
Bridging the Gap between Volume Visualization

and Medical Applications

Von der Fakultät Informatik, Elektrotechnik und Informations-

technik der Universität Stuttgart zur Erlangung der Würde

eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Friedemann Andreas Rößler

aus Stuttgart

Hauptberichter: Prof. Dr. T. Ertl

Mitberichter: Prof. Dr. B. Preim

Tag der mündlichen Prüfung: 18.12.2009

Institut für Visualisierung und Interaktive Systeme

der Universität Stuttgart

2009

Für Paul

ACKNOWLEDGMENTS

I am most grateful to my advisor Thomas Ertl, who supported and guided my work.

Thank you for giving me the chance to gain insight into the exciting research fields

of medical visualization and computer graphics. Special thanks go to my co-advisor

Bernhard Preim from the University of Magdeburg, who tracked the progress of my

work on many conferences and who is a great supporter of medical visualization re-

search in germany and allover the world. I want to thank Sabine Iserhardt-Bauer and

Peter Hastreiter from the University Erlangen-Nuremberg for the fruitful cooperation

on the field of automated medical visualization. Especially Sabine laid important foun-

dations with her preceding work on the medical visualization service. Many thanks to

Markus Knauff from the University of Gießen and Thomas Fangmeier from the Uni-

versity of Freiburg, who introduced me into the very interesting world of cognitive

neuro sciences and functional brain imaging and who gave the input for my start-up

project at VIS.

I want to thank Tobias Schafhitzel, who had always time for another cup of coffee

and with whom I had many scientific and non-scientific discussions inside and outside

university. Thank you for your patience in repeatedly explaining me the mystery of

curvature and LIC computation. Furthermore, I thank Ralf Botchen, who was also

a perfect coffee mate, for being my fellow sufferer in neverending paper sessions on

multi-volume rendering. Many thanks go to Eduardo Tejada, with whom I corporated

for my first project on fMRI visualization. I would like to thank my long-term room

mate Magnus Strengert for having always the right answer to my countless questions

on computer graphics, visualization and graphics hardware. Many thanks go to my

short-term room mate Shymaa Elleithy for giving me interesting insights into Egyptian

and Muslim culture. Moreover, I want to thank all my colleagues for the nice time we

had together at VIS. Special thanks go thereby to Harald Bosch, Martin Falk, Benjamin

Höferlin and Markus Üffinger for proof reading my thesis.

I express my gratitude to all the students who supported me in my scientific work.

First, I want to thank my auxiliary scientists Michael Krone and Steffen Frey, who did

great jobs and who later became colleagues of mine. Special thanks go to Matey Nenov

and Torsten Wolff, whose study and diploma theses provided important contributions

to my work. Furthermore, I would like to thank Senad Hrnjadovic, Meike Rudolph,

Simone Tonte and Qing Yang.

Finally, I want to thank my parents for their neverending support during all phases

of my education and for guiding me through all the ups and downs I lived through

during this time. Last but not least, I thank my son Paul, who gave me the power to

never give up.

Friedemann Rößler

5

CONTENTS

List of Abbreviations and Acronyms 9

Abstract 11

Kurzfassung und Kapitelüberblick (German) 13

1 Introduction 21

1.1 Medical Volume Visualization . 22
1.2 Thesis Overview . 23

2 Fundamentals of Medical Imaging and Visualization 25

2.1 Tomographic Medical Imaging Techniques 25
2.1.1 Computed Tomography . 27
2.1.2 Magnetic Resonance Imaging 29
2.1.3 Discussion . 32

2.2 Medical Visualization Pipeline . 32
2.2.1 Data Acquisition . 33
2.2.2 Preprocessing and Image Analysis 35
2.2.3 Visualization . 40
2.2.4 Visual Analysis . 43

2.3 Hardware-Accelerated Rendering 43
2.3.1 Rendering Pipeline . 44
2.3.2 General Purpose Computation on GPUs 46

2.4 Direct Volume Rendering . 47
2.4.1 Theoretical Background . 47
2.4.2 Volume-Rendering Pipeline 50
2.4.3 GPU-based Volume Rendering 56

3 Flexible Multi-Volume Rendering 59

3.1 Introduction to Multi-Volume Rendering 60
3.2 GPU-based Rendering Techniques 64

3.2.1 Slice-based Multi-Volume Rendering 64
3.2.2 Multi-Volume Ray Casting 67

3.3 Dynamic Generation of Multi-Volume Shaders 71
3.3.1 The Render Graph Concept 73
3.3.2 A Render Graph Example 74
3.3.3 Render Node Containers . 75
3.3.4 Two-pass Shader Assembly 78
3.3.5 Rendering . 82

3.4 Conclusion . 82

7

8 Contents

4 Interactive Medical Volume Visualization 85
4.1 Generic Multi-Volume Visualization 86

4.1.1 GUI Design and Interaction 86
4.1.2 Extensibility . 88
4.1.3 Exemplary Render Nodes 91
4.1.4 Case Studies . 95

4.2 Visualization of Functional Brain Images 101
4.2.1 Neuroimaging in Cognitive Neuroscience 102
4.2.2 Visualization of Statistical Parametric Maps 103
4.2.3 Enhanced Surface Perception by Flow Visualization 108

4.3 GPU-based Direct Volume Deformation 119
4.3.1 3D ChainMail Algorithm . 120
4.3.2 Mapping ChainMail Deformation to GPU 122
4.3.3 GPU-based Deformation Pipeline 126
4.3.4 Results and Discussion . 129

4.4 Conclusion . 131

5 Automated Medical Volume Visualization 133
5.1 Use Case: Standardized Analysis of Intracranial Aneurysms 135
5.2 Automated Visualization with 3D Object Movies 139

5.2.1 Medical-Object-Movie Format 140
5.2.2 Medical Object Movie Viewer 142
5.2.3 Application . 144

5.3 A Visualization Service for Standardized Medical Analysis 147
5.3.1 System Architecture and Workflow 148
5.3.2 Render Server . 149
5.3.3 Web Application . 154
5.3.4 Performance . 155

5.4 Conclusion . 157

6 Iterative Development of Medical Volume-Visualization Solutions 159
6.1 Four Stages of Medical Volume Visualization 159
6.2 Discussion . 162

7 Conclusion 167

Bibliography 171

LIST OF ABBREVIATIONS AND ACRONYMS

1D one-dimensional

2D two-dimensional

3D three-dimensional

API application programming

interface

ASM active shape model

BOLD blood oxygen level

dependent

Cg C for graphics

CPU central processing unit

CT computed tomography

CTA CT angiography

CUDA compute device framework

architecture

DTI diffusion tensor imaging

DVR direct volume rendering

e.g. exempli gratia

(for example)

et al. et alii, et aliae, et alia

(and others)

etc. et cetera

EPI gradient-recalled echo-planar

imaging

FEM finite element method

FID free induction decay

fps frames per second

fMRI functional MRI

GB gigabyte

G-Buffer geometry buffer

GHz gigahertz

GIF graphics interchange format

GIS geographic information system

GLSL OpenGL shading language

GPU graphics processing unit

GPGPU general purpose computation

on GPUs

GUI graphical user interface

HTML hypertext markup language

HTTP hypertext transfer protocol

HLSL high level shading

language

HU hounsfield unit

ID identifier

i.e. id est (that is)

JPEG joint photographic experts

group

JSP Java server page

LIC line integral convolution

MB megabyte

MIP maximum intensity projection

MPEG moving picture experts group

MPI message passing interface

MRI magnetic resonance imaging

OpenGL open graphics library

OpenCL open compute language

PC personal computer

PET positron emission tomography

PNG portable network graphics

SPECT single-photon emission

computed tomography

pixel picture element

RAM random access memory

RF radio frequency

RGB red, green, and blue

RGBA red, green, blue, and alpha

ROI region of interest

SIMD single instruction,

multiple data

SPM statistical parameteric map

TCP/IP transmission control protocol/

internet protocol

texel texture element

URL unified resource locator

US ultrasound

voxel volume element

XML extensible markup language

9

ABSTRACT

Direct volume visualization has been established as a common visualization technique

for tomographic volume datasets in many medical application fields. In particular,

the introduction of volume visualization techniques that exploit the computing power

of modern graphics hardware has expanded the application capabilities enormously.

However, the employment of programmable graphics processing units (GPUs) usually

requires an individual adaption of the algorithms for each different medical visual-

ization task. Thus, only few sophisticated volume visualization algorithms have yet

found the way into daily medical practice. In this thesis several new techniques for

medical volume visualization are presented that aid to bridge this gap between volume

visualization and medical applications. Thereby, the problem of medical volume visu-

alization is addressed on three different levels of abstraction, which build upon each

other.

On the lowest level a flexible framework for the simultaneous rendering of multiple

volume datasets is introduced. This is needed when multiple volumes, which may be

acquired with different imaging modalities or at different points in time, should be

combined into a single image. Therefore, a render graph was developed that allows

the definition of complex visualization rules for arbitrary multi-volume scenes. From

this graph GPU programs for optimized rendering are generated automatically.

The second level comprises interactive volume visualization applications for dif-

ferent medical tasks. Several tools and techniques are presented that demonstrate the

flexibility of the multi-volume rendering framework. Specifically, a visualization tool

was developed that permits the direct configuration of the render graph via a graph-

ical user interface. Another application focuses on the simultaneous visualization of

functional and anatomical brain images, as they are acquired in studies for cognitive

neuroscience. Moreover, an algorithm for direct volume deformation is presented,

which can be applied for surgical simulation.

On the third level the automation of visualization processes is considered. This

can be applied for standard visualization taks to support medical doctors in their daily

work. First, 3D object movies are proposed for the representation of automatically

generated visualizations. These allow intuitive navigation along precomputed views

of an object. Then, a visualization service is presented that delegates the costly com-

putation of video sequences and object movies of a volume dataset to a GPU-cluster.

In conclusion, a processing model for the development of medical volume visual-

ization solutions is proposed. Beginning from the initial request for the application of

volume-visualization techniques for a certain medical task, this covers the whole life

cycle of such a solution from a prototype to an automated service. Thereby, it is shown

how the techniques that where developed for this thesis support the generation of the

visualization solutions on the different stages.

11

KURZFASSUNG UND KAPITELÜBERBLICK

Die direkte Volumenvisualisierung hat sich in vielen medizinischen Anwendungsge-

bieten als allgemeine Visualisierungstechnik für tomographische Volumendatensätze

etabliert. Insbesondere die Einführung von Volumenvisualisierungstechniken, die die

Rechenleistung moderner Graphikhardware ausnutzen, hat die Anwendungsmöglich-

keiten stark erweitert. Allerdings erfordert der Einsatz von programmierbaren Gra-

phikprozessoren (GPUs) normalerweise für jede unterschiedliche Visualisierungsauf-

gabe die individuelle Anpassung der angewendeten Algorithmen. Deshalb haben bis-

her nur wenige technisch anspruchsvolle Volumenvisualisierungsalgorithmen den Weg

in die tägliche medizinische Praxis gefunden. In dieser Arbeit werden mehrere neue

Visualisierungstechniken vorgestellt, die dabei helfen, diese Lücke zwischen Volumen-

visualisierung auf der einen Seite und medizinischen Anwendungen auf der andern

Seite zu schließen. Dabei wird das Problem der medizinischen Volumenvisualisierung

auf drei unterschiedlichen, aufeinander aufbauenden Ebenen behandelt.

Auf der untersten Ebene wird ein flexibles Framework für die simultane Visualisie-

rung mehrerer Volumendatensätze eingeführt. Dieses wird benötigt, wenn mehrere Vo-

lumendatensätze, die beispielsweise zu unterschiedlichen Zeitpunkten oder mit unter-

schiedlichen Aufnahmetechniken erfasst wurden, in einer einzigen Darstellung kom-

biniert werden sollen. Hierfür wurde der sogenannte Rendergraph entwickelt, der die

Festlegung komplexer Visualisierungsvorschriften für beliebige, aus mehreren Volu-

mina bestehende Szenen ermöglicht. Aus diesem Graphen werden automatisch GPU-

Programme für das optimierte Rendering generiert.

Die zweite Hierarchieebene umfasst interaktive Volumenvisualisierungsanwendun-

gen für unterschiedliche medizinische Zwecke. Hier werden mehrere Werkzeuge und

Techniken präsentiert, die die Flexibilität des Multivolumenrenderingframeworks ver-

anschaulichen. Im Speziellen wird ein Visualisierungswerkzeug vorgestellt, das es er-

möglicht, den Rendergraphen direkt über die graphische Benutzerschnittstelle zu kon-

figurieren. Eine andere Anwendung fokussiert auf die gleichzeitige Darstellung von

funktionellen und anatomischen Aufnahmen des Gehirns, die beispielsweise im Rah-

men von kognitiven Studien erfasst werden. Darüber hinaus wurde ein Algorithmus

für die direkte Deformation von Volumendatensätzen entwickelt, der in der Chirurgie-

simulation eingesetzt werden kann.

Auf der dritten Hierarchiebene wird die Automatisierung von medizinischen Vi-

sualisierungsprozessen betrachtet. Diese kann für Standardvisualsierungsaufgaben zur

Unterstützung von Medizinern in ihrer täglichen Arbeit eingesetzt werden. Für die

Darstellung der Visualisierungsergebnisse werden 3D-Objectmovies vorgeschlagen,

die eine interaktive Navigation entlang vorberechneter Ansichten eines Objektes er-

möglichen. Außerdem wird ein Visualsierungsservice vorgestellt, der die teure Be-

rechnung von Videos und 3D-Objectmovies auf einen GPU-Cluster auslagert.

13

14 Kurzfassung und Kapitelüberblick

Abschließend wird ein Vorgehensmodell für die Entwicklung von Volumenvisua-

lisierungslösungen vorgeschlagen. Ausgehend von der initialen Anforderung, Volu-

mensvisualisierungtechniken für eine bestimmte medizinische Aufgabe einzusetzen,

umfasst dieses Vorgehensmodell den kompletten Lebenszyklus einer Visualisierungs-

lösung, von einem Prototypen bis hin zu einem automatisierten Visualisierungsservice.

Hierbei wird gezeigt, wie die im Rahmen der vorliegenden Arbeit entwickelten Tech-

niken die Erstellung der Visualisierungslösungen auf den unterschiedlichen Stufen un-

terstützen.

Kapitelüberblick

Kapitel 1: Einleitung

Das Einleitungskapitel führt in die Themenstellung dieser Arbeit – Volumenvisualisie-

rung für medizinische Anwendungen – ein. Es wird dargestellt, dass Volumenvisuali-

sierung heutzutage zwar in viele unterschiedlichen medizinischen Anwendungsgebie-

ten eingesetzt wird, dass aber fortschrittliche Visualisierungstechniken, die moderne

Graphikhardware einsetzen, noch selten zur Anwendung kommen. Als Grund hierfür

wird die komplizierte und aufwendige Programmierung von Graphikkarten angeführt.

Aus dieser Problematik wird die Zielsetzung dieser Arbeit, die Lücke zwischen mo-

dernen Visualisierungstechniken und deren Anwendung in der Medizin zu schließen,

abgeleitet.

Zur Einordnung der in dieser Arbeit vorgestellten Techniken wird gezeigt, dass das

Problem der medizinischen Volumenvisualisierung auf drei unterschiedlichen Abstrak-

tionsebenen, die aufeinander aufbauen, betrachtet werden kann. Die unterste Ebene

stellen die Algorithmen für das direkte Volumenrendering dar, auf der zweiten Ebene

sind interaktive Visualisierungsapplikationen für unterschiedliche medizininische Ein-

satzgebiete angesiedelt und die dritte Ebene umfasst Techniken zur Automatisierung

des Visualisierungsprozesses. Abschließend wird ein kurzer Überblick über die Arbeit

gegeben und der Bezug zwischen den verschiedenen Themen und den drei Hierarchie-

stufen der medizinischen Volumenvisualisierung hergestellt.

Kapitel 2: Grundlagen der medizinischen Bildgebung und Visuali-

sierung

Im zweiten Kapitel werden die Grundlagen der medizinischen Bildgebung und der

medizinischen Visualisierung, die für das weitere Verständnis der Arbeit nötig sind,

erläutert.

Zu Beginn werden die wichtigsten tomographischen Bildgebungstechniken ein-

geführt, mit deren Hilfe volumetrische Aufnahmen des Körperinneren eines Patienten

gemacht werden können. Nach einer kurzen Erläuterung der Röntgentechnik, deren

Erfindung den Beginn der modernen medizinischen Bildgebung darstellt, werden die

Kurzfassung und Kapitelüberblick 15

Computertomographie (CT) und die Magnetresonanztomographie (MRT) näher be-

schrieben.

Im folgenden Abschnitt wird die medizinische Visualisierungspipeline vorgestellt,

die auf der allgemeinen Visualisierungspipeline aufbaut. Sie besteht aus den vier Stu-

fen Bilderfassung, Vorverarbeitung und Bildanalyse, Visualisierung und visuelle Ana-

lyse. Diese vier Stufen, die teilweise aus mehreren Piplineschritten bestehen, werden

näher erläutert und es werden beispielhafte Algorithmen und Verfahren besprochen.

Dabei werden die letzten beiden Pipelinestufen hervorgehoben, da diese Arbeit sich

auf diese fokussiert.

Da die in dieser Arbeit vorgestellten Visualisierungstechniken auf dem Verfah-

ren des direkten Volumenrenderings aufbauen, wird im letzten Abschnitt des zweiten

Kapitels diese Technik ausführlicher erläutert. Zunächst wird das Volumenrendering-

integral und seine numerische Auswertung beschrieben. Dann wird die praktische Um-

setzung des Verfahrens anhand der Volumenrenderingpipeline erklärt und schließlich

auf zwei GPU-basierte Renderingalgorithmen, das scheibenbasierte (slice-based) Ren-

dering und das Raycasting, eingegangen.

Kapitel 3: Flexibles Multivolumenrendering

Im dritten Kapitel wird ein Framework für das flexible Rendering von mehreren Vo-

lumen (Multivolumenrendering) vorgestellt. Zu Beginn wird allgemein in das Thema

Multivolumenrendering eingeführt und gezeigt, dass es drei Wege gibt, die Darstellung

mehrerer Volumendatensätze in einem Bild zu kombinieren. Dabei wird herausgestellt,

dass die Technik, die Volumendatensätze auf Akkumulationsebene zu kombinieren,

d.h. bevor die Farben entlang eines Sichtstrahls aufakkumuliert werden, am besten für

medizinische Anwendungsfälle geeignet ist. Bei Anwendung dieser Technik zerfällt

die Problemstellung des Multivolumerenderings in zwei Hauptpunkte: das simultane

Abtasten mehrere Volumendatensätze (Sampling) und die kombinierte Abbildung der

Datenwerte an den Abtastpunkten auf Farben (Shading). Für beide Problemstellungen

werden in den weiteren Abschnitten des zweiten Kapitels Lösungen vorgestellt und es

wird gezeigt, wie diese in einem einheitlichen Framework zusammengefasst werden

können.

Zunächst werden zwei GPU-basierte Multivolumenrenderingtechniken vorgestellt,

die auf eine optimierte Abtastung der Volumendatensätze abzielen: scheibenbasiertes

Multivolumenrendering und Multivolumenraycasting. Beide zerlegen die Volumenda-

tensätze in Bereiche sich überlappender Volumen und wenden auf diese Bereiche spe-

ziell angepasste GPU-Programme an.

Im darauffolgenden Abschnitt wird ein Verfahren präsentiert, mit dem diese GPU-

Programme automatisch aus einem individuell zusammengestellten Graphen, dem so-

genannten Rendergraphen, generiert werden können. Zunächst wird das Konzept des

Rendergraphen erläutert und die verschiedenen Typen von Renderknoten eingeführt.

Dann wird die Verwendung des Rendergraphen an einem Beispiel veranschaulicht und

schließlich wird beschrieben, wie aus einem Rendergraphen die zugehörigen GPU-

16 Kurzfassung und Kapitelüberblick

Programme erzeugt werden. Abschließend wird erläutert, wie die Generierung der

GPU-Programme dynamisch in den Multivolumerenderingprozess integriert werden

kann.

Kapitel 4: Interaktive medizinische Volumenvisualisierung

In Kapitel 4 werden drei verschiedene interaktive Visualisierungsanwendungen vor-

gestellt, die aufbauend auf dem Multivolumenrenderingframework an bestimmte me-

dizinische Anwendungsgebiete angepasste Visualisierungsmethoden und Interaktions-

mechanismen zur Verfügung stellen. Im ersten Teil wird ein Visualisierungswerkzeug

präsentiert, das eine direkte Manipulation des Rendergraphen über die graphische Be-

nutzungsschnittstelle ermöglicht. Hierdurch kann der Anwender individuelle Visua-

lisierungen erzeugen und die zur Verfügung gestellten Visualisierungstechniken auch

bei neuartigen Fragestellungen einsetzen. Zunächst wird der Aufbau der Benutzungso-

berfläche des Visualisierungswerkzeugs erläutert. Dann wird gezeigt, wie die Funktio-

nalität durch neue Renderknoten erweitert werden kann. Neben der Implementierung

des eigentlichen Renderknotens muss hierfür ein geeignetes Eingabeelement zur Ein-

stellung der Parameter und Funktionalität zur Serialisierung und Deserialisierung des

Knotenzustands zur Verfügung gestellt werden. Im darauffolgenden Abschnitt wer-

den exemplarisch einige Renderknoten beschrieben, die bereits in das Visualisierungs-

werkzeug integriert sind. Abschließend werden einige medizinische Anwendungsbei-

spiele präsentiert und die Leistungsfähigkeit der unterschiedlichen Renderingtechni-

ken diskutiert.

Im zweiten Teil des vierten Kapitels wird eine Anwendung zur Visualisierung von

funktionellen Aufnahmen des Gehirns vorgestellt. Zu Beginn wird in die funktionel-

le Bildgebung und deren Einsatz auf dem Gebiet der kognitiven Neurowissenschaften

eingeführt. Hierbei wird die Technik der funktionellen Magnetresonanztomographie

(fMRT) erklärt, der Ablauf einer kognitiven Studie beschrieben und auf die statisti-

sche Auswertung der erfassten Daten eingegangen. Darauffolgend wird beschrieben,

wie die funktionellen Aktivierungen in Kombination mit anatomischen Referenzauf-

nahmen dreidimensional dargestellt werden können. Es wird gezeigt, dass mit Hil-

fe der Multivolumenrenderingtechnik aussagekräftige Darstellungen erzeugt werden

können, die es erlauben die funktionellen Aufnahmen dreidimensional zu analysieren.

Darüberhinaus wird eine erweiterte Renderingtechnik vorgestellt, bei der die Struk-

tur der Gehirnoberfläche durch Line-Integral-Convolution (LIC), ein Verfahren aus der

Strömungsvisualisierung, hervorgehoben wird. Ziel ist es, die Gehirnstruktur klar dar-

zustellen, ohne dabei die innenliegenden Aktivierungsregionen zu verdecken. Zunächst

werden die mathematischen Grundlagen der LIC-Berechnung eingeführt. Dann wird

gezeigt, wie die Beschleunigungstechnik des verzögerten (deferred) Shadings in den

Multivolumenrenderingframework integriert werden kann, welche eine performante

Visualisierung der Oberflächenkrümmung des Gehirns mittels LIC ermöglicht.

Kurzfassung und Kapitelüberblick 17

Im dritten Teil des vierten Kapitels wird ein Verfahren zu direkten Deformation von

Volumendatensätzen präsentiert, das beispielsweise in der Chriurgiesmulation einge-

setzt werden kann. Ziel dieses Verfahrens ist es, beliebige Volumendatensätze ohne

Vorverarbeitung direkt deformieren zu können. Dabei wird die Deformation komplett

auf der GPU durchgeführt und kann so nahtlos in den Visualisierungsprozess integriert

werden. Als Basis des Verfahrens dient der sogenannte 3D-ChainMail-Algorithmus.

Nach der Einführung der Grundlagen des 3D-ChainMail-Algorithmus, wird gezeigt,

wie dieser auf die GPU portiert werden kann. Hier wird erläutert, wie das vom 3D-

ChainMail-Algorithmus verwendete Deformationsgitter durch eine 3D-Textur reprä-

sentiert wird, welche Anpassungen des Deformationsverfahrens für die GPU-Imple-

mentierung vorgenommmen werden müssen und wie es möglich ist, das invertierte

Defomationsgitter für die direkte Visualisierung des verformten Volumes einzusetzen.

Daran anschließend wird eine vollständig GPU-basierte Deformationspipeline vorge-

stellt, die alle Schritte von der interaktiven Manipulation durch den Anwender, über

die Durchführung des eigentlichen Deformationsverfahrens, bis hin zur Visualisierung

umfasst.

Kapitel 5: Automatisierte medizinische Volumenvisualisierung

Im fünften Kapitel wird die Automatisierung des Volumenvisualisierungsprozesses be-

handelt. Diese hat zum Ziel, die Mediziner in ihrer täglichen Arbeit zu unterstützen und

standardisierte Vorgehensweisen für die Visualisierung bei bestimmten medizinischen

Fragestellungen einzuführen. Als Anwendungsbeispiel dient die Analyse von intrakra-

niellen Aneurysmen. Hierzu werden zunächst die medizinischen Grundlagen dieser

Aufgabenstellung erläutert und es wird gezeigt, welche Schritte für einen standardi-

sierten Analyse- und Visualisierungsprozesses durchgeführt werden müssen. Ergebnis

dieses Prozesses sind mehrere vordefinierte Videosequenzen, die die Gefäßstruktur im

Gehirn entweder als Gesamtes oder Teilbereiche davon darstellen. Mit Hilfe dieser Vi-

deosequenzen kann ein untersuchender Mediziner auf einfache Weise überprüfen, ob

ein oder mehrere Aneurysmen vorliegen.

Im anschließenden Abschnitt wird eine alternative Methode für die Darstellung von

vorberechneten 3D-Visualisierungen des Untersuchungsgebietes, die sogenannten 3D-

Objectmovies, vorgeschlagen. Bei diesen werden an festgelegten Kamerapositionen

auf einer sphärischen Hülle um das dargestellte Objekt Visualisierungen vorberech-

net. Mit einem speziellen Betrachtungsprogramm ist es dann möglich, entlang dieser

vorberechneten Ansichten interaktiv zu navigieren. Für die automatisierte medizini-

sche Volumenvisualisierung wird ein neu entwickeltes Objectmovieformat vorgestellt,

das speziell an die Anforderungen der Analyse von medizinischen Volumendaten an-

gepasst ist. Zunächst wird der Aufbau des Formats erläutert, welches ermöglicht, un-

terschiedliche Darstellungen eines Objekts in einem Objetmovie zusammenzufassen.

Dann wird ein speziell entwickeltes Betrachtungsprogramm beschrieben, das auf Java

basiert und als Applet in eine Webseite eingebunden werden kann. So ist es auf einfach

Weise möglich, ein Objectmovie über das Internet verfügbar zu machen. Schließlich

18 Kurzfassung und Kapitelüberblick

wird gezeigt, wie das neue Objectmovieformat für die standardisierte Analyse von in-

trakraniellen Aneurysmen eingesetzt werden kann.

Im dritten Abschnitt des fünften Kapitels wird ein Webservicesystem präsentiert,

mit dem die standardisierte Analyse und Visualisierung von medizinischen Volumen-

daten automatisiert auf einem speziellen Server ausgeführt werden kann. Über ein dy-

namisches Webinterface kann ein Anwender Volumendaten auf den Server hochladen,

dort werden automatisch Videosequenzen oder Objectmovies generiert und schließ-

lich können die Visualisierungsergebnisse über das Webinterface abgerufen werden.

Zunächst wird die Architektur des Systems erläutert, dann wird näher auf den soge-

nannten Renderserver eingegangen. Hierbei handelt es sich um einen Clustercomputer,

bei dem die einzelnen Knoten mit leistungsfähigen Grafikkarten ausgestattet sind. Zur

Beschleunigung des Visualisierungsprozesses werden die Videosequenzen und Object-

movies verteilt auf den Clusterknoten berechnet und am Ende zusammengefasst. Ab-

schließend wird eine für die standardisierte Untersuchung intrakranieller Aneurysmen

entwickelte Webanwendung vorgestellt und es werden einige Leistungsmessungen des

Systems diskutiert.

Kapitel 6: Iterative Entwicklung von medizinischen Volumenvisua-

lisierungslösungen

Im sechsten Kapitel wird ein allgemeines Vorgehensmodell für die iterative Entwick-

lung von medizinischen Volumenvisualisierungslösungen vorgeschlagen. Dieses be-

steht aus vier Entwicklungsstufen, die auf den im Rahmen der Arbeit entwickelten

Visualisierungskonzepten basieren. Zunächst werden die vier Entwicklungsstufen de-

tailliert und es wird gezeigt, welche der vorgestellten Visualisierungsverfahren und

-techniken jeweils zum Einsatz kommen können. Die erste Entwicklungsstufe be-

schreibt den Zustand der klassischen 2D-Analyse medizinischer Aufnahmen. Hier-

auf aufbauend wird für die zweite Entwicklungsstufe ein 3D-Visualisierungsprototyp

entwickelt und evaluiert. In der dritten Stufe wird dann mit Hilfe der zuvor gewonne-

nen Erkenntnisse eine speziell an den medizinischen Anwendungsfall angepasste in-

teraktive Visualisierungapplikation entwickelt. Schließlich werden in der vierten Ent-

wicklungsstufe die Visualisierungsprozesse automatisiert und als Service einer breiten

Gruppe von Anwendern zur Verfügung gestellt. In einer abschließenden Diskussion

werden die unterschiedlichen Entwicklungsstufen bzgl. unterschiedlicher Fragestel-

lungen miteinander verglichen, z.B. wer ist die jeweilige Anwendergruppe und für

welche Anwendungsfälle sind sie geeignet, und anhand konkreter Beispiele aus der

Arbeit veranschaulicht.

Kapitel 7: Schlussfolgerung

Das letzte Kapitel fast die in dieser Arbeit vorgestellten Visualisierungsverfahren zu-

sammen, hebt noch einmal den Zusammenhang der unterschiedlichen Themen hervor

und gibt einen kurzen Ausblick auf zukünftige Arbeiten.

CHAPTER

1 INTRODUCTION

Modern tomographic medical imaging techniques provide a detailed volumetric in-

sight into a patient’s body to a physician. They are applied for different purposes,

such as diagnosis, treatment planning, intraoperative guidance, and postoperative con-

trol. There is a wide range of imaging modalities, which are suitable for the display

of different anatomical or functional aspects. Frequently, a patient is examined with

different imaging modalities to get an integrated view about his or her disease.

A tomographic scan consists of a number of two-dimensional (2D) images, also

referred to as slices, which represent cross-sections through the observed part of the

body. Usually, the 2D slices are taken at equidistant intervals. In conventional di-

agnosis a medical doctor analyzes a scan slice by slice and he has to reconstruct the

three-dimensional (3D) structures in his mind, which requires a good spatial sense.

The task gets even harder when the information of scans from different modalities has

to be fused.

To overcome these drawbacks, 3D volume rendering techniques have been intro-

duced, which support the visual analysis of the volumetric data. In the beginning,

mainly surface-based rendering methods for the visualization of explicitly extracted

surface models of anatomical or pathological structures dominated the field of medical

visualization. But with the ongoing performance increase of computer hardware, par-

ticularly of programmable graphics processing units (GPUs), direct volume-rendering

techniques, which directly visualize a volume data set without the need of an interme-

diate surface representation, gained the abilty to generate high quality visualizations

with interactive frame rates. Thus, direct volume rendering has been established in

many medical application fields and is nowadays integrated into most medical visual-

ization environments.

Nevertheless, there is still a wide gap between modern volume-visualization tech-

niques that were recently developed in visualization research and those that are reg-

ularly employed in medical practice. Especially in the context of GPU-based vol-

ume rendering many improvements have been achieved. But for the application of

these techniques to specific medical tasks one needs to have sophisiticated GPU-

programming skills and deep medical knowledge simultaneously. Furthermore, when

21

22 Chapter 1. Introduction

a new volume rendering technique is utilized for a special medical purpose, usually a

specialized solution is implemented that can not be ported easily to other application

fields. To bridge this gap between volume visualization on the one hand and medical

applications on the other hand is the aim of this thesis. Therefore, several general vi-

sualization techniques have been developed, which can be easily adapted for specific

medical purposes.

1.1 Medical Volume Visualization

The field of medical volume visualization involves a wide variety of different aspects.

Basically, the problem domain can be subdivided into three layers of abstraction (see

Figure 1.1).

Volume-Rendering Algorithms

Interactive Volume-Visualization Applications

Automation of Volume-Visualization Processes

M
e

d
ic

a
l
V

o
lu

m
e

 V
is

u
a

li
z
a

ti
o

n

Figure 1.1: Hierarchical ordered layers of the medical volume visualization domain.

The lowest layer represents the basic volume rendering techniques. Here, algo-

rithms should be designed that are appropriate for the visualization of medical image

data and that allow the interactive investigation of a dataset. On this level one has to de-

cide if an algorithm should be specialized in the rendering of certain kinds of datasets

and visualize them in a determined way, or if it should provide general functionality

which can be applied to a wide range of medical data. Further, different algorithms for

the visualization of single volumes (single-volume rendering) and for the combined

visualization of multiple volumes (multi-volume rendering) can be used. Often, there

is a trade-off between the generality of an algorithm and its rendering performance.

The second abstraction layer is built by interactive medical visualization appli-

cations that are built on top of the rendering algorithms. They should suit the re-

quirements of medical practice and should support the interactive analysis of medical

volume datasets in an intuitive way. Thereby, two strategies can be pursued. Either

a visualization application provides generic functionality, which can be adopted for

several different medical tasks, or it is designed for a specific medical purpose and

1.2. Thesis Overview 23

restricts interaction to dedicated functions. While applications of the first type involve

high flexibility for experienced users, applications of the latter type can support the

daily work of medical doctors who are not visualization experts.

The visualization approaches of the third layer go one step further by the automa-

tion of medical volume visualization processes. In clinical routine medical doctors

regularly have to investigate similar medical problems, for example the diagnosis of a

certain disease. Therefore, often informal workflows for the visual analysis of the ac-

quired volume datasets have been established. By automation of these workflows the

visual analysis can be supported and improved. On the one hand, other tasks can be

carried out while a computer is performing the automated visualization; on the other

hand, the visualization results can be provided in a standardized way. This allows,

for example, the easy comparison of different cases and supports the collaboration of

medical experts. Techniques for automated visualization should incorporate two ob-

jectives. First, it should be easy to initiate an automated visualization, and, second, it

should be possible to observe the visualization results in an intuitive way.

1.2 Thesis Overview

This thesis addresses the problem of medical volume visualization on all three abstrac-

tions layers shown in Figure 1.1. For each layer general and/or problem specific visu-

alization approaches are presented. Furthermore, it is illustrated how the approaches

on the different levels complement one another, and how they can be combined to an

integrated solution for visualization in medical application.

After an introduction to the fundamentals of medical imaging and visualization in

Chapter 2, Chapter 3 regards the lowest abstraction layer of medical volume visualiza-

tion. A flexible GPU-based rendering technique for multi-volume scenes is described,

which allows the design of visualizations on the abstract level of a so-called render

graph. From this graph GPU shaders for optimized rendering are dynamically gen-

erated. The strength of the approach is its generality. It can be applied to arbitrary

combinations of volume datasets, which, e.g., are taken with different imaging modal-

ities or at different points in time. Furthermore, the modular concept can even simplify

the generation of single-volume visualizations.

In Chapter 4 three interactive visualization applications the second abstraction

layer of medical volume visualization are presented. Each of them is based on the

before introduced multi-volume rendering technique. First, there is a visualization

tool that passes the flexibility of the render graph directly to the user. Intended users

of this tool are medical visualization experts who want to create meaningful visualiza-

tions for new medical problems. The second application targets the field of cognitive

neuro science. Specialized visualization techniques are presented that support the si-

multaneous visualization of functional images, which are gathered in cognitive studies,

and anatomical reference volumes. At last, a GPU-based algorithm for deformation of

medical volume datasets is introduced, which can for example be used in surgery sim-

24 Chapter 1. Introduction

ulation. The focus lies here on the direct integration of interactive volume deformation

into the visualization procedure

Chapter 5 discusses the automation of medical volume visualization processes – the

third layer of the visualization hierarchy – using the example of standardized analysis

of intracranial aneurysms. First, a technique for the interactive presentation of pre-

computed visualization results, so-called medical object movies, is introduced. Then,

a web-service system is presented which offers automated analysis and visualization of

medical image data. After the upload of a medical volume dataset via a webinterface,

the data is processed in parallel on a GPU-cluster and the generated visualizations are

provided for download.

Finally, in Chapter 6 it is shown how the techniques presented in this thesis can

support the development of visualization solutions for specific medical tasks. An iter-

ative processing model is introduced that starts with the analysis of the requirements

of an expert in the respective medical domain and ends with automated visualization

processes that can be distributed to a wide group of clinical users. Following this

processing model advanced volume visualization techniques can be easly adopted for

many medical applications.

CHAPTER

2 FUNDAMENTALS OF MEDICAL IMAGING

AND VISUALIZATION

Medical volume visualization generates 2D images of volumetric datasets that were

acquired from a patient with a tomographic imaging device. There exist several tomo-

graphic imaging techniques, which are appropriate for different medical purposes. For

the analysis and visualization of tomographic datasets a large variety of algorithms and

techniques has been developed, which are often specialized for certain tasks. Never-

theless, a common pipeline of processing steps has been established, which is applied

in a similar way for most problems of medical volume visualization. In this chapter

the fundamentals of this pipeline of medical imaging and visualization are introduced.

Thereby, the focus is laid on those techniques and algorithms that build the basis of the

visualization solutions presented in this thesis. Section 2.1 starts with a brief introduc-

tion to the most important tomographic imaging techniques. Then, in Section 2.2 the

stages of the common medical visualization pipeline are introduced. Since most visu-

alization techniques that were developed for this thesis utilize GPUs, Section 2.3 gives

an introduction to the basics of hardware accelerated rendering. Finally, in Section 2.4

the technique of direct volume rendering, which builds the fundament of this thesis, is

explained in detail.

2.1 Tomographic Medical Imaging Techniques

Medical imaging technologies aim to give insight into a patients body without the need

of invasive interventions. They can assist physicians and surgeons e.g. in the analysis

of pathological structures, in the diagnosis of diseases, or in the planning of surgical

operations. The discipline of diagnostic medical imaging (radiology) has its origins

in the discovery of X-rays by Wilhelm Conrad Röntgen in 1895 [105]. X-radiation is

electromagnetic radiation with wavelengths in the range of 10 to 0.01 nm, which is

differently absorbed in different materials.

In medical diagnosis X-rays are generated by a X-ray tube, sent through a patients

body and then recorded on a film. Basically, the film measures the attenuation of

the X-rays by the tissue that they pass while traveling through the human body. The

25

26 Chapter 2. Fundamentals of Medical Imaging and Visualization

(a) (b)

Figure 2.1: Two X-ray images: (a) A historical image of a human hand which was taken

by Röntgen in 1896. (b) A recent X-ray image of the human thorax (Image courtesy Peter

Hastreiter, University Hospital Erlangen). Please note that the image (a) has inverted intensities

due to a different recording technique.

attenuation is caused by two processes: X-rays are absorbed by the structures they hit,

and X-rays are scattered by the so-called Compton effect. Bony structures have the

highest absorption rates and, thus, appear bright in an X-Ray image. Other tissue types

show less absorption, which results in darker areas. Figure 2.1 shows two exemplary

X-ray images. Image (a) presents one of the first X-ray photographs taken by Röntgen

himself. Here the image intensities are inverted relative to modern X-ray scans, like

the one shown in image (b).

The measured X-ray intensity I depends on the initial intensity I0 and a material

dependent X-ray attenuation coefficient µ. It decreases exponentially with increasing

thickness d of the passed tissue [98]:

I = I0 · e−µ·d (2.1)

The product µ·d depicts the attenuation S of the passed material. Usually, the traversed

tissue does not exhibit a homogenous attenuation behavior. Thus, in general the total

attenuation S is determined by integration of the attenuation coefficients µ(l) along

the ray. Then the resulting intensity is

I = I0 · e−
R

µ(l)dl (2.2)

An X-ray image represents a 2D projection of the observed object. Thus, it is diffi-

cult to perceive the spatial relationships between the imaged structures. Furthermore,

dense material like bone may occlude other details. For this reason in medical diagno-

sis often two images from different viewing directions are taken. Tomographic imag-

ing methods overcome these drawbacks. Here, an image represents a cross-sectional

2D slice of the scanned object. By taking several 2D slices at distinct positions a 3D

2.1. Tomographic Medical Imaging Techniques 27

image of the inner structures of a patient’s body can be acquired. Those 3D images

build the basis of medical volume visualization.

There are four major types of tomographic medical imaging techniques, which

exploit different physical effects for image acquisition:

• Computed tomography (CT) uses X-rays, which are sent from different direc-

tions through the patient’s body.

• Magnetic resonance imaging (MRI) exploits the magnetic behavior of the hy-

drogen nuclei in the patient’s body when brought to a strong magnetic field.

• Ultrasound (US) scanning is based on high frequency sound waves, which are

emitted into a body part and reflected at interfaces between two tissue types.

• Nuclear imaging methods measure the signals of radiopharmaceutical substances

when they are processed in the body. The radiopharmaceutical substances are

either injected into a vein – positron emission tomography (PET) – or adminis-

tered orally – single-photon emission computed tomography (SPECT).

In the following computed tomography and magnetic resonance imaging, which play

a major role in medical volume visualization, are detailed. The explanations are based

on the books of Dössel [26], Lehmann et al. [73], and Preim and Bartz [98]. There the

interested reader can find more details about CT and MRI as well as about the other

imaging techniques.

2.1.1 Computed Tomography

Computed tomography (CT) was introduced by Godfrey Hounsfield in 1967 [52; 53].

It uses the X-ray technology to generate tomographic images. The basic idea is to mea-

sure the X-ray attenuation along single rays from many different directions around the

examined object. From these measurements a tomographic slice can be reconstructed.

Mathematically CT reconstruction is based on the Radon transform. This trans-

form describes a two-dimensional function f(x, y) by all integrals along straight lines

over the domain of f(x, y). Consider a straight line gΦ,s(l) that is parametically de-

fined and determined by the angle Φ from the x-axis and the distance s to the origin.

Then the Radon transform of f(x, y) can be defined in dependence of Φ and s:

R(Φ, s) =

∫ ∞

−∞

f(gΦ,s(l))dl (2.3)

A line of R with Φ = const. is called projection pΦ(s).
In combination with the Fourier transform one can reconstruct the original function

f from its Radon transform R. The Fourier slice theorem (see Figure 2.2) says that

the 1D Fourier transform PΦ(w) of the projection pΦ(s) describes the values of the 2D

Fourier transform F (u, v) of the function f(x, y) along a radial line with the angle Φ.

28 Chapter 2. Fundamentals of Medical Imaging and Visualization

x

y

f(x, y)

ΦΦ

s

pΦ
(s
)

u

v

F (u, v)

w

w

PΦ
(w

)

1D Fourier

2D Fourier

transform

transform

Figure 2.2: Fourier slice theorem: The 1D Fourier transform PΦ(w) of the projection pΦ(s) is

equal to a slice under the angle Φ in the 2D fourier transform F (u, v) of the original function

f(x, y).

Consequently, the Fourier transform F (u, v) can be obtained from the Radon transform

R(Φ, s) and then the original function f(x, y) can be determined by an inverse 2D

Fourier transformation.

In computed tomography the Radon transform of the position-dependend X-ray at-

tenuation coefficient µ(x, y) is measured (see Equation 2.2). Hence, the previously de-

scribed reconstruction scheme allows the determination of µ(x, y) on a cross-sectional

2D slice through the observed object. However, today mostly filtered back projection

is applied [101], which has less computational cost.

First CT scanners used an image acquisition scheme similar to Figure 2.2 left. A

single X-ray emitter/detector pair was translated along the object and then rotated to

gain the next series of measurements. In contrast to that, modern CT devices use fan

beam emitters and multiple detectors. Thus, a number of projections that cover the

whole object can be obtained at the same time and the translating movement is no

longer needed. Moreover, state-of-the art scanners can acquire up to 64 slices in a

single rotation around the object by the application of multiple layers of emitters and

detectors.

