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Abstract

The dot-depth hierarchy is a classification of star-free languages. It is related to the
quantifier alternation hierarchy of first-order logic over finite words. We consider fragments
of languages with dot-depth 1/2 and dot-depth 1 obtained by prohibiting the specification
of prefixes or suffixes. As it turns out, these language classes are in one-to-one corre-
spondence with fragments of existential first-order logic without min- or max-predicate.
For all fragments, we obtain effective algebraic characterizations. Moreover, we give new
combinatorial proofs for the decidability of the membership problem for dot-depth 1/2
and dot-depth 1.

1 Introduction

The dot-depth hierarchy Bn for n ∈ N + {1/2, 1} has been introduced by Cohen and Br-
zozowski [2]. A very similar hierarchy is the Straubing-Thérien hierarchy Ln, see [16, 18].
Both hierarchies are strict [1] and they are exhausting the class of star-free languages. A
classical result of McNaughton and Papert is that a language is star-free if and only if it
is definable in first-order logic [9]. Thomas [20] has tightened this result by showing that
there is a one-to-one correspondence between the dot-depth hierarchy (and also between
the Straubing-Thérien hierarchy) and the quantifier alternation hierarchy of first-order logic.
More precisely, the dot-depth hierarchy is related to the quantifier alternation hierarchy over
the signature [<,+1,min,max], whereas the Straubing-Thérien hierarchy corresponds to the
quantifier alternation hierarchy over the signature [<].

Schützenberger has shown that a language is star-free if and only if its syntactic semigroup
is aperiodic [13]. The latter property is effectively decidable. Together with the result of
McNaughton and Papert, this yields a decision procedure for definability in first-order logic.
Effectively determining the level of a language in the dot-depth hierarchy or equivalently, in
the quantifier alternation hierarchy of first-order logic, is one of the most challenging open
problems in automata theory. For n ∈ N, Straubing has shown that membership in Bn is
decidable if and only if membership in Ln is decidable [17]. This result has been extended
to the half-levels by Pin and Weil [12]. Simon has shown that the class of piecewise testable
languages L1 is decidable [14]. Later, Knast [6] gave an effective algebraic characterization of
B1. Decidability of L1/2 was shown by Pin [10], and the levels B1/2 and L3/2 are decidable by
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a result of Pin and Weil [11]. The most recent decidability result is for B3/2 due to Glaßer and
Schmitz [4]. To date, no other levels are known to be decidable.

In this paper, we focus on subclasses of B1/2 and B1. For both B1/2 and B1 we give new
proofs for their effective algebraic characterizations. The proof of Pin and Weil [11] for B1/2

is based on factorization forests [15], and the proof of Knast [6] as well as the simplified
version of Thérien [19] for B1 are based on a generalization of finite monoids, so-called finite
categories [21]. Our proofs are more combinatorial than algebraic. The proof for B1 is a
generalization of Klíma’s proof [5] for L1. The main advantage of our proofs for B1/2 and B1

over previous ones is that the constants involved in finding language descriptions for given
algebraic objects are more explicit (and therefore smaller).

Our main original contributions are effective algebraic characterizations of fragments of
existential first-order logic over the signatures [<,+1,min] without max-predicate, [<,+1,max]
without min, and [<,+1] without min and max. These fragments also admit language
characterizations in terms of subclasses of B1/2 and B1. The corresponding language classes
are obtained by prohibiting the specification of prefixes or suffixes. In contrast to B1/2 and
B1, the resulting subclasses do not form (positive) varieties of languages, but they still can
be described using so-called lattice equations [3]. Moreover, there is a tight connection with
Cantor topologies over finite words [7]. A more detailed overview of our results can be found
in Section 7.

2 Preliminaries

Words and Languages Let Γ be a finite non-empty alphabet. The set of finite words is Γ ∗.
By ε we denote the empty word and Γ+ = Γ ∗ \ {ε} is the set of finite non-empty words. The
length of a word u ∈ Γ ∗ is |u| and its alphabet is alph(u) = {a ∈ Γ | u ∈ Γ ∗aΓ ∗}. Similarly,
alphk(u) =

{
v ∈ Γ k

∣∣ u ∈ Γ ∗vΓ ∗} is the set of all factors of u of length k. A word v ∈ Γ ∗ is a
prefix (resp. suffix, resp. factor) of u if u ∈ vΓ ∗ (resp. u ∈ Γ ∗v, resp. u ∈ Γ ∗vΓ ∗). We write
v ≤p u if v is a prefix of u and v <p u if v is a proper prefix of u. A quotient of L ⊆ Γ+ is a
language of the form u−1L = {v ∈ Γ+ | uv ∈ L} or Lu−1 = {v ∈ Γ+ | vu ∈ L} for u ∈ Γ ∗. A
language L is a monomial (of degree m) if L = w1Γ

∗w2 · · ·Γ ∗wn or L = w1Γ
+w2 · · ·Γ+wn

for some n ≥ 0 and w1, . . . , wn ∈ Γ ∗ (with |w1 · · ·wn| ≤ m). A language has dot-depth one if
it is a Boolean combination of monomials. Throughout this paper, Boolean operations are
complementation, finite union, and finite intersection. Positive Boolean operations are finite
union and finite intersection.

First-order Logic over Words We consider the first-order logic FO = FO[<,+1,min,max]
over finite words. We view words as sequences of labeled positions which are linearly ordered
by <. Variables are interpreted as positions of a word. For variables x, y we have the following
atomic formulas: x < y says that x is a position smaller than y; and x = y+1 is true if x is the
immediate successor of y; the formula min(x) (resp. max(x)) holds if x is the first (resp. last)
position. Moreover, we always assume that we have an atomic formula > (for true), equality
of positions x = y, and a predicate λ(x) = a specifying that position x is labeled by a ∈ Γ .
Formulas can be composed using Boolean operations, existential quantification, and universal
quantification. The semantics is as usual. A sentence is a formula without free variables. For
a sentence ϕ of FO we write u |= ϕ if u is a model of ϕ and the language defined by ϕ is
L(ϕ) = {u ∈ Γ+ | u |= ϕ}.
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The fragment Σ1 consists of all FO-formulas in prenex normal form with only one block
of quantifiers and these quantifiers are existential. Let C ⊆ {<,+1,min,max}. By Σ1[C] we
denote the class of formulas in Σ1 which only use predicates in C, equality, and the label
predicate. The fragment BΣ1[C] comprises all Boolean combinations of formulas in Σ1[C].

