
Similarity Search
with Set Intersection as

a Distance Measure

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart zur Erlangung der
Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Benjamin Sascha Hoffmann

aus Böblingen

Hauptberichter: Prof. Dr. rer. nat. habil. Volker Diekert

Mitberichter: Prof. Dr. rer. nat. habil. Ulrich Hertrampf

Tag der mündlichen Prüfung: 25. März 2010

���������
�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

�� ��

��
�

�
��

�

�

��

�

�

��

�

�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

Universität Stuttgart

Institut für Formale Methoden
der Informatik (FMI)

2010

2

Abstract

This thesis deals with a fundamental algorithmic problem. Given a database
of sets and a query set, we want to determine a set from the database that
has a maximal intersection with the query set. It is allowed to preprocess
the database so that queries can be answered efficiently.

We solve the approximate version of this problem. We investigate two
randomized input models which are derived from real inputs. We present
a deterministic algorithm for each of them. Under the assumption that the
database and the query set follow one of these models, the corresponding
algorithm determines with high probability a set from the database that has
no maximal intersection with the query set, but an intersection that achieves
a large proportion of the maximal size. Depending on the model, the query
time is either quasi-linear in the sum of the database size and the number
of different elements from all sets, or it is polylogarithmic in the database
size. Thus, both algorithms are significantly faster than a naive algorithm
intersecting the query set with each single database set.

3

4

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit einem elementaren Problem aus
dem Gebiet der Algorithmentheorie. Sei W = {w1, . . . , wm} eine endliche
Menge. Das Maximaler-Schnitt-Problem ist wie folgt definiert: Gegeben
sei eine Datenbank von n endlichen Mengen D = {d1, . . . , dn} ⊆ 2W und eine
endliche Anfragemenge q ⊆ W. Das Ziel ist, möglichst effizient eine Menge
d ∈ D zu bestimmen, die mit der Anfrage q einen Schnitt maximaler Größe
besitzt (∀d′ ∈ D: |q ∩ d′| ≤ |q ∩ d|). Dabei ist es erlaubt, die Datenbank
vorzuverarbeiten.

Im Allgemeinen ist das Bestimmen einer solchen Menge zeitaufwändig.
Daher werden wir zwei aus der Praxis hergeleitete randomisierte Eingabemod-
elle untersuchen und zeigen, dass beide Modelle eine sogenannte Schwellen-
wert-Eigenschaft besitzen. Wir werden sehen, dass diese Eigenschaft eine ef-
fiziente Lösung des Problems ermöglicht. Wir zeigen, dass wenn die Eingabe
sich gemäß einem dieser Modelle verhält, dann existiert ein deterministis-
cher Algorithmus, welcher mit hoher Wahrscheinlichkeit eine k-approximierte
Antwort findet (eine k-approximierte Antwort ist eine Menge d ∈ D, so
dass |q ∩ d′| ≤ k · |q ∩ d| für alle d′ ∈ D gilt). Man beachte, dass hierbei
die Wahrscheinlichkeit über die gemäß dem Modell randomisierte Eingabe
gebildet wird, und nicht über Zufallsbits des Algorithmus.

Beide Eingabemodelle basieren darauf, dass die Elemente der Anfrage-
menge bezüglich einer Ordnung, die durch die zufällige1 Datenbank gegeben
ist, sortiert sind. Wir unterscheiden zwei verschiedene Arten von Über-
einstimmungen. Eine r-Übereinstimmung ist eine Menge der Datenbank, die
mindestens r Elemente der Anfragemenge enthält. Eine r-Präfixübereinstim-
mung ist eine Menge der Datenbank, die mindestens die ersten r Elemente der
Anfragemenge enthält (man beachte, dass eine r-Präfixübereinstimmung im-
mer auch eine r-Übereinstimmung ist, wohingegen die umgekehrte Richtung

1gemäß des Eingabemodells

5

6

nicht stimmt). Wie wir zeigen werden, verhalten sich beide Übereinstim-
mungen wie folgt: Die Wahrscheinlichkeit, dass eine Übereinstimmung exisi-
tiert, ist für kleines r nahe bei Eins, und fällt ab einem gewissen

”
Schwellen-

wert“ schnell gegen Null. Entscheidend dabei ist, dass die Schwellenwerte
beider Übereinstimmungen nahe beieinander liegen. Dies ermöglicht es, mit
hoher Wahrscheinlichkeit eine approximierte Antwort in quasilinearer Zeit in
der Summe von n und m beziehungweise in polylogarithmischer Zeit in n zu
bestimmen. Im Detail sind die Ergebnisse für beide Modelle wie folgt (Teile
wurden in [HLN07] und [HLLN09] veröffentlicht):

Zipfsches Modell. Eingaben in diesem Modell verhalten sich gemäß dem
Zipfschen Gesetz. Das Zipfsche Gesetz tritt hauptsächlich in natürlichsprach-
lichen Texten auf und besagt, dass die absolute Häufigkeit eines Wortes
umgekehrt proportional zu seinem Rang ist. Indem wir zeigen, dass im Zipf-
schen Modell die Schwellenwerte beider Übereinstimmungen nahe beieinan-
der liegen, können wir einen deterministischen Algorithmus angeben, der
eine 1+E(ε,n)

1−∆(δ,n)
-approximierte Antwort mit einer von ε, δ und n abhängigen

Wahrscheinlichkeit liefert. Dabei sind ε, δ > 0 und es gilt E(ε, n) → ε,
∆(δ, n) → δ für n → ∞. Die Wahrscheinlichkeit tendiert gegen Eins für
n → ∞. Die Vorverarbeitungszeit dieses Algorithmus liegt in Õ(nm), die
Anfragezeit beträgt Õ(log m + n) im Mittel und Õ(m + n) im schlechtesten
Fall. Der Platzbedarf ist in n1+o(1). Das Zipfsche Modell verallgemeinern wir
dahingehend, dass wir Eingaben betrachten, die dem Gesetz von Mandel-
brot folgen (welches eine Verallgemeinerung des Zipfschen Gesetzes darstellt).
Wir zeigen, dass sich obiger Algorithmus auf alle Eingaben, die dem verallge-
meinertem Modell folgen, anwenden lässt und dabei vergleichbare Resultate
liefert.

Hierarchische Schemata. Hierbei nehmen wir an, dass die Elemente der
Menge W in einem baumartigem Schema hierarchisch angeordnet sind, und
zwar so, dass jedes Element sich einem festen Level zuordnen lässt. Wir
zeigen, dass jedes hierarchische Schema die Schwellenwert-Eigenschaft be-
sitzt und diese einen deterministischen Algorithmus ermöglicht, der mit ho-
her Wahrscheinlichkeit eine 2 · 1+εn

1−εn
-approximierte Antwort liefert. Dabei ist

εn > 0 und die Wahrscheinlichkeit tendiert für n → ∞ gegen Eins. Der
Algorithmus hat Õ(n) Vorverarbeitungs- und O(log2 n) Anfragezeit. Der
benötigte Platz liegt in Õ(n).

Neben diesen zwei Modellen und zugehörigen Algorithmen zeigen wir,
dass ein randomisierter Algorithmus existiert, der ebenfalls eine approx-

7

imierte Antwort liefert. Dieser Algorithmus wählt eine zufällige Stichprobe
aus der Datenbank aus und bestimmt in dieser Stichprobe eine optimale
Antwort (d.h. eine Menge, die unter allen Mengen der Stichprobe maximale
Schnittgröße mit der Anfrage hat). Die Qualität dieser Antwort lässt sich
abschätzen indem wir zeigen, dass die erwartete Anzahl an verbleibenden
Mengen der Datenbank, die einen größeren Schnitt mit der Anfrage besitzen,
höchstens n−r

r+1
beträgt. Die Anfragezeit des Algorithmus liegt in O(m log m)

und ist somit unabhängig von der Datenbankgröße n.

Wir komplettieren die Untersuchung des Problems durch die Herleitung
von unteren Schranken im Cell-Probe-Modell. Angenommen, es gilt m ∈
ω(log n) ∩ no(1). Dann besitzt jeder Algorithmus (deterministisch oder ran-
domisiert, mit beidseitigem Fehler), der polynomiell in n und m viel Platz
benötigt, eine Anfragezeit von Ω(m/ log n).

8

Acknowledgments

First of all, I would like to express my gratitude to my advisor, Prof. Dr.
Volker Diekert. He helped me to focus on the important problems and was
always ready to listen to my questions and ideas. His continual interest,
support, and motivation over all my years in his group have made this thesis
possible. Furthermore, I would like to thank Prof. Dr. Ulrich Hertrampf for
his time and valuable feedback as my second advisor.

I would also like to thank all members of our department for their help
and support. In particular, I want to thank Jürn Laun, Manfred Kufleitner,
and Dirk Nowotka for valuable discussions and Horst Prote for technical
assistance.

Finally, I would like to thank my family and Karin for their great support
and patience.

9

10

Contents

Abstract 3

Zusammenfassung 5

1 Introduction 17

1.1 Structure of the Thesis . 17
1.2 Problem Statement . 18
1.3 Overview of the Results . 19
1.4 Related Work . 20
1.5 Notation and Basic Facts . 23

1.5.1 Notation . 23
1.5.2 Probability Theory . 24
1.5.3 Inequalities . 25

2 Lower Bounds 27

2.1 Preliminaries . 27
2.2 The Cell Probe Model . 27
2.3 Reducing NNS in the Hamming Cube to the MI Problem . . . 28
2.4 Lower Bounds for the Maximal Intersection Problem 29

3 A Randomized Approach 33

3.1 The Sampling Lemma . 33
3.2 The Algorithm . 34

4 Maximal Intersection Queries in the Zipf Model 37

4.1 Preliminaries . 37
4.2 The Model . 37
4.3 The Algorithm . 49

4.3.1 A Different Approach 51
4.4 Generalization of the Zipf Model 52

4.4.1 The Mandelbrot Distribution and Stop Words 52

11

12 Contents

4.4.2 Thresholds in the Mandelbrot Model 53
4.4.3 Discussion . 63
4.4.4 The Algorithm . 64

5 Maximal Intersection Queries in the Hierarchical Schemes 65

5.1 Preliminaries . 65
5.2 The Model . 65
5.3 The Algorithm . 68

6 Experimental Results 71

6.1 Experimental Setting . 71
6.2 Test Results . 75

6.2.1 Improvements . 78
6.2.2 Duplicates . 79

6.3 Discussion . 80

7 Conclusion and Open Questions 83

Bibliography 85

Index 91

List of Tables

1.1 Space and time bounds for the k-AMI algorithms 20

4.1 Empirical evaluation of Zipf’s law on Tom Sawyer 39

6.1 Sample queries and corresponding answers 73
6.2 Exp. results of the Zipf algorithm (binary counting) 76
6.3 Exp. results of the Zipf algorithm (absolute counting) 77
6.4 Exp. results of the randomized algorithm 78
6.5 Duplicate detection . 81

13

14 List of Tables

List of Figures

4.1 “Regularization” of the query 43
4.2 Exemplary probability curves for different matches 48
4.3 Binary matrix representing word-document relations 49
4.4 Algorithm for the k-AMI problem in the Zipf model 50

5.1 A hierarchical scheme . 66
5.2 Algorithm for the k-AMI problem in the hierarchical schemes . 69

6.1 Rank-frequency distribution of the computer science collection 74

15

16 List of Figures

Chapter 1

Introduction

In recent years, technological advance has made it possible to accumulate
huge amounts of data. According to the 2008 annual review of Thomson
Reuters, every day 15 petabytes of new data are created [Reu08]. As conse-
quence, algorithms which are capable of handling huge data sets are required.
This thesis deals with a fundamental computational problem appearing in
this context. Consider a database of sets and a single set, called the query
set. How can one quickly find a member of the database that has a maxi-
mal intersection with the query set? Such maximal intersection queries arise
in a wide range of applications, including text clustering, web search, re-
commendation systems, and the distribution of online advertisements. In
general, maximal intersection queries are computationally expensive. We in-
vestigate two well-motivated input distributions which lead to efficient algo-
rithms. Both algorithms are based on the observation that each distribution
exhibits a threshold phenomenon on the probabilities of intersecting sets.

1.1 Structure of the Thesis

The structure of the thesis is as follows:

In Chapter 1 we state the maximal intersection problem in detail, give
an overview of the results and related work, and introduce the notation and
basic facts we will use.

In Chapter 2 we derive lower bounds for the maximal intersection prob-
lem from known lower bounds for the nearest neighbor search problem in the
Hamming cube. The bounds are stated in the cell probe model.

In Chapter 3 we present a randomized algorithm that returns an approx-
imate answer to the maximal intersection problem. It is based on the sam-
pling lemma and has a running time which does not depend on the database

17

18 Chapter 1. Introduction

size.
Our main results are presented in Chapter 4 and Chapter 5. We in-

vestigate two input distributions and construct a deterministic algorithm for
each distribution solving an approximate version of the maximal intersection
problem. We show that under the assumption that the input behaves ac-
cording to one of these distributions, the time complexity and accuracy of
the corresponding algorithm are reasonably good with high probability. Here
we use the probability over the input distribution, not over random choices
of the algorithm. Parts of these results have been published in [HLN07]
and [HLLN09]. The former one is joint work with Yury Lifshits and Dirk
Nowotka, while the latter one is joint work with Mikhail Lifshits, Yury Lif-
shits, and Dirk Nowotka.

Chapter 6 shows experimental results of the algorithm described in
Chapter 4.

We give a conclusion and point out open questions in Chapter 7.

1.2 Problem Statement

Let W = {w1, . . . , wm} be a finite set, sometimes called the vocabulary . The
maximal intersection (MI) problem is the following:

Input: A database of n finite sets D = {d1, . . . , dn} ⊆ 2W .

Query: Given a finite query set q ⊆ W, we ask for a set d ∈ D having a
maximal intersection with q, that is, |q ∩ d′| ≤ |q ∩ d| for all d′ ∈ D.

Such a database member d is called an answer (to the query). In order
to determine an answer efficiently, we allow to preprocess the database. We
demand m ≥ log2 n. (Note that the above problem is mentioned in a more
restrictive version with respect to time constraints in [HLN07].)

The approximate version of the maximal intersection problem, called the
k-approximate maximal intersection (k-AMI , or just AMI) problem , is de-
fined as follows:

Input: A database D of n finite sets D = {d1, . . . , dn} ⊆ 2W .

Query: Given a finite query set q ⊆ W and a value k > 1, we ask for a
set d ∈ D such that the k-fold intersection size between d and q is at
least as large as the intersection size between q and any other set from
D. That is, we ask for a set d ∈ D such that for all d′ ∈ D we have
|q ∩ d′| ≤ k · |q ∩ d|.

Such a database member d is called a k-approximate answer. The factor k is
called the approximation factor or the quality of the answer.

1.3. Overview of the Results 19

1.3 Overview of the Results

The main results of this thesis are two new randomized input models for
the maximal intersection problem, called the Zipf model and the hierarchical
schemes. Both models are based on the following: Assume that the elements
of the query set are sorted according to some order which is given by the
random (according to our models) database. We distinguish between two
kinds of matches. A r-match is a set from the database that contains at least
r elements of the query set. A r-prefix match is a set from the database that
contains at least the first r elements of the query set. Clearly, a r-prefix match
is always a r-match, while the other way round this is not true. For both
kinds of matches, it holds that the probability that such a match exists is close
to one for small r, but at some “threshold value” it falls to nearly zero. Our
main observation is that the thresholds for r-match and r-prefix match are
close to each other. And this is extremely important for solving the maximal
intersection problem efficiently. We show that closeness of thresholds with
high probability allows to determine an approximate answer in quasi-linear
time in the sum of n and m, or in polylogarithmic time in n. In the following
we state the results in more detail.

Inputs in the Zipf model behave according to Zipf ’s law. Zipf’s law is
mainly observed in natural language texts and states that the absolute fre-
quency of a word is inversely proportional to its rank. Proving that the
Zipf model exhibits the above mentioned closeness of thresholds, we can
state a deterministic algorithm that returns a 1+E(ε,n)

1−∆(δ,n)
-approximate1 answer

with probability p(ε, δ, n) tending to one as n → ∞, where ε, δ > 0 and
E(ε, n) → ε, ∆(δ, n) → δ as n → ∞. The algorithm has a preprocessing
time of Õ(nm) and a query time of Õ(log m + n) in the average case and
Õ(m + n) in the worst case. The space required is n1+o(1). In order to cover
a wide range of possible inputs we generalize the Zipf model such that it
exhibits Mandelbrot’s formula, which is a generalization of Zipf’s law. We
show that the algorithm mentioned above can be applied if the input follows
the generalized model. While the time and space bounds remain the same in
this case, the approximation factor becomes larger about a constant factor
which depends on the particular input database.

For the hierarchical schemes, we assume that the elements of W are or-
dered hierarchically such that each element is assigned to a fixed level in a
binary tree-like table (scheme). By showing that in each hierarchical scheme
the above mentioned threshold property holds, we can state a deterministic

1The exact approximation factor is stated in the proof of Theorem 4.3.1.

20 Chapter 1. Introduction

Table 1.1: Space and time bounds for the k-AMI algorithms (P-Time denotes
the preprocessing time, Q-Time denotes the query time.)

Zipf Model Hierarchical Schemes

Space n1+o(1) O (n log n)

P-Time O (nm log m) O
(
n log2 n

)

Q-Time
(average)

O
(
log m log log m + n

√
log n

)
-

Q-Time
(worst)

O
(
m log m + n

√
log n

)
O

(
log2 n

)

algorithm that returns a 2 · 1+εn

1−εn
-approximate2 answer with probability tend-

ing to one as n → ∞, where εn > 0. The algorithm has a preprocessing time
of Õ(n) and a query time of O(log2 n). The space required is Õ(n). Table
1.1 shows a detailed overview of the complexity of both algorithms.