In medical imaging the computed X-ray attenuation values (µ) are normalized into

so-called Hounsfield units (HUs). This normalization maps the attenuation of water

tissue type air fat tissue water liver heart kidney bones

HU Interval -1000 -900...-170 0 20...60 20...50 30...50 45...3000

Table 2.1: Intervals of Hounsfield values for selected tissue types [98]

2.1. Tomographic Medical Imaging Techniques 29

(a) (b)

Figure 2.3: Two CT slices through the human head: (a) A conventional CT scan in which the

bone structure of the skull can be clearly distinguished; (b) A CTA scan in which blood ves-

sels are emphasized by a previously injected contrast agent. (Image courtesy Peter Hastreiter,

University Hospital Erlangen [49])

(µH2O) to zero and the attenuation of air to −1000:

µHU =
µ − µH2O

µH2O

· 1000 (2.4)

Different organs and tissue types are mapped to typical ranges of the Hounsfield scale

(see Table 2.1). It can be seen that the intervals of soft-tissue organs are similar or

even overlap. Thus, it is difficult to differentiate those tissue types. In contrast, bony

structures are mapped to high Hounsfield units, which can be clearly distinguished. For

the examination of vascular structures often CT angiography (CTA) is applied. Here, a

contrast agent is injected to the venous system, which emphasizes the blood vessels in

the CT scan. Figure 2.3 shows two CT slices through the human head. The left image

(a) presents a standard CT, the right image (b) shows a CTA with contrast-enhanced

vessels.

2.1.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is based on the effect that atomic nuclei emit an

electro-magnetic signal when stimulated by magnetic fields. This signal can be mea-

sured and used for reconstruction of tomographic slices through the observed object.

For medical purposes usually the magnetic resonance of hydrogen nuclei is examined.

Therefore, the patient is brought into a strong external magnetic field. This leads to an

alignment of the hydrogen nuclei, which can be considered as small dipole magnets,

either parallel or anti-parallel along the magnetic field. Furthermore, the nuclei rotate

around themselves (spin) and precess (rotate) around the z-axis of the magnetic field B

30 Chapter 2. Fundamentals of Medical Imaging and Visualization

xxx

xx xx

yyy

yy yy

zzz

zz zz

ω
ω

ω

ω

ω

ω

BBB

BB BB

M = Mz

M = Mz

M = Mxy

(a) (b) (c)

(d) (e) (f)

Figure 2.4: Relaxation of hydrogen nuclei after stimulation with a 90◦ RF pulse: (a) In a

static magnetic field B the nuclei rotate with the Larmor frequency ω around the axis of the

magentic field. This leads to a longitudinal magnetization M = Mz . (b) A 90◦ impulse alignes

the nuclei perpendicular to B. This leads to a transversal magnetization M = Mxy. (c)-(d)

After the impulse the nuclei dephase in the time T2 (spin-spin relaxation). (e)-(f) The nuclei

slowly realign with the magnetic field B in the time T1 (spin-lattice relaxation). (Inspired

by [26])

with a specific Larmor frequency ω. This frequency depends on the type of the nuclei

and the strength of the magnetic field.

When a perpendicular (90◦) radio-frequency (RF) pulse signal with the Larmor

frequency is additionally activated the nuclei are moved perpendicular to the magnetic

field and are forced to preceed in phase. After deactivation of the RF pulse the nu-

clei slowly release the received energy. The resonance signal after the pulse is called

free induction decay (FID). It is originated in two different relaxation effects (see Fig-

ure 2.4). First, there is the the transversal relaxation (also called spin-spin relaxation),

which describes the dephasing of the precession in the xy-direction. The time required

for this relaxation is called T2 and is in the order of a few milliseconds. The second

relaxation process is the longitudinal relaxation (spin-lattice relaxation). It describes

the realignment of the nuclei with the static magnetic field. The time needed for this

process is called T1 and is in the order of a second. The times T1 and T2 differ for

2.1. Tomographic Medical Imaging Techniques 31

(a) (b)

Figure 2.5: Two MRI slices through the human head: (a) A T1-weighted scan which accentu-

ates the brain tissue. (b) A T2-weighted image in which the brain fluid is emphasized. (Data

courtesy BrainWeb [77])

different tissue types.

For image acquisition the spatial position of a voxel is encoded by applying three

additional gradient magnetic fields. A gradient in z-direction allows the selection of

a certain xy-slice, because only those nuclei are stimulated for which the frequency

of the RF pulse is equal to the Larmor frequency, which depends on the strength of

the static magnetic field. A second gradient in y-direction is activated right after the

activation of the RF pulse. This encodes the y-coordinate of a nucleus in the phase of

the emitted signal. Finally, the x-coordinate is encoded in the frequency by applying

a x-gradient during the measurement of the signal. More precisely, in MRI the 2D

fourier transform of the current slice is acquired. By activating the y-gradient for

different time spans and measuring the accumulated signal of all activated nuclei at

different points in time during the activation of the x-gradient the fourier space, usually

called k-space in MRI, is sequentially sampled. The final image is then obtained by

an inverse fourier transformation.

For MRI imaging the FID signal is not measured directly but so-called echos that

are generated by additional 180◦ RF pulses. Different sequences of RF pulses allow the

accentuation of different anatomical or functional aspects. E.g., T1-weighted images

emphasize the difference between the T1-relaxation times of different materials; T2-

weighted images accentuate differences in the time T2. Figure 2.5 shows that in T1-

weighted images different tissue types can be distinguished, while in T2-weighted

images fluid signals are emphasized. Furthermore, several specialized MRI sequences

have been developed, which support the diagnosis and examination of certain diseases.

32 Chapter 2. Fundamentals of Medical Imaging and Visualization

So-called functional MRI (fMRI) is a MRI technique which allows the measure-

ment of the activations of brain regions while a patient is performing certain cognitive

or behavorial tasks. It is, on the one hand, frequently applied in brain research. On the

other hand, it can support neuro surgeons in the detection of diseased brain regions. In

Chapter 4.2 the fMRI technique and its application in cognitive neuroscience is further

detailed.

Another application field of MRI is diffusion tensor imaging (DTI). Here, the dif-

fusion of water, described by a diffusion tensor, is measured by a sequence of six MRI

images. DTI allows the extraction of the fibers of neural pathways and heart muscles,

because water diffusion shows an anisotropic behavior along the fibers. The DTI tech-

nique is, e.g., applied in neuro surgery to locate neural pathways that should not be

harmed in an intervention.

2.1.3 Discussion

CT and MRI are both tomographic imaging techniques that allow the acquisition of

three-dimensional information about a patients body. Due to the different physical

effects on which the two techniques are based, they are usually applied for different

diagnostic purposes. CT produces a good quality signal for skeletal structures and for

contrast-enhanced blood vessels, but is less suited for the differentiation of soft tissue.

The latter effect is caused by the similar X-ray attenuation of different soft tissue types.

In contrast to that, MRI is not appropriate for the observation of skeletal structures due

to the lack of water, which is basically needed for MRI measurements. On the other

hand, MRI can provide a high soft tissue contrast and supports the examination of dif-

ferent anatomical and functional aspects by the application of different measurement

sequences. Summarizing, CT and MRI are complementary techniques, which are of-

ten applied in combination to get an integrated view of a patient’s disease. However,

it has to be pointed out that CT is based on ionizing X-rays, which can cause can-

cer, while the magnetic fields applied in MRI are not known to have harmful effects.

On the other hand, MRI can not be applied for patients with metallic implants due to

the strong magnetic field. Futhermore, the contrast agents that may be used for both

techniques can cause allergique reactions in rare cases.

2.2 Medical Visualization Pipeline

The tomographic imaging techniques described in the previous section produce de-

tailed 3D image data of a patient’s body. The interpretation and analysis of this data

is a sophisticated task and requires a lot of experience. Medical visualization aims

to support the analysis of medical image data and can provide new insights. Thereby,

medical visualization methods follow the general visualization pipeline [139] (see Fig-

ure 2.6), which describes the way from initial data to the final image. The first step

of the pipeline is the acquisition of input data. This can originate from an arbitrary

2.2. Medical Visualization Pipeline 33

Raw Data

Data Acquisition

Filtering

Mapping

Data Base Simulation Sensors

Visualization Data

Renderable Representation

Rendering

Displayable Image

Figure 2.6: General visualization pipeline: Gray boxes represent pipeline steps, white boxes

represent (intermediate) results.

data source, e.g. a numerical simulation, a real-world measurement, or a data base. In

the filtering step the raw data, which is usually not suited for direct visualization, is

transformed into abstract visualization data. Typical filtering operations are denoising

of the data or the elimination of uninteresting samples. The next step of the pipeline,

the visualization mapping, transforms the visualization data into a geometric (or ren-

derable) representation and applies additional attributes like size, color, or textures.

Finally, the rendering step generates a displayable image by appropriate computer

graphics methods.

For medical visualization the general visualization pipeline can be extended to a

medical visualization pipeline like it is shown in Figure 2.7. It incorporates additional

steps for preprocessing of medical image data and takes the interaction with the user

into account. The medical visualization pipeline consists of four major stages, data

acquisition, preprocessing, visualization, and visual analysis, which are detailed in the

following sections.

2.2.1 Data Acquisition

The data used for 3D medical visualization is acquired by tomographic medical imag-

ing (see Section 2.1). Which imaging technique is applied, depends on the medical

34 Chapter 2. Fundamentals of Medical Imaging and Visualization

V
is

u
a
liz

a
ti
o
n

P
re

p
ro

c
e
s
s
in

g
 &

Im
a
g
e
 A

n
a
ly

s
is

D
a
ta

A
c
q
u
is

ti
o
n

Medical Imaging

Filtering

Segmentation

Registration

Mapping

Rendering

V
is

u
a
l

A
n
a
ly

s
is

Visual Analysis & Interpretation

U
s
e
r

In
te

ra
c
ti
o
n

Figure 2.7: Medical analysis and visualization pipeline. It is build of seven pipeline steps (light

gray) which can be arranged into four major pipeline stages. This pipeline follows approxi-

mately the definition of Hastreiter [49].

task for which the data is taken. Usually, radiologic protocols describe the way how

images for specific purposes, e.g. the analysis of a certain disease, should be taken.

Sometimes several 3D images with different modalities or different MRI sequences

are taken to get a more detailed view of a patient.

Tomographic imaging techniques generate series of cross-sectional 2D slices of

the scanned body part. The 2D images can be considered as 2D uniform grids (see

Figure 2.8 left), in which the pixels represent the data values at the grid points. The

distance between two grid points depends on the imaging modality and is typically

constant in both directions. Moreover, the grid point distances in x- and y- direction are

usually identical. The geometrical position of a grid point can be determined by mul-

tiplication of the grid point distances in x- and y-direction with the two-dimensional

index (i, j) of the grid point. Thus, it has not to be stored explicitly.

For 3D visualization the 2D slices are assembled into a 3D volume. Here, the

data elements are called voxels (volume elements) and build a 3D uniform grid (see

Figure 2.8 right). To each voxel a unique three-dimensional index (i, j, k) is assigned.

Like for 2D grids, the position of a grid point can be computed from its index and

2.2. Medical Visualization Pipeline 35

x

x

y

y

z

i

i

j

j

k

Figure 2.8: 2D grid (left) and 3D grid (right): The data values at the grid points (black dots)

are either called pixels (2D) or voxels (3D). Four (2D) respectively eight (3D) neighboring grid

points build a grid cell.

the voxel distances in the three directions. If the slice distance (z-direction) is equal

to the pixel distances in x- and y-direction the grid is called cartesian. When the

pixel distance differs in at least one direction it is more generally called uniform. In

a uniform 3D grid each grid point is connected to six direct neighbors (thus, it has

regular topology). Eight neighboring grid points build a cuboid cell. The data values

at the corners of a grid cell are given by the corresponding voxels. In-between data

values can be computed by interpolation. Details about interpolation in 3D uniform

grids are given in Section 2.4.2.

While medical volume datasets are mainly arranged on uniform grids, there are

other grid types which provide a greater flexibility by varying spacing, varying topol-

ogy or varying cell types. Those grids can often be found in numerical simulations.

Rectilinear grids and curvilinear grids are like uniform grids structured grids with a

regular topology but allow a better adaption to the underlying data. In rectilinear grids

the spacing in a certain direction can differ throughout the volume but is constant be-

tween cells with similar indices. In contrast to that, curvilinear grids do not restrict the

positions of their grid points.

Unstructured grids have neither predefined geometry nor predefined topology. Thus,

vertex coordinates and vertex connectivity have to be stored explicitly. This increases

the storage size and complicates data access and interpolation but provides, on the

other, hand a high degree of flexibility. Most popular are tetrahedral grids, which are

solely assembled of tetrahedral cells.

2.2.2 Preprocessing and Image Analysis

The preprocessing and image analysis stage aims to enhance and analyze the raw im-

age data for improved visualization. It can consist of up to three pipeline steps. In

36 Chapter 2. Fundamentals of Medical Imaging and Visualization

the filtering step typical filtering operations, like denoising or contrast enhancement,

are performed. In the segmentation step anatomical or pathological structures are ex-

tracted. When several datasets should be visualized simultaneously, they have to be

aligned in advance in the registration step. While filtering operations are regularly

conducted, the application of segmentation and registration depends on the specific

visualization task. Further on, the order of segmentation and registration can be re-

versed.

Filtering

The filtering step comprises all operations that restrict the amount of data and enhance

it for further processing. As a first step often a region of interest (ROI) is selected that

covers all structures that are relevant for further analysis. Usually, a cuboid sub-volume

is chosen. The selection of a ROI can, on the one hand, accelerate subsequent compu-

tations and, on the other hand, improve visualization, because irrelevant structures are

excluded.

Many filtering operations take the histogram of a data set into account. A histogram

gives for a discrete data value the frequency of its occurrence in a discrete dataset. If a

volume contains N voxels and the data values are in the set G = {0, 1, .., Gmax}, the

occurrence probability of a certain data value g ∈ G is

p(g) =
ng

N
, (2.5)

where ng is the total number of occurrences of g.

The peaks (local maxima) in a histogram are often related to a certain tissue type.

This information can be used to enhance important structures and to suppress the dis-

play of tissue that is not relevant. To enhance the overall image contrast histogram

equalization can be applied, which transforms the data values such that the occurrence

of data values is equally distributed in the resulting histogram. The transformation T
is defined as follows:

T (g) =

(
g∑

i=0

p(i)

)
· Gmax. (2.6)

For noise reduction a filter function F is applied to the volume data set. The general

concept of filtering of a function g is the convolution of g with the filter function F :

g′(x) = (g ∗ F)(x) =

∫ ∞

−∞

g(ξ) · F (x − ξ)dξ. (2.7)

For discrete images the convolution is expressed as weighted sum of the discrete signal

g over the discrete filter kernel F with 2N + 1 elements:

g′(u) =
N∑

i=−N

g(u − i) · F (i) (2.8)

2.2. Medical Visualization Pipeline 37

The 1D filtering concept can be easily adapted to 2D images or 3D volumes by apply-

ing a 2D filter kernel or a 3D filter kernel.

Since it can be assumed that noise occurs in high frequencies, typical noise reduc-

tion filters are low pass filters which suppress high frequencies. Frequently a Gaussian

filter kernel is applied, which represents a discrete version of the symmetric Gaussian

distribution function with the standard deviation σ:

G(x, σ) =
1

σ ·
√

2π
e

x

σ2 . (2.9)

There are numerous filters for other image-processing purposes. E.g., gradient

filters emphasize edges in an image, which can be useful for subsequent edge detection.

Specialized filters can enhance certain structures like bone or vessels. More details

about filtering can be found in [73], [98], and [145].

Segmentation

Segmentation decomposes a medical volume dataset into anatomical and/or patholog-

ical structures that are relevant for a specific visualization task. Thereby, segmenta-

tion comprises two aspects. On the one hand, relevant structures have to be reliably

identified. On the other hand, the shape of a segmented structure should be precisely

specified.

Technically, segmentation assigns to each voxel a unique tag (label) that indicates

its membership to a specific structure. These tags are stored in an additional volume, a

so-called tagged volume, which has equal extent as the original dataset. Most segmen-

tation methods work on 2D images. They can be applied to 3D volumes by processing

them slice by slice. However, for some techniques 3D counterparts have been devel-

oped.

Segmentation can be performed manually, semi-automatic, or fully automatic. In

manual segmentation a user has to mark the voxels that belong to a certain structure

manually on each slice of a volume dataset. This method is time consuming and usu-

ally not practical for regular application. In contrast, fully-automatic methods perform

segmentation without any user interaction. Since this is a sophisticated challenge,

most segmentation approaches are semi-automatic. They take into account that the

detection of relevant structures is a high-level task, which is best performed by a hu-

man, while the delineation of the precise shape of a structure can be better carried out

by a computer. (Semi-)automatic segmentation approaches can be grouped into four

classes:

Pixel-based methods Pixel-oriented segmentation methods only take the intensity

of a voxel into account. A pixel is applied to a certain structure if its intensity lies

within an interval of a lower and upper intensity threshold. For the selection of a

threshold usually the histogram of an image or volume is observed. A local minimum

often represents a threshold that optimally separates two tissue types.

38 Chapter 2. Fundamentals of Medical Imaging and Visualization

Region-based methods For region-oriented segmentation not only the intensity of

a pixel but also its neighborhood is examined. E.g., region growing starts with one

or more user selected seed points and adds neighboring voxels until the intensity of

a voxel exceeds a user-defined threshold. The threshold can again be chosen via the

histogram.

Watershed segmentation considers a volume or image as a topographic landscape

with ridges and valleys. The height of a voxel is typically defined by its intensity

value or its gradient magnitude. This landscape is stepwise “flooded”, which leads to a

large number of separated regions, so-called catchment bassins. When the water level

exceeds a watershed between two neighboring catchment bassins, they are merged.

The algorithm has to be stopped when an appropriate segmentation of the dataset is

achieved.

Edge-based methods Edge-based segmentation techniques try to find continuous

edges that enclose the searched structure. An important representative of this class is

livewire segmentation [88]. This method uses Dijkstra’s graph search algorithm to find

a path with minimal cost between two user defined control points in a 2D slice image.

The cost function between two neighboring pixels depends on their intensities and on

the gradient magnitude and gradient direction. While one of the control points is fixed,

the user can replace the other until the generated edge best fits the target structure. By

repeatedly adding new control points the complete boundary of the target structure can

be determined.

Model-based methods Model-based segmentation methods use an initial model that

makes assumptions about size, shape, gray level distribution etc. of the target structure.

This model is iteratively fitted to the examined dataset.

An active contour model or snake [60] is a two-dimensional parametric curve,

which is deformed towards the boundary of the target structure by internal and ex-

ternal forces. Therefore, an energy function is defined that is composed of an inner

energy, which represents the smoothness of the curve, and an external energy, which

is derived from the image’s intensity values and gradient magnitudes. By minimizing

this energy function a smooth boundary of the target structure can be found. Balloon

segmentation [128] extends the snake concept to 3D.

Level-set segmentation techniques [121] also use internal (smoothness) and exter-

nal (image) constraints to determine the boundary of a target structure. But in contrast

to active contour models, the boundary is implicitly defined by a so-called level-set

function, which is evolved under control of a partial differential equation. Level-set

methods can be applied for 2D images and 3D volumes.

Active shape models (ASMs) [23] are parameterized descriptions of the shape of

anatomical structures. They are generated from a number of reference datasets by

statistical analysis and describe the main modes of shape variation. For segmentation

the mean shape of the searched structure is initially placed in the target image. Then

2.2. Medical Visualization Pipeline 39

the model parameters (weights) are iteratively adapted until an optimal fit is achieved,

for example in dependence of the image’s gradient magnitude.

In [73], [98] and [145] more details about segmentation in general, about the intro-

duced segmentation methods and about further specialized techniques can be found.

Further more, direct volume rendering provides a kind of implicit segmentation via

transfer functions. Here segmentation information is not explicitly generated, but is

applied on-the-fly during rendering. This technique is detailed in Section 2.4.2.

Registration

Registration is the process of finding a spatial transformation that aligns one medical

image or volume with another medical image or volume. After registration it is easier

to compare the two datasets with each other, and it is possible to generate combined

visualizations. There are three major application scenarios for medical image registra-

tion:

• Different Points in Time For many medical purposes a patient is tomographi-

cally imaged at different points in time, e.g. to monitor the course of a disease or

the effect of a treatment. Registration allows here a better comparison of the ac-

quired image datasets, for example with respect to tumor growth. Furthermore,

registration can be applied for the matching of pre-, intra- and postoperatively

taken images. This can ease, for example, the take-over of preoperative analysis

and planning results into the operation room. With coaligned pre- and postoper-

ative tomographic scans the success of a surgical intervention can be verified.

• Multimodal Imaging To get a better view of a disease, a patient is often exam-

ined with several different imaging modalities. Before a direct comparison the

scans have to be registered because usually the patient is differently positioned in

the different imaging devices. Furthermore, the different modalities may show

differing imaging errors.

• Atlas Matching Often a patient specific dataset is registered with an atlas dataset

that represents the anatomical average of a certain body part. This allows, e.g.,

the comparison of the patient with the average or the easy identification of certain

structures that are already labeled in the atlas.

Usually, registration is an iterative optimization process. In each step first the trans-

formation is slightly adapted, then one of the two datasets is accordingly transformed,

and finally the quality of the registration with respect to a certain similarity measure is

evaluated. If the similarity is not sufficient, the optimization process is continued.

Registration techniques can be classified either by the employed transformation

type or by the applied similarity measurement. Concerning the transformation type,

40 Chapter 2. Fundamentals of Medical Imaging and Visualization

we distinguish between methods that apply global transformations and those that uti-

lize local transformations. Global transformations are defined by a small set of param-

eters and are applied to the whole dataset in a similar way. Rotations and translations

are typical global transformations. These rigid transformations do not change the ge-

ometry of an object and are usually applied to compensate differences in the location

and orientation of the imaged structures. More general, any kind of affine transfor-

mation can be utilized for global registration. In contrast, local transformations apply

individual deformations to local areas in a dataset. This permits a better compensation

of individual differences in the datasets, which may originate from deformations of

the imaged structures. For local transformations B-splines or elastic models can be

applied.

Regarding the applied similarity measure, one can distinguish between geometry-

based measures and intensity-based measures. For geometry-based similarity often

the correspondence of explicitly specified control points, so-called landmarks, is ex-

amined [104]. Alternatively, the results of a preceding segmentation can be used to

match corresponding structures. Intensity-based similarity measures compare the in-

tensities of voxels in the untransformed dataset with the corresponding voxels in the

transformed dataset. If the two datasets are taken with the same modality, the inten-

sities can be directly compared. This does not work for images taken with different

modalities, for example with CT and MR. Here, often mutual information, a mea-

sure from information theory, is used, which is based on the 2D histogram of the two

datasets [136].

For further details about medical image registration and about specific registration

techniques the reader is referred to [98] and [145].

2.2.3 Visualization

In the visualization stage the preprocessed 3D volume data is converted into a 2D im-

age. This process is called volume visualization and comprises the mapping of the

volume data into a renderable representation and the generation of a 2D projection

(rendering) due to this representation. There are three different ways of volume visu-

alization (see Figure 2.9), which fundamentally differ in the rendering step and also in

the mapping step:

Plane-based Volume Visualization (Figure 2.9 (a)) In plane-based volume visual-

ization a 2D cross-sectional slice of the volume is presented as a 2D image. The slice

is often oriented perpendicular to a coordinate axis, but modern computer graphics

methods also permit the display of arbitrarily oriented slices. In the mapping step a

polygon is computed that represents the 2D cut through the bounding box of the 3D

volume. In the rendering step this polygon is rendered parallely to the screen and the

corresponding intensity values are mapped to it with 3D texturing methods. The inten-

sity values are usually mapped linearly into gray values, but theoretically any kind of

2.2. Medical Visualization Pipeline 41

(a) (b) (c)

Figure 2.9: Three ways of volume visualization of a MRI dataset of a human head: (a) slice-

based visualization of a cross-sectional cut perpendicular to the y-axis; (b) surface-based visu-

alization of the skin; (c) direct volume visualization with a part cut out to get insight to inner

structures.

image processing, like contrast enhancement, could be applied.

The advantage of plane-based volume visualization is its similarity to the tradi-

tional slice-by-slice examination of a tomographic scan. Thus, medical doctors are

already familiar with this way of volume examination. Furthermore, since the dis-

played information is just two-dimensional, there is no problem with occlusion, which

regularly occurs when 3D data is projected to a 2D image. On the other hand, the

3D relationship of the visualized structures is still not presented directly and has to be

reconstructed in mind. To partly overcome this drawback, often three perpendicular

slices are displayed simultaneously and the user can interactively change the selected

slices.

Surface-based Volume Visualization (Figure 2.9 (b)) For surface-based volume vi-

sualization primarily a polygonal 3D surface model – usually a triangle mesh – of a

certain anatomical or pathological structure is extracted (mapping), which is then ren-

dered with standard 3D rendering methods. The surface model can either be generated

along the boundary of a pre-segmented structure or along a so-called isosurface. An

isosurface is a surface in a 3D dataset on which the corresponding intensity has every-

where the same isovalue. It is implicitly defined by the set I of all points x in the 3D

dataset, regarded as a continuous 3D function V (x), for which the difference between

the data value V (x) and the isovalue iso is zero:

I(iso) = {x ∈ R
3|V (x) − iso = 0} (2.10)

An isosurface effectively separates a volume dataset into a part outside the isosurface

and a part inside the isosurface.

The most famous method for the extraction of an isosurfaces from a volume dataset

is the marching cubes algorithm which was introduced by Lorensen and Cline [75].

42 Chapter 2. Fundamentals of Medical Imaging and Visualization

This algorithm processes the cuboid cells of the volume grid (see Section 2.2.2) in

sequential order. For each of the eight vertex values of a grid cell it is checked if it

lies inside or outside the isosurface. There are 256 different configurations of vertex

states which can be summarized to 15 different cases. For each of these cases ex-

ists a corresponding triangle configuration that approximates the isosurface inside the

cell. These configurations are stored in a look-up table and are added to the generated

surface mesh when a corresponding vertex configuration occurs. The position of the

triangle vertices along the cell edges is computed by linear interpolation. The march-

ing cubes algorithm can also be applied to segmented volume data but then so-called

stair-case artifacts occur due to the steep transition between voxels inside and outside

a segmented region. To suppress these artifacts the segmented volume dataset and/or

the generated mesh can be smoothed.

A generated triangle mesh can be directly rendered with classical graphics hard-

ware support. To achieve a three-dimensional impression of the structure the surface

has to be additionally illuminated and shaded. For this reason the surface-based vol-

ume rendering technique is often referred to as surface shaded display.

The advantage of surface-based rendering is its direct support by the 3D graphics

hardware. But in return the generation of a surface mesh is an expensive pre-processing

step. Furthermore, a surface model presents only one certain structure of a dataset and

not the dataset as a whole. When different structures of a dataset should be analyzed

simultaneously, several surface meshes have to be generated and rendered in combina-

tion.

Direct Volume Visualization (Figure 2.9 (c)) Direct volume visualization does not

use any intermediate representation for rendering but directly accesses the original

volume dataset. Basically, for each pixel a viewing ray is sent through the volume that

accumulates color contributions at equidistant sample points. The color contribution

of a sample point is determined by a transfer function that maps the density value at the

sample point into a color and an opacity value. By variation of the transfer function

different structures of a dataset can be emphasized or suppressed. In direct volume

visualization mapping and rendering builds a unit that can not be separated into two

independent steps.

The advantage of direct volume visualization is the ability to highlight different

structures of a dataset without the need of costly preprocessing. Furthermore, there are

several rendering and shading techniques by which different aspects of a dataset can be

emphasized. Clipping techniques can give insight into inner structures, while the outer

shape is provided simultaneously as context. However, direct volume visualization is

more expensive than surface-based volume rendering. But there exist several GPU-

based rendering algorithms that can achieve interactive frame rates for average-sized

medical volume datasets. Thus, direct volume visualization is nowadays applicable for

medical practice.

Since direct volume visualization builds the base of the visualization algorithms

2.3. Hardware-Accelerated Rendering 43

and techniques presented in this thesis, this topic is further detailed in Section 2.4. In

literature frequently the alternative term direct volume rendering can be found, which

is often used exchangeable. In this thesis it is distinguished between direct volume

rendering (DVR) as the technique of computing a 2D image directly from a 3D vol-

ume and direct volume visualization as the process of composing a meaningful visual

representation of the information contained in a volume dataset by means of DVR.

Often, direct volume rendering and direct volume visualization is shortly denoted as

volume rendering and volume visualization (in contrast to surface-based rendering and

surface-based visualization).

2.2.4 Visual Analysis

The last step of the medical visualization pipeline is the visual analysis and interpre-

tation of the displayed data, for example to gain information about a disease or for the

planning of a treatment. This task is mainly performed by the user, but it should be

supported by the visualization application by means of intuitive interaction function-

ality. Ideally, the parameters of any pipeline step can be manipulated and the impact

to the visualization result can be directly analyzed.

Concerning the rendering step, a medical visualization tool should allow the in-

teractive manipulation of the camera position and orientation. By manipulation of

the mapping step parameters the visual representation of a dataset can be influenced.

Since many preprocessing and image analysis algorithms are semi-automatic, the re-

quirement of interaction is immanent for this pipeline stage. Finally, the visualization

result could give feedback for the adjustment of the parameters of the applied image

acquisition techniques either for a repeated observation of the same patient or for fu-

ture observations of other patients with similar indications.

This thesis lays its focus on the last two stages of the medical visualization pipeline

– visualization and visual analysis – and the interaction loop between these two stages.

The preceding steps of the pipeline build the basis of the presented visualization tech-

niques but are not in the scope of this work.

2.3 Hardware-Accelerated Rendering

Modern computers are equipped with graphics cards, which are specialized hardware

extensions for the generation and output of images to a display. While first generations

were solely responsible for the mapping of text and graphics to the video output, a

contemporary graphics card usually possesses a specialized processor for hardware-

accelerated 3D rendering – a so called graphics processing unit (GPU) – and special

memory for the storage of graphics data. In general, a GPU is a data-parallel streaming

processor that is optimized for the parallel synthesization of a 2D image from a 3D

scene. Originally, GPUs were designed for surface-based rendering, but they do now

44 Chapter 2. Fundamentals of Medical Imaging and Visualization

provide a flexible programming model that allows their application for other purposes.

It is obvious to exploit these capabilities for interactive 3D visualization. For example,

GPUs can be employed efficiently for direct volume rendering.

2.3.1 Rendering Pipeline

Starting point of the generation of a 2D raster image from a 3D scene by a GPU is

the decomposition of complex 3D objects into geometrical primitives, namely points,

lines, triangles, quads, and planar polygons. The primitives are defined by a set of

vertices. These are sent to the GPU as an ordered input stream. Besides its position

in 3D space a vertex can hold additional information, like the direction of the surface

normal or a color. Additional data can be stored in so-called textures (data arrays),

which are held in the GPU memory. The data elements of a texture are called texels.

There exist 1D-, 2D-, and 3D-textures. A vertex is mapped to a data value in a texture

via additionally attached texture coordinates. They are defined in a normalized texture

space where a texture has edge length one in each direction. Sample values at tex-

ture coordinates between texels are computed by interpolation from neighboring data

values.

The processing of the vertex input stream on the GPU is specified by the so-called

rendering pipeline (see Figure 2.10). On an abstract level this pipeline is build of three

major processing stages:

• Geometry Processing In the geometry processing stage the incoming vertices

are first transformed from their local object space into the common world space

(modeling matrix), then into the view space of the camera (viewing matrix) and

finally into the normalized screen space (projection matrix). In the primitive

assembly step the vertices are joined together to the geometric primitives that

they originally formed. Then, in the primitive processing step the primitives

are clipped against the view frustum, are transformed into the two-dimensional

device space and are finally mapped to the viewport.

• Fragment Processing In the fragment processing stage the primitives are first

rasterized into fragments, which correspond to pixels in the frame buffer (storage

of the output image). Furthermore, the vertex attributes, e.g. texture coordinates,

are interpolated. Then, per-fragment operations are performed which compute

the final color from the interpolated vertex attributes and the corresponding tex-

ture samples.

• Compositing In the final compositing stage the fragments are written to the

frame buffer. But first, several tests are performed that check if a fragment must

be discarded, for example because of occlusion. If the fragment is not discarded,

its color is combined with the color that is already stored at the corresponding

raster position in the frame buffer. For this purpose, different blending rules can

be applied.

2.3. Hardware-Accelerated Rendering 45

F
ra

g
m

e
n
t

P
ro

c
e
s
s
in

g
G

e
o
m

e
tr

y
 P

ro
c
e
s
s
in

g
Vertex Shader

Geometry Shader

Primitive Assembly

Primitive Processing

Rasterization & Interpolation

Fragment Shader

C
o
m

p
o
s
it
in

g

Frame-Buffer Operations

Input Stream

Frame Buffer

Primitive Assembly

Figure 2.10: The programmable rendering pipeline. White boxes depict fixed functionality, the

steps in the grey boxes are programmable by shader programs.

The first generation of GPUs implemented fixed-function rendering pipelines, which

provided only small adaptability. However, modern GPUs provide the possibility to

replace some of the pipeline steps by user written shader programs. Figure 2.10 shows

the programmable graphics pipeline as it is approximately realized on current GPUs.

There are three programmable shader units. A vertex shader replaces the vertex-

processing step in the fixed function pipeline. Arbitrary per-vertex operations, like

transformations, per-vertex lighting or the computation of texture coordinates, can be

performed. A geometry shader introduces an additional (and optional) pipeline step

after the primitive assembly. Here, a single incoming primitive can be replaced by

several outgoing primitives, which for example refine the structure of a surface. Since

the geometry shader outputs unconnected vertices, the primitive assembly step has to

be performed again. Finally, a fragment shader provides the possibility of performing

arbitrary operations on the rasterized fragments, like texturing or per-fragment light-

46 Chapter 2. Fundamentals of Medical Imaging and Visualization

ing. Since current GPUs support loops and conditional jumps in a fragment shader,

sophisticated shading operations can be realized.

There are two major application programming interfaces (APIs) for GPUs with

associated shader programming languages: OpenGL [93] (open graphics library) with

GLSL [113] (OpenGL shading language) and DirectX [85] with HLSL (high level

shader language). While OpenGL is an open standard with implementations on several

platforms, DirectX is developed by Microsoft and only available for Windows environ-

ments. For the implementation of the visualization techniques presented in this thesis

solely OpenGL and GLSL was applied. Thus, the reader may sometimes find termi-

nology which is specific for this technology. Nevertheless, the proposed solutions can

be realized with any graphics API and shader programming language.

2.3.2 General Purpose Computation on GPUs

The enormous parallel computing capabilities of modern GPUs suggest to be exploited

for non-graphics computations. In fact, an independent research discipline dealing

with general purpose computation on GPUs (GPGPU) has been established [44]. Ba-

sically, any algorithm that fits to the SIMD (single instruction, multiple data) stream

programming model can be adapted for computation by a GPU. Typical application

fields of GPGPU are grid-based computational problems like fluid dynamics [48], im-

age processing [58], or computer vision [39]. But GPUs have also been employed for

solving systems of linear equations [69], the simulation of large astronomical n-body

systems [97], and many other tasks. In Section 4.3 of this thesis a GPGPU algorithm

is presented that exploits the GPU for interactive volume deformation.

To use a GPU for general purpose, the general programming model for stream

processors has to be mapped to the concepts of GPU-based graphics programming. In

general, a stream processor applies a series of operations (kernel) to all elements in

a set of data (stream). On a GPU a stream corresponds to a texture (typically a 2D

texture) and a kernel can be realized by a shader (typically a fragment shader). To

initiate the processing of a kernel, the viewport is set to the size of the stream texture

and a screen-filling quad is rendered. Then the elements of the stream are automatically

processed in parallel.

For reading operations the stream texture can be bound like a normal texture. For

writing operations it has to be bound as a render target. Inside a shader any texel of

an input texture can be accessed, but the output element (the currently processed frag-

ment) is determined in advance. Thus, data can be gathered from other data elements

in a stream, but it is not possible to scatter computing results to other elements like the

one currently processed. If intermediate computing results should be communicated

to other elements in a stream, the data has to be written to the output element and then

gathered by the other elements in a further render pass. Hence, most GPGPU algo-

rithms employ several render passes in which they apply the same or different kernel

shaders. Furthermore, it is not possible to simultaneously read from and write to a

texture in a single render pass. For this reason, a processing scheme called ping-pong

2.4. Direct Volume Rendering 47

rendering has been established. Here, the stream texture is duplicated and one texture

is bound as input and the other as output. After each rendering pass the two textures

are interchanged to provide the output from the previous pass as input to the next pass.

Due to the success of GPGPU applications, several APIs have been developed

that provide a more general access to the computing capabilites of a GPU than the

classical Graphic APIs. E.g., the Brook library [16] realizes a general stream process-

ing layer that covers the underlying graphics API. The CUDA [91] (compute device

framework architecture) framework by NVIDIA provides a direct stream program-

ming interface for GPUs, which is integrated into the C language. Similar ideas are

followed by OpenCL [61] (open compute language) and Microsoft’s DirectX 11 Com-

pute Shader [9]. Finally, it can be said that GPUs more and more turn from special-

ized processors for graphics purposes to general coprocessors for parallel computation

tasks.

2.4 Direct Volume Rendering

In Section 2.2.3 direct volume rendering was introduced as one of three common

techniques for the visualization of a medical volume dataset. In contrast to indirect

surface-based rendering, it does produce a 2D projection directly from the 3D volume

without employing an intermediate geometrical representation. Direct volume render-

ing is nowadays regularly applied in medical volume visualization and builds the basic

algorithm for the visualization techniques that are presented in this thesis. This sec-

tion gives details about the concepts of direct volume rendering as far as they support

the comprehension of the following chapters. It starts with the theoretical background,

then covers practical aspects of the volume rendering pipeline, and finally describes the

two most popular algorithms for GPU-based volume rendering, slice-based rendering

and ray casting. For an in-depth overview of modern techniques for volume graphics

and volume visualization the reader is referred to the book by Engel et al. [28].

2.4.1 Theoretical Background

In general, direct volume rendering generates 2D images from arbitrary 3D scalar

fields. A 3D scalar field can be written as function that maps positions in 3D space to

1D scalar values:

φ : R
3 → R, x 7→ φ(x) (2.11)

In the context of medical images φ is defined by a discret regular grid. At positions

outside the boundaries of the volume data set (the bounding box) φ is mapped to zero;

scalar values at positions between grid points are computed by interpolation from the

scalar values at the surrounding grid points (see Section 2.4.2).

Direct volume rendering algorithms usually regard a volume as a distribution of

gaseous particles. For image synthesis the transport of light along a viewing ray that

passes the volume and then reaches the camera is modelled (see Figure 2.11). Thereby,

48 Chapter 2. Fundamentals of Medical Imaging and Visualization

three different types of interaction between the light and the participating media can be

taken into account. First, the particles can partly absorb the incoming light; second, the

passed particles can actively emit light; third, the light can be scattered at the partici-

pating media. While scattering may be incorporated for photo-realistic rendering, vol-

ume rendering for scientific purposes usually applies a simplified emission-absorption

model.

Volume Rendering Integral

When the emission-absorption model is employed, the differential change of the light

intensity I at a position s along a ray S is described by the following differential

equation:
dI

ds
= −τ(s) · I(s) + q(s). (2.12)

τ(s) is the so-called extinction coefficient. It attenuates the incoming intensity I(s) at

position s. q(s) is the so-called source term that gives the amount of light emitted at

position s. Usually, q(s) is substituted by τ(s) · q̃(s). This takes into account that q(s)
depends on a normalized intensity q̃(s) and the density of particles at position s, which

is indirectly given by τ(s).
Equation 2.12 is the so-called volume rendering equation in its differential form.

The formal solution of the differential equation yields the volume rendering inte-

gral [76]

I(s) = I0 · e−
R s

sstart
τ(t)dt +

∫ s

sstart

q(s′) · e−
R s

s′
τ(t)dtds′, (2.13)

which gives the light intensity at an arbitrary position s along the ray. Here I0 is the

initial light intensity at the entry point sstart to the volume. The attenuation factors

t(x, s) = e−
R s

x
τ(t)dt (2.14)

in equation 2.13 lie in the interval [0 . . . 1] and describe the transparency of the passed

material between x and s.

Since a scalar field does not directly represent the properties τ(s) and q̃(s), they

have to be computed from the scalar value φ(s) at position s. Therefore, transfer

functions Tτ (·) and Tq̃(·) are applied that map scalar values to the respective optical

properties. Thus, the extinction coefficient τ(s) and the source term q(s) are obtained

in the following way:

τ(s) = Tτ (φ(s)),

q(s) = τ(s) · q̃(s) = Tτ (φ(s)) · Tq̃(φ(s)). (2.15)

Numerical Evaluation

To compute the light intensity I that reaches the camera from a ray S, the volume

rendering integral has to be evaluated from the ray’s entry point to the volume at po-

sition sstart to the exit point at position send (see Figure 2.11). In general, there is no

2.4. Direct Volume Rendering 49

sstartsend sisi+1

∆s

I0

I

Figure 2.11: Principle of direct volume rendering: A viewing ray is traced on its way to the

camera. While the ray passes the volume, the incoming light intensity I0 is altered by emission

and absorption, resulting in the final intensity I that reaches the camera. For numerical evalu-

ation of the volume rendering integral the ray is sampled at equidistant positions between the

entry point sstart and the exit point send.

analytical solution. Thus, the integral has to be approximated numerically. Therefore,

the interval [sstart . . . send] is divided into n segments of equal length ∆s = sstart−send

n
.

Then the transparency t(si, send) of the material between the position si = sstart+i·∆s
and the end position send can be approximated by means of the Riemann sum:

t(si, send) = e
−

R send
si

τ(t)dt

≈ e−
Pn−1

k=i
τ(sk)∆s =

n−1∏

k=i

e−τ(sk)∆s. (2.16)

When approximating the volume rendering integral (see Equation 2.13) in a similar

way, we get the approximated light intensity

I = I(send) = I0t(sstart, send) +

∫ send

sstart

q(s′)t(s′, send)ds′

≈ I0

n−1∏

k=0

e−τ(sk)∆s +
n−1∑

k=0

q(si)∆s

n−1∏

j=k+1

e−τ(sj)∆s. (2.17)

Defining

ti = e−τ(si)∆s (2.18)

as the approximated transparency and

ci = q(si)∆s = τ(si)q̃(si)∆s (2.19)

50 Chapter 2. Fundamentals of Medical Imaging and Visualization

as the approximated light intensity of the i-th ray segment, Equation 2.17 can be rewrit-

ten to

I ≈ I0

n−1∏

k=0

tk +
n−1∑

k=0

ci

n−1∏

j=k+1

tj

= cn−1 + tn−1 (cn−2 + tn−2 (cn−3 + · · · t1 (c0 + t0I0) · · ·)) (2.20)

This leads to an iterative computation scheme of the final intensity I = In starting with

the initial intensity I0:

Ii = ci−1 + ti−1Ii−1. (2.21)

2.4.2 Volume-Rendering Pipeline

There are several different volume-rendering algorithms, which perform the numeri-

cal evaluation of the volume rendering integral in different ways. However, they all

apply similar processing steps, which can be arranged in a general volume rendering

pipeline (see Figure 2.12). Starting from the volume dataset, in the first sampling stage

the volume is sampled at discrete positions and the corresponding sample values are

determined. In the second shading stage the sample values are mapped to colors and

further shading operations like illumination are applied. Finally, in the compositing

stage the sample colors are accumulated along viewing rays to obtain the pixel colors

of the output image. Usually, the three pipeline stages are not strictly separated but are

repeatedly applied in a loop at different sampling positions, and the final pixel colors

are iteratively accumulated. Since the sampling stage can be further subdivided into

data traversal and interpolation and the shading stage comprises classification and il-

lumination, the volume-rendering pipeline consists all in all of five steps, which are

detailed in the following.

