
Institute of Architecture of Application System
University of Stuttgart
Universitaetstrasse 38
70569 Stuttgart

Master Thesis Nr. 3142

 Event-based Automated
Management of

Cloud Applications

Sams Ul Arefin

Course of Study: INFOTECH (MSc)

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dipl.-Inf. Christoph Alexander Fehling

Commenced : 01 February, 2011

Completed : 02 August, 2011

 CR-Classification: H.4.1, K.1, K.6.0, K.6.2, K.6.4, I.2.2, D.1.5

Page | 2

Contents

1. Introduction 7
1.1 Motivation to this Thesis 7

1.1.1 Challenges 7
1.1.2 Goals 8

1.2 Document Structure 8

2. Background & Related work 11
2.1 Resource planning in Cloud 11
2.2 Analysis of existing Auto scaling approaches for Cloud and Grid resources 13

2.2.1 Amazon Auto Scaling 13
2.2.2 Amazon EC2 Beanstalk 18
2.2.3 Scalar 19
2.2.4 Scaling (Proposed)Windows Azure 21
2.2.5 Rightscale 26

2.3 Fundamentals of Feedback Control Systems 29

3. Policy Based Scaling 33
3.1 Define Policy Based Approach 33

3.1.1 Events 33
3.1.2 Trigger Management 33
3.1.2.1 User initiated triggers 34
3.1.2.2 Time-based triggers 34
3.1.2.3 Pricing Triggers 34
3.1.2.4 Infrastructure Trigger 34

3.2 Capacity Planning 36

3.2.1 Determine Service Level Requirements 36
3.2.2 Analyze Current System Capacity 38
3.2.3 Forecast Future Capasity 39

3.3 Optimization & Algorithms 40
3.3.1 Static Vs Dynamic resource planning 40
3.3.2 Energy Optimization 41
3.3.3 Fitness Function 43
3.3.4 Policy based Scaling Algorithm 44

3.4 Resources Provisioning 47

3.4.1 Deadline accomplishment 48
3.4.2 Peak & off-peak slot 48

4. Implementation 49
4.1 Client-Worker Paradigm 49

Page | 3

4.2 System Architecture 51
4.2.1 Monitoring 51
4.2.2 Optimization & trigger management 52
4.2.3 Provisioning manager 53

4.3 Asynchronous messaging with Amazon SQS 54
4.3.1 SQS Message Lifecycle 55
4.3.2 SQS Functionality 55
4.3.3 SQS Queue Implementation 56

5 Evaluation 61
5.1 Workload Scenarios 61
5.1.1 Static Load 61
5.1.2 Sudden Increase 63
5.1.3 Peak Increase 63
5.1.4 Static Decrease 64
5.1.5 Sudden Decrease 65
5.1.6 Peak Drop 66

6 Summary 67
6.1 Limitations and Outlook 68

Bibliography 69

Page | 4

List of Figures

Figure 2.2.1: Auto scaling mechanism 14
Figure 2.2.2: Load Balancer and application group 18
Figure 2.2.3 Active –passive load Balancer with elastic IP 18
Figure 2.2.4 Concept of Elastic Beanstalk 19
Figure 2.2.5: Scalr Architecture 20
Figure 2.2.6: Load management in Windows Azure 24
Figure 2.2.7: Architecture of Scaling Engine in Windows Azure 25
Figure 2.2.8: Scalable website deployment 26
Figure 2.2.9: RightScale Grid processing 28
Figure 2.2.10 Job processing in Local data Canter and RightScale platform 28
Figure 2.3.1: Basic Block Diagram of Open-Loop control system 29
Figure 2.3.2: Block diagram of feedback control system 30

Figure 3.1.1: 3-Steps Model of Capacity Planning 36
Figure 3.1.2 Fundamental pieces of Metric collection systems 37
Figure 3.3.1 Horizontal and Vertical Scaling 41
Figure 3.8.1: Cloud Resource provisioning 47

Figure 4.1.2: Implementation Scenario 49
Figure 4.1.2: Requester-Worker Configuration File 50
Figure 4.1.3 Evaluation file 51
Figure 4.2.1: Request Queue status 51
Figure 4.2.2: System Architecture 52
Figure 4.2.4: S3-Backed AMI Instance 53
Figure 4.2.5: EBS-Backed AMI Instance 54
Figure 4.3.1: Message Visibility Time out 55
Figure 4.3.2: SQS arbitrary Message processing and Visibility time out 56