Besides these two models and the corresponding algorithms, we present a
randomized algorithm which also returns an approximate answer. This algo-
rithm works as follows: It takes a random sample of sets from the database
and determines an optimal answer from this sample (i.e., a set that has an
intersection of maximal size with the query set among the sample sets). We
show that the expected number of remaining sets from the database having
a larger intersection with the query set is at most n−r

r+1
. The algorithm does

not require preprocessing on the database and has O(m log m) query time.
That is, the query time does not depend on the database size..

To complement our considerations about the maximal intersection prob-
lem, we give the following lower bound in the cell probe model: Assuming
m ∈ ω(log n) ∩ no(1), it holds that any (deterministic or randomized, two
sided error) algorithm in the cell probe model that uses at most polynomial
space in n and m must have a query time of Ω(m/ log n).

1.4 Related Work

The maximal intersection problem is closely related to the nearest neighbor
search (NNS) problem which is defined as follows. Given a set P of n points
in some metric space X, preprocess P so as to efficiently answer queries which
require finding the closest point in P to a query point q ∈ X.

2The exact approximation factor is stated in the proof of Theorem 5.3.1.

1.4. Related Work 21

The NNS problem is fundamental in computational geometry and ap-
pears, for example, in algorithms for information retrieval [BYRN99, Sal88,
DDL+90, BSMS95], databases and data mining [BO97, HT96], pattern recog-
nition [CH67, DH73], and statistics and data analysis [DW82]. Its pervasive-
ness is due to the fact that it can be used as a means of indexing if the data
is represented as points in some high dimensional metric space and similar-
ity between data points is defined with respect to the underlying metric3.
Thus, the problem is of particular interest in m-dimensional vector spaces
under some lp norm. There is a large literature on the nearest neighbor
search problem, for example [DL76, Cla88, Mei93, AM92, Sam84, FBF77];
a survey can be found in [Tsa99]. For a small number of dimensions, the
problem is well-solved (e.g., [DL76, Mei93, Ede87]), while for a large number
of dimensions almost all known algorithms suffer from the “curse of dimen-
sionality”[Cla94]. That is, either their space is exponential in the dimension,
or their query time is not much better than a linear scan4 over the data
points [WSB98]. To overcome this curse of dimensionality one can consider
approximate versions of the NNS problem. The ε-approximate nearest neigh-
bor search (ε-NNS) problem asks for a p ∈ P such that for all p′ ∈ P the
distance between q and p is at most as large as (1 + ε) times the distance
between q and p′. This problem has also been studied extensively, see for
example [AMN+98, Kle97, Cla94, IM98, KOR98].

The relation between NNS and the MI problem arises by the fact that
the latter one can be considered as a nearest neighbor search problem in a
“binary” form. Namely, the elements from D can be represented as binary
vectors over W . Similarity is then defined by the dot product between two
vectors. Contrary to the formulation of the NNS problem, the dot product
does not meet the requirements of a metric. Note that the NNS problem in
the Hamming cube is equivalent to the MI problem since both problems can
be reduced on each other. We will deal with these reductions in more detail
in Chapter 2.

In [IM98], the approximate nearest neighbor search problem is tackled by
reducing it to a problem called point location in equal balls (PLEB). PLEB is
the following problem: Given n points P = {p1, . . . , pn}, a similarity measure
ℓ, and two values s, t with s > t, devise a data structure which for any query
point q does the following:

• if there is a point pi ∈ P with ℓ(pi, q) ≥ s then return “yes” and a point

3An index is a data structure that is built over a database in order to allow fast search
in the database.

4By linear scan we denote an algorithm that calculates the distance between the query
and each data point in order to determine an answer to a search problem.

22 Chapter 1. Introduction

p′i ∈ P such that ℓ(p′i, q) ≥ t,

• if ℓ(pi, q) < t for all pi ∈ P then return “no”,

• if for the point pi ∈ P with ℓ(pi, q) maximal among all points in P we
have t ≤ ℓ(pi, q) ≤ s then return either “yes” and a point p′i ∈ P with
ℓ(p′i, q) ≥ t, or return “no”.

Thus, a point pi ∈ P with ℓ(pi, q) ≥ s is a “promise” that a point p′i ∈ P
with ℓ(p′i, q) ≥ t is returned. Note that the above problem can be defined
analogously for dissimilarity measures (e.g., any distance metric). Besides
algorithms solving the ε-NNS problem, an algorithm solving PLEB under
set resemblance measure is presented. (The resemblance5 between two sets

a and b is defined as |a∩b|
|a∪b| ; in [Bro97, BGMZ97] this notion was introduced

for documents.) This algorithm uses O(nm + n1+ρ) space and O(nρ) query
time, where ρ = (ln r)/ ln εr. Now, most interesting for us is PLEB un-
der dot product measure, which can also be solved by the above algorithm.
Therefore, PLEB under dot product measure is reduced to PLEB under set
resemblance measure by substituting the parameters s, t as follows: Given a
query set q ⊆ {1, . . . ,m}. Assume r ⊆ {1, . . . ,m} is a set such that |r∩q|

|r∪q| ≥ t.
Since

|r ∩ q|
|r ∪ q| =

r · q
|r|1 + |q|1 − r · q ,

where r,q denote binary vectors such that ri = 1 (respectively, qi = 1) if and
only if i ∈ r (respectively, i ∈ q), and | · |1 denotes the Hamming weight of a
binary vector, we have

r · q ≥ t

1 + t
(|r|1 + |q|1).

Thus, if we look for an answer to PLEB under dot product measure with
parameters s′, t′, we must determine a set r such that

t′ ≤ t

1 + t
(|r|1 + |q|1) (1.1)

holds. This can be accomplished by splitting the data points into O(log m)
groups of approximately the same weight and then determining an answer
set in a group such that the weight of the vectors in this group satisfies
(1.1). We want to stress that PLEB under dot product measure and the MI
problem are different problems, since the former one asks for a set having an
intersection of a fixed certain size with the query set, and not for a set having

5The set resemblance defined as above is also called the Jaccard coefficient.

1.5. Notation and Basic Facts 23

an intersection of maximal size with the query set. Moreover, an answer to
PLEB is not a k-approximate answer to the MI problem since the size of the
intersection of such an answer and the query can be arbitrarily far away from
the maximal intersection size.

Finally, we mention the bit vector intersection problem which is similar to
the MI problem. Given a large collection of n sparse vectors and a parameter
k, the task is to find all pairs of vectors with at least k ones in common.
Assuming that the number of ones common to any two vectors is significantly
less than k, except for an unknown number of pairs which is linear in n,
then there exist two randomized algorithms solving the problem with high
probability and in subquadratic (in n) expected time [KWZ95].

1.5 Notation and Basic Facts

1.5.1 Notation

Let a and b be numbers. By a·b we denote the product of a and b. To shorten
notation, we will often omit the symbol · and just write ab instead of a ·b. By
2S we denote the power set of a set S. Given two vectors x = 〈x1, . . . , xm〉
and y = 〈y1, . . . , ym〉. By x · y we denote the dot product

∑m
i=1 xi · yi of x

and y. Given two vectors x and y from the m-dimensional Hamming cube
Cm = {0, 1}m, we denote by h(x,y) the Hamming distance between x and
y, that is, the number of positions on which they differ. Let X be a random
variable. By EX we denote the expected value of X and by VarX we denote
the variance of X. By [A] we denote the indicator variable for the event A,
that is, [A] = 1 if the event A happens and [A] = 0 otherwise. Let f, g be
functions from N to N. We use O-notation to describe asymptotic growth
rates of functions:

• f(n) ∈ O(g(n)) if and only if

∃c > 0∃n0 ∀n ≥ n0 : f(n) ≤ c · g(n).

• f(n) ∈ o(g(n)) if and only if

∀c > 0∃n0 ∀n ≥ n0 : f(n) ≤ c · g(n).

• f(n) ∈ Ω(g(n)) if and only if g(n) ∈ O(f(n)).

• f(n) ∈ Θ(g(n)) if and only if f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)).

• f(n) ∈ ω(g(n)) if and only if g(n) ∈ o(f(n)).

24 Chapter 1. Introduction

For the sake of clarity, we will sometimes use Õ-notation to hide polylogarith-
mic terms, that is, Õ(f) :=

⋃

k>0 O(f logk f). For a more detailed treatment
of O-notation we refer to [Knu97]. By quasi-linear we denote functions which
are in Θ(n logk n) for a k > 0, where near-linear refers to functions which
are in Θ(nθ) for all θ > 1. All running times stated in this thesis hold for the
word RAM model. A word RAM is a unit-cost random access machine with
a word size of w bits, for some w, and an instruction set similar to that of
present-day computers6. By log we always mean log2, while ln denotes loge.
The (collection) frequency of a word is the overall number of occurrences of
the word in a document (respectively, in a document collection). A table
containing the words of a document (respectively, of a document collection)
in descending order according to frequency (with or without frequencies) is
called a frequency table. The rank of a word is the numerical position of the
word in this table.

1.5.2 Probability Theory

Let X be a non-negative random variable. Then, for all r ∈ R with r > 0
the Markov inequality states that

Pr (X ≥ r) ≤ EX

r
. (1.2)

The Chebyshev inequality states that

Pr (|X − EX| ≥ r) ≤ VarX

r2
. (1.3)

Note that the Chebyshev inequality is also true if X takes values smaller
than zero. We will need the following lemma.

Lemma 1.5.1. Let X1, . . . , Xn be independent non-negative random vari-
ables. Let X(n) :=

∑n
i=1 Xi. If there exist strictly increasing functions

f, g : R → R such that f(n) − c ≤ EX(n) for some constant c ≥ 0,
VarX(n) ≤ g(n), and g(n) ∈ o(f 2(n)), then for any ε > 0

lim
n→∞

Pr (f(n) − X(n) ≥ εf(n)) = 0.

Proof. Let n0 such that εf(n0) > c holds. Now, let 0 < γ0 < ε such that
εf(n0) − c ≥ γ0f(n0). By Chebyshev’s inequality (1.3)

lim
n→∞

Pr (|X(n) − EX(n)| ≥ γ0f(n)) = 0

6We can assume that the word size is restricted to be at most mO(1) bits.

1.5. Notation and Basic Facts 25

holds, which implies

lim
n→∞

Pr (f(n) − X(n) ≥ εf(n)) = 0

for X(n) < EX(n). For X(n) ≥ EX(n) the statement holds trivially.

Let X1, . . . , Xn be independent Bernoulli distributed random variables
such that Pr (Xi = 1) = pi and Pr (Xi = 0) = 1− pi. Let X :=

∑n
i=1 Xi. For

all 0 < δ ≤ 1 the following Chernoff bound holds:

Pr (X ≤ (1 − δ)EX) ≤ e−EXδ2/2 (1.4)

Let X be a random variable, let λ > 0, and let r be an arbitrary number.
Then, the exponential Chebyshev inequality states that

Pr (X ≥ r) ≤ EeλX

eλr
. (1.5)

For more details on probability theory, see for example, [Loè77, SS01].

1.5.3 Inequalities

Let a, b > 0. Then

(

1 − a

b

)b

< e−a if a ≤ b, (1.6)

and (

1 − 1

ab

)a

≥ 1 − 1

b
if a, b ≥ 1 . (1.7)

Proof. Let g(x) = ln(1 − x)/x, 0 < x < 1. Notice that g is a decreasing
function. Inequality (1.6) follows from g(a/b) ≤ limx→0 g(x) = −1 (note
that this shows the inequality if a < b; if a = b, then the inequality follows
immediately), while inequality (1.7) is equivalent to g(1/b) ≤ g(1/ab).

We will also use the fact that for all integers n > 1

ln n <

n∑

k=1

1

k
< ln n + 1 (1.8)

holds (see e.g., [GKP02]).

26 Chapter 1. Introduction

Chapter 2

Lower Bounds

We state our lower bounds in the context of the cell probe model. The bounds
are derived from known bounds for the nearest neighbor search problem in
the Hamming cube (see Section 1.4).

2.1 Preliminaries

In this chapter we demand that the input for the maximal intersection prob-
lem, that is the database and the query set, has a special form. Namely we
demand that each set is represented by its index vector . The index vector
of a set d ∈ 2W is the unique vector d ∈ {0, 1}m such that wi ∈ d if and
only if di = 1. Note that the intersection of two sets d, d̃ ∈ 2W is equal to
the dot product of the corresponding index vectors d, d̃ ∈ {0, 1}m, that is,
|d ∩ d̃| = d · d̃.

2.2 The Cell Probe Model

The cell probe model , formulated by Yao and Fredman [cY81, Fre78], is a
model for studying the complexity of data structure problems. By abuse
of notation, we denote in the following by f a data structure problem and
the associated function. A data structure problem f is the following: Given
a finite set D of databases, a finite set Q of queries, and a finite set A of
answers along with a function f : D ×Q → A. We want to devise a method
for storing any D ∈ D as a data structure in the memory of a word RAM
such that, once a D ∈ D has been stored, for all q ∈ Q the value f(D, q)
can be computed efficiently. Such a method is called a solution to the data
structure problem f .

27

28 Chapter 2. Lower Bounds

A solution to f in the cell probe model with parameters s, b, and t is given
by assigning to each D ∈ D a representation (data structure) φf (D) ∈ Rs,
where R = {0, 1}b, and associating with each q ∈ Q a decision tree over
Rs of depth t. A decision tree is a rooted tree where each internal node is
labeled with an index of a cell and has 2b children. For each internal node,
every outgoing edge is labeled with a value from R, whereas each value in R
occurs exactly once. The leafs are labeled with values from A. A query q is
processed by starting at the root node, reading the content c ∈ R of the cell
i (assuming that i is the label of the root node), and proceeding along the
edge with label c. This process is continued until a leaf is reached.

Note that in the cell probe model only the space required for the data
structure and the number of probes to it (the tree depth) is measured; all
(other) computation is assumed to be for free. As consequence, a cell probe
lower bound is a lower bound on the complexity of any algorithm for the
problem as long as the algorithm is implemented on a word RAM where
each instruction operates on a constant number of registers of size b. For a
comprehensive survey about the cell probe model see [Mil99].

2.3 Reducing NNS in the Hamming Cube to

the MI Problem

We now present a straightforward reduction from the nearest neighbor search
problem in the Hamming cube to the maximal intersection problem.

Lemma 2.3.1. Given a database C = {c1, . . . , cn} ⊆ Cℓ and a query vector
q ∈ Cℓ. There exists a function f : Cℓ → {0, 1}2ℓ with the following proper-
ties: A vector c ∈ C is a nearest neighbor of q (with respect to the Hamming
distance) if and only if the dot product between f(c) ∈ D = {f(c1), . . . , f(cn)}
and f(q) is maximal among all elements from D. Furthermore, f can be com-
puted in linear time.

Proof. Given x ∈ Cℓ. We define x′ = f(x) ∈ {0, 1}2ℓ as follows:
For i ∈ {1, 3, 5, . . . , 2ℓ − 1} set

x′
ix

′
i+1 =

{
01 : x⌈i/2⌉ = 0
10 : x⌈i/2⌉ = 1 .

Then, h(x,y) = ℓ− f(x) · f(y) holds since every position at which x and
y match increases f(x) · f(y) by one. Every mismatch between x and y does
not alter f(x) · f(y). Obviously, f can be computed in time which is linear
in the input size.

2.4. Lower Bounds for the Maximal Intersection Problem 29

Note that the above reduction does not apply to the approximate versions
of NNS and the MI problem. This can be seen as follows. Let c ∈ C such
that f(c) · f(q) is maximal (i.e., c is a nearest neighbor of q). Let c′ ∈ C such
that f(c′) is a k-approximate answer to the MI problem for some k > 1, that
is f(c) · f(q) ≤ k(f(c′) · f(q)). This inequality is equivalent to

h(c′,q) ≤ 1

k
h(c,q) +

(k − 1)ℓ

k
.

Thus, we cannot bound the Hamming distance of the approximate solution
by the minimal Hamming distance multiplied by some constant.

Remark 1. Notice that the maximal intersection problem can also be reduced
to the nearest neighbor search problem in the Hamming cube as follows:
Elements from the database D are mapped by a function gD : {0, 1}ℓ → C3ℓ

such that gD(0) = 110, gD(1) = 000, and query elements are mapped by a
function gq : {0, 1}ℓ → C3ℓ such that gq(0) = 101, gq(1) = 000. We have
to distinguish between zeros in database and query elements so that every
combination except two ones increases the Hamming distance by the same
value. Then, a maximal dot product corresponds to a minimal Hamming
distance. By the same argument as above, this reduction does only apply to
the exact versions of the problems, and not to the approximate ones.

2.4 Lower Bounds for the Maximal Intersec-

tion Problem

First, we overview known cell probe lower bounds for NNS in the Hamming
cube. We then show that these bounds also apply to the maximal intersection
problem. Note that all lower bounds for NNS in the cube follow from lower
bounds for the λ-neighbor problem, a decision version of NNS where the
answer to a query is one if and only if there exists a point in the database
at distance at most λ from the query point. Otherwise, the answer is zero.
Obviously, NNS is at least as hard as the λ-neighbor problem.

Trivial Solutions. Consider the nearest neighbor search problem in the
Hamming cube where the database has size n and each element has length m.
There exist two trivial solutions to the problem. The first solution is to store
the data without any preprocessing on it and to answer queries by computing
the distance from a query point to each database element. Both, the storage
requirement and search time are in O(nm). Since in the Hamming cube the
set of possible queries is finite, the second trivial solution is to compute and

30 Chapter 2. Lower Bounds

to store in the preprocessing step the answer to each possible query point.
Then, answering a query reduces to a look-up in the data structure which
takes O(m) time. The storage required is O(2m). Consequently, a preferable
solution is one that uses (nm)O(1) storage and has mO(1) search time. In the
following, we assume that m ∈ ω(log n) ∩ no(1) holds, since otherwise the
problem becomes trivial (if m = O(log n) holds, then storing a table with
answers to each query point requires 2O(log n) = nO(1) storage; if m = nc for a
c > 0, then the linear scan takes mO(1) search time).