Data Traversal

Volume rendering algorithms primarily vary in the way they gather the volume sam-

ples. Basically, we distinguish between image-order algorithms and object-order algo-

rithms. Image-order techniques iterate over the pixels of the final image and evaluate

for each pixel the volume rendering integral by traversing the corresponding viewing

ray, which starts from the camera, runs through the pixel and then passes the volume.

Image-order techniques are usually referred to as ray casting [59; 74].

Object-order algorithms sample the volume cell-by-cell, compute for each cell the

color contribution and project this color to the image plane. The most prominent

object-order algorithms for regular grids are slice-based volume rendering [24; 144]

and volume splatting [143].

In Section 2.4.3 the two most important techniques for GPU-based volume render-

ing, slice-based volume rendering and ray casting, are described in detail.

2.4. Direct Volume Rendering 51

S
h
a
d
in

g
S

a
m

p
lin

g Data Traversal

Interpolation

Classification

Illumination

Compositing

Volume Samples

Sample Colors

Image Pixels

Volume Dataset

Figure 2.12: The volume rendering pipeline. It consists of three major stages (light gray) that

convert a 3D volume dataset via several intermediate representations (white boxes) into a 2D

image. The three stages are further subdivided into a total number of five pipeline steps (dark

gray) that are repeatedly applied in a loop.

Interpolation

The traversed sample positions usually do not lie directly on a grid point of the sampled

volume grid. Thus, the sample values have to be interpolated from the data values at

the surrounding grid points. The simplest interpolation scheme is nearest-neighbor

interpolation. Here, the grid point that is nearest to the current sampling point is

evaluated, and the data value of this grid point is used as sample value. Nearest-

neighbor interpolation produces discontinuities at the transitions between the influence

areas of neighboring grid points. Since this leads to visible artifacts in the final image,

normally interpolation methods are applied that take more than one grid point into

account.

Trilinear interpolation computes a sample value from the eight grid points that

form the border of the grid cell in which the sampling point lies. It is based on one-

dimensional linear interpolation (see Figure 2.13 (a)) of scalar values along a straight

line between two points X0 and X1. Here, the scalar value φ̃(X) for a point X between

X0 and X1 is computed from the scalar values φ(X0) and φ(X1) at X0 and X1 by the

52 Chapter 2. Fundamentals of Medical Imaging and Visualization

X
X

X
X0X0 X0 X1X1X1

X2X2 X3X3

X01

X23

X4 X5

X6X7

ααα 1 − α1 − α1 − α

ββ

1 − β1 − β
γ

1 − γ

(a) (b) (c)

Figure 2.13: First-order interpolation: (a) 1D linear interpolation; (b) 2D bilinear interpolation;

(c) 3D trilinear interpolation

following rule:

φ̃(X) = (1 − α)φ(X0) + αφ(X1), with α =
|X − X0|
|X1 − X0|

. (2.22)

This means that the influence of the point X0 linearly decreases with its distance from

X. The same holds for X1.

One dimensional linear interpolation can be easily extended to two dimensional

bilinear interpolation in a rectangle (see Figure 2.13 (b)). First, linear interpolation is

applied for one dimension along two opposing edges and then the resulting scalar val-

ues are again linearly interpolated in the second direction. The extension to trilinear

interpolation in cuboid cells is obvious (see Figure 2.13 (c)). After bilinear interpo-

lation on two opposing cell faces the final scalar value is obtained by another linear

interpolation in the third direction. Note that bilinear and trilinear interpolation are not

linear with respect to there local coordinates any more.

There are higher order interpolation schemes that incorporate further grid points.

Even though these techniques deliver a more accurate approximation of the underlying

continuous scalar field, trilinear interpolation is the most frequently applied interpola-

tion method. This is because of the fact that trilinear interpolation is natively supported

by modern GPUs and that the costs for other methods are much higher.

Classification

In the classification step the scalar values at the sampling positions are mapped to the

optical properties of the volume rendering integral (see Section 2.4.1). This can be

used to distinguish different objects or materials in a volume dataset. Hence, classifi-

cation can be exploited for implicit segmentation of interesting structures.

Transfer Functions Classification is usually based on transfer functions that give a

global mapping of scalar values to optical properties. In Section 2.4.1 transfer func-

2.4. Direct Volume Rendering 53

tions Tτ (·) and Tq̃(·) for the extinction coefficient τ and the normalized source term q̃
have been introduced. However, in practice the sample values are directly mapped to

the optical properties that are applied in the discrete version of the volume rendering

integral (see Equation 2.20), i.e. the approximated transparency t and the approxi-

mated light intensity c of a ray segment between two sample points (a so-called slab).

More precisely, transfer functions Tα(·) for the opacity

α = 1 − t (2.23)

and Tc(·) for the color intensity

c = (r, g, b), (2.24)

(a RGB color triple) of a ray segment are used. Please note that c represents a so-

called associated color that already takes the extinction coefficient τ into account (see

Equation 2.19). When a transfer function defines a mapping to a non-associated color

c̃, the corresponding associated color c can be approximated by multiplying c̃ with the

related opacity value α.

For many medical volume datasets the mapping of scalar values to optical prop-

erties does not permit a proper discrimination of different structures. For example, in

CT datasets different soft tissue organs are displayed in similar ranges of Hounsfield

units (see Table 2.1). To improve the discrimination of the different structures that

are contained in a dataset, multi-dimensionsional transfer functions can be applied.

Here, the dimension of the transfer function domain is extended by taking additional

information like the gradient magnitude, second order derivatives and the curvature

measures into account. E.g., Levoy [74] proposed to use the gradient magnitude for

the distinction of object boundaries. Kniss et al. [63] take a second-order derivative

measure as third dimension to further improve the boundary detection. Kindlmann et

al. [62] use curvature information to emphasize the contours of volumetric stuctures.

Pre-integration The numerical evaluation scheme of the volume rendering integral

presented in Section 2.4.1 approximates the underlying scalar field φ along a view-

ing ray S by a piecewise constant function (see Figure 2.14 (a)). To achieve a good

approximation the sampling distance has to be chosen with respect to the maximum

frequency (Nyquist frequency) that occurs in φ. Furthermore, the nonlinearity of the

applied transfer function has to be taken into account since this additionally influences

the effective nyquist frequency of the reconstructed signal. Thus, the sampling rate

that is required to avoid undersampling of the volume rendering integral is usually

much higher than the sampling rate that is needed for an adequate reconstruction of

the volume data itself.

To overcome these drawbacks, Engel et al. [29] proposed pre-integrated transfer

functions for which the scalar field φ is approximated by a piecewise linear function

(see Figure 2.14 (b)). More precisely, the change of φ between two consecutive sam-

pling points si and si+1 along a ray is linearly reconstructed by

φ̄(l) = (1 − l)φ(si) + lφ(si+1). (2.25)

54 Chapter 2. Fundamentals of Medical Imaging and Visualization

φ(s)φ(s)

φ0 = φ(si)φ0 = φ(si)

φ1 = φ(si+1)φ1 = φ(si+1)

ss

sisi si+1si+1

(a) (b)

Figure 2.14: Approximation of the scalar field φ along a viewing ray S: (a) Piecewise-constant

approximation; (b) Piecewise-linear approximation.

Hence, the opacity αi of the slab between si and si+1 can be approximated by

αi = 1 − e
−

R si+1
si

Tτ (φ(t))dt

≈ 1 − e−
R

1

0
Tτ (φ̄(l))ddl (2.26)

and the color ci by

ci =

∫ si+1

si

Tc(φ(s′))e−
R si+1

s′
Tτ (φ(t))dtds′

≈
∫ 1

0

Tτ (φ̄(l))Tc̃(φ̄(l))e−
R

1

l
Tτ (φ(l′))ddl′ddl. (2.27)

αi and ci only depend on the scalar values φ0 = φ(si) and φ1 = φ(si+1) at the start

and the end point of a slab and the distance d = si+1 − si between these two points.

Consequently, αi and ci can be precomputed from the transfer functions Tτ and Tc̃ for

discrete values of φ0, φ1, and d and stored in a three dimensional lookup table, which

represents the pre-integrated transfer function. When a fixed sampling distance d along

all viewing rays is chosen, the third parameter d can be eliminated, which leads to a

much smaller two-dimensional lookup table.

In fact, pre-integration separates the sampling of the volume’s scalar field and the

sampling of the transfer function, which allows much lower sampling rates than needed

for classical transfer functions.

Implicit Isosurfaces The classification step can be alternatively employed for the

extraction of an implicit isosurface. Here, it is simply checked if a viewing ray is pass-

ing a specific isovalue between two consecutive sampling points si and si+1. In the

positive case a predefined opacity α and a predefined color c is set as output. Other-

wise the opacity is set to 0. This approach can be easily extended to the simultaneous

extraction of multiple isosurfaces by performing the check repeatedly for several iso-

values. More details about implicit isosurface rendering can be found in Section 4.1.3.

2.4. Direct Volume Rendering 55

Illumination

In the illumination step local illumination effects are applied to the sample colors to

emphasize the three-dimensional appearance of the visualized structures. Thereby, it

is assumed that the light of a global light source impinges on a sample point without

scattering or absorption along its way through the volume. The most popular local

illumination model is the Phong model [95], which aims to create a realistic illumi-

nation lighting effects. However, there exist many illustrative shading techniques, like

tone shading [43] or cartoon shading [70], that enhance the perception of an object by

abstraction. An extensive overview about illustrative volume shading techniques can

be found in [27] and [28]. In section Section 4.1.3 some illumination approaches for

volume rendering are presented in detail.

Most local illumination models incorporate the normal direction of the illuminated

surface. In volume shading the gradient of the underlying scalar field can serve as the

normal vector because it is identical to the normal vector on the isosurface that passes

the respective sampling point. The gradient at a point x = (x, y, z)T in a (discrete)

scalar field φ can be approximated by finite differences. One can, e.g., employ second

order central differences

∇φ(x) =

∂φ/∂x
∂φ/∂y
∂φ/∂z

 ≈

φ((x+dx,y,z)T)−φ((x−dx,y,z)T)
2dx

φ((x,y+dy ,z)T)−φ((x,y−dy ,z)T)

2dy

φ((x,y,z+dz)T)−φ((x,y,z−dz)T)
2dz

 . (2.28)

In regular grids dx, dy and dz are usually set to the distances between the grid points in

x-, y-, and z-direction. The gradients can either be precomputed at the grid points or

computed on-the-fly at the sampling points. The first approach requires additional stor-

age for the discrete gradient field, the second employs costly gradient approximation

during rendering.

Compositing

The final step of the volume rendering pipeline is the compositing of the sample colors

along a ray to a single pixel color. Basically, the iterative computation scheme pro-

posed in Equation 2.21 can be applied. Mapping this scheme to an output color C and

incorporating the opacity αi of an array segment instead of the transparency ti yields

the iteration rule

Ci = ci−1 + (1 − αi−1)Ci−1 (2.29)

with C0 = cback (cback is the initial background color) and C = Cn. This scheme

corresponds to a back-to-front traversal of the volume samples.

When the samples are traversed in front-to-back order starting from the camera, an

adapted front-to-back iteration scheme

Ci−1 = (1 − ai)ci−1 + Ci,

ai−1 = (1 − ai)αi−1 + ai (2.30)

56 Chapter 2. Fundamentals of Medical Imaging and Visualization

has to be applied, with Cn = 0 and the accumulated opacity a initialized to an. The

output color is C = (1 − a0)cback + C0.

The above compositing schemes create images in terms of the discrete volume

rendering integral (see Equation 2.20). In those images important structures can be oc-

cluded by other structures that lie in front. Since this may obstruct medical diagnosis,

alternative order-independent compositing rules have been developed. E.g., pseudo X-

ray rendering builds a weighted sum (weighted with the opacities) of the sample colors

along a viewing ray. When only gray values are used, this results in X-ray like images

with which medical doctors are familiar. In maximum intensity projection (MIP) the

color of the sample point with the highest intensity along a viewing ray is chosen as

output color of the respective pixel. A typical application of MIP is the visualization

of vessel structures (virtual angiography). The drawback of order independent com-

positing methods is the loss of depth information in the output images.

2.4.3 GPU-based Volume Rendering

Since the volume rendering pipeline can be processed independently for each viewing

ray, it is obvious to perform this task in parallel and to accelerate it by the appli-

cation of a GPU. However, current graphics APIs are designed for the rendering of

surface meshes and do not directly support volume rendering operations. For this rea-

son, GPU-based volume rendering techniques initialize the volume sampling by the

rendering of some proxy geometry and employ GPU shaders for pipeline steps like

classification and illumination.

A volume dataset is generally stored in a 3D texture for which modern GPUs na-

tively support trilinear interpolation. Classical transfer functions are stored as look-up

table in a 1D texture, which maps discrete sample values to four-component color vec-

tors (three for the RGB color plus one for the opacity α). For pre-integrated transfer

functions either 2D textures (fixed sampling distance) or 3D textures (variable sam-

pling distance) are applied.

A single volume sample is processed by a fragment shader as follows. First, the

sampling value at the current sampling position is looked up in the 3D volume texture

(interpolation). Then, the related color and opacity is read from the transfer-function

look-up table (classification) and optionally lighting or other shading operations are

applied (illumination). The sample gradient is either looked up in another 3D texture

that holds precomputed gradients or is computed on the fly. In the latter case, additional

sample values at surrounding neighbor positions have to be read from the volume

texture. When pre-integration is applied, two sample values are looked up, one at

the current sampling position and one at the following sampling position along the

viewing ray. The final compositing step is either realized in the fragment shader, or the

GPU’s compositing unit is utilized for this task.

There are two popular GPU-based volume rendering approaches that mainly differ

in the way the volume data is traversed:

2.4. Direct Volume Rendering 57

screen screen

(a) (b)

Figure 2.15: Two technique for GPU-based volume rendering: (a) Slice-based rendering and

(b) GPU-based ray casting. The doted lines show the (imaginary) viewing rays, which traverse

the gray volume. The thick black lines represent the (proxy) geometry, along which the volume

is sampled. The white points depict the sampling points.

Slice-based Volume Rendering (Figure 2.15(a)) Slice-based volume rendering is an

object-order volume rendering technique that was especially designed for the adoption

of a GPU. Primarily, the cuboid bounding box of the volume dataset is cut into equidis-

tant proxy slices (flat polygons) perpendicular to the current viewing direction (view

aligned). Then, the volume is implicitly sampled by sequentially rendering these slices

either in back-to-front or in front-to-back order. The proxy slices have to be recom-

puted each time the camera’s position or orientation is changed or when the sampling

rate is adapted. The related 3D texture coordinates of the volume texture are attached

to the vertices of the proxy slices. These are automatically interpolated by the rasteri-

zation step of the rendering pipeline (see Section 2.3.1) and can then directly be used

in the fragment shader for the lookup of the related sample value.

The compositing of the sample values is implicitly performed by the compositing

unit of the GPU, which blends the colors of new fragments with the colors already

written to the frame buffer. Therefore, the blending rule has to be adequately set

depending on the rendering order of the proxy slices (see Equation 2.29 for back-

to-front rendering and Equation 2.30 for front-to-back rendering).

GPU-based Ray Casting (Figure 2.15(b)) The image-order ray-casting algorithm

is the most straight-forward way to numerical evaluate the volume rendering integral.

Starting from the camera, for each image pixel a viewing ray is cast through the vol-

ume. Therefore, the entry point of the ray to and the exit point from the volume is

computed and then the volume is sampled at equidistant positions between these two

points. Since the ray traversal is started from the camera, the iterative front-to-back

compositing scheme is applied (see Equation 2.30).

While ray casting was initially restricted to CPU-based implementations or spe-

cial purpose hardware [80; 94], the flexible programmability of modern graphics hard-

ware nowadays also permits interactive GPU-based implementations of this algorithm.

58 Chapter 2. Fundamentals of Medical Imaging and Visualization

Here, the ray traversal is initialized by rendering the front faces of the volume’s bound-

ing box. This creates for each viewing ray a fragment at the related viewing rays entry

point to the volume. Starting from these fragments, the corresponding ray can be cast

through the volume. First GPU-implementations realized this ray traversal in multiple

passes [68]. But current generations of GPUs support loops and dynamic branching,

which allows the realization of the ray traversal within a single shader [123]. There-

fore, a loop is implemented that samples the ray starting from the implicitly given

entry point at equidistant sampling positions until the ray leaves the volume. Inside

the loop the pipeline steps interpolation, classification, illumination, and compositing

are explicitly applied to each sampling point. To avoid the expensive computation of

texture coordinates at each sampling point, the ray can be cast directly in texture space.

Comparing the two rendering approaches, one can say that slice-based rendering

used to show better performance results because of its better adaption to a GPUs clas-

sical rendering pipeline. However, ray casting in general creates better rendering re-

sults. The reason for this can be clearly seen in Figure 2.15. While ray casting uses a

constant sampling distance for all viewing rays, the sampling distance slightly differs

from ray to ray when slice-based rendering is applied. This leads to two problems. On

the one hand, the volume may be undersampled along viewing rays that correspond to

pixels at the image border. On the other hand, the transfer function defines the mapping

of sample values to colors and opacity for a fixed sampling distance. The occurring

rendering errors can be reduced by correcting the colors and opacities for each view-

ing ray or by using 3D look-up tables when pre-integration is applied, but this is often

neglected due to the impact on the rendering performance and memory consumption.

Furthermore, ray casting easily allows the implementation of optimization strate-

gies. E.g., the ray traversal can be stopped in advance (early ray termination) when the

accumulated opacity of a pixel is nearly one since the color contributions of follow-

ing samples will not be visible. If there are large connected regions that are visualized

completely transparent, the ray traversal can jump over those regions without sampling

(empty space skipping). Finally, the sampling rate could be reduced in areas where the

volume signal shows only small changes (adaptive sampling). These optimization

methods can be applied to partly compensate the performance drawback of the ray

casting approach. Furthermore, it can be stated that the performance differences more

and more vanish with the ongoing evolution of GPUs.

CHAPTER

3 FLEXIBLE MULTI-VOLUME RENDERING

In medical practice frequently a couple of different tomographic datasets of an antom-

ical or pathological structure are observed simultaneously to achieve a better under-

standing of the addressed medical problem. In Section 2.2.2 three typical scenarios

for the combined analysis of multiple volumes have been described. The datasets are

either gathered at different points in time to control the progress of a disease or of a

treatment; or they are taken with different imaging modalities to get a comprehensive

view of a patient; or a patient specific dataset is compared with an atlas dataset, which

represents the anatomical average of the investigated structures.

In the registration step of the medical visualization pipeline (see Section 2.2) the

different datasets are mapped into a common coordinate system, which eases their di-

rect comparison. Consequently, combined visualizations could be generated, in which

the information of the different datasets is displayed together in a single image. How-

ever, the direct volume rendering techniques presented in Section 2.4 are restricted to

the visualization of single volume datasets. Thus, to support the simultaneous ren-

dering of multiple volumes (multi-volume rendering) the algorithms for single-volume

rendering have to be adapted. The major difference is the fact that at a single sampling

position the contributions of several volume datasets have to be taken into account.

The simultaneous rendering of multiple medical volume datasets is an ongoing

research topic. E.g., Hastreiter and Ertl [50] presented a system for the combined

visualization of two pre-registered CT and MR datasets of the human head for medi-

cal diagnosis; Beyer et al. [7] combined several sampling, shading and accumulation

techniques for a specialized planning system for neurosurgical interventions; Jainek et

al. [57] applied different illustrative volume shading techniques for the simultaneous

visualization of anatomical and functional MRI data. Other work addresses the multi

volume rendering problem in a more general way. For example, Cai and Sakas [18]

and Ferre et al. [32] examined how the information of multiple volumetric datasets

can be fused. Chen and Tucker [21], Nadeau [90], Grimm et al. [45], Lehmann et

al. [72] and Plate et. al [96] proposed different concepts for the combined rendering

of arbitrary volume datasets.

When several shading and illustration techniques shall be combined for the visual-

59

60 Chapter 3. Flexible Multi-Volume Rendering

ization of a single volume, similar algorithmic problems like for classical multi-volume

rendering occur. The volume is virtually separated into multiple volumetric objects,

which are shaded independently and then combined in a single image. A typical appli-

cation is focus+context rendering. Here, a focus object is emphasized and surrounding

structures are provided as context information. For example, Viola et al. [135], Krüger

et al. [67], and Bruckner et al. [14] employ this concept for volume visualization.

In [13] Bruckner and Gröller cut a volume with multiple clip planes into several parts

and create so-called exploded views, like they are known from medical illustrations.

Alternatively, an explicitly generated segmentation mask (see Section 2.2.2) can

be used to separate a volume dataset into several independent objects. For example,

Tiede et al. [129] use an additional tagged volume to apply different colors to different

anatomical structures. Vega et al. [134] employ a similar concept for the visualization

of nerve fibers and vascular structures in the brain. Hauser et al. [51] and Hadwiger et

al. [46] proposed a system where different transfer functions and shading styles can be

applied to the different segmented objects.

Summarizing, it can be stated that there are many concepts and algorithms that

target the combined rendering of multiple volumetric objects. However, the proposed

techniques are usually designed for a certain (medical) application case or cover only

a sub-domain of multi-volume rendering, like rendering of multi-modality image data,

illustrative rendering or rendering of pre-segmented volumes.

In this chapter a flexible GPU-based multi volume rendering framework that ab-

stracts from these differences and that can be employed for many application areas is

presented. Thereby, the two major challenges of multi-volume rendering, the simulta-

neous sampling of multiple volumetric objects and the simultaneous shading of multi-

ple volume samples, are addressed. In Section 3.2 it is shown how slice-based volume

rendering and GPU-based ray casting can be extended for efficient rendering of mul-

tiple intersecting volumes, and in Section 3.3 a flexible shader-generation technique

is introduced that dynamically generates optimized shaders for arbitrary multi-volume

scenes. But first, in Section 3.1 a detailed introduction to the problem domain of multi-

volume rendering is given. The presented concepts where first published in [107] and
[108] in collaboration with Ralf P. Botchen from the Universität Stuttgart.

3.1 Introduction to Multi-Volume Rendering

When several intersecting volumetric objects shall be visualized in a single image,

it has to be decided how the different objects contribute to the final image. For this

multi-volume rendering problem Cai and Sakas [18] determined three levels of volume

intermixing, which are involved into different stages of the volume rendering pipeline

(see Figure 3.1). According to the original publication these intermixing strategies are

called image-level intermixing, accumulation-level intermixing, and illumination-level

intermixing.

For image-level intermixing (Figure 3.1 (a)) the volumes are rendered indepen-

3.1. Introduction to Multi-Volume Rendering 61

dently and the resulting images are intermixed on a per-pixel basis. The compositing

of the pixels can either take only the color values into account or can be based ad-

ditionally on opacities and/or depth values. For accumulation-level intermixing (Fig-

ure 3.1 (b)), the visual contributions of the volumes are intermixed per sample. At each

sampling position along a viewing ray the sample values of the different volumes are

first mapped independently to colors and opacities (shading). Then, these values are

intermixed to a single sample color, which is finally accumulated along the viewing

ray (compositing). In contrast to that, illumination-level intermixing (Figure 3.1 (c))

performs the intermixing before shading. Instead of accumulating independent sample

colors and opacities the different volume samples are fused to a single merged sample

and then a specialized multi-volume classification and illumination model is applied.

The advantage of the image level intermixing approach is its simplicity of imple-

mentation. The basic volume rendering algorithm does not have to be changed; just an

additional image intermixing step has to be appended to the pipeline. However, it does

not support correct depth cueing of the volumes, which may lead to confusing visual

results.

Both, accumulation-level and image-level intermixing, overcome this drawback by

performing volume intermixing on a per-sample base. Illumination-level intermixing

allows the generation of physically inspired results. E.g., X-Ray like images can be

generated by first accumulating the densities of the different volume samples and then

mapping the fused densities to gray values. However, if the intermixed volumes origi-

nate from different imaging modalities, like CT and MRI, the scalar values of the vol-

umes may have different physical sources and different ranges. Usually, they can not

be intermixed directly but have to be weighted before. Thus, for each multi-modality

configuration another multi-volume illumination model has to be applied. In contrast,

accumulation level intermixing provides the possibility to apply independent transfer

functions and shading styles to the different volumes. Thereby, different volumes of

different imaging modalities can be handeled independently. Further, different illus-

trative and non-illustrative shading styles can be combined to generate comprehensive

multi-volume visualizations. For these reasons, accumulation level intermixing is the

most widely used intermixing approach for (medical) multi-volume rendering.

When accumulation-level intermixing is used, the multi-volume rendering problem

can be divided into three sub-problems. First, a volume rendering algorithm has to be

applied that can sample several intersecting volumes simultaneously. Second, for each

combination of transfer functions and shading styles a specialized multi-volume shad-

ing procedure has to be provided. Finally, an intermixing rule has to be implemented

that creates adequate visualization results for a certain application domain.

The intermixing of the different volume sample colors is often performed by stan-

dard alpha blending using the recursive over operator [45; 50]:

αout = (1 − αi)αout + αi ,
cout = (1 − αi)cout + ci , i = 1, · · · , n

(3.1)

62 Chapter 3. Flexible Multi-Volume Rendering

Sampling

Shading

Compositing

Volume Samples

Sample Colors

Image Pixels

Volume Dataset

Sampling

Shading

Compositing

Volume Samples

Sample Colors

Image Pixels

Volume Dataset

Intermixing

Merged Pixels

Sampling

Shading

Compositing

Volume Samples

Sample Colors

Image Pixels

Volume Dataset

Sampling

Shading

Volume Samples

Sample Colors

Volume Dataset

Intermixing

Merged Colors

(a) (b)

Sampling

Compositing

Volume Samples

Image Pixels

Volume Dataset

Sampling

Shading

Volume Samples

Sample Colors

Volume Dataset

Intermixing

Merged Samples

(c)

Figure 3.1: Three multi volume rendering pipelines with different levels of intermixing:

(a) Image-level intermixing; (b) Accumulation-level intermixing; (c) Illumination-level inter-

mixing

3.1. Introduction to Multi-Volume Rendering 63

ci and αi are the pre-multiplied color contribution and opacity of the i-th volume sam-

ple, and n is the total number of volumes. A problem of this operator is the fact that the

resulting color and opacity depend on the order in which the volumes are applied. For

this reason, other intermixing operators have been proposed that calculate a weighted

sum of the single contributions. An example is the inclusive opacity operator of Cai

and Sakas [18]. Here, the opacity αout is computed similar like above, but the color

values are weighted with their normalized opacity:

cout =
n∑

i=1

αi

αsum
ci , with αsum =

n∑
i=1

αi. (3.2)

Many other multi-volume intermixing schemes have been developed for specific appli-

cation cases. E.g., Bruckner et al. [14] used fuzzy operators to control the contribution

of different volumetric objects for illustrative rendering.

A special case is the rendering of segmented volumes. Here, a single volume is

visualized in combination with a segmentation mask that gives for each voxel a unique

ID. This ID determines the affiliation of the voxel to a specific region of the dataset,

e.g. an anatomical or pathological structure. When the segmentation mask is used

to apply different colors or illumination styles to the different objects [46; 51; 129;

134], the implicit intermixing rule is as follows:

cout =
n∑

i=1

δi,IDci , with δi,ID =

{
1, ID = i

0, else
(3.3)

For multi-volume sampling and multi-volume shading often specialized techniques

have been developed that are adapted to a specific medical scenario. Examples are

the systems of Hastreiter and Ertl [50] or Beyer et al. [7]. Those systems usually

provide a selected number of shading options for a fixed set of volumes. In con-

trast, general multi-volume rendering systems provide shading and sampling concepts

that make them applicable for a wider range of applications. E.g., Nadeau [90] and

Chen and Tucker [21] proposed different graph based techniques that both aim to com-

pose complex scenes from several volumetric objects. Grimm et al. [45] presented a

CPU-based ray casting approach that allows to combine different shading operations

for a given scene of multiple volumes. Lehmann et al. [72] focused on the efficient ren-

dering of multiple volumes on a GPU. Plate et al. [96] implemented a graphical GPU-

shader composer for the easy manipulation of the display of a multi-volume scene.

The multi-volume rendering framework presented in this chapter follows a similar

idea like Plate et al.. The visual representation of an arbitrary multi-volume scene is

defined by an abstract render graph, which is used to generate optimized multi-volume

shaders for different multi-volume rendering algorithms. In contrast to the shader

composer of Plate et al. the render graph hides details about the underlying shading

operations. This allows the creation of complex multi-volume visualizations without

the need of deeper knowledge about rendering and GPUs.

64 Chapter 3. Flexible Multi-Volume Rendering

3.2 GPU-based Rendering Techniques

GPU-based rendering of a single volume is based on the idea to render some proxy ge-

ometry for the initialization of sampling, shading and compositing (see Section 2.4.3).

The shape of the proxy geometry depends on the applied rendering technique. For

slice-based rendering the volume is cut into equidistant slices and the slices are ren-

dered in back-to-front order. Here, sampling is implicitly realized by rasterization,

shading is performed inside a shader and compositing is implicitly performed by the

blending unit of the GPU. For GPU-based ray casting the front faces of the volumes

are rendered to implicitly initialize the start positions of the viewing rays. Sampling,

shading and compositing are completely performed inside a shader.

For multi-volume rendering at each sampling position not only a single sample

value has to be looked up but one for each participating volume dataset. In case that all

participating volumes have equal extent, position, and orientation, the same proxy ge-

ometry as for single volume rendering can be applied to all volumes. In more complex

multi-volume scenes, in which the extent, position and/or orientation of the volumes

differ, the single-volume proxy geometries do not match. Here, the proxy geometries

have to be fused first to a combined multi-volume proxy geometry. Further, it should

be taken into account that the bounding boxes of the volumes do not intersect at each

sampling position. So, for efficiency reasons, it should be ensured that a volume is

only accessed at sampling positions that lie inside the volume’s bounding box. Two

techniques for the fusion of proxy geometries, one for slice-based rendering and one

for ray casting, are detailed in the following.

3.2.1 Slice-based Multi-Volume Rendering

Basically, slice-based multi-volume rendering is realized by slicing the volumes inde-

pendently and merging the proxy slices to complex polygons that cover all volumes in

the scene. Listing 3.1 describes this process schematically in pseudocode. To avoid

inconsistencies, the volumes in the multi-volume scene are primarily transformed into

camera space. Then, all volume bounding boxes are sliced equidistantly along the

viewing direction in fixed distances from the camera position (see Figure 3.2). This

leads to multi-volume slices, each containing coplanar proxy slices of the different

volumes in the scene. The sampling distance between the multi-volume slices is cho-

sen with respect to the volume with the smallest voxel dimensions. The multi-volume

slices are rendered in back-to-front order with a specialized shader for multi-volume

shading (see Listing 3.2). Inside this shader the fragment position, which is given in

camera space, is transformed for each involved volume into its specific object space

and then each volume is sampled and shaded independently. Finally, the different

sample colors are intermixed to a single output color. This color is blended outside

the shader with the content of the frame buffer. The fusion of the proxy slices that are

contained in a multi-volume slice to combined proxy polygons can be realized in three

different ways (see Figure 3.3):

3.2. GPU-based Rendering Techniques 65

1 void sliceBasedRenderingCPU() {

2 list slices, multiVolSlices;

3 for each volume in scene { // slice volumes independently

4 slices.clear(); // and combine slices to a

5 sliceVolume(volume, slices); // single list of

6 combineWith(multiVolSlices, slices); // multi-volume slices

7 }

8

9 for each multiVolSlice in multiVolSlices // render multi-volume slices

10 switch intermixingMode // choose intermixing strategy

11 case MERGE : // MERGE

12 slice mrgSlice = merge(multiVolSlice);

13 activateShader(shadeMultiVolSliceGPU, mrgSlice.vols);

14 renderSlice(mrgSlice);

15 case SEPARATE : // SEPARATE

16 for each slice in multiVolSlice {

17 activateShader(shadeMultiVolSliceGPU, slice.vol);

18 renderSlice(slice);

19 }

20 case INTERSECT : // INTERSECT

21 list interSlices = intersect(multiVolSlice);

22 for each slice in interSlices {

23 activateShader(shadeMultiVolSliceGPU, slice.vols);

24 renderSlice(slice);

25 }

26 }

Listing 3.1: Pseudocode for slice-based multi-volume rendering on the CPU. According to

the chosen multi-volume accumulation method different rendering strategies are applied. The

shadeMultiVolSliceGPU shader is given in listing 3.2.

1 in: vec4 fragPos; list vols;

2 out: vec4 outColor;

3

4 void shadeMultiVolSliceGPU() {

5 vec4 volSamplePos; float volSample;

6 vec4 volColors[vol.numOfVols];

7

8 for each vol in vols {

// loop over multi slice volumes

9 volSamplePos = vol.trafo * fragPos; // lookup samples and compute

10 volSample = lookup(vol, volSamplePos); // colors for each volume

11 volColors[vol.num] = shadeSample(vol, volSample); // independently

12 }

13

14 outColor = intermixColors(volColors); // intermix sample colors

15 }

Listing 3.2: Pseudocode for shading of a multi-volume slice on the GPU. The samples of the

different volumes are individually mapped to colors by shadeSample and finally accumu-

lated by intermixColors.

Merge (Figure 3.3 (a)) This method merges the geometry of all proxy slices in a multi-

volume slice into a single hull, which is not necessarily convex. This hull is

tessellated and all triangles are rendered with a single shader that accumulates

the contributions of all n volumes in a multi-volume scene, requiring no shader

switches at all. In return, it suffers from the need to always collect the color

66 Chapter 3. Flexible Multi-Volume Rendering

screen

V1 V2

Figure 3.2: Slicing of a two-volume scene consisting of volume V1 and volume V2. The

volumes are sliced at fixed distances from the camera postion. Corresponding slices of the

different volumes are combined to multi-volume slices.

contributions of all n volumes, even for those fragments that are just covered by

a subset of volumes. However, the merge technique provides full flexibility in

choosing any kind of multi-volume intermixing function.

Separate (Figure 3.3 (b)) This technique is based on the strategy to handle each proxy

slice separately. Here, no expensive merge of the volume slices is necessary.

For each of the n volumes an individual shader is assembled, resulting in up to

n shader switches per multi-volume slice. In contrast to the other techniques,

the separate method directly blends the color contribution of a single volume

sample into the framebuffer and exploits the fast hardware-supported blending

operations. In return, it is limited to standard accumulation with the over op-

erator (see Equation 3.1). The separate-shader-per-volume concept avoids the

expensive branching inside a shader, but in exchange it leads to the necessity to

evaluate multiple shaders in regions where volumes overlap.

Intersect (Figure 3.3 (c)) The third technique goes one step further by handling each

possible combination of intersecting volumes with a different shader. This method

divides the regions of intersecting volumes into single bounding polygons and

tessellates them. Regarding the shader switches, the upper limit is 2n due to the

number of possible combinations of n overlapping volumes. Inside a shader up

to n volumes are observed. Even though the complexity looks rather bad, the ad-

vantage of this method is, that each fragment is evaluated only once. Moreover,

the multiple volumes are only processed when effectively needed and, thus, no

unnecessary operations are performed. Similar to the merging technique, inter-

secting benefits from the possibility of using any intermixing function to merge

the color contributions of the different volumes.

A further discussion of the advantages and disadvantages of the three accumulation

techniques and comparative performance results for different multi-volume scenarios

can be found in the next chapter in Section 4.1.

3.2. GPU-based Rendering Techniques 67

V1

V2

V1

V2

V1

V2

(a) (b) (c)

Figure 3.3: Three types of multi-volume slice fusion on the example of two overlapping proxy

slices: (a) Merge; (b) Separate; (c) Intersect. Each differently colored region is processed by a

separate shader. The gray square illustrates the intersection layer of the multi-volume slice.

3.2.2 Multi-Volume Ray Casting

The basic idea of GPU-based ray casting of a single volume (see Section 2.4.3) is to

render the front faces of the volume’s bounding box and then to cast the viewing ray for

each rasterized fragment. Since modern GPUs provide loops and dynamic branching,

the whole ray traversal can be realized in a single shader.

The obvious approach for raycasting of multiple volumes on the GPU extends the

single pass method for single volumes to a three-pass rendering method that takes all

volumes in a scene simultaneously into account (see Figure 3.4). First, the front faces

of all volumes’ bounding boxes are rendered with activated depth test and the depth

function set to “less than the current depth value”. For each viewing ray, this yields

the first entry point to a volume in the scene. The coordinates of these entry points

are stored in a texture. In the second pass, the back faces of the bounding boxes are

rendered with the depth function set to “greater than the current depth value”. This

generates the exit points from the furthermost volumes along the rays. Given the entry

and exit points for the union of all volumes, the whole multi-volume scene can now

be rendered in a third pass by drawing a screen-filling quad that initializes the rays.

The ray traversal is performed by a single fragment shader that reads for each pixel the

pre-computed entry and exit points and traverses the viewing ray between these points

in front-to-back order. At each sampling position along the ray the shader evaluates the

color contributions of all volumes in the scene and intermixes them to a single sample

color, which is blended to the ray’s output color.

The major disadvantage of this approach is the fact that at each sampling position

all volumes are evaluated, even if the sampling position lies outside a volume’s bound-

ing box. Alternatively, it can be tested if a sampling point lies inside a volume before

the evaluation is done, but this introduces a huge number of expensive branching op-

erations, especially for complex scenes.

An alternative multi-volume ray casting technique overcomes these drawbacks by

first dividing the multi-volume scene into depth-ordered segments of intersecting vol-

umes and then applying to each of these segments an optimized shader that only takes

68 Chapter 3. Flexible Multi-Volume Rendering

screen

V1 V2

shader V1 U V2

Figure 3.4: Multi-volume raycasting of a two-volume scene (V1, V2) with the obvious three-

pass rendering approach: In the first and second pass the nearest (dark green) and the farthest

(orange) intersection points of the viewing rays with V1 and V2 are computed. In the third

pass the ray segments between foremost and furthermost intersection points are traversed by a

single multi-volume shader responsible for both volumes.

the currently involved volumes into account. The segmentation of the scene is realized

by depth peeling. Figure 3.5 and the pseudocode in Listings 3.3, 3.4 and 3.5 illustrate

the concept of this approach.

The depth peeling starts (Listing 3.3, lines 2-6) with the computation of the rays’

entry points similar to the above described three-pass method. Then, the volume

bounding boxes are rendered once again (Listing 3.3, lines 12-16) with depth test

set to “less than the current depth value” and a special shader applied (Listing 3.4,

computeNextLayerGPU) that “peels away” the first entry points by comparing

their stored z-values with the z-values of the currently rendered fragments. This gen-

erates for each viewing ray the second intersection point with a volume bounding box.

The following intersection points are computed similarily by taking the previous inter-

section points as new start points and again applying the computeNextLayerGPU

shader. The highest possible number of intersections per ray for n volumes is 2n, since

there can be at most n entry points and n exit points.

The depth peeling algorithm generates layers of ray segments that are banded by

two consecutive intersection points, so each segment traverses a constant set of over-

lapping volumes. However, these volume sets can differ across a ray segment layer;

Figure 3.5 shows this where the green layer consists of two disjoint regions of vol-

ume V1 and volume V2. This means that no single shader can render both volumes.

Instead, the ray segment layer has to be further divided in screen space into regions

of equal ray segments. To easily determine which volumes are intersected by a ray

segment the integer arithmetic capabilities of NVIDIA’s current GPUs (G8 series and

newer) can be exploited. In the depth peeling step a bit vector is applied to each ray

segment, which encodes the intersected volumes – i.e. the current permutation of af-

fected volumes. Since 32-bit integer values are used, the total number of volumes in

3.2. GPU-based Rendering Techniques 69

screen

V1 V2

10
11

01

00

volPerm 00 10 01 11

01

empty V1 V2 V1 I V2shader

Figure 3.5: Multi-volume raycasting of a two-volume scene (V1, V2) with the optimized depth-

peeling approach: The scene is iteratively segmented into three layers by depth peeling. Each

layer is rendered with several optimized shaders that take only the currently covered volumes

(volPerm) into account. E.g., the first layer (light green) consists of two disjoint regions of V1

and V2 which are handeled by two different shaders.

a scene is limited to 32, which is sufficient for common scenes. The volume permuta-

tions are stored in an integer texture which is initialized with 0. The permutation of the

current ray segment layer is computed by incrementally changing the previous layer’s

permutation. For each bounding box the ID of the corresponding volume – encoded

as bit vector volBit – is given as input to the depth peeling shader (Listing 3.3, lines

14-15).

If the currently rendered bounding box face is a front face a rendered fragment rep-

resents a point where the volume is entered, so the new volume permutation curPerm

is computed from the previous permutation prevPerm by appending volBit with bit-

wise OR ”|”, (Listing 3.4, line 15). At back faces the viewing ray is leaving the volume.

Here, the new volume ID is subtracted by merging the previous permutation with the

bitwise complement ”∼” of volBit by bitwise AND ”&”, (Listing 3.4, line 16).

Basically, a ray segment layer is rendered several times by specialized shaders for

each possible permutation of volumes (Listing 3.5). To avoid unnecessary computa-

tions for not affected ray segments, each shader first reads the ray segment’s volume

permutation and tests it against the permutation for which the shader was written. If

they are not equal, the execution of the shader is discarded. Since all ray segments

that pass the same overlapping volumes usually cover connected regions, and since

dynamic branching is efficiently performed for coherent fragments on current GPUs,

the overhead of these tests is relatively low. However, the number of shaders that have

to be executed per layer is 2n − 1, which is the total number of permutations minus

the zero permutation that covers no volume. This number is getting quite large even

for small numbers of volumes. It can be reduced remarkably by exploiting the de-

pendence of the volume permutations covered by the current ray segment layer on the

permutations covered by the preceding layer.

70 Chapter 3. Flexible Multi-Volume Rendering

1 void raycastingCPU() {

2 activateShader(computeFirstLayerGPU); // generate first depth layer

3 for each volume in scene {

4 volBit = 1 << volNum;

5 renderFrontFaces(volBit);

6 }

7

8 list prevPermList, curPermList; // init lists of permutations

9 curPermList.add(0);

10

11 while (layerNum < maxNumOfLayers) { // loop over depth layers

12 activateShader(computeNextLayerGPU); // generate next depth layer

13 for each volume scene {

14 volBit = 1 << volNum;

15 renderBoundingBox(volBit);

16 }

17

18 prevPermList = curPermList; // check permutations of

19 curPermList.clear(); // previous layer

20 for each prevPerm in prevPermList

21 for each volPerm in singleBitFlip(prevPerm) {

22 activateShader(raycastingGPU, volPerm); // perform raycasting

23 renderScreenFillingQuad(); // for volPerm

24 if (anyFragmentWritten())

25 curPermList.add(volPerm);

26 }

27 }

28 }

Listing 3.3: Pseudocode for the raycasting procedure on the CPU. The shaders

computeFirstLayerGPU and computeNextLayerGPU are given in Listing 3.4. The

shader raycastingGPU is presented in listing 3.5

1 in: vec4 fragPos; uint volBit; bool frontFace;

2 out: vec4 pos; uint volPerm;

3

4 void computeFirstLayerGPU() {

5 pos = fragPos; volPerm = volBit; // write position and volume

6 } // bit vector

7

8 void computeNextLayerGPU() {

9 vec4 prevPos; uint prevPerm, curPerm; // read previous layer values

10 readPreviousValues(prevPos, prevPerm); // from textures

11

12 if (fragPos.z < prevPos.z) // discard fragments in front

13 discard; // of previous layer

14

15 if (frontFace) curPerm = prevPerm | volBit; // compute current

16 else curPerm = prevPerm & ˜volBit; // permutation

17

18 pos = fragPos; volPerm = curPerm;

19 }

Listing 3.4: Pseudocode for the computation of ray segment layers on the GPU.