Figure 5.1.1: Static Load generated by the Requester & Message processing
duration by the Worker 61
Figure 5.1.2: Static Increasing Load by Requester & processing duration by one Worker 62
Figure 5.1.3: Message processing duration by two and Three Workers respectively 62
Figure 5.1.4: Sudden Load Increase by Requester and message processing by Worker 63

Figure 5.1.5: Peak Load increase by the Requester 63
Figure 5.1.6: Message processing time by one Worker and two Workers respectively 64
Figure 5.1.7: Static Load decrease by the Requester 64
Figure 5.1.8: Message processing time by one Worker and two worker repectively 65
Figure 5.1.9 Sudden Load decrease by the Requester and message

proceesing by the Worker 65
Figure 5.1.10 Peak Load drop by the Requester 66
Figure 5.1.11: Message processing time by one Worker and two worker repectively 66

Page | 5

List of Listings

 4.3.3: AWS SQS Create Queue Implementation 57
 4.3.4: SQS Message Sending 57
 4.3.5: SQS Receive Message 58
 4.3.6: SQS Delete Message 58
 4.3.6: SQS PrintQueue List 59

List of Algorithms

3.2.3 Cost Function 46
3.2.4 Optimization of Deadline, Budget & Energy Constraint 46

Page | 6

Page | 7

1. Introduction

Cloud computing has opened a new paradigm in the area of distributed computing in which
users lease computing resources from large scale data centers operated by service providers. It
delivers the large scale computation and data processing operation in a scalable and flexible
manner. It provides the opportunity for small organizations and individuals to deploy
applications by paying a minimal cost of actual resource usage [8]. Cloud resources such as
virtual machine [52] can be provisioned on-demand on a Pay-As-You-Go basis [9]. Current
resources provisioning approaches [9] [11] rely on monitoring the state of system resources such
as CPU or memory utilization of virtual machines to determine the required size of the system.
Most cloud service providers use machine virtualization to provide flexible and cost effective
resource sharing. The cloud service provider is responsible to make the needed resources
available on demand to the cloud users. Out of the three types (Infrastructure-as-a-Service IaaS,
Platform-as-a-Service PaaS and Software-as-a-Service SaaS) of computing capacities as a service [12]
in different abstraction levels, this thesis focused on Infrastructure-as-a-Service (IaaS) [5] only to
provide computing resources as a service to customers. It introduces dynamic resource
allocation mechanisms for infrastructure provisioning where there is a fixed time-limit as well
as a resource budget for a particular task.

1.1 Motivation of the Thesis

1.1.1 Challenges

Though the dynamic provisioning of computing and storage resources in the Cloud is the major
appeal to its users, it is quite challenging. The major challenge is to keep the resource budget to
a minimum, while fulfilling the resource demand of an application. Current cloud service
providers [51] follow Pay-As-You-Go [9] or the utility based pricing model [53] when they
distribute the application workload among multiple instances where each instance work as a
physical server. Usually an instance follows a time-based pricing model and charges user by
hour as per the configuration of CPU cores, memory, and disk capacity. For example, Amazon
EC2 [20] users pay based on the type and number of the instances they consumed. AWS Elastic
Beanstalk [52] provides application scalability by adding new instance without interrupting
Clients' application to support increasing traffic growth. It allows a user to provision minimum
of 1 and a maximum of 10,000 instances [1]. To determine the required number of instances is
one of the major challenges here. Managing various multivariate uncertainties such as price,
demand and availability also need to be considered. The Cloud user or the service provider
needs to be accurate to reduce over provisioning cost as well as manage under provisioning
cases. In addition, Cloud providers are also liable to meet Service Level Agreements (SLAs) [53]
within deadline and budget constraint. All of these factors have made cloud dynamic resource
provisioning a challenging job.