Borodin et al.[BOR99] proved that any randomized two-sided error al-
gorithm for the λ-neighbor problem using t probes, either uses 2Ω(log n log m/t)

cells, or uses cells of size Ω(n1−ε/t), where ε > 0. Hence, an algorithm that
uses nO(1) cells of size mO(1) must make Ω(log m) probes to the data structure.

This bound was improved by Barkol et al.[BR02]. It was shown that
if the algorithm uses t probes, then either it uses 2Ω(m/t) cells, or it uses
cells of size nΩ(1)/t. Consequently, using nO(1) cells of size mO(1) yields t ∈
Ω(m/ log n). Actually, this bound is an improvement only if d ∈ ω(log2 n)
holds. Otherwise, the bound given by Borodin et al. is stronger.

Finally, this bound could be even more improved if the number of cells is
restricted to s = n1+o(1). Then, it holds that t ∈ Ω(m/ log s·m

n
) [PT06].

Lower bounds for the maximal intersection problem can be obtained by
applying Lemma 2.3.1. Therefore, we define (analogously to the λ-neighbor
problem) the λ-intersection problem. In this problem, the answer to a query
has to be one if and only if the database D contains a set such that the
intersection size between the query set and this set is at least λ. Otherwise,
the answer is zero. We get the following theorem.

Theorem 2.4.1 (Lower bound for the λ-intersection problem). Let m ∈
ω(log n) ∩ no(1). Then any randomized two sided error algorithm in the cell
probe model for the λ-intersection problem that uses at most nO(1) cells of
size mO(1) must make Ω(m

log n
) probes to the data structure.

Proof. By Lemma 2.3.1 we can reduce the λ-neighbor problem in Cℓ to the
(ℓ − λ)-intersection problem in {0, 1}2ℓ.

Clearly, the maximal intersection problem is at least as hard as the λ-
intersection problem. Therefore, the lower bound applies to the maximal
intersection problem as well. Note that in Theorem 2.4.1, we state a lower
bound in case the number of cells is polynomially bounded in n and m.
Actually, all lower bounds given by Barkol et al. also hold for the MI problem.
We consider the bound stated above as some kind of “working version”.

2.4. Lower Bounds for the Maximal Intersection Problem 31

Further note that a lower bound for randomized algorithms is also a lower
bound for deterministic algorithms.

Remark 2. So far, for arbitrary n and m (with the restriction that m ∈
ω(log n) ∩ no(1) holds) no preferable solution (in the above sense) to NNS in
the Hamming cube is known. Moreover, it is believed that such a solution
cannot exist [BOR99]. Thus, Theorem 2.4.1 indicates that we cannot expect
that a preferable solution to the maximal intersection problem exists, since
such a solution would imply a preferable solution to NNS as well.

32 Chapter 2. Lower Bounds

Chapter 3

A Randomized Approach

In this chapter we present a simple randomized algorithm that solves an
approximate version of the maximal intersection problem.

3.1 The Sampling Lemma

The analysis of many randomized algorithms for geometric optimization
problems, as for example computing the smallest enclosing ball of n points in
a m-dimensional space, is based on a simple identity, the so called sampling
lemma [GW00]. Let S be a set of n elements and φ : 2S 7→ I be a function
where I is some suitable set depending on the current problem. Consider the
following sets:

V (R) = {s ∈ S \ R | φ(R ∪ {s}) 6= φ(R)} ,

X(R) = {s ∈ R | φ(R \ {s}) 6= φ(R)} .

The set V (R) is called the violators of R and the set X(R) is called the
extreme elements in R. Then

s ∈ V (R) ⇔ s ∈ X(R ∪ {s}) . (3.1)

For a random sample R of size r, that is, a set chosen uniformly at random
from the set

(
S
r

)
of all r-element subsets of S, consider the random variables

Vr :
(

S
r

)
→ N, R 7→ |V (R)| and Xr :

(
S
r

)
→ N, R 7→ |X(R)| and their

expected values vr := EVr and xr := EXr. The sampling lemma states the
following:

Lemma 3.1.1. (Sampling lemma, [GW00])
For 0 ≤ r < n:

vr =
xr+1

r + 1
· (n − r) (3.2)

33

34 Chapter 3. A Randomized Approach

Proof.
(

n

r

)

· vr =

(
n

r

)

·
∑

R∈(S
r)

Vr(R)Pr(R)

=
∑

R∈(S
r)

Vr(R)

=
∑

R∈(S
r)

∑

s∈S\R
[s ∈ V (R)]

(3.1)
=

∑

R∈(S
r)

∑

s∈S\R
[s ∈ X(R ∪ {s})]

=
∑

Q∈(S
r+1)

∑

s∈Q

[s ∈ X(Q)]

=

(
n

r + 1

)

· xr+1

Since
(

n
r+1

)
/
(

n
r

)
= (n − r)/(r + 1) the lemma follows.

3.2 The Algorithm

The idea is to take a random sample of r sets from D ⊆ 2W and to deter-
mine an optimal answer among these sample sets, that is, a set which has a
maximal intersection with the query set among the sample sets. (Note that
there can exist several sets having the same maximal intersection size with
the query; then, an arbitrary set with this property is returned.) Usually, an
answer set determined by the above process has no intersection of maximal
size with the query set among all database sets. However, we can bound
the expected number of remaining sets that have a larger intersection by
applying Lemma 3.1.1.

Lemma 3.2.1. Let q ⊆ W. Let R ⊆ D be a random sample of size r and
let da ∈ R be a set having a maximal intersection with q in R. Then, the
expected number of sets from D \ R having a larger intersection with q is at
most (n − r)/(r + 1).

Proof. We define the function used for specifying the set V (R) and X(R) as
follows:

φq : 2D → 2D,

R 7→ {d ∈ D | ∃d′ ∈ R : |d ∩ q| ≤ |d′ ∩ q|}

3.2. The Algorithm 35

Our main observation is that the cardinality of X(R) is 0 or 1. Assume that
|d ∩ q| < |da ∩ q| holds for all d ∈ R \ {da}. Then, da ∈ X(R) since (at
least) da 6∈ φq(R \ {da}). Thus, |X(R)| ≥ 1 holds (as we will see later, even
|X(R)| = 1 holds). Now, assume there exists d′ ∈ R such that |da ∩ q| =
|d′ ∩ q|. Then φq(R \ {x}) = φq(R) for x ∈ {da, d

′}. Therefore, if there are at
least two sets in R having the same maximal intersection size with q among
the sets in R , then the set X(R) is empty. Thus, |X(R)| = 0 or |X(R)| = 1.
By Lemma 3.1.1

E (#{d ∈ D \ R | ∀d′ ∈ R : |d′ ∩ q| < |d ∩ q|}) = vr ≤
n − r

r + 1

holds.

Let us consider the case that there exists a d′ ∈ R such that q ⊆ d′.
Then, for all d ∈ D it holds that φq(R ∪ {d}) = φq(R), which implies that
no violators exist (as required in this case).

Given Lemma 3.2.1, we get the following theorem.

Theorem 3.2.2. Let 0 < r ≤ n be an integer. Given a database D =
{d1, . . . , dn} ⊆ 2W and a query set q ⊆ W. There exists a randomized
algorithm that returns an answer to the AMI problem such that an expected
number of at most n−r

r+1
database sets have a larger intersection with q than

this answer. The algorithm has a query time of O(m log m).

Proof. The algorithm is obvious. It picks randomly r sets R ⊆ D and deter-
mines a set da ∈ R having a maximal intersection with q in R. According
to Lemma 3.2.1, an expected number of at most n−r

r+1
remaining sets have a

larger intersection with q. Choosing r sets from the database can be done in
time O(1). The answer set da is determined by sorting the words of q in as-
cending order according to their index and then calculating the intersection
size between each sample set and q by applying binary search. Overall, this
can be done in time O(m log m).

Remark 3. Note that we cannot state the approximation factor of the above
algorithm. However, we can say the following: If we sort the database sets
in descending order according to their intersection size with the query set,
then the expected rank of the algorithm’s answer in this sequence is (n −
r)/(r + 1) + 1 = n+1

r+1
or better. Our experimental results presented on Table

6.4 show this fact.

36 Chapter 3. A Randomized Approach

Chapter 4

Maximal Intersection Queries

in the Zipf Model

In this chapter we investigate the maximal intersection problem under the as-
sumption that the rank-frequency distribution of the elements of the database
can be approximated by Zipf’s law. We present a deterministic algorithm
solving the approximate maximal intersection problem in query time which
is quasi-linear in the sum of n and m.

4.1 Preliminaries

Our main motivation for studying the maximal intersection problem were
problems like text clustering, near-duplicate detection or the processing of
search queries in web search engines. In these problems, the database mainly
consists of natural language text documents. Therefore, in this chapter we
deal with documents and words instead of sets and elements. We will use
the term document collection (or just collection) to refer to a database of
(textual) documents. Nevertheless, we want to stress that the results we
present hold for every input following our model.

4.2 The Model

Consider a collection of n initially empty documents. Let W = {w1, . . . , wm}
be a set of words. We now describe a probabilistic process for generating a
document collection which will be called the Zipf model . A document is gen-
erated by choosing words that will be contained in it. Each word is chosen
independently of the other words and the word wi is chosen with probability
1/i. Every document is generated independently. Notice that a document

37

38 Chapter 4. Maximal Intersection Queries in the Zipf Model

collection generated by the Zipf model (or, following the Zipf model) can
contain documents di, dj with di = dj for i 6= j. The expected number of
words in a document generated by the Zipf model (or, following the Zipf
model) is approximately equal to lnm. This probabilistic approach was in-
spired by a recent survey of Newman [New03]. He gives a comprehensive
survey about random graph models. Most similar to the Zipf model is the
configuration model . In short, in the configuration model a degree distribu-
tion pk is specified such that pk is the fraction of vertices in a graph having
degree k. Then, the degrees ki of vertices i = 1, . . . , n are chosen from this
distribution (i.e., giving each vertex i in the graph ki stubs sticking out of it)
and the vertices are connected at random. A document collection following
the Zipf model can be considered as a bipartite random graph, where one
vertex set represents the documents and the other set represents the words.
In such a graph, the word degrees are distributed according to Zipf’s law
and the documents have (approximately) constant degree. Put it another
way, in a document collection following the Zipf model the word frequencies
are distributed according to Zipf’s law. Zipf ’s law belongs to the family of
discrete power laws, and is mainly applied in linguistics. It states that in
natural language texts the frequency f of a word is inversely proportional to
its rank r in the frequency table, that is,

f ∝ 1

r
,

which means there exists a constant c such that f · r ≈ c. The law was
proposed in 1935 by George Kingsley Zipf1. It is an empirical law which can
be observed in any large enough text. Table 4.1 is taken from [MS99] and
shows an extract of the rank-frequency distribution of Mark Twain’s Tom
Sawyer. Although Zipf uncovered the law for languages in the first place,
it also holds (approximately) for other real-world observations following a
power law, for example city sizes, or lengths of rivers. Since the collection
frequency (in the following just frequency) of a word w in a collection D
following the Zipf model is defined as

|{d ∈ D | w ∈ d}| ,

we conclude that the expected frequency of the word wi in the Zipf model
is equal to n/i. The expected rank of wi is exactly the i-th value among
those of all words. Therefore, the word frequencies are indeed distributed
according to Zipf’s law. As mentioned above, Zipf’s law describes the rank-
frequency distribution of words in natural language texts. Since some of

1Presumably, J. B. Estoup noticed the law before Zipf [Est16].

4.2. The Model 39

Table 4.1: Empirical evaluation of Zipf’s law on Tom Sawyer

Word Freq. Rank f · r Word Freq. Rank f · r
the 3332 1 3332 turned 51 200 10200
and 2972 2 5944 you’ll 30 300 9000
a 1775 3 5235 name 21 400 8400
he 877 10 8770 comes 16 500 8000
but 410 20 8400 group 13 600 7800
be 294 30 8820 lead 11 700 7700
there 222 40 8880 friends 10 800 8000
one 172 50 8600 begin 9 900 8100
about 158 60 9480 family 8 1000 8000
more 138 70 9660 brushed 4 2000 8000
never 124 80 9920 sins 2 3000 6000
Oh 116 90 10440 Could 2 4000 8000
two 104 100 10400 Applausive 1 8000 8000

our motivating applications also deal with natural language texts, we can
state that the Zipf model agrees with real life at least by the rank-frequency
distribution of words. For more details about Zipf’s law see [Zip49, MS99].

Remark 4. By defining the probability of the word wi to be contained in a
document as 1/i, the set 2W yields a probability space where a document d

is an event occurring with probability Pr(d) =
(
∏

wi∈d
1
i

) (
∏

wi 6∈d 1 − 1
i

)

.

Remark 5. Note that sorting the words in a document collection D ⊆ 2W

following the Zipf model in descending order according to their frequency
yields the same order as sorting them in ascending order according to their
index.

For further considerations we introduce the following definitions:

Definition 4.2.1. Let r ≥ 0. Given a document collection D ⊆ 2W and
a query document q ⊆ W. By r-match we denote a document from the
collection D that contains at least r words of q, that is, the size of the
intersection of this document and the query document q is at least r.

Definition 4.2.2. Let r ≥ 0. Given a document collection D ⊆ 2W and a
query document q ⊆ W. Assume that the words of q are sorted in ascending
order according to their index. By r-prefix match we denote a document
from the collection D that contains at least the first r words of q.

40 Chapter 4. Maximal Intersection Queries in the Zipf Model

Definition 4.2.3. We partition the set of words as follows. For i ∈ {1, . . . ,
⌈ln m⌉− 1} the group Pi consists of the words w⌈ei−1⌉ up to w⌊ei⌋. The group
P⌈ln m⌉ consists of the words w⌈e⌈ln m⌉−1⌉ up to wm.

w1 w2
︸ ︷︷ ︸

P1

w3 w4 w5 w6 w7
︸ ︷︷ ︸

P2

. . .

We say that a document d ∈ 2W is regular if it contains exactly one word
from each group.

Remark 6. Note that the groups do not overlap since x and ex cannot be
both algebraic for x > 0 [Wal69]. Note also that the expected number of
words a document contains from each group is approximately one.

Definition 4.2.4. Let 0 < δ < 1. We say that a document d ∈ 2W is
(δ, n)-generic if for all i ≥ δ

√
2 ln n the following holds:

|d ∩ (P1 ∪ . . . ∪ Pi)| ≥ (1 − δ)i

This means that a (δ, n)-generic document contains for all i ≥ δ
√

2 ln n
at least (1 − δ)i words wj with j ≤ ei.

Lemma 4.2.5. Let 0 < δ < 1 and c = e−δ2/2. Let d ∈ 2W be a random
document following the Zipf model. For sufficiently large n,m the probability
that d is (δ, n)-generic is greater than 1 − c1.3 δ

√
ln n/(1 − c).

Proof. First, we consider a fixed i ≥ 1 and let X be a random variable
denoting the expected number of words in d up to the word w⌊ei⌋. In order

to prove the lemma we need that i < EX =
∑⌊ei⌋

k=1 1/k holds. We have

i < ln⌊ei⌋ + 0.5

since e0.5 > 1.5 and therefore ei < e0.5⌊ei⌋. Since Euler’s constant γ is greater
than 0.5 and EX = ln⌊ei⌋ + γ + O(1/⌊ei⌋) (see e.g., [GKP02]), we conclude
that

i < ln⌊ei⌋ + 0.5 < EX (4.1)

holds. Now the Chernoff bound (1.4) yields that the probability that d
contains less than (1 − δ)i words up to the word t⌊ei⌋ is smaller than e−iδ2/2.
This holds since i < EX and therefore

Pr (X ≤ (1 − δ)i) ≤ Pr (X ≤ (1 − δ)EX) ≤ e−EXδ2/2 < e−iδ2/2 .

4.2. The Model 41

So the probability that d is not (δ, n)-generic for large n is bounded by

∑

i≥0

ci −
⌊δ
√

2 ln n⌋−1
∑

i=0

ci =
∑

i≥⌊δ
√

2 ln n⌋

ci = c⌊δ
√

2 ln n⌋ ·
∑

i≥0

ci

=
c⌊δ

√
2 ln n⌋

1 − c
<

c
√

2 δ
√

ln n−1

1 − c

<
c1.3 δ

√
ln n

1 − c
.

This holds because 1.3 <
√

2 and n is large. Overall, the probability that
for all i ≥ δ

√
2 ln n the document d contains at least (1 − δ)i words wj with

j ≤ ei is greater than 1 − c1.3 δ
√

ln n/(1 − c). Note that we need m to be

sufficiently large so that at least ⌊e⌈δ
√

2 ln n⌉⌋ words exist.

Lemma 4.2.6. Let d ∈ 2W be a random document following the Zipf model
and let 0 < δ < 1 and c = e−δ2/2. For sufficiently large n,m the following
holds: If we insert the first (regarding the word order by frequency) ⌈δ

√
2 ln n⌉

missing words to d then

Pr
(

∀i ≤
√

2 ln n : |d ∩ (P1 ∪ . . . ∪ Pi)| ≥ i
)

> 1 − c1.3 δ
√

ln n

1 − c
(4.2)

Proof. For all i ≥ δ
√

2 ln n Lemma 4.2.5 states that for sufficiently large
n,m the probability that d is (δ, n)-generic is greater than 1− c1.3 δ

√
ln n/(1−

c). Since δi ≤ ⌈δ
√

2 ln n⌉ for all i ≤
√

2 ln n and since we insert the first
⌈δ
√

2 ln n⌉ missing words to d, for sufficiently large n,m the probability that
|d ∩ (P1 ∪ . . . ∪ Pi)| ≥ i holds for all δ

√
2 ln n ≤ i ≤

√
2 ln n is also greater

than 1− c1.3 δ
√

ln n/(1− c). Note that by inserting the first ⌈δ
√

2 ln n⌉ missing
words to d, also for all i ≤ δ

√
2 ln n it is true that |d ∩ (P1 ∪ . . . ∪ Pi)| ≥ i.