Finite Semigroups and Recognizable Languages Let S be a semigroup. An element x ∈
S is idempotent if x2 = x. The set of idempotents is denoted by E(S) =

{
e ∈ S

∣∣ e2 = e
}
. For

every finite semigroup S there exists a number ω ≥ 1 such that for every x ∈ S, the power
xω is the unique idempotent element generated by x. Frequently, we consider words u, v ∈ S∗
where the alphabet is a semigroup. We write “u = v in S” if either u = ε = v or u, v ∈ S+

evaluate to the same element of S.

Lemma 1. Let S be a finite semigroup. For every word u ∈ S+ with length |u| = |S| there
exists a non-empty prefix p of u and an idempotent e ∈ E(S) such that pe = p in S.

Proof. Let a ∈ S be arbitrary and let p1 <p · · · <p p|S| <p p|S|+1 = ua be the non-empty
prefixes of ua. By the pigeonhole principle, there exist 1 ≤ i < j ≤ |S|+ 1 such that pi = pj in
S. In particular, i ≤ |S| and pi is a prefix of u. Let piq = pj for q ∈ S+. We set e = qω to be
the idempotent element generated by q. Now, pe = p in S for p = pi.

Green’s relations are an important tool in the study of semigroups. They are defined as
follows. Let x ≤R y (resp. x ≤L y, resp. x ≤J y) if there exist s, t ∈ S ∪̇ {1} such that x = yt
(resp. x = sy, resp. x = syt). Let x R y (resp. x L y, resp. x J y) if x ≤R y and y ≤R x
(resp. x ≤L y and y ≤L x, resp x ≤J y and y ≤J x). Here, S ∪̇ {1} is the monoid obtained
by adding a new neutral element 1 to the semigroup S. The relations ≤R, ≤L, and ≤J are
preorders on S; and R, L, and J form equivalence relations.

Let ≤ be a preorder on S. A set P ⊆ S is a ≤-order ideal if x ≤ y ∈ P implies x ∈ P .
The order ideal generated by some subset P ⊆ S is ↓P = {x ∈ S | x ≤ y for some y ∈ P}. An
ordered semigroup S is equipped with a compatible partial order ≤, i.e., if p ≤ q and s ≤ t,
then ps ≤ qt. Every semigroup is an ordered semigroup with equality as partial order. A
language L ⊆ Γ+ is recognized by an ordered semigroup S if there exists a homomorphism
h : Γ+ → S such that L = h−1(P ) for some ≤-order ideal P . If the order of S is equality, then
we obtain the usual notion of recognition. For a language L ⊆ Γ+ the syntactic preorder ≤L

over Γ+ is given by x ≤L y if uyv ∈ L⇒ uxv ∈ L for all u, v ∈ Γ ∗. The syntactic congruence
≡L is defined by x ≡L y if both x ≤L y and y ≤L x. The equivalence classes of the syntactic
congruence equipped with the canonical composition constitutes the syntactic semigroup
Synt(L) and the preorder ≤L of Γ+ becomes a compatible partial order for Synt(L). The
syntactic semigroup of L is finite if and only if L is regular and moreover, L is recognized by its
syntactic semigroup. By Jxωyxω ≤ xωK we denote the class of finite ordered semigroups S such
that xωyxω ≤ xω for all elements x, y ∈ S. We let B1 be the class of finite semigroups S such
that (exfy)ωexf(tesf)ω = (exfy)ωesf(tesf)ω for all idempotents e, f ∈ E(S) and all elements
x, y, t, s ∈ S. Let LR be the class of finite semigroups S such that (exeye)ωexe = (exeye)ω for
all idempotents e ∈ E(S) and all elements x, y ∈ S. We have the following inclusions among
these classes of semigroups.

Lemma 2. We have Jxωyxω ≤ xωK ⊆ B1 ⊆ LR.
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Proof. For a semigroup S ∈ Jxωyxω ≤ xωK we have f ≥ fy(exfy)ω−1esf for all x, y, s ∈ S and
all idempotents e, f ∈ S. Hence (exfy)ωexf(tesf)ω ≥ (exfy)ωex(fy(exfy)ω−1esf)(tesf)ω =
(exfy)ωesf(tesf)ω. By symmetry (exfy)ωexf(tesf)ω ≤ (exfy)ωesf(tesf)ω proving the first
inclusion.

We have (exey)ωexe = (exey)ωexe(eeee)ω for all x and all idempotents e and for a
semigroup in B1 this is equal to (exey)ωeee(eeee)ω = (exeye)ω. This shows the second
inclusion.

3 Dot-depth 1/2

A language L ⊆ Γ+ has dot-depth 1/2 if it is a positive Boolean combination of monomials
w1Γ

∗w2 · · ·Γ ∗wn with wi ∈ Γ ∗. By a result of Thomas [20], a language has dot-depth 1/2 if
and only if it is definable in existential first-order logic Σ1[<,+1,min,max]. Pin and Weil [11]
have shown that L has dot-depth 1/2 if and only if Synt(L) ∈ Jxωyxω ≤ xωK. In this section,
we give a new proof of these equivalences. The main step in the proof is to show that if L
is recognized by some homomorphism h : Γ+ → S ∈ Jxωyxω ≤ xωK, then L is a union of
monomials w1Γ

∗w2 · · ·Γ ∗wn. The main advantage of our proof is that the degree |w1 · · ·wn|
is polynomially bounded (Proposition 9), whereas in the proof of Pin and Weil, the bound is
exponential.

Theorem 3 (Thomas [20], Pin/Weil [11]). Let L ⊆ Γ+. The following assertions are equivalent:
1. L is definable in Σ1[<,+1,min,max].
2. L is a finite union of monomials w1Γ

∗w2 · · ·Γ ∗wn.
3. L is a positive Boolean combination of monomials w1Γ

∗w2 · · ·Γ ∗wn.
4. Synt(L) ∈ Jxωyxω ≤ xωK.
5. There exists a homomorphism h : Γ+ → S with S ∈ Jxωyxω ≤ xωK such that L = h−1(P )

for some ≤-order ideal P .

In the remainder of this section we prove the above theorem.

Lemma 4. Let n ≥ 0, and let w1, . . . , wn ∈ Γ ∗.
1. The monomial w1Γ

∗w2 · · ·Γ ∗wn is definable in Σ1[<,+1,min,max].
2. The monomial w1Γ

∗w2 · · ·Γ ∗wnΓ
∗ is definable in Σ1[<,+1,min].

