tcp set class_ 2
set sink [new Agent/TCPSink]
$ns_ attach-agent $node_(0) $tcp
$ns_ attach-agent $node_(1) $sink
$ns_ connect $tcp $sink
set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ns_ at 10.0 "$ftp start"
...

Each anchor function is represented by a list of time/value pairs. These pairs are ordered
according to an increasing time value. We only specify the anchor function for a single
simulation period, i.e. all time values are in {0, 1, . . . , tp − 1}. If the anchor function needs
to be evaluated at time t ∈ T we first calculate t′ = t (mod tp). Now, the list is traversed
until a pair (t1, fa(t1)) with successor (t2, fa(t2)) is found such that t1 ≤ t′ < t2. Then,
fa(t) = fa(t′) is calculated as the linear interpolation between fa(t1) and fa(t2), i.e.

fa(t′) = fa(t1) +
fa(t2)− fa(t1)

t2 − t1
(t′ − t1).
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Listing 6.3 Example for an XML movement trace, generated by our implementation.
<?xml version="1.0"?>
<simulation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<parameter>

<xsize>1000.0</xsize>
<ysize>1000.0</ysize>
<numberOfNodes>80</numberOfNodes>
<wirelessRange>20.0</wirelessRange>

</parameter>
<node_settings>

<node>
<node_id>0</node_id>
<position>

<xpos>300.0</xpos>
<ypos>230.0</ypos>

</position>
</node>
<node>...</node>
...

</node_settings>
<mobility>

<position_change>
<node_id>0</node_id>
<start_time>2</start_time>
<destination>

<xpos>412.0</xpos>
<ypos>333.0</ypos>

</destination>
<velocity>7.0</velocity>

</position_change>
<position_change>...</position_change>
...

</mobility>

This presents an easy and efficient way to implement the concept of a periodic anchor
function. In general, more sophisticated methods are imaginable. For example, one could use
a polynomial interpolation or splines. However, this may lead to performance degradations.
Our implementation allows users to add further anchor function models adding only a few
lines of code.

We have implemented several simple anchor function models, in particular:
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• A sawtooth wave with parameterized height and number of spikes within the simulation
period.

• A single spike within the simulation period (shown in Figure 5.4 on page 47) with
parameterized height and random generated position.

• A constant function with a parameterized value. The use of this function for all
anchors results in the absence of repetitive behavior.

• A plateau-like function characterized by a random generated position and parameterized
height/plateau-length (shown in Figure 5.4 on page 47).

We implemented the concept of active social relations in a similar way. Each relation is
represented by a function with domain {0, 1, . . . , tp − 1} and image {0, 1}, where 0 means
that the relation is not active and 1 means that the relation is active. We record the start and
end intervals in which each relation is active within a single simulation period represented
by time/value pairs in a list. To evaluate if a relation is active at time t ∈ T , we use the
value a ∈ {0, 1}, provided by the last pair (t1, a) in the list with t1 < t′ and t′ = t (mod tp).
For example, the list [(0, 0), (300, 1), (500, 0)] assuming tp = 1000 describes that the social
relation is active in the time intervals [300, 500], [1300, 1500], [2300, 2500], etc.

We implemented the enhanced calculation of the node attraction as introduced in Section
5.4.2 to evaluate the integration of geographical mobility models.

6.3 Performance of the Implementation
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Figure 6.1: Implementation execution time for different parameters.

We evaluated the performance of the implementation by measuring the execution time
for a single simulation run. We conducted the evaluation on a Intel Core 2 Duo P8400
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(2,26Ghz) CPU. Note, however, that our implementation does not utilize parallel threads.
Thus, there may be room for further performance improvements. Each point in the following
plots represents the average over 100 measurements. Figure 6.1(a) shows the impact of the
number of nodes (y-axis) against the execution time (x-axis) by using a simulation length of
tmax = 106. Note that in this case, the order of magnitude of the total number of contacts
between nodes is about 300000 for n = 80 nodes. By increasing the number of nodes, we
observe only a very low polynomial increase of the execution time. This shows that an
efficient implementation of our model is possible despite its complexity.

Figure 6.1(b) shows the execution time against the simulation length for n = 80 nodes.
As expected, we observe a linear dependency. This shows that even very long movement
traces can be generated with acceptable execution time. Note that the execution time of
our mobility trace generator is significantly smaller compared to the time NS2 requires to
simulate the generated trace subsequently.
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Chapter 7

Evaluation

This chapter presents the evaluation of our implementation. First, we discuss the method-
ology. Then, we verify the requirements we have identified in Chapter 3 and explore
the parameter space of our model. Finally, we give a summary of the results and their
implications.

7.1 Methodology

The goal of this evaluation is to show that the identified requirements (see Chapter 3)
for a realistic social mobility model are satisfied. To accomplish this, we use a metric to
measure each requirement. We use existing metrics if possible, to compare our results to
characteristics of real traces.

7.1.1 Simulation Setup

For each node, we created a single home anchor. All anchors are placed randomly on an
equidistant grid. We use the unit disc graph model [CCJ90] to determine connectivity. That
is, we assume that two nodes are in contact if their Euclidean distance is below a fixed
transmission range. The distance between anchors on the grid is chosen in a way such that
nodes at neighboring anchors are not in transmission range, but nodes within the boundaries
of the same anchor are. This standard anchor layout is shown in Figure 7.1.

We used a uniform distribution in the interval [200, 300] seconds as the dwell time distribution
for each anchor. However, we also performed experiments using a power-law distribution
and observed very similar qualititative results.
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Anchor Area 

Node 

Transmission Range 

Figure 7.1: Simulation layout used for the evaluation of the model.

Furthermore, we employed a plateau-function, similar to the grey curve shown in Figure 5.4
on page 47 to describe the anchor functions. In particular, we used the following anchor
function for each a ∈ A:

fa(t) =

{
0.8, if t0 ≤ t ≤ t0 + tc (mod tp)

0.01, else.

We used a fixed plateau-length tc = tp/4 and set the position of the plateau for each anchor
to a point chosen uniform randomly from t0 ∈ {0, 1, . . . , tp− 1}. Note that we have obtained
very similar results for other implemented anchor functions (cf. Section 6.2), except for
the constant anchor function which does not create temporal regularities. However, this
does not necessarily mean that the anchor function is not relevant. It only means that the
realistic characteristics of our model are independent of the anchor function. To simulate
specific target scenarios realistically, it is worthwhile to shape the latter appropriately.

Over the course of many experiments during the implementation phase, we have found a set
of reasonable good standard parameters. Table 7.1 shows the standard simulation setup. In
this table and in the remaining chapter, the unit [s] denotes a single simulation tick. The
parameters were selected such that a simulation tick roughly corresponds to a second in the
real world, which enables a comparison to real mobility traces. We used these parameters
for all conducted simulations, unless explicitly stated otherwise.

We also explored the parameter space by analyzing isolated parameters while keeping all
other parameters fixed at the standard value. However, because of space related reasons, we
only show the important results in this evaluation.