Overall, inequality (4.2) holds.

We now introduce a threshold to give statements about the most probable
size of a maximal intersection:

s = sn :=
√

2 ln n

Theorem 4.2.7 (Threshold theorem for the Zipf model). Let m ≥ ⌊e⌊s⌋−2⌋
and let D = {d1, . . . , dn} ⊆ 2W be a document collection following the Zipf
model.

42 Chapter 4. Maximal Intersection Queries in the Zipf Model

1. Let 0 < δ < 1 be fixed. Let ζ = 2 + ⌈δs⌉ and c = e−δ2/2. Given a query
document q ⊆ W following the Zipf model. Then for sufficiently large
n the following holds: The probability that there exists a (⌊s⌋−ζ)-prefix

match is greater than 1− cδ
√

ln n/(1− c). Thus, the probability tends to
one as n → ∞.

2. Let ε > 0 be fixed. Given a query document q ⊆ W following the Zipf
model. Then the probability that there exists a ⌈(1 + ε)s⌉-match tends
to zero as n → ∞.

Proof. 1. Let dR ∈ 2W be a fixed regular document (Definition 4.2.3).
The probability that a random document from 2W following the Zipf
model contains the first ⌊s⌋ − 2 words of dR is at least

1

⌊e⌋ · . . . · 1

⌊e⌊s⌋−2⌋ >
1

e
· . . . · 1

e⌊s⌋−2
=

1

exp
(
∑⌊s⌋−2

i=1 i
) >

1

exp ((⌊s⌋ − 1)2/2)
>

1

exp ((s2 − 2s + 1)/2)
=

exp (s − 1/2)

n
.

Note that exp (s − 1/2) < n since the above probability is less than
one. This means that the probability that there exists no document in
D containing the first ⌊s⌋ − 2 words of dR is no more than

(

1 − exp (s − 1/2)

n

)n

< exp

(

−exp

(

s − 1

2

))

,

which follows from inequality (1.6). So with probability greater than

1 − exp

(

−exp

(

s − 1

2

))

there exists a document in D having the first ⌊s⌋ − 2 words of dR.
Consider the query q. Assume we insert the first ⌈δs⌉ missing words
to q. Then, Lemma 4.2.6 implies that for large n the probability that
for each i ≤ s the query q contains at least i words wj with j ≤ ei is

greater than 1−c1.3 δ
√

ln n/(1−c). This means that the probability that
for each i ≤ s the query contains at least as many words as dR among
the first i groups is also greater than 1 − c1.3 δ

√
ln n/(1 − c), see Figure

4.1. Thus, the probability that there exists a document in D matching
the first ⌊s⌋ − 2 words of the query q is greater than

(

1 − c1.3 δ
√

ln n

1 − c

)(

1 − exp

(

−exp

(

s − 1

2

)))

.

4.2. The Model 43

• • ◦
︸ ︷︷ ︸

P1

• ◦
︸ ︷︷ ︸

P2

◦
︸ ︷︷ ︸

P3

• ◦ •
︸ ︷︷ ︸

P4

Figure 4.1: “Regularization” of the query (dR = ◦, q = •)

For large n, this product is at least 1 − cδ
√

ln n/(1 − c). It remains to
notice that by removing the imaginary inserted ⌈δs⌉ words from q we
still match ⌊s⌋ − 2 − ⌈δs⌉ = ⌊s⌋ − ζ words. This completes the proof
of part one.

2. At first we consider the query q as a fixed document and let d be a
random document following the Zipf model. For every word wj ∈ q
define the random variable

Wj :=

{
1 : if wj ∈ d,
0 : else.

Note that these random variables are pairwise independent since in the
Zipf model words are chosen independently and every document is also
generated independently. Let W =

∑

j:wj∈q Wj. The main idea is to

evaluate the Laplace transform (with parameter λ > 0) of W (i.e., of
the intersection size between q and d)

Eexp (λ |q ∩ d|) = E
(
eλW

)
= E

exp

λ
∑

j:wj∈q

Wj

= E

∏

j:wj∈q

eλWj

 =
∏

j:wj∈q

EeλWj

=
∏

j:wj∈q

(

1 − 1

j
+

1

j
eλ

)

≤
∏

j:wj∈q

(

1 +
eλ

j

)

=
∏

j:wj∈q

j>eλ

(

1 +
eλ

j

)

·
∏

j:wj∈q

j≤eλ

eλ

j

(

1 +
j

eλ

)

.

Using the Taylor series expansion of ln(1 + x) =
∑∞

k=1(−1)k+1 xk

k
≤ x

44 Chapter 4. Maximal Intersection Queries in the Zipf Model

for x ∈ (−1, 1], it follows that

ln Eexp (λ|q ∩ d|) ≤
∑

j:wj∈q

j≥eλ

eλ

j
+

∑

j:wj∈q

j≤eλ

(λ − ln j) +
∑

j:wj∈q

j≤eλ

j

eλ

= eλT1 + λT2 − T3 + e−λT4,

where

T1 =
∑

j:wj∈q

j≥eλ

1

j
, T2 =

∣
∣q ∩

{
wj | 1 ≤ j ≤ eλ

}∣
∣ ,

T3 =
∑

j:wj∈q

j≤eλ

ln j, T4 =
∑

j:wj∈q

j≤eλ

j.

Let 0 < γ < 1
5
. We will assume that the following four regularity

conditions are verified. (In fact, the probability that each of these
conditions is true tends to one if we consider q as a random document
following the Zipf model and let λ → ∞; the proof follows later.)

eλT1 ≤ γλ, T2 ≤ (1 + γ)(λ + 1),

T3 ≥ (1 − γ)
λ2

2
, e−λT4 ≤ γλ.

Under these regularity conditions we obtain for sufficiently large λ

ln Eexp (λ|q ∩ d|) ≤ 2γλ + (1 + γ)λ(λ + 1) − (1 − γ)
λ2

2

≤ 3γλ
︸︷︷︸

≤γλ2/2

+3γ
λ2

2
+

λ2

2
+ λ

︸︷︷︸

≤γλ2/2

≤ (1 + 5γ)
λ2

2
.

Assume that {dj | 1 ≤ j ≤ n} is a sample of n independent docu-
ments distributed according to the Zipf model. Then by the exponen-
tial Chebyshev inequality (1.5), for any r > 0 we have

Pr

(

max
j≤n

|q ∩ dj| ≥ r

)

≤ n Pr (|q ∩ d| ≥ r)

≤ n
Eexp (λ|q ∩ d|)

eλr

≤ n exp

(

(1 + 5γ)
λ2

2
− λr

)

.

4.2. The Model 45

By choosing

r = (1 + 5γ)
√

2 ln n

and

λ =
√

2 ln n

we obtain (1 + 5γ)λ2 = λr, hence

Pr

(

max
j≤n

|q ∩ dj| ≥ r

)

≤ n exp

(

−(1 + 5γ)
λ2

2

)

= n exp (− ln n − 5γ ln n)

=
1

n5γ
→ 0

for n → ∞ (note that n → ∞ implies λ → ∞). Part 2 of Theorem
4.2.7 follows as r = (1 + 5γ)

√
2 ln n = (1 + ε)s for ε = 5γ.

Finally, we present the regularity conditions proof. Therefore, let
the query q be randomly chosen according to the Zipf model. We need
the following lemma.

Lemma 4.2.8. For sufficiently large λ the following inequalities hold:

a) ET1 ≤ (eλ + 1)e−2λ

b) ET2 ≤ λ + 1

c) VarT2 ≤ λ + 1

d) λ2

2
−

(
ln2 2

2
+ 1

e

)

< ET3

e) ET3 ≤ λ2

2

f) VarT3 ≤ λ3

3

g) ET4 ≤ eλ

Proof. a) Let

Xj =

{
1/j : if wj ∈ q,

0 : else.

Then,

ET1 = E

∑

j≥eλ

Xj =
∑

j≥eλ

1

j2
≤ lim

B→∞

∫ B

eλ

1

x2
dx +

1

e2λ
= (eλ + 1)e−2λ.

46 Chapter 4. Maximal Intersection Queries in the Zipf Model

b) Let

Yj =

{
1 : if wj ∈ q,
0 : else.

Now,

ET2 = E

∑

j≤eλ

Yj =
∑

j≤eλ

1

j
≤

∫ eλ

1

1

x
dx + 1 = λ + 1.

c) For the variance of T2, we get

VarT2 = ET 2
2 − (ET2)

2 = E

∑

j≤eλ

Yj

2

−

∑

j≤eλ

1

j

2

= E

∑

j≤eλ

Y 2
j + 2

∑

j≤eλ

∑

j<k≤eλ

EYjEYk −

∑

j≤eλ

1

j

2

︸ ︷︷ ︸

<0

≤ E

∑

j≤eλ

Yj ≤ λ + 1

Note that Yj, Yk are pairwise independent for j 6= k.

d) By

ET3 =
∑

j≤eλ

ln j

j
>

∫ eλ

2

ln x

x
dx − 1

e
=

λ2

2
−

(
ln2 2

2
+

1

e

)

we get the lower bound on ET3. Note that the function ln(x)/x
has a maximum at e on [2,∞).

e) The upper bound for ET3 is calculated in the following way. Let

Zj =

{
ln j : if wj ∈ q,

0 : else.

Thus ET3 = E
∑

j≤eλ Zj =
∑

j≤eλ
ln j
j

. Let 2 < a < eλ be an
integer. Then

∑

j≤eλ

ln j

j
≤

∫ eλ

a

ln x

x
dx +

a∑

j=2

ln j

j
=

ln2 eλ

2
− ln2 a

2
+

a∑

j=2

ln j

j
.

4.2. The Model 47

Note that ln(x)/x has a maximum at e. For a ≥ 21 the inequality

a∑

j=2

ln j

j
≤ ln2 a

2

holds. Therefore,
∑

j≤eλ

ln j

j
≤ ln2 eλ

2
.

For λ ≥ 4 the inequality eλ > 54 holds. Thus, let a = 21 and
λ ≥ 4. Then a < eλ and by the above considerations ET3 ≤ λ2

2
.

f) In a similar manner,

VarT3 = ET 2
3 − (ET3)

2 ≤
∑

j≤eλ

ln2 j

j
≤ λ3

3

if a ≥ 3416, that is, if λ ≥ 9 (note that ln2(x)/x has a maximum
at e2).

g) Finally, let

Wj =

{
j : if wj ∈ q,
0 : else.

We have ET4 = E
∑

j≤eλ Wj =
∑

j≤eλ 1 ≤ eλ.

This completes the proof of Lemma 4.2.8.

Using Lemma 4.2.8, we can finish the proof of the second part of The-
orem 4.2.7. Let the query q be randomly chosen according to the Zipf
model. Then, by Markov’s inequality (1.2)

Pr

(

T1 ≥
γλ

eλ

)

≤ eλ + 1

eλγλ
.

Therefore, as λ → ∞ this probability tends to zero and the first regu-
larity condition holds. The second regularity condition holds since by
Chebyshev’s inequality (1.3)

Pr (T2 ≥ (1 + γ)(λ + 1))
ET2≤λ+1

≤ Pr (T2 − ET2 ≥ γ(λ + 1))

≤ 1

γ2(λ + 1)

48 Chapter 4. Maximal Intersection Queries in the Zipf Model

tends to zero as λ → ∞. Note that T2 takes only non-negative values.
Thus, we only have to consider the case T2 ≥ λ + 1. Since λ2

2
− C <

ET3 ≤ λ2

2
the third condition holds by applying Lemma 1.5.1. The

fourth condition is true since by Markov’s inequality the probability

Pr
(
T4 ≥ γλeλ

)
≤ 1

γλ

also tends to zero as λ → ∞. Thus, all four regularity conditions hold
and we are done.

Let us summarize the statement of Theorem 4.2.7. Consider a graph
where the probability curves for r-match and r-prefix match are shown (Fig-
ure 4.2). Both curves have a similar structure: The probability is close to

threshold

1

probability

r

Figure 4.2: Exemplary probability curves for r-match (the solid line) and
r-prefix match (the dashed line)

one for small r, but at some “threshold value” it falls to nearly zero. Now,
Theorem 4.2.7 states that the threshold values of the two kinds of matches
are close to each other. And this fact is extremely important, since it yields
an efficient method for solving the approximate version of the maximal inter-
section problem: Compute a prefix match whose size is only slightly smaller
(≈ (1−δ)s) than the threshold values. According to the theorem, such a pre-
fix match exists with high probability and, moreover, is with high probability
almost optimal. This holds since the probability that there exists a match
whose size is (significantly) larger (> (1 + ε)s) than the threshold values is
small. Thus, the above “threshold phenomenon” justifies to search only for
a prefix match. In the next section we explain the corresponding algorithm
in detail and show that its query time is quasi-linear in the sum of n and m.

4.3. The Algorithm 49

4.3 The Algorithm

Using Theorem 4.2.7, we get the following result.

Theorem 4.3.1. Let 0 < δ < 1 and 0 < γ < 1
5

be fixed. Let m ∈ ω(log n) and

c = e−δ2/2.2 Given a document collection D = {d1, . . . , dn} ⊆ 2W and a query
document q ⊆ W both following the Zipf model. Then, there is an algorithm
for the AMI problem which for sufficiently large n returns with probability
greater than 1−cδ

√
ln n/(1−c)−1/n5γ at least a 1+Γ(γ,n)

1−∆(δ,n)
-approximate answer,

where Γ(γ, n) → 5γ, ∆(δ, n) → δ as n → ∞. The algorithm has Õ (nm)
preprocessing time. The average case has Õ(log m + n) query time, while the
worst case has a query time of Õ(m + n). The storage required is n1+o(1).

Proof. The algorithm is based on the usage of an inverted index. An inverted
index is a data structure which for every word stores a list of the documents
containing it. A query is answered by intersecting the document lists of the
query words. Clearly, this approach only yields an answer if there exists a
document in the database which contains (at least) the same words as the
query. Thus, the problem is to choose the “right” query words for intersec-
tion. To solve this issue, we apply Theorem 4.2.7. Let s = sn =

√
2 ln n

and ζ = 2 + ⌈δs⌉. Since the theorem implies that a prefix match of size
⌊s⌋ − ζ is almost optimal, it is enough to intersect only the document lists
of the first ⌊s⌋ − ζ query words. This can be done in the following way. We
represent the document lists by a ⌊e⌊s⌋−2⌋×n binary matrix, where the entry
(i, j) is one if and only if the word wi is contained in the document dj (see
Figure 4.3). Note that it suffices to use only the first ⌊e⌊s⌋−2⌋ words of W as

d1 d2 d3 · · · dn

w1 1 1 1 · · · 1
w2 1 0 1 · · · 1
w3 0 1 0 · · · 1
...

...
...

...
...

wes 0 0 1 · · · 0

Figure 4.3: Binary matrix representing word-document relations

row indices since with probability greater than 1− c1.3 δ
√

ln n/(1− c) the first
⌊s⌋ − ζ words of the query are among these words. Calculating the intersec-
tion of document lists reduces to a binary and of matrix rows. The answer is
any document from this intersection. Note that the intersection is non-empty

2To be more precise, m ≥ ⌊e⌊s⌋−2⌋.

50 Chapter 4. Maximal Intersection Queries in the Zipf Model

Preprocessing on D ⊆ 2W

Generate a binary matrix representing word-document relations.

Processing a query q ⊆ W
Intersect the matrix rows corresponding to the first query words.

Figure 4.4: Algorithm for the k-AMI problem in the Zipf model

with probability greater than 1−cδ
√

ln n/(1−c). An overview of the algorithm
is shown on Figure 4.4. In order to generate the matrix, we first sort the
words of each document according to their index. This takes O(nm log m)
time. Generating the matrix can be done in C ·n·nε time for all ε > 0, thus in
n1+o(1) time (note that for all ε > 0 there exists a value n such that es < nε).
Storing the matrix requires n1+o(1) space. For query processing, we sort the
words of the query according to their index and then intersect the matrix
rows belonging to the first ⌊s⌋−ζ query words. In the average case this takes
O(log m log log m+n

√
log n) ⊆ Õ(log m+n) time (in this case, a query con-

tains approximately lnm words), and O(m log m+n
√

log n) ⊆ Õ(m+n) time
in the worst case. The

√
log n factor follows from the fact that we intersect

(⌊s⌋− ζ) ∈ O(
√

log n) rows. The stated approximation factor (quality) is an
upper bound of the quotient of the size of a maximal match and the size of
a prefix match, which is returned by the above algorithm. Thus,

⌈(1 + 5γ)s⌉
⌊s⌋ − 2 − ⌈δs⌉ ≤ (1 + 5γ)s + 1

s − 4 − δs
=

1 + 5γ + s−1

1 − δ − 4s−1

for sufficiently large n. The product
(

1 − cδ
√

ln n/(1 − c)
)

·
(
1 − 1/n5γ

)
> 1 − cδ

√
ln n/(1 − c) − 1/n5γ

is the probability that the returned prefix match is an approximate answer
of at least this quality. This probability tends to one as n → ∞.

Remark 7. If we search for a document that has a maximal common pre-
fix with the query (not “only” of size ⌊s⌋ − δ), then the worst case query
complexity changes to Õ(m + nm) and the storage required is O(nm). The
average case and preprocessing complexity remains the same up to logarith-
mic factors.