At the segment border of a single viewing ray the corresponding volume permuta-

tion changes only in a single bit because either a new volume is entered or an old one is

left. For the whole segment layer this means that only those volume permutations have

3.3. Dynamic Generation of Multi-Volume Shaders 71

1 in: uint shaderPerm, float sampleDist;

2 out: vec4 outColor;

3

4 void raycastingGPU() {

5 if (shaderPerm != getSegmentPerm()) // discard if permutation of shader

6 discard; // and ray segment do not fit

7

8 vec4 startPos, endPos; // compute sampling step along

9 readStartAndEnd(startPos, endPos); // the ray

10 vec4 step = norm(endPos - startPos) * sampleDist;

11

12 vec4 pos = startPos; // start ray traversal

13 vec4 sampleColor; outColor = vec4(0,0,0,0);

14 while (pos.z < endPos.z) {

15 vec4 volSamplePos; float volSample;

16 vec4 volColors[vol.numOfVols];

17 for each vol in shaderPerm { // loop over volumes of shaderPerm

18 volSamplePos = vol.trafo * fragPos; // lookup samples and compute

19 volSample = lookup(vol, volSamplePos); // colors for each volume

20 volColors[vol.num] = shadeSample(vol, volSample); // independently

21 }

22

23 sampleColor = intermixColors(volColors);// accumulate colors

24 outColor += (1.0 - outColor.a) * sampleColor; // blend them to outputColor

25

26 pos += step; // go to next sampling position

27 }

28 }

Listing 3.5: Pseudocode for raycasting of a ray segment layer on the GPU. The

shadeSample and intermixColors functions are similar to the functions that are used

for shading and intermixing in slice-based multi-volume rendering (see Listing 3.2).

to be tested that can be generated from the permutations covered by the previous layer

by single bit flips (Listing 3.3, lines 18-21). To determine which permutations have

been covered by a ray segment layer, hardware supported occlusion queries are used.

For each tested shader a query is started that returns whether any fragment was written

to the frame buffer, which indicates if any ray segment has covered the corresponding

permutation.

3.3 Dynamic Generation of Multi-Volume Shaders

In the previous section two algorithms for GPU-based multi-volume rendering have

been introduced. Both techniques divide the applied proxy geometry into sections that

cover a fixed subset of the volumes in the scene. To achieve the best possible per-

formance, each of the proxy-geometry sections is rendered with an optimized shader

that takes only the currently covered volumes into account. These shaders can all be

written and optimized by hand, but this brings several problems and drawbacks with

it. First of all, the implementation of the multi-volume shaders is a complex and time-

consuming task. Furthermore, it has to be ensured that the shading results for a single

volume does not differ between shaders for different volume subsets. This demands

72 Chapter 3. Flexible Multi-Volume Rendering

the development of many redundant code, which is prone to errors. Finally, for each

combination of volumes and shading styles new shaders have to be implemented. This

limits the generality of the rendering system and turns the design of new visualization

solutions into a task for GPU experts only. The listed drawbacks can be overcome by

the introduction of an abstraction layer that allows the definition of arbitrary multi-

volume shading configurations on a level that is independent of the underlying render-

ing technique and graphics API. From this abstract definition optimized shaders for

any volume subset can be automatically generated.

The encapsulation of low-level graphics APIs by abstraction layers that permit the

access to GPU functionality in a more intuitive and task specific way is a common con-

cept. In particular, for GPGPU computations (see Section 2.3.2) several approaches

have been presented. E.g., Krüger and Westermann [69] implemented several linear al-

gebra operators, which are evaluated on the GPU. The Glift library of Lefohn et al. [71]

provides high-level data structures for GPUs. Buck et al. [16] developed Brook, a high-

level API for general purpose stream computations on GPUs. Many other systems aim

to ease the use of GPUs for classical graphics purposes. For example, Cook [22]

developed a visual tree-based shader language called Shade Trees, which was primar-

ily implemented by means of a graphical editor by Abram and Witted [1]. Goetz et

al. [42] followed a similar idea and introduced a XML-based visual shading language.

McCool et al. [78] presented a shader algebra with predefined operators to manipulate

shader programs and, thus, to facilitate deferred shading. Trapp and Döllner [132] and

Boyer [10] developed techniques that merge predefined shaders to a combined shader

for complex shading operations. A flexible method to combine single functions into a

composed GPU shader program was proposed by Folkegård et al. [33]. This technique

dynamically creates shader programs by combining user-defined sections of code snip-

pets to various shader algorithms. McGuire et al. [79] follow a similar approach but

propose abstract shade trees for combining the shaders on a graphical level. The pre-

sented idea is based on the shade trees of Cook but automates the concatenation of

input and output values of the tree elements.

In the following a dynamic shader generation concept is presented that was es-

pecially designed for the flexible configuration of multi-volume shaders. It is based

on a similar idea like the abstract shade trees and uses also a graph representation,

the so-called render graph, for shader modeling. The nodes of the render graph en-

capsulate – in contrast to other systems – high-level shading functionality, like direct

volume rendering, illumination, or clipping. This allows the concentration on the vi-

sual output during shader design instead of being occupied with the combination of

low-level shading operations. Based on the render graph individual shaders for differ-

ent multi-volume rendering algorithms and different volume subsets are automatically

generated. Currently, the system is designed for OpenGL and its shader language

GLSL, but it can be easily ported to other graphics APIs.

3.3. Dynamic Generation of Multi-Volume Shaders 73

3.3.1 The Render Graph Concept

The render graph allows the description of a complex multi-volume shading algorithm

by the combination of several render nodes. Each render node describes a certain part

of the shading process and the final GPU shaders are automatically generated based

on the current graph configuration. Unlike a classical scene graph, which permits the

creation and manipulation of complex scenes, the render graph describes the visualiza-

tion of a given multi-volume scene on the level of the shading of a single multi-volume

sample. The description is thereby independent of the finally applied volume render-

ing technique. There are three basic types of render nodes, which represent different

stages of the shading process.

The Scene Node

The root of the entire render graph is always defined by a single scene node, which

serves as interface between the external description of the scene objects (e.g. camera,

light sources and volumes) and the graph itself. Therefore, the scene node collects the

required information from these objects and passes it on to its children. To provide

flexible access to arbitrary kinds of scene objects, the scene node does not perform this

task by itself but delegates it to several sub-nodes. Each sub-node is responsible for a

certain scene object. This allows, on the one hand, the easy integration of new scene

objects by appending new sub-nodes. On the other hand, standard access strategies,

e.g. to the volume data, can be replaced by more sophisticated algorithms for specific

scenarios without affecting the handling of other scene objects.

Structural Nodes

Starting at the scene node, all volumes are initially treated equivalently regarding the

shading process. To allow a separate handling of different volumes as a whole or just

parts of them, structural nodes are introduced. These nodes do not directly contribute

to the shading result, rather they provide capabilities to dynamically control the eval-

uation of the render graph by branching and manipulation. Three kinds of structural

nodes are supported:

• Splitter Node: The splitter node is used to divide the handling of the volumes

into several branches. Therefore, an arbitrary number of groups can be created.

Each group contains one or more volumes. Moreover, a volume can be placed

into several groups simultaneously. Every group results in a new branch of the

render graph. Thus, it is possible to define different rendering styles for different

volumes or to combine several rendering styles for a single volume. This can be

considered as a branching on object level.

• Conditional Node: In contrast to the splitter node, a conditional node performs

a subdivision of the volume objects themselves. This means that during the

74 Chapter 3. Flexible Multi-Volume Rendering

shading process only the branch is chosen for which the condition is true. These

conditions are normally evaluated on the basis of the current sample position and

can for example describe the selection of a segmented structure or the clipping

against an implicitly given geometry, e.g. a plane.

• Transformation Node: To spatially separate whole volumes or previously sub-

divided parts of them, it is possible to insert a transformation node into the ren-

der graph. This node implements an affine transformation, which is applied to all

volumes that are assigned to the current branch. Thereby, volume displacement

can be realized.

Shader Nodes

The third kind of nodes are the shader nodes, which exclusively implement low-level

shading operations to compute the resulting image. The shader nodes can be placed

anywhere in the render graph, and several shader nodes can be cascaded on a path from

the root down to a single leaf of the graph. In this case, a successor either overwrites

or manipulates the result of a preceding shader node.

3.3.2 A Render Graph Example

The abstract functionality of the render graph and its nodes can be best clarified by

detailed investigation of a structural example. Figure 3.6 (left) presents an exemplary

render graph which is applied to a dual-volume scene. Render nodes are represented

by grey boxes; the colored lines describe the paths of the volumes; the black arrows

indicate the parent-child relationship of the render nodes. With volume V1 as the hand

dataset and volume V2 as the bucky ball, the graph results in the image shown in

Figure 3.6 (right).

The mapping of the render graph to its corresponding graphical output is started at

the scene node. Here, the two volumes are attached and then their path leads through

the graph in top-down manner. The first splitter node Split V1/V2 divides the paths of

the volumes into two branches. The hand volume takes the left branch and the bucky

ball takes the right one. Volume V1 passes another splitter node Split V1/V1 which

virtually splits the single path of the volume into two independent branches. Both

branches work on the same hand volume but lead to different shader nodes, indicated

by the continuous lines and the dashed lines. The Skin Shader node in the left branch is

responsible for the semi-transparent iso-surface rendering of the skin, while the Bone

Shader node in the right branch performs direct volume rendering of the bone struc-

ture. Both nodes are succeeded by illumination nodes, that manipulate the previously

calculated colors with lighting computations.

Investigating the right branch of node Split V1/V2, volume V2 encounters a con-

ditional node Condition V2. This node splits the bucky ball into two halves using a

3.3. Dynamic Generation of Multi-Volume Shaders 75

Resulting Sample Color

Split V1/V1

Skin Shader Bone Shader

Split V1/V2

V1 Hand

Scene Node

V2 Bucky Ball

Σ

Condition V2

DVR Shader

Iso Shader Transform

Illumination Illumination Illumination

Figure 3.6: The abstract render graph on the left structure represents a scene of two volumes

with different rendering styles applied. The resulting image is shown on the right.

clipping plane. The left branch passes an Iso Shader node, followed by an illumina-

tion node, resulting in a lighted iso-surface of the first half. The right branch runs into

transformation node Transform that translates and rotates the other half, before the

direct volume rendering node DVR Shader delivers the unlighted color for this path.

Finally, the contributions of the different branches are mixed according to the defined

intermixing operation.

3.3.3 Render Node Containers

The goal of dynamic shader generation is to convert the abstract representation of the

render graph into a specially adapted GPU-based shader program that can be used for

hardware accelerated multi-volume rendering. To support this process, each render

node has to provide the information that is needed to perform its desired task. For this

purpose, a render node builds a container that stores a set of output variables. These

variables either act as input for succeeding render nodes or as final output value of the

current volume sample. For each of the output variables the following information has

to be provided:

1. Name and type: A unique name and a data type to permit correct access by other

render nodes.

2. Shader code part: Predefined code that implements the computation of the out-

put variables.

3. Input variables: Output variables of previous render nodes on which the compu-

tation of the output variable is based.

4. Externals: External parameters and textures that are needed for the output com-

putation. They are passed to the shaders as uniform variables.

76 Chapter 3. Flexible Multi-Volume Rendering

5. Scope: A variable can either be valid for the whole scene, for a certain transfor-

mation or for a specific volume.

Which output variables a render node provides, highly depends on its type. The

scene node delivers all information of the given multi-volume scene to the other nodes

of the graph. This is, e.g., the current camera matrix or the position of a light source.

Additionally, it provides the current sample position and the volumes’ scalar values,

gradients and curvatures at this position. To facilitate complex shading algorithms like

pre-integration or isosurface shading, these values are also provided for the succeeding

sample position along the viewing ray.

A shader node generally computes the sample color for a single volume. There

are two major types of shader nodes. Those that are computing the resulting color

directly from the current volume sample, e.g. direct volume rendering or isosurface

shading, or those that are manipulating the previously computed sample color to apply

for example illumination or ghosting effects.

Structural render nodes do not directly contribute to the rendering result, which

means that they usually do not provide any output variable that can be used by a suc-

ceeding node. Nevertheless, condition nodes have to provide a boolean condition vari-

able for each outgoing branch that indicates if the related branch should be evaluated

due to the applied condition.

By means of the render graph example presented in Section 3.3.2 (see Figure 3.6)

the definition of output variables and their dependent components can be illustrated.

Listing 3.6 gives pseudo code for the render node containers of the graph’s branch

that is detailed in the following. The Illumination node at the end of the left branch

of condition node Condition V2 provides the volume-specific sample color as output

variable. The associated code part performs standard Phong illumination based on a

previously computed sample color, the current sample normal, and the light position

(input variables). No external parameters are needed.

The preceeding Iso Shader node serves the requested sample color and sample nor-

mal (output variables). The sample color depends on the sample value at the current

and the following sampling position (input variables). If the chosen iso value (exter-

nal) lies between these two values the sample color is set to the pre-defined iso color

(external). The sample normal is linearly interpolated from the sample gradient at the

current and the following sampling position.

Sample value, sample gradient and the light position are provided by the scene

node. The light position is taken from an external uniform. The sample value is looked

up in an external volume texture. The sample gradient is either computed on-the-fly or

read from a pre-computed gradient texture. Both, sample value and sample gradient

have volume scope and need the volume-specific texture coordinate as input. This is

provided as an internal input variable. Finally, nearly all computations depend on the

sampling position which is unique for the whole scene.

3.3. Dynamic Generation of Multi-Volume Shaders 77

1

2 // *** scene node ***
3 input: sampling position

4 external: volume texture V1

5 external: volume texture V2

6 external: light position

7 code: compute texture coordinates for V1, V2 and V2 trafo

8 code: look up sample values;

9 code: compute gradients;

10 output: sample value V1

11 output: sample value V2

12 output: sample value V2 next

13 output: sample value V2 trafo

14 output: sample gradient V1

15 output: sample gradient V2

16 output: sample gradient V2 next

17 output: sample gradient V2 trafo

18 output: light position

19

20 // *** left branch of Split V1/V2 ***
21

22 ...

23

24 // *** right branch of Split V1/V2 ***
25

26 // *** Condition V2 ***
27 input: sampling position

28 external: plane parameters

29 code: evaluate plane equation for

30 orginal and transformed sampling position;

31 output: plane condition

32 output: plane condition trafo

33

34 // *** left branch of Conditon V2 (plane conditon is true) ***
35

36 // *** Iso Shader ***
37 input: sample value V2

38 input: sample value V2 next

39 input: sample gradient V2

40 input: sample gradient V2 next

41 external: iso value

42 external: iso color

43 code: check if iso surface is hit and set color respectively;

44 code: compute normal by interpolation of gradients;

45 output: sample color V2

46 output: sample normal V2

47

48 // *** Illumination ***
49 input: sample color V2

50 input: sample normal V2

51 input: light position

52 code: compute Phong illumination;

53 output: sample color V2

54

55 // *** right branch of Conditon V2 (plane conditon trafo is true) ***
56

57 ...

Listing 3.6: Pseudocode that partly represent the render node containers that are shown in the

render graph example in Figure 3.6.

78 Chapter 3. Flexible Multi-Volume Rendering

The boolean condition variables served by condition node Condition V2 are deter-

mined by the standard plane function

f(x, y, z) = ax + by + cz + d, (3.4)

which requires the sampling position and externally given plane parameters as input.

The plane function divides the world space into two halves and the condition variables

of the two outgoing branches are set accordingly to true and false. If the halves of the

clipped volumes are transformed after clipping (like the upper half of the bucky ball

in the render graph example), there are in fact two clip planes at different positions.

To realize this, the clip plane function is evaluated twice, once for the original sam-

pling position and once for the previously transformed position. So plane function and

condition variables have different outcome for different transformations, which means

that they have transformation scope.

3.3.4 Two-pass Shader Assembly

Based on the definition of output variables, the related shader code, and the depen-

dencies on input variables, it is possible to generate a specific shader program for the

computation of the final color of a multi-volume sample. Therefore, the shader gener-

ation process is divided into two passes (see Figure 3.7). The first pass evaluates the

graph and determines all output variables that have to be computed for the requested

sample color. This information is stored in the so-called variable state, which is a

structural copy of the render graph that holds only the currently used variables and

links to the original render graph nodes. In the second pass the pre-computed variable

state is used to combine the associated shader code parts for the final shader program.

The division of the shader assembly into two passes is done for three reasons:

1. While the computation of the variable state is independent of the applied render-

ing algorithm, the generation of shader programs can differ for different render-

ing techniques.

2. The generation of different shaders that are responsible for different combina-

tions of volumes can be based on the same variable state, which has to be deter-

mined only once for a certain state of the render graph.

3. It is easier to optimize the generated shader code, if the output variables that are

required by other render nodes are known in advance.

1st Pass

For the computation of the variable state the render graph is traversed recursively in

depth-first order and for each render node an associated variable state node is created

(see Listing 3.7). When a leaf node of the render graph is reached, it is tested if it can

3.3. Dynamic Generation of Multi-Volume Shaders 79

Render Graph Variable State

First Pass Second Pass

Shader Programs

Vertex

Fragment

Figure 3.7: The two-pass shader generation algorithm. In the first pass the required variables

are determined and saved in the variable state. In the second pass the shader programs are

assembled from predefined code parts.

provide the sample color, and, if positive, this variable is stored in the related variable

state node. Furthermore, the applied input variables are deposited in a list of required

variables. On the way back to the root of the graph, this list is re-investigated for each

passed node and variables that can be provided are replaced by their associated input

variables. If the render graph configuration defines a valid shader, the list of required

variables will be empty in the end.

Branches of the render graph – originating from condition and splitter nodes – are

evaluated independently on the way down. At the backward traversal the different

lists of required variables are merged to a single one. In addition, at splitter nodes

it is determined which volumes are investigated at the different branches. Since the

sample colors only have to be computed for still active volumes, this information is

additionally stored in the related variable state at the leaf node and propagated to the

required input variables. At conditional nodes for each outgoing branch the related

conditional variable is added to the list of required variables and then processed just

like the others.

A transformation node plays a special role in the variable gathering pass. All vari-

ables with volume or transformation scope that are computed on the succeeding branch

have to be adjusted due to the defined transformation. The same has to be done for the

required variables on the way up to the root. In addition, if the same volume is exam-

ined multiple times on different branches with different transformations, it effectively

has to be rendered multiple times at different positions. To cope with this fact, all

volumes that are currently active on a transformation node’s branch are cloned, which

means that the clones point to the original volumes and have additional transformation

matrixes attached. Furthermore, the active volumes at the outgoing branch of a trans-

formation node are replaced by their related clones. In the subsequent processing steps

of shader generation and rendering, all volumes in the scene – originals and clones –

are treated equivalently.

80 Chapter 3. Flexible Multi-Volume Rendering

1 varList createVarState(renderNode, targetVar, vols) {

2 stateNode = new VarStateNode(renderNode); // create a new variable state node

3

4 switch renderNode.type // handle render node types differently

5 case SHADERNODE : // shader nodes

6 if (renderNode.isLeafNode())

7 return stateNode.checkVarForVols(targetVar, vols);

8 else {

9 reqVars = createVarState(renderNode.child, targetVar, vols);

10 return stateNode.checkVars(reqVars);

11 }

12 case SPLITTER : // splitter nodes

13 for each branch in renderNode.branches {

14 tmpVars = createVarState(branch.child, targetVar, branch.vols);

15 reqVars = merge(reqVars, tmpVars);

16 }

17 return reqVars;

18 case CONDITION : // condition nodes

19 for each cond in renderNode.conditions {

20 tmpVars = createVarState(cond.child, targetVar, vols);

21 reqVars = merge(reqVars, tmpVars);

22 tmpVars = stateNode.addCondVar(cond);

23 reqVars = merge(reqVars, tmpVars);

24 }

25 return reqVars;

26 case TRANSFORMATION : // transformation nodes

27 newVols = clone(vols);

28 return createVarState(rendeNode.child, targetVar, newVols)

29 }

Listing 3.7: Pseudocode for variable state computation in the first shader assembly pass. The

render graph is traversed in depth-first order by recursive invocation of createVarState.

The processing differs for the differnt types of render nodes.

2nd Pass

The code generation pass produces shader programs – consisting of a vertex shader

and a fragment shader – that are responsible for a certain subset of volumes and that

are specially adapted to the applied rendering algorithm. For slice-based multi-volume

rendering and multi-volume ray casting fragment shaders are generated that basically

look like the shaders presented in Listing 3.2 and Listing 3.5 in Section 3.2. They

differ significantly because the shader for slice-based rendering is just responsible for

the shading of a single multi-volume sample, while the ray-casting shader performs a

complete traversal of a ray segment. Nevertheless, the shading and intermixing opera-

tions for a single multi-volume sample are similar and can be treated equivalently for

both techniques. Both times, the generic shading loop over all participating volumes

is replaced by specific code that avoids expensive branching and looping. The same is

done for the intermixing of the single sample colors.

To assemble the multi-volume shading code for a given set of volumes, the pre-

computed variable state is traversed in depth-first order. At each variable state node

the shader code parts that are associated with the stored variables are taken and added

to the shader. If a variable has either transformation scope or volume scope, its code

3.3. Dynamic Generation of Multi-Volume Shaders 81

segment is defined only once by the render node but is appended to the shader several

times for each requested transformation and/or volume respectively. To ensure the

distinction of the different computations, the variable names are additionally extended

by a unique per-volume postfix.

If there are branches in the render graph, the shader code is assembled indepen-

dently for each branch and finally combined. In order to avoid unnecessary computa-

tions, the code parts of variables of previous render nodes are added to the shader as

late as possible. If a variable is used in all outgoing branches of a structural node, it

is placed before branching, but if it is only needed for a single branch, it is computed

inside exclusively. Conditional branches are evaluated, if the associated conditions –

represented by boolean condition variables – are satisfied. This is realized by nesting

the branches inside if -statements. If a transformation node is placed somewhere below

a conditional branch and the branching condition depends on the transformation, for

each leaf of the outgoing subtree, the condition has to be evaluated as an independent

if-branch in the shader code.

After the traversal of the variable state graph, code for the intermixing of the color

contributions (see Section 3.1) of the different volumes at the different branches is

added to compute the final output color.

Basically, the assembled multi-volume shading code starts the computation of the

output color for each multi-volume sample from the current sampling position. This

includes, e.g., expensive matrix multiplications that transform the sampling position

from camera space into world, object and texture space. But the fact that these compu-

tations are affine transformations allows avoiding these costs by linearly interpolating

the results from previously computed sample values instead. This optimization is not

restricted to affine transformations, but can be exploited for all linear-interpolatable

functions, e.g. the plane function presented in Equation 3.4.

For slice-based rendering the automatic linear interpolation of varyings between

vertex and fragment shader can be utilized. Therefore, linear interpolatable output

variables have to be additionally labeled and their computation is placed inside the

vertex shader. If a non-interpolatable output variable from the fragment shader directly

depends on an interpolatable variable from the vertex shader, additional code is added

to both shaders, which delivers the input variable to the fragment shader by a varying.

However, the number of varying components that can be used in a single GPU program

is limited and depends on the used graphics hardware. To handle this restriction the

number of potential varying components is counted before assembling the shaders.

If the hardware limit is exceeded the demand of varyings is reduced to the allowed

maximum by placing the computation of some of the interpolatable variables in the

fragment shader instead.

The fact that ray casting does perform the whole ray traversal for a ray segment

inside a single fragment shader (see Section 3.2.2) avoids the direct exploitation of

the vertex shader for optimizations. Nevertheless, ray casting can as well benefit from

interpolation. Therefore, an initialization step before the ray traversal loop is intro-

82 Chapter 3. Flexible Multi-Volume Rendering

duced. Here, the values of interpolatable variables are pre-computed for the first and

the second sampling point along the ray segment and the sample-to-sample step size is

calculated by subtracting the two values from each other. Inside the loop the step size

is used to generate a new variable value from the previous one by incrementation.

A further potential for optimization is given by the fact that several volume shading

algorithms, like pre-integration or implicit iso-surface rendering, are not calculating a

color for a single sample position but for the whole slab between two samples. This

means that some variables have to be computed for the current sampling position (front

sample) as well as for the following one (back sample). Instead of re-computing both

values for each sampling step, it is sufficient just to compute the new value for the

current back sample and to copy the value for the front sample from the back sample

of the previous step. In addition, the front value has to be initialized before the ray

traversal.

3.3.5 Rendering

Since the described two-pass shader assembly technique allows the generation of spe-

cific shader programs for any subset of volumes, it can be directly applied to the two

multi-volume rendering approaches presented in Section 3.2. The CPU-hosted render-

ing procedures for slice-based multi-volume rendering (Listing 3.1) and multi-volume

ray casting (Listing 3.3) require only light adaptions. The computation of the variable

state (1st pass) has to be performed once before rendering and needs recomputation

only if the render graph configuration has changed. The algorithm-specific shader pro-

grams for certain combinations of volumes are generated on the fly (2nd pass) the first

time they are activated during the rendering process. They are stored for later reuse by

other proxy slices in case of slice-based rendering or other ray segment layers in case

of ray casting. Like the variable state the shader programs have only to be regenerated

after changes in the render graph.

In contrast, external parameters, such as the current camera position or transfer

function settings, are subject to change between consecutive frames. For this reason,

each render node provides an individual preparation method that realizes its specific

setups of uniform variables, textures and other hardware resources. These preparation

methods are called once per frame for each used shader program.

3.4 Conclusion

In this chapter a flexible framework for the simultaneous rendering of multiple volume

datasets has been presented. In relation to the medical visualization pipeline introduced

in Section 2.2 this framework covers the visualization stage. Here, the dynamic shader

generation technique presented in Section 3.3 represents the mapping step. Via the

render graph various visualization rules for a given multi-volume scene can be defined

on an abstract level. From this abstract render graph optimized GPU shader programs

3.4. Conclusion 83

are generated, that can be adapted for different rendering approaches. In Section 3.2

two techniques for multi-volume rendering have been presented, that can benefit from

the shader generation concept: slice-based multi-volume rendering and multi-volume

raycasting. Both subdivide the multi-volume scene into areas of overlapping volumes

and apply shaders that only take the currently covered volumes into account. This

avoids unnecessary sampling and shading of not affected volume datasets.

The multi-volume rendering framework distinguishes between the sampling step

and the shading step of the multi-volume rendering pipeline with accumulation-level

intermixing (see Figure 3.1 (b)). While the render graph is responsible for multi-

volume shading, the rendering techniques described in Section 3.2 are responsible for

multi-volume sampling. The two-pass shader assembly (see Section 3.3.4) concate-

nates these two steps to an integrated multi-volume rendering algorithm. The separa-

tion of sampling and shading allows for the application of new sampling approaches

without the need to adapt the modules of the render graph. This flexibility makes the

framework utilizable for a great variety of visualization tasks. Some medical applica-

tions are presented in the next chapters.

84 Chapter 3. Flexible Multi-Volume Rendering

CHAPTER

4 INTERACTIVE MEDICAL VOLUME

VISUALIZATION

In the previous chapter a flexible multi-volume rendering framework was presented

that is applicable for a wide range of medical visualization problems. But while the

framework builds the technical basis for the creation of high-quality volume-rendered

images, interactive medical visualization applications have to take additional aspects,

like the support of visual analysis and interaction through the user interface, into ac-

count. In this chapter it is demonstrated how the multi-volume rendering framework

can be employed for interactive visualization in different medical application fields.

Thereby, the focus is laid on the last two stages of the medical visualization pipeline –

visualization and visual analysis – and the interactive control of the visual output by the

user, as it is illustrated in Figure 4.1. Primarily (Section 4.1), a generic multi-volume

visualization tool is introduced that provides a direct manipulation of the render graph

via the user interface. Then (Section 4.2), various visualization concepts for the si-

multaneous visualization of functional and anatomical MRI datasets are presented.

Finally (Section 4.3), an algorithm for the interactive deformation of volume datasets

is described that can be integrated seamlessly into the volume-visualization process.

Data Acquisition

Preprocessing & Image Analysis

Visualization

Visual Analysis In
te

ra
c
ti
o
n

Figure 4.1: This chapter focuses on the visualization and the visual analysis stage of the med-

ical visualization pipeline. The interactive manipulation of the visual output is thereby an

integral element of interactive volume visualization applications.

85

86 Chapter 4. Interactive Medical Volume Visualization

4.1 Generic Multi-Volume Visualization

The multi-volume rendering framework from Chapter 3 provides a high degree of flex-

ibility. The render graph with its freely combinable render nodes allows the generation

of visualizations for new application scenarios without the need to care about the un-

derlying rendering and shading techniques. Thus, it is obvious not to restrict this flex-

ibility to an application programmer only, but to directly provide it to an experienced

user of a visualization application. In this section a visualization tool is presented that

was especially designed for the task of generic multi-volume visualization. A medical

visualization expert can directly manipulate the render graph on a graphical level and

gets direct feedback about the visualization result. Furthermore, it is easily possible to

integrate new render nodes and to combine them with existing ones. This permits the

fast implementation of new shading techniques and allows studying their applicability

to certain medical visualization problems.

Several other tools and frameworks have been presented that provide application-

independent (multi-)volume visualization functionality. Hadwiger et al. [46] intro-

duced a framework for flexible visualization of segmented volume data. It allows

the combination of different shading techniques, transfer functions and compositing

modes for explicitly segmented objects of a single volume. Krüger et al. [67] pre-

sented ClearView, a volume-visualization tool that provides intuitive focus+context

visualizations for arbitrary datasets. VolumeShop, developed by Bruckner et al. [14],

is an interactive system for direct volume illustration. A user can interactively ex-

tract focus objects from a volume dataset, manipulate their appearances, and attach

annotations. Plate et al. [96] presented a multi-volume shader framework for arbitrar-

ily intersecting datasets. Multiple volumes can be combined with so-called lenses to

complex multi-volume scenes. The multi-volume shaders can be interactively defined

by the user via a graphical shader composer.

All these solutions provide a certain visualization metaphor to the user and most are

restricted to a fixed configuration of datasets. In contrast, the visualization tool that is

presented here can be used for several different application cases, like multi-modality

rendering, rendering of segmented datasets and/or illustrative volume rendering, and

those techniques can even be combined into a single image. The presented work was

partly published in [107] and [108] in collaboration with Ralf P. Botchen from the

Universität Stuttgart.

4.1.1 GUI Design and Interaction

The main objective of the generic multi-volume visualization tool is to provide the

flexibility of the render graph directly to the user. For this purpose, the graphical user

interface (GUI) consists of three views (see Figure 4.2). The main render view shows

the visualization results due to the current scene and render graph configuration and

permits interactive manipulation of the camera position with the mouse. The two other

views are placed above each other on the left hand side of the render view. The lower

4.1. Generic Multi-Volume Visualization 87

Figure 4.2: A screenshot of the generic multi-volume visualization tool. The main render view

on the right shows the visualization result for the render graph configured in the render graph

view (left bottom). Via context menu new render nodes can be inserted. The render node view

(left top) provides an individual dialog for the manipulation of the parameters of the currently

selected render node.

render graph view presents the render graph as a hierarchical tree. The graph in a

whole can be manipulated by appending and deleting nodes. Deleted nodes are stored

in a clipboard and can be re-inserted later. This facilitates the user to re-configure the

render graph at higher levels without loosing already arranged branches.

If a node of the render graph is selected, the above render node view shows an

individual dialog for the manipulation of the nodes’ individual parameters. This may

contain a graphical transfer function editor or controls for the adjustment of the po-

sition and orientation of a clip plane. Changes in the node view are either directly

mapped to the underlying render node or have to be explicitly applied by the user.

The second case avoids potentially costly re-rendering during the interactive manipu-

lation of parameters. After the changed parameters have been applied, the effects to

the visualization are shown immediately in the render view.

The configuration of the render graph can be stored persistently in a file for later

reconstruction. This permits, on the one hand, the easy reproduction of earlier gener-

ated visualizations. On the other hand, a once generated render graph can be applied

to other datasets from the same application field. This provides for example the pos-

sibility to generate comparable visualizations for similar datasets. The storage of the

render graph is based on XML serialization, which is described below.

88 Chapter 4. Interactive Medical Volume Visualization

4.1.2 Extensibility

A major strength of the generic multi-volume visualization tool is the possibility to

easily extend it by new render nodes. These can be combined with existing ones for

the creation of new visualizations. The integration of a new render node to the system

requires three steps to be carried out:

1. A new render node class has to be implemented. It has to be inherited from a

basic node class that is provided by the system.

2. An individual render node view has to be provided that permits interactive ma-

nipulation of the render node’s parameters.

3. Functionality for serialization and deserialization of a render node’s individual

state has to be implemented.

Implementation of New Render Node Classes

As described in Section 3.3.1, there are three basic types of render nodes: the scene

node, structural nodes and shader nodes. The class of structural nodes is further sub-

divided into a splitter node, a transformation node and condition nodes. The scene

node, the splitter node and the transformation node have fixed functionality and can

be directly integrated into a render graph. For shader nodes and condition nodes the

system provides base classes that have to be inherited for the implementation of spe-

cific functionality. The basic implementations provide all functions for integration of

a render node into the shader generation framework. Thus, the task of a node pro-

grammer is restricted to the implementation of some predeclared methods that have

to provide a node’s individual shading functionality. These methods are automatically

called during the process of shader generation.

For shader nodes basically four individual methods have to be implemented: fill-

VariableMap, generateShaderParts, prepareGL and cleanupGL. In

fillVariableMap the output variables of a node have to be defined. In addi-

tion, their dependencies on input variables, their dependencies on uniforms (exter-

nals) and their scope have to be given (see Section 3.3.3). The fillVariableMap

method is called each time the variable state is recomputed (see Section 3.3.4). Thus,

changed node parameters can be taken into account for the variable declaration. The

generateShaderParts method is called by the shader generator for each gener-

ated shader. Here, the shader code for the computation of the output variables has to

be filled in. This code depends on the previously declared input variables. To structure

the code for complex computations, additional local variables can be introduced. The

methods prepareGL and cleanupGL are called before and after the rendering of a

single frame (see Section 3.3.5). They can be used to prepare and undo any OpenGL-

specific settings that are needed for the correct evaluation of the node’s shader code.

In general, they should be used to prepare textures and to bind uniforms to the current

shader program.

4.1. Generic Multi-Volume Visualization 89

Condition nodes do not provide output variables for shading, but they need boolean

condition variables to decide which conditional output branch should be evaluated (see

Section 3.3.3). These output variables depend on input variables from other render

nodes and their computation differs for the different types of possible conditions. For

this reason the fillVariable method is pre-implemented in the condition node

base class, and the definition of the dependencies of the condition variables is delegated

to a specialized function that is called for each required condition variable.

When a condition node divides a volume into two or more parts, additional clip sur-

faces are introduced into the volume. The normal orientations along the clip surfaces

differ from the gradients of the volume data. To achieve correct results for subsequent

computations that are based on the normal direction, e.g. lighting computations, the

normal has to be adjusted for sample points nearby a clip surface. For this purpose,

condition nodes provide a normal correction, which is based on an idea presented by

Weiskopf et al. [140]. Depending on the distance d of the current sampling position to

the clip surface, on the normal nclip of the nearest point on the clip surface and on the

volume normal nvol (the gradient) at the sampling position, the normal is adjusted in

the following way:

n̂vol = wnvol + (1 − w)nclip , with w =

{
1, d > dmax

0, else
(4.1)

If the sampling position is further away from the clip surface than the predefined max-

imum distance dmax, the original volume normal is provided to subsequent render

nodes; otherwise, the normal of the clip surface is used. This creates a layer of finite

thickness along the clip surface and produces good illumiantion results for varying

sampling rates. The condition node base class already supports the normal adjustment

along clip surfaces but needs as input the clip surface distance and the clip surface

normal. These differ for different kinds of conditions and have to be provided by the

specialized condition node sub classes.

Individual Render-Node Views

The render node view of the visualization tool shows an individual dialog for the mod-

ification of the state of the currently selected render node (see Section 4.1.1). There-

fore, a render node view factory provides specific manipulation dialogs for the differ-

ent node types. When no node-specific view exists, a standard view is selected that

does not allow any manipulations. To ensure easy manipulation of parameters, a node

programmer should provide an individual render-node view for each new render node.

These can be integrated into the system by registration at the render node view factory.

There are no restrictions for the design of a render node view. Thus, it can be

implemented in a way that is most intuitive for the manipulation of the changeable

parameters. However, all render node views should share some basic functionality that

controls the transfer of parameter changes to the underlying render nodes. Namely,

90 Chapter 4. Interactive Medical Volume Visualization

each render node view should contain a check box that permits choosing if parameter

manipulations should be directly transferred to the render node or if they have to be

applied explicitly via an ”Apply Changes”-button.

Serialization of Render Graph Configurations

Serialization is the process to convert the in-memory state of a complex object structure

into a format that can be used for transportation of the information via a network or

for the storage in a file. The process of reconstructing the object structure from the

serialized data is called deserialization.

The generic multi-volume visualization tool uses serialization and deserialization

for the storage and reconstruction of the state of the render graph. XML (extensible

markup language) is used as format for the serialized data. It was chosen for several

reasons. First, XML has an intrinsic hierarchical structure. Thus, the storage of a graph

structure is straightforward. Furthermore, a lot of libraries for parsing and processing

of XML data do exist. Finally, XML stores the data in human-readable text format.

This permits easy manipulation of a stored render graph state and even allows the

configuration of a complete render graph on a textual level.

The serialization and deserialization of a render graph is carried out by the so-

called serialization manager, which uses the document object model (DOM) for the

handling of the XML data. For serialization the serialization manager starts at the

scene node and traverses the render graph in depth-first order. At each render node a

node element is added to the XML output. Listing 4.1 shows the structure of such

an element. It has two attributes that give the unique type of the render node and a

user-definable name. A node element can have two sub-elements, parameters and

childnodes. The parameters element encapsulates a couple of parameter

elements that store the state of the current render node. Each parameter element

has a type and a name. The type determines the data type of the attribute, like

float, int, or string. The name is used for identification of a certain parameter.

Possible parameters are the float elements of a RGB color value or a string that

identifies a file in which a transfer function is stored. The childnodes element holds

the children of the render node. These children are again node elements. Hence, a

complete render graph is serialized by recursive nesting of node elements.

The hierarchical tree structure of the XML output is automatically generated by

the serialization manager during the traversal of the render graph. For the storage

of a render node’s parameters the respective render node class has to implement an

individual serialize method. This is called by the serialization manager when a

render node is passed. To hide internals of the XML serialization from the render nodes

the serialization manager provides methods for parameter adding for each possible

parameter type.

When a stored render graph shall be deserialized, the serialization manager first

deletes the current graph by deleting the single child of the scene node. Then, the

XML render graph structure is traversed and for each node element a specific render

4.1. Generic Multi-Volume Visualization 91

1 <node type="" name="">>

2 <parameters>

3 <parameter type="" name=""> ... </parameter>

4 <parameter type="" name=""> ... </parameter>

5 <parameter type="" name=""> ... </parameter>

6 </parameters>

7 <childnodes>

8 <node type="" name="">

9 ...

10 </node>

11 <node type="" name="">

12 ...

13 </node>

14 <childnodes>

15 </node>

16 </rendergraph>

Listing 4.1: XML-Structure of a serialized render node.

node object is created and added to its previously generated parent node. The con-

struction of the specific render node objects is done via a factory class. This class

takes the stored node type as input and creates an instance of the affiliated render node

object. After creation, a node’s individual state is reconstructed via a deserialize

method, which has to be individually implemented for each render node type. Similar

to serialization, the serialization manager provides methods for taking parameters of

the different types from the XML data.

4.1.3 Exemplary Render Nodes

In the previous section it was shown how new render nodes for new shading techniques

can be easily integrated into the generic multi-volume visualization tool. To permit the

usage of the tool without the need of implementing render nodes, several nodes for

a wide range of volume-visualization tasks have already been implemented. Besides

the standard nodes for splitting of volume branches and for transformation, several

different shader and condition nodes are provided. The group of shader nodes can be

further separated into primary shader nodes that compute the colors from the current

sample value and other inputs, and secondary render nodes that manipulate an already

computed output color, e.g. for applying lighting effects. In the following the currently

available render nodes are presented to give an idea about the capabilities of the system.

These nodes should illustrate the flexibility of the visualiszation and should show that

it can be applied for many different visualization tasks. For other applications further

render node types may have to be integrated, which is easily possible.

Primary Shader Nodes

DVR Node A Direct Volume Rendering (DVR) Node performs standard volume shad-

ing. It takes the current sample value as input and takes the related color from a look-up

table. This look-up table is based on a freely definable transfer function. Per default

92 Chapter 4. Interactive Medical Volume Visualization

a standard transfer function is used that allows the manipulation of the color channels

independently, but it is also possible to apply task-specific transfer functions. Option-

ally, pre-integration can be activated. Then, the current and the following sample value

is taken to read the precomputed slab color from a 2D pre-integration table.

Isosurface Node An Isosurface Node renders a volume’s isosurface corresponding

to a certain isovalue i. For this purpose, the current sample value φ0 and the next

sample value φ1 are retrieved and compared to the isovalue i in the following way:

iso =

{
1, ((φ0 <= i < φ1) ∨ (φ1 < i <= φ0))

0, else
(4.2)

iso indicates if the isosurface is intersected while the viewing ray is passing the slab

from the current sampling position to the next one. To get the RGBA output color a

user-definable RGBA isosurface color is multiplied with iso. Thus, if the isosurface is

not hit, the returned alpha value is zero, and, thereby, the current volume sample will

not be visible at all.

The isosurface is displayed at each surface sample with the same color, so its ap-

pearance is initially flat. To get a 3D impression of the surface, an Isosurface Node

should be combined with a render node that applies some illumination effects. Those

usually take the surface normal into account. The Isosurface Node approximates this

surface normal n by linear interpolation of the volume gradients g0 and g1 at the cur-

rent and the following sampling position, due to the sample values φ0 and φ1 and the

isovalue i:

n = ag0 + (1 − a)g1 , with a =
|φ0 − i|
|φ1 − φ0|

(4.3)

LIC Node Line integral convolution (LIC) is a technique for the dense visualization

of vector fields. Those vector fields often present measured or simulated flow or can

be derived from scalar fields. Examples for derived vector fields are the volume gra-

dients or the first principal curvature vectors of the implicitly defined isosurfaces. The

first principal curvature indicates thereby at each surface point the direction along the

highest curvature.

A LIC Node uses line integral convolution to visualize the first principle curva-

tures on a pre-selected isosurface. It can be used for illustrative accentuation of the

surface structure of a certain organ or a pathological formation. First, the isosurface

is extracted in the same way like for the standard Isosurface Node and, then, the LIC

computation is applied on the pre-computed curvature field. Details on curvature and

LIC computation on isosurfaces can be found in section 4.2.3.

Secondary Shader Nodes

Illumination Node An Illumination Node realizes standard illumination according

to the Blinn-Phong model [8]. With the incoming color cin, the sample normal n and

4.1. Generic Multi-Volume Visualization 93

the light direction l, the output color cout is computed in the following way:

cout = kacin + kd(n · l) + ks(n · h)pcin. (4.4)

The first term is the ambient term, the second the diffuse term, and the third is the

specular term. h is the so called halfway vector between the viewing direction v and

the light direction l

h =
v + l

|v + l| . (4.5)

ka, kd, and ks are reflection coefficients that specify the influence of the different terms.

The width of a specular highlight, the so-called shininess, is controlled by the specular-

reflection exponent p.

An Illumination Node can be combined with any primary shader node or even

cascaded with other secondary nodes. The normal direction is usually similar to the

gradient direction at the sampling position, but there are render nodes, e.g. condition

nodes and isosurface nodes, that modify the normal. For this reason, preceding render

nodes have to provide the sample color and the sample normal as input.

Cartoon-Shading Node Cartoon shading [70] is an illustrative illumination tech-

nique that imitates the shading style of cartoonists. They usually paint areas that point

towards the light source in a single constant color, and areas that point away in an-

other constant color. Cartoon shading produces similar results by applying distinct

colors depending on the dot product (n · l) between the surface normal and the light

direction.

A Cartoon-Shading Node modifies the incoming sample color by multiplying it

with the following quantized intensity i:

i(n) = min

(⌊|n · l| · s⌋ + 1

s
, 1

)
(4.6)

i takes s distinct values from the set {1/s, 2/s, ..., 1}. For s = 2 the result is equal to

classical cartoon shading; for s > 2 there are more than two areas of constant color.

Ghosting Node Ghosting is an illustrative technique that is used to display internal

features, while simultaneously external structures are provided as context information.