A primary goal of this evaluation is to show that the validity of the results is independent of
the input network. To accomplish this, we evaluated the model using several different social
network models as input. The parameters of the individual models were chosen such that
the average node degree is about the same for all models if the standard parameters are
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Parameter Standard Value Page Reference
Simulation Area Size 1000m× 1000m 39
Number of Nodes n = 80 5
Node Velocity 7m/s 39

Transmission Radius 20m 79
Simulation Duration tmax = 2000000s 43
Social Network Model Toivonen model 11

Node/Location Attraction Weight α = 0.5 54
Greediness g = 1 54

Penalty Factor φ = 0.3 54
Penalty Threshold wweak = 0.5 53

Group Movement Threshold gthresh = 0.7 45
Simulation Period tp = 100000s 43

Length of Relation Active tp/2 82
Meeting Quota Update Interval tupdate = 1000s 62

Isolation Phase Length 250s 58

Table 7.1: Standard parameter setup for the evaluation of the model.

used. If this would not be the case, it would be difficult to assess whether varying results
are due to the different node degree or due to the different structure. In particular, we used
the following models (cf. Section 2.2.4):

• The Caveman Model. Caves of 16 nodes were created, independent of the number
of nodes, which leads to a (constant) node degree of 15. We used a rewiring parameter
of 0.2. This yields a very strong clustering coefficient. As we will show in this chapter,
the clustering coefficient exerts a significant influence on some of the used metrics.

• The Holme-Kim (HK) Model. Initially, a random network of 20 nodes was created
using a probability of 0.5 to create an edge for each pair of nodes. In every subsequent
step, 11 edges to existing nodes were created with a triad formation step probability
of pt = 0.25.

• The Toivonen Model. Initially, a random network of 20 nodes was created as for
the HK Model. In each step, the number of initial random attachments was set to
mr = 2 with a probability of 0.9 and to mr = 3 with a probability of 0.1. The number
of secondary contacts was selected uniform randomly from me ∈ {5, 6, 7, 8, 9}. This
corresponds to parameters for which Toivonen et al. yielded good results.

The properties of the generated social networks are shown in Table 7.2. We measured the
average value over 1000 created instances. Lengths of the 95% confidence intervals are
enclosed in brackets. Note that we have performed experiments with further network models
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(e.g. the random graph model and the BA model) and observed very similar characteristics.
However, to maintain a clear depiction, we have only shown the three models above because
they capture different typical properties of social networks.

Social Network Model Node Degree Clustering Coefficient
Caveman 15.0(0) 0.543(0.109)
Toivonen 15.576(1.200) 0.364(0.051)

Holme-Kim 15.402(0.625) 0.295(0.038)

Table 7.2: Properties of the generated social networks.

Currently, no social network model exists that models the strength of the social relationships
or time intervals in which a social relation is active. Thus, we assigned each relation a
uniform random weight from the interval ]0, 1]. We describe the assignment of time intervals
in which a social relation is active in the following.

To satisfy the characteristic of human habitual behavior, social relations should be active
periodically. For example, a relation between two colleagues is typically active every Monday
during working hours. In our model, the total simulation duration is partitioned into
simulation periods of length tp. The idea behind the generation of χ(.) is to assign each
social relation a uniform random time interval of constant length within the simulation
period.
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Figure 7.2: Example assignment of active social relation intervals within a single simulation
period.

An example of such random assignment is shown in Figure 7.2 for a single simulation period
and four relations in an example social network (left). The intervals within one simulation
period in which the relation between two nodes vi and vj is active (right) is denoted as
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Iij ⊆ [0, tp]. After the assignment of the time intervals in which a relation is active within
one simulation period, the time intervals χ(.) within the whole simulation duration for two
nodes vi, vj is defined as follows:

χ(vi, vj) = {t ∈ T | t (mod tp) ∈ Iij} .

In other words, a social relation at an arbitrary time t ∈ T is active if the social relation is
active at the time within the current simulation period t (mod tp) according to the discussed
random generation. This yields periodically recurring intervals.

7.1.2 Measurement of the Simulated Mobility

Contacts and anchor visits were measured during the simulations to provide an input for
the metrics used in this chapter. For each stay at an anchor, we recorded the start/end
timestamp and the ID of the corresponding anchor. In addition, we measured contacts
between nodes. Note that in contrast to meetings between nodes, which refers to overlapping
dwell time intervals at anchors, contacts may be created on the way between anchors by
random encounters. We measured contacts between nodes as follows: At periodic time
intervals, the positions of all nodes are compared to each other. If two nodes are within
transmission range (as explained above) and the nodes are not already in a contact state, the
current time is recorded and both nodes enter into the contact state with each other. If two
nodes are in a contact state and if they are not in transmission range anymore, the current
time is recorded and both nodes leave the contact state with each other again. We chose
this method because it is very similar to the methodology used to measure direct contact
traces (see Section 2.4.1). In particular, this allows the comparison of the inter-contact
distribution to such mobility traces. In addition, this method is quite efficient which allowed
us to execute many simulations to yield small confidence intervals.

Each point in the plots and each distribution presented in this chapter is based on 100
simulation runs, if not stated otherwise. We show the mean value and 95% confidence
intervals (shown as error bars). The distributions yielded too small confidence intervals to
be clearly depicted. In the following, all shown distributions have a mean 95% confidence
interval of ≤ 0.001, if not explicitly stated otherwise

7.2 Reflection of the Input Social Network

The goal of this section is to validate the reflection of the input network. Furthermore, we
explore the influence of different concepts like node repulsion and the correction factor on
the reflection. We also simulate the effects of geographical mobility models and their impact
on the reflection of the social network. However, we have to propose an appropriate metric
first.
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Social Network Model Fraction of Pairs Matched 95% Confidence Interval
Caveman 0.9991 0.0015
Toivonen 0.9989 0.0011

Holme-Kim 0.9990 0.0011

Table 7.3: Results of the reflection metric for different social network models.

7.2.1 Reflection Metric

Our metric is based on the following idea: Assume that a node u has social relations to nodes
v and w. Furthermore, assume that the weight of the social relation with v is greater than
the weight of the social relation with u. Based on this assumption, we would expect that
u has created more contacts with v than with w during a simulation of significant length.
Furthermore, we would expect that any pair of social acquaintances produces more contacts
than any pair of nodes without a social relation. Note that these assumptions correspond to
our definition of the reflection requirement (cf. Definition 6 on page 43). The idea behind
the design of the metric is to validate these assumptions for all such node triples.

Let c(u, v) denote the number of measured contacts between u and v during a complete
simulation run. For all node triples

N = {(u, v, x) | {u, v}, {u, x} ∈ E : w(u, v) > w(u, x) + µ}

with µ ∈ [0, 1], we verify (after each simulation run) if

(7.1) (u, v, x) ∈ N ⇒ c(u, v) > c(u, x)

holds. Note that Statement (7.1) is only evaluated for two social relations whose weight has
at least a difference µ. If two social relations have nearly the same weight, the statement may
be violated without necessarily representing a poor result. For example, if w(u, v) = 0.5 and
w(u, x) = 0.51, a result of c(u, v) = 101 > c(u, x) = 100 represents a rather good reflection
because two social relations of nearly equal weight produced nearly the same number of
contacts. To avoid obscuring our results, we do not consider pairs of relations with a similar
weight. We used µ = 0.1 for all our simulations.

The result of the so called Reflection Metric R(N), is the fraction of all node triples in
N , for which Statement (7.1) holds.