Page | 8

1.1.2 Goals

In this thesis, a method will be developed and investigated to optimize the workload
management of Cloud-based applications. It offers cloud users to move workload to times
when the required cloud resources are offered at better conditions and cloud providers to
increase the utilization of the resources forming the offered cloud. In this setting, the cloud
resources are considered to be accessed based on Service Level Agreements (SLA) subsuming a
set of Service Level Objectives (SLO) that the cloud application needs to fulfill. SLA includes
parameters like deployment deadline or preferred maximum pricing while negotiating between
cloud users and providers. Similarly, the required response time can be used to form a SLO.
Optimization will be performed through management of the workload and dynamic
provisioning of cloud resources. This management function is triggered from a trigger
management component that collects events originating from different application components.
Triggers are sent to provision new resources as well as de-provision unused ones. An Event can
be infrastructure based (e.g: CPU utilization of servers), platform based (e.g: the number of
messages in a queue), application based (e.g: a certain application function is accessed) or user
initiated (e.g: the user decides to suspend the complete application). Further, events can also be
generated from the environment in case the price of the resource changes. Instead of handling
each resource access as soon as possible it will be performed best fitting the required SLOs. To
do so, cloud resources are monitored to determine so called Management Influencing Factors
(MIF), such as provisioning time or request handling time. Based on this information the
number of resources in the system can be optimized as well as the point in time at which
resource accesses are granted.

This thesis will propose a optimize resource provisioning system which will be cost-efficient as
well as highly resource utilized. For that, an event based workload management system is
proposed which offers users to deploy their application into clouds based on SLA conditions. It
will ensure maximum utilization of cloud resources by making delay of resource provisioning
rather than following immediate request handling method.

Page | 9

1.2 Document Structure

The document is divided into the following chapters.

Chapter 2: Background and related work describes the resource planning in clouds as well as
gives an analysis of existing scaling approaches for cloud and grid resources.

Chapter 3: Policy based scaling illustrates the conceptual aspect of the dynamic resource
provisioning model.

Chapter 4: Implementation explains the system architecture which utilizes the information
obtained from optimization processes and handles dynamic provisioning of cloud resources.

Chapter 6: Evaluation analyzes several scenarios to evaluate the performance of the policy
based approach in comparison with others.

Chapter 7: Summary concludes the work by summarizing the results and gives an outlook on
further improvements.

Page | 10

Page | 11

2. Background and Related Work

Virtualization [52] innovated since computing process starts. Computer has facilitated among
the mass rather than few giant Companies in last decade. The key idea of cloud computing is its
utility based approach which ensures on-demand provisioning and de-provisioning of
resources by paying only for consumed resources. Cloud computing offers scalable resource
provisioning which ensures overall cost reduction [22]. To do that, it requires an effective
resource planning inside Cloud. This chapter illustrates the resource planning in the cloud and
existing auto scaling mechanisms offered by different providers for the cloud environment.

2.1 Resource planning in Cloud

Dynamic provisioning is the key point while designing a system to put into the cloud. Besides,
cloud based applications need to monitor constantly and manually adjust the needed cooling
power. Usually, predictive statistical model enables release of over-provisioned resources
whereas adaptive resource allocation minimizes consumer costs [27]. In recent years cloud
scientist are trying to build a standard auto scaling approach. In order to optimize cloud
resource provisioning cost, event based dynamic resource provisioning plan considered in this
thesis.

� Predictable demand on Time Slot

We have few situations when workload on the application is incredibly high. Such as time
between 7am and 7pm business hours as during this period the applications accessed by the
employees of a company mostly. Another prediction would be during lunch and dinner time
for an application that processes restaurant orders. So, we can predict the demand spike during
the day and plan for scaling strategy. In this situation, AzureWatch allow the scheduling
aspects into execution of a scaling rule [28].

� React to Unpredictable Demand

Cloud utilization metrics includes CPU utilization, amount of requests per second, number of
concurrent users, amounts of bytes transferred and amount of memory used by
applications. When utilization metrics shows high load, simply react by scaling up. For
example, let’s consider a site that may become incredibly popular suddenly and receive a large
influx with visitors. Application that deals with disaster situations (earthquakes, tsunami, etc)
could be an example here. In AzureWatch cloud user can configure scaling rules that aggregate
metrics within particular time and send scale up trigger when the metrics is reach the threshold.
For multiple metrics, need to find "common scaling unit” that would integrate all relevant
metrics together into one number [27].

Page | 12

2 Background and Related Work

� React to rate of change in unpredictable demand

Considering the execution time of scale up and scale down events, we need to set point of
reaction to initiate the request for scaling. AzureWatch's proposed a solution where an event
can be set that interrogates average CPU utilization during last 20 minutes is 20% higher than
average CPU utilization over the last hour and it already significant by being over 50%, then
triggers of scale up initiated automatically [29].