In order to classify the complexity of the above algorithm, we com-
pare it with the complexity of brute-force search. Brute-force search cal-
culates the intersection size between the query and each document from the

4.3. The Algorithm 51

database. If we sort the words of each document in a preprocessing step
(which can be done in O(nm log m) time), then, for a document collection
following the Zipf model, answering a query has an average case complexity
of O(log m log log m+nm) and a worst case complexity of O(m log m+nm).
Thus, the above algorithm performs faster in each case since we demand
m ≥ ⌊e⌊s⌋−2⌋, that is, m ∈ ω(log n). However, one should note that brute-
force search returns an exact answer (i.e., a maximal match), while the above
algorithm returns an approximate answer.

Since natural language texts are of particular interest for the Zipf model
(for these texts, Zipf’s law holds), we want to examine the complexity in
this context in more detail. Beside Zipf’s law, in natural language texts also
Heaps’ law holds [Hea78, MRS08]. This law predicts the vocabulary size of a
text as a function of the text size. That is v = C ·tγ holds, where v denotes the
vocabulary size, t the text size and C and 0 < γ < 1 are constants depending
on the text (typically, 10 ≤ C ≤ 100 and γ ≈ 0.5). Assuming that each
document has length l and considering the concatenation of all documents
as a (new) single document, we get m = C · (l · n)γ ∈ O(nγ). Thus, the
preprocessing time of the above algorithm “reduces” to O(n1+γ log n), and
the average and worst case query time to O(n

√
log n) respectively.

An important property of the above algorithm is the fact that it does not
suffer from the curse of dimensionality (cf. Section 1.4). This holds since its
space requirement is near-linear in n and its query time is quasi-linear in the
sum of n and m, but not linear in n · m.

4.3.1 A Different Approach

Instead on an inverted index, the algorithm can also be based on the usage
of a tree. Therefore, we represent each document by its index vectors , that
is a binary vector of length m such that position i is one if and only if
the word wi is contained in the document. The main idea is to store these
vectors in a binary search tree such that each path corresponds to at least
one vector (since duplicate documents are allowed, a path can correspond to
several vectors). Then, one has to determine a path in this tree that matches
⌊s⌋ − ζ ones with a query. This is accomplished by applying a backtracking
algorithm which traverses the tree in depth-first order. According to Theorem
4.2.7, it is enough to descend up to the depth ⌊e⌊s⌋−2⌋ (thus, generating a
tree based on the words w1 up to w⌊e⌊s⌋−2⌋ suffices; note that in this tree,
different documents can correspond to the same path). Since a possible
answer document must contain the first words of the query, but can also
contain additional words, backtracking is only invoked at positions (levels)
where the index vector of the query is zero. The algorithm stops when a path

52 Chapter 4. Maximal Intersection Queries in the Zipf Model

is determined such that ⌊s⌋ − ζ ones of the query vector are matched (note

that such a path exists with probability greater than 1−cδ
√

ln n/(1−c)). The
answer is any document from this path.

The document tree can be generated in O(nm log m) time and queries are
answered in O(log m log log m + nθ) average and O(m log m + nθ) worst case
query time for all θ > 1 (note that O(2es

), the time backtracking requires
in the worst case on a complete binary tree of depth es, is greater than
nes ∈ n1+o(1)). Hence, the asymptotic complexity of the tree-based approach
is worse than that of the matrix-based approach.

Remark 8. Note that for documents from 2W following the Zipf model the
frequency table is well-known. Namely, the word wi is at rank i. For “real-
life” document collections this is not the case. Thus, we have to generate the
frequency table before we can apply the above algorithm. In Chapter 6 we
deal with this task in more detail.

Remark 9. All statements presented in this chapter only hold for sufficiently
large values of n and m. For example, the value of n must be (approxi-
mately) at least 1068 if δ = 0.7 so that each theorem (respectively, lemma)
holds. Then, Theorem 4.2.7 states that with probability greater than 0.46
there exists a prefix match of size 2. However, the values given by the state-
ments are worst-case estimations. That is, the algorithm’s performance (in
terms of quality and running time) can be much better in practice than one
would expect from the above statements. (For example, despite the fact
that the satisfiability problem is NP-complete, today propositional formulas
containing hundreds and even thousands of variables are efficiently tested
for satisfiability, see e.g., [GW99].) Our experimental results presented in
Chapter 6 indicate that this is indeed the case.

4.4 Generalization of the Zipf Model

In this section we generalize the threshold theorem of Section 4.2 in case
the word frequencies are distributed according to a Mandelbrot distribution.
Additionally, we derive a theoretical explanation for the so called stop words ,
that is, words which are too frequent and therefore appear to be of little value
in reflecting the content of a document.

4.4.1 The Mandelbrot Distribution and Stop Words

According to Zipf’s law, a rank-frequency plot of the words of a text on
logarithmic axes should be a straight line with slope −1. However, most

4.4. Generalization of the Zipf Model 53

empirical graphs differ from that line, especially for words of low and high
ranks. To achieve a closer fit, Benôıt Mandelbrot derived the more general
formula

f = A · (B + r)−ρ,

where A,B and ρ are parameters depending on the text [Man65, MS99]. If
the rank-frequency correlation of the words of a text follows a formula of
the above type, we say the words are distributed according to a Mandelbrot
distribution3. In the following let W = {w1, . . . , wm} be a finite set of words.
We assume that a document collection is generated by the same process as
in Section 4.2, but the probability of the word wi, i ∈ {1, . . . ,m} to be
contained in a document is α/(β + i) for some constants α > 0 and β ≥ 0
(if α/(β + i) > 1 then the probability for wi to be contained in a document
is set to 1). The expected frequency of wi in the collection is n · α/(β + i).
Therefore, the word frequencies are distributed according to a Mandelbrot
distribution with A = n · α, B = β and ρ = 1. We call this process the
Mandelbrot model . As mentioned before, stop words are words that occur
very often, and, in general, do not carry meaning in natural language (e.g., a,
the, by). The Mandelbrot model yields a natural explanation for stop words.
Namely, the stop words are the set

{wi | i ≤ α − β} ,

that is, words that occur in every document.

4.4.2 Thresholds in the Mandelbrot Model

In this section we give a statement about the probabilities of intersecting
sets analogously to Theorem 4.2.7. If α − β ≥ 1, then in the Mandelbrot
model stop words occur (namely, there are α−β stop words) and every stop
word occurs in every document. Thus, stop words are irrelevant for the max-
imal intersection problem and can be excluded from further considerations.
Relevant words are the words wi where i > α − β. For the remainder of
this chapter we assume that α and β are integer numbers where α ≥ β and
α ≥ 1. The probability that a relevant word wi is contained in a document
is α/(α+ j) with j = i−α+β. Note that j ≥ 1 holds. By abuse of notation
we define W := {wi | 1 ≤ i ≤ mr} to be the set of relevant words (i.e.,
without stop words)4. Thus, the probability that a relevant word wi ∈ W
is contained in a document is α/(α + i). Note that by redefining W to be

3Sometimes also called Zipf-Mandelbrot distribution
4Note that m = mr + α − β.

54 Chapter 4. Maximal Intersection Queries in the Zipf Model

the set of relevant words we ensure that in the following all documents in 2W

contain only relevant words, and no stop words.

Remark 10. The set 2W yields a probability space where a document d is an

event occurring with probability Pr(d) =
(
∏

wi∈d
α

α+i

) (
∏

wi 6∈d 1 − α
α+i

)

.

As in the Zipf model, we introduce a threshold:

s = sn :=
√

2α ln n

For the following proofs, we partition the set W as follows (clearly, the group
sizes depend on α).

Definition 4.4.1. We define

P1 :=
{

w1 , . . . , w⌊α(exp(1

α
+1)−1)+1⌋

}

.

For 2 ≤ i ≤ ⌊s⌋ − 2α − 1 we define

Pi :=
{

w⌈α(exp(i−1

α
+1)−1)+1⌉ , . . . , w⌊α(exp(i

α
+1)−1)+1⌋

}

.

We say that a document d ∈ 2W is α-regular if it contains exactly one word
from each group Pi for all i ∈ {1, . . . , ⌊s⌋ − 2α− 1} (in general, an α-regular

document can contain words wi with i ≥ ⌈α(exp(⌊s⌋−2α−1
α

+ 1) − 1) + 1⌉).
Remark 11. Notice that only for mr ≥ ⌊α · exp(⌊s⌋/α− 1− 1

α
)−α+1⌋ there

exist ⌊s⌋ − 2α − 1 groups. Further notice that the groups do not overlap
since i/α + 1 is rational for i ∈ N \ {0}, so exp(i/α + 1) cannot be an integer
[Wal69]. Obviously, the group P1 is not empty. For i ≥ 2 a group Pi is not
empty since

⌈α (exp((i − 1)/α + 1) − 1) + 1⌉ ≤ ⌊α (exp (i/α + 1) − 1) + 1⌋ .

This holds because

α

(

exp

(
i

α
+ 1

)

− 1

)

+ 1 − α

(

exp

(
i − 1

α
+ 1

)

− 1

)

− 1 ≥ 1

is equivalent to

exp

(
i

α
+ 1

)

· α
(

1 − exp

(

− 1

α

))

≥ 1 .

The last inequality is true since exp
(

i
α

+ 1
)

> e > 2.7 for i ≥ 1, g(α) =
α(1 − exp(−1/α)) is monotonically increasing on [1,∞), and g(1) > 0.63.

4.4. Generalization of the Zipf Model 55

Definition 4.4.2. Let 0 < δ < 1. We say that a document d ∈ 2W is
(δ, α, n)-generic if for all i ≥ δs the following holds:

|d ∩ (P1 ∪ . . . ∪ Pi)| ≥ (1 − δ)i

This means that for all i ≥ δs a (δ, α, n)-generic document contains at
least (1 − δ)i words wj with j ≤ α (exp (i/α + 1) − 1) + 1.

Lemma 4.4.3. Let 0 < δ < 1 and c = e−δ2/2. Let d ∈ 2W be a random
document following the Mandelbrot model. For sufficiently large n,mr the
probability that d is (δ, α, n)-generic is greater than 1 − c1.3 δ

√
α ln n/(1 − c).

Proof. First, we consider a fixed i and let X be a random variable denoting
the expected number of words in d up to the word w⌊α(exp(i/α+1)−1)+1⌋. Then

i = α(ln α +
i

α
+ 1 − ln α − 1)

= α

(

ln

(

α · exp

(
i

α
+ 1

))

− ln α − 1

)

< α

(

ln

(⌊

α · exp

(
i

α
+ 1

)⌋

+ 1

)

− ln α − 1

)

< α

⌊α·exp(i/α+1)⌋+1
∑

k=1

1

k
−

α∑

k=1

1

k

 .

This holds since ⌊α · exp (i/α + 1)⌋ + 1 is an integer > 1 and therefore we
can apply (1.8). Now

α

⌊α·exp(i/α+1)⌋+1
∑

k=1

1

k
−

α∑

k=1

1

k

= α

⌊α·exp(i/α+1)⌋+1
∑

k=α+1

1

k

=

⌊α(exp(i/α+1)−1)+1⌋
∑

k=1

α

α + k
= EX .

Overall, we have i < EX. The Chernoff bound (1.4) yields that the probabil-
ity that d contains less than (1−δ)i words up to the word w⌊α(exp(i/α+1)−1)+1⌋
is smaller than e−iδ2/2, since

Pr (X ≤ (1 − δ)i) ≤ Pr (X ≤ (1 − δ)EX) ≤ e−EXδ2/2 < e−iδ2/2

56 Chapter 4. Maximal Intersection Queries in the Zipf Model

for i < EX. So the probability that d is not (δ, α, n)-generic for large n is
bounded by

∑

i≥0

ci −
⌊δ
√

2α ln n⌋−1
∑

i=0

ci =
∑

i≥⌊δ
√

2α ln n⌋

ci = c⌊δ
√

2α ln n⌋ ·
∑

i≥0

ci

=
c⌊δ

√
2α ln n⌋

1 − c

<
c
√

2 δ
√

α ln n−1

1 − c

<
c1.3 δ

√
α ln n

1 − c
.

This holds because 1.3 <
√

2 and n is large. Overall, the probability that
for all i ≥ δs the document d contains at least (1 − δ)i words wj with

j ≤ α (exp (i/α + 1) − 1)+1 is greater than 1−c1.3 δ
√

α ln n/(1−c). Note that
we need mr to be sufficiently large so that at least

⌊

α

(

exp

(⌈δs⌉
α

+ 1

)

− 1

)

+ 1

⌋

words exist.

Lemma 4.4.4. Let d ∈ 2W be a random document following the Mandelbrot
model and let 0 < δ < 1 and c = e−δ2/2. For sufficiently large n,mr the
following holds: If we insert the first (regarding the word order according to
indices) ⌈δs⌉ missing words to d then

Pr (∀i ≤ s : |d ∩ (P1 ∪ . . . ∪ Pi)| ≥ i) > 1 − c1.3 δ
√

α ln n

1 − c
(4.3)

Proof. For all i ≥ δs Lemma 4.4.3 states that for sufficiently large n,mr the
probability that d is (δ, α, n)-generic is greater than 1 − c1.3 δ

√
α ln n/(1 − c).

Since δi ≤ ⌈δs⌉ for all i ≤ s and since we insert the first ⌈δs⌉ missing words
to d, for sufficiently large n,mr the probability that |d ∩ (P1 ∪ . . . ∪ Pi)| ≥ i

holds for all δs ≤ i ≤ s is also greater than 1− c1.3 δ
√

α ln n/(1− c). Note that
by inserting the first ⌈δs⌉ missing words to d, also for all i ≤ δs it is true
that |d ∩ (P1 ∪ . . . ∪ Pi)| ≥ i. Overall, inequality (4.3) holds.

Next follows our main theorem for the Mandelbrot model.

4.4. Generalization of the Zipf Model 57

Theorem 4.4.5 (Threshold theorem for the Mandelbrot model). Let mr ≥
⌊α · e⌊s⌋/α−1−1/α − α + 1⌋ and let D = {d1, . . . , dn} ⊆ 2W be a document
collection following the Mandelbrot model.

1. Let 0 < δ < 1 be fixed. Let ζ = 2α + 1 + ⌈δs⌉ and c = e−δ2/2. Given
a query document q ⊆ W following the Mandelbrot model. Then for
sufficiently large n the following holds: The probability that there exists
a (⌊s⌋ − ζ)-prefix match is greater than 1− cδ

√
α ln n/(1− c). Thus, the

probability tends to one as n → ∞.

2. Let ε > 0 be fixed. Given a query document q ⊆ W following the Man-
delbrot model. Then the probability that there exists a ⌈(1 + ε)

√
αs⌉-

match tends to zero as n → ∞.

Proof. 1. Let dR ∈ 2W be a fixed α-regular document (Definition 4.4.1).
The probability that a random document from 2W following the Man-
delbrot model contains the first ⌊s⌋ − 2α − 1 words of dR is at least

α
⌊
α

(
exp

(
1
α

+ 1
)
− 1

)
+ 1

⌋
+ α

· . . . ·
α

⌊

α
(

exp
(

⌊s⌋−2α−1
α

+ 1
)

− 1
)

+ 1
⌋

+ α
.

This probability is greater than

α

α · exp (1/α + 1) + 1
· . . . · α

α · exp ((⌊s⌋ − 2α − 1)/α + 1) + 1
>

1

exp (1/α + 3/2)
· . . . · 1

exp ((⌊s⌋ − 2α − 1)/α + 3/2)
.

This inequality holds since

exp

(
i

α
+ 1

)

+ 1/α < exp

(
i

α
+ 1

)

·
√

e

58 Chapter 4. Maximal Intersection Queries in the Zipf Model

for i ≥ 1 and α ≥ 1. The last product is equal to

1

exp
(

1/α
∑⌊s⌋−2α−1

i=1 i + (⌊s⌋ − 2α − 1) · 3/2
) >

1

exp (1/α · (⌊s⌋ − 2α)2/2 + (⌊s⌋ − 2α − 1) · 3/2)
>

1

exp (1/α · (s − 2α)2/2 + (s − 2α − 1) · 3/2)
=

exp (1/2s + α + 3/2)

n
.

Note that

exp

(
1

2
s + α +

3

2

)

< n

since the probability that a document contains the first ⌊s⌋ − 2α − 1
words of dR is less than one. This means that the probability that there
exists no document in D containing these first words is no more than

(

1 − exp (1/2s + α + 3/2)

n

)n

< exp

(

−exp

(
1

2
s + α +

3

2

))

,

which follows from inequality (1.6). So with probability greater than

1 − exp

(

−exp

(
1

2
s + α +

3

2

))

there exists a document in D having the first ⌊s⌋ − 2α − 1 words of
dR. Consider the query q. Assume we insert the first ⌈δs⌉ missing
words to q. Then, Lemma 4.4.4 implies that for large n the probability
that for each i ≤ s the query q contains at least i words wj with

j ≤ α(exp(i/α + 1)− 1) + 1 is greater than 1− c1.3 δ
√

α ln n/(1− c). This
means that the probability that for each i ≤ s the query contains at
least as many words as dR among the first i groups is also greater than
1− c1.3 δ

√
α ln n/(1− c) (see Figure 4.1). Thus, the probability that there

exists a document in D matching the first ⌊s⌋ − 2α − 1 words of the
query q is greater than

(

1 − c1.3 δ
√

α ln n

1 − c

)(

1 − exp

(

−exp

(
1

2
s + α +

3

2

)))

.

4.4. Generalization of the Zipf Model 59

For large n, this product is at least 1 − cδ
√

α ln n/(1 − c). It remains to
notice that by removing the imaginary inserted ⌈δs⌉ words from q we
still match ⌊s⌋ − 2α − 1 − ⌈δs⌉ = ⌊s⌋ − ζ words and we are done.