7.2.2 Initial Results and Refinement of the Metric

Table 7.3 shows the reflection metric for our standard simulation setup using different social
network models to generate input networks. Note that a mobility model based on purely
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Figure 7.3: Impact of α on the Reflection Metric

random encounters (e.g. random walk/waypoint) yields a result of R(N) = 0.5 for t→∞.
The results suggest a very good overall reflection. To show the effects of different parameters
on the reflection metric more clearly, we additionally evaluated R(Ncritical) with

Ncritical = {(u, v, x) | {u, v}, {u, x} ∈ E :
w(u, v) > w(u, x) + µ ∧ |w(u, v)− w(u, x)| < 2µ} ⊆ N.

This corresponds to relations which have a certain difference (> µ), yet are quite similar
(difference < 2µ). We call the set Ncritical the critical relations. The name relates to the
fact that such pairs of social relations are difficult to reflect appropriately. Since they have
similar weights, it is more probable that c(u, v) > c(u, x) does not hold. Hence, this metric
is more sensitive to parameter changes that degrade the reflection of the social network.

Figure 7.3 shows R(Ncritical) (y-axis) for α ∈ [0, 0.999] (x-axis). The results are depicted for
all three different models used to generate social networks. As discussed in Section 5.4.4, α
weights between the node and location attraction. Note that α = 1 is not a sensible option
because then a node would never move to an anchor that has no associated nodes. This
leads to the undesired behavior discussed for the CMM-Model (cf. Section 4.2).

The qualitative behavior is the same for all used social network models. We observe an
increasing reflection if α increases until α = 0.5, followed by a constant, nearly perfect
reflection. If α is increased beyond a value of 0.8, we observe a slight decrease of the
reflection. This shows that at least some amount of node and location attraction is required
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to yield an optimal reflection. In particular, for a large range of values, i.e. α ∈ [0.25, 0.999],
we observe a match of over 95% for R(Ncritical) and over 99.5% for R(N) (not shown in the
plot).

Furthermore, we observe that for α < 0.25 the caveman model yields the best results followed
by the Toivonen-model and the HK model, respectively. We suspect that the reason for
this lies in the structural properties of the input network. For small α, nodes primarily
move between home anchors of social acquaintances irrespective if they might actually meet
them there. Based on the strong community structure and clustering of the caveman model,
nodes seldomly meet nodes which are not social acquaintances at such anchors. However,
such encounters are more probable if the HK or Toivonen model is used to generate social
networks because they exhibit a less pronounced clustering and community structure.

The results shown so far have also shown that random encounters on the way between
anchors do not seem to have a significant effect on the reflection of the social network. We
have investigated such random encounters and discovered that their order of magnitude
is comparable to the total number of meetings between nodes at anchors. However, they
are equally distributed among all pairs of nodes (i.e. they are in fact random). Note that
neither the reflection requirement nor the reflection metric make any assumption on the
total number of contacts between nodes, i.e. both allow random encounters. We consider
this to be realistic because people typically do not only meet their social acquaintances, but
also have random encounters with other individuals. Such contacts may also be utilized by
mobile applications. However, they are less frequent and typically of a shorter duration.

We have also performed simulations using different numbers of nodes, shown in Figure 7.4
for R(Ncritical). Only a very weak linear degradation (below 0.003) is observable for the
whole range of values using the HK or Toivonen model to generate social networks. The
reflection of the caveman model even increases over time. Thus, we yield good results for a
reasonable large number of nodes. This is an important result because the number of nodes
reflects different mobility scenarios, and a mobility model should allow the variation of this
parameter.

7.2.3 Node Repulsion

We introduced a repulsion between nodes to avoid that two nodes which do not share a
strong social relation meet too frequently because they are both attracted to one or more
common social acquaintances (cf. Section 5.4.3). The strength of this repulsion is controlled
by the penalty factor φ. Figure 7.5 shows R(Ncritical) for different values of φ. φ = 0
corresponds to the case that nodes do not exert any repulsion towards each other.

We observe that the penalty factor significantly improves the reflection of the social network
until about φ = 0.3. After that, φ seems to have no significant effect. We also notice that
the reflection of social networks generated from the caveman model seems to be less affected
by a weak node repulsion. Again, this characteristic may be explained by to the strong
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Figure 7.4: Social network reflection for an increasing number of nodes.
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Figure 7.5: Social network reflection for an increasing φ.
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Figure 7.6: Reflection metric for an increasing penalty threshold wweak.

clustering coefficient of the caveman model. For social networks generated by this model,
the probability to find nodes that share a common social acquaintance but have no social
relation of their own is less probable. Hence, it is more seldomly required that nodes are
repulsed by each other to avoid undesired meetings. Note that for φ = 0.3, the reflection
seems to be quite well irrespective of the used social network model.

The second parameter associated with the node repulsion is the penalty threshold wweak,
which essentially gives us the definition of a ’weak’ social relation. As discussed in Section
5.4.3, all social relations below this threshold are considered to be weak (including the case of
no social relation) and thus may cause a node repulsion. Figure 7.6 shows the impact of the
penalty threshold on R(Ncritical). It can be observed that an increasing penalty threshold
improves the reflection of the social network only slightly, compared to the improvement
that the introduction of the node repulsion provides in the first place.

In the following, we try to explain this effect. Assume that a relation with a strength beyond
a small threshold exists between two nodes u and v. Further assume that too many meetings
between u and v were produced because at least one common social acquaintance between
u and v exists. In this case, the social attraction between u and v is reduced. This leads to
less meetings in the following simulation ticks and balances the number of meetings over
time towards the appropriate level (as defined by the reflection requirement). However, this
is not possible if two nodes do not have a social relation at all, because their ideal number
of meetings is below the number of meetings of any two social acquaintances.
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Figure 7.7: R(N) and R(Ncritical) without correction factor and isolation phases.

Essentially, the node repulsion does avoid meetings between nodes with a weak or non-
existing social relation in certain situations. Because we do not want to prevent meetings
which do not weaken the reflection of the social network, we consider a penalty factor of
φ = 0.3 as the optimal value.

7.2.4 Robust Reflection of the Social Network

In the following, we show that the extension of our model by incorporating the correction
factor and isolation phases (cf. Section 5.5) yields a significantly better reflection of the social
network. In Figure 7.7, we show R(N) and R(Ncritical) for the basic model using different
social network models . A significantly decreased reflection for R(Ncritical) is observable
compared to the extended model (cf. Section 7.2.2). However, the overall reflection seems to
be still acceptable. This shows that the problems related to the heterogeneous sociability
and structural properties of the social network primarily affect critical relations.

We also observe that the caveman model seems to be the best reflected social network model,
followed by the Toivonen and HK model, respectively. This can be explained due to the
structure of the generated networks. The caveman model is characterized by a constant
node degree, which makes the concept of isolation phases unnecessary. The node degree
distribution of the Toivonen model, on the other hand, is characterized by a power-law
followed by a cut-off. The HK model creates scale-free networks. Thus, isolation phases are
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Figure 7.8: Reflection metric against σ.

necessary to prevent the degradation of the reflection. In addition, the caveman model is
characterized by a simple structure based on distinct isolated communities and therefore
by a very homogenous similarity among nodes. The other models, however, have a more
complex structure which may lead to disruptions.