Therefore, the opacity of the external structures is selectively reduced to give view

to the inside. The modification of the opacity can, e.g., depend on the current view

direction [67] or on features contained in the visualized data sets [12].

The Ghosting Node implements a ghosting model that modifies the incoming opac-

ity αin by multiplication with a weighting factor w due to a user-definable sphere. w
depends on the current sampling position p = (px, py, pz)

T , and on the sphere’s radius

r and center c = (cx, cy, cz)
T :

w(p) = max

(
(px − cx)

2 + (py − cy)
2 + (pz − cz)

2

r2
, 1

)
(4.7)

94 Chapter 4. Interactive Medical Volume Visualization

The left parameter of the max-function is derived from the standard sphere equation,

normalized with respect to the sphere radius. At the sphere center this term takes the

value 0, at the sphere surface it is 1, outside the sphere it is greater than 1. Thus, w
has an quadratic progression from 0 to 1 inside the sphere and is clamped to 1 by the

max-function outside the sphere.

Recolor Node The Recolor Node modifies the incoming sample color by multiplying

it with another user-defined color. In combination with condition nodes, this allows

the defintion of the shading style for a whole volume data set and the manipulation

of the basic output color after the evaluation of the conditions. Especially for the

visualization of segmented data (see below) this is a helpful functionality.

Condition Nodes

Plane Condition Node A Plane Condition Node separates the active volumes into

two halves along one or more clip planes. The i-th clip plane is defined by its standard

clip plane function

cpi(p) = aipx + bipy + cipz + di, (4.8)

with p = (px, py, pz)
T as the current sampling position. When cpi(p) is greater

or equal to zero, the current sampling position lies on one side of the plane; if it

is less than zero, it lies on the other side. To decide which outgoing branch of a

Plane Condition Node with n clip planes should be chosen the n plane condi-

tions cpi(p) ≥ 0 are conjuncted by logical ands:

branch(p) =

0,
n∧

i=1

cpi(p) ≧ 0

1, else
(4.9)

Sphere Condition Node A Sphere Condition Node cuts the volume scene into two

parts along the surface of a sphere. One part is the sphere’s inside and its surface; the

other part is the area outside the sphere. The sphere shape can be implicitly described

by the standard sphere equation, which depends on the sphere’s center c = (cx, cy, cz)
T

and its radius r. The branch selection rule is as follows:

branch(p) =

{
0, (px − cx)

2 + (py − cy)
2 + (pz − cz)

2 − r2 ≦ 0

1, else
(4.10)

Tag Condition Node A tag volume is a volume dataset in which each voxel holds

a unique integer ID (tag). This tag indicates the affiliation of the voxel to a certain

structure that is contained in the dataset. The tag volume can either represent explicitly

segmented anatomical or pathological structures (see Section 2.4.2) or can be derived

from a standardized medical atlas.

4.1. Generic Multi-Volume Visualization 95

A Tag Condition Node uses an explicitly applied tag volume to separate the incom-

ing volumes into several distinct objects. It can have an arbitrary number of outgoing

branches, and to each branch one or more tags can be assigned. Each tag can be as-

signed solely to a single branch. To decide which branch should be chosen at a certain

sampling position p, first, the affiliated tag t(p) is evaluated by a nearest neighbor

lookup in the tag volume. Then, it is checked for each outgoing branch i if t(p) is

contained in the applied tag set Ti. In the positive case this branch is chosen.

Since nearest neighbor lookup for evaluation of a tag is used, the border of a vi-

sualized object may show blocky step artifacts. To avoid this, the object borders can

be alternatively smoothed by trilinear interpolation, as it was proposed by Hadwiger et

al. [46]. Therefore, the tags for the eight neighboring voxels of a sampling position are

looked up in the tag volume. Then, it is checked for each outgoing branch if the tags

of the eight neighbors are contained in the branch’s tag set. In the positive case, the

respective voxel gets an intermediate ID of 1, otherwise 0 is applied. From these IDs

a floating point membership value for the current sampling position is computed by

trilinear interpolation. If this value is greater than 0.5, the current sampling position is

belonging to the resepective tag set and the associated branch is chosen. A drawback

of this smoothing method are the higher costs for the additional lookups in the tag

volume.

4.1.4 Case Studies

To demonstrate the flexibility of the presented generic multi-volume rendering tool,

it was applied to several medical use cases, which are detailed in the following. In

addition, several performance measurements of the system for the different setups are

presented, and the advantages and drawbacks of the different rendering techniques

introduced in Section 3.2 are discussed. The visualization results of the example setups

and the corresponding render graphs are shown in Figure 4.3 and Figure 4.4.

Neuroradiological Diagnosis

The first use case is an example from the field of neuroradiological diagnosis for the

detection of malformations of cerebral blood vessels. In this case a CTA scan of the

patient’s head is taken in which the vessel structures are emphasized by a previously

injected contrast agent (see Section 2.1.1). In addition, a MRI scan, that accentuates

the brain tissue, is acquired to get the patient specific relationship between the blood

vessels and the anatomical structure of the brain. The CTA and the MRI scan are

co-registered in a preprocessing step before visual diagnosis.

Figure 4.3 shows an example visualization (Setup I) of this two-volume scene.

The images (a-c) in the top row illustrate different visualization steps during the com-

position of the render graph. The images in the bottom row give the corresponding

render graph configurations. The goal of the visualization is to present the intracra-

nial brain vessels in relation to the surrounding skull and in the context of the brain

96 Chapter 4. Interactive Medical Volume Visualization

(a) (b) (c)

Figure 4.3: Multi-Volume Setup I: Combination of a CTA dataset and a related MRI dataset

of a human head. The MRI dataset provides the skin and brain tissue. It is vertically cut and

the two halves are moved away from each other to get insight to the inner structures. The CTA

dataset contains the skull and the vessels which are rendered with different transfer functions.

The top row shows three stages (a-c) of an interactive multi-volume visualization session. The

bottom row shows the corresponding render graph configurations.

structure. Therefore, the visualization path of the two volumes is first split into one

branch for the MRI volume and two branches for the CTA volume by a Splitter Node.

Then, the MRI volume, which contains the skin and the brain tissue, is rendered with

a DVR node, and the surface structure is emphasized by the combination of a Cartoon-

Shading Node and an Illumination Node. To get insight into the inner structures, the

MRI head is divided vertically by a Plane Condition Node and the two halves are ro-

tated and moved away from each other by two Transformation Nodes. The first branch

of the CT volume is responsible for the visualization of the skull. For this purpose, a

DVR Node with a transfer function that extracts the bone tissue and a standard Illumi-

nation Node is applied. On the second CT branch the vessel structure inside the skull

is extracted. Primarily, a Sphere Condition Node is applied, which approximates the

brain volume by a sphere and cuts away all vessels outside this sphere. Then, a DVR

Node with a transfer function that extracts the vessels is attached; finally, the vessels

are emphasized by cartoon and Phong shading.

4.1. Generic Multi-Volume Visualization 97

Illustration with Ghosting and LIC

Illustrative volume rendering techniques become more and more important in medical

volume visualization because they permit to emphasize significant information in the

datasets while nonrelevant information is suppressed. While the major application

of illustrative volume rendering is the creation of illustrations for presentation and

education, it can also be used for diagnostic and analytic purposes.

Figure 4.4 (a) (Setup II) shows an illustrative medical multi-volume visualization

that was generated with the generic multi-volume visualization tool. It presents a two-

volume scene that consists of a MRI dataset of a human head and a second dataset

that contains the explicitly segmented brain from the first dataset. The whole MRI

volume is shaded with DVR and illuminated with Blinn-Phong shading. Additionally,

a Ghosting Node is appended, which subsequently increases the transparency of a

sample with respect to the center and radius of the predefined sphere. By this means,

the inside brain becomes visible, which is rendered as an illuminated isosurface with an

additional 3D LIC computation applied (LIC Node) to emphasize the surface curvature.

Functional Brodmann Areas

In the next use case (Figure 4.4 (b), Setup III), the brain data of the previous example

is subdivided into several functional regions due to a given Brodmann brain atlas [11].

Therefore, the MRI head is again shaded with DVR and illuminated with Blinn-Phong

but with another transfer function as in the previous setup. The upper half of the head

is cut away by a Plane Condition Node, which is placed in front of the DVR node.

The brain is initially shaded with DVR, with a gray value transfer function applied,

and also illuminated. Then, a Tag Condition Node is attached, which takes the brain

atlas as tag volume. Several tag groups are defined, and to each outgoing branch of the

Tag Condition Node a Recolor Node is attached, which multiplies the incoming gray

values with a pre-defined color.

Pre-segmented Anatomical Structures

For the last example (Figure 4.4 (c), Setup IV) similar visualization concepts like in

the previous setup are applied to another combination of datasets. Here, a simulated

MRI dataset of the BrainWeb database [4; 77] is visualized in combination with a

corresponding anatomical segmentation volume. The segmentation volume assigns to

each voxel a unique ID of the tissue type to which the voxel belongs. First, the whole

MRI dataset is shaded and illuminated with a gray value transfer function applied.

Then, a Tag Condition Node with the anatomical segmentation volume as tag volume

is attached and conditional output branches for skin, skull, grey matter, white matter,

and vessels are defined. To each of these branches a Recolor Node is attached to give

the different tissues individual colors. In addition, skin, skull, grey matter, and white

matter are partly clipped away by several Plane Condition Nodes, each consisting of

two orthogonal clip planes. While skull and brain are completely removed by setting

98 Chapter 4. Interactive Medical Volume Visualization

(a) (b) (c)

Figure 4.4: Multi-Volume Setups II-IV and the corresponding render graphs: (a) Setup II shows

the combination of an illuminated DVR shaded MRI head with a Ghosting Node applied to

show the inside. The interior brain is rendered as illuminated isosurface with 3D LIC applied,

to emphasize the curvature. (b) In Setup III the upper half of the head is cut away, to lay open

the brain, which is segmented and colored due to a functional Brodmann brain atlas. (c) Setup

IV shows an MRI data set of a head segmented into different anatomical regions, such as skin,

brain tissue, and vessels. The regions are differently colored and partly cut away by two clip

planes.

the alpha value to zero, the clipped skin is still rendered semi-transparent to give a

feeling of the whole head’s anatomy.

Performance Measurements and Discussion

The rendering performance of the system was measured for each of the four exam-

ple setups. The CTA and the MRI dataset used for Setup I have both a resolution

of 256×256×120 voxels, the head and the brain dataset for Setup II and III have a

resolution of 181×217×181 voxels, and the dataset of Setup IV has a resolution of

256×256×181 voxels. Table 4.1 shows the achieved frame rates for the three multi-

volume slicing techniques presented in Section 3.2.1 and the multi-volume ray casting

technique presented in Section 3.2.2.

Regarding the three slicing techniques, it can be seen that, depending on the com-

plexity of the applied render graph and the total number of volumes in the scene, the

advantages of the different techniques are accentuated. For most cases the separation

4.1. Generic Multi-Volume Visualization 99

Slice-based Ray casting

Merge Separate Intersect

Setup I (a) 57 67 57 85

Setup I (b) 50 60 40 30

Setup I (c) 37 57 22 18

Setup II 19 21 21 25

Setup III 55 70 63 45

Setup IV 53 56 56 52

Table 4.1: Performance of the three multi-volume slicing techniques and of multi-volume ray

casting on a 5122 viewport given in frames per second (fps). Measurements have been per-

formed on a NVIDIA GeForce GTX280 graphics board with 1024 MB memory.

method dominates in terms of performance, but with the significant drawback that the

intermixing functionality is restricted to standard GPU blending operations. If more

sophisticated intermixing functions are required, the two other slicing techniques are

the only choice, which have the disadvantage of high cost for the additionally required

tessellation. For Setup II, Setup III and Setup IV merge is slower than intersect since

the merge method has to test for each sample whether it belongs to a volume or not,

even if the volumes do completely overlap. In Setup I (b) and Setup I (c) the advan-

tage turns over to merge because of the exponentially raising effort for tesselating the

overlapping proxy geometries that is needed by the intersect approach. Summarizing,

the choice of the slicing technique highly depends on the graph configuration and the

desired quality of the visualization result.

For most of the test cases raycasting shows slower rendering performance com-

pared to the best performing slicing method. However, in Setup I (a) ray casting

clearly wins. Here, only one volume dataset is contained in the scene and, thus, no

costly depth peeling has to be applied. This case shows that single-volume ray cast-

ing becomes favourable over slice-based rendering of single volumes on current GPU

generations. For the LIC computation in Setup II, which is very expensive due to the

filter kernel, the early-ray termination technique for raycasting takes effect. In this

case, raycasting is slightly faster. Summarizing, it can be concluded that with increas-

ing complexity of the multi-volume visualization the performance drawback of the

raycasting approach levels out, while the evaluation of the volume integral is more

appropriate and leads generally to better visual results. Thus, it can not be said which

approach is favorable over the other as the suitability highly depends on the scene.

Regarding the system’s complexity, the effort for shader generation has also to be

taken into account. It is linear with respect to the number of volumes and the number of

render nodes because each node has to be processed two times for each volume, once in

each pass of the two-pass shader assembly (see Section 3.3.4). Since the total number

of volumes and render nodes is rather small, the generation time is minimal in contrast

100 Chapter 4. Interactive Medical Volume Visualization

to the rendering performance. Another aspect is the complexity of the generated shader

programs, which is also linearly increasing with the number of volumes and render

nodes. Additionally, it depends on the complexity of the applied shading algorithms,

e.g. the LIC computation in setup II is very expensive and, thus, highly effecting the

frame rates. Nevertheless, for both rendering techniques the performance tests have

shown that the system provides interactive framerates even for complex scenarios. So,

it fits well to a wide range of medical problems and supports the creation of meaningful

and comprehensive visualizations in an intuitive way.

4.2. Visualization of Functional Brain Images 101

4.2 Visualization of Functional Brain Images

The multi-volume visualization tool that was introduced in the previous section enables

an expert user to apply it to varying medical visualization tasks. However, the daily

work of medical doctors and medical researchers is often restricted to a dedicated

application area. To best support their work, an optimal visualization tool should adapt

and restrict the provided visualization and interaction features to those that are required

for the specific task for which it was designed. In this section a visualization solution

for the analysis of functional brain images is presented that focuses on the needs of

cognitive neuroscience.

The field of cognitive neuroscience seeks to understand the links between human

thoughts, feelings and actions, and the functions of our brains. Its main belief is that all

facets of our psychic life have a neuronal basis. Early research in this field primarily

explored which psychic functions are distorted if parts of the brain have been damaged

by accidents, tumors or strokes. Today, however, the via regia to explore the neural

basis of mental activities are the so called neuroimaging methods of which the main

goal is to make visible the activities of the brain, for example functional Magnetic

Resonance Imaging (fMRI).

The three-dimensional visualization of these functional brain images in relation to

their anatomical context would help cognitive scientists in gaining a deeper insight

into the data. But a major problem of 3D visualization of fMRI data is the fact that

the anatomical brain tissue is surrounding the activation data and, thus, will occlude it

when standard 3D visualization techniques are applied. Many systems try to solve this

problem by projecting the functional data onto the brain surface. This projection is

either done along the surface normal [122; 124] or along the viewing direction [106].

Both approaches, however, produce an incorrect depth perception. If projection along

the surface normal is applied, deep objects will appear greatly magnified; if projection

along the viewing vector is used, the functional data would appear to move when the

viewpoint changes. For this reason, other approaches use direct volume rendering

for the fused visualization of anatomical and functional data. E.g., König et al. [65]

introduced transfer function volumes to distinguish between activated and not activated

voxels of the brain. Beyer et al. [7] combined anatomical and functional MRI datasets

for neurosurgical planning and enable viewing of the functional data by clipping away

occluding anatomical structures. Jainek et al. [57] mixed surface-based rendering for

the anatomical brain structure with direct volume rendering for the fMRI activation.

The visualization approaches presented in this section aim to solve the occlusion

problem by combining several different illustrative and non-illustrative direct volume

rendering techniques on the basis of the multi-volume rendering framework introduced

in Chapter 3. After giving a short introduction to functional imaging methods, i.e.

fMRI (Section 4.2.1), a visualization tool for fMRI data and its application to measured

data sets of a cognitive study is presented in Section 4.2.2. In Section 4.2.3 this tool is

extended by line integral convolution to emphasize the brain structure. The described

work was first published in [110] (Section 4.2.2) and in [116] (Section 4.2.3). The vi-

102 Chapter 4. Interactive Medical Volume Visualization

sualization tool presented in Section 4.2.2 was developed in cooperation with Eduardo

Tejada, Universität Stuttgart. The work described in Section 4.2.3 was carried out in

collaboration with Tobias Schafhitzel, Universität Stuttgart, who contributed the LIC

computation. The cognitive neuroscientists Markus Knauff and Thomas Fangmeier

from the University of Gießen and the University of Freiburg gave the background

information about fMRI, provided the applied data sets and tested the software.

4.2.1 Neuroimaging in Cognitive Neuroscience

Contemporary research in the field of cognitive neuroscience is to a great extent per-

formed by using fMRI. This method takes advantage of the fact that cognitive pro-

cesses lead to a local increase in oxygen delivery in the activated cerebral tissue [34].

Physically, the fMRI technique relies on the understanding that deoxy-hemoglobin is

paramagnetic and oxy-hemoglobin diamagnetic. Increased presence of oxy-hemoglobin

leads to changes in the local magnetic field homogeneity, which is commonly referred

to as the Blood-Oxygen-Level-Dependent (BOLD) effect [92; 100]. A local increase in

oxygen delivery is thought to be correlated with brain activation.

To measure these changes in blood flow, a number of people are placed one after

the other in a magnetic resonance tomograph. They typically lie on their back and their

head position is fixed in a head coil. A mirror system is placed on the coil so that they

can see a projection screen mounted on the rear of the scanner. The cognitive tasks are

either presented on this screen or via headphones, and the participants respond to them

by pressing buttons of a MRI-compatible response box. Typically, functional images

are collected in a gradient-recalled echo-planar imaging (EPI) sequence, allowing

the sampling of up to 32 parallel slices that cover parts of the brain or the whole

brain. The principle of fMRI experiments is to measure brain activation of quickly

repeated intervals and to explore differences among them. In the classical paradigm

the baseline activity is measured when the volunteer is at rest, and other measurements

are taken when the participant performs certain cognitive tasks. Then, the activity in

the baseline condition is subtracted from the activity measured during the performance

of the cognitive tasks, and the resulting data is statistically analyzed. In more modern

experiments combinations of experimental conditions are compared to other combined

conditions.

A great majority of cognitive scientists use the SPM (Statistical Parametric Map-

ping) software [38; 142] to statistically analyze the brain activations. It has been de-

veloped by members of the Wellcome Trust Center for Neuroimaging in London and

allows the analysis of whole sequences of brain imaging data. The sequences can be

series of images from different groups of people or time series from the same subject.

Basically, the statistical analysis tests the measurements against some previously de-

termined model hypotheses. The statistical results are then transfered into so-called

statistical parametric maps (SPMs), which can be used for analysis and visualization.

Broadly speaking, an SPM gives the degree of activation during a certain cognitive

task for each voxel in a dataset.

4.2. Visualization of Functional Brain Images 103

Figure 4.5: 2D visualization of a statistical parametric map (SPM) provided by the SPM soft-

ware. Three axis aligned slices of an anatomical template dataset are overlaid by the color

coded brain activation that is stored in the SPM. The color bar on the left bottom shows the

mapping of the color to the degree of activation. (Image courtesy Thomas Fangmeier, Univer-

sity of Freiburg)

4.2.2 Visualization of Statistical Parametric Maps

Before statistical analysis the fMRI scans of a measured series are co-aligned to each

other and then mapped into a standard anatomical brain space, a process which is called

spatial normalization. This allows, e.g., for easy inter-subject comparisons. The stan-

dard brain space is either defined by the brain atlas of Talairach and Tournox [125] or

the newer MNI brain generated by Evans et al. [30]. Since the fMRI measurements are

spatially normalized, the resulting SPMs are as well spatially normalized. For visu-

alization a SPM is usually rendered in combination with a corresponding anatomical

template dataset of a standardized brain that corresponds to the applied brain space.

The SPM software provides a simple 2D visualization technique that overlays some

previously selected slices of the anatomical template dataset with the corresponding

activation slices of the SPM (see Figure 4.5). In the following it is illustrated how the

same template dataset can be used for 3D visualization.

104 Chapter 4. Interactive Medical Volume Visualization

(a) (b) (c)

Figure 4.6: Simultaneous rendering of a SPM and a related anatomical template dataset of a

human brain. Both datasets are rendered with DVR. A gray value transfer function is applied

to the anatomical brain. Positive values of the SPM activation are mapped to colors between

yellow and red, negative values to colors between green and blue. In (a) standard DVR is

applied for both datasets; in (b) the brain is rendered with pre-integration; in (c) additional

illumination is applied to the brain.

3D Visualization Methods

3D visualization of a SPM in combination with the anatomical template dataset can

be easily done with the multi-volume rendering framework from Chapter 3. Since the

two datasets origin from different imaging modalities (fMRI and MRI), it does not

make sense to treat them similarly for visualization. Thus, it is obvious to first split

up the visualization paths of the two volumes by a Splitter Node and then to apply

different combinations of shader nodes. Figure 4.6 shows three visualizations where

a standard DVR Node is applied to both volumes. For the template brain a standard

transfer function is used, that maps the volume’s scalars independently to grey values.

For the SPM a specialized transfer function is employed that better fits to the nature of

the contained data.

A SPM contains floating-point values that give the degree of activation. There is

no fixed scale, and there is theoretically no upper bound. Often activation differences

between two different cognitive tasks are studied. The resulting datasets, which are

called contrasts, can contain positive and negative values. The transfer function for the

SPM data is inspired by the color coding that is used for 2D visualization by the SPM

software. A user can define a lower threshold and an upper bound for the accepted

positive values and an upper threshold and lower bound for negative values. To each of

these thresholds and bounds a color has to be assigned. Positive data values between

the positive bound and the positive threshold are mapped to colors that are linearly

interpolated from the two predefined boundary colors. Values above the positive bound

are constantly mapped to the color that is applied to this bound. Negative data values

are treated similarly. Data values between the positive and the negative threshold are

4.2. Visualization of Functional Brain Images 105

(a) (b)

Figure 4.7: Application of isosurface rendering to make activation in deeper brain regions

visible. (a) The surface of the template brain is rendered as a semi-transparent illuminated

isosurface. The detail gives a closer look to a selected area. (b) An additional visualization

branch renders two axis-aligned 2D slices of the unsegmented template MRI dataset to give

further anatomical context

skipped. This allows the culling of noise and of small activation values that are not

important for the analysis.

For the visualizations in Figure 4.6 not the whole MRI template dataset is used for

rendering but only the explicitly pre-segmented brain. This allows visualizing the SPM

activation in conjunction with the brain surface. In Figure 4.6 (a) standard DVR is ap-

plied to both datasets. Positive activation values are tranformed into colors from yellow

to red; negative values are mapped into a range from green to blue. In Figure 4.6 (b)

the anatomical brain is rendered with pre-integration, which visibly improves the ap-

pearance of the surface. The brain surface is further emphasized in Figure 4.6 (c) by

applying additional illumination.

When DVR shading is used for the visualization of the brain, one has to choose a

relatively high opacity to get a well distinguishable presentation of the brain surface.

As a consequence, only activation near by the brain surface will be visible. To show

activation of deeper brain areas as well, isosurface rendering can be used instead for

the representation of the brain. In Figure 4.7 (a) the brain surface is rendered as a

semi-transparent, illuminated isosurface. This gives insight to the underlying brain ac-

tivation, while the anatomical brain structure is simultaneously provided as reference.

In Figure 4.7 (b) an additional visualization branch is applied in which two orthogo-

nal 2D slices of the unsegmented MRI template dataset are rendered for supplemental

orientation. For this kind of visualization a new render node was implemented that

allows the rendering of up to three axis-aligned 2D slices of a volume dataset. The

three slices can be freely positioned along their associated coordinate axis. This is im-

plemented by checking at each sampling position if the viewing ray passes one of the

slices on its way from the current to the following sampling point. In the positive case,

106 Chapter 4. Interactive Medical Volume Visualization

(a) (b)

(c) (d)

Figure 4.8: Several cut-away views that give insight into the brain. (a) Standard DVR render-

ing of the template brain with the upper half clipped away along a clip plane. The small image

shows the 2D slice that corresponds to the clip surface. (b) Semi-transparent isosurface ren-

dering of the whole anatomical head with the upper half cut away. (c) 24 out of 48 functional

Brodmann areas are cut out with a Tagged Condition Node. (d) Similar to the configuration in

(c) but only 19 Brodmann areas are shown.

the underlying sample value is mapped to a color due to an arbitrary transfer function,

otherwise the sample is discarded.

Another way to get insight to the brain is cutting away some parts of it by a con-

ditional render node. In Figure 4.8 (a) the upper parts of the brain volume and the

SPM datset are cut away by a single clip plane. The same is done in Figure 4.8 (b),

but this time the whole template dataset is visualized by a semi-transparent isosurface.

This provides the brain activation in the context of the whole head’s anatomy. In Fig-

ure 4.8 (c) and Figure 4.8 (d) some parts of the brain and the activation are cut away

with a Tag condition node. The functional Brodmann Atlas [11] is used as tag volume.

Thus, it is possible to investigate the activation of certain functional brain areas.

4.2. Visualization of Functional Brain Images 107

Figure 4.9: A screenshot of the visualization tool for functional SPM data. The large main

view in the center shows the combined 3D volume visualization of an SPM activation dataset

and a related anatomical template dataset. The three views on the right side give 2D slices

of the same datasets. On the left side there are several controls for the manipulation of the

visualization.

Application

To optimally support cognitive scientists during their work, a specialized visualization

tool was developed (see Figure 4.9). In its main view it provides the 3D-visualization

capabilities described above. Different rendering styles for the anatomical template

and the functional activation can be chosen, the transfer functions can be manipulated

individually, and clipping can be activated when needed. In addition, there are three

2D-slice views that show three axis-aligned slices of the template dataset overlaid by

the associated SPM activation. In each of these slice views the user can navigate

through the whole template datasets along the respective axis. The change of the posi-

tion is immediately shown in the other 2D views by a cross hair.

Besides the template dataset, one can load any SPM dataset of each step of the

analysis pipeline, from pre-processing to statistical activation maps. To allow the easy

comparison of different co-related datasets, a whole series of SPMs can be loaded

simultaneously and the user can interactively switch between the different functional

datasets. Furthermore, a certain voxel can be selected via positioning of the cross

hair in the 2D-slice views. The change of the activation in this voxel over the whole

functional series is plotted in an extra view.

108 Chapter 4. Interactive Medical Volume Visualization

Figure 4.10: Two different stages in the reasoning process. From left to right: pre-integration

with illumination, semi-transparent isosurfaces, pre-integration with one clipping plane and a

corresponding two-dimensional slice.

The SPM visualization tool has been successfully used for the visualization of

data gathered from a study that has been conducted at the University of Freiburg [31].

In these experiments the participants performed logical reasoning problems while the

brain activity was measured. During the logical reasoning problem, the participants

were asked to draw conclusions from given premises, and later their responses were

evaluated for logical validity. For instance, they saw two premises:

Premise 1 : V X (V is on the left of X).

Premise 2 : X Z (X is on the left of Z).

and they had to decide afterwards and indicate by a key press whether the following

statement logically follows from the premise:

Conclusion: V Z (V is on the left of Z)?.

Figure 4.10 shows two different stages in the reasoning process (event-related de-

sign, 12 participants) for different rendering modes. In the top row it is possible to see

activations in the occipito-parietal cortex and the anterior prefrontal cortex, whilst the

bottom row depicts the activation during the validation in the parietal and the prefrontal

cortex (more details of the study can be found in [31]).

4.2.3 Enhanced Surface Perception by Flow Visualization

The two presented strategies for the simultaneous visualization of inside brain activa-

tion and the surrounding anatomical brain – clipping and semi-transparent rendering –

bring some disadvantages for the analysis of the fMRI data. The first strategy of clip-

ping encounters the problem that important parts of the data may be clipped away and

4.2. Visualization of Functional Brain Images 109

that the user can not get an overview of the functional activation in its entire anatomi-

cal context. When semi-transparency is employed, one has to cope with the trade-off

between the visibility of the brain activation and the perceptibility of the brain surface.

In this section an alternative rendering strategy is presented that aims to overcome

these drawbacks. The idea is to reduce the occlusion effects of a semi-transparent iso-

surface by replacing its surface representation by a sparser line representation. The

lines are chosen along the principal curvature directions of the isosurface and are ren-

dered by a flow visualization method that is called line integral convolution (LIC). The

application of the LIC algorithm results in fine line structures that improve the percep-

tion of the isosurface’s shape in a way that permits the rendering with small opacity

values. To achieve high performance, the curvature vectors of the brain dataset are pre-

computed and stored in a separate 3D texture, and the LIC computation is performed

only on the current visible surface.

The proposed technique is inspired by the work of Interrante [54] who precomputes

the complete LIC integral at the voxel positions of the volume dataset. Hadwiger et

al. [47] also apply LIC for curvature visualization on an isosurface but compute the

curvature on the fly for the previously projected isosurface. In the following, first

the mathematical and algorithmic basics for curvature and LIC computation are intro-

duced. Then, it is shown how deferred LIC computation can be integrated into the

multi-volume rendering framework, and, finally, it is presented how these techniques

are applied to the visualization of SPMs.

Mathematical and Algorithmic Basics

Surface Curvature The first principal (curvature) direction is defined as the direc-

tion along the highest curvature on a surface. The corresponding curvature strength

is called first principal curvature. The second principal direction indicates the direc-

tion to the flattest area. By construction, both principal directions are perpendicular

to the surface normal. The two principal directions and the corresponding curvatures

can be obtained by computing the eigenvalues of the second fundamental form and the

corresponding eigenvectors [64; 87].

In the following, it is assumed that the surface is defined as an implicit isosurface

of a 3D scalar field. First, an orthogonal frame (e1, e2, e3) is constructed (see Fig-

ure 4.11). One basis vector is defined as e3 = ∇s(p), where s is the scalar value at the

position p. The vector e3 is the normal vector on the isosurface. The basis vector e1

is chosen within the plane that is perpendicular to e3; the direction within that plane

can be chosen arbitrarily. The remaining basis vector is computed as e2 = e1 × e3 and

also lies in the plane that is perpendicular to e3. Then, the second fundamental form

can be formulated as the matrix

A =

[
ω̃13

1 ω̃23
1

ω̃13
2 ω̃23

2

]
, (4.11)

where ω̃i3
j represents the deflection in the direction of ei when one moves along ej .

110 Chapter 4. Interactive Medical Volume Visualization

e1

e2

e3

Figure 4.11: Orthogonal frame for the computation of the surface curvature. Here, e1 stands

for the first principal direction, e2 for the second principal direction, and e3 for the surface

normal.

These values are formally known as twists if i 6= j and can be obtained by the dot

product of ei and the derivative of the gradient in ej direction:

ω̃i3
j = ei ·

∂e3

∂ej

(4.12)

Note that the twist terms ω̃13
2 and ω̃23

1 need to be equal. In order to compute the

eigenvalues of A, the matrix is first rotated arround e3 until the twist terms disappear.

This is done by diagonalizing A to obtain DA:

A = SDAS−1 =

[
u1 u2

v1 v2

] [
κ1 0
0 κ2

] [
u1 u2

v1 v2

]−1

, (4.13)

where (ui, vi)
T denote the eigenvectors and κi with i ∈ [1, 2] stands for the first and

the second eigenvalues of A. Finally, the principal directions are given by

xi = uie1 + vie2 with |e1| = |e2| = 1. (4.14)

Line Integral Convolution The line-integral-convolution (LIC) algorithm [17] is

the basis for one of the most common texture-based techniques in flow visualization.

This method uses an integration along curves defined by a vector field. The curves

are constructed by tracing the motion of particles along the vector field, leading to

streamlines in the case of a steady (i.e., stationary) vector field. Only steady vector

fields are considered because the principal curvature directions will not change after

the isosurface has been extracted. First, LIC on 2D planes is discussed and, later, it is

extended to curved surfaces.

The particle tracing integrates the position of a particle n positive and n negative

steps along the vector field, starting at the seed position p = (x0, y0)
T . The resulting

streamline is denoted by φ0(t) and describes the position of a particle at a varying

curve parameter t. Note that φ0(0) = p represents the seed point. T (x, y) stands for

4.2. Visualization of Functional Brain Images 111

the input noise texture and k(t) denotes the convolution filter. Then, the intensity I at

p is defined as the convolution along the streamline:

I(p) =

∫ L

−L

k(t) T (φ0(t)) dt . (4.15)

For the filter k(t), usually a symmetric function is used, e.g. a box or a tent function.

The noise texture T (x, y) contains (filtered) white noise. Applying Equation (4.15),

the high spatial frequencies along the streamlines are reduced or completely removed,

while maintaining the high frequencies perpendicular to those lines. This leads to

line-like visual patterns.

The work presented here applies an adaption of the LIC algorithm for the visualiza-

tion of flow on curved surfaces, which was developed by Weiskopf and Ertl [141]. One

of the most important advantages of this method is that it is independent of the surface

parameterization. Actually, no parameterization is necessary, what makes the approach

appropriate for the application on implicit isosurfaces. The algorithm consists of two

stages: (1) the projection of the surface and its corresponding vector field to the image

plane and (2) the LIC computation on the image plane. This method computes each

component in its appropriate domain and facilitates the evaluation of the LIC integral,

which is computed on a planar 2D domain only for the visible parts of the object.

Furthermore, this algorithm is well suited for an efficient GPU implementation.

In the following technical discussion, image-space coordinates are used as a repre-

sentation of positions on the image plane. In addition, the original 3D object space of

the isosurface is considered. An object can be transformed from object space to image

space by applying a projection onto the image plane.

The idea of this algorithm is to evaluate the LIC integral (Equation 4.15) on a per-

pixel basis with respect to the image space. In addition, the particle traces are also

represented in 3D object space in order to achieve temporal coherence under cam-

era rotations. To exploit the advantage of a combined image-space and object-space

representation, the particle paths are simultaneously computed in both domains. The

particle path in object space is obtained by solving the particle tracing equation,

dpobj(t)

dt
= v(pobj(t)) , (4.16)

where v(pobj) denotes the vector field on the surface, and pobj(t) denotes the object-

space position of the particle at integration time t. This equation is solved by applying

an explicit numerical integration, such as a first-order Euler scheme. After each inte-

gration step, pobj is projected to image-space coordinates pimg. The 3D object-space

position pobj is used to access the noise field T , which is also defined in 3D object

space. The noise contributions are accumulated according to Equation (4.15) in order

to obtain the final LIC result.

To simplify the representation of, and access to, the vector field v, the 2D image-

space position pimg is used to access the vector field. In fact, the vector field is not

112 Chapter 4. Interactive Medical Volume Visualization

stored with respect to 3D object space, but with respect to 2D image space. Therefore,

the image-space representation of the vector field needs to be initialized before the LIC

integral is computed; namely, the vector field is projected from its original object-space

representation onto the image plane. Then, particle tracing is based on the slightly

modified equation
dpobj(t)

dt
= v(pimg(t)) , (4.17)

where pimg is computed from pobj by projection onto the image plane.

Deferred Multi-Volume Shading

Deferred shading is a rendering technique that decouples the determination of the visi-

bility of a fragment from performing shading operations for actually visible fragments.

In a first rendering pass the 3D positions of the fragments and additional information,

like gradients, curvature vectors, etc., are written to a so-called G-buffer (geometry

buffer) [114]. The G-buffer is usually realized by one or several offscreen render tar-

gets. In a second render pass a screen-filling quad is rendered with the G-buffer render

targets bound as input textures. At each fragment the related geometry information

is read from the G-buffer and then shading operations, for example illumination, are

performed. The advantage of this technique is that expensive shading operations are

only performed for visible surface fragments. On the other hand, deferred shading

techniques can only be applied to opaque surfaces where the position of a pixel in 3D

object space is unambiguously defined.

The above introduced LIC algorithm for flow visualization on curved surfaces uti-

lizes the deferred shading approach to minimize the cost for the expensive evaluation

of the LIC integral. In the first rendering pass the currently selected isosurface is ren-

dered opaquely. At each visible surface fragment the 3D position and additionally the

associated vector from the 3D vector field is stored in the G-buffer. In the second pass

the LIC computation is only performed for the visible surface fragments.

For the application case of visualizing functional activation maps in combination

with the curvature-emphasized brain surface the deferred LIC computation has to be

combined with standard multi-volume rendering. Therefore, deferred shading can be

integrated into the multi-volume rendering framework from Chapter 3. The basic idea

is to separate the rendering process into three passes (see Figure 4.12). In the first

pass G-buffers for each applied volume are generated, in the second pass intermediate

rendering results for the different volumes are computed, and in the third pass the in-

termediate results are merged to a single image. To achieve valid visualization results,

one has to ensure that the rendered fragments of the different volumes either all lie on

the same surface, or that they can be easily sorted in correct depth order. When no

deferred shading is needed, the intermediate image of a volume can be alternatively

rendered directly without the generation of a G-buffer.

For the first and second pass two different render graphs for the same multi-volume

scene are applied. The first render graph describes the generation of the G-buffers,

4.2. Visualization of Functional Brain Images 113

Vol1

Vol2

VolN

GBf1

GBf2

Img2

Img1

Img3

ImgM

G
-B

u
ff
e
r

R
e
n
d
e
ri
n
g

D
e
fe

rr
e
d
 S

h
a
d
in

g

Res

A
c
c
u
m

u
la

ti
o
n

D
ir
e
c
t
R

e
n
d
e
ri
n
g

Figure 4.12: Pipeline of deferred multi-volume shading. First the G-buffer – 3D object-space

position, gradient, curvature, etc. – is generated independently for each volume. Then, deferred

shading operations are performed on the G-buffers. Finally, the intermediate images for single

volumes are accumulated to a fused result image. The visualization rules for both, G-buffer

rendering and deferred shading, are determined by a render graph. When no G-buffer is needed,

the intermediate images can be generated directly.

e.g. along an isosurface. In contrast to the standard rendering process, the generated

shaders do not write a single output color but have several output values, like the

current 3D position or the current surface normal, which are written to the related

G-buffers. For this purpose, the standard multi-volume rendering module has to be

extended in a way that the results are written to several offscreen render targets. Further

on, the shader generation module has to support the generation of shaders with several

output variables.

The second render graph is responsible for the evaluation of complex shading oper-

ations on the previously computed G-buffers. Here, any shader node that takes one or

several pre-computed G-buffer values into account can be applied. Instead of comput-

ing these values from the underlying volume dataset, they are read from the G-buffer.

Therefore, the Scene Node, namely the sub-node which is responsible for the volumes

(see Section 3.3.1), is adapted in a way that it hides the G-buffer from subsequent

shader nodes. Thus, the same shader nodes like for standard multi-volume rendering

can be applied. The deferred shading process can be performed in one or several ren-

der passes. Basically, a screen filling quad is rendered with the related G-buffers as

input. Either a combined shader writes several output colors to several render targets in

a single pass, or for each intermediate image a separate shader is used. Alternatively,

if only one shader is used, the accumulation can be directly integrated into this shader.

Then no additional accumulation pass is needed.

114 Chapter 4. Interactive Medical Volume Visualization

Applying Curvature LIC to SPM visualization

In the context of SPM visualization the LIC algorithm for curved surfaces is used

for the accentuation of the brain surface structure along the first principle curvature

direction, while simultaneously the occlusion of the activation data is minimized. The

applied vector field gives the first principle (curvature) direction for each point in the

3D volume. This vector field is precomputed and stored in a 3D texture. Curvature

vectors at intermediate positions are trilinearly interpolated from the curvature vectors

at the surrounding voxels.

In the final image three different visualization styles are combined. The SPM ac-

tivation map is rendered with standard DVR, and the anatomical brain surface is ren-

dered once as illuminated opaque isosurface and once as isosurface with LIC along the

first principal direction. For both isosurfaces the same isovalue is applied. Activation

data outside the visualized brain surface is cut away. Thus, it is possible to render

the SPM activation separately and to store it in an intermediate image for accumula-

tion. For the rendering of the illuminated isosurface and of the LIC isosurface deferred

shading is applied. A single G-buffer for the anatomical brain dataset is generated.

There the 3D object-space positions of the foremost fragments of the isosurface, the

associated gradient vectors of the pre-computed gradient texture, and the associated

first-principle-direction vectors of the pre-computed curvature texture are stored. Two

different shading operations are performed on the G-buffer. On the one hand, an inter-

mediate image is generated by applying standard Phong illumination to the surface. On

the other hand, the LIC algorithm for curved surfaces, as described above, is evaluated.

The three intermediate images are intermixed with a special blending function that

takes the lines obtained from the LIC computation, the illuminated isosurface, and the

DVR rendered brain activation into account. The blending function is defined as

C′
out = αCiso + (1 − α)(1 − ILIC)Cact , (4.18)

and describes the final output color C′
out. The alpha blending between the functional

data Cact and the anatomical data Ciso is governed by the adaptable opacity α of the

isosurface, i.e. the opacity of the isosurface determines the visibility of the brain acti-

vation behind it. Figure 4.13 illustrates this blending process.

The intensity of the curvature lines, ILIC, further modifies the image compositing.

According to the multiplication by the factor (1 − ILIC), the LIC intensity provides

different weights for the brain activation. Since dark lines should be obtained, it is

necessary to negate the intensity. Furthermore, empty areas inside the anatomical hull

have to be considered. Black empty regions would lead to a multiplication by zero,

which means that in these areas no curvature lines would be visible. In order to apply

the curvature lines also in these regions, the brain activation data is rendered using a

white background.

The brain structure can be further emphasized by applying illumination based on

the curvature LIC represention, as proposed by Schafhitzel et al. [117]. Then the data

4.2. Visualization of Functional Brain Images 115

DVR

(Cact)

Curvature

(1- ILIC)

Isosurface

(Ciso)

C’outCout

+

Figure 4.13: Blending of the functional data rendered by DVR and the surrounding anatomical

data using isosurface shading. The curvature lines resulting from the LIC computation affect

the DVR rendering by defining the intensity of the functional data as well as the isosurface

shading of the anatomical data due to their tangential behavior. If curvature line illumination

is enabled, a second blending is applied which adds the light contribution to the emissive

representation.

flow changes slightly (see Figure 4.13). Lighting is based on normal vectors on the sur-

face geometry, which can be related to the gradients of a texture-based representation

of geometry. For curve illumination a real-time gradient computation for the curvature

lines is employed. Since the curvature lines are computed on the image plane in a view-

dependent way, a pre-computation of the gradients is not possible. Furthermore, it has

to be considered that the first derivative requires neighborhood information. The gra-

dient computation is implemented as an additional deferred shading pass directly after

the LIC evaluation, which delivers the intensity values for each pixel in image space.

This image can be considered as a 2D scalar field that serves as input for the gradient

computation. Central differences are used to compute the 2D image-space gradient,

which is combined with the surface normal to obtain the 3D normal vector in world

space. In the final rendering step, this vector field is employed to apply diffuse illu-

mination of the curvature lines. This illumination component extends Equation (4.18)

to

Cout = β(N · L) + (1 − β)C′
out , (4.19)

where N stands for the normal vector and L denotes the position of the light source.

Both vectors are given in world space. Usually, only a small light contribution is

sufficient for emphasizing the line structures on the isosurface. From experience, β
should be chosen between 0.1 and 0.2.

116 Chapter 4. Interactive Medical Volume Visualization

Discussion

In the following, the application of the presented method to SPM data is discussed.

We compare the visualizations using different parameter settings. The parameters are:

curvature masking, noise density, and curve illumination. Figure 4.14 (a) shows an

example of the combination of an illuminated surface and DVR. In this image, the

volume-rendered brain activation serves as focus while the surrounding brain tissue is

represented by an isosurface, which builds the corresponding context. Obviously, the

main goal of this visualization is to facilitate the spatial perception of the activation

areas inside the human brain. Therefore, it is necessary to have a clear visualization of

both objects. In particular, the shape of both objects should be perceivable at a glance.

Actually, the visualization quality depends on the materials of the surrounding context

and the focus object. These materials are usually defined by transfer functions, and

so it depends on the user to find an appropriate setting for an optimal visualization.