2. At first we consider the query q as a fixed document and let d be a
random document following the Mandelbrot model. Again, the idea
is to evaluate the Laplace transform (with parameter λ > 0) of the
intersection size between q and d

Eexp (λ|q ∩ d|) =
∏

j:wj∈q

(

1 − α

α + j
+

α

α + j
eλ

)

≤
∏

j:wj∈q

(

1 +
α

α + j
eλ

)

=
∏

j:wj∈q

α+j>αeλ

(

1 +
αeλ

α + j

)

·
∏

j:wj∈q

α+j≤αeλ

αeλ

α + j

(

1 +
α + j

αeλ

)

.

It follows that

ln Eexp (λ|q ∩ d|) ≤
∑

j:wj∈q

α+j≥αeλ

αeλ

α + j
+

∑

j:wj∈q

α+j≤αeλ

(
ln

(
αeλ

)
− ln(α + j)

)

+
∑

j:wj∈q

α+j≤αeλ

α + j

αeλ

= αeλT1 + (ln α + λ)T2 − T3 +
1

αeλ
T4,

where

T1 =
∑

j:wj∈q

α+j≥αeλ

1

α + j
, T2 =

∣
∣q ∩

{
wj | α + j ≤ αeλ

}∣
∣ ,

T3 =
∑

j:wj∈q

α+j≤αeλ

ln(α + j), T4 =
∑

j:wj∈q

α+j≤αeλ

α + j.

Let 0 < γ < 1
4
. We will assume that the following four regularity

conditions are verified. (In fact, the probability that each of these
conditions is true tends to one if we consider q as a random document

60 Chapter 4. Maximal Intersection Queries in the Zipf Model

following the Mandelbrot model and let λ → ∞; the proof follows
later.)

αeλT1 ≤ γλ, T2 ≤ (1 + γ)αλ,

T3 ≥ (1 − γ)α

(

ln2
(
αeλ

)

2

)

,
1

αeλ
T4 ≤ γλ.

Under these regularity conditions we obtain for sufficiently large λ

ln Eexp (λ|q ∩ d|) ≤ 2γλ + (ln α + λ)(1 + γ)αλ − (1 − γ)α

(
ln2(αeλ)

2

)

= 2γλ + (ln α + λ)(1 + γ)αλ

+ (γ − 1)α

(
(ln α + λ)2

2

)

≤ (1 + 3γ)α
λ2

2
+ 2γλ(1 + α ln α)

︸ ︷︷ ︸

≤γα λ2

2

≤ (1 + 4γ)α
λ2

2
.

The following argumentation is (except for the implications of α) al-
most identical to the analogous part in the proof of Theorem 4.2.7.
Assume that {dj | 1 ≤ j ≤ n} is a sample of n independent docu-
ments distributed according to the Mandelbrot model. Then by the
exponential Chebyshev inequality (1.5), for any r > 0 we have

Pr

(

max
j≤n

|q ∩ dj| ≥ r

)

≤ n Pr (|q ∩ d| ≥ r)

≤ n
Eexp (λ|q ∩ d|)

eλr

≤ n exp

(

(1 + 4γ)α
λ2

2
− λr

)

.

By choosing

r = (1 + 4γ)α
√

2 ln n

and

λ =
√

2 ln n

4.4. Generalization of the Zipf Model 61

we obtain (1 + 4γ)αλ2 = λr, hence

Pr

(

max
j≤n

|q ∩ dj| ≥ r

)

≤ n exp

(

−(1 + 4γ)α
λ2

2

)

= n exp
(

− ln n −
(

(1 + 4γ)α − 1
)

ln n
)

=
1

n(1+4γ)α−1
→ 0

for n → ∞, as required (note that n → ∞ implies λ → ∞). Part 2
of Theorem 4.4.5 follows as r = (1 + 4γ)α

√
2 ln n = (1 + ε)

√
α · s for

ε = 4γ.

Finally, we present the regularity conditions proof. Therefore, let
the query q be randomly chosen according to the Mandelbrot model.
We need the following lemma.

Lemma 4.4.6. For sufficiently large λ the following inequalities hold:

a) ET1 ≤ 2e−λ

b) ET2 ≤ αλ

c) VarT2 ≤ αλ

d) α ln2(αeλ)
2

− α
(

ln2(α+1)
2

+ 1
e

)

< ET3

e) ET3 ≤ α ln2(αeλ)
2

f) VarT3 ≤ α ln3(αeλ)
3

g) ET4 < α2eλ

Proof. The proof is similar to the proof of Lemma 4.2.8. Thus, we only
present the calculations of expectations and variances.

a)

ET1 =
∑

j:α+j≥αeλ

α

(α + j)2
= α

∑

k≥αeλ

1

k2

≤ lim
B→∞

2α

∫ B

αeλ

1

x2
dx = 2α · 1

αeλ
= 2e−λ.

b) Let

Xj =

{
1 : if wj ∈ q,
0 : else.

62 Chapter 4. Maximal Intersection Queries in the Zipf Model

Now,

ET2 = E

∑

j:α+j≤αeλ

Xj =
∑

j:α+j≤αeλ

α

α + j
= α

⌊αeλ⌋
∑

k=α+1

1

k
≤ α

∫ αeλ

α

1

x
dx

= α
(
ln

(
αeλ

)
− ln α

)
= αλ .

c) The variance of T2 is calculated as follows:

VarT2 = ET 2
2 − (ET2)

2 = E

∑

j:α+j≤αeλ

Xj

2

−

∑

j:α+j≤αeλ

α

α + j

2

= E

∑

j:α+j≤αeλ

X2
j

+ 2
∑

j:α+j≤αeλ

∑

k:α+j<α+k≤αeλ

EXjEXk −

∑

j:α+j≤αeλ

α

α + j

2

︸ ︷︷ ︸

<0

≤ E

∑

j:α+j≤αeλ

Xj ≤ αλ

Note that Xj, Xk are pairwise independent for j 6= k.

d) The lower bound on ET3 is

ET3 =
∑

j:α+j≤αeλ

α ln(α + j)

α + j
= α

⌊αeλ⌋
∑

k=α+1

ln k

k

> α

(
∫ αeλ

α+1

ln x

x
dx − 1

e

)

= α
ln2(αeλ)

2
− α

(
ln2(α + 1)

2
+

1

e

)

.

The integral is at most as large as the sum since ln(x)/x has a
maximum at e on [2,∞).

e) Let α + 1 < b < αeλ be an integer. Then

ET3 =
∑

j:α+j≤αeλ

α ln(α + j)

α + j
= α

⌊αeλ⌋
∑

k=α+1

ln k

k
≤

≤ α

(
∫ αeλ

b

ln x

x
dx +

b∑

k=α+1

ln k

k

)

≤ α
ln2(αeλ)

2
.

The last inequality holds for sufficiently large λ, see the proof of
Lemma 4.2.8.

4.4. Generalization of the Zipf Model 63

f) The upper bound on VarT3 is calculated by the same techniques
as the upper bounds on VarT2 and ET3:

VarT3 ≤
∑

j:α+j≤αeλ

α ln2(α + j)

α + j
≤ α

(
ln3(αeλ)

3

)

for sufficiently large λ, see the proof of Lemma 4.2.8.

g) Finally,

ET4 =
∑

j:α+j≤αeλ

α ≤ α
(
αeλ − α

)
< α2eλ.

This completes the proof of Lemma 4.4.6.

By Lemma 4.4.6 and Lemma 1.5.1 it follows by the same argumentation
as in the proof of Theorem 4.2.7 that for a query q randomly chosen
according to the Mandelbrot model the four regularity conditions hold
as λ → ∞.

4.4.3 Discussion

In the previous section, we transferred the threshold theorem of the Zipf
model to the Mandelbrot model. Like the Mandelbrot model itself, the
threshold depends on the parameter α. As α increases, the size of a pre-
fix match and the upper bound on the intersection size increase as well.
Contrary to the Zipf model, these two values are not “close” in the Man-
delbrot model. They differ about a factor of

√
α. This is due to the fact

that α affects the probability if a word is contained in a document. As α
increases, for all words this probability increases as well. Thus, it seems that
considering only the “first” words of a query does not suffice for determining
a match of almost maximal size. However, our experimental results indicate
that in real applications this fact is not as critical as one may expect.

As indicated in Section 4.4.1, Mandelbrot’s formula f = A · (B + r)−ρ is
a generalization of Zipf’s law (just let B = 0 and ρ = 1, then Mandelbrot’s
formula degenerates to Zipf’s law). Analogously, the Mandelbrot model is
a generalization of the Zipf model, or in other words, the Zipf model is a
special case of the Mandelbrot model. Let α = 1 and β = 0, then the formula
α/(β + i) degenerates to 1/i. And indeed, the intersection sizes for a prefix
match stated in Theorem 4.2.7 and 4.4.5 differ only by one. This difference is
due to the fact that, in contrast to the Zipf model, in the Mandelbrot model
we exclude stop words, and for α = 1, β = 0 there exists exactly one stop
word. As expected, the upper bounds coincide.

64 Chapter 4. Maximal Intersection Queries in the Zipf Model

4.4.4 The Algorithm

Given Theorem 4.4.5, we get the following result.

Theorem 4.4.7. Let 0 < δ < 1 and 0 < γ < 1
4

be fixed. Let m ∈ ω(log n)

and c = e−δ2/2.5 Given a document collection D = {d1, . . . , dn} ⊆ 2W and
a query document q ⊆ W both following the Mandelbrot model. Then, there
is an algorithm for the AMI problem which for sufficiently large n returns
with probability greater than 1 − cδ

√
α ln n/(1 − c) − 1/n(1+4γ)α−1 at least a√

α · 1+Γ(γ,n)
1−∆(δ,n)

-approximate answer, where Γ(γ, n) → 4γ, ∆(δ, n) → δ as n →
∞. The algorithm has Õ (nm) preprocessing time. The average case has
Õ(log m+n) query time, while the worst case has a query time of Õ(m+n).
The storage required is n1+o(1).

Proof. Based on Theorem 4.4.5 we apply the same algorithm as in the Zipf
model. Let s = sn =

√
2α ln n. The size of the matrix must be adapted to

⌊α(exp(⌊s⌋/α − 1 − 1/α) − 1) + 1⌋ × n. Since in the Mandelbrot model the
average document length is also in O(log m), and for each ε > 0 there exists
a value n such that es/α < nε, the complexity of the algorithm remains the
same. The approximation factor follows since

⌈(1 + 4γ)
√

αs⌉
⌊s⌋ − 2α − 1 − ⌈δs⌉ ≤ (1 + 4γ)

√
αs + 1

s − 2α − 3 − δs
=

(1 + 4γ)
√

α + s−1

1 − (2α + 3)s−1 − δ

for sufficiently large n. Note that the probability that the algorithm returns
an answer of at least this quality tends to one as n → ∞.

Remark 12. All statements in this chapter were stated under the assumption
that no document contains stop words. Clearly, in a real setting we have to
remove stop words before we can apply the above algorithm. In Chapter 6
we discuss this issue in more detail.

5To be more precise, m ≥ ⌊α · e⌊s⌋/α−1−1/α⌋ + 1 − β.

Chapter 5

Maximal Intersection Queries

in the Hierarchical Schemes

In this chapter we investigate a second input distribution. Again, we show
that a threshold theorem holds. Based on this theorem we state a deter-
ministic algorithm solving the approximate maximal intersection problem in
query time which is polylogarithmic in the database size.

5.1 Preliminaries

As in Chapter 4, we deal with documents and words instead of sets and
elements. However, the results hold for every input following the model
presented subsequently.

5.2 The Model

Let k > 2 be an integer and let W = {w1, . . . , wm} be a finite set of m =
(2k − 1) · k different words. We assume that n = 2k holds. A document
collection D consists of n documents where every document d ∈ D is an
element of 2W with |d| = k. A hierarchical scheme H of height k is a table
with k levels, level 1 to level k. For 1 ≤ i ≤ k level i is divided into 2i−1 cells,
cell Ci,1 to cell Ci,2i−1 . For 2 ≤ l ≤ k we say that cell Cl−1,j, 1 ≤ j ≤ 2l−2, is
above cell Cl,j′ , 1 ≤ j′ ≤ 2l−1, if and only if ⌈j′/2⌉ = j. Every cell contains
k words. Each word occurs in exactly one cell. A document collection based
on a hierarchical scheme H can be generated as follows: Every document is
generated independently. To generate a document, one chooses a random cell
on level k and marks it. Then, for l = k, . . . , 2 one marks the cell on level l−1
that is above the already marked cell on level l. Finally, one chooses a random

65

66 Chapter 5. Maximal Intersection Queries in the Hierarchical Schemes

Figure 5.1: A hierarchical scheme for k = 4

word in every marked cell. Note that a document collection generated by the
above process (or, following a hierarchical scheme H) can contain documents
di, dj with di = dj for i 6= j. Clearly, every document corresponds to a unique
sequence of k cells. We call such a sequence a cell path. In a hierarchical
scheme, at most k · (2k)k−1 different documents can exist. In Figure 5.1 a
hierarchical scheme for k = 4 and a document with corresponding cell path
is depicted.

Remark 13. The hierarchical schemes are motivated by the hierarchical struc-
ture of the domain name system. Consider for example the web address
http://www.fmi.uni-stuttgart.de. Then, “de” would be located at the
cell on level 1, “uni-stuttgart” at a cell on level 2 and so on.

Remark 14. Zipf’s law can be observed in a hierarchical scheme. To be
more precise, the following holds: For all words it holds that the product of
expected frequency and expected rank is approximately the same. Indeed,
the expected frequency of a word on level i is given by the formula 2k/(2i−1·k).
The expected rank of such a word is given by the formula (2i−1−1)·k+2i−2 ·k.
Hence, the product between frequency and frequency rank (divided by 2k) is
equal to

2k

2i−1 · k ·
(

3

2
· 2i−1 − 1

)

· k

2k
=

3

2
− 1

2i−1
,

which means for all i ≥ 1 the value lies in the interval [0.5, 1.5).

Definition 5.2.1. Let r ≥ 0. Given a document collection D and a query
document q. By r-match we denote a document from the collection D that
contains at least r words of q.

Definition 5.2.2. Let r ≥ 0. Given a document collection D and a query
document q both following a hierarchical scheme H. Assume that the words

http://www.fmi.uni-stuttgart.de

5.2. The Model 67

of q are ordered according to their respective level in H. By r-prefix match
we denote a document from the collection D that contains at least the first
r words of q.

This time we introduce two thresholds to give statements about the most
probable size of a maximal intersection:

s =
k

1 + log k
and s′ =

k

log k
.

Theorem 5.2.3 (Threshold theorem for the hierarchical schemes). Let k ≥ 9
be an integer and 2 ≤ γ < s. Let D be a document collection following a
hierarchical scheme H.

1. Given a query document following H. Then the probability that there
exists a ⌊s − γ⌋-prefix match is greater than 1 − 2−(2k)γ

. Thus, the
probability tends to one as n → ∞.

2. Given a query document following H. Then the probability that there
exists a ⌈s′ + γ⌉-match is smaller than 2/kγ−1, that is, tends to zero as
n → ∞.

Proof. 1. The number of different prefixes of length ⌊s−γ⌋ in H is at most

k(2k)s−γ−1 < 2(1+log k)(s−γ) = 2(1+log k)(k/(1+log k)−γ) = 2k · (2k)−γ.

So the probability that a random document from 2W following H does
not match a prefix of length ⌊s−γ⌋ of any document from D is smaller
than

(

1 − (2k)γ

2k

)2k

< e−(2k)γ

< 2−(2k)γ

.

This inequality follows from inequality (1.6) since (2k)γ ≤ 2k holds for
2 ≤ γ < s and k ≥ 9. Therefore, the probability that there exists a
document in D with the same prefix as q of length ⌊s − γ⌋ is greater
than 1 − 2−(2k)γ

.

2. Let d be a random document from 2W following H. Let t ≥ ⌈s′ + γ⌉ be
the last level where the words of d and q match. We want to estimate
the probability that q matches at least ⌈s′ + γ⌉ words at arbitrary
positions with d. The probability that d and q correspond to the same
cell path up to level t is 21−t. The probability that at least ⌈s′+γ⌉ words

68 Chapter 5. Maximal Intersection Queries in the Hierarchical Schemes

are matched at some fixed cells is at most 1/k⌈s′+γ⌉ ·((k − 1)/k)t−⌈s′+γ⌉.
An upper bound for the number of different possibilities of choosing at
least ⌈s′ + γ⌉ out of t cells is 2t (consider

∑

j

(
t
j

)
= 2t). The factor

((k − 1)/k)t−⌈s′+γ⌉ is smaller than one. Overall, the probability that q
matches at least ⌈s′ + γ⌉ words at arbitrary positions with d is smaller
than

k · 2t ·
(

1

k

)⌈s′+γ⌉
· 21−t = 2 · k ·

(
1

k

)⌈s′+γ⌉
= 2 ·

(
1

k

)⌈s′+γ⌉−1

.

The factor k in the above equation arises from the fact that we need
to consider all possible levels for the last matched position t. Thus,
the probability that no document matches at least ⌈s′ + γ⌉ words at
arbitrary positions with q is at least

(

1 − 2 ·
(

1

k

)⌈s′+γ⌉−1
)2k

≥
(

1 − 2 ·
(

1

k

)s′+γ−1
)2k

=

(

1 − 2

2k · kγ−1

)2k

≥ 1 − 2

kγ−1
,

which follows from inequality (1.7) (note that (1.7) can be applied since
2k ≥ 1 and kγ−1/2 ≥ 1 holds for k ≥ 9 and γ ≥ 2). So the probability
that there exists a document in D that matches at least ⌈s′ + γ⌉ words
of q is smaller than 2/kγ−1.

5.3 The Algorithm

Let γ = 2. Applying Theorem 5.2.3, we get the following result.