Note that if we use the extended version of our model (cf. Table 7.3), the reflection is
quite well, irrespective of the used social network model. This shows that these concepts
indeed fulfill their requirements to make the reflection more robust against structural
idiosyncrasies.

In the following, we will show that our model also yields a good reflection in the presence of
certain geographical concepts. We simulated this by assigning each node a fixed constant
speed, uniformly selected from the interval [σ, 7]m/s with σ ∈ {1, 2, 3, 5, 7}. This simulates
the effect that some nodes require more time to travel between anchors due to geographical
concepts, like obstacles or long distances. Figure 7.8 shows the impact of heterogeneous
velocities among nodes on R(Ncritical). Only a small degradation for a decreasing σ is
observable. Note that even in the case of σ = 1m/s, where some nodes may require much
more (by a factor of 7) time to travel between anchors, the simulation still yields an average
match of over 98% for R(Ncritical) and over 99.7% for R(N).
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Figure 7.9: Inter-contact CCDF for different input social networks in comparison to a real
trace.

7.3 Inter-contact Distribution

To validate the realism of our model, we compare the inter-contact distribution of our model
to the inter-contact characteristic of real mobility traces in this section. The latter typically
exhibit a power-law tail until about half a day. After that, an exponential degradation
follows. The length of this exponential tail is approximately proportional to the length of
the simulation. For comparison, we use a mobility trace acquired during the INFOCOM
2005 conference that we already discussed in Section 2.4.1. We chose this mobility trace
since its characteristics are representative of the characteristic dichotomy observed in other
mobility traces. In addition, most other real mobility traces are AP-based. We have found
no other publicly available direct contact trace with a comparable number of contacts that
features more nodes.

To adjust our model to the fact that the INFOCOM-trace was recorded for three days, we
simulated only three simulation periods. The inter-contact CCDF of our implementation
is shown in Figure 7.9 for the different social network models. We use a logarithmic scale
for both axis to depict power-laws more clearly. It is observable that the inter-contact
distribution of our implementation displays very similar characteristics compared to the
inter-contact distribution of the INFOCOM-trace. In particular, a distinct power law until
about t ≈ 50000 is observable. For a better comparison, we also plotted a power law with a
coefficient of λ = 0.47 . This value falls into the typical range of real mobility traces, where
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Figure 7.10: Inter-Contact CCDF for different simulation durations.

coefficients are found to be between 0.2 and 0.7. After a characteristic time of about half
a day (or simulation period), we observe an approximately exponential degradation. This
corresponds to the dichotomy found in real mobility traces

The length of the exponential tail in real mobility traces is strongly dependent on the length
of the experiment. To verify the presence of this property in our model, we conducted
simulations using different simulation durations. As shown in Figure 7.10, the length of the
exponential tail increases as the length of the simulation increases, similar to real mobility
traces.

The presence of a power-law seems to be an emergent property of our model. However,
we have investigated which concepts are important to yield a heavy-tailed inter-contact
distribution and identified two reasons.

First, we have found that the concept of active social relations is necessary. Without this
concept, the inter-contact distribution follows a fast exponential decay. A requirement to
create a heavy-tailed inter-contact distribution is to have a large number of long inter-contact
times. Two nodes typically do not meet if their social relation is not active which creates
the latter. Note that we modeled this concept to resemble real-world behavior of humans
(cf. Section 3.2) and actually gained realism in terms of the inter-contact distribution.

Second, we have observed that a penalty factor of φ > 0 is required. The actual value seems
to have little importance to gain power-law characteristics. φ = 0, on the other hand, results
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Figure 7.11: Inter-contact CCDF for different numbers of nodes.

in a behavior that resembles rather a long exponential tail. The reason for this is that long
inter-contact times are frequently produced by pairs of nodes which have only a weak social
relation or no social relation at all, because their probability to meet is low. However, in
the absence of node repulsion, many such nodes meet frequently based on common social
acquaintances and thus may not produce long inter-contact times.

We also evaluated the influence of the number of nodes on the inter-contact distribution.
This is shown in Figure 7.11. We observe that the discussed characteristic of the inter-contact
distribution is independent of the number of nodes. However, the power-law coefficient
seems to decrease slightly if we increase the number of nodes. This is due to the fact that by
increasing the number of nodes, we increase the number of pairs of nodes without a social
relation. Such pairs typically produce long inter-contact times, which explains the slightly
more heavy-tailed distribution. By comparing different real mobility traces, we observe that
an increased number of nodes typically does also lead to a decreased power-law coefficient
[CHD+07]. We suspect that this is due to the same reason.

Some authors validate their model by comparing their results to the contact duration
distribution of real mobility traces. However, this distribution seems to be rather scenario-
dependent and different characteristics are possible [HH05, KKK06]. The advantage of our
model is that the contact duration distribution may be arbitrarily shaped by providing
an appropriate dwell time distribution. If, for example, a power-law contact duration
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distribution is desired, the anchor dwell time distribution of all anchors could be set to such
a power-law distribution (with a greater mean however).

7.4 Spatial Regularity

As discussed in Section 3.3, spatial regularity refers to the characteristic of humans to visit
some locations regularly (i.e. the social sphere of a node) and most other locations only
with low probability.

To evaluate the spatial regularity exhibited by our model, we created an anchor preference
distribution as follows: First, we define the anchor preference of an anchor a ∈ A with
respect to a node v ∈ V as the ratio between the number of visits of v at a and the sum
of all visits v has performed (at arbitrary anchors). All anchors are ranked according to
the anchor preference, where the anchor with the L-greatest anchor preference gets rank L.
Finally, we calculate the average anchor preference over all nodes for each rank to yield an
anchor preference distribution.

Because in our experiments the average dwell time was the same for all anchors and all
nodes moved with the same constant speed, v’s anchor preference for a may also be regarded
as an approximation of the probability to find v at a, averaged over the whole simulation
duration. We call this probability the co-location probability. Gonzales et al. have
measured the co-location probability for a large data set (cf. Section 3.3) which allows us to
make a comparison.

Figure 7.12 shows the anchor preference distribution using different social network models
on a log-log scale. The increasing anchor rank (x-axis) against the anchor preference (y-axis)
is depicted. It is observable that a node typically spends clearly the most time at one
anchor – its home anchor. For the remaining ranks, we observe a heavy tailed distribution.
This is very similar compared to real traces, which also exhibit a heavy tailed preference of
locations (see Section 3.3). Independent of the used social network model, nodes seem to
spend most of their time at a few anchors. For comparison, we have also drawn Gonzales et
al.’s approximation P (L) = c/L such that

∑L=n
L=1 c/L = 1 (solid grey). We observe that our

model captures the spatial regularity of this empirical study quite well.

The HK and Toivonen social network models show very similar characteristics. If the
caveman model is used to generate social networks, on the other hand, the distribution is
slightly more heavy tailed. In particular, the probability to find a node at its home anchor
(rank 1) is decreased while the probability to find a node at anchors of the ranks 2− 19 is
increased compared to the other used models for social networks. However, for ranks > 20
we observe a faster decay. We have identified the following reason for this behavior: As
discussed in Section 7.2.3, an increased clustering coefficient leads to a decreased probability
that nodes are repulsed by other nodes. Thus, ’foreign’ anchors are more attractive to nodes.
In addition, it is less likely that nodes move to anchors which are not in their social sphere
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Figure 7.12: Anchor preference distribution using different models for social networks.

because the social spheres of social acquaintances overlap strongly. Thus, a node visits home
anchors of social acquaintances (in our example typically ranks 2− 16) more frequently if
the social network has an increased clustering coefficient.