Obviously, the visualization quality is strongly influenced by the rendering of the con-

text. For example, if the isosurface is rendered opaque, the structure of the anatomy

is rendered in high quality, but it completely occludes the brain activation. On the

other hand, if the isosurface is chosen too transparent, the shape of the covered brain

activation is clearly identifiable, whereas the quality of the isosurface suffers.

In Figure 4.14 (b), a naive mapping of the computed curvature lines onto a selected

isosurface is applied. Indeed, the structure of the isosurface is clearly perceptible,

supported by the curvature lines. Nevertheless, the high number of lines drawn on the

surface makes it hard to identify the shape of the brain activation behind. Furthermore,

areas of low curvature, like the depressions on the cortex surface (sulcus), lead to short

lines, which negatively influence the visualization. In Figure 4.14 (c), the issue of

occlusion is addressed by changing the noise intensity that influences the number and

the size of the drawn LIC lines. By decreasing the number of lines, the isosurface

becomes more transparent and the quality of the brain activation shape increases. The

problem of noise in flat areas is solved by curvature masking, which is based on a

threshold that masks lines in areas of low curvature. As a consequence of this masking,

the lines in the sulci disappear while the shape of ridges (gyri) are emphasized by line

drawing.

Figure 4.14 (d) shows the result if the density of the lines on the isosurface is

further decreased. It is necessary to consider the disadvantages that might appear if

the density is chosen too small: due to the behavior of our LIC algorithm, the resulting

lines are a weighted intensity of the brain activation. Actually, the weights of the

streamlines are chosen with a positive offset to avoid black lines, which might affect

the visualization. If the number of lines is decreased too much, either the intensity

offset must be reduced or the perception of the line structures has to be improved.

Indeed, the first option would lead to a higher contrast, but it would also imply a

higher degree of occlusion caused by opaque lines. An alternative option is to improve

the perception of line structures by illumination (Figure 4.14 (d)). Please note that

already a small contribution from illumination is sufficient for an improved perception

4.2. Visualization of Functional Brain Images 117

(a) (b)

(c) (d)

Figure 4.14: Combined visualization of functional and anatomical data. The brain activation

is rendered with DVR while the anatomical brain structure is represented by an illuminated

isosurface: (a) Isosurface without any line structures mapped onto it. (b) A high number

of curvature lines without any masking; the short lines appear as points and influence the

visualization negatively. (c) Smaller number of thicker curvature lines; in the areas of low

curvature, the curvature lines are faded out completely. (d) Illuminated curvature lines. Only

a small diffuse light contribution is used for emphasizing the lines’ structure. The curvature

lines appear more prominently without having changed their intensity.

118 Chapter 4. Interactive Medical Volume Visualization

w/o LIC with LIC with illum. LIC

42.17 fps 25.67 fps 25.57 fps

Table 4.2: Performance measurements of a combined visualization of DVR rendered brain

activation and the anatomical brain surface, which is rendered as illuminated isosurface. Three

different configurations for isosurface rendering are compared. All measurements are given in

frames per seconds (fps), the viewport size is 800×600.

of the lines. If the diffuse part is emphasized too much, the lines appear as bumps on

the isosurface, which makes it difficult to distinguish between the original curvature

given by the isosurface and the visual ridges created by illumination.

Table 4.2.3 shows the visualization speed of several configurations measured on a

PC with an AMD Athlon 64 X2 Dual 4400+ (2.21 GHz) CPU and 2 GB of RAM, and

a NVIDIA GeForce 8800 GTX GPU with 786 MB of graphics memory. Considering

the first two entries of the table, the lower frame rates for LIC rendering can be ex-

plained by the evaluation of the LIC integral. In this case, 20 integration steps in each

direction are computed, which results in 40 texture lookups for each fragment. In con-

trast to the LIC evaluation, the gradient computation barely influences the rendering

speed. Gradients are computed by central differences. Therefore, only 4 additional

texture lookups per fragment are necessary, which makes it much faster than the LIC

evaluation.

4.3. GPU-based Direct Volume Deformation 119

4.3 GPU-based Direct Volume Deformation

Fast and realistic soft-tissue deformation is an important feature for medical simulation

environments. Those environments simulate specific surgical interventions and are for

example applied in medical education. Physically-based deformation approaches, like

mass-spring systems or finite element methods (FEM), usually employ an explicitly

generated model, which is deformed by expensive computations. For visualization the

deformed model has to be additionally transformed into a renderable representation.

Altogether, the deformation process is very complex and time-consuming.

In this section a deformation technique is presented that aims to overcome these

drawbacks in two ways. On the one hand, it directly acts on the originally acquired

volume data of a patient. Thus, there is no need for expensive preprocessing. On the

other hand it is completely performed on the GPU and seamlessly embedded into the

standard volume visualization framework. This exploits the fast parallel computing

capabilities of modern graphics hardware and avoids the expensive transfer of defor-

mation information to the GPU for visualization. The proposed deformation approach

is based on the physically-inspired 3D-ChainMail algorithm, which was originally de-

veloped by Frisken-Gibson [36]. This algorithm acts on a regular grid of deformation

elements. The basic idea is to iteratively propagate the displacement of an initially

manipulated element across the grid. The displacement of the grid elements is thereby

governed by several geometrical constraints. The advantages of the ChainMail tech-

nique are its low computational costs and the possibility to directly apply it to regular

volume datasets. For GPU-based deformation the ChainMail algorithm was adapted

for parallel execution and embedded into an integrated deformation and visualization

pipeline.

The interactive manipulation and deformation of volumetric objects is an active

research field. Chen et al. [20] give a good overview about this topic. They present

several geometrical and physically-based approaches and show their usage in medical

and non-medical applications. Schulze et al. [120] proposed a volume deformation

technique that also employs the ChainMail algorithm. But in contrast to the approach

presented here, the deformation is performed on the CPU, and the volume data on the

GPU has to be updated after each deformation step. There is also some work on de-

formation computation on the GPU. E.g., Georgii et al. [40] presented a GPU-based

mass-spring deformation system, which they combined with standard surface render-

ing. Tejada and Ertl [126] proposed a similar approach but perform direct volume

rendering on a deformed tetrahedral grid.

The GPU-based volume deformation technique presented in this section was first

published in [111]. The work was carried out in collaboration with Torsten Wolff, who

realized the initial GPU-implementation of the ChainMail algorithm during the prepa-

ration of his diploma thesis. In the following, first, the original ChainMail algorithm

is described; then, it is shown how the ChainMail deformation and the visualization

of the deformed volume can be mapped to the GPU; finally, the GPU-based pipeline

of manipulation, deformation and visualization is presented in detail and some results

120 Chapter 4. Interactive Medical Volume Visualization

and performance measurements are shown.

4.3.1 3D ChainMail Algorithm

The 3D ChainMail algorithm [36] operates on deformation elements that are initially

arranged on a three-dimensional regular grid. Each element is connected to its six near-

est neighbors in x-, y-, and z-direction (see Figure 4.15 left). The relative position of a

grid element to its neighbors is governed by several constraints that give the minimally

(minDx,y,z) and maximally (maxDx,y,z) allowed distance and the maximally allowed

shear (maxSx,y,z) (see Figure 4.15 right). To simulate anisotropic deformation, these

limits can differ along the three coordinate directions.

The algorithm works as follows. Starting with a single moved grid element, the

neighbors of this element are checked if they still satisfy the ChainMail constraints. If

not, the affected neighbors are minimally moved to fulfill the constraints again. For

example, the new position of the left neighbor is determined in the following way:

if (x − xl) < minDx, xl = x − minDx;

else if (x − xl) > maxDx, xl = x − maxDx;

if (y − yl) < −maxSy, yl = y + maxSy;

else if (y − yl) > maxSy, yl = y − maxSy;

if (z − zl) < −maxSz, zl = z + maxSz;

else if (z − zl) > maxSz, zl = z − maxSz; (4.20)

x = (x, y, z)T is the position of the currently investigated element, xl = (xl, yl, zl)
T is

the position of the left neighbor. The displacement of the other five neighbors is done

analogously. Then the algorithm goes on with the newly moved elements and tests

their neighbors in the same way. This procedure is repeated until the list of moved

elements is empty.

Frisken-Gibson has shown that each ChainMail element has to be touched only

once if the ChainMail constraints are constant throughout the volume. However, the

first-moved-first-processed propagation order does not create valid grid configurations

for inhomogeneous deformation constraints. For this reason, Schill et al. [118] pre-

sented an enhanced ChainMail algorithm that first processes the elements with the

largest displacement. This propagates the deformation information faster through

stiffer material, analogous to the broadening of a shockwave.

After applying the ChainMail deformation, the grid elements fulfill the geomet-

ric ChainMail constraints, but the linear displacement does not adequately simulate

natural soft body behavior. For this reason, Frisken-Gibson introduced an additional

relaxation step that moves the grid elements to an energetic minimum. Thereby, the

systems energy depends on the distances between the grid elements. There are several

4.3. GPU-based Direct Volume Deformation 121

maxSx

minDx

maxDx

(x, y, z)T(xl, yl, zl)
T

x

y

z

f

bk

t

bt

l r

Figure 4.15: The 3D ChainMail grid: (left) the six neighbors (gray) of a grid element (black);

(right) the area (grey rectangle) of valid positions of an element (black) relative to its left

neighbor (grey).

different ways to determine the optimal grid positions for which the energy of the grid

is minimal. In [37] Frisken-Gibson proposed to define the optimal position (x, y, z)T
opt

of an element as the midpoint of its existing neighbors:

(x, y, z)opt =

(
1

N

∑

nghbrs

xn,
1

N

∑

nghbrs

yn,
1

N

∑

nghbrs

zn

)
, (4.21)

where N is the number of existing neighbors of the element and (xn, yn, zn)T is the

position of the n-th neighbor. During relaxation each element is iteratively replaced

to minimize the system’s energy. However, with this method border elements tend to

move inward and the object shrinks. To avoid this, Frisken-Gibson has reformulated

the iterative relaxation in the following way:

(x, y, z)opt =
1

N

(
∑

nghbrs

(xn − ∆xn),
∑

nghbrs

(yn − ∆yn),
∑

nghbrs

(zn − ∆zn)

)
,

∆xn =

−∆x, n = l

+∆x, n = r

0, all other neighbors

∆yn =

−∆y, n = bt

+∆y, n = t

0, all other neighbors

∆zn =

−∆z, n = bk

+∆z, n = f

0, all other neighbors

(4.22)

122 Chapter 4. Interactive Medical Volume Visualization

where ∆x, ∆y and ∆z are the optimal link lengths for left(l)/right(r), top(t)/bottom(bt),
and back(bk)/front(f) neighbor pairs. This method produces the same results as the

midpoint method for inside elements (Equation 4.21) but prevents border elements

from moving inwards.

4.3.2 Mapping ChainMail Deformation to GPU

The goal of mapping the ChainMail deformation approach to GPU is two-fold. On

the one hand, the performance should be improved by exploiting the parallel SIMD

architecture of a GPU. On the other hand, the deformation process should be directly

integrated into the GPU-based volume visualization pipeline. Therefore, it is required

to find an adequate GPU representation of the ChainMail deformation grid, to adapt

the serial ChainMail algorithm for parallel execution and to solve the problem of direct

visualization of the deformed volume dataset.

GPU Representation of the Deformation Grid

The ChainMail elements are initially arranged in a regular grid and linked to their six

direct neighbors along the x-, y, and z-axis. Thus, it is obvious to store the positions

of the grid elements in a 3D texture on the GPU and to exploit the implicitly given

neighborhood to the surrounding texels. To be independent of the volume’s real extent,

the element positions are stored relative to a normalized cube with edge length one.

Thereby, a grid element’s initial position is implicitly given by the texture coordinates

of the associated texel. Further on, the resolution of the deformation grid can be chosen

independently of the original volume dataset.

In the original ChainMail implementation the neighbors of an element are expli-

citly declared to allow the explicit definition of unregular object borders. However, if

ChainMail deformation is combined with direct volume visualization, the shape of the

deformed object is already implicitly given by the applied opacity transfer function. To

avoid the explicit storage of neighborhood information, the object shape is instead dy-

namically determined by looking up the opacity of a grid element during deformation.

If the opacity lies beyond a small threshold, it is assumed that the grid element does

not belong to the visible structure, and it is ignored for further computations. In case

that the deformation grid has a smaller resolution than the original volume dataset, an

corresponding low-resolution volume dataset is computed by mipmap filtering, which

provides a down-sampled presentation of the object shape.

For the simulation of inhomogeneous deformation behavior of different anatomical

and pathological structures, a deformation transfer function is introduced that maps

the intensity values of the underlying volume to the ChainMail constraints described

in Section 4.3.1. For simplicity the transfer function maps an incoming intensity value

i to a single normalized deformation constraint c in the interval [0..1]. The normalized

deformation constraint c̄ of a link between two neighboring elements is computed by

averaging the deformation constraints c1 and c2 that are applied to the the two link

4.3. GPU-based Direct Volume Deformation 123

elements:

c̄ =
1

2
· (c1 + c2) (4.23)

From the normalized deformation constraint c̄ the final constraints for the minimal dis-

tance (minD) between two elements, the maximal distance (maxD) and the maximal

shear (maxS) are computed depending on the initial distance d between two neigh-

boring elements:

minD = d · (1 − c̄),

maxD = d · (1 + c̄),

maxS = d · c̄. (4.24)

For the determination of the deformation constraints again the low-resolution volume

datasat is used to look up a grid element’s intensity value.

GPU-based ChainMail Algorithm

The original ChainMail algorithm processes the grid elements in a fixed serial order.

This ensures that each element has to be touched only once. In contrast to that, a GPU

shows its strength only if a huge number of elements are processed in parallel. For

this reason, the ChainMail deformation is carried out in several consecutive passes. In

each pass all elements of the grid are investigated. Therefore, the capability of modern

GPUs (Nvidia G80 series and newer) to directly render into a 3D texture is exploited.

Namely, the deformation grid texture is processed slice-by-slice. In a loop one texture

slice after the other is bound as render target and the element positions are updated by

repeated rendering of screen-filling quads, as described in Section 2.3.2 about GPGPU

rendering. To avoid inconsistencies during the parallel processing of the elements the

deformation grid texture is duplicated, and the two textures are used alternately for

reading and writing (ping-pong rendering).

Since the parallel pipeline of a GPU does not permit to write to any other fragment

than the currently processed, the way of deformation propagation is inverted. Instead

of displacing neighbor elements of the currently processed element, the element itself

is displaced in case it violates a deformation constraint to any of its neighbors. There-

fore, it is is first checked if one of its neighbors was moved in the previous pass, and,

in the positive case, the validity of the deformation constraints relative to the respec-

tive neighbor is tested. If requested, the element is moved to a valid position due to

Equation 4.20. Besides the speedup, the repeated investigation of all grid elements in

parallel has the advantage that a single grid element can be displaced multiple times.

Thus, the proposed approach automatically copes with inhomogeneous deformation

constraints. The ChainMail deformation is stopped when no more element was moved

in the current render pass.

The relaxation step can be performed on the same grid textures like the ChainMail

deformation; again in several render passes. In each pass the position of the grid ele-

ments is updated due to an arbitrary relaxation rule, e.g. the one given in Equation 4.22.

124 Chapter 4. Interactive Medical Volume Visualization

The relaxation step can be stopped when the length of the displacement vector is falling

below a small threshold for all elements. Then an energetic equilibrium is reached.

Direct Visualization of Deformed Volumes

The ChainMail deformation grid gives for a ChainMail element e that was originally

placed at position xe its new position x̄e after deformation. The image position Φ(x)
of an arbitrary point x inside the undeformed grid can be computed by trilinear inter-

polation:

Φ(x) =
∑

i,j,k∈{0,1}

aijk(x) · x̃ijk (4.25)

where x̃ijk are the displaced positions of the eight surrounding grid elements of the

point x and aijk(x) are the respective trilinear interpolation weights obtained for posi-

tion x from the original grid.

Based on the deformation grid, there are three different ways for rendering the de-

formed volume. The first possibility is to perform a pre-rendering step that resamples

the deformed volume on a regular grid, as it is done by Schulze et al. [120]. Here,

for each sampling point of the new regular volume the cell of the deformation grid is

searched in which the respective sampling point lies. The corresponding sample value

is then interpolated from the sample values at the cell vertices. An advantage of this

method is that standard volume rendering algorithms for regular grids can be applied.

But on the other hand, information contained in the original undeformed volume tex-

ture can be lost by resampling. This problem especially occurs when the resolution of

the deformation grid is smaller than the one of the original volume dataset.

This problem can be avoided by alternatively applying the deformation during ren-

dering. This can be done either in model space or in texture space. For the model

space approach the deformation grid is directly used as proxy geometry for rendering.

To prevent interpolation problems, the hexahedral grid cells consisting of eight adja-

cent grid nodes have first to be subdivided into tetrahedra, and then any method for

volume rendering of tetrahedral grids can be applied, e.g. the one presented by Weiler

et al. [138]

In contrast to the model space approach, the texture space approach keeps the proxy

geometry undeformed and the deformation is instead applied to the texture coordinates

just before the lookup of a volume sample. Rezk-Salama et al. [103] developed a

slice-based volume rendering technique that subdivides object-aligned slices into small

quads. The vertices of the quads get deformed texture coordinates applied, which are

automatically interpolated during rendering. To prevent interpolation errors, the quads

are further subdivided into four triangles by appending an additional vertex in the

center of each quad. Brunet et al. [15] proposed an alternative technique that computes

the deformed texture coordinates on a per-sample basis inside a shader.

In this work a volume rendering technique for deformed volumes was developed

that is based on the approach of Brunet et al.. The advantage of this method is the fact

4.3. GPU-based Direct Volume Deformation 125

that it can be easily combined with any GPU-accelerated volume rendering technique

without the need to adapt the applied proxy geometry. However, since the deforma-

tion is applied in texture space, the forward deformation function Φ, which gives the

deformation in object space, has to be inverted. Brunet et al. solve this problem by

applying analytical deformation functions that have a well-defined inverse function.

When ChainMail deformation is employed, the forward deformation is given at dis-

crete positions and the displacement at intermediate positions is computed by trilinear

interpolation (see Equation 4.25). Unfortunately, there is no closed solution for the

inversion of this function. For this reason, a gradient-decent-like optimization algo-

rithm for the computation of an inverse deformation grid was developed. The goal of

this algorithm is to generate a regular grid that gives for each sample point the posi-

tion where it was placed before deformation. Since all computations are performed

in a normalized cube with edge length 1, this position directly maps to the displaced

texture coordinates that are needed for rendering.

The inverse deformation position x̂e of a grid element e is computed iteratively. In

the beginning, x̂e is initialized with the original undeformed position xe of the element

e:

x̂e0
= xe (4.26)

Then the following update rule is iteratively applied to the current inverse deformation

position of e:

frwdei
= Φ(x̂ei

);

diffei
= xei

− frwrdei
;

x̂ei+1
= x̂ei

+ w · diffei
; (4.27)

First, the forward displaced position frwdei
of the inverse deformation position x̂ei

after the i-th iteration step is computed. For this purpose, the trilinear displacement

function Φ defined in Equation 4.25 is applied. Then, the difference vector diffei
be-

tween the desired image xe of x̂ei
and the current image frwdei

is calculated. Finally,

a new inverse deformation position x̂ei+1
is generated by moving x̂ei

slightly in the

direction of diffei
. The amount of this movement is governed by the weight w. The

iteration is stopped, when the length of diff falls below a small threshold. Figure 4.16

illustrates the iterative computation of x̂e.

The proposed iteration scheme is similar to gradient-descent optimization along

the gradient of the error function

err(xei
) = |diffei

|, (4.28)

which represents the distance between the current forward displacement of xei
, Φ(x̂ei

),
and the expected displacement position xe. For gradient descent x̂ei

is adapted along

the negative direction of the gradient of err:

x̂ei+1
= x̂ei

− w · ∇err(xei
) (4.29)

126 Chapter 4. Interactive Medical Volume Visualization
replacements

xe

xe

x̂ei x̂ei+1x̂ei+1
x̂ei+2

frwdei

diff
e
i

frwdei+1

diff
ei+1

ww

Figure 4.16: Iterative computation of the inverse deformation position x̂e of a grid element e.

In each step, first the forward displaced position frwrdei
of the current inverse position x̂ei

is

determined. Then, the difference vector diffei
between frwrdei

and the expected position xe

is determined, and x̂ei
is slightly moved in this direction. This process is repeated until xe is

met.

This gradient descent leads to a local minimum of the error function. The gradient can,

e.g., be computed by finite differences, which is an expensive operation that needs

six additional lookups in the forward deformation grid. However, if it is assumed

that the deformation behavior does only change slightly in a local area around x̂ei
,

the difference vector diffei
represents a good approximation of the negative gradient,

because the value of err is decreasing fast along diffei
. Thus, the application of the

iteration rule of Equation 4.29 will produce similar results like gradient descent with

less cost.

4.3.3 GPU-based Deformation Pipeline

For evaluation of the GPU-based ChainMail approach a volume deformation pipeline

was implemented that consists of five sequentially applied steps (see Figure 4.17).

The implementation is based on OpenGL and GLSL and can be integrated easily into

the multi-volume rendering framework presented in Chapter 3. Each pipeline step is

realized by a specific GLSL shader. These shaders basically act on three data struc-

tures (3D textures): the original volume dataset, the forward deformation grid and

the inverse deformation grid. For ping-pong rendering the forward deformation grid

is duplicated. If the deformation grid has a lower resolution than the original volume

dataset, an additional low-resolution volume dataset is generated by mipmapping. This

low-resolution dataset is used for the determination of the deformation constraints. The

data structures are either bound as input textures (read) or as render targets (write). In

pipeline steps where the forward deformation grid is used for both, reading and writ-

ing, one of the two deformation grid textures is bound as input texture, and the other

one is bound as render target. The roles of the two textures are changed after each

render pass. In the following the five pipeline steps are explained in detail.

4.3. GPU-based Direct Volume Deformation 127

z

Manipulation

Deformation

Relaxation

Inversion

Rendering

VOL

FWD

INV

Figure 4.17: GPU-based deformation pipeline: The five pipeline steps access the three data

structures – the original volume (VOL), the forward deformation grid (FWD), and the inverse

deformation grid (INV), – either for reading, for writing, or for reading and writing.

Manipulation

In the manipulation step the current mouse movement is mapped into normalized 3D

model space, and it is checked if a collision with the volume occurs. For this purpose, a

single fragment is rendered, and the applied shader is casting a ray from the start to the

end position of the mouse movement. At each sampling position, first, the deformed

texture coordinate is looked up in the inverse deformation-grid texture. Then, the

corresponding sample value is read from the original volume data set, and the related

alpha value is looked up in the transfer function table. If the alpha value is greater than

zero, a collision is found. In this case the deformation process is initialized by moving

the eight grid elements of the forward deformation grid that surround the collision

position accordingly to the mouse move.

Deformation

The ChainMail deformation step is realized in multiple passes. In each pass the for-

ward deformation grid textures for reading and writing are interchanged. The current

position of a grid element is stored in the x-, y-, and z-component of the related texel.

The w-component is used to store the information if a grid element was currently

moved. This information is used to evaluate if any neighbor of an investigated element

was moved in the preceding pass. If not, the element is directly discarded. Otherwise,

it is tested if the current element has to be moved to fullfill the chainmail constraints

relative to a moved neighbor.

The chainmail deformation is stopped when no more elements are displaced in

the current pass. This is tested by hardware supported occlusion queries which give

128 Chapter 4. Interactive Medical Volume Visualization

the number of processed elements (fragments) in the current render pass. When all

elements are discarded, the occlusion query returns zero and the deformation can be

stopped. The deformation step can be optimized by exploiting the fact that it always

starts with eight neighboring grid elements and that the region of possibly affected

elements expands in a single pass about one along its six border faces. Thus, it is

sufficient to investigate in each render pass only those elements that can be potentially

moved, and to increase the region of investigated elements accordingly afterwards.

Relaxation

The relaxation step is performed in multiple passes as well. In each pass for each

element the displacement is computed due to the relaxation rule presented in Equa-

tion 4.22. If the magnitude of the displacement is too small, the element is not moved

and discarded instead. The relaxation is terminated when an per-pass occlusion query

returns that no more element was processed.

For performance reasons, in each step only those elements are investigated that can

be possibly moved. This is the case either if any of an element’s neighbors or if the

element itself was moved in the previous pass. In the first relaxation pass all elements

that have been replaced sometimes during the deformation step are regarded as moved.

Like for deformation, the region of possibly affected elements has to be increased in

each pass by one along each border.

Inversion

The inverse displacement position of a forward grid element can be computed inde-

pendently of the inverse displacement positions of the other elements. Thus, the grid

inversion can be performed in a single rendering pass, while the iteration loop is placed

inside the applied shader. Thereby, the forward deformation grid texture which was

recently used for writing is bound as input texture and the inverse deformation grid

texture is set as render target.

Rendering

For direct volume visualization of the deformed volume with the multi-volume ren-

dering framework the Scene Node, namely the sub-node that is responsible for the

volumes (see Section 3.3.1), is slightly adapted. Instead of directly looking up the vol-

ume sample at the current texture coordinate, the deformed texture coordinate is first

looked up in the inverse deformation grid. Then, the sample value of the deformed

volume is looked up in the original volume texture. Gradients of the deformed volume

are computed on the fly by finite differences (see Section 2.4.2). Since the Scene Node

makes the deformation process transparent for subsequent nodes, volume deformation

can be combined with any existing or newly implemented render node. Further on, it

4.3. GPU-based Direct Volume Deformation 129

(a) (b)

(c)

Figure 4.18: Three deformed CT scans of a human head (256×256×225) with different defor-

mation algorithms and grid sizes. a) 32×32×32, ChainMail only; b) 32×32×32, ChainMail +

Relaxation; c) 128×128×128, ChainMail + Relaxation + Illumination

is possible to apply either slice-based rendering (see Section 3.2.1) or ray casting (see

Section 3.2.2).

4.3.4 Results and Discussion

The GPU-based ChainMail deformation approach was tested with a CT scan of a hu-

man head. Figure 4.18 shows three screenshots of the deformed head with different de-

formation grid resolutions and different stages of the algorithm applied. Figure 4.18(a)

and (b) both present the deformation results for a grid resolution of 32×32×32 ele-

ments without (Figure 4.18(a)) and with relaxation (Figure 4.18(b)). It can be clearly

seen, that the additional relaxation creates a much smoother deformation result. In Fig-

130 Chapter 4. Interactive Medical Volume Visualization

Rendering

only
16×16×16 32×32×32 64×64×64 128×128×128

CM 19.5 16.5 15.0 13.5 8.9

CM + R 19.5 15.5 14.5 11.5 7.0

CM + R + I 5.0 4.5 4.4 4.2 3.3

Table 4.3: Frame rates in frames per second (fps) for deformation of a CT dataset of a human

head with resolution 256×256×225, viewport 512×512, GeForce 8800 GTX with 756 MB

RAM. (CM =̂ ChainMail, R =̂ Relaxation, I =̂ Illumination)

ure 4.18(c)) a deformation grid of 128×128×128 elements is used and the volume is

additionally illuminated. Here, the deformation below the nose affects a smaller region

of the head. Table 4.3 gives frame rates for deformation and rendering for different grid

resolutions. The leftmost column shows the performance for rendering only. Standard

volume rendering produces interactive frame rates, but additional illumination is four

times slower because of the expensive on-the-fly gradient computation. The relax-

ation was restricted to five steps per frame. Instead, intermediate relaxation steps were

introduced when no interaction happens.

A major advantage of the presented approach is that the resolution of the deforma-

tion grid is independent of the resolution of the original volume dataset. So the grid

resolution can be chosen with respect to the desired locality of deformation and due

to the required frame rate. However, the memory consumption increases significantly

with higher grid resolutions. A deformation grid with 128×128×128 elements and

four 32-bit floating point values per element needs 32 MB memory, a 256×256×256

grid needs 256 MB memory. Since the algorithm needs the grid three times, for ping

pong rendering and for inverse deformation, the memory of the employed GPU is

exceeded for a grid resolution of 256×256×256 elements. A possible solution to

overcome this limit would be a bricking scheme like proposed in [120].

The frame rates in Table 4.3 show that the ChainMail-based deformation approach

fits well to the parallel architecture of a GPU. Since it is directly combined with stan-

dard volume rendering, it can be easily applied to medical simulation applications.

However, the ChainMail technique has still some drawbacks that should be eliminated.

E.g., the achievable frame rates highly depend on the applied deformation constraints.

If the constraints simulate stiff material, the deformation is propagated over a larger

area of the grid than with soft tissue constraints. Hence, the ChainMail computation

is getting significantly slower in this case. Nevertheless, the presented deformation

pipeline allows to modify single steps without affecting the others. So deformation

and relaxation could be replaced by more complex deformation models.

4.4. Conclusion 131

4.4 Conclusion

In this chapter several interactive medical volume visualization applications have been

presented that illustrate the flexibility of the multi-volume rendering framework from

Chapter 3. In Section 4.1 a generic multi-volume visualization tool was described that

allows the interactive configuration of the render graph via the graphical user inter-

face (GUI). Complex visualizations for arbitrary multi-volume scenes can be gener-

ated without the need to cope with underlying rendering functionality. Moreover, new

render nodes can be implemented and seamlessly integrated into the system. Thus,

the tool is perfectly suited to explore the capabilities of multi-volume visualization for

new medical application fields.

In Section 4.2 a certain application field, the visualization of functional MRI im-

ages, was investigated. Primarily, a visualization tool was presented that was designed

to support cognitive scientist in their daily work. This tool exploits the capabilities of

the multi-volume rendering framework but provides an application-specific user inter-

face. Further on, a technique for the combined visualization of functional and anatom-

ical MRI volumes was presented that aims to improve the perception of the anatomical

brain structure without occluding inside functional information. Therefore, the cur-

vature of the brain surface is enhanced by line integral convolution (LIC). Since LIC

computation is expensive, an extension of the multi-volume framework was proposed

that supports deferred shading. Hereby, the costly calculations of the LIC integral can

be restricted to the visible brain surface.

In Section 4.3 a direct GPU-based volume deformation approach was presented,

which, for example, could be applied for surgery simulation. Based on the ChainMail

deformation algorithm, a deformation pipeline was developed that is completely evalu-

ated on the GPU. Besides user manipulation and deformation, this pipeline handles the

direct visualization of the deformed volume. Before visualization the forward defor-

mation field that is computed by the ChainMail deformation is inverted. The inverted

deformation field provides deformed texture coordinates that allow the application of

the standard volume rendering techniques that are provided by the multi-volume ren-

dering framework.

The three visualization scenarios emphasize the suitability of the multi-volume ren-

dering framework for a large variety of interactive medical-visualization applications.

The flexibility of the render graph allows the creation of meaningful visualizations for

differing tasks and datasets. For new visualization problems specialized render nodes

can be easily integrated. With slight adaptations rendering concepts, like deferred

shading or the rendering of deformed volumes, can also be realized. Even though new

render nodes and rendering techniques are usually developed for a certain application

case, they can be integrated into the basic framework and be employed for other visu-

alization tasks.

132 Chapter 4. Interactive Medical Volume Visualization

CHAPTER

5 AUTOMATED MEDICAL VOLUME

VISUALIZATION

The interactive control of the visualization output is an important prerequisite for vi-

sual analysis in new medical application fields and for the examination of complicated

cases. However, in clinical routine many patients with similar symptoms have to be

examined. For those cases usually certain procedures for visualization and visual anal-

ysis have been established. The automation of these procedures could support the work

of physicians and surgeons and improve the quality of the diagnosis results. On the one

hand, a medical doctor could deal with other problems, while a computer performs the

analysis and perpares 3D visualizations of the images acquired from a patient. On the

other hand, the automation and, thereby, standardization of the visualization procedure

allows the easy comparison of different cases, supports unexperienced medical doctors

and eases the discussions with colleagues.

Automated medical visualization usually involves so-called batch visualization.

Here, a number of images from different camera positions and for different scene

configurations are rendered automatically due to a batch visualization script. These

images are either stored seperately or assembled in one or several video sequences.

After batch visualization the images or video sequences can be viewed with any stan-

dard viewer independent of the visualization system (offline). Figure 5.1 shows the

adapted batch visualization pipeline. In contrast to interactive visualization, there is

no feedback loop in which the user can directly manipulate the visual output. Instead,

a number of parameters for the steering of analysis and visualization can be set before

evaluation of the pipeline.

Systems for automated medical visualization should cover two aspects. On the

one hand, the pre-rendered images should be provided in a way that allow an intuitive

investigation of the visualized objects. On the other hand, the automated visualization

procedure should be accessible for a large group of users and should have minimal

demands on a user’s hardware equipment. In this chapter a system for automated

medical volume visualization is presented that incorporates both of these requirements.

In Section 5.2 an alternative batch visualization method is introduced that is based

on so-called 3D object movies. In contrast to images and video sequences, object

movies provide the possibility to interactively navigate along predefined camera posi-

133

134 Chapter 5. Automated Medical Volume Visualization

Data Acquisition

Preprocessing & Image Analysis

B
a
tc

h
 P

ro
c
e
s
s
in

g

Offline Presentation

Parameters

Visualization

Image/Video/ObjectMovie Generation

Visual Analysis

Figure 5.1: Pipeline for medical batch visualization: In the batch processing stage image pre-

processing, image analysis and visualization are automatically performed due to a predefined

script and some externally given parameters. The generated visualizations are persistently

stored either as images, video sequences or object movies. The stored visualizations can be

analyzed offline at any time with an appropriate viewer.

tions. For automated medical volume visualization a new medical object movie format

and a corresponding viewer were developed that are especially adapted to the needs

of medical analysis. The automated generation of medical object movies is integrated

into a web service for standardized medical analysis and visualization, which is de-

scribed in Section 5.3. This service provides a dynamic web interface with which a

user can upload a medical volume dataset to a web server and initiate the generation

of a couple of video sequences and object movies. The rendering of the videos and

object movies is performed in parallel on a cluster of GPU-equipped computers. The

advantages of the web service are, on the on hand, the possibilty to access it from any

internet PC and, on the other hand, the fast availability of the results due to their paral-

lel computation. The proposed concepts for automated medical volume visualization

were evaluated with the use case of standardized analysis of intracranial aneurysms,

which is detailed at first in Section 5.1.

The techniques for automated medical visualization that are described in this chap-

ter were first published in [109] and [112]. They are based on earlier work from Sabine

Iserhardt-Bauer [55; 56], who originally developed the web service for the standard-

ized analysis of intracranial aneurysms. The work was carried out in collaboration

with Matey Nenov and Torsten Wolff. Matey Nenov realized the offline visualiza-

tion via object movies described in Section 5.2 during the preparation of his diploma

thesis. Torsten Wolff implemented the parallel visualization web service presented in

5.1. Use Case: Standardized Analysis of Intracranial Aneurysms 135

Section 5.3 in the course of his study thesis. Peter Hastreiter from the Neurocenter at

the University Hospital Erlangen, Germany, and Bernd Tomandl from the Bremen East

Central Hospital, Germany, gave support about the medical background and provided

the test datasets.

5.1 Use Case: Standardized Analysis of Intracranial

Aneurysms

An aneurysm is a localized, blood-filled dilation of a blood vessel, which is caused by

disease or weakening of the vessel wall. Aneurysms mostly appear in the aorta (the

main artery coming from the heart) or in arteries at the base of the brain. Aneurysms

in brain arteries are called intracranial aneurysms because they occur in vessels inside

the skull (cranium). As the size of an aneurysm increases, there is an increased risk

of rupture. The rupture of an intracranial aneurysm usually results in so-called sub-

arachnoidal hemorrhage (bleeding inside the brain). Symptoms for subarachnoidal

hemorrhage are the sudden onset of severe headache and neurological failures. In the

worst case it can lead to the death of the patient.

For the radiological diagnosis of intracranial aneurysms and subarachnoidal hem-

orrhages frequently computed tomography angiography (CTA) is used. Here, the vis-

ibility of the vessels in the CT scan is increased by previously injecting a contrast

agent. There are two alternatives for the treatment of intracranial aneurysms. For sur-

gical clipping first the skull has to be opened and the aneurysm has to be exposed.

Then, the base of the aneurysm is closed with a clip. In contrast to that, endovascular

coiling is a minimally-invasive intervention. A catheter is inserted into the femoral

artery in the patient’s leg and navigated through the vascular system into the head and

into the aneurysm. Then, platinum coils are pushed into the aneurysm and released.

These coils initiate a clotting or thrombotic reaction within the aneurysm. Thereby,

blood flow into the aneurysm is blocked and rupture is prevented.

Iserhardt-Bauer et al. [56] developed a standardized procedure for the analysis

and visualization of intracranial aneurysms, which is mainly performed automatically

without any user interaction. It aims to support radiologists and surgeons in diagnosis

and treatment planning. Further on, the standardization should ease intra- and inter-

patient comparison. The proposed analysis procedure first segments vessel structures

from the CTA scan that hold a high risk for aneurysms . Then, these structures are vi-

sualized along predefined camera paths with direct volume rendering and the resulting

images are assembled to several video sequences. Finally, the video sequences can be

visually analayzed by the investigating medical doctor. Figure 5.2 shows the applied

analysis pipeline, which consists of five steps. These steps are detailed below.

136 Chapter 5. Automated Medical Volume Visualization

C

Determine Clivus

Define Clip Plane

Define Subvolumes

Generate Transfer Function

Render Video

CTA Volume

Visual Analysis
U

s
e
r

A
u

to
A

u
to

A
u

to
A

u
to

Figure 5.2: Pipeline for the standardized analysis of intracranial aneurysms: In the first four

steps interesting vessel structures are determined and segmented. Then, a couple of volume

rendered video sequences is generated, which can be visually analyzed with an arbitrary video

viewer. The first step (white) has to be conducted by the user, the others are performed auto-

matically.

Determination of Clivus Position

The clivus is a bony structure at the inside of the skull base. Important blood vessels

are crossing here, and, thus, aneurysms often occur in the neighborhood of the clivus.

For this reason the clivus is chosen as anatomical landmark for the subsequent analysis

and visualization steps. Currently, the clivus position cannot be detected automatically,

but has to be determined manually by the user. Nevertheless, the determination of the

clivus position is the only pipeline step which requires user interaction.

Definition of a Clip Plane

The interesting arteries in an investigated CTA dataset are often hidden by veins lo-

cated in the occipital part of the head. To overcome this problem, in this step a clip

plane is defined that virtually cuts away disturbing vessels in the occipital half space of

the volume. In a clinical study it was found that the clip plane is optimally positioned

30 mm in front of the clivus and rotated about 45◦.

5.1. Use Case: Standardized Analysis of Intracranial Aneurysms 137

Definition of Subvolumes

Intracranial aneurysms often grow at branches of blood vessels. To lay focus on those

specific locations, four subvolumes are defined that enclose four critical points found

at the tip of the basilar artery, at the left and the right cerebral artery, and at the com-

municating artery. For this purpose, the average distance vectors between the clivus

and the four critical points have been evaluated in a clinical study, which was per-

formed on a number of reference datasets. To determine the patient specific positions

of the four critical points the predefined average distance vectors are added to the pre-

viously determined clivus position. The four critical points then act as the centers of

the four subvolumes. The size of the subvolume (60 mm in each direction) is chosen

in such a way that they overlap in any case. Thereby, it is not necessary to find the

exact positions of the critical points.

Generate Transfer Function

After the reduction of the topological information by clip planes and subvolumes, it

is additionally necessary to reduce the structural information contained in the investi-

gated dataset. Besides the data inherent noise, the soft tissue that encloses the vascular

structure prohibits a clear 3D representation. For this reason, the vessels are implicitly

segmented by application of a predefined transfer function. This transfer function op-

presses occluding structures by mapping the opacity of the according lower Hounsfield

units to zero. Further on, the color values are chosen in a way that the vessel structure

is emphasized. To handle differences that naturally occur in different datasets, the pre-

defined transfer function is automatically adjusted to the patient specific dataset with

a method proposed by Rezk-Salama et al. [102]. Here, a non-linear transformation

is determined that maps the histogram of the dataset on which the template transfer

function was defined to the histogram of the currently investigated dataset. Then, the

same transformation is applied to the pre-defined template transfer function. By this

means, a transfer function is generated that is optimized for the current dataset.

Render Dataset and Generate Video Sequences

Based on the applied segmentation operations the analyzed dataset is visualized with

direct volume rendering. To show the data from different directions, the camera is

moved around the volume along pre-defined paths, and at discrete positions images

are computed. These images are assembled to a couple of video sequences that show

the movement of the camera. At first, an overview video is generated that shows the

whole volume with occluding structures clipped away by the previously defined clip

plane. The applied camera path is chosen with respect to the way clinicians usually

examine individual patient data. For the purpose of orientation, the camera follows in

the beginning several circular paths around the complete volume . Then, the camera

zooms in to take a detailed view from a closer distance. To allow a deeper investigation

of critical vessel structures, four additional videos are generated that show the four

138 Chapter 5. Automated Medical Volume Visualization

(a) (b)

Figure 5.3: Two screenshots of the overview video sequence, which show the whole dataset,

while disturbing structures are clipped away by an automatically placed clip plane. The left

image (a) shows the initial view which presents the dataset from the back. In the right image

(b) the camera is rotated to show the volume from the top. In addition it was zoomed in, to get

a closer look of the data. On the left and the right handside of the dataset two aneurysms can

be identified, which are focused in the videos of the subvolumes (see Figure 5.4).

(a) (b)

Figure 5.4: Two screenshots of the subvolume video sequences around the left cerebral artery

(a) and around the right cerebral artery (b). They show two different aneurysms which are

located in the centers of the two images.

previously determined subvolumes. Here, a simple circular camera flight of 360◦ is

performed. The generated videos are stored persistently and can be visually analyzed

at any time with an arbitrary video viewer. Figure 5.3 shows two screenshots from

the overview video. In Figure 5.4 two screenshots of two of the subvolume videos are

presented.

5.2. Automated Visualization with 3D Object Movies 139

5.2 Automated Visualization with 3D Object Movies

While a clinical study [131] has proven the applicability of the system for standardized

analysis and visualization of intracranial aneurysms in clinical routine, the video-based

offline visualization has still some limitations. A major drawback is the fixed camera

path and the restriction to linear navigation along a video’s time line. Thus, it is diffi-

cult to get an impression of the spatial relationship between interesting details of the

data set. Further on, no direct links between the different video sequences do exist.

An alternative technique for offline 3D visualization are 3D object movies. Here,

images are taken at fixed camera positions on a spherical hull around the visualized

object (see Figure 5.5 (a)). Specialized viewers allow free navigation between these

camera positions. Object movies have a close relationship to panorama movies in

which the observer is placed in the center of a scene that can be interactively viewed

by rotation of the camera. Panorama movies are often stitched together from 360◦

photographies of urban places or landscapes. There are several different formats and

viewers for panorama and object movies. The most common is Apple’s QuickTime

VR [3] format in combination with the proprietary QuickTime Viewer. An alternative

are the freely available Panorama Tools [25], which where originally developed by

Helmut Dersch. They comprise software tools for the creation of panoramas and object

movies as well as a Java Applet viewer.

Object movies have already been applied to medical data for educational purposes.

For instance, “Bones of the Skull” [133] of the Hardin Library for the Health Sciences

of the University of Iowa is an interactive learning tool for the anatomy of the human

skull based on QuickTime VR object movies. Melin-Aldana and Scirotino [81] used

QuickTime VR for an interactive atlas of pediatric liver pathologies. Both examples

are based on photographies of real world objects. In contrast to that, Tiede et al. [130]

combined QuickTime-VR panoramas and object movies to create interactive movies

for virtual endoscopy. Chen et al. [19] applied the object movie technique for remote

visualization of scientific datasets via the internet. To overcome a major limitation

of classical object movies, the necessity of downloading the whole movie before the

visualization can be started, they created a stand-alone viewer that downloads single

images of an object movie on demand.