� Predictable demand from incomplete jobs

Schedule-based demand prediction fits when the application workload can be determined by
the amount of jobs waiting to be processed. Benefits of asynchronous job execution is achieved
when high job processing is off-loaded to back-end servers and the amount of waiting time for
to-be-processing jobs can serve as a metric. Scaling techniques of WindowsAzure use job
scheduling mechanism is via Queues based on Azure Storage. Proposed AzureWatch provides
the facility to create scaling rules based on the amount of messages waiting to be processed in a
Queue [26].

� On/Off Load

In this scenario, workload usually occurs at certain periods. During other periods the
application will be typically unused and kept be switched off. For example, financial batch
processing jobs can be considered into this category.

� Combine strategies

While combining more than one of the mentioned scaling strategies, we need to consider
known patterns for the applications behavior that would define the predictable bursting
scenarios as well as take insurance policy to handle than unplanned bursts of demand [29].
Understanding the user demand and make scaling rules to work together is the key to success
for auto scaling mechanism.

Page | 13

2.2 Analysis of existing scaling approaches for cloud and Grid
resources

In Cloud computing world, several cloud approaches are offered by the companies like
Amazon, Right Scale, MircoSoft, Scalar, Windows Azure, Rackspace and others. This
section will briefly describe about those existing methodologies. Cloud platforms like
Amazon EC2 or Windows Azure rely on various tools and services to provide dynamic auto
scaling service, rather than automatic adjustment of computing power dedicated to applications
running on their platforms. Amazon uses auto-scaling method via a service CloudWatch and
third party vendor’s (RightScale) tool for the applications running on their platform. On the
other hand Windows Azure offers third party vendors AzureWatch to provide auto scaling
and monitoring facility [22].

2.2.1 Amazon Auto Scaling

Auto Scaling is one of the web services from Amazon which was designed to start or
terminate EC2 instances automatically based on user-defined policies, schedules and
health checks. Auto Scaling is used to maintain the workload of Amazon EC2 Instances
[20]. An EC2 Instance is a Virtual machine that provides a predictable amount of dedicated
compute capacity and is charged per instance-hour consumed. Auto Scaling launches an
additional instance whenever CPU usage exceeds 90 percent for last 10 minutes and
terminates when CPU usage is half of especially during weekend. Auto scaling groups
work across multiple physical locations to host EC2 instances called availability Zones.
Auto Scaling automatically redistributes the cloud based applications into different
Availability Zones [30]. Cloud Provider can set auto Scaling group so that user requests
are distributed over a group of EC2 instances. Auto Scaling also supports AWS Elastic
Load Balancing [56]. Adding an Elastic load Balancer is also possible to Auto Scaling
group to measure request latency to scale the applications workload.

• Auto Scaling Group

EC2 instances [20] are categorized into Auto Scaling groups. Each group is defined with a
minimum and maximum number of EC2 instances. The Auto Scaling service launches more
instances for the Auto Scaling group to handle the increasing traffic and shut down the
instances when demand decreases to ensure optimize usage of computing resources.

As shown in figure 2.2.1., internet traffic is routed from the public URL to an Auto Scaling
group named “webtier”. The Auto Scaling group triggers to increase or decrease the size of

group based on the average CPU utilization of the group. A trigger is a signal that lets the
system when to increase or decrease the number of instances.

Figure 2.2.1

In Amazon auto scaling, user can set a trigger to acti
Amazon CloudWatch, such as CPU Utilization. When activated, the trigger launches a long
running process called a Scaling Activity. When a trigger fires, Auto Scaling uses a launch
configuration to create a new instan

• Health Check

A health check is the process to monitor the health status of each instance in an auto Scaling
group. In case of having degraded performance, auto Scaling terminates that instance and
launches another fresh one as replacement.

• Launch Configuration

A launch configuration captures the parameters necessary to create new
Auto Scaling group can have only one launch configuration at a time which is modifiable but
has no changes on existing instances. A single AWS account
configurations. When Auto Scaling needs to scale down, it first terminates instances that have
an older launch configuration [30]

• Trigger

A trigger combines Amazon CloudWatch alarm
inform what will occur when the alarm threshold is crossed. We need one trigger for scaling up
and another for scaling down individually. For example, to scale up the instance when
usage increases to 80 percent, we need to configure a CloudWatch alarm and
policy. The alarm sends a message to auto scaling as soon as
percent of its usage. When the CPU usage decreases to 40 percent, s
down.