α, which weights between the node and location attraction, seems to have a strong influence
on the anchor preference distribution, as shown in Figure 7.13. Independent of α, we observe
a heavy tailed distribution. However, decreasing α seems to lead to a steeper tail. We have
identified the following reason: For α→ 0, nodes are strongly influenced by their location
attraction. Thus, they only move between home anchors of their social acquaintances with a
probability proportional to the strength of their relationship. For α→ 1 however, nodes are
strongly influenced by their social attraction. If a social acquaintance u of node v is located
at an anchor a, a will exert a strong attraction towards v, even if a is not a member of v’s
social sphere. Thus, increasing α increases the probability that nodes move to anchors which
are not part of their social sphere, which leads to a more heavy tailed anchor preference
distribution.

7.5 Temporal Regularity

An important requirement to gain realistic mobility characteristics and to enable the
evaluation of predictive applications, is to simulate temporal regularities (cf. Section 3.4).
To create a temporal regularity on a global level, we have introduced a periodic temporal
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Figure 7.13: Anchor preference distribution against α.

dependency by employing anchor functions (cf. Section 5.4.1). Our first goal is to verify
that the anchor function actually dictates the co-location probability of nodes over time.
Subsequently, we verify that the set of anchor functions leads to a temporal regularity on a
global level.

7.5.1 Impact of the Anchor Function

To show that the anchor function dictates the movement of nodes, we have calculated the
probability that a node is located at an anchor for specific instances of time within each
simulation period. For mobility models which do not model temporal regularities (e.g. the
random waypoint mobility model), this probability is constant for tmax →∞.

More precisely, we have calculated the co-location probability for an anchor at an arbitrary
time tc ∈ {0, 1, 2, ..tp−1} within the simulation period, for example at 12am if the simulation
period corresponds to 24 hours. Note that in Section 7.4, we have calculated the co-location
probability averaged over the whole simulation duration, which we used to measure spatial
regularities. An approximation of the co-location probability over time is the ratio between
the number of times a node was located at an anchor at t ∈ {tc, tc + tp, tc + 2tp, . . .} and
the total number of simulation periods tmax/tp.

We have analyzed the co-location probability over time for two anchors a, b ∈ A that are
the only home anchors of the nodes u and v respectively, i.e A(u) = {a} and A(v) = {b}.
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Figure 7.14: Anchor function for the home anchors of nodes u and v.
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Figure 7.15: Co-location probability of two social acquaintances u, v against time.

Furthermore, we defined a social relation between u and v with w(u, v) = 0.8. We have
observed the co-location probability for several simulations based on this setup using an
extended simulation duration of tmax = 107s and a short simulation period tp = 2000s. Thus,
we executed 5000 simulation periods. We chose these parameters to obtain a representative
approximation of the co-location probability. Social relations were set to be active the
whole simulation duration. Above described relations between a, b, u and v were fixed for all
conducted simulations.

Figure 7.14 shows the anchor function for a and b. Figure 7.15 shows the co-location
probability of u and v (y-axis) at both a and b against tc ∈ [0, 1999] (x-axis). Note that this
is the result of a single simulation run only. However, the qualitative results were the same
for all performed simulations. Due to random factors like different social acquaintances,
anchor positions, and anchor functions of anchors besides a and b, the exact quantitative
characteristics were different for each simulation run.

97



7 Evaluation

However, in each measurement we observed two distinct probability peaks that match with
the corresponding anchor function. More precisely, the probability that a node is located
at its home anchor during the probability peak of the corresponding anchor function is
significantly higher (up to 30%) compared to time intervals in which the anchor function is
low (below 5% co-location probability). Nodes are also strongly influenced by home anchors
of social acquaintances. Furthermore, a certain displacement of the probability peaks is
visible. The reason for this is that nodes require some time to react to a sudden increase of
the anchor function at time t0. Most nodes may stay at other anchors at t0 and will not
select a new anchor until their current dwell time is over. Additionally, nodes require some
time to travel to an anchor. Respectively, if the anchor function suddenly diminishes, nodes
may still stay with the corresponding anchor until they leave by choosing a new anchor.
This displacement should be kept in mind while designing an anchor function for a specific
location.

As our results suggest, the movement of nodes is dictated by periodic anchor functions.
However, it remains to show that these temporal dependencies lead to temporal regularities
on a global level. In Section 3.4, we have already introduced the network similarity index
(NSI) as a metric to show temporal regularities in an empirical way. Thus, we have calculated
the NSI for our simulated mobility traces. Again, we have chosen a simulation period of
tp = 2000s to yield representative results and to enable a feasible calculation of the NSI. All
other parameters are generated based on our standard simulation setup.

7.5.2 Global Temporal Regularities

Figure 7.16 shows the NSI (y-axis) for time gaps tg ∈ [700, 7000] (x-axis) using different
models to generate social networks. We observe a similar qualitative behavior for all social
network models. The curve exhibits distinct peaks around t ∈ {2000, 4000, 6000}. This
corresponds to the chosen simulation period of tp = 2000. Thus, nodes reappear after a
period of approximately tp with increased probability. It is observable that the characteristics
shown in Figure 7.16 are very similar compared to the characteristics of real mobility traces,
as shown in Figure 3.2 on page 28. Note that the quantitative values of the NSI curve are
strongly dependent on the number of measured locations.

Since α controls the influence of the location attraction and hence the influence of the
individual anchor functions, we evaluated the NSI for different α ∈ [0, 0.999]. The results
are shown in Figure 7.17. We observe that an approximately linear dependency between α
and the strength of the probability-peaks exists. As α controls the influence of the location
attraction, it controls the strength of the temporal regularities. Thus, α represents an
important parameter for the evaluation of applications which exploit the habitual behavior
of humans. As real traces show, the degree of repetitive behavior is scenario-dependent (cf.
Figure 3.2 on page 28). Hence, α also allows the adjustment of the simulation to match
different real scenarios.
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Figure 7.16: NSI for different input social networks.
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Figure 7.17: NSI against α.
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7.6 Group Movement

In this section, we present the evaluation of the probabilistic group mobility created by our
model. As discussed in Section 5.3, the probability that a node joins a group is controlled by
gthresh. Figure 7.18 shows the impact of gthresh (x-axis) on the number of group movements
(i.e. at least two nodes move together) per 1000 simulation ticks (y-axis). We observe a
linear decrease of the number of group movements if gthresh is increased until gthresh = 0.4.
After that, the decrease of the number of group movements proceeds slightly faster. We
suspect the following reason for this behavior: After a group of nodes moved together to
a new destination anchor and the dwell time of one of the old group members expires,
the group or a part of the group may yet again perform a group movement because their
dwell time expires at about the same time. This means that if a single group movement is
created, it may produce multiple consecutive group movements in the following. However,
this self-strengthening effect decreases for gthresh → 1 because the probability that the old
group performs another group movement decreases. This leads to a faster decrease of the
number of group movements beyond gthresh = 0.4.