However, the existing object movie formats and viewers lack flexibility and do

not fit to the demands of standardized medical visualization. Furthermore, they are

difficult or impossible to extend. For this reason, in this work a new medical object

movie format and an accompanying Java-based viewer were developed. Hereby, two

objectives were pursued: on the one hand, all visualizations of an analyzed dataset

should be integrated and interlinked in a single movie; on the other hand, it should be

possible to access a movie in a fast and interactive way via the web.

140 Chapter 5. Automated Medical Volume Visualization

5.2.1 Medical-Object-Movie Format

Design Concepts

The design of the medical object movie format was driven by the same ideas that were

taken into account for the definition of video sequences for the analysis of intracranial

aneurysms (see Section 5.1). There, one overview video of the whole dataset and

several videos of dedicated sub-volumes in areas with a high risk for aneurysms are

generated. The applied camera animation first follows several circular paths around

the complete volume. Then, the camera zooms in to give a closer view of the data.

Occluding structures are optionally cut away by a clip plane. To provide similar visual

information as in the videos, the following visualization concepts have been integrated

into the medical-object-movie format:

Tiles and Zoomed Views Usually, the views of an object movie are captured by

rotating the camera around the vertical axis of the observed object. At discrete rotation

angles (pan), the camera is tilted up and down to take several views at discrete tilt

angles (see Figure 5.5 (a)). Obviously, the captured images can be arranged in a 2D

grid in which the x-axis represents the pan angle and the y-axis the tilt angle (see

Figure 5.5 (b)). The overall number of images – and thereby the size of an object movie

– can be restricted by choosing large pan and tilt angles for the camera movement

between consecutive views and by limiting the examined area to maximum allowed

angles for pan and tilt.

However, for medical visualization the applicability of these measures is limited.

On the one hand, the difference between consecutive views should be chosen in a

way that the movement between them appears smooth. On the other hand, it should be

possible to examine pathological structures from many different view angles all around

the object. For these reasons, the medical object movie format provides the possibility

to assemble a movie from several tiles that cover certain regions of the spherical hull

on which the camera moves around the object (see Figure 5.5 (c)). This allows the

combination of regions that have a wide tilt range with those that have a small tilt

range.

Besides the restriction of an object movie’s size, this feature can be used to constrict

the examinable views to those which are interesting for the current medical analysis

task. In addition, to each view an additional zoomed view can be attached, which

provides a closer look from the same viewing direction. Typically, zoom views are

appended for a subset of the available standard views to provide details for areas of

high importance.

Sub-Movies and Links The medical object movie format allows the assembly of

several so-called sub-movies in a single movie object. Thereby, visualizations of dif-

ferent details of an observed medical structure can be combined into an integrated

visual presentation. E.g., in the context of analysis of intracranial aneurysms an object

5.2. Automated Visualization with 3D Object Movies 141

Figure 5.5: Generation and storing of a medical object movie: (a) The acquisition of the views

on a spherical hull. (b) Rectangular array for picture storage in a traditional object movie. (c)

Combination of different tiles (different grey values) in the new medical-object-movie format.

which gives an overview of the complete vessel structure can be joined with several

object movies that represent the sub-volumes with a high risk for aneurysms (see Sec-

tion 5.1).

Basically, the different sub-movies are independent from each other and can show

completely different objects or structures. But if there is an overview-and-detail re-

lationship between the sub-movies, links between these movies can be defined. Such

a link specifies a 3D area, namely the center and radius of a sphere, which encloses

the detail structure that is presented in the connected sub-movie. The object-movie

viewer can use this information to allow interactive navigation between the different

sub-movies. To give a visual hint about the existence and location of a link, the link

area is usually emphasized in the pre-rendered views.

Visualization Modes For each sub-movie several different visualization modes can

be applied. This feature allows emphasizing different aspects of a visualized object.

For example, a volume can be rendered with different transfer functions or with and

without a clip plane. For all visualization modes the same views are computed. Thus,

the visualization mode can be switched at each viewing position

File Format and Image Storage

A medical object movie consists of two files, a meta info file in XML format that

describes the structure of the movie and an images file that contains the image data.

For the meta-info file an XML-format was developed that permits the assembly of

object movies that follow the design concepts described above. Basically, the format

allows the definition of several independent sub-movies, which are built of one or

more tiles. A tile is defined by its width and height given in number of images, and

142 Chapter 5. Automated Medical Volume Visualization

its location relative to the 2D grid that represents the discrete viewing positions on the

spherical hull around the observed object (see Figure 5.5). In addition, arbitrary zoom

tiles can be defined, which should cover a subset of the un-zoomed tiles. For each sub-

movie links to other sub-movies can be defined. For this purpose, each sub-movie has

a unique id. A link is defined by the id of the linked sub-movie and by the center and

the radius of a sphere that encloses the region that is shown by the linked sub-movie.

Besides the structure of the object movie, the meta-info file contains links to the

related images, which are stored sequentially in the images file. For each tile of a

sub-movie there is an image list that gives start positions and sizes in bytes of the

related images in the images file. The images can be stored in any compressed or

uncompressed image format that can be interpreted by the viewer. Usually, a lossy

compression like JPEG is chosen to avoid that the size of the object movie is getting

too large. If a sub-movie contains links, an image can be provided two times, once

with the standard visualization mode and once with an additional accentuation of the

link area. Thereby, the highlighting of a the link area, which may occlude important

information, can be switched off. To keep the storage requirement of the two images as

low as possible, the image with the emphasized link area only stores the color values of

those pixels that differ from the original image. The others are set transparent. For this

purpose, the difference image has to be stored in a format that supports transparency,

e.g. PNG or GIF.

5.2.2 Medical Object Movie Viewer

For the observation of a medical object movie a Java-based viewer was developed,

which can either be run as stand-alone application or as an Applet integrated into a

website. The object movies can be loaded from any web location defined by an URL

or from local disk. First, the meta-info file is read, the movie structure is analyzed

and the viewer’s GUI is configured accordingly. Then, the image download for the

currently shown sub-movie is initiated. The interactive exploration of the movie can

be started immediately. Figure 5.6 shows the basic architecture of the medical-object-

movie viewer, which consists of four modules. The central ObjectMovie Application

Object launches the viewer and initializes and interconnects the three other modules,

which are responsible for the interpretation of the meta-info file (Meta Info Module),

the download of the images (Image Loader Module) and the generation and controlling

of the GUI (GUI Module). The functionality of the three modules is detailed in the

following.

Meta Info Module

The Meta Info Module fetches the location of the object movie from the ObjectMovie

Application Object and parses the XML-structure of the meta-info file. From this in-

formation it creates an object hierarchy that represents the meta structure of the com-

plete object movie. This object hierarchy is used by the GUI module to build up the

5.2. Automated Visualization with 3D Object Movies 143

ObjectMovie

Application

Object

Meta Info

Module

Image

Provider

Module

GUI

Module

Figure 5.6: Architecture of the medical-object-movie viewer. The central ObjectMovie Ap-

plication Object initializes three modules which are responsible for the analysis of the movie

structure (Meta Info Module), download and caching of the images (Image Provider Module),

and for the graphical user interface (GUI Module).

object-movie-specific GUI elements. Further on, the Meta Info Module serves the byte

address and byte size of a certain view to the Image Provider Module. For fast access

this information is stored in a hash table.

Image Provider Module

The Image Provider Module is responsible for downloading of the views from the im-

ages file. The image download is, on the one hand, performed on demand for the

currently selected view. On the other hand, surrounding images are automatically

downloaded in the background and stored in a client-side cache to speed up the navi-

gation between different views.

The Image Provider Module consists of three sub-modules: the Image Request

Agent, the Image Loader and the Image Cache. The Image Request Agent automat-

ically generates image requests and adds these requests to the request queue of the

Image Loader. It starts with a request for the currently selected view and goes on with

requests for the surrounding views. For each request it is first tested if the requested

image is already stored in the Image Cache. In this case the request is discarded. When

the currently selected view is changed, the Image Request Agent restarts the generation

of requests from the new view.

The Image Loader performs the download of the requested images. It handles

several requests in parallel via image download threads, which are managed in a thread

pool. Each time a thread has finished the download of an image, the Image Loader

takes the next request from the queue, asks the Meta Info Module for the address and

size of the requested image, and delegates the download of this image to the waiting

144 Chapter 5. Automated Medical Volume Visualization

thread.

The downloaded images are stored in the Image Cache. For fast access the images

are stored in a hash map. The Image Cache holds different hash maps for the different

visualization modes and sub-movies. If visualization mode or sub-movie is changed,

the hash maps are also changed. The old hash-maps are stored for later reuse. If the

size of the cache exceeds a predefined limit the least used hash map is deleted. To save

memory, the images are stored as byte arrays in their compressed format and extracted

on-the-fly when they are requested by the GUI Module.

GUI Module

The GUI Module initializes and controls the graphical user interface (GUI) of the

viewer. Figure 5.7 shows the viewer’s GUI with its different controls and panels. In

the MainView Panel the currently chosen view is displayed. The camera can be moved

by dragging the mouse but only in the range of precomputed views. The current camera

position is shown in the MiniMap Panel. The 2D grid on which the views are arranged

is visualized as a rectangle of image elements. The availability and the caching state

of the views is shown by a specific color scheme. E.g., a view which is not contained

in the object movie is visualized as a gray rectangle; an available view which has no

zoomed view attached and which is not yet loaded is white; a view with an additional

zoomed view is light blue. Furthermore, there are different colors that encode the

current loading and caching state of a view.

Via the Control Panel different actions like reseting of the main view and switching

to a zoomed view can be initiated. Furthermore, the visualization of the link areas

can be activated and deactivated. The ObjectModes Panel allows switching between

different modes of a single sub-movie. The Objects Panel shows which sub-movies are

available. A sub-movie can either be chosen by selecting the corresponding symbol in

the Objects Panel or by clicking to the emphasized link area in the MainView Panel.

In Figure 5.7 the position of a single link area is indicated by a green bounding box.

When a new view is selected, the GUI module requests the image for the selected

view from the Image Provider Module, more precisely the Image Cache. If the re-

quested image is not yet available, the Image Cache returns a null pointer and the

MainView Panel shows the accordingly rotated coordinate axis instead. At the same

time the Image Request Agent is informed, which initiates the privileged download of

the currently selected view.

5.2.3 Application

The new medical object movie format was applied to the standardized analysis of in-

tracranial aneurysms (see Section 5.1). The first steps of the analysis pipeline shown

in Figure 5.2 were kept the same, but instead of several video sequences a single stan-

dardized object movie is generated. The structure of this standardized object movie

was designed in a way that it provides similar information like the video sequences.

5.2. Automated Visualization with 3D Object Movies 145

Figure 5.7: Graphical user interface (GUI) of the object movie viewer. In the MainView Panel

the currently selected view is visualized; the MiniMap Panel shows the current camera position

and the tile structure of the object movie; via the Control Panel different states can be changed;

in the Object Modes Panel the visualization mode can be selected; the Objects Panel allows

the selection of a sub-movie.

Therefore, it is assembled from five sub-movies. One sub-movie shows an overview of

the complete CTA dataset. The other four sub-movies visualize the four sub-volumes

that enclose regions with a high risk for intracranial aneurysms.

For the overview sub-movie two visualization modes are applied. One mode shows

the complete volume; for the other mode occluding vessels are clipped away by the

automatically adjusted clip plane. Hereby, it is possible to interactively check which

structures are clipped away. The location of the sub-volumes is visualized by their

bounding boxes, which are rendered in wireframe mode. In addition, link areas are

defined that allow switching to the connected sub-movie by clicking with the mouse

into the bounding-box area. Since the areas of the sub-volumes overlap, only links to

the two sub-volumes around the left and right cerebral artery are attached.

The overview sub-movie is assembled of five tiles. A large center tile shows the

back side of the CTA volume. From this side the vessels are best visible, especially if

some structures are cut away by the clip plane. For a detailed look to the tile zoomed

146 Chapter 5. Automated Medical Volume Visualization

(a) (b)

(c) (d)

Figure 5.8: Four screenshots of a standardized medical object movie for the analysis of in-

tracranial aneurysms. (a) Overview of the complete CTA dataset; (b) Overview with occluding

structures cut away by an automatically positioned clip plane. In addition the bounding boxes

of the sub-volumes around the left and right cerebral arteries are shown; (c) The sub-volume

around the left cerebral artery; (d) A zoomed view which corresponds to the view in (c).

views are attached. The four other tiles allow rotations to left, right, top, and bottom.

A full rotation about 360◦ is not supported because on the front side the vessels are

usually occluded by the skull.

The four sub-movies that show the four sub-volumes all have the same structure.

They have only one visualization mode that shows the sub-volumes completely. The

tiles are arranged in a way that allows complete 360◦ rotation in pan and in tilt direc-

tion. Furthermore, there are small zoom areas on the front and the back side of the

sub-volumes.

Figure 5.8 shows several screenshots of an automatically generated object movie.

The images have a resolution of 640x480 pixels. As image format JPEG with average

5.3. A Visualization Service for Standardized Medical Analysis 147

quality (quality factor 50) is used. The average size of a single view is about 30 KB.

The difference images for the link areas are stored in PNG format. They have an

average size of about 15 KB. The complete object movie contains 2292 images and

has s size of about 50 MB. The average frame rate for the switch between images that

are stored in the client side cache is about 10 frames per second on a standard PC. The

download time for images depends on the location where the object movie is stored

and on the speed of the applied network connection.

5.3 A Visualization Service for Standardized Medical

Analysis

A fundamental requirement for the applicability of automated medical analysis and

visualization is the easy accessibility of the functionality by a large group of clinical

users. An obvious approach is to make the processing pipeline available as a service via

the web that can be accessed by any workstation with connection to the internet. The

costly data analysis and rendering procedures can thereby be performed on specialized

high-performance hardware that is supplied by the service provider. Besides the speed-

up of the batch analysis and visualization process, this concept brings the advantage

that the initiation of the automated visualization can be carried out at another place

than the investigation of the visual results. For example, the process could be started

from a workstation that is directly connected to the imaging device where the data is

acquired, and the generated visualization could be accessed from another workstation

that is placed in the operation room.

The provision of visualization functionality as a service via the internet is a fre-

quently applied concept in many visualization areas. Those services shift some or all

stages of the visualization pipeline (see Section 2.2) to a server, in order to give ac-

cess to data or functionality that is not available in the local environment of a user. A

typical application field of visualization services are geographic information systems

(GIS), which visualize spatially located data, like measurements and statistical values,

in their geographical context [115; 146]. Other services aim to support the visualiza-

tion of scientific data [6; 99]. For medical purposes also a number of service based ap-

plications have been proposed. Avis et al. [5] and Montagnat et al. [86] presented web

services for remote 3D visualization of medical image data. Gibaud et al. [41] devel-

oped a service that matches patient specific image data with a brain atlas. The system

of Kooper et al. [66] allows the reconstruction of a 3D volume from cross-sectional

microscopic images. Moreover, some vendors of commercial medical visualization en-

vironments have integrated interfaces for remote access to data and functionality [127;

137].

Visualization services can be classified by the visualization pipline stages that they

provide. Basically, there are two classes of services: those that delegate the rendering

to the client computer (client-based rendering), and those that perform the rendering

148 Chapter 5. Automated Medical Volume Visualization

on the server (server-based rendering). Services of the first class usually act as a

remote data source, e.g. for large data that can’t be stored on the client computer or

data which is acquired at the remote site. Furthermore, those services often provide

specialized functionality for data preprocessing.

The second class of visualization services – the services with server-based render-

ing – can be further subdivided into those service that render the visualizations on the

fly (remote rendering) and those services that prerender a couple of images in a batch

process (batch rendering). While remote rendering services focus on the interactive

manipulation of the visualization, batch rendering can be applied for automated visu-

alization tasks. E.g., Chen et al. [19] applied the object movie technique for precom-

puting 3D visualizations of scientific datasets, which can be interactively investigated

with a specialized viewer. Iserhardt-Bauer et al. [55; 56] developed a web service

that provides the standardized analysis and visualization of intracranial aneurysms, as

described in Section 5.1.

In this section a visualization service for standardized medical analysis is pre-

sented, which is based on the concepts proposed by Iserhardt-Bauer et al.. These basic

concepts have been advanced in two ways. On the one hand, a service architecture was

developed that abstracts from a certain medical application task. Thus, visualization

services for different medical purposes can be easily realized and even provided by the

same service hardware. On the other hand, a technique for parallel batch rendering on

a GPU-cluster was integrated. This permits the generation of complex video sequences

and object movies in a couple of minutes, and, thus, makes the service applicable for

clinical routine.

5.3.1 System Architecture and Workflow

The visualization service system consists of two major components (see Figure 5.9).

On the one hand, there is a web server that provides the web interface and manages the

user data. It is based on a Tomcat HTTP server, an open source project of the Apache

Software Foundation [2], which provides a runtime environment for Java Servlets and

java server pages (JSPs). This offers an easy way for the implementation of dynamic

HTML pages and the processing of user requests.

The other component is the render server, a GPU-cluster that performs the ren-

dering and the encoding of videos and object movies. This cluster consists of eight

standard PCs (4 GB RAM, 2 x AMD Opteron, 2.2 GHz), each containing a NVIDIA

GForce 6800 Ultra graphics card with 256 MB RAM. The cluster nodes are connected

with a fast Infiniband network. The inter cluster communication is performed with

the message passing interface (MPI) [89], a special API for parallel processes. The

web server and the cluster communicate via a TCP/IP connection with a standardized

protocol for different analysis requests.

A typical workflow of standardized medical analysis performed with the visual-

ization service is shown in Figure 5.10. In the beginning, a connection to the web

server is established via the dynamic web interface. Then, the user uploads a pre-

5.3. A Visualization Service for Standardized Medical Analysis 149

Web Server

Web Service

User Client

HTTP

Render Server

GPU-Cluster

M
P

I

TCP/IP

User Client

User Client

Figure 5.9: Architecture of the web service composed of a web server and a GPU-Cluster,

which builds the render server

viously acquired volume dataset of the examined patient and provides, if necessary,

some additional input parameters. Finally, the user can start the analysis by demand-

ing the generation of either a couple of video sequences or of a medical object movie.

The web server processes the demand and sends a standardized analysis request to the

render server via the TCP/IP connection. At the render server a dedicated cluster node

(manager node) takes the request, divides it into several jobs, and distributes them to

the other cluster nodes (render nodes). The render nodes perform the jobs in parallel

and notify the manager node when they have finished. When all jobs are terminated

the manager node informs the web server, which then provides the videos or the object

movie to the user via the web interface.

5.3.2 Render Server

The render server represents the rendering back end of the visualization service. It is

responsible for the processing of analysis tasks and for the generation of standardized

batch visualizations. For design and implementation of the render server two demands

were taken into account. On the one hand, it should be applicable to different medical

analysis tasks; on the other hand, it should easily be possible to integrate new analysis

and visualization functionality.

To achieve these goals, the render server provides a standardized communication

interface through which it accepts standardized requests. Hereby, it is possible that

the render server can be accessed by several different clients, which potentially realize

different visualization services for different medical purposes. The only prerequisite

is that service clients and render server have access to a shared file system that can be

used for data exchange (e.g. of the examined volume data set). Furtheron, the sup-

150 Chapter 5. Automated Medical Volume Visualization

User Interface

User Client

Video File

Object Movie

Prev. Image

Volume Data

Web Server

JSP / Servlet

JSP / Servlet

JSP / Servlet

JSP / Servlet

parameters

upload

download

request

Render Server

Manager
Node

Render
Node

Render
Node

Render
Node

response

Us

Figure 5.10: Workflow of automated visualization: A user demands the generation of video

sequences or of a medical object movie via a web interface. The web server takes this request

and sends it to the render server. There the request is distributed and performed in parallel.

After finishing, the video sequences or the object movie are provided for download.

ported requests provide functionality on a level that abstracts from the current analysis

task. Functionality which depends on the specific medical application, e.g. the deter-

mination of the clivus position (see Section 5.1), has to be contributed by the respective

service client.

Parallel Processing of Analysis Requests

The render server is realized as an MPI program. This means that it acts like a single

program consisting of several processes that run on different cluster nodes. The ad-

vantage of MPI is that it works with arbitrary hardware. Thus, an MPI program can

either run on a cluster, a parallel computer or even on a single PC. When the program

is started a predefined number of similar MPI processes are generated and automati-

cally distributed to the available hardware. Since each process is executing the same

program, a single MPI process has to distinguish its specific role by its unique rank.

Usually, the process with rank 0 is acting as the so-called master that distributes the

tasks to the other processes (the slaves) and merges the results. Figure 5.11 shows

how the work is divided on the render server. The handling and distribution of ren-

der request is carried out by the manager process (master), whilst the render processes

(slaves) perform the rendering and video encoding.

The manager process is composed of three major modules (see Figure 5.11 mid-

dle): the TCP server, the job manager and the job dispatcher . The TCP server module

realizes functionality for external communication. It binds to a specified port and is

waiting for incoming connections from different clients. If the TCP server has estab-

lished a connection and has received a request, it passes this request to the job manager.

5.3. A Visualization Service for Standardized Medical Analysis 151

Render Server

TCP/IP

Client
(Web Server)

Client

ClientClient

ClientClient

Manager
Process

TCP
Server

Job
Manager

Job
Dispatcher

Comm.
Application

Object

Render
Process

Comm.
Application

Object

Render
Process

Comm.
Application

Object

Render
Process

Figure 5.11: Architecture of the render server: It consists of a single manager process and

several render processes, which actually perform the visualization requests.

This takes the request, splits it into a number of parallely executable jobs and stores

them in a job queue. Finally, the job dispatcher distributes these jobs via MPI to the

render processes. For this purpose, it continously monitors the states of the render

processes and sends a job to the next one that is idle. This technique guarantees the

optimal exploitation of the hardware and permits accepting of multiple requests at the

same time because the requests are buffered until the required hardware is on hand.

Normally, the jobs are processed in the order they are queued and, if possible, ex-

ecuted in parallel. However, there are cases where a previous job has to be finished

before a successor can be started. For example, the transfer function has to be gen-

erated prior to any batch visualization (see below). For this purpose, it is possible to

define dependencies on preceding jobs, and a dependent job is put on hold until all pre-

decessors are completed. Further, to each job processing priority can be applied that

ensures its privileged treatment. Through this, jobs that need a fast response can be ex-

ecuted preferentially, even if the job queue is crowded with other long lasting requests.

A typical example is the generation of a preview image, that should be provided to the

user as fast as possible.

After the generation and distribution of the jobs, they are executed by the render

processes, which consist of two modules (see Figure 5.11 right). On the one hand,

there is the communicator, which acts as the counterpart of the job dispatcher at the

manager process. It takes an assigned job via MPI, performs some preparations and

delegates it to the other module, the application object. This is responsible for the

execution of the job, e.g. the rendering of the frames of a video sequence. Thus, when

new functionality should be added to the render server, basically the application object

has to be extended.

152 Chapter 5. Automated Medical Volume Visualization

Standardized Analysis Requests

Currently, the render server supports three types of analysis requests. One for the

creation of a set of video sequences, one for the creation of object movies, and one

for the rendering of preview images of the video sequences and object movies. The

preview request is intended for giving the user a quick impression of the rendering

result, before starting a time-consuming video or object movie generation request.

A request contains all parameters that are needed for the execution of the demanded

task. To keep the network traffic low, the visualization data itself is not sent along with

the request. Instead, a service client has to store the data on the shared file system

and to give the corresponding file names via the request. The common parameter

of the three supported request types is the file name of the observed volume data set.

Moreover, the requests all apply the concept of automated transfer function generation,

which was introduced in Section 5.1. To allow the application of different types of

datasets and different transfer functions, the requests holds two extra parameters that

give the filename of a specific template transfer function and of the associated template

dataset. Since transfer function generation is an expensive task, an optional parameter

can be defined that gives a file name for storage of the individually adjusted transfer

function. When the dataset-specific transfer function already exists, it is loaded from

the file system. Otherwise, it is generated and saved under the specified name.

Video Request A video request provides the generation of one or more video se-

quences of the observed dataset. Besides the common parameters for the specification

of the dataset and the transfer function, the camera paths have to be given to the render

server. They are stored in external files and describe the animation of the camera by the

concatenation of six basic types of movement: translations along the three coordinate

axis and rotations around the three axis. For each movement a value (length for transla-

tions, degree for rotations) and a duration in seconds has to be defined. Jumps between

camera positions can be realized by movements with a duration of zero seconds. The

render server, namely the application object, transforms the continuous camera path

into a sequence of discrete camera positions. By the demanded frame rate of the video

sequences, which has to be given as an additional request parameter, it is determined

which camera positions have to be taken. Furthermore, the applied video codec can be

chosen.

For each video sequence of a video request it can be defined if the visualizations

should be generated from the complete volume dataset or from a previously extracted

sub-volume. If a sub-volume should be taken, the center and the extent of the sub-

volume has to be given. In addition, an individual clip plane can be defined for each

video sequence which cuts away parts of the visualized volume dataset.

When the job manager receives a video request, it primarily checks if the dataset-

specific transfer function already exists, or if it has to be generated first. In the latter

case, the job manager creates a job for transfer function generation and appends it to

the job queue. Then several jobs for the generation of the requested video sequences

5.3. A Visualization Service for Standardized Medical Analysis 153

are created. To ensure that they are not executed before the transfer function exists,

they are marked as dependent from the transfer-function job.

The number of created video generation jobs depends on the applied parallelization

strategy. An obvious approach is the parallelization on the level of complete video

sequences. Here, for each requested video sequence a separate job is created. Thus,

if enough render processes are available, all requested videos can be rendered and

encoded in parallel. But in case that there are less video-generation jobs than idle

render processes, or if the different video sequences need different time for generation,

the available hardware is not optimally exploited. To overcome these drawbacks, the

generation of a single video sequence can be distributed to several smaller jobs. Each

job is responsible for rendering and encoding of a certain part of a video sequence, and

in the end the video parts are merged to a single video. Thereby, the work load of the

available hardware resources can be better balanced. However, it has to be taken into

account that the video parts have to be merged, which is a potentially time consuming

task.

The render server supports both approaches for parallelization of the video gen-

eration. The subdivision of the video sequences is realized on the level of frames.

Therefore, the complete number of frames of a video sequence is calculated, the video

sequence is split into parts of fixed frame numbers, and for each part a video gener-

ation job with additional infomation about the start frame and the frame number is

created. In addition, an extra job is created that is responsible for the merging of the

video parts.

Object Movie Request An object movie request provides the generation of a single

medical object movie. It is similarly structured like a video request, but instead of

camera paths for video sequences the structure of the object movie has to be defined.

For this purpose, basically the format of the meta info file (see Section 5.2.1) is used.

The major difference is that the links to the byte addresses of the views are missing.

In addition, for each sub-movie it has to be defined if it should visualize the complete

volume dataset or just a sub-volume. Furthermore, to each visualization mode of a

sub-movie an optional clip plane can be applied. Finally, the image format and the

output quality (degree of compression) can be chosen.

Similar to a video request, an object movie request is split into one job for transfer

function computation and several jobs for the rendering of the object movie views. For

each tile in the object-movie a separate rendering job is created. The render processes

store the images of the tiles in sequential order in temporary files. In the end, a finalize

job merges the temporary files to a single image file and writes the byte addresses of

the images to a newly created meta info file. Since a medical object movie usually

consists of a large number of small tiles, a large number of small render jobs is created

that are equally distributed to the available render processes. Thus, in the average case

a good balanced work load is achieved.

154 Chapter 5. Automated Medical Volume Visualization

Preview Request A preview request precomputes a single view from a set of video

sequences or from an object movie. The base structure of a preview request is the

same like that for the corresponding video or object movie request. In addition, it has

to be defined which view should be prerendered. For video previews this is done by

specifying the concerned video sequence and the point in time at which the preview

should be taken. For object movie reviews the affected sub-movie and visualization

mode, and an id that specifies the location of the view have to be defined. To give a fast

feedback to the user, even if there are other requests in the queue, a preview request

gets a higher processing priority than the other two request types.

5.3.3 Web Application

As mentioned before, the render server can be accessed by arbitrary clients that realize

a visualization service for a certain medical task. Currently, there is a single service

client, a web server that provides a web application for the standardized analysis of

intracranial aneurysms. The web application consists of a web-based user interface

and a base module. The base module takes the user requests, maps them to requests for

the render server and manages the communication with the render server. Furthermore,

it is responsible for the maintenance of the user data and the batch visualizations that

were created by the render server.

Each registered user of the web application can access the visualization service via

the web interface. After login a user can upload patient specific volume datasets and

start different analysis tasks on the data. Currently, three types of analysis tasks can be

carried out: the generation of video sequences, the creation of an object movie and the

rendering of a preview image.

Figure 5.12 shows a screenshot of the web interface when the generation of video

sequences is requested. On the left hand side a web form can be seen in which the user

has to specify several parameters that control the video generation task. The most im-

portant parameter is the position of the clivus, which is needed for the determination of

the sub-volumes and the clip plane. Furthermore, it can be defined which video codec

should be used, and it can be selected which video sequences should be generated.

The service can generate up to five video sequences: one overview video, and four

videos of sub-volumes that enclose areas with a high risk for intracranial aneurysms

(see Section 5.1). For each of the video sequences the user can demand a preview. In

this case the first frame of the respective video sequence is rendered by the service and

immediately presented in an extra browser window (see Figure 5.12 right). This allows

the user getting a first impression of the visualized object. Thereby it can be checked if

a video will show relevant information, e.g. an aneurysm. If not, the respective video

sequence can be deselected in the request form to save time for the overall analysis.

The web form for the request of an object movie looks similar to the form for video

sequences. But in contrast the user can select here which sub-movies and visualization

modes should be added to the object movie, whereby the object movie structure is

chosen as it was described in Section 5.2.3. As for the video sequences, a preview

5.3. A Visualization Service for Standardized Medical Analysis 155

Figure 5.12: A screenshot of the web interface of the service for standardized analysis of

intracranial aneurysms. In the form on the left hand side the user has to specify the clivus

position and can choose the video format and the video sequences that should be generated.

On the right hand side a preview image of the overview video is presented.

image can be demanded for each sub-movie and visualization mode.

When the web application gets a user request, the base module takes the clivus

position and computes the positions of the sub-volumes like described in Section 5.1.

Then, it creates a request where it explicitly defines parameters, like the volume dataset

that should be visualized and the template transfer function that should be chosen. Due

to the user input, further parameters are added which determine the structure of the

requested video sequences or sub-movies. Finally, the request is send to the render

server, which processes it in parallel (see Section 5.3.2). When the render server has

finished the request, it informs the web application, which provides the visualization

results to the user via the web interface. Generated video sequences can be downloaded

and watched with an arbitrary video viewer; generated object movies are provided via

the Java Applet viewer (see Section 5.2.2), which is integrated into the web interface.

Thus, no explicit download of the object movie is required.

5.3.4 Performance

The performance of the visualization service was tested with the hardware configu-

ration described in Section 5.3.1 As stated there, the utilized GPU-cluster consists of

eight nodes. One node is acting as manager and seven nodes are actively processing

156 Chapter 5. Automated Medical Volume Visualization

frames per job 600 300 200 100 50

1 × overview 94 52 37 21 23

1 × sub-volume 54 29 21 14 15

1 × overview + 4 × sub-volume 94 57 57 60 65

Table 5.1: Video generation times in seconds for different subdivision strategies from 600

frames per video part to 50 frames per video part. For each strategy the duration for the

generation of the overview video, for the generation of a single sub-volume video, and for the

combined generation of the overview video and four sub-volume videos was measured. All

generated video sequences have a total length of 600 frames.

rendering jobs. In order to find the best approach for exploiting the available rendering

hardware, several parallelization configurations have been examined. The tests were

carried out with a CTA volume dataset that has an original resolution of 512×512×246

voxels and a sub-volume size of 256×256×199 voxels. Each generated video consists

of 600 frames and a frame has a resolution of 640×480 pixels. The videos are encoded

in mpeg-format. The applied camera paths were chosen like proposed in Section 5.1.

Time measurements have been taken for three different application scenarios: sin-

gle generation of the overview video, single generation of a sub-volume video, and

generation of all five videos in parallel. For each of these scenarios, five different

subdivision strategies from 600 frames per video part (no subdivision) to 50 frames

per video part (twelve parts per video) have been tested. The results are shown in

Table 5.1.

For the simplest distribution approach, each video is rendered as a whole (600

frames) on a separate render node. In this case, the generation of the overview video

takes 94 seconds, the generation of the sub-volume video takes 52 seconds. The total

generation time for the set of five videos is also 94 seconds, which is equivalent to

the generation time for the most time consuming overview job. Since there are seven

render nodes and only five render jobs, the cluster is not exploited optimally. If the

videos are split into parts of 300 frames, there are ten render jobs for the five videos,

so some of the cluster nodes have to perform two jobs. Due to the better utilization

of the hardware the total video generation time goes down to 57 seconds. When the

videos are further subdivided there is no further improvement. The rendering times are

even getting worse because of the increasing overhead for distribution and merging of

the videos. In contrast to that, the performance for the rendering of a single video is

improving down to the splitting of the videos into parts of 100 frames. The reason is

that six jobs are built, which can be performed completely in parallel on the available

render nodes. A further split into parts of 50 frames (twelve jobs) brings no advantage.

In addtion, it can be noticed, that the generation time for the videos is not decreasing

linearly with respect to the number of involved cluster nodes. This is once again due to

the overhead of communication. As a result it can be stated that the hardware is opti-

mally exploited, when the number of distributed jobs is nearby the number of available

5.4. Conclusion 157

cluster nodes. However, if the execution time of the rendering jobs differ noticeably,

like for the overview video and the sub-volume videos, a subdivision to smaller parts

would guarantee a better balanced exploitation of the cluster nodes, whereas the extra

effort for distribution management and the assembling of the final videos has also to

be taken into account.

The performance for the generation of object movies is similar to that for video

generation. E.g., an object movie of about 2300 images is rendered and assembled

in i approximately 100 seconds. The parallelization of the object movie generation

depends on the structure of the object movie. Thus, it is not possible to apply different

sub-division strategies. A preview image is rendered in about three seconds. Since

this is near real time the preview functionality can be used for direct control of the

visualization result and interactive adaption of the visualization parameters, e.g. the

clivus position. To get the complete time for an automated analysis one has to add the

time which is needed for the generation of the transfer function. This procedure can

not be parallelized and takes about 30 seconds. However, a once generated transfer

function is stored by the service and re-used for subsequent visualizations of the same

dataset.

5.4 Conclusion

In this chapter the field of automated medical volume visualization was addressed. Au-

tomated medical volume visualization provides standardized analysis and visualization

procedures for certain medical tasks. These procedures are automatically performed

without user interaction, and the results can be examined independently of the visual-

ization system. Automated medical volume visualization requires, on the one hand, an

adequate method for the presentation of the automatically generated visualization re-

sults and, on the other hand, an intuitive way to access the provided functionality. The

system for automated medical visualization that was presented in this chapter takes

both requirements into account.

For the presentation of prerendered visualization results 3D object movies were

proposed. Object movies provide 2D images of a 3D object that were taken from

different camera positions on a spherical hull around the object. With a specialized

viewer a user can interactively navigate between these views. For the purpose of med-

ical visualization a new medical-object-movie format was developed, that takes the

needs of visual medical analysis into account. In this format visualizations that were

generated with different parameter configurations (visualization modes) and visualiza-

tions of different parts of a dataset can be combined. Thus, all information that is

relevant for a certain analysis task can be joined in a single movie. For presentation of

a medical object movie a Java-based viewer was developed that can be integrated into

a web page. Due to a sophisticated image download and caching concept a user can

directly navigate along the prerendered visualizations that are provided by the movie.

The automated generation of medical object movies was integrated into a web-

158 Chapter 5. Automated Medical Volume Visualization

based visualization service system that performs standardized analysis and visualiza-

tion procedures according to a predefined protocol. This system consists of a web

server that provides the visualization functionality via a dynamic webinterface and a

render server that performs the automated analysis and visualization of the data. The

render server is build by a cluster of GPU-equipped PCs, which generate video se-

quences and object movies in parallel. The visualization-service system was success-

fully applied for the standardized analysis of intracranial aneurysms.

The system, namely the render server, was designed in a way that allows the easy

adaption for other medical visualization tasks. However, it has to be stated out that the

applicability of the visualization service is restricted to those task, for which the whole

process of segmentation, registration and visualization can be completely automated.

There are many segmentation and registration methods for specific medical problems

that require interaction of the user. But even for those problems, the service could be

applied to generate standardized and comparable visualizations.

CHAPTER

6 ITERATIVE DEVELOPMENT OF MEDICAL

VOLUME-VISUALIZATION SOLUTIONS

The previous chapters addressed the problem of medical volume visualization on dif-

ferent levels of abstraction. Basis of all presented techniques is the multi-volume

rendering framework that was introduced in Chapter 3. Thereby, the different tools

and techniques for interactive and automated volume visualization represent different

stages of an iterative development process of medical volume visualization solutions.

Since most of the visualization methods were developed in a generic way, they can

easily be adapted for other medical purposes. In the following, a common processing

model for the iterative development of medical volume visualization solutions is pro-

posed, which is based on the generic visualization concepts that were developed in the

course of this thesis and which can be applied for differing medical tasks.

6.1 Four Stages of Medical Volume Visualization

The development model for medical volume visualization solutions consists of four

stages (see Figure 6.1). It begins with 2D analysis of the acquired image data goes

on with a generic 3D visualization prototype, is then followed by a specific interac-

tive visualization application and ends with an automated visualization service that is

applicable for a large group of users.

While the first stage represents the process that is carried out before the applica-

tion of 3D visualization techniques, the other three employ hardware-supported direct

volume visualization on different levels of specialization and standardization. These

three stages can be further sub-divided into three phases: generation, application, and

validation. In the generation step, a visualization solution of the current development

stage is assembled due to the experiences that were gained in the previous stage. Then,

the visualization solution is applied to a couple of real world cases, and, finally, it is

evaluated if the analysis of the acquired data is supported in the desired way. Usually,

the application and validation step are carried out repeatedly until the achieved visu-

alization results fulfill the demands of the medical task. In this case, the generation

of the visualization solution on the next development stage can be started. When the

159

160 Chapter 6. Iterative Development of Medical Volume-Visualization Solutions

Specialized 3D-Visualization Application

3D Visualization Prototype

Classical 2D Analysis

3D-Visualization Service

Figure 6.1: Processing model for the iterative development of medical volume visualization

solutions: The first stage represents the situation before the application of 3D visualization.

The other three represent 3D visualization stages on different levels of specialization. In each

stage the concepts that where developed for the previous stage are taken into account. When

necessary, it can be returned to the previous stage to refine the there developed visualization

solution.

desired objectives can not be accomplished on the current stage, it potentially makes

sense to return to the previous stage on which the visualization solution can be adapted

on a more general level.

Classical 2D Analysis

The development of a medical volume visualization solution always starts with a spe-

cific application case for which 3D visualization techniques should be applied. This

can for example be the diagnosis of a special disease, the planning of a surgical in-

tervention or the analysis of data that was acquired for research purposes. For this

application case usually a workflow has been established that comprises the acquisi-

tion of the tomographic images and the analysis of the data in a classical slice-by-slice

manner. Thus, the involved medical doctors or researchers have a clear idea about

which images should be taken with a certain imaging modality and which information

can be extracted from this data. 3D volume visualization techniques can support the

analysis of this data in several ways. On the one hand, 3D visualization eases the ex-

amination of three-dimensional data, because the spatial relationship between different

structures is directly displayed. Thus, the analysis process can be accelerated. Further-

more, 3D visualization provides new insights into the data and allows the application

of complex interaction methods.

6.1. Four Stages of Medical Volume Visualization 161

3D Visualization Prototype

In the first stage of 3D visualization a prototypic volume visualization solution for the

acquired image data is developed. For this purpose, the generic volume visualization

tool that was presented in Section 4.1 can be employed. This tool allows the interactive

manipulation of the render graph and, thus, its application for different visualization

purposes. At first, a medical expert, who is familiar with the medical application case,

and a visualization expert, who knows the generic volume visualization tool, explore

which render nodes have to be combined to achieve the desired 3D presentation of the

data. If necessary, new render nodes are implemented and integrated into the system

like described in Section 4.1.2. When a visualization is found that best fits to the

data, the corresponding render graph can be serialized and stored as a XML file for

later reuse. Depending on the application task, several render graphs for different

combinations of the acquired datasets can be arranged.

In the application and validation phase the predefined render graphs are applied to

a number of selected cases of clinical practice or reasearch. Thereby, it can be evalu-

ated if the developed visualization patterns meet the requirements of the medical task.

Usually, the render graphs will be iteratively adapted and extended until the medical

experts are satisfied with the results. Further on, it could happen that the prototypic 3D

visualizations show that the acquired medical images do not provide adequate infor-

mation for visualization. In this case, it should be returned to the previous evolution

stage to primarily adapt the image acquisition workflow.

Specialized 3D Visualization Application

In the next development stage a customized volume visualization application is de-

veloped that is based on the visualization patterns that were designed in the previous

prototype stage. This application can utilize the multi-volume rendering framework

and combine it with a task-specific user interface. The aim is to generate a visualiza-

tion tool that supports researchers and medical doctors in their daily work. Therfore,

the underlying details about the employed render graphs should be hidden, and instead

interaction mechanisms should be provided that fit to the application domain. Thereby,

the tool should allow the flexible analysis of standard and non-standard cases. When

necessary, the underlying rendering framework can be extended by new rendering tech-

niques that permit a better optimization of the visualization process.

The task-specific 3D visualization tool is applied to all cases that occur in clinical

or research routine. Since the tool provides a domain-specific user interface it can be

employed by researchers and medical doctors who have experience with the medical

application but who must not be familiar with the underlying visualization techniques.

Thereby, best-practice visualization workflows can be elaborated that support the anal-

ysis task in an optimal way. If it is discovered that the specialized application does not

provide all visualization concepts that are necessary for an adequate visual analysis of

the data, one can return to the previous stage, refine the prototype and integrate the

162 Chapter 6. Iterative Development of Medical Volume-Visualization Solutions

improved techniques into the specialized visualization tool.

3D-Visualization Service

Based on the visualization workflows that were elaborated in the previous stage, in the

last stage of the processing model a 3D visualization service is developed that auto-

mates and standardizes the visualization process. Therefore, the visualization service

system that was presented in Section 5.3 can be employed. The application object (see

Section 5.3.2) has to be extended by the new analysis and visualization techniques that

were developed for the specific application case. Furthermore, structures for video

sequences and object movies have to be designed that represent the analyzed datasets.

When necessary, new analysis requests for the new tasks have to be developed and to

be integrated into the system. Finally, a task-specific web interface has to be composed

that provides intuitive access to the service functionality.

The service can be employed by a large group of users. At first, medical doctors

and researchers can use it to improve and speed-up the analysis of the medical data.

Since most steps of the analysis and visualization process are automated, the service

can also be operated by other medical personnel who has less knowledge about the

medical details. The service functionality can even be exploited by doctors in smaller

medical facilities who are not experts for the specific medical task. The service further

allows the incorporation of experts from remote locations.

There are two situations which can necessitate the return to the previous evolu-

tion stage. First, it can be found that a visualization workflow is not suited for au-

tomation. Then, the workflow has to be appropriately adapted and evaluated with the

corresponding interactive visualization tool. The other situation can occur during the

regular application of the service when the predefined workflow does not provide an

adequate visualization for the current data. In this case, a medical expert should addi-

tionally examine the data with the interactive 3D visualization tool. Consequently, the

visualization service does not replace the related interactive visualization application,

but the two complement one another. The service can be used for standard cases, and

when problems occur, the interactive application can be additionally consulted.

6.2 Discussion

The proposed processing model covers the complete life cycle of a medical volume

visualization solution. Beginning with the initial request for the application of 3D vol-

ume visualization techniques, in each step the solution is becoming more specialized

and the visualization workflow is becoming more standardized. With the increasing

specialization and standardization the number of potential users and the amount of an-

alyzed cases can also become larger. Table 6.1 summarizes these aspects and illustrates

the different application fields of the different evolution stages.