3. The monomial Γ ∗w1Γ
∗w2 · · ·Γ ∗wnΓ

∗ is definable in Σ1[<,+1].

Proof. The proof is straightforward. For variable vectors x = (x1, . . . , x`) and y = (y1, . . . , ym)
we use the shortcuts ∃x for ∃x1 · · · ∃x`, and min(x) for min(x1) and max(x) for max(x`), and
x < y means x` < y1. Moreover, λ(x) = a1 · · · ak is a shortcut for∧

1≤j≤k

λ(xj) = aj ∧
∧

1≤j<k

xj+1 = xj + 1.

Let L = Γ ∗w1Γ
∗w2 · · ·Γ ∗wnΓ

∗. We introduce variable vectors xi = (xi,1, . . . , xi,|wi|) for every
i ∈ {1, . . . , n}. Then, L is defined by the following sentence ϕ:

∃x1 · · · ∃xn :
∧

1≤i≤n

λ(xi) = wi ∧
∧

1≤i<n

xi < xi+1
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The first term of the conjunction ensures that each xi corresponds to a factor wi, whereas
the second term ensures that the factors wi occur in the correct order. The sentence for
w1Γ

∗w2 · · ·Γ ∗wnΓ
∗ is ϕ ∧ min(x1) and the sentence for w1Γ

∗w2 · · ·Γ ∗wn is ϕ ∧ min(x1) ∧
max(xn).

Lemma 5. Let L ⊆ Γ+ be definable by a sentence ϕ ∈ Σ1[<,+1,min,max] with m variables.
Then L is a finite union of monomials w1Γ

∗w2 · · ·Γ ∗wn of degree at most m.

Proof. Let ϕ = ∃x1 · · ·xm : ψ for a propositional formula ψ. Suppose (u, x1, . . . , xm) |= ψ for
positions xi of u. We say that a position j of u is marked if j = xi for some i. In order to avoid
case distinctions we can introduce two new variables such that the first and the last position
of u are marked. Let u = w1u1w2 · · ·un−1wn for ui ∈ Γ+ such that the factors wi consist of
the marked positions. Now, Pu = w1Γ

+w2 · · ·Γ+wn is a monomial of degree |w1 · · ·wn| ≤ m
with u ∈ Pu. Moreover, Pu ⊆ L(ϕ) since the satisfying assignment of u can be adapted to all
v ∈ Pu. It follows L(ϕ) =

⋃
u|=ϕ Pu and this union is finite since there are only finitely many

monomials of degree at most m.

Lemma 6. Let L ⊆ Γ+ be a finite union of monomials w1Γ
∗w2 · · ·Γ ∗wn. Then Synt(L) ∈

Jxωyxω ≤ xωK.

Proof. Let P = w1Γ
∗w2 · · ·Γ ∗wn and let u, x, y, v ∈ Γ+ and choose m such that |xm| >

|w1 · · ·wn|. Suppose uxmv ∈ P . Let i be maximal such that uxm ∈ w1Γ
∗w2 · · ·Γ ∗wiΓ

∗ = Qi

and let j be minimal such that xmv ∈ Γ ∗wj · · ·Γ ∗wn = Rj . By the choice of m we have
j ≤ i+ 1. Hence, uxmyxmv ∈ QiRj ⊆ P .

Lemma 7. Let S be a finite semigroup. For every w ∈ S+ there exists a factorization
w = x1w1y1 · · ·xmwmyms with

1. wi, s ∈ S∗, xi, yi ∈ S+, |yi| ≤ |S|,
2. 0 ≤ m ≤ |S| and |x1y1 · · ·xmyms| < 2 |S|2 + |S|,
3. ∀ i ∈ {1, . . . ,m} ∃ ei ∈ E(S) : xi = xiei in S and yi = yiei in S.

Proof. For w ∈ S∗, let E(w) be the set all e ∈ E(S) such that there exists a factor x ∈ S+ of w
with |x| ≤ |S| and xe = x in S. We prove the existence of the factorization by induction on
|E(w)| with the stronger assertions that m ≤ |E(w)| and |x1y1 · · ·xmyms| < 2 |S| |E(w)|+ |S|
instead of condition “2”. Suppose |E(w)| = 0. By Lemma 1 we have |w| < |S|. Hence, we can
choose m = 0 and s = w.

If |E(w)| ≥ 1, then Lemma 1 yields a non-empty prefix x of w with |x| ≤ |S| such that
xe = x in S for some idempotent e ∈ E(S). Write w = xw′. We have to distinguish two cases.
The first case is e 6∈ E(w′). By induction, there exists a factorization w′ = x1w1y1 · · ·xmwmyms
with m ≤ |E(w′)| < |E(w)| and |x1y1 · · ·xmyms| ≤ 2 |S| |E(w′)| + |S| satisfying conditions
“1” and “3”. If m ≥ 1, then we set x′1 = xx1. Now, w = x′1w1y1 · · ·xmwmyms is a desired
factorization of w. If m = 0, then the factorization for w is w = s′ with m = 0.

The second case is e ∈ E(w′). Let w′ = w0y0w
′′ such that y0 ∈ S+, |y0| ≤ |S|, y0e = y0

in S and e 6∈ E(w′′), i.e., we take y0 as the last short factor of w′ such that it is stabilized
by e. By induction, there exists a factorization w′′ = x1w1y1 · · ·xmwmyms. Now, w =
x0w0y0 · · ·xmwmyms with x0 = x is a factorization of w of the desired form.
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Lemma 8. Let S ∈ LR be a finite semigroup. Let u, x ∈ S+ and e ∈ S be idempotent such
that u = ue and x = xe in S. If ux R u, then ux = u in S.

Proof. Let y ∈ S∗ such that uxy = u. In S we have u = u(exeye)ω = u(exeye)ωexe = ux
where the second equality follows because S ∈ LR.

Proposition 9. Let L ⊆ Γ+ be recognized by S ∈ Jxωyxω ≤ xωK. Then L is a union of
monomials w1Γ

∗w2 · · ·Γ ∗wn of degree |w1w2 · · ·wn| < 2 |S|3 + |S|2 and n ≤ |S|2.