We also notice that the number of group movements is significantly increased if the caveman
model is used to generate social networks. Once again, we suspect that this may be explained
by the increased clustering coefficient. The latter yields an increased probability that three
or more nodes are social acquaintances of each other. In other words, a strong clustering
increases the number of cliques of size three or greater in the social network. Thus, it is
more probable that groups of nodes V ′ ⊆ V with |V ′| > 2 meet each other at the same
time. This again leads to an increased probability that the dwell time of multiple nodes
expires approximately at the same time which translates into the probability to create group
movements.

We are also interested if frequent group movements reduce the reflection of the social network.
Figure 7.19 shows the impact of gthresh (x-axis) on the reflection metric for critical pairs.
Only a small decrease of the reflection is observable if the the number of group movements
is increased (by decreasing gthresh).

7.7 Discussion

In this section, we have presented the evaluation of our social mobility model. We have
shown that the model reflects the input social network quite well. An optimal reflection of
the social network seems to require that the movement of nodes depends on the attraction
towards nodes and locations. However, a small influence of either type of attraction is
enough to yield good results. Furthermore, we have shown that the concept of node repulsion
is important to yield a good reflection and realistic inter-contact characteristics.
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Figure 7.18: Number of group movements against gthresh.
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Figure 7.19: Social network reflection against gthresh.
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The evaluation has shown that our model captures the dichotomy of real mobility traces
quite well. The characteristics exhibited by the temporal and spatial regularties are also
very similar to characteristics of empirical results. This confirms the validity of our model.

The fact that the input network is very closely reflected implicates that the structural
properties of the social network are reflected as well. For example, the number of meetings
with social acquaintances is proportional to its sociability. Thus, a hub in the input network
produces many more meetings compared to nodes characterized by a low node degree. Hence,
a scale-free node degree in the input network leads to a scale-free distribution of both the
number of total meetings between nodes and the average connectivity.
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Chapter 8

Advanced Concepts

During the process of creating this thesis, we have developed some ideas to improve the
realism of our model even further. Due to time restrictions, we have not implemented these
ideas. Nevertheless, we discuss them in the following.

8.1 A Generalized Interpretation of Social Relations

In social networks, a relation may have many different interpretations. For example, an edge
between two individuals may define ’has worked together’ or ’meet more often than one
time per month’. It may refer to a relation between friends, family, or colleague. Besides the
nature of the social relation, a number of different factors, like frequency/duration of contact,
strong history, connectedness, social capital and many more [Hit03], have to be mapped to
a single numerical weight. The concepts shown in Chapter 5 are based on the interpretation
that a weight is proportional to the frequency of regular meetings. Such meetings differ
from short, random encounters, which typically are not a sign of social relations.

However, other interpretations on the level of mobility are possible. Assume, for example,
an individual has frequent encounters with a colleague five days a week. In addition,
this individual has a relative whom he visits only once per month, but then for the hole
weekend. Based on our described definition, the social relation with the relative is considered
significantly less important compared to the social relation with the colleague. However, if
such an individual is asked to weight both relationships, he may probably not reflect this
interpretation in his answer.

Thus, a social relation of a certain weight may be characterized by frequent and short
encounters, or by rather seldom but long encounters. Both types of social relations may be
important for mobile applications. Though seldom, long encounters may lead to a long delay,
they enable the mobile application to transmit a larger volume of data per contact. Thus, it
may be worthwhile to incorporate both types of relations in a social mobility model.
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Essentially, if we change the interpretation of a social relation, this means changing the
reflection requirement. Instead of creating a number of meetings at anchors proportional to
the weight of a social relation, meetings could be produced based on some formula using both
the number of meetings and the average meeting duration as a metric. A simple example
of such a metric would be to use the product between the average meeting duration and
number of meetings. Thus 10 meetings of 2 minutes length would be considered equivalent
to 5 meetings of 4 minutes length in terms of the weight of a relation. Let dur(u, v, t) denote
the average meeting duration of two nodes u, v until time t ∈ T . We propose the following
generalization:

Definition 8 (Generalized Reflection Requirement) For two arbitrary nodes u, v ∈
V , the weighted product

p(v, u, t) := m(v, u, t)ε · dur(v, u, t)1−ε, ε ∈ [0, 1]

should be proportional to the strength of their social relation w(u, v) for t→∞.

The parameter ε weights between the frequency and the average duration of meetings
between two nodes. Note that the special case of ε = 1 yields our original definition of the
reflection requirement.

Since the correction factor (see Section 5.5) adjusts the social attraction between two nodes
to satisfy the reflection requirement, we have to adapt the calculation of the meeting-quota
to our generalized definition. Until now, the total number of meetings M(v, t) of a node v
until simulation tick t with active social acquaintances was essentially redistributed among
the active social relations according to a perfect reflection, to yield the meeting-quotas. To
satisfy our new interpretation, we have to replace the number of meetings between two
nodes m(u, v, t) with our weighted product p(u, v, t). Thus, Equation (5.4) on page 62 must
be replaced by

M(v, t) :=
∑

u∈Cactive(v,t)

p(v, u, t).

This adjusts the definition of the social influence. Now, the accumulated weighted product p
of the node with the smallest accumulated weighted product yields our new reference social
influence, which is ’redistributed’ among the active social relations to yield the meeting-
quota. Because all other formulas, including the calculation of the isolation probability i.e.
Equation (5.7), are based on the definition of M(v, t), no further changes are necessary.
Thus, by making this simple change, our model adjusts the social attraction between two
nodes according to the new generalized definition of the reflection requirement.
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8.2 Towards a Trace-based Social Mobility Model

Many parameters of our model are dependent on random generation. Furthermore, in many
cases there exists no advanced model that may be employed to create such data based on
real characteristics. For example, there are researched models for generating social networks.
However, we have used a uniform generation of the weights of social relations due to the
lack of an appropriate model. To provide for further realism, we introduce the idea of using
data extracted from real mobility traces to fill the gap. This moves our model towards a
trace-based approach (cf. Section 2.4.2). We have identified the following parameters that
may be extracted from mobility traces:

• Input Network. A mapping-function dependent on parameters like the number of
contacts, total contact duration, or inter-contact duration may be used to extract a
weight for each pair of nodes. This function should depend on the interpretation of
social relations. For example, if the original reflection requirement is used, the number
of contacts between two nodes should be mapped to a weight. Because seldom contacts
between nodes without a social relation are quite common, a threshold for the number
of contacts should be employed to infer an actual social relation. Alternatively, since
our model produces long meetings at anchors, it may be sensible to count only the
number of contacts with a length above a threshold.

There are other sources to retrieve an input network. Sociologists use questionnaires or
interviews to create an actual social network [Sco00]. In addition, existing databases
could be utilized. For example, online social networks like Facebook [Fac] may be used
to extract potentially very large social networks (or subsets). Weights of the social
relations may be assigned by statistical data like the number of messages sent to each
other, bulletin board entries, or profile data. However, there may be privacy issues
involved.