As mentioned before, the different evolution stages consist of three phases: the

6
.2

.
D

iscu
ssio

n
1
6
3

Stage Developers Users Application Workflow Tools / Examples

1 2D Analysis Medical researchers Medical researchers Medical and clin-

ical research, few

research or clinical

cases

individual Analysis of func-

tional brain images

(Section 4.2.1),

analysis of intracra-

nial aneurysms

(Section 5.1)

2 3D Prototype Medical researchers,

visualization expert,

render-graph pro-

grammer

Medical experts Research hospital,

selected clinical

cases

defined Generic multi-

volume visualiza-

tion tool,

(Section 4.1),

direct volume defor-

mation (Section 4.3)

3 3D App Medical experts,

visualization expert,

application program-

mer

Medical doctors Large hospitals,

clinical routine,

clinical studies

specialized Visualization of

functional brain

images (Section 4.2)

4 3D Service Medical doctors,

visualization expert,

service programmer

Medical personnel Hospitals and other

medical facilities,

medical routine

standardized Visualization-

service system,

standardized ana-

lysis of intracranial

aneurysms

(Chapter 5)

Table 6.1: Comparison of the four development stages of medical volume-visualization solutions

164 Chapter 6. Iterative Development of Medical Volume-Visualization Solutions

development of the visualization solution, the application to a number of cases, and

the evaluation of the benefit of the solution. The development is done by a number of

medical specialists, who have knowledge about the medical task, an expert for medical

visualization and a programming expert, who can implement the visualization solution

for the current evolution stage. The visualization expert acts as intermediary between

the medical specialists and the programming expert. The medical specialists who are

incorporated in the development process can be any of the users of the visualization

solution on the previous evolution stage.

For the first stage – the 2D analysis stage – the developers and the users are the

same group of persons. Usually, a small group of medical researchers have devel-

oped an imaging and analysis concept for a certain medical task and at the same time

they are the ones who apply these concepts to a couple of research or clinical cases.

The visualization workflow is not yet fixed and can be individually handeled by dif-

ferent researchers. Examples for this visualization stage are the analysis of functional

brain images by cognitive neuroscientists (see Section 4.2.1) and the examination of

intracranial aneurysms by radiologists and neuro surgeons (see Section 5.1).

The medical researchers that have established the first development stage can de-

velop the 3D visualization prototype from the second stage in cooperation with a vi-

sualization expert and a programmer who has deep knowledge about the render graph

framework. The visualization prototype can be used by a number of medical doctors

or researchers who are experts for the specific application task. They have to evaluate

the applicability of the visualization prototype with selected clinical cases. The visual-

ization workflow is predefined by the visualization prototype but can be easily adapted

when required. Usually, the generic multi-volume visualization tool (see Section 4.1)

can be applied for this stage. Another example for a 3D visualization prototype is the

direct volume deformation technique that was presented in Section 4.3.

The specialized 3D visualization application of the third stage is implemented by

an application programmer, who takes into account the experiences that the medical

experts have made in the previous stage. This application can be used by any medical

doctor who wants to perform the specific medical task. It is, thereby, not restricted to

the research hospital in which it was developed but can be employed by any hospital

with specialists for the medical application for which it was designed. The tool can be

used for all cases in clinical routine. It restricts the visualization workflow due to its

specialized user interface but still allows the adaption of the workflow. When a certain

workflow was established, its applicability can be evaluated in a clinical study. An

example for a specialized 3D visualization application is the tool for visualization of

functional brain images that was described in Section 4.2.

For the fourth stage a service programmer integrates the established and evaluated

visualization workflows into the visualization service system (see Section 5.3). Be-

cause of the automation of the visualization process, the service can be applied by

personell who must not be experts for the medical application. Thus, it can also be

used by smaller medical facilities, e.g. to find out if a patient has a certain disease and

if he or she has to be send to a specialized hospital. Further on, the service provides the

6.2. Discussion 165

possibility to collect data from a large group of patients. This data could, for example,

be used to get a deeper knowledge about a disease or about the success of a therapy.

An example is the standardized analysis of intracranial aneurysms, that was detailed

in Section 5.1.

Depending on the medical application, a visualization solution may not pass through

all 3D visualization stages. For example, when a visualization is only needed for a spe-

cific research topic, the development of a visualization prototype can be sufficient. In

those cases the users are usually willing to cope with the complexity of the generic vol-

ume visualization tool, and it does not make sense to develop a specialized application.

Furthermore, there can be cases where it may not be possible to automate the visual-

ization workflow. For example, there can be medical problems where each case needs

an individual analysis by an expert. Then it is not necessary to provide a visualization

service for this task.

Since all visualization solutions on the different development stages are based on

the flexible multi-volume rendering framework, new visualization methods that were

developed for a certain medical application can be reused for other tasks. The reuse

of newly developed render nodes is obvious, but also specialized rendering techniques

can be employed for other purposes. E.g., the technique of deferred multi-volume

shading, which was introduced in Section 4.2.3, could be employed for performance

improvements in many medical visualization applications. The method for direct visu-

alization of deformed volumes, which was proposed in Section 4.3.2, could for exam-

ple also be used for the direct visualization of local registration results. Consequently,

the framework provides a flexible and extensible platform for most medical volume

visualization purposes.

In practice, the described processing model supports (and demands) the close col-

laboration of medical researchers and medical practitioners. A successful example for

such a close collaboration between medical research and medical practice is given by

the research institute Fraunhofer MEVIS [35] and the affiliated MeVis Medical Solu-

tions AG [83]. There, a process for the transfer of research results in medical image

analysis and medical visualization is established. While Fraunhofer MEVIS is respon-

sible for basic research, MeVis Medical Solutions AG produces software products for

medical analysis and visualization that incorporate the research results of Frauenhofer

MEVIS. Basis for the work of both institutions is MeVisLab [84], which is a software

framework for medical image processing and visualization. It provides, on the one

hand, a flexible GUI with which a sophisticated user can interactively combine exist-

ing functionality via a graph. On the other hand, it can be used as a platform for the

development of task-specific medical applications. Thus, it can applied for the fast ex-

ploration of new application fields, and the findings can be easily integrated into new

software products.

Summarizing, MeVisLab can be employed in a similar way like the flexible volume

rendering framework that was developed for this thesis. Morevover, MeVis Medical

Solutions AG provides MeVis Distant Services [82] for remote preparation of liver

surgeries. However, as far as we know, MEVIS has not introduced a fixed processing

166 Chapter 6. Iterative Development of Medical Volume-Visualization Solutions

model for the development of medical analysis and visualization solutions as the one

proposed here, and the analysis and visualization service for liver surgery is not auto-

mated but provided manual by a team of medical specialists and visualization experts.

CHAPTER

7 CONCLUSION

This thesis addressed the problem of volume visualization for medical applications

on three different levels of abstraction. On the lowest level – the level of render-

ing – a flexible framework for GPU-based rendering of multiple volume datasets was

introduced. With the so-called render graph complex visualizations of arbitrary multi-

volume scenes can be designed. The render graph is build of a number of render nodes

that represent different stages of the shading process, like clipping of a volume against

a plane or mapping a sample to a color due to a transfer function. Each render node

provides the information that is needed for the evaluation of its specific responsibility.

From this information a shader generator assembles a number of shader programs for

GPU-accelerated rendering. The modular design of the framework allows the combi-

nation of the render graph concept with different volume rendering techniques. Here,

two different techniques for GPU-based multi-volume rendering have been proposed:

slice-based multi-volume rendering and GPU-based multi-volume ray casting.

The multi-volume rendering framework provides a high degree of flexibility, which

allows its employment for a large variety of medical visualization purposes. On the

second level of abstraction – the level of interactive medical volume visualization –

several techniques have been presented that not only demonstrated the framework’s

flexibility but which have also shown that new rendering techniques can easily be

integrated by slight adaptions. First, a tool for generic multi-volume visualization was

introduced that allows the direct configuration of the render graph on a graphical level.

Furthermore, it provides a standardized interface for extension by new render nodes

and can, thus, easily be applied for new visualization problems.

The second application considered the visualization of functional MRI (fMRI) im-

ages of the human brain. Those fMRI volumes are, for example, acquired for studies

in cognitive neuro science. The challenge here was to provide the anatomical brain

structure without occluding the functional information. Besides several standard multi-

volume visualization techniques, like clipping and rendering of semi-transparent iso-

surfaces, the application of line integral convolution (LIC) was proposed as a solution

of this problem. With this flow visualization technique the curvature of the anatomical

brain surface can be emphasized while simultaneously the opacity can be reduced. For

167

168 Chapter 7. Conclusion

fast computation of the LIC integral a technique for deferred multi-volume shading

was integrated into the multi-volume rendering framework, which permits the restric-

tion of expensive shading operations to the effective visible surface of a volumetric

object.

As a third interactive volume visualization technique a method for direct volume

deformation was presented. This method employs the physically-inspired 3D Chain-

Mail algorithm and performs the complete pipeline of deformation and visualization

on the GPU. Therefore several GPGPU shaders are evaluated that deform the volume

with respect to the current mouse movement. From the deformed volume an inverse

deformation volume is generated by a gradient-decent-like inversion algorithm. The

inverse deformation volume allows the direct visualization of the deformation by the

standard rendering techniques that are provided by the multi-volume rendering frame-

work.

On the highest abstraction level techniques for automated medical volume visu-

alization were considered. These techniques automatically generate a couple of pre-

defined visualizations of a medical volume and present these to a medical doctor in

an intuitive way. First, a concept for the intuitive presentation of the pre-rendered vi-

sualizations was presented, which is based on 3D object movies. For the purpose of

medical volume visualization a new object movie format was developed that allows the

incorporation of sub-movies from different parts of a volume and of sub-movies that

were taken with different visualization configurations. For the automated generation

of medical object movies and video sequences a visualization service system was de-

veloped. Here, the user can upload a volume dataset via a task-specific web interface

and request the generation of an object movie or a couple of video sequences. Then,

the object movie or the video sequences are rendered in parallel on a cluster of GPU-

equipped PCs. Thereby, the visualization results are available after a few minutes and

the user can access them via the web interface. The service system was designed in

a way that allows the application for different medical purposes. It was successfully

tested on the standardized analysis of intracranial aneurysms.

The visualization techniques that were developed for this work do not only cover

different levels of abstraction, but also represent different stages of development that

can be reached by a medical visualization solution. To emphasize this fact a processing

model for the development of medical volume-visualization solutions was presented,

and it was demonstrated that this thesis provides for each development stage a basic

visualization technique that can be adapted for a specific medical purpose. The pro-

cessing model starts with a specific medical task for which medical specialists have

already established an informal workflow for image acquisition and classical 2D anal-

ysis of the data. From these experiences an initial 3D visualization prototype on the

basis of the generic multi-volume visualization tool is generated. Different visualiza-

tion concepts can be evaluated with this prototype. Then, an interactive visualization

application is developed that provides a task-specific user interface. This application

can be applied for all cases in clinical practice and different visualization workflows

can be elaborated. In the last development stage these workflows are automated and

169

integrated into the web service system. Then, the visualization solution is available

for a large group of users in medical facilities of different sizes. Even non-experts can

employ it, and when needed, a specialist can be consulted.

Summarizing, in this thesis a volume visualization concept was presented, that

covers the whole life cycle of a medical volume visualization solution. The framework

for GPU-based multi-volume rendering builds the foundation of this concept. Due to

its modularity and its extensibility, the framework can be employed for a wide range

of medical applications. Visualization and rendering algorithms that were developed

for a certain medical task, can be integrated into the framework and applied for other

purposes. Thus, even sophisticated GPU-based volume visualization techniques can be

quickly established in medical practice. All in all, the proposed visualization concept

helps bridging the gap between modern volume visualization techniques and medical

applications.

However, the medical visualization pipeline does not only consist of the rendering

step but incorporates several preprocessing and analysis steps, like filtering, segmen-

tation and registration (see Section 2.2). Since these steps often process the volume

data in a similar way like rendering, it is obvious to also exploit the parallel computing

power of modern GPUs for these tasks [119]. GPUs have already been successfully

employed for medical image processing tasks, but usually those solutions are isolated

and not integrated into the visualization process. Thus, the future challenge of med-

ical visualization is the integration of fast GPU-based algorithms into the complete

medical visualization pipeline and the seamless combination of preprocessing, analy-

sis and rendering of medical volume data. For this purpose, the GPU-based volume

processing techniques have to be encapsulated, and access patterns on a more abstract

level have to be provided. Then, the different techniques can be quickly combined and

new medical volume processing and visualization concepts can be easily investigated.

Herewith, a processing model similar to the one for the development of medical vol-

ume visualization solutions that was proposed in this thesis can be established for the

complete medical volume visualization pipeline. Beginning with the investigation of

new GPU-based volume processing techniques, interactive and task-specific applica-

tions can be developed and, finally, the complete volume analysis and visualization

process can be standardized and automated by a service.

170 Chapter 7. Conclusion

BIBLIOGRAPHY

[1] G. D. Abram and T. Whitted. Building block shaders. SIGGRAPH Computer Graphics,

24(4):283–288, 1990.

[2] Apache Software Foundation. Apache Tomcat. Web site:

http://tomcat.apache.org, 2009.

[3] Apple Inc. QuickTime VR. Web site:

http://developer.apple.com/documentation/Quicktime/

InsideQT QTVR/insideqt qtvr.pdf, 2009.

[4] B. Aubert-Broche, M. Griffin, G. B. Pike, A. C. Evans., and D. L. Collins. Twenty new

digital brain phantoms for creation of validation image data bases. IEEE Transactions

on Medical Imaging, 25(11):1410–1416, 2006.

[5] N. J. Avis, I. J. Grimstead, and D. W. Walker. Grid enabled remote visualization of

medical datasets. Studies in Health Technology and Informatics (Proc of MMVR 13),

111:22–28, 2005.

[6] W. Bethel, C. Siegerist, J. Shalf, P. Shetty, T. J. Jankun-Kelly, O. Kreylos, and K.-L. Ma.

VisPortal: Deploying grid-enabled visualization tools through a web-portal interface. In

Third Annual Workshop on Advanced Collaborative Environments, 2003.

[7] J. Beyer, M. Hadwiger, S. Wolfsberger, and K. Bühler. High-quality multimodal volume

rendering for preoperative planning of neurosurgical interventions. IEEE Transactions

on Visualization and Computer Graphics, 13(6):1696–1703, 2007.

[8] J. F. Blinn. Models of light reflection for computer synthesized pictures. In SIGGRAPH

’77: Proceedings of the 4th annual conference on Computer graphics and interactive

techniques, pages 192–198, 1977.

[9] C. Boyd. DirectX 11 Compute Shader. In ACM SIGGRAPH 2008 Classes: Beyond

Programmale Shading, 2008.

[10] V. Boyer. Automatic and dynamic generation of GPU programs to mix renderings and

enhance informations on high scale scenes. In Proceedings Visualization, Imaging, and

Image Processing (VIIP 2007), 2007.

[11] K. Brodmann. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzip-

ien dargestellt auf Grund des Zellenbaues. Leipzig, Translated by Laurence Garey as

Localisation in the Cerebral Cortex (1994), London: Smith-Gordon, new edition 1999,

London: Imperial College Press. edition, 1909.

[12] S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Gröller. Illustrative context-preserving

exploration of volume data. IEEE Transactions on Visualization and Computer Graph-

ics, 12(6):1559–1569, 2006.

171

http://tomcat.apache.org

172 Bibliography

[13] S. Bruckner and M. E. Gröller. Exploded views for volume rendering. IEEE Transaction

on Visualization and Computer Graphics, 12(5):1077–1084, 2005.

[14] S. Bruckner and M. E. Gröller. Volumeshop: An interactive system for direct volume

illustration. In Proceedings of IEEE Visualization 2005, pages 671–678, 2005.

[15] T. Brunet, K. E. Nowak, and M. Gleicher. Integrating dynamic deformations into inter-

active volume visualization. In Eurographics / IEEE VGTC Symposium on Visualization

(EuroVis) 2006, pages 219–226, 2006.

[16] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanra-

han. Brook for GPUs: Stream computing on graphics hardware. ACM Transactions on

Graphics, 23(3):777–786, 2004.

[17] B. Cabral and L. C. Leedom. Imaging vector fields using line integral convolution. In

SIGGRAPH ’93: Proceedings of the 20th annual conference on Computer graphics and

interactive techniques, pages 263–270, 1993.

[18] W. Cai and G. Sakas. Data intermixing and multi-volume rendering. Computer Graphics

Forum, 18(3):359–368, 1999.

[19] J. Chen, I. Yoon, and E. W. Bethel. Interactive, internet delivery of visualization via

structured, prerendered multiresolution imagery. IEEE Transactions in Visualization

and Computer Graphics, 14(2):302–312, 2008.

[20] M. Chen, C. Correa, S. Islam, M. W. Jones, P.-Y. Shen, D. Silver, S. J. Walton, and

P. J. Willis. Manipulating, deforming and animating sampled object representations.

Computer Graphics Forum, 26(4):824–852, 2007.

[21] M. Chen and J. V. Tucker. Constructive volume geometry. Computer Graphics Forum,

19(4):281–293, 2000.

[22] R. L. Cook. Shade trees. SIGGRAPH Computer Graphics, 18(3):223–231, 1984.

[23] T. F. Cootes, C. J. Taylor, and J. G. D. H. Cooper. Active shape models - their training

and application. Computer Vision and Image Understanding, 61(1):38–59, 1995.

[24] T. J. Cullip and U. Neumann. Accelerating volume reconstruction with 3D texture hard-

ware. Technical Report TR93-027, University of North Carolina at Chapel Hill, 1994.

[25] H. Dersch. Panorama Tools. Web Site: http://panotools.sourceforge.net/,

2009.

[26] O. Dössel. Bildegebende Verfahren in der Medizin: Von der Technik zur medizinischen

Anwendung. Springer-Verlag, 1 edition, 2000.

[27] D. Ebert and P. Rheingans. Volume illustration: Non-photorealistic rendering of volume

models. In Proceedings of the 11th IEEE Visualization Conference (VIS 2000), pages

195–202.

http://panotools.sourceforge.net/

Bibliography 173

[28] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-salama, and D. Weiskopf. Real-time Volume

Graphics. A. K. Peters, Ltd., 2006.

[29] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated volume rendering using

hardware-accelerated pixel shading. In Proceedings of the ACM SIGGRAPH/EURO-

GRAPHICS workshop on Graphics hardware (HWWS) 2001, pages 9–16, 2001.

[30] A. Evans, D. Collins, S. Mills, E. Brown, R. Kelly, and T. Peters. 3D statistical neu-

roanatomical models from 305 MRI volumes. In Proceedings of IEEE Nuclear Science

Symposium and Medical Imaging Conference 1993, pages 1813–1817, 1993.

[31] T. Fangmeier, M. Knauff, C. C. Ruff, and V. Sloutsky. fMRI evidence for a three-

stage model of deductive reasoning. Journal of Cognitive Neuroscience, 18(3):320–334,

2006.

[32] M. Ferre, A. Puig, and D. Tost. A framework for fusion methods and rendering tech-

niques of multimodal volume data: Research articles. Computer Animatation and Vir-

tual Worlds, 15(2):63–77, 2004.

[33] N. Folkegård and D. Wesslén. Dynamic code generation for realtime shaders. In Pro-

ceedings of SIGRAD 2004, pages 11–15, 2004.

[34] P. T. Fox and M. E. Raichle. Stimulus rate determines regional brain blood flow in striate

cortex. Annals of Neurology, 17:303–305, 1985.

[35] Fraunhofer MEVIS. Fraunhofer MEVIS - Institute for Medical Image Computing, Bre-

men. Web site:

http://www.mevis.de/mre/en/Fraunhofer_MEVIS.html, 2009.

[36] S. F. Frisken-Gibson. 3D ChainMail: a fast algorithm for deforming volumetric objects.

In Proceedings of Symposium on Interactive 3D Graphics 1997, pages 149–154, 1997.

[37] S. F. Frisken-Gibson. Using linked volumes to model object collisions, deformation, cut-

ting, carving, and joining. IEEE Transactions on Visualization and Computer Graphics,

5(4):333–348, 1999.

[38] K. J. Friston, J. T. Ashburner, S. Kiebel, T. E. Nichols, and W. D. Penny, editors. Statis-

tical Parameteric Mapping: The Analysis of Functional Brain Images. Academic Press,

London, 2007.

[39] J. Fung. Computer vision on the GPU. In M. Pharr, editor, GPU Gems 2: Programming

Techniques for High-Performance Graphics and General-Purpose Computations, pages

649–665. Addison-Wesley, 2005.

[40] J. Georgii, F. Echtler, and R. Westermann. Interactive simulation of deformable bodies

on GPUs. In Proceedings of Simulation and Visualization (SimVis) 2005, pages 247–

258, 2005.

[41] B. Gibaud, O. Dameron, E. Poiseau, P. Toulouse, and P. Jannin. Implementation of

atlas-matching capabilities using “web services” technology: Lessons learned from the

http://www.mevis.de/mre/en/Fraunhofer_MEVIS.html

174 Bibliography

development of a demonstrator. In Proceedings of Computer Assisted Radiology and

Surgery (CARS) 2005, pages 266–271, 2005.

[42] F. Goetz, R. Borau, and G. Domik. An XML-based visual shading language for vertex

and fragment shaders. In Proceedings of the Ninth International Conference on 3D Web

Technology (WEB3D 2004), pages 87–97, 2004.

[43] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic lighting model for

automatic technical illustration. In SIGGRAPH ’98: Proceedings of the 25th annual

conference on Computer graphics and interactive techniques, pages 447–452, 1998.

[44] gpgpu.org. GPGPU - General-Purpose Computation Using Graphics Hardware. Web

site: http://www.gpgpu.org, 2009.

[45] S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. Flexible direct multi-volume render-

ing in interactive scenes. In Proceedings of Vision, Modeling, and Visualization (VMV)

2004, pages 379–386, 2004.

[46] M. Hadwiger, C. Berger, and H. Hauser. High-quality two-level volume rendering of

segmented data sets on consumer graphics hardware. In Proceedings of IEEE Visualiza-

tion 2003, pages 301–308, 2003.

[47] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. Gross. Real-time ray-casting

and advanced shading of discrete isosurfaces. Computer Graphics Forum, 24(3):303–

312, 2005.

[48] M. J. Harris. Fast fluid dynamic simulation on GPUs. In R. Fernando, editor, GPU

Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics, pages 635–

667. Addison-Wesley, 2004.

[49] P. Hastreiter. Registrierung und Visualisierung medizinischer Bilddaten unter-

schiedlicher Modalitäten. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürn-

berg, 1999.

[50] P. Hastreiter and T. Ertl. Integrated registration and visualization of medical image

data. In Proceedings of Computer Graphics International (CGI) 1998, pages 78–85,

Washington, DC, USA, 1998. IEEE Computer Society.

[51] H. Hauser, L. Mroz, G. I. Bischi, and M. E. Gröller. Two-level volume rendering. IEEE

Transactions on Visualization and Computer Graphics, 7(3):242–252, 2001.

[52] G. Hounsfield. A method and apparatus for examination of a body by radiation such as

X-ray or gamma radiation. US Patent, 1972.

[53] G. Hounsfield. Computerized transverse axial scanning (tomography). 1. description of

system. British Journal of Radiology, 46(552):1016–1022, 1973.

[54] V. Interrante. Illustrating surface shape in volume data via principal direction-driven 3D

line integral convolution. In SIGGRAPH ’97: Proceedings of the 24th annual confer-

ence on Computer graphics and interactive techniques, pages 109–116, 1997.

http://www.gpgpu.org

Bibliography 175

[55] S. Iserhardt-Bauer, P. Hastreiter, T. Ertl, K. Eberhardt, and B. Tomandl. Case study:

Medical web service for the automatic 3D documentation for neuroradiological diagno-

sis. In Proceedings of IEEE Visualization 2001, pages 425–428, 2001.

[56] S. Iserhardt-Bauer, P. Hastreiter, B. Tomandl, N. Köstner, M. Schempershofe, U. Nis-

sen, and T. Ertl. Standardized analysis of intracranial aneurysms using digital video

sequences. In Proceedings of Medical Image Computing and Computer-Assisted Inter-

vention (MICCAI) 2002, Part I, pages 411–418, 2002.

[57] W. M. Jainek, S. Born, D. Bartz, W. Straßer, and J. Fischer. Illustrative hybrid visu-

alization and exploration of anatomical and functional brain data. Computer Graphics

Forum, 27(3):855–862, 2008.

[58] F. Jargstorff. A framework for image processing. In R. Fernando, editor, GPU Gems:

Programming Techniques, Tips and Tricks for Real-Time Graphics, pages 445–467.

Addison-Wesley, 2004.

[59] J. T. Kajiya and B. P. Von Herzen. Ray tracing volume densities. SIGGRAPH Computer

Graphics, 18(3):165–174, 1984.

[60] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International

Journal of Computer Vision, V1(4):321–331, 1988.

[61] Khronos Group. The OpenCL Specification - Version 1.0, 2009.

[62] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Möller. Curvature-based transfer func-

tions for direct volume rendering: Methods and applications. In Proceedings of the 14th

IEEE Visualization 2003 (VIS’03), pages 513–520, 2003.

[63] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions for inter-

active volume rendering. IEEE Transactions on Visualization and Computer Graphics,

8(3):270–285, 2002.

[64] J. J. Koenderink. Solid shape. MIT Press, 1990.

[65] A. König, H. Doleisch, and M. E. Gröller. Multiple views and magic mirrors - fmri

visualization of the human brain. Technical report, Institute of Computer Graphics and

Algorithms, Vienna University of Technology, 1999.

[66] R. Kooper, A. Shirk, S.-C. Lee, A. Lin, R. Folberg, and P. Bajcsy. 3D medical volume

reconstruction using web services. In Proceedings of the IEEE International Conference

on Web Services (ICWS) 2005), pages 709–716, 2005.

[67] J. Krüger, J. Schneider, and R. Westermann. ClearView: An interactive context preserv-

ing hotspot visualization technique. IEEE Transactions on Visualization and Computer

Graphics, 12(5):941–948, 2006.

[68] J. Krüger and R. Westermann. Acceleration techniques for GPU-based volume render-

ing. In Proceedings of the 14th IEEE Visualization (VIS ’03), pages 287–292, 2003.

176 Bibliography

[69] J. Krüger and R. Westermann. Linear algebra operators for GPU implementation of

numerical algorithms. ACM Transactions on Graphics, 22(3):908–916, 2003.

[70] A. Lake, C. Marshall, M. Harris, and M. Blackstein. Stylized rendering techniques for

scalable real-time 3D animation. In Proceedings of the 1st international symposium on

Non-photorealistic animation and rendering (NPAR 2000), pages 13–20, 2000.

[71] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and J. D. Owens. Glift: Generic, ef-

ficient, random-access GPU data structures. ACM Transactions on Graphics, 25(1):60–

99, 2006.

[72] H. Lehmann, D. Geller, J. Weese, and G. Kiefer. Efficient hardware accelerated ren-

dering of multiple volumes by data dependent local render functions. In Proceedings

of SPIE Medical Imaging 2007: Visualization and Image-Guided Procedures, pages

6509Z 1–11, 2007.

[73] T. Lehmann, W. Oberschelp, E. Pelikan, and R. Repges. Bildverarbeitung für die Medi-

zin. Springer-Verlag, 1 edition, 1997.

[74] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics & Appli-

cations, 8(3):29–37, 1988.

[75] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface con-

struction algorithm. In SIGGRAPH ’87: Proceedings of the 14th annual conference on

Computer graphics and interactive techniques, pages 163–169, 1987.

[76] N. Max. Optical models for direct volume rendering. IEEE Transactions on Visualiza-

tion and Computer Graphics, 1(2):99–108, 1995.

[77] McConnel Brain Imaging Center. BrainWeb: Simulated brain database. Web site:

http://www.bic.mni.mcgill.ca/brainweb/, 2009.

[78] M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule. Shader algebra. ACM Trans-

actions on Graphics, 23(3):787–795, 2004.

[79] M. McGuire, G. Stathis, H. Pfister, and S. Krishnamurthi. Abstract shade trees. In

Proceedings of Symposium on Interactive 3D Graphics and Games (I3D) 2006, pages

79–86, 2006.

[80] M. Meißner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. Straßer, M. Doggett,

P. Forthmann, and R. Proksa. VIZARD II: a reconfigurable interactive volume render-

ing system. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware (HWWS) 2002, pages 137–146, 2002.

[81] H. Melin-Aldana and D. Sciortino. Virtual reality demonstration of surgical specimens,

including links to histologic features. Modern Pathology, 16(9):958–961, 2003.

[82] MeVis Medical Solutions AG. MeVis Distant Services. Web site:

http://www.mevislab.de, 2009.

http://www.bic.mni.mcgill.ca/brainweb/
http://www.mevislab.de

Bibliography 177

[83] MeVis Medical Solutions AG. MEVIS Medical Solutions. Web site:

http://www.mevis.de/mms/en/index.html, 2009.

[84] MeVis Medical Solutions AG. MeVisLab: medical image processing and visualization.

Web site:

http://http://www.mevis.de/mms/en/Distant_Services.html,

2009.

[85] Microsoft Corporation. DirectX: Advanced graphics on windows. Web site:

http://msdn.microsoft.com/en-us/directx/default.aspx, 2009.

[86] J. Montagnat, E. E. Davila-Serrano, and I. E. Magnin. 3D objects visualization for

remote interactive medical applications. In Proceedings of 3D Data Visualization, Pro-

cessing, and Transmission (3DPVT) 2002, pages 75–48, 2002.

[87] H. P. Moreton. Simplified curve and surface interrogation via mathematical packages

and graphics libraries and hardware. Computer-Aided Design, 27(7):523–543, 1995.

[88] E. Mortensen, B. Morse, W. Barrettand, and J. Udupa. Adaptive boundary detection

using ‘live-wire’ two-dimensional dynamic programming. In Proceedings of Computers

in Cardiology 1992, pages 635–638, 1992.

[89] MPI Forum. The Message Passing Interface (MPI) standard. Web Site:

http://www-unix.mcs.anl.gov/mpi/index.htm, 2009.

[90] D. R. Nadeau. Volume scene graphs. In Proceedings of IEEE Symposium on Volume

Visualization 2000, pages 49–56, 2000.

[91] NVIDIA Corporation. NVIDIA CUDA
TM

Programming Guide - Version 2.1, 2008.

[92] S. Ogawa, T. Lee, A. Kay, and D. Tank. Brain magnetic resonance imaging with contrast

dependent on blood oxygenation. Proceedings of the National Academy of Sciences of

the United States of America (PNAS), 87(24):9868–9872, 1990.

[93] OpenGL. OpenGL - The Industry’s Foundation for High Performance Graphics. Web

site: http://www.opengl.org, 2009.

[94] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Larry Seiler. The VolumePro real-

time ray-casting system. In SIGGRAPH ’99: Proceedings of the 26th annual conference

on Computer graphics and interactive techniques, pages 251–260, 1999.

[95] B. T. Phong. Illumination for computer generated pictures. Communications of the

ACM, 18(6):311–317, 1975.

[96] J. Plate, T. Holtkämper, and B. Fröhlich. A flexible multi-volume shader framework for

arbitrarily intersecting multi-resolution datasets. IEEE Transactions on Visualization

and Computer Graphics, 13(6):1584–1591, 2007.

[97] S. F. Portegies Zwart, R. G. Belleman, and P. M. Geldof. High performance direct grav-

itational n-body simulations on graphics processing units. New Astronomy, 12(8):641–

650, 2007.

http://www.mevis.de/mms/en/index.html
http://http://www.mevis.de/mms/en/Distant_Services.html
http://msdn.microsoft.com/en-us/directx/default.aspx
http://www-unix.mcs.anl.gov/mpi/index.htm
http://www.opengl.org

178 Bibliography

[98] B. Preim and D. Bartz. Visualization in Medicine: Theory, Algorithms, and Applications

(The Morgan Kaufmann Series in Computer Graphics). Morgan Kaufmann, 1 edition,

2007.

[99] W. Qiao, M. McLennan, R. Kennell, D. Ebert, and G. Klimeck. Hub-based simulation

and graphics hardware accelerated visualization for nanotechnology applications. IEEE

Transactions on Visualization and Computer Graphics (Proc. IEEE Visualization 2006),

12(5):1061–1068, 2006.

[100] M. E. Raichle. Handbook of Functional Neuroimaging of Cognition, chapter Functional

neuroimaging: A historical and physiological perspective, pages 3–26. MIT Press, 2001.

[101] G. Ramachandran and A. Lakshminarayanan. Three-dimensional reconstruction from

radiographs and electron micrographs: Application of convolutions instead of fourier

transforms. Proceedings of the National Academy of Sciences of the United States of

America, 68(9):2236–2240, 1971.

[102] C. Rezk-Salama, P. Hastreiter, J. Scherer, and G. Greiner. Automatic adjustment of

transfer functions for 3D volume visualization. In Proceedings of Vision, Modeling, and

Visualization (VMV) 2002, pages 357–364, 2000.

[103] C. Rezk-Salama, M. Scheuering, G. Soza, and G. Greiner. Fast volumetric deformation

on general purpose hardware. In Proceedings of ACM SIGGRAPH/EUROGRAPHICS

Workshop on Graphics Hardware, pages 17–24, 2001.

[104] K. Rohr. Landmark-Based Image Analysis: Using Geometric and Intensity Models.

Kluwer Academic Publishers, 2001.

[105] W. C. Röntgen. Über eine neue Art von Strahlen (vorläufige Mitteilung). Sitzungs-

berichte der physikalisch-medizinischen Gesellschaft zu Würzburg 1895, pages 132–

141, 1896.

[106] C. Rorden. MRIcro software guide. Web site:

http://www.sph.sc.edu/comd/rorden/mricro.html, 2009.

[107] F. Rößler, R. P. Botchen, and T. Ertl. Dynamic shader generation for flexible multi-

volume visualization. In Proceedings of IEEE Pacific Visualization Symposium (Paci-

ficVis) 2008, pages 17–24, 2008.

[108] F. Rößler, R. P. Botchen, and T. Ertl. Dynamic shader generation for GPU-based multi-

volume raycasting. IEEE Computer Graphics & Applications, 28(5):66–77, 2008.

[109] F. Rößler, M. Nenov, S. Iserhardt-Bauer, P. Hastreiter, and T. Ertl. Investigating 3D

object movies for web-based medical visualization. In Proceedings of 6. Jahrestagung

der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC

’07), pages 209–212, 2007.

[110] F. Rößler, E. Tejada, T. Fangmeier, T. Ertl, and M. Knauff. GPU-based multi-volume

rendering for the visualization of functional brain images. In Proceedings of Simulation

and Visualization (SimVis) 2006, pages 305–318, 2006.

http://www.sph.sc.edu/comd/rorden/mricro.html

Bibliography 179

[111] F. Rößler, T. Wolff, and T. Ertl. Direct GPU-based volume deformation. In Proceedings

of 7. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte

Chirurgie (CURAC ’08), pages 65–68, 2008.

[112] F. Rößler, T. Wolff, S. Iserhardt-Bauer, B. Tomandl, P. Hastreiter, and T. Ertl. Distributed

video generation on a GPU-cluster for the web-based analysis of medical image data.

In Proceedings of SPIE Medical Imaging 2007: Visualization and Image-Guided Pro-

cedures, pages 650903 1–9, 2007.

[113] R. J. Rost. OpenGLr Shading Language (2nd Edition). Addison-Wesley, 2005.

[114] T. Saito and T. Takahashi. Comprehensible rendering of 3- D shapes. In SIGGRAPH

’90: Proceedings of the 17th annual conference on Computer graphics and interactive

techniques, pages 197–206, 1990.

[115] A. Sayar, M. Pierce, and G. C. Fox. Developing GIS visualization web services for geo-

physical applications. In Proceedings of ISPRS International Society for Photogramme-

try and Remote Sensing Workshop, 2005.

[116] T. Schafhitzel, F. Rößler, D. Weiskopf, and T. Ertl. Simultaneous visualization of

anatomical and functional 3D data by combining volume rendering and flow visualiza-

tion. In Proceedings of SPIE Medical Imaging 2007: Visualization and Image-Guided

Procedures, pages 650902 1–9, 2007.

[117] T. Schafhitzel, D. Weiskopf, and T. Ertl. Interactive investigation and visualization

of 3D vortex structures. In Electronic Proceedings International Symposium on Flow

Visualization (ISFV) ’06, 2006.

[118] M. A. Schill, S. F. F. Gibson, H.-J. Bender, and R. Männer. Biomechanical simula-

tion of the vitreous humor in the eye using and enhanced ChainMail algorithm. In

Proceedings of the First International Conference on Medical Image Computing and

Computer-Assisted Intervention (MICCAI ’98), pages 679–687, 1998.

[119] T. Schiwietz. Acceleration of Medical Imaging Algorithms Using Programmable

Graphics Hardware. PhD thesis, Technische Universität München, 2008.

[120] F. Schulze, K. Bühler, and M. Hadwiger. Interactive deformation and visualization

of large volume datasets. In Proceedings of International Conference on Computer

Graphics Theory and Applications 2007, pages 39–46, 2007.

[121] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in

Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science.

Cambridge University Press, 1999.

[122] K. Singh. MRI3DX. Web site:

http://imaging.aston.ac.uk/mri3dX/index.shtml, 2009.

[123] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible volume rendering

framework for graphics-hardware-based raycasting. In Proceedings of the International

Workshop on Volume Graphics ’05, pages 187–195, 2005.

http://imaging.aston.ac.uk/mri3dX/index.shtml

180 Bibliography

[124] R. Stokking, K. Zuiderveld, and M. Viergever. Integrated volume visualization of func-

tional image data and anatomical surfaces using normal fusion. Human Brain Mapping,

12(4):203–218, 2001.

[125] J. Talairach and P. Tournoux. Co-Planar Stereotaxic Atlas of the Human Brain: 3-

Dimensional Proportional System : An Approach to Cerebral Imaging. Thieme Medical

Publishers, 1988.

[126] E. Tejada and T. Ertl. Large steps in GPU-based deformable bodies simulation. Sim-

ulation Practice and Theory. Special Issue on Programmable Graphics Hardware,

13(9):703–715, 2005.

[127] TeraRecon Inc. AquariusNET Server. Web Site:

http://www.terarecon.com/products/aq_net_1_prod.html, year =

2009.

[128] D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models: recovering

3D shape and nongrid motion. Artificial Intelligence, 36(1):91–123, 1988.

[129] U. Tiede, T. Schiemann, and K. H. Höhne. High quality rendering of attributed volume

data. In Proceedings of IEEE Visualization 1998, pages 255–262, 1998.

[130] U. Tiede, N. von Sternberg Gospos, P. Steiner, and K. H. Höhne. Virtual endoscopy

using QuickTime-VR panaorama views. In Proceedings of Medical Image Computing

and Computer-Assisted Intervention (MICCAI) 2002. Part II, pages 186–192, 2002.

[131] B. Tomandl, P. Hastreiter, S. Iserhardt-Bauer, N. Köstner, M. Schempershofe, W. J. Huk,

T. Ertl, C. Strauss, and J. Romstock. Standardized evaluation of CT angiography with

remote generation of 3D video sequences for the detection of intracranial aneurysms.

Radiographics, 23(2):e12, 2003.

[132] M. Trapp and J. Döllner. Automated combination of real-time shader programs. In

Proceedings of Eurographics 2007 - Short Papers, pages 53–56, 2007.

[133] University of Iowa, Hardin Library for the Health Sciences. The Bones of the Skull: A

3-D Learning Tool. Web site:

http://www.lib.uiowa.edu/commons/skullvr/index.html, 2009.

[134] F. Vega Higuera, P. Hastreiter, R. Naraghi, R. Fahlbusch, and G. Greiner. Smooth vol-

ume rendering of labeled medical data on consumer graphics hardware. In Proceedings

of SPIE Medical Imaging 2005: Visualization, Image-Guided Procedures, and Display,

pages 13–21, 2005.

[135] I. Viola, A. Kanitsar, and M. E. Gröller. Importance-driven volume rendering. In Pro-

ceedings of IEEE Visualization 2004, pages 139–145, 2004.

[136] P. Viola and W. M. Wells III. Alignment by maximization of mutual information. Inter-

national Journal of Computer Vision, 24(2):137–154, 1997.

[137] Visage Imaging Inc. Visage PACS. Web site:

http://www.visageimaging.com/products/visage_pacs.php.

http://www.terarecon.com/products/aq_net_1_prod.html
http://www.lib.uiowa.edu/commons/skullvr/index.html
http://www.visageimaging.com/products/visage_pacs.php

Bibliography 181

[138] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting for tetrahedral

meshes. In Proceedings of IEEE Visualization 2003, pages 333–340, 2003.

[139] D. Weiskopf. GPU-Based Interactive Visualization Techniques (Mathematics and Visu-

alization). Springer-Verlag, Secaucus, NJ, USA, 2006.

[140] D. Weiskopf, K. Engel, and T. Ertl. Interactive clipping techniques for texture-based

volume visualization and volume shading. IEEE Transactions on Visualization and

Computer Graphics, 9(3):298–312, 2003.

[141] D. Weiskopf and T. Ertl. A hybrid physical/device-space approach for spatio-temporally

coherent interactive texture advection on curved surfaces. In Proceedings of Graphics

Interface 2004, pages 263–270, 2004.

[142] Wellcome Trust Centre for Neuroimaging. SPM - Statistical Parametric Mapping. Web

site: http://www.fil.ion.ucl.ac.uk/spm/, 11 2008.

[143] L. Westover. Footprint evaluation for volume rendering. In SIGGRAPH ’90: Proceed-

ings of the 17th annual conference on Computer graphics and interactive techniques,

pages 367–376, 1990.

[144] O. Wilson, A. VanGelder, and J. Wilhelms. Direct volume rendering via 3D textures.

Technical report, 1994.

[145] T. S. Yoo, editor. Insight Into Images ’Principles and Practice for Segmentation, Regis-

tration and Image Analysis’. A K Peters, Ltd., 2004.

[146] D. A. Yuen, Z. A. Garbow, and G. Erlebacher. Remote data analysis, visualization

and problem solving environment (PSE) based on wavelets in the geosciences. Visual

Geosciences, 9(1):29–38, 2004.

http://www.fil.ion.ucl.ac.uk/spm/

	List of Abbreviations and Acronyms
	Abstract
	Kurzfassung und Kapitelüberblick (German)
	Introduction
	Medical Volume Visualization
	Thesis Overview

	Fundamentals of Medical Imaging and Visualization
	Tomographic Medical Imaging Techniques
	Computed Tomography
	Magnetic Resonance Imaging
	Discussion

	Medical Visualization Pipeline
	Data Acquisition
	Preprocessing and Image Analysis
	Visualization
	Visual Analysis

	Hardware-Accelerated Rendering
	Rendering Pipeline
	General Purpose Computation on GPUs

	Direct Volume Rendering
	Theoretical Background
	Volume-Rendering Pipeline
	GPU-based Volume Rendering

	Flexible Multi-Volume Rendering
	Introduction to Multi-Volume Rendering
	GPU-based Rendering Techniques
	Slice-based Multi-Volume Rendering
	Multi-Volume Ray Casting

	Dynamic Generation of Multi-Volume Shaders
	The Render Graph Concept
	A Render Graph Example
	Render Node Containers
	Two-pass Shader Assembly
	Rendering

	Conclusion

	Interactive Medical Volume Visualization
	Generic Multi-Volume Visualization
	GUI Design and Interaction
	Extensibility
	Exemplary Render Nodes
	Case Studies

	Visualization of Functional Brain Images
	Neuroimaging in Cognitive Neuroscience
	Visualization of Statistical Parametric Maps
	Enhanced Surface Perception by Flow Visualization

	GPU-based Direct Volume Deformation
	3D ChainMail Algorithm
	Mapping ChainMail Deformation to GPU
	GPU-based Deformation Pipeline
	Results and Discussion

	Conclusion

	Automated Medical Volume Visualization
	Use Case: Standardized Analysis of Intracranial Aneurysms
	Automated Visualization with 3D Object Movies
	Medical-Object-Movie Format
	Medical Object Movie Viewer
	Application

	A Visualization Service for Standardized Medical Analysis
	System Architecture and Workflow
	Render Server
	Web Application
	Performance

	Conclusion

	Iterative Development of Medical Volume-Visualization Solutions
	Four Stages of Medical Volume Visualization
	Discussion

	Conclusion
	Bibliography