Proof. Let h : Γ+ → S be a homomorphism recognizing L. We define the depth of the
word u ∈ Γ+ as d(u) = |{s ∈ S | h(u) ≤R s}|. For each u ∈ Γ+ we construct a language
Pu = w1Γ

∗w2 · · ·Γ ∗wn with |w1w2 · · ·wn| < 2d(u) |S|2 + d(u) |S| such that

u ∈ Pu ⊆ h−1
(
↓h(u)

)
.

In order to avoid unnecessary case distinctions, we set Pε = ε and h(ε) >R h(u) for all
u ∈ Γ+. Let u = vw, v ∈ Γ ∗, w ∈ aΓ ∗ such that h(v) >R h(va) R h(u). Now, d(v) < d(u)
and hence by induction, there exists a monomial Pv with v ∈ Pv ⊆ h−1(↓h(v)) of degree
less than 2d(u) |S|2 + d(u) |S| − 2 |S|2 − |S|. By Lemma 7 we find a factorization w =
x1u1y1 · · ·xmumyms such that |x1y1 · · ·xmyms| < 2 |S|2 + |S| and for all i ∈ {1, . . . ,m} there
exists an idempotent ei with h(xi)ei = h(xi) and h(yi)ei = h(yi). Using Lemma 8 we see h(u) =
h(vw) = h(vx1 · · ·xms). Now, define the monomial Pu = Pv x1Γ

∗y1x2Γ
∗ · · · ym−1xmΓ

∗yms
of degree less than 2d(u) |S|2 + d(u) |S|. By construction u ∈ Pu. Consider v′w′ ∈ Pu with
v′ ∈ Pv and w′ = x1w

′
1y1x2w

′
2 · · · ym−1xmw

′
myms. We have h(v′) ≤ h(v) and since ese ≤ e

for all s ∈ S and all e ∈ E(S) we see that h(xi) = h(xi)ei ≥ h(xi)eih(w′iyi)ei = h(xiw
′
iyi).

Therefore, h(x1 · · ·xms) ≥ h(w′) and h(u) = h(vx1 · · ·xms) ≥ h(v′w′).
Now with the above properties, L ⊆

⋃
u∈L Pu ⊆ L and this union is finite since there are

only finite many monomials of degree less than 2 |S|3 + |S|2.

We are now ready to prove Theorem 3.

Proof (Theorem 3). “1⇒ 2”: This is Lemma 5. “2⇒ 1” follows from property “1” of Lemma 4
and the fact that Σ1[<,+1,min,max] is closed under disjunction.

The implication “2⇒ 3” is trivial, and “3⇒ 4” is Lemma 6 since the class of languages
recognizable by semigroups in Jxωyxω ≤ xωK is closed under positive Boolean combinations.
“4⇒ 5” is trivial. Finally, “5⇒ 2” follows immediately from Proposition 9.

4 Existential First-order Logic without min or max

At higher levels of the quantifier alternation hierarchy, it is possible to specify the prefix and
the suffix of a word by using successor +1 as the only predicate (apart from labels λ(x) = a
for a ∈ Γ ). At the level Σ1, the min-predicate is required to determine prefixes, and max is
required for suffixes. We have the following inclusions:

Σ1[<] Σ1[<,+1]

Σ1[<,+1,min]

Σ1[<,+1,max]

Σ1[<,+1,min,max](
( (

( (
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By a result of Pin [10], it is decidable whether a given regular language is definable in Σ1[<].
For Σ1[<,+1,min,max], decidability follows by a result of Pin and Weil [11] (or alternatively
by Theorem 3). In this section, we characterize the languages definable in the other fragments
and we show that definability within these fragments is decidable. As it turns out, these
decidability results are a combination of effective algebraic and effective topological properties,
cf. [7].

Theorem 10. Let L ⊆ Γ+. The following assertions are equivalent:
1. L is definable in Σ1[<,+1,min].
2. L is a finite union of monomials w1Γ

∗ · · ·wnΓ
∗.

3. Synt(L) ∈ Jxωyxω ≤ xωK and hL(L) is a ≤R-order ideal.

Proof. “1⇒ 2”: Let L = L(ϕ) for ϕ ∈ Σ1[<,+1,min]. By Theorem 3, the language L is a finite
union of monomials w1Γ

∗w2 · · ·Γ ∗wn. Let u |= ϕ. Then for every v ∈ Γ ∗ the same assignment
of the variables which makes ϕ true on u also satisfies ϕ on uv. Therefore, LΓ ∗ ⊆ L. Since
(P ∪Q)Γ ∗ = PΓ ∗ ∪QΓ ∗, it follows that L is a finite union of monomials w1Γ

∗w2 · · ·Γ ∗wnΓ
∗.

“2⇒ 1”: This follows from “2” in Lemma 4.
“2⇒ 3”: Synt(L) ∈ Jxωyxω ≤ xωK follows from Theorem 3. By [7, Theorem 1] we see

that hL(L) is a ≤R-order ideal. The implication “3⇒ 2” follows from Proposition 9 and [7,
Theorem 1].

Of course, there also is a left-right dual of the above theorem: A language L is definable
in Σ1[<,+1,max] if and only if L is a union of monomials of the form Γ ∗w1 · · ·Γ ∗wn if and
only if Synt(L) ∈ Jxωyxω ≤ xωK and hL(L) is a ≤L-order ideal. The following theorem is the
analogue of Theorem 10 with neither min nor max predicates.

Theorem 11. Let L ⊆ Γ+. The following assertions are equivalent:
1. L is definable in Σ1[<,+1].
2. L is a finite union of monomials Γ ∗w1 · · ·Γ ∗wnΓ

∗.
3. Synt(L) ∈ Jxωyxω ≤ xωK and hL(L) is a ≤J -order ideal.

Proof. “1⇒ 2”: Let L be defined by ϕ ∈ Σ1[<,+1]. By Theorem 3, L is a finite union
of monomials w1Γ

∗w2 · · ·Γ ∗wn. Let u, v, w ∈ Γ ∗. Every assignment satisfying ϕ on u also
satisfies ϕ on vuw. Hence, Γ ∗LΓ ∗ ⊆ L.

“2⇒ 1”: This follows from “3” in Lemma 4.
“2⇒ 3”: Synt(L) ∈ Jxωyxω ≤ xωK follows from Theorem 3; the set hL(L) is a≤J -order ideal

by [7, Theorem 3]. The implication “3⇒ 2” follows from Proposition 9 and [7, Theorem 3].

The following decidability result is an immediate consequence of our characterizations.