• Active Relation Intervals. Periodic time intervals in which nodes have a high
probability to be in contact could be extracted from real mobility traces. We sketch
the following possible approach:

First, the length of the period must be defined, e.g. a day or a week. Then, we calculate
the contact probability for each pair of nodes within this period, which is very similar
to the calculation of the co-location probability over time (see Section 7.5). For each
pair of nodes, we count the number of times in which the nodes have been in contact at
a discrete set of points within the period (e.g. at 13:23pm using a period of 24 hours).
A possible approach would be to use a minute as a discrete time step. The number
of contacts at each periodic instance of time t is then normalized by the number of
measured periods to yield the approximated contact probability at t. Finally, all time
intervals within the period are identified in which the number of measured contacts is
above a threshold pthresh. We then use χ with t ∈ χ(e) :⇔ pcontact(e, t) > pthresh for
each pair of nodes e as input for our model.
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Figure 8.1: Example for the extraction of time intervals in which a social relation is active.

Figure 8.1 shows a constructed example for the measured contact probability (y-axis) of
two nodes over the time within the period of one day (x-axis). Two distinct probability
peaks are visible. The dashed line represents the chosen threshold. Time intervals, in
which the contact probability is above the threshold, represent the time intervals in
which the social relation is active.

• Geo-social Patterns. If the trace is enriched with location information, like GPS-
traces, it is possible to identify the social sphere of individuals. Some existing work
already focuses on this [GKBB09, BGK+07]. For example, Adams et al. propose a
method to extract significant locations for each user, collected by a mobile, wearable
device [APV08, APV06]. They apply a clustering algorithm to a set of GPS coordinates
which yields for each node the locations of the social sphere. They also identify locations
which are shared among nodes and infer social relations. This information may then
be used to create home anchors of different nodes. For example, a location could be
associated as a home anchor to the node with the most frequent visits. In addition,
corresponding social relations could be created based on the strength and/or number
of shared locations between two nodes. The authors also identify the convex hulls of
the extracted locations, which could be used to specify the geographical boundaries of
the anchors in our model.

• Anchor Function. If GPS or AP-based traces are used, it is possible to approximate
the co-location probability (cf. Section 7.5.1) at specific locations over a set of discrete
points in time within a period (e.g. a day). Based on this probability distribution, a
corresponding anchor function could be created.

• Dwell Time Distributions. In Section 2.4.2, we have introduced mobility models
that extract the pause time distribution for each AP using an AP-based trace. The same
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principle may be applied to yield dwell time distributions for each anchor corresponding
to an AP. Anchors may even be placed according to coordinates associated with an
AP. Instead of using AP-based traces, one could also employ mobility traces which
feature GPS coordinates. For example, the durations an individual remains within the
boundary of a identified convex hull of a significant location may be used to create a
dwell time distribution for the anchor which represents the location.

• Speed Distributions. GPS trace data allows one to extract a speed distribution for
different users, similar to existing mobility models [KKK06].
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Chapter 9

Conclusions

9.1 Summary

The goal of this thesis was to create a realistic mobility model, which focuses on the
simulation of social context. Our proposed model uses a weighted social network as input
to generate its mobility scheme. The basic assumption is that individuals, which share
a social relation, tend to meet more frequently and regularly, in contrast to individuals
without a social relation. Based on this assumption, the model reflects the social network,
i.e. produces meetings between nodes with a probability which is proportional to the weight
of their social relation.

To create a realistic mobility model, we have identified several characteristics of human
mobility that are of importance for the evaluation of mobile applications. Besides explicitly
modeling (active) social relations, we have advocated that a realistic mobility model should
capture the characteristics of temporal and spatial regularities as well as group mobility.
Based on these requirements, we have proposed a social mobility model.

Basically, mobile nodes move between a set of anchors, which represent abstract locations.
The movement of nodes is dictated by the attraction towards certain abstract locations
and the attraction towards social acquaintances. Some nodes may be repulsed by others in
order to yield a good reflection of the input network. The anchor attraction is based on a
periodic characteristic anchor function, which creates a temporal regularity. In addition,
mobile nodes are only attracted to a subset of all anchors, which we call the social sphere
of a node. This creates a spatial regularity. Our model also generates probabilistic group
movements based on a parameterized probability.

We have proposed a concept to yield a good reflection of the social network, despite
’disturbances’ introduced by different structural properties of social networks, concepts of
the geographical mobility model, and a heterogeneous node degree.
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We have discussed several integration points for geographical mobility models and shown
why this integration does not prevent a proper reflection of the social network. Furthermore,
it was pointed out that our model generalizes several existing (social) mobility models.

The results of our evaluation have shown that the model reflects the input social network
with an accuracy of over 99% for the standard parameter setup. We have also shown that
our model exhibits characteristics of spatial and temporal regularities that are very similar
compared to existing empirical results. In particular, our model allows parameterizing the
degree of repetitive behavior, which is important to evaluate applications which feature
mobility prediction. Additionally, the inter-contact distribution of our model captures the
dichotomy measured in real mobility traces quite well. We have used several different models
to generate social networks and thus indicated that these results are independent of the
used input network.

We have discussed how a more generalized interpretation of social relations may be integrated
into our mobility model. In addition, we have sketched how our model may be enriched by
data extracted from real mobility traces, which may increase the degree of realism.

9.2 Contributions

In this thesis, we have developed a social mobility model which reflects an arbitrary input
network. This may enable the research and the evaluation of mobile applications which
exploit either the structure of social networks or knowledge about social context. In addition,
it allows the evaluation of mobile applications which focus on exploiting group movement or
mobility prediction mechanisms. This is the first mobility model that combines the reflection
of an arbitrary social network with spatial and temporal regularities. The fact that our
model captures characteristics observed in real traces confirms the validity of the model.

We consider the primary contribution of our work to be the generalizational character of
the proposed model. We have shown (cf. Section 5.7) that our model can be specialized to
yield several existing social mobility models. Furthermore, the model allows the integration
of geographical concepts such as obstacles and speed distributions, and thus may enrich
the sociological aspects with further realism. The fact that our model reflects an arbitrary
social network has many advantages that we will discuss in the following.

Although some properties of social networks seem to be omnipresent, other properties are
more or less pronounced in different social networks. Our social mobility model allows
the evaluation based on social networks exhibiting different structural properties. This
enables to research the influence of different structural properties on the performance of
mobile applications without having to change the simulation model. If the exact properties
of the target social network are known (e.g. because a trace exists) the mobility scheme
of our model may be tailored to this specific scenario, either by directly using a specific
social network or by generating networks with the desired structural properties. It is also
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possible to integrate networks extracted from a real mobility trace (cf. Section 8.2). However,
even if the researcher does not know the exact structural properties of his target social
network, the application may be evaluated using multiple social networks with realistic
structural properties (cf. Section 2.2). If the application performs well in each case, this can
be considered as a further indicator for the validity of the evaluated concept.

One may argue that it would be possible for a researcher to evaluate his system using
different mobility models, for example, one that does reflect the scale-free structure of many
social networks and one that rather reflects a cut-off. However, different models create
mobility in different ways and therefore exhibit other properties such as inter-contact time
characteristics. Therefore, if the researcher measures a different result in different mobility
models, he cannot say if this is due to the different properties of the mobility model or due
to the different structure of the underlying social network.

The research on complex social networks is still an ongoing process. We expect that in
the future new structural properties of social networks are discovered. Our model allows
to incorporate such results in its mobility scheme without changing the model or even the
implementation. This enables the fast exploration of the use of such properties without the
need to develop an appropriate mobility model first.