Figure 2.2.1: Auto scaling mechanism [31]

In Amazon auto scaling, user can set a trigger to activate on any of the metrics published to
Amazon CloudWatch, such as CPU Utilization. When activated, the trigger launches a long
running process called a Scaling Activity. When a trigger fires, Auto Scaling uses a launch
configuration to create a new instance [31].

A health check is the process to monitor the health status of each instance in an auto Scaling
group. In case of having degraded performance, auto Scaling terminates that instance and
launches another fresh one as replacement.

h Configuration

A launch configuration captures the parameters necessary to create new EC2 Instances.
Auto Scaling group can have only one launch configuration at a time which is modifiable but
has no changes on existing instances. A single AWS account has maximum 100 launch
configurations. When Auto Scaling needs to scale down, it first terminates instances that have

[30].

A trigger combines Amazon CloudWatch alarm [30] and Auto Scaling policy together and
what will occur when the alarm threshold is crossed. We need one trigger for scaling up

and another for scaling down individually. For example, to scale up the instance when
usage increases to 80 percent, we need to configure a CloudWatch alarm and
policy. The alarm sends a message to auto scaling as soon as the CPU usage has

CPU usage decreases to 40 percent, second trigger is sent to scale

Page | 14

vate on any of the metrics published to
Amazon CloudWatch, such as CPU Utilization. When activated, the trigger launches a long-
running process called a Scaling Activity. When a trigger fires, Auto Scaling uses a launch

A health check is the process to monitor the health status of each instance in an auto Scaling
group. In case of having degraded performance, auto Scaling terminates that instance and

EC2 Instances. An
Auto Scaling group can have only one launch configuration at a time which is modifiable but

has maximum 100 launch
configurations. When Auto Scaling needs to scale down, it first terminates instances that have

and Auto Scaling policy together and
what will occur when the alarm threshold is crossed. We need one trigger for scaling up

and another for scaling down individually. For example, to scale up the instance when the CPU
usage increases to 80 percent, we need to configure a CloudWatch alarm and Auto Scaling

CPU usage has reached to 80
econd trigger is sent to scale

Page | 15

• Policy

A set of instructions that instructs how to respond when CloudWatch [28] alarm messages are
sent. User can configure a CloudWatch alarm to send a message to the Auto Scaling process
whenever a specific metric has reached into a triggering value. When the alarm sends the
message, Auto Scaling executes the associated policy on an auto Scaling group to scale the
group up or down [29].

• Instance Distribution and Balance across Multiple Zones

To provide high scalability and reliability, Amazon data center facilities are located in several
different physical locations which named as “Regions and Availability Zones”. Amazon has four
Regions: the US-East (Northern Virginia) Region (also known as the US Standard Region), the
US-West (Northern California) Region, the Asia Pacific (Singapore) Region, and the EU
(Ireland) Region. Availability Zones are unique locations within a region that are not affected by
the failure in other Availability Zones and deliver inexpensive, low-latency network
connectivity among other zones in same region.

Auto Scaling distributes instances uniformly between the Availability Zones which are
connected to the user auto Scaling group. Auto Scaling attempts to launch new instances in the
Availability Zone with the fewest instances. When failure occurred in one zone, Auto Scaling will
attempt to launch in other zones until it succeeds [30].

• Types of Scaling

Amazon auto Scaling facilitate following three types of scaling Manual Scaling mechanism.

Manual scaling

In manual scaling, we need to call an API to use the Auto Scaling command line interface (CLI)
to launch or terminate an Amazon EC2 instance. Cloud users need to specify the amount of
capacity. This Scaling manages the process of creating or destroying instances, including all the
parameters to the Amazon EC2 run Instance call [29].

Scaling by Schedule

When the demand of the instance is predicted, the scaling mechanism increases or decreases
instance into the group in schedule basis. Scaling by schedule means that scaling actions are
performed automatically as a function of time and date. To create a time-based scaling plan,
user needs to specify the time at which the plan needs to take effect as well as tells the new,
minimum and maximum instance size that require at that time. At that specified time, Auto
Scaling updates the group to set the new values according to the scaling plan.