Corollary 12. Let L ⊆ Γ+ be a regular language. It is decidable whether L is definable in
Σ1[<,+1] (resp. Σ1[<,+1,min], resp. Σ1[<,+1,max]).

Proof. The syntactic homomorphism hL : Γ+ → Synt(L) of L is effectively computable.
Hence, one can verify whether property “3” in Theorem 11 (resp. “3” in Theorem 10, resp. the
left-right dual of “3” in Theorem 10) holds.
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5 Dot-Depth One

A language L ⊆ Γ+ has dot-depth 1 if it is a Boolean combination of monomials of the form
w1Γ

∗w2 · · ·Γ ∗wn with wi ∈ Γ ∗. Knast [6] has shown that a language L has dot-depth 1 if
and only if Synt(L) ∈ B1. Since the latter property is decidable, this gives decidability of
dot-depth 1. Later, Thérien [19] gave a simpler proof for Knast’s result. Both proofs are based
on an algebraic concept called finite categories, see [21]. In this section, we give a new (more
combinatorial) proof of this theorem. As for dot-depth 1/2, the main advantage of our proof is
that the bounds involved are more explicit.

Theorem 13 (Thomas [20], Knast [6]). Let L ⊆ Γ+. The following assertions are equivalent:
1. L is definable in BΣ1[<,+1,min,max].
2. L is a Boolean combination of monomials w1Γ

∗w2 · · ·Γ ∗wn.
3. Synt(L) ∈ B1.
4. L is recognized by some semigroup in B1.

As for dot-depth 1/2, the equivalence of BΣ1[<,+1,min,max] and dot-depth 1 is due to
a result by Thomas [20]. The remainder of this section is devoted to the proof of the above
theorem.

Lemma 14. Let S be a finite semigroup and let u ∈ S+. Suppose there exists e ∈ S such that
pe = p in S for some prefix p ≤p u. Choose |p| maximal with this property and let u = pv. If
xpvy = x′pvy′ for some x 6= x′, then there is at least one letter between the factors v in the
two factorizations.

Proof. Let |x′| < |x| and assume that the claim is not true.

x yp

x′ y′p v

p′ v′

v

Then we find a factorization pv = p′v′ such that p′e = p′ and |p′| > |p| contradicting the
maximality of |p|. This also holds if the factors do not overlap but are adjacent, in which case
p′ = pv.

The following lemma will serve as the link between the algebraic properties of B1 and the
combinatorial properties in Lemma 16 below.

Lemma 15. Let S ∈ LR and let k ≥ |S| + 1. For every a ∈ S and for all u, x ∈ S+ with
|x| ≥ k we have: u R ux >R uxa ⇒ alphk(x) 6= alphk(xa).

Proof. Suppose u R ux and alphk(x) = alphk(xa). Let w be the suffix of xa of length k. By
Lemma 1, there exist p, v ∈ S∗ such that w = pva in S+ and pe = p in S for some idempotent
e ∈ S. Let |p| ≤ |S| be maximal with this property. Since w ∈ alphk(xa) = alphk(x) we can
write

x = spvatv in S+

for some s, t ∈ S∗ such that p is a suffix of pvat. Note that there is indeed at least one
letter between the two occurrences of v by Lemma 14. For u′ = usp and x′ = vat we have
u′ = u′e, u′x′ = u′x′e, and u′ R u′x′. Using Lemma 8 we see that u′ = u′x′ = u′x′x′. Hence,
u R u′ = u′x′x′ = uxat and therefore, u R uxa.
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The following lemma is the main combinatorial ingredient for our proof of Knast’s Theorem.
It generalizes an idea of Klíma [5] to factors of words. The determinacy mechanism is similar
to unary interval logic with lookaround [8].

Lemma 16. Let xi, yi, ui, u
′
i, vi, v

′
i ∈ Γ+ and uk, vk, u

′
1, v
′
1 ∈ Γ ∗, and let

u = x1u1 · · ·xkuk = u′1y1 · · ·u′`y`

v = x1v1 · · ·xkvk = v′1y1 · · · v′`y`

such that x1u1 · · ·xk (resp. x1v1 · · ·xk) is the shortest prefix of u (resp. v) in x1Γ
+x2 · · ·Γ+xk,

and y1 · · ·u′`y` (resp. y1 · · · v′`y`) is the shortest suffix of u (resp. v) in y1Γ
+y2 · · ·Γ+y`.

If u and v are contained in the same monomials w1Γ
+w2 · · ·Γ+wn with n ≤ k + ` and

degree |w1 · · ·wn| ≤ |x1 · · ·xk y1 · · · y`|, then the relative positions of xk and y1 are the same in
u as in v. More precisely,

1. x1u1 · · ·xk is a prefix of u′1 iff x1v1 · · ·xk is a prefix of v′1,
2. if xk and y1 overlap in u or in v, then they have the same overlap in both words,
3. u′1y1 is a prefix of x1 · · ·uk−1 iff v′1y1 is a prefix of x1 · · · vk−1.

Proof. “1”: Suppose that x1u1 · · ·xk is a prefix of u′1. Then u is contained in the language
x1Γ

+ · · ·xkΓ
+v1 · · ·Γ+v` or in x1Γ

+ · · ·xkv1 · · ·Γ+v`. Hence v is contained in one of these
two monomials, showing that x1v1 · · ·xk is a prefix of v′1.

“2”: We can assume that none of the conditions in “1” holds. We have to distinguish two cases.
First, suppose that xk and y1 overlap in u such that x1u1 · · ·xk is a prefix of u′1y1 and let z be the
word comprising all positions of xk and y1 in u. Then u ∈ P = x1Γ

+ · · ·xk−1Γ
+zΓ+y2 · · ·Γ+v`.

Hence v ∈ P , showing that xk and y1 in v have at most the same overlap as in u.
The second case is that xk and y1 overlap in u such that x1u1 · · ·xk is not a prefix of u′1y1.

Moreover, we can assume that x1v1 · · ·xk is not a prefix of v′1y1 since otherwise we are in the
first case with u and v interchanged. Now, u is contained in P = x1Γ

+ · · ·xiΓ
+zΓ+yj · · ·Γ+v`,

where z is the factor of u comprising all xi+1, . . . , xk which are overlapping (or adjacent) with
y1 and all y1, . . . , yj−1 which are overlapping (or adjacent) with xk. Since v ∈ P , we conclude
that xk and y1 in v have at least the same overlap as in u.