The research of the relation between the mobility patterns of individuals (which defines the
connectivity graph) and the underlying social network is still in a very early stage and only
a few results are known. Based on these few results (as discussed in Section 3.1), we have
proposed a simple interpretation for a social relation defined by the reflection requirement.
We have also discussed how to generalize this interpretation (see Section 8.1). However, we
do not know which interpretation may be considered to be realistic. To actually choose a
concrete interpretation, one has to find out how exactly a social network should be mapped
to a measure of the frequency/length of encounters between the individual users. Note that
our interpretation further assumes that if two individuals do not share a social relation, they
only meet by random encounters.

However, as future research progresses, results in this area may be easily integrated into our
social mobility model. First, we could choose an actual interpretation for social relations.
Second, the generated social network can be adapted to reflect these results. The basic
assumption of the proposed model is that a social network Ns is directly mapped to the
mobiliy scheme and thus to a connectivity graph Nc. However, if a less obvious mapping
between Ns and Nc is known in the future, Ns could be transformed to a network N ′s that
incorporates this mapping. This transformed network may then be provided as the actual
input for our model. For example, consider the hypothetical case that investigations discover
that two-hop friends (i.e. nodes with a distance of 2 in the social network), typically meet
with a specific probability, despite having no social relation. Intuitively, we believe that this
might be true. In this case, the social network Ns can simply be mapped to N ′s in which
every two-hop friend has a social relation of a certain weight.
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Of course, one may avoid the problem of interpreting the mapping between a social network
and the mobility scheme altogether, by using an input network, extracted from real traces.
In this case, Ns corresponds to Nc. However, because such traces are only sparsely available,
this method may currently yield only a few input networks with a small number of nodes.
Thus, for an empirical evaluation, the random generation according to a realistic model may
be more desirable.

9.3 Limitions

The generalizational character of our model comes at a price. Compared to many other
mobility models, our approach is rather complex. This may lead to difficulties in determining
its properties analytically. However, we have shown that this complexity does not lead to
an inefficiency, i.e. our model still generates large mobility traces with a significant number
of nodes in acceptable time. It remains for further work to show if a simpler model can be
found that still satisfies all requirements we have set for our model.

As we have shown in the evaluation, the number of group movements per time is controlled
by a single parameter. However, the more group movements should take place, the greater
the probability that a node does not stay for its whole dwell time at an anchor (cf. Section
5.3). Thus, if a scenario characterized by many group movements should be captured, nodes
do not obey the behavior specified by the dwell time distribution. However, we consider
the dwell time distribution to be a significant parameter to adapt the model to specific
scenarios. It remains for future work to evaluate if it is possible to integrate both frequent
group movements and a dwell time of nodes according to a predefined distribution. One
possible approach would be to transform the desired dwell time distribution D̃a to the
actual input dwell time distribution Da such that the dwell time distribution of anchor a,
created due to produced group movements, matches D̃a. Of course, the mean value of D̃a is
less than the mean value of Da. The decision if a node v located at a should join a group
movement, could be made by comparing the dwell times produced by a in the past with
D̃a. Of course, the decision should also depend on the desired number of group movements.
Thus, the actual created dwell time distribution is shaped to yield D̃a. This approach may
also allow to create a fixed (controlled by a parameter) number of group movements per
time, independent of the used input network (cf. Section 7.6). We leave it to future work to
show if such an approach is possible.

9.4 Outlook

In our social mobility model, time is structured into multiple simulation periods of fixed
length tp. This yields habitual behavior with a periodicity of tp. However, in the real world,
multiple hierarchical simulation periods of different periodicity exist. For instance, an office
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worker may reappear with high probability at the bus stop for work with a period of one day.
This individual has the position of a team leader and meets with his team one time per week
in a meeting room. Thus, he reappears at this meeting room with high probability after a
period of one week. In addition, he has a team leader meeting once per month. Therefore,
he meets with other team leaders with a period of one month. Predictive mobile application
may keep track of these hierarchical temporal regularities and may use them to predict
connectivity. Thus, it may be sensible to integrate this behavior in a social mobility model.
Such hierarchical regularities may be incorporated in our model by providing an anchor
function that defines probability peaks with multiple periodicities. A possible approach
could be to create an anchor function for each periodicity and to calculate the ’superposition’
of the individual anchor functions.

In reality, an individual moves only between a subset of its social sphere at any given time.
For example, our office worker would spend the time on weekdays during the day between a
set of office rooms. At weekends and in the afternoon, he may spend his time at home and
other places, related to his recreational time. The existence of such so called mobility profiles,
i.e. a set of locations which are important within a certain (periodic) time interval, has been
confirmed in real mobility traces [GBNQ06]. Mobile applications may collect and exploit
knowledge about the currently active mobility profile. Note that our model already implicitly
creates very simple mobility profiles, created by the concept of active social relations: A
node moves only to home anchors of other nodes, to which a social relation exists. However,
we suspect that this simplification of mobility profiles is not realistic enough. Future work
could investigate the explicit specification and integration of different mobility profiles into
our social mobility model.

We have shown several integration points for geographical mobility models (cf. Section 5.6).
The next step would be to actual perform such an integration. We expect that a compound
model improves the realism of the model even further. It might also be interesting to
evaluate the reflection of the social network in the compound model. Note that we have
already tried to simulate the corresponding effects during the evaluation of our model (cf.
Section 7.2.4).

Currently, only very few direct contact mobility traces are publicly available which feature
many nodes and at the same time a representative number of contacts. If more such traces
become available in the future, it might be interesting to compare their characteristics to
characteristics of our social mobility model, like the influence of the clustering coefficient on
the mobility behavior. In general, if further omnipresent characteristics of human mobility,
such as the dichotomy of the inter-contact distribution are discovered, a comparison may be
insightful as well.

Many parameters of our proposed model are randomly generated. Alternatively, we have
shown how to extract these parameters from real mobility traces. However, if a researcher
wants to customize the simulation to a concrete target scenario, many parameters have to be
adjusted. The custom setting of the parameters may be a time consuming event. However,
for a detailed and realistic evaluation of the target scenario it may be worth the effort. Thus,
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to assist in the customization of the parameters of our model, we envision the development
of a graphical tool. Features of such a tool may include the following:

• Visualization of the simulation area and placements of the anchors. The position of
individual anchors could be changed by drag&drop functionality. A map could be
imported to place as an underlay behind the simulation area. This helps the scenario
designer to place the anchors at corresponding locations.

• Setting of the anchor function according to a list of predefined models.

• Selecting the dwell time distribution from different parameterized distributions such
as Gaussian, uniform, Poisson, etc.

• Assignment of home anchors to nodes and visualization of the individual social sphere
of a selected note.

The detailed design of such a graphical tool remains open for future work.
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v at time t (simple calculation)

49
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50
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42
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C(G) Clustering coefficient of a graph G 7
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6

Da Dwell time distribution of anchor a ∈ A 44
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fa Anchor function of anchor a ∈ A 46
φ Penalty factor 54

gthresh Group movement threshold 45
g Greediness of the destination selection algorithm 54

L(G) Average path length of a graph G 7
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m(v, u, t) Meetings between v and u until time t 62
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62
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T Set of simulation ticks 43
tmax Length of the simulation 43
tp Length of the simulation period 43

tupdate Correction factor update interval 62
V Set of nodes in a social network 5

w(u, v) Weight of the social relation {u, v} ∈ E 5
wweak Penalty threshold 53
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