Page | 16

Scaling by Policy

Scaling by policy allow the cloud user to define the parameters that will be used in Auto Scaling
process. A policy can be enlarged to the group whenever the average CPU utilization rate is
higher than 90% for last 15 minutes. Users need to have two policies, one for scaling up and
another for scaling down for each event that needs to monitor. Policy1 scales up when the
network bandwidth reaches a certain level by firing up a certain number of the instances to help
the request traffic. Again, policy2 scales down by a certain number when the network
bandwidth level goes back down.

For example, we create a policy that allows developer to change the capacity of an auto scaling
group and gives access to the SetDesiredCapacity [13] action.

• Auto Scaling Configuration

While configuring auto scaling mechanism, one the following services need to consider.

Maintain current instance levels

Health status of the instance are monitored in auto scaling system .When Auto Scaling finds an
unhealthy instance, it terminates that and starts a new one. Auto Scaling considered the
notification received from Amazon EC2, Elastic Load Balancing [56] and setHealthStatus [31]
API before declaring an instance as unhealthy.

Create more instances

A scaling policy indicates auto scaling to perform a scaling action when the metric value
crossed the threshold [30]. For example, a policy can be 10 percent increase of current instances
when the CPU utilization of the scaling group reaches 80 percent.

{ "Statement":[{

"Effect":"Allow",

"Action":"autoscaling:SetDesiredCapacity",

"Resource":"*"

}] }

Page | 17

Delete current instances

Auto scaling performs a scaling down action by deleting instance when the metric value is too
low [31]. For example, a policy can be 50 percent decrease of current instances when the CPU
utilization of the scaling group goes down by 50 percent during last 30 minutes.

• Amazon CloudWatch

To monitor auto scaling group, Amazon use monitoring tool “CloudWatch”. Amazon
CloudWatch provides monitoring for AWS cloud resources, such as resource utilization,
operational performance and overall demand patterns. It also includes metrics such as CPU
utilization, disk reads and writes and network traffic [60].

Basic Monitoring

To create a new Auto Scaling group with basic monitoring, we have to create a lunch
configuration that has the InstanceMonitoring.Enabled [35] flag which needs to set false.

Detial Monitoring

To enable the detailed instance monitoring for a new Auto Scaling group, user need to create a
launch configuration. Each launch configuration contains a flag named InstanceMonitoring.
Enabled[35]. The default value of this flag is true.

• Challenges in Auto scaling & Proposed Solution

Though Amazon Auto scaling provides the policy based scaling, it is only useful when user can
define the way to scale in response to changing conditions. However, user is not aware when
those conditions will change. In this aspect, auto scaling need to adopt fault resilient dynamic
load balancing [29].

As shown in figure 2.2.2, group membership scheme has considered for this load balancing
technique. For fault resilience, single point of failure is avoided; the load balancers need to be
replicated. It can handle multiple application groups where the application member can join
or leave their own groups. So, the load balancers need to be part of the application groups
as shown in figure 2.2.3. Here, the load balancers will be acknowledged about membership
changes in the load balancer group as well as the application groups. However, the application
group members are not be concern about membership changes in the load balancer group [29].

Page | 18

Figure 2.2.2: Load Balancer and application group [29]

Figure 2.2.3 Active –passive load Balancer with elastic IP [29]

2.2.2 Amazon Beanstalk

AWS Elastic Beanstalk provides quick deployment functionality and manages the application in
the AWS cloud. Cloud user needs to upload application and AWS Beanstalk automatically
handles the deployment details of capacity provisioning, load balancing, auto-scaling, and
application health monitoring. It also provides users opportunity to access the underlying
resources at any time and facilitate other AWS services such as Amazon EC2, Amazon S3,
Elastic Load Balancing, and Auto-Scaling [3].

AWS Elastic Beanstalk runs on the Amazon Linux AMI in order to deliver a stable, secure, and
high performance execution environment for EC2 cloud computing. It consist a container built
for Java developers using Apache Tomcat software stack. It takes few minutes to allocate the

AWS resources based on size of the deployable code, the number of application server user
want to deploy. However, deployment of the new application version to the existing resources
takes less time depending on the size of the version. User application can be scaled
automatically tens or even hundreds of times on the basis threshold factors such as CPU
utilization or network bandwidth. Thresholds can be configured for a particular application
using AWS Elastic Beanstalk’s management console.
launching maximum of 20 EC2 instances and creating up to 10 Elastic Load Balancers [32].

 Figure 2.2.