“3”: If none of the conditions in “1” and “2” holds, then in both words u and v, the factor
y1 is on the left-hand side of xk.

Lemma 17. Let S ∈ B1. For all u, v, x, s ∈ S and for all e, f ∈ E(S), the following implication
holds: u R uexf, esfv L v ⇒ uexfv = uesfv.

Proof. Since u R uexf and v L esfv, there exist y, t ∈M with u = uexfy and v = tesfv. In
particular, u = u(exfy)ω and v = (tesf)ωv. We conclude

uexfv = u(exfy)ωexf(tesf)ωv = u(exfy)ωesf(tesf)ωv = uesfv,

where the second equality uses S ∈ B1.

Proposition 18. Let L ⊆ Γ+ be recognized by h : Γ+ → S with S ∈ B1. If words u
and v are contained in the same monomials w1Γ

+w2 · · ·Γ+wn with n ≤ 2 |S| and degree
|w1 · · ·wn| ≤ 4 |S|2 − 2 |S|, then h(u) = h(v).
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Proof. This proof was inspired by Klíma’s proof [5] of Simon’s Theorem on piecewise-testable
languages. The outline of our proof is as follows. We consider factorizations induced by the
R-factorization of u and the L-factorization of v. Then we transfer the factorization of u to v
and vice versa such that the respective orders of the factor in u and v are the same. Finally,
we transform u into v by a sequence of h-invariant substitutions.

Consider the R-factorization u = a1u1 · · · akuk such that

h(a1u1 · · · ai) R h(a1u1 · · · aiui) >R h(a1u1 · · · aiuiai+1)

for all i. We have k ≤ |S|. Let ji be the position of ai in the above factorization. We color all
positions of u in any of the intervals [ ji − |S| ; ji + |S| − 1 ] red. In particular, the ai-positions
ji are red. And in general, there is a neighborhood of size 2 |S| around each ai which contains
only red positions. In the worst case, a1 is the only exception. Hence, there are at most
2 |S|2 − |S| red positions in u. Let Ri be the i-th consecutive factor of red positions. Then
u = R1u

′
1 · · ·Rk′u

′
k′ for some u′i ∈ Γ+, i < k′, and u′k′ ∈ Γ ∗. Note that k′ ≤ k since some

intervals could overlap. By Lemma 15, the word R1u
′
1 · · ·Ri is the shortest prefix of u contained

in R1Γ
+ · · ·Ri.

Symmetrically, we consider the L-factorization v = v1b1 · · · v`b` such that

h(bi+1vibi · · · v1b1) <L h(vibi · · · v1b1) L h(bi · · · v1b1)

for all i. Let j′i be the position of bi in the above factorization. We color all positions of v in
any of the intervals [ j′i − |S|+ 1; j′i + |S| ] blue. As before, there are at most 2 |S|2 − |S| blue
positions. Let Bi be the i-th consecutive factor of blue positions. Then v = v′1B1 · · · v′`′B`′ for
some v′i ∈ Γ+, i ≥ 1 and v′1 ∈ Γ ∗. As before, Bi · · · v′`′B`′ is the shortest suffix of v contained
in Bi · · ·Γ+B`′ .

Next, we transfer the red positions of u to v, and we transfer the blue positions of v to u. By
assumption, v ∈ R1Γ

+ · · ·Rk′Γ
+. Therefore, there exists a factorization v = R1v

′′
1 · · ·Rk′v

′′
k′

such that R1v
′′
1 · · ·Ri is the shortest prefix of v contained in R1Γ

+ · · ·Ri. We color the
positions of the Ri’s in v red. Similarly, there exists a factorization u = u′′1B1 · · ·u′′`′B`′ such
that Bi · · ·u′′`′B`′ is the shortest suffix of u contained in Bi · · ·Γ+B`′ . We color the positions
of the Bi’s in u blue. Now, colored positions in u and v are either red or blue or both. By
Lemma 16, the colored positions in u have the same order as the colored positions in v. Let wi

be the i-th consecutive factor of colored (red or blue) positions, and write

u = w1x1 · · ·wn−1xn−1wn,

v = w1s1 · · ·wn−1sn−1wn.

By Lemma 1 and its left-right dual, there exist e1, . . . , en−1 ∈ E(S) and f2, . . . , fn ∈ E(S) such
that each wi admits a factorization wi = piriqi with |pi| ≤ |S| − 1 and |qi| ≤ |S| − 1 satisfying

h(ri) = h(ri) ei for 1 ≤ i < n,

h(ri) = fi h(ri) for 1 < i ≤ n.

In particular, we can assume p1 = ε = qn. Let x′i = qixipi+1 and s′i = qisipi+1 for 1 ≤ i < n.
Then

u = r1x
′
1r2 · · ·x′n−1rn,

v = r1s
′
1r2 · · · s′n−1rn,
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and the ri’s in u cover the positions of the R-factorization of u, whereas the ri’s in v cover the
positions of the L-factorization of v. Therefore, we have

h(r1x′1 · · · ri) R h(r1x′1 · · · ri) · eih(x′i)fi+1 for all 1 ≤ i < n,

h(ri · · · s′nrn) L ei−1h(s′i−1)fi · h(ri · · · s′nrn) for all 1 < i ≤ n.

By an (n− 1)-fold application of Lemma 17 we obtain

h(u) = h(r1x′1 · · · rn−2x
′
n−2rn−1x

′
n−1rn)

= h(r1x′1 · · · rn−2x
′
n−2rn−1s

′
n−1rn)

= h(r1x′1 · · · rn−2s
′
n−2rn−1s

′
n−1rn)

= · · ·
= h(r1s′1 · · · rn−2s

′
n−2rn−1s

′
n−1rn) = h(v).

Note that the substitution rules x′i → s′i are h-invariant in their respective contexts only when
applied from right to left when converting h(u) into h(v).

Corollary 19. Let L ⊆ Γ+ be recognized by a finite semigroup S ∈ B1. If words u and v are
contained in the same monomials w1Γ

∗w2 · · ·Γ ∗wn with n ≤ 2 |S| and degree |w1 · · ·wn| <
4 |S|2, then h(u) = h(v).

Proof. Every monomial w1Γ
+ · · ·wn−1Γ

+wn is a union of monomials of the form

w1a1Γ
∗ · · ·wn−1an−1Γ

∗wn

for a1, . . . , an−1 ∈ Γ . Therefore, the claim follows from Proposition 18.