Theorem 5.3.1. Let H be a hierarchical scheme. Given a document collec-
tion D = {d1, . . . , dn} ⊂ 2W and a query document q ⊆ W both following
H. Then, there exists an algorithm for the AMI problem which for suffi-
ciently large n,m returns with probability greater than 1− 1/n4 log n − 2/ log n
at least a 2 · 1+εn

1−εn
-approximate answer, where εn > 0. The algorithm has

a preprocessing time of Õ(n), a query time of O(log2 n), and requires Õ(n)
storage.

Proof. According to Theorem 5.2.3, a maximal prefix match is an almost
optimal answer. Thus, we determine such a match as follows: In a prepro-
cessing step, we build a binary search tree T of height k such that the nodes

5.3. The Algorithm 69

Preprocessing on D ⊂ 2W

Build a binary search tree corresponding to H.

Processing a query q ⊆ W
Find a maximal prefix match by searching through the tree according to
the query’s cell sequence.

Figure 5.2: Algorithm for the k-AMI problem in the hierarchical schemes

of T correspond to the cells of H. In every node, we store a list with k entries
of the form (w,Lw), where w is a word located in the cell corresponding to
the node, and Lw is a list of documents containing w. We process a query by
determining its cell sequence (i.e., sorting its words according to H) and then
searching through T according to this sequence. At each node, we check if
the document list Lw of the current query word w is empty. If it is not empty,
we continue the search. Otherwise, or if we reach a leaf, we have found a
maximal prefix match. See figure 5.2 for an overview of the algorithm. The
preprocessing takes O(n log2 n) ⊆ Õ(n) time if we assume that H is given
such that the cell of a word can be determined in O(log m) = O(log n) time
(for example, if an AVL tree storing the words and their corresponding cells
is given additionally to H). The space required for T is O(n log n) ⊆ Õ(n).
Clearly, processing a query can be done in O(log2 n) time. In order to calcu-
late the approximation factor we consider the following quotient:

⌈s′ + 2⌉
⌊s − 2⌋ ≤ k/ log k + 3

k/(1 + log k) − 3

=
(k + 3 log k)(1 + log k)

k log k − 3(1 + log k) log k

<
(k + 3 log k)2 log k

k log k − 3 · 2 log k · log k

=
k + 3 log k
k
2
− 3 log k

=
2 ·

(
1 + 3 log k

k

)

1 − 6 log k
k

.

Note that 3 log k
k

and 6 log k
k

tend to zero as k = log n → ∞. The probability
that the algorithm returns an answer of the above quality is greater than
(1 − 2−4k2

) · (1 − 2/k).

We now discuss the performance of the above algorithm. Its space re-
quirement is linear in m and its query complexity is polylogarithmic in n.

70 Chapter 5. Maximal Intersection Queries in the Hierarchical Schemes

Thus, for inputs following a hierarchical scheme we have a solution to the
AMI problem avoiding the curse of dimensionality (cf. Chapter 1).

Chapter 6

Experimental Results

In this chapter we evaluate the Zipf/Mandelbrot model on a real-world data
set. We describe how to apply the proposed algorithm and analyze its per-
formance in terms of quality and running time. In addition, we compare
it to the randomized algorithm described in Chapter 3. The data set used
is a collection consisting of 2659 scientific articles about various topics in
computer science. Note that we only evaluate the Zipf/Mandelbrot model
and not the hierarchical schemes, since most applications for the maximal
intersection problem deal with natural language texts (e.g., text clustering,
near-duplicate detection), which follow Zipf’s law.

6.1 Experimental Setting

Filtering. Before we perform any preprocessing steps on the collection,
we filter the texts. First, we remove special characters (e.g., @, &, ?) and
convert all words to lowercase. Second, we remove stop words. As discussed
in Section 4.4.2, stop words are not relevant for intersection sizes. We use
a stop word list consisting of 571 words1. This list is part of the SMART
(System for the Mechanical Analysis and Retrieval of Text) software, which
is an information retrieval system developed at Cornell University [SMA].
Given the nature of our collection, we extend the list by the words “theorem”,
“lemma”, and “proof”. These three words occur very frequently in most texts
and carry (almost) no meaning with regard to the content of a text.

In [MNF58] Miller et al. established empirically that the average length
of a stop word is 3.13 letters. Hence, in addition to the words of the stop
word list, we remove all words whose length is less than five.

1Words which are naturally contained in this list are articles, prepositions and conjunc-
tions.

71

72 Chapter 6. Experimental Results

Unlike our strict definition of a stop word in Section 4.4.1, most words
we filter do not occur in every document from the collection. However, they
occur in the majority. Moreover, filtering significantly reduces the document
sizes, which in turn reduces the time needed for further processing.

Similarity Measure. Usually, a natural language text is a multiset of
words. This fact is not consistent with our definition of a document as a
set of words. Therefore, we drop word multiplicity and measure similarity
between two documents by the number of their common words, that is, the
size of their common vocabulary (in the following called intersection size). In
[CGS03], the following definition of non-exact duplicate documents is given:
Two documents are duplicates if they retain much of the same language and if
at least 80% of the words of one document are contained in the other. Thus, if
we consider only the common vocabulary it is similar to this definition of non-
exact duplicates. Moreover, our experimental results give evidence that using
the intersection size as defined above as a similarity measure is reasonable,
see Table 6.1. Following the discussion in Section 4.4.2, we measure similarity
based on the filtered texts (i.e., without stop words in particular).

A small detail in this context is the following. Since on average, a doc-
ument contains 682 different words after filtering, we use (if available) the
1000 most frequently occurring words of each document for the calculation
of the intersection sizes.

Collection Parameters and the Frequency Table. We process 2659 ar-
ticles from various computer science conferences and journals. The language
of all articles is English. The vocabulary size of the collection is 308090.
The average document size is 6835 before filtering. It reduces to 2399 after
filtering. On average, a document contains 682 different words after filtering.

In order to apply the algorithm given in Theorem 4.3.1 (in the following,
we call this algorithm the Zipf algorithm2), we have to count the word fre-
quencies in our collection and to generate a frequency table. Since a natural
language text is a multiset of words, there are two different ways of determin-
ing the word frequencies: One can count the number of documents in which
a word occurs, or one can count the total number of a word’s occurrences
in each document and then add these values up. We call the former count-
ing method binary counting and the latter one absolute counting. Figure
6.1 shows for both counting methods the rank-frequency distributions of the
computer science collection. The graph shows the rank on the x-axis versus

2Actually, we apply the algorithm given in Theorem 4.4.7. Since the only difference to
Theorem 4.3.1 is the matrix size, we refer to it as the Zipf algorithm anyway.

6.1. Experimental Setting 73

Table 6.1: Sample queries and corresponding answers of the Zipf algorithm.
Every answer is a maximal match.

Query Answer
T. Batu, E. Fischer, L. Fortnow,
R. Kumar, R. Rubinfeld, P. White:
Testing Random Variables for In-
dependence and Identity. 42nd
FOCS, 2001

T. Batu, L. Fortnow, R. Rubinfeld,
W. D. Smith, P. White: Testing
that distributions are close. 41st
FOCS, 2000

M. Babaioff, R. Lavi, E. Pavlov:
Single-Value Combinatorial Auc-
tions and Algorithmic Implemen-
tation in Undominated Strategies.
JACM, 2009

P. Briest, P. Krysta, B. Vöcking:
Approximation Techniques for Util-
itarian Mechanism Design. 37th
STOC, 2005

S. Arora, E. Chlamtac, M.
Charikar: New Approximation
Guarantee for Chromatic Number.
38th STOC, 2006

S. Arora, S. Rao, U. Vazirani: Ex-
pander Flows, Geometric Embed-
dings and Graph Partitioning. 36th
STOC, 2004

R. Alur, P. C̆erný, S. Chaudhuri:
Model Checking on Trees with Path
Equivalences. 13th TACAS, 2007

R. Alur, S. Chaudhuri, P. Mad-
husudan: A Fixpoint Calculus for
Local and Global Program Flows.
33rd POPL, 2006

74 Chapter 6. Experimental Results

the frequency on the y-axis, using logarithmic scales. Both curves shows the
rank-frequency distribution with stop words.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

fr
eq

ue
nc

y

rank

absolute
binary

Figure 6.1: Rank-frequency distributions of the computer science collection
for binary counting (the dashed line) and absolute counting (the solid line)

Applying binary counting is conform to the Zipf/Mandelbrot model. The
corresponding curve (the dashed line) can be approximated by the function
f(x) = 730705/(232 + x), which yields α ≈ 274 (f(x) = n · α/(β + x), see
Section 4.4.1). The fact that the curve is a horizontal line for the first x-
values shows the existence of stop words. Accordingly to the values of α and
β, there should be 42 stop words. And indeed, if we examine the first words,
we find the first non-stop word at rank 39.

Due to the fact that a document contains on average 682 different words
after filtering, we restrict the maximal number of words a document can
contribute to the frequency table to the 1000 most frequently occurring ones.

Implementation Details. We implemented the matrix-based and tree-
based variant of the Zipf algorithm. A crucial issue are the number of rows
and the tree depth. This number is given by Theorem 4.4.5 (our collection
contains stop words). However, the statement of this theorem only holds
for large values of n, and for our “relative” small collection it would imply
a negative number of rows and a negative tree depth. Thus, we set these

6.2. Test Results 75

values to 1000. As we will see later, the average search depth achieved by
the tree-based variant during the search procedure is 122. The index of the
last matrix row considered can even be smaller. Therefore, 1000 is sufficiently
large.

Implementing the matrix variant is straightforward. The search proce-
dure terminates if the intersection of the document lists has size one, or if
it has size zero (in this case, the intersection of the previous step is taken
and the answer is determined by calculating the intersection size between the
query and each document contained in this intersection).

The tree implementation stores at each node a list of documents corre-
sponding to the path leading to this node. The search procedure traverses
the tree via backtracking in depth-first order. The answer is determined by
calculating the intersection size between the query and each document from
each path that matches a maximal number of words with the query. It is
necessary to consider each such path in order to obtain the same results as
the matrix variant. An important detail in this context is the fact that from
such a path we consider all documents corresponding to the node where the
last query word is matched.

6.2 Test Results

All tests were performed on a system with 4 AMD OpteronTM processors
with 2.6 gigahertz and 24 gigabyte main memory. The algorithm removing
stop words and special characters was implemented in Perl, all other algo-
rithms were implemented in C++. In Table 6.2 we list the results of the
matrix-based and tree-based variant. The table shows the results for binary
counting. All results are averaged over 100 queries, which were randomly
chosen from the computer science collection. The parameter Rank denotes
the answer’s position in a document list sorted in decreasing order according
to intersection size with the query. In order to lessen the effect of outliers,
we also list the median position (the value in brackets). We do the same for
the average number of documents which are used for determining the answer
(the parameter Documents).

The quality the Zipf algorithm achieves is 1.28. It is the quotient of the
average of the maximal intersection sizes and the average of the intersection
sizes of the answers. In order to compare the quality with the value stated
in Theorem 4.4.7, we also calculate it based on the matching size relative to
the first (according to the frequency table) query words. Then, the resulting
value is 4.5. The theorem states that it should be roughly

√
α, which is√

274 ≈ 16. Thus, the actual quality is better by approximately a factor

76 Chapter 6. Experimental Results

Table 6.2: Experimental results of the Zipf algorithm on the computer science
collection. Data: 2559 computer science articles. The frequency table is
based on binary counting. All results are averaged over 100 queries.

Variant Matrix Tree

Rank (median) 48 (25)

Maximum 3

Intersection size

answer 271

only the first words (prefix) 77

average 152

maximal 346

Quality 1.28

Search depth - 122

Documents (median) 1 (2)

Backtracking steps - 62

Time (in sec:msec)

Generating the data structure 0:527 1:109

Processing a query 0:341 0:8

of 3.5. Moreover, if we take into account that the statement only holds for
sufficiently large n,m, we see that the Zipf algorithm performs significantly
better in practice than one would expect.

An interesting point is the fact that, despite the better asymptotic query
complexity of the matrix-based variant, the query processing of the tree-
based implementation is forty times faster than that of the matrix-based
implementation. This may indicate that the document tree has significantly
less than n leaves. The fact that on average only 62 backtracking steps are
invoked support this assumption.

Table 6.3 shows the results if the frequency table is based on absolute
counting. Clearly, the average and maximal intersection size remain the same
(the average intersection size denotes the average size of the intersection of
the query with the database). As expected, the results are slightly worse

6.2. Test Results 77

Table 6.3: Experimental results of the Zipf algorithm on the computer science
collection. Data: 2559 computer science articles. The frequency table is
based on absolute counting. All results are averaged over 100 queries.

Variant Matrix Tree

Rank (median) 64 (21)

Maximum 5

Intersection size

answer 267

only the first words (prefix) 56

average 152

maximal 346

Quality 1.3

Search depth - 102

Documents (median) 1 (1)

Backtracking steps - 96

Time (in sec:msec)

Generating the data structure 0:530 1:93

Processing a query 0:346 0:8

than those of binary counting since absolute counting fits the model worse.
However, a maximum is found five times instead of three times. Again, a
query is processed faster by the tree-based implementation (factor 41). The
greater number of backtracking steps can be explained by the fact that on
average the intersection size with respect to the first query words becomes
smaller, while the search depth remains nearly the same. This results in
more positions in the document tree where backtracking has to be invoked.

In Table 6.4 we list the results of the randomized algorithm which is
presented in Chapter 3. Again, the values are averaged over the same 100
queries that we used before. For sample sets of size 50, the randomized
algorithm yields similar results as the Zipf algorithm. The running times
are almost the same in this case. Using sample sets of size 200 yields better
results, especially with regard to the answer’s rank. However, a maximum is

78 Chapter 6. Experimental Results

Table 6.4: Experimental results of the randomized algorithm. Data: 2559
computer science articles. All results are averaged over 100 queries.

Sample set 10 50 200

Rank (median) 262 (217) 60 (39) 12 (8)

Maximum 0 2 9

Intersection size 217 252 276

Quality 1.59 1.37 1.25

Time (in msec) 1 8 29

only returned in nine cases and, compared to the tree variant, the running
times are slower.

In the next section, we improve the Zipf algorithm such that it finds a
maximum more often and, in general, documents having a larger intersection
with the query.

6.2.1 Improvements

Based on the good results the randomized algorithm yields for large sample
sets, we analyze the performance of the matrix-based variant if the search
stops as soon as the intersection of the document lists contains C or less
documents. For C = 200 the results improve considerably. For binary count-
ing, we achieve an average and a median rank of three, while the quality
improves to 1.11. The cases we find a maximum increases to 31. Compared
to the standard variant, we find ten times as often a maximum. Compared
to the randomized algorithm using a sample sets of size 200, this means more
than three times as often a maximum. For absolute counting, the results are
even better. The average rank becomes three (median: two). The quality
improves to 1.08. Most notable, we find in 49 cases a maximum. Therefore,
“picking” documents according to the first words they have in common with
the query yields much better results than picking them at random. On av-
erage, the search stops for binary counting after intersecting the document
lists of the first 25 words, and after 13 for absolute counting. It remains to
notice that the query time does not increase observably.

Besides this approach, the most obvious way to improve the algorithm’s
results may be to allow errors in the prefix match. This is realized by shifting
the search range, that is, to start the search not only at the first rank in

6.2. Test Results 79

the frequency table, but also at later ranks. As answer, we then take the
maximum of the different search runs. For our tests, we use three runs and
shift the range by 20 ranks each time. Under binary counting, we achieve
an average rank of 24 (median: 12) and find a maximum in nine cases.
The quality improves to 1.23. The results for absolute counting are almost
similar. Interestingly, even this variant of the algorithm has to calculate the
intersection between the query and only three documents on average. As
expected, the running times triple.

6.2.2 Duplicates

In the following section we examine the performance of the Zipf algorithm
in the area of duplicate detection. First, we give an (informal) definition of
what constitutes a duplicate (note that there exists no standard definition),
and then we explain the different tests we run. The results are shown in
Table 6.5.

A duplicate (for the sake of clarity, we also refer to an exact duplicate
when we mean a duplicate) consists of the same text as the original with
or without formatting differences like file format, white spaces or paragraph
order. A near duplicate contains roughly the same semantic content as the
original. This informal notion can be captured by the mathematical concept
of resemblance introduced in [Bro97].

In the first test, we analyze the algorithm’s performance on exact dupli-
cates. We take the same queries as before and include them in the database.
Since our algorithm does not depend on any of the formatting issues men-
tioned above, we expect good results. And indeed, the variant without any
improvements finds all duplicates.

In the second test, we use near duplicates. We take 15 conference and
corresponding journal articles by Madhu Sudan and use each type as query
(clearly, the counterpart of the respective type is contained in the database).
It turned out that for articles where the conference and journal version differ
significantly in their lengths, the respective counterpart is not found. A
reason for this behavior may be that for these queries the length difference
results in different vocabularies. In particular, the most frequent words are
different. Thus, the query and its counterpart have different index vectors.

For the third test, we generate two query sets with different degrees
of modification from the originals. We use almost the same approach as
[CFGM02] to generate the sets. For the first one, we modify every fifth word
of the original text by choosing a random number smaller than ten. If the
number is at least five, we replace the word by a word chosen at random from
the frequency table. Otherwise it is deleted. The second set is generated by

80 Chapter 6. Experimental Results

modifying every third word in the same manner. On average, the duplicate
and the original differ in 24% of their words in the first set, and in 39% in
the second one. Note that “real” near duplicates usually do not differ that
much from the originals. A drawback of this generation method is the fact
that in real near duplicates it could be the case that in the whole text one or
more words are consistently replaced by different words. Such a modification
possibly has a strong influence on our algorithm. As expected, the results
are better if fewer words are altered. The matrix-based variant together with
the early abort strategy (answer set ≤ 200) yields the best results. In at least
three-fourths of all cases the duplicate is returned. This should be compared
with the randomized algorithm using sample sets of size 200. The probability
that this algorithm finds a duplicate is approximately 0.075.