As depicted in figure 2.2.4, user needs to upload an application to Elastic Beanstalk with
certain information such as type or size of
creates and configures the AWS resources needed to run codes and no manual configuration for
server capacity, load balancing and scaling is required for the application

2.2.3 Scalr

Scalr is an open-sourced framework for managing the massive serving power of EC2 cloud.

Scalr makes Amazon EC2 more exciting to the developers’ community for its redundant, self

curing and self-scaling network [34].

• Auto Scaling Verses Scalr

EC2 auto scaling and Scalr have major difference in scaling mechanism. For example, let’s
consider a provider who has 3 web servers where each can handle maximum of 1000 concurrent
users with adequate performance. At 5 am morning, traffic is low and
concurrent users. Since this is under the threshold, so scaling down event is triggered. In EC2
auto scaling, one of the servers will be terminated to optimize the resource usage. At this point,

based on size of the deployable code, the number of application server user
want to deploy. However, deployment of the new application version to the existing resources
takes less time depending on the size of the version. User application can be scaled
utomatically tens or even hundreds of times on the basis threshold factors such as CPU
utilization or network bandwidth. Thresholds can be configured for a particular application
using AWS Elastic Beanstalk’s management console. Usually, one AWS user accou
launching maximum of 20 EC2 instances and creating up to 10 Elastic Load Balancers [32].

Figure 2.2.4 Concept of Elastic Beanstalk [32].

, user needs to upload an application to Elastic Beanstalk with
such as type or size of the application. AWS Elastic Beanstalk automatically

creates and configures the AWS resources needed to run codes and no manual configuration for
server capacity, load balancing and scaling is required for the application [33].

sourced framework for managing the massive serving power of EC2 cloud.

Scalr makes Amazon EC2 more exciting to the developers’ community for its redundant, self

scaling network [34].

Scalr

EC2 auto scaling and Scalr have major difference in scaling mechanism. For example, let’s
consider a provider who has 3 web servers where each can handle maximum of 1000 concurrent
users with adequate performance. At 5 am morning, traffic is low and it only has 1500
concurrent users. Since this is under the threshold, so scaling down event is triggered. In EC2
auto scaling, one of the servers will be terminated to optimize the resource usage. At this point,

Page | 19

based on size of the deployable code, the number of application server user
want to deploy. However, deployment of the new application version to the existing resources
takes less time depending on the size of the version. User application can be scaled
utomatically tens or even hundreds of times on the basis threshold factors such as CPU
utilization or network bandwidth. Thresholds can be configured for a particular application

one AWS user account allows
launching maximum of 20 EC2 instances and creating up to 10 Elastic Load Balancers [32].

, user needs to upload an application to Elastic Beanstalk with the
the application. AWS Elastic Beanstalk automatically

creates and configures the AWS resources needed to run codes and no manual configuration for

sourced framework for managing the massive serving power of EC2 cloud.

Scalr makes Amazon EC2 more exciting to the developers’ community for its redundant, self-

EC2 auto scaling and Scalr have major difference in scaling mechanism. For example, let’s
consider a provider who has 3 web servers where each can handle maximum of 1000 concurrent

it only has 1500
concurrent users. Since this is under the threshold, so scaling down event is triggered. In EC2
auto scaling, one of the servers will be terminated to optimize the resource usage. At this point,

500 users that were on the server lost thei
based sessions with PHP and similar type.
connections would be a problem [33].

On the other hand, Scalr handles downscaling in different approach. Before
server, the onBeforeHostTerminate
maintenance actions to prepare the server for being terminated. Scalr uses the web server
safe shutdown method that ensure no new connections are made, rather w
existing connections are closed to terminate the server [35].

• Architecture

The Scalr framework is a series of server images, ca

is a special type of pre-configured operating system and virtual app

used to create a Virtual Machine

basic website requires an app server, a load balance

of a management suite that monitors the loa

cloud. Scalr can increase or decrease capacity as per demand changes, as well as detects and

rebuilds unhealthy instances. User has

through the Scalr platform.

DNSManager

Scalr uses DNS zone to perform its scaling method. It uses four network
nameservers [61] ns1.scalr.net to ns4.scalr.net. NS1 and NS2 are based off the cloud at a
datacenter in the US called The Planet, NS3 is on EC2 on the Eas
equally on EC2 in Europe (Ireland). Scalr suggest
traffic location that means the order NS1, NS2, NS3 and NS4 for the user placed in US and Asia
[33].

Figure 2.2.