We are now ready to prove Theorem 13.

Proof (Theorem 13). “1⇔ 2”: This follows from Theorem 3.
“2⇒ 3”: By Lemma 6 the syntactic semigroup of every monomial w1Γ

∗w2 · · ·Γ ∗wn satisfies
xωyxω ≤ xω and by Lemma 2 it is in B1. The claim follows since the class of languages
recognizable in B1 is closed under Boolean combinations. The implication “3⇒ 4” is trivial.

“4⇒ 2”: Let L be recognized by h : Γ+ → S ∈ B1. We write u ≡ v if u and v are
contained in the same monomials of the form w1Γ

∗w2 · · ·Γ ∗wn of degree at most 4 |S|2. We
have L = h−1(P ) for P = h(L). Corollary 19 shows that every set h−1(p) is a union of ≡-
classes. Moreover, ≡ has finite index since there are only finitely many monomials of bounded
degree. Every ≡-class is a finite Boolean combination of the required form by specifying which
monomials hold and which do not.

6 Dot-depth One without min or max

As for Σ1, one cannot define min- or max-predicates in BΣ1[<,+1]. Therefore, the following
inclusions hold:

BΣ1[<] BΣ1[<,+1]

BΣ1[<,+1,min]

BΣ1[<,+1,max]

BΣ1[<,+1,min,max](
( (

( (
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Simon’s Theorem on piecewise testable languages [14] gives decidability of BΣ1[<]. For the
fragment BΣ1[<,+1,min,max], decidability follows by Knast’s Theorem [6], see Theorem 13.
In this section, we give effective characterizations of the remaining fragments. As for dot-depth
1/2, these characterizations are a combination of algebraic and topological properties, cf. [7].
Moreover, we obtain natural subclasses of dot-depth 1 for the languages definable by the above
fragments.

Lemma 20. Let P = w1Γ
∗w2 · · ·Γ ∗wn and let uq ∈ P . Then there exists a monomial

P ′ = v1Γ
∗v2 · · ·Γ ∗vn with |v1 · · · vn| ≤ |w1 · · ·wnq| such that uq ∈ P ′ ⊆ (Pq−1)q.

Proof. Let j ≤ n be minimal such that q ∈ Γ ∗wj · · ·Γ ∗wn. If there exists a proper prefix y
of wj−1 such that y is a suffix of u and yq ∈ wj−1 · · ·Γ ∗wn, then we set q′ = yq, else we
set q′ = q. We assume q′ to be maximal with these properties. We can write uq = u′′q′.
Moreover, by maximality of q′, there exists an index j′ such that q′ ∈ Γ ∗wj′ · · ·Γ ∗wn and
q′ 6∈ y′Γ ∗wj′ · · ·Γ ∗wn for any non-empty suffix y′ of wj′−1. We set P ′ = w1Γ

∗ · · ·wj′−1Γ
∗q′.

Now, uq ∈ P ′ and for all w ∈ P ′ we have w ∈ P ∩ Γ ∗q = (Pq−1)q.

Lemma 21. Let h : Γ+ → S ∈ B1. If u, v ∈ Γ+ are contained in the same monomials
w1Γ

∗ · · ·wnΓ
∗ of degree |w1 · · ·wn| < 8 |S|2, then h(u) R h(v).

Proof. We write u ≡m v, if u and v are contained in the same monomials w1Γ
∗w2 · · ·Γ ∗wn of

degree |w1 · · ·wn| ≤ m. Analogously, we write u ∼m v if u and v are contained in the same
monomials w1Γ

∗ · · ·wnΓ
∗ of degree |w1 · · ·wn| ≤ m. If u ≡m v for m = 4 |S|2 − 1, then by

Corollary 19 we have h(u) = h(v).
Let u ∼2m v. We want to show h(u) R h(v). We can assume |u|, |v| ≥ 2m, because

otherwise u = v. Let u = u′q with |q| = m. Consider the factorization v = v′qx such that qx
is the shortest suffix of v admitting q as a factor, i.e., v is factorized at the last occurrence
of q. This factorization exists, since u ∈ Γ ∗qΓ ∗ 3 v. We claim u ≡k v′q and therefore,
h(v) ≤R h(v′q) = h(u). Symmetry then yields h(u) R h(v).

We now prove the claim. First, let v′q ∈ P = w1Γ
∗w2 · · ·Γ ∗wn with w1 · · ·wn ≤ m. Then

v ∈ PΓ ∗ and u ∈ PΓ ∗. Since wn is a suffix of q, we conclude u ∈ P .
Next, suppose u ∈ P = w1Γ

∗w2 · · ·Γ ∗wn with |w1 · · ·wn| ≤ m. By Lemma 20, there exists
a monomial P ′ = v1Γ

∗v2 · · ·Γ ∗vn with |v1 · · · vn| ≤ |w1 · · ·wnq| ≤ 2m and u′q ∈ P ′ ⊆ (Pq−1)q.
Since u ∈ P ′Γ ∗, we obtain v ∈ P ′Γ ∗. By choice of x, we have v′q ∈ P ′Γ ∗ ⊆ PΓ ∗. Since wn is
a suffix of q, we conclude v′q ∈ w1Γ

∗w2 · · ·Γ ∗wn.

Theorem 22. Let L ⊆ Γ+. The following assertions are equivalent:
1. L is definable in BΣ1[<,+1,min].
2. L is a Boolean combination of monomials w1Γ

∗ · · ·wnΓ
∗.

3. Synt(L) ∈ B1 and the syntactic homomorphism hL : Γ+ → Synt(L) has the property
that hL(L) is a union of R-classes.

Proof. The equivalence “1⇔ 2” follows from Theorem 10.
“2⇒ 3”: We have Synt(L) ∈ B1 by Theorem 13, and hL(L) is a union of R-classes by [7,

Theorem 5].
“3⇒ 2”: By Lemma 21, there exists m ∈ N such that hL(u) R hL(v) if u and v are

contained in the same languages of the form w1Γ
∗ · · ·wnΓ

∗ with |w1 · · ·wn| ≤ m. Therefore,
for each R-class R of SyntL(L), the language h−1

L (R) is a Boolean combination of languages
w1Γ

∗ · · ·wnΓ
∗ with |w1 · · ·wn| ≤ m. The claim follows, since L is a union of languages of the

form h−1
L (R).
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There also is a left-right dual of the above theorem: A language L is definable in
BΣ1[<,+1,max] if and only if L is a Boolean combination of monomials Γ ∗w1 · · ·Γ ∗wn

if and only if Synt(L) ∈ B1 and hL(L) is a union of L-classes. Next, we consider the fragment
BΣ1[<,+1] with neither min nor max.