In general, we observe that absolute counting yields better results. For
finding duplicates, keywords (i.e., words describing the topic or content of
a text) seem to be important. For example, absolute counting ranks key-
words like algorithm, graph or automata higher than binary counting. On the
other hand, binary counting ranks words occurring in many documents, like
references or introduction, higher. This fact may explain the better results
absolute counting achieves at duplicate detection. Here, adapting the stop
word list could improve the results.

Finally, we apply the Zipf algorithm to short queries. That is, we take title
and abstract (without stop words and special characters) from our previous
query documents as new queries. On average, these queries consist of 50
different words. Already the standard variant of the Zipf algorithm yields
almost all corresponding full texts (98 out of 100), independently of the
underlying counting method. An interesting observation for these queries is
the fact that the query time of the tree-based variant is 3386 µsec for binary
and 2807 µsec for absolute counting, which is notably shorter than the time
needed for other types of queries.

6.3 Discussion

Clearly, the implementation of the Zipf algorithm depends on the underlying
document collection. Parameters like the number of words each document
contributes to the frequency table and the number of matrix rows (respec-
tively, the tree depth) has to be adapted to different collections as well as
the parameters of the proposed improvements. These parameters and also
the number of matrix rows/the tree depth should be determined by trying
different values for a sample set of queries.

Besides these numerical parameters, assembling a “good” stop word list

6.3. Discussion 81

Table 6.5: Duplicate detection using the Zipf algorithm (without improve-
ments / early matrix abort (≤ 200) / range shift)

Binary Absolute

Exact 100 100

Conference 6 / 6 / 6 6 / 6 / 7

Journal 2 / 8 / 2 4 / 5 / 6

5th word 41 / 90 / 49 50 / 85 / 70

3rd word 30 / 78 / 37 43 / 73 / 54

Abstract 98 / 99 /98 98 / 99 / 98

also depends on the collection. For example, we extended the SMART list
by the words “theorem”, “lemma”, and “proof”, which should in other col-
lections not be treated as stop words. In general, choosing the right stop
words seems to be a sensitive issue.

The good results our algorithm achieves for short queries indicate that it
could be applied in applications like web search engines or electronic archives,
since queries occurring there are similar to the short queries (title, abstract)
we used.

The fact that we found all exact duplicates opens another angle for apply-
ing our method. The idea is to use a document’s index vector as its finger-
print . If these fingerprints have a constant size (in our tests 1000), checking
if a document collection of size n with vocabulary of size m contains dupli-
cates can be done in time O(nm log m) by generating the fingerprints and
inserting them into a binary search tree (the time for inserting vectors of a
constant length into a tree is linear in the number of vectors). Note that
a naive approach that compares each document with every other document
takes O(n2) time. Thus, for natural language texts our approach is faster
since m ∈ O(nγ), with 0 < γ < 1 (see Heaps’ law, Section 4.3).

82 Chapter 6. Experimental Results

Chapter 7

Conclusion and Open Questions

In this thesis we have studied the maximal intersection (MI) problem. We
provided cell probe lower bounds corresponding to the lower bounds for NNS
in the Hamming cube via reducing this problem to the MI problem. These
bounds hold if the vocabulary size is asymptotically smaller than every poly-
nomial function which operates on the database size. We also argued that we
cannot expect that a so called preferable solution to the MI problem exists,
since such a solution would also imply a preferable solution to NNS, which
so far is not known and believed to be nonexistent among researchers.

We presented a randomized algorithm that yields an approximate solution
to the MI problem. The algorithm takes a random sample from the database
and determines an optimal solution subject to this sample. Its running time
only depends on the vocabulary size, and not on the database size.

Our main results are two new randomized input models along with an
efficient (quasi-linear or polylogarithmic query time) deterministic algorithm
for each model solving the approximate version of the MI problem. The first
model, called the Zipf model, is based on the fact that in natural language
texts words follow Zipf’s law, an empirical law stating that the frequency of
any word is inversely proportional to its rank in the frequency table. The
second model, called the hierarchical schemes, is based on the assumption
that the elements from the vocabulary can be arranged in a binary tree-like
table. We proved that in both models a “threshold phenomenon” on the
probabilities of intersecting sets holds, which led to the above mentioned
algorithms.

Finally, we evaluated the Zipf algorithm on a real document collection
consisting of natural language texts. We explained how real documents have
to be processed and discussed implementation details. The experimental
results we obtained were significantly better than we would have expected
from our theoretical analysis. By modifying the algorithm we were able to

83

84 Chapter 7. Conclusion and Open Questions

obtain even better results. It turned out that our methods are particularly
effective in the area of duplicate detection.

We conclude this thesis by pointing out open questions:

• Could the quality of the Zipf algorithm be improved by adapting the
stop word list during execution? Could the algorithm learn which words
should be treated as stop words?

• Are there stronger lower bounds for the MI problem, especially without
the restriction on the vocabulary size?

• Our algorithms yield an answer which meets a guaranteed approxima-
tion factor only with high probability. Does there exist an efficient
algorithm yielding a guaranteed approximation every time?

• Are there other reasonable input models or assumptions about the in-
put leading to efficient solutions?

• Most important: Does there exist an efficient algorithm solving the
exact version of the MI problem (i.e., faster than a linear scan over the
database)?

Bibliography

[AM92] Pankaj K. Agarwal and Jǐŕı Matoušek. Ray shooting and para-
metric search. In STOC ’92: Proceedings of the twenty-fourth
annual ACM symposium on Theory of computing, pages 517–526,
New York, NY, USA, 1992. ACM.

[AMN+98] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silver-
man, and Angela Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. J. ACM, 45(6):891–
923, 1998.

[BGMZ97] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and
Geoffrey Zweig. Syntactic clustering of the web. In Selected pa-
pers from the sixth international conference on World Wide Web,
pages 1157–1166, Essex, UK, 1997. Elsevier Science Publishers
Ltd.

[BO97] Tolga Bozkaya and Meral Ozsoyoglu. Distance-based indexing for
high-dimensional metric spaces. In SIGMOD ’97: Proceedings
of the 1997 ACM SIGMOD international conference on Man-
agement of data, Tucson (United States), pages 357–368. ACM,
1997.

[BOR99] Allan Borodin, Rafail Ostrovsky, and Yuval Rabani. Lower
bounds for high dimensional nearest neighbor search and re-
lated problems. In STOC ’99: Proceedings of the thirty-first an-
nual ACM symposium on Theory of computing, Atlanta (United
States), pages 312–321. ACM, 1999.

[BR02] Omer Barkol and Yuval Rabani. Tighter lower bounds for nearest
neighbor search and related problems in the cell probe model.
J. Comput. Syst. Sci., 64(4):873–896, 2002. Conference version
appeared at STOC’00, ACM Press, 388–396 (2000).

85

86 Bibliography

[Bro97] A. Broder. On the resemblance and containment of documents.
In SEQUENCES ’97: Proceedings of the Compression and Com-
plexity of Sequences 1997, page 21, Washington, DC, USA, 1997.
IEEE Computer Society.

[BSMS95] C. Buckley, A. Singhal, M. Mitra, and G. Salton. New retrieval
approaches using SMART: TREC 4. In Proceedings of the Fourth
Text Retrieval Conference, 1995.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison-Wesley, 1999.

[CFGM02] Abdur Chowdhury, Ophir Frieder, David Grossman, and
Mary Catherine McCabe. Collection statistics for fast duplicate
document detection. ACM Trans. Inf. Syst., 20(2):171–191, 2002.

[CGS03] Jack G. Conrad, Xi S. Guo, and Cindy P. Schriber. Online du-
plicate document detection: signature reliability in a dynamic
retrieval environment. In CIKM ’03: Proceedings of the twelfth
international conference on Information and knowledge manage-
ment, New Orleans (United States), pages 443–452. ACM, 2003.

[CH67] T. M. Cover and P. E. Hart. Nearest neighbor pattern classi-
fication. IEEE Transactions on Information Theory, 13:21–27,
1967.

[Cla88] Kenneth L. Clarkson. A randomized algorithm for closest-point
queries. SIAM J. Comput., 17(4):830–847, 1988.

[Cla94] Kenneth L. Clarkson. An algorithm for approximate closest-point
queries. In SCG ’94: Proceedings of the tenth annual sympo-
sium on Computational geometry, pages 160–164, New York, NY,
USA, 1994. ACM.

[cY81] Andrew Chi chih Yao. Should tables be sorted. J. Assoc. Comput.
Mach, 28(3):615–628, 1981.

[DDL+90] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer,
George W. Furnas, and Richard A. Harshman. Indexing by latent
semantic analysis. Journal of the American Society of Informa-
tion Science, 41(6):391–407, 1990.

[DH73] Richard O. Duda and Peter E. Hart. Pattern Classification and
Scene Analysis. John Wiley & Sons Inc., 1973.

Bibliography 87

[DL76] David P. Dobkin and Richard J. Lipton. Multidimensional search-
ing problems. SIAM J. Comput., 5(2):181–186, 1976.

[DW82] L. Devroye and T. J. Wagner. Nearest neighbor methods in dis-
crimination. In P. R. Krishnaiah and L. N. Kanal, editors, Hand-
book of Statistics, volume 2. North-Holland, 1982.

[Ede87] Herbert Edelsbrunner. Algorithms in combinatorial geometry.
Springer-Verlag New York, Inc., New York, NY, USA, 1987.

[Est16] J. B. Estoup. Gammes Sténographiques. Paris, 4th edition, 1916.

[FBF77] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel.
An algorithm for finding best matches in logarithmic expected
time. ACM Trans. Math. Softw., 3(3):209–226, 1977.

[Fre78] Michael L. Fredman. Observations on the complexity of generat-
ing quasi-gray codes. SIAM J. Comput, 7(2):134–146, 1978.

[GKP02] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics:
A Foundation for Computer Science. Addison-Wesley, 2002.

[GW99] Ian P. Gent and Toby Walsh. The search for satisfaction. Tech-
nical report, Department of Computer Science, University of
Strathclyde, Scotland, 1999.

[GW00] Bernd Gärtner and Emo Welzl. A simple sampling lemma: Anal-
ysis and applications in geometric optimization. Discr. Comput.
Geometry, 25:569–590, 2000.

[Hea78] H. S. Heaps. Information retrieval: Computational and theoreti-
cal aspects. Academic Press, 1978.

[HLLN09] Benjamin Hoffmann, Mikhail Lifshits, Yury Lifshits, and Dirk
Nowotka. Maximal intersection queries in randomized input mod-
els. Theor. Comp. Sys., 46(1):104–119, 2009.

[HLN07] Benjamin Hoffmann, Yury Lifshits, and Dirk Nowotka. Maxi-
mal intersection queries in randomized graph models. In Volker
Diekert, Mikhail V. Volkov, and Andrei Voronkov, editors, CSR,
volume 4649 of Lecture Notes in Computer Science, pages 227–
236. Springer, 2007.

88 Bibliography

[HT96] Trevor Hastie and Robert Tibshirani. Discriminant adaptive
nearest neighbor classification. IEEE Trans. Pattern Anal. Mach.
Intell., 18(6):607–616, 1996.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neigh-
bors: towards removing the curse of dimensionality. In STOC ’98:
Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 604–613, New York, NY, USA, 1998. ACM.

[Kle97] Jon M. Kleinberg. Two algorithms for nearest-neighbor search in
high dimensions. In STOC ’97: Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pages 599–608,
New York, NY, USA, 1997. ACM.

[Knu97] Donald E. Knuth. The Art of Computer Programming 1: Fun-
damental Algorithms. Addison-Wesley, 3rd edition, 1997.

[KOR98] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Effi-
cient search for approximate nearest neighbor in high dimensional
spaces. In STOC ’98: Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 614–623, New York,
NY, USA, 1998. ACM.

[KWZ95] R. M. Karp, O. Waarts, and G. Zweig. The bit vector intersection
problem. In FOCS ’95: Proceedings of the 36th Annual Sympo-
sium on Foundations of Computer Science, page 621, Washing-
ton, DC, USA, 1995. IEEE Computer Society.

[Loè77] Michael Loève. Probability Theory I. Springer, 4th edition, 1977.

[Man65] B. Mandelbrot. Information theory and psycholinguistics. Basic
Books, 1965. Reprinted as: B. Mandelbrot: R. C. Oldfield and
J. C. Marshall (eds.), Language, Penguin Books (1968).

[Mei93] S. Meiser. Point location in arrangements of hyperplanes. Inf.
Comput., 106(2):286–303, 1993.

[Mil99] Peter Bro Miltersen. Cell probe complexity - a survey. In In 19th
Conference on the Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), 1999. Advances in Data
Structures Workshop, Chennai, (India), 1999.

[MNF58] George A. Miller, E. B. Newman, and Elizabeth A. Friedman.
Length-frequency statistics for written english. Information and
Control, 1(4):370–389, 1958.

Bibliography 89

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge Uni-
versity Press, 2008.

[MS99] Christopher D. Manning and Hinrich Schütze. Foundations of
Statistical Natural Language Processing. The MIT Press, 1999.

[New03] M. E. J. Newman. The structure and function of complex net-
works. SIAM Review, 45:167–256, 2003.

[PT06] Mihai Patrascu and Mikkel Thorup. Higher lower bounds for
near-neighbor and further rich problems. In FOCS ’06: Pro-
ceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, Berkley (United States), pages 646–654. IEEE
Computer Society, 2006.

[Reu08] Thomson Reuters 2008 Annual Report, 2008.
http://ar.thomsonreuters.com/. Cited 29 October 2009.

[Sal88] Gerald Salton. Automatic Text Processing. Addison-Wesley,
1988.

[Sam84] Hanan Samet. The quadtree and related hierarchical data struc-
tures. ACM Comput. Surv., 16(2):187–260, 1984.

[SMA] SMART ftp site. ftp://ftp.cs.cornell.edu/pub/smart/. Cited 29
October 2009.

[SS01] Thomas Schickinger and Angelika Steger. Diskrete Strukturen 2:
Wahrscheinlichkeitstheorie und Statistik. Springer, 2001.

[Tsa99] Panayiotis Tsaparas. Nearest neighbor search in multidimen-
sional spaces. Technical report, Department of Computer Sci-
ence, University of Toronto, Canada, 1999.

[Wal69] Rolf Wallisser. Zur Transzendenz der Werte der Exponential-
funktion. Monatshefte für Mathematik, 73:449–460, 1969.

[WSB98] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantita-
tive analysis and performance study for similarity-search meth-
ods in high-dimensional spaces. In VLDB ’98: Proceedings of the
24rd International Conference on Very Large Data Bases, pages
194–205, San Francisco, CA, USA, 1998. Morgan Kaufmann Pub-
lishers Inc.

90 Bibliography

[Zip49] G. K. Zipf. Human behavior and the principle of least effort.
Addison-Wesley, 1949.

Index

O-notation, 23
λ-intersection problem, 30
λ-neighbor problem, 29

approximation factor, 18

bit vector intersection model, 23

cell probe model, 27
decision tree, 28
solution, 28

Chebyshev inequality, 24
exponential, 25

Chernoff bound, 25
configuration model, 38
curse of dimensionality, 21

data structure problem, 27
database, 18
dot product, 23

filtering, 71
fingerprint, 81
frequency, 24
frequency table, 24

Hamming distance, 23
Heaps’ law, 51
hierarchical scheme, 65

r-match, 66
r-prefix match, 67
algorithm, 68
threshold, 67
threshold theorem, 67

index, 21
index vector, 27, 51
inverted index, 49

linear scan, 21
lower bounds, 29

Mandelbrot distribution, 52
Mandelbrot model, 53

(δ, α, n)-generic document, 55
α-regular document, 54
algorithm, 64
threshold, 54
threshold theorem, 57

Mandelbrot’s formula, 53
Markov inequality, 24
maximal intersection problem, 18

k-approximate, 18
brute-force search, 50
deterministic algorithm, 49, 64, 68
randomized algorithm, 35

near-linear, 24
nearest neighbor search problem, 20

k-approximate, 21
in the Hamming cube, 28

point location in equal balls, 21

quality, see approximation factor
quasi-linear, 24
query, 18

rank, 24

sampling lemma, 33
similarity measure, 72
SMART, 71
stop word, 52, 71

vocabulary, 18

word RAM, 24

Zipf model, 37
(δ, n)-generic document, 40
r-match, 39
r-prefix match, 39
algorithm, 49

91

92 Index

matrix approach, 49
tree approach, 51

natural language texts, 51
regular document, 40
threshold, 41
threshold theorem, 41

Zipf’s law, 38

	Abstract
	Zusammenfassung
	Introduction
	Structure of the Thesis
	Problem Statement
	Overview of the Results
	Related Work
	Notation and Basic Facts
	Notation
	Probability Theory
	Inequalities

	Lower Bounds
	Preliminaries
	The Cell Probe Model
	Reducing NNS in the Hamming Cube to the MI Problem
	Lower Bounds for the Maximal Intersection Problem

	A Randomized Approach
	The Sampling Lemma
	The Algorithm

	Maximal Intersection Queries in the Zipf Model
	Preliminaries
	The Model
	The Algorithm
	A Different Approach

	Generalization of the Zipf Model
	The Mandelbrot Distribution and Stop Words
	Thresholds in the Mandelbrot Model
	Discussion
	The Algorithm

	Maximal Intersection Queries in the Hierarchical Schemes
	Preliminaries
	The Model
	The Algorithm

	Experimental Results
	Experimental Setting
	Test Results
	Improvements
	Duplicates

	Discussion

	Conclusion and Open Questions
	Bibliography
	Index