Lemma 23. Let h : Γ+ → S ∈ B1. If u, v ∈ Γ+ are contained in the same monomials
Γ ∗w1Γ

∗ · · ·wnΓ
∗ of degree |w1 · · ·wn| < 12 |S|2, then h(u) J h(v).

Proof. This proof is only a slight variation of the proof of Lemma 21. We write u ≡m v, if u
and v are contained in the same monomials w1Γ

∗ · · ·Γ ∗wn of degree |w1 · · ·wn| ≤ m. Analo-
gously, we write u ∼m v, if u and v are contained in the same monomials Γ ∗w1Γ

∗ · · ·Γ ∗wnΓ
∗

of degree |w1 · · ·wn| ≤ m. If u ≡m v for m = 4 |S|2 − 1, then by Corollary 19 we have
h(u) = h(v).

Let u ∼3m v. We want to show h(u) J h(v). We can assume |u| , |v| ≥ 3m, because
otherwise u = v. Let u = pu′q with |p| = |q| = m. Consider the factorization v = spv′qx such
that sp is the shortest prefix of v admitting p as a factor and qx is the shortest suffix of v
admitting q as a factor, i.e., v is factorized at the first occurrence of p and the last occurrence
of q. This factorization exists, since u ∈ Γ ∗pΓ ∗qΓ ∗ 3 v. We claim u ≡m pv′q and therefore,
h(v) ≤J h(pv′q) = h(u). Symmetry then yields h(u) J h(v).

We now prove the claim. First, let pv′q ∈ P for P = w1Γ
∗w2 · · ·Γ ∗wn with w1 · · ·wn ≤ m.

Then v ∈ Γ ∗PΓ ∗ and u ∈ Γ ∗PΓ ∗. Since w1 is a prefix of p and wn is a suffix of q, we conclude
u ∈ P .

Next, suppose u ∈ P with |w1 · · ·wn| ≤ m. By Lemma 20 and its left-right dual, there
exists a monomial P ′ = v1Γ

∗v2 · · ·Γ ∗vn with |v1 · · · vn| ≤ |pw1 · · ·wnq| ≤ 3m and u = pu′q ∈
P ′ ⊆ p(p−1Pq−1)q. Since u ∈ Γ ∗P ′Γ ∗, we obtain v ∈ Γ ∗P ′Γ ∗. By choice of s and x, we
have pv′q ∈ Γ ∗P ′Γ ∗ ⊆ Γ ∗PΓ ∗. Since w1 is a prefix of p and wn is a suffix of q, we conclude
pv′q ∈ w1Γ

∗w2 · · ·Γ ∗wn.

Theorem 24. Let L ⊆ Γ+. The following assertions are equivalent:
1. L is definable in BΣ1[<,+1].
2. L is a Boolean combination of monomials Γ ∗w1 · · ·Γ ∗wnΓ

∗.
3. Synt(L) ∈ B1 and the syntactic homomorphism hL : Γ+ → Synt(L) has the property

that hL(L) is a union of J -classes.

Proof. The equivalence “1⇔ 2” follows from Theorem 11.
“2⇒ 3”: We have Synt(L) ∈ B1 by Theorem 13, and hL(L) is a union of R-classes by [7,

Theorem 7].
“3⇒ 2”: By Lemma 23, there exists m ∈ N such that hL(u) J hL(v), if u and v are

contained in the same languages of the form Γ ∗w1Γ
∗ · · ·wnΓ

∗ with |w1 · · ·wn| ≤ m. Since
hL(L) is a union of J -classes, the language L is a Boolean combination of languages of the
form Γ ∗w1 · · ·Γ ∗wnΓ

∗ of degree |w1 · · ·wn| ≤ m.

The following decidability result is an immediate consequence of our characterizations.

Corollary 25. Let L ⊆ Γ+ be a regular language. It is decidable whether L is definable in
BΣ1[<,+1] (resp. BΣ1[<,+1,min], resp. BΣ1[<,+1,max]).

Proof. The syntactic homomorphism hL : Γ+ → Synt(L) of L is effectively computable.
Hence, one can verify whether property “3” in Theorem 24 (resp. “3” in Theorem 22, resp. the
left-right dual of “3” in Theorem 22) holds.
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Languages Logics Algebra⋃
w1Γ

∗w2 · · ·Γ ∗wn Σ1[<,+1,min,max] B1/2 [11], Thm. 3⋃
w1Γ

∗ · · ·wnΓ
∗ Σ1[<,+1,min] ≤R-order ideals Thm. 10in B1/2⋃

Γ ∗w1 · · ·Γ ∗wn Σ1[<,+1,max] ≤L-order ideals left-right dual
in B1/2 of Thm. 10⋃

Γ ∗w1 · · ·Γ ∗wnΓ
∗ Σ1[<,+1] ≤J -order ideals Thm. 11in B1/2

B(w1Γ
∗w2 · · ·Γ ∗wn) BΣ1[<,+1,min,max] B1 [6], Thm. 13

B(w1Γ
∗ · · ·wnΓ

∗) BΣ1[<,+1,min] R-classes in B1 Thm. 22

B(Γ ∗w1 · · ·Γ ∗wn) BΣ1[<,+1,max] L-classes in B1
left-right dual
of Thm. 22

B(Γ ∗w1 · · ·Γ ∗wnΓ
∗) BΣ1[<,+1] J -classes in B1 Thm. 24

Table 1: Languages around dot-depth one.

7 Summary

We considered subclasses of languages with dot-depth 1/2 and of languages with dot-depth 1.
These subclasses admit counterparts in terms of fragments of existential first-order logic Σ1 and
its Boolean closure BΣ1. For all fragments, we give effective algebraic characterizations. At
closer look, the characterizations are a conjunction of an algebraic and a topological property,
cf. [7]. We summarize our main results in Table 1. To shorten notation, we write B1/2 instead
of Jxωyxω ≤ xωK.

In addition, we give new proofs for Pin and Weil’s Theorem on dot-depth 1/2 and for
Knast’s Theorem on dot-depth 1. The proofs are combinatorial and they improve the bounds
involved in computing a language description for a given recognizing semigroup.
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