500 users that were on the server lost their connections closed and be logged out if it used file
based sessions with PHP and similar type. Similarly, for the web sockets and persistent
connections would be a problem [33].

On the other hand, Scalr handles downscaling in different approach. Before terminating a
onBeforeHostTerminate [58] event is triggered which allows to perform

maintenance actions to prepare the server for being terminated. Scalr uses the web server
safe shutdown method that ensure no new connections are made, rather waits until all the
existing connections are closed to terminate the server [35].

The Scalr framework is a series of server images, called Amazon Machine Images [57]

configured operating system and virtual application software which is

achine [52] within the Amazon Elastic Compute Cloud (EC2)

basic website requires an app server, a load balancer, and a database server. The AMI

of a management suite that monitors the load and operating status of different servers i

cloud. Scalr can increase or decrease capacity as per demand changes, as well as detects and

User has the administration privilege to control Amazon EC2

Scalr uses DNS zone to perform its scaling method. It uses four network
ns1.scalr.net to ns4.scalr.net. NS1 and NS2 are based off the cloud at a

datacenter in the US called The Planet, NS3 is on EC2 on the East Coast of the US and NS4 is
equally on EC2 in Europe (Ireland). Scalr suggests user to reserve nameserver
traffic location that means the order NS1, NS2, NS3 and NS4 for the user placed in US and Asia

Figure 2.2.5: Scalr Architecture [34]

Page | 20

r connections closed and be logged out if it used file
Similarly, for the web sockets and persistent

terminating a
event is triggered which allows to perform

maintenance actions to prepare the server for being terminated. Scalr uses the web server
aits until all the

lled Amazon Machine Images [57]. An AMI

lication software which is

within the Amazon Elastic Compute Cloud (EC2). Every

r, and a database server. The AMI consists

ng status of different servers in the

cloud. Scalr can increase or decrease capacity as per demand changes, as well as detects and

administration privilege to control Amazon EC2

Scalr uses DNS zone to perform its scaling method. It uses four network-independent
ns1.scalr.net to ns4.scalr.net. NS1 and NS2 are based off the cloud at a

t Coast of the US and NS4 is
 as per incoming

traffic location that means the order NS1, NS2, NS3 and NS4 for the user placed in US and Asia

Page | 21

Poller

As seen in figure 2.2.5 Scalr polls the Cloud provider to retrieve its status for every instance.
Polling is done with one minute interval. Scalr updates the database according to the Cloud
provider report, such as if the Cloud provider reports the server as running, but in Scalr's
database it is marked as pending, Scalr updates the database as 'running'. Similarly, if the user
terminates an instance, Scalr's database will be updated as pending terminate' state. It was
marked for termination in the Scalr database, the API call to terminate the instance has been
made and Scalr waits for the Cloud provider report as terminated before changing status
terminated. For an instance is in the 'pending launch' state, this is just reverse [34].

Scaler

Scaler is a component of Scalr which compares the number of instances running for a particular
role to the minimum_instances [33] and maximum_instances [33] values set in the farm
configuration. If the number is below, Scalr launches additional instances to meet the minimum
and terminates instances when the number is over the threshold. After this, the Scaler will check
each Scalr algorithm and repeat the mentioned comparison with the thresholds and boundaries
set by the user. It will also check the date and time, and compare with Schedule-based scaling
[34].

2.2.4 Scaling in Windows Azure

Windows Azure platform proposed compute and storage capabilities required by cloud-based
applications and other constituent services such as service bus and access control [36].
Windows Azure also provides robust dynamic scaling capabilities through a custom-coding
approach. Third-party tools such as AzureWatch [38] monitors and dynamically scales Azure
application. It is customizable rule-based engine that aggregates the performance counters,
queue size and notify users to scale instances up or down based on configuration. In Windows
Azure, auto scaling is achieved by changing the instance count in the service configuration.
Increasing the instance count will cause Windows Azure to start new instance; decreasing the
instance count will in turn cause it to shut instances down [38]. In this section, we will find the
proposed dynamic scaling mechanism for Window Azure.

• Workload Management in Azure

Systems which have highly unpredictable load within short period need to have additional
capacity since to start up Windows Azure instance cloud users need to wait certain interval.
Since the instances are charged by hourly usage, so the load variance (up and then down) that
occurs in every hour need to manage efficiently by running required instances to handle the
hourly peak load.

Page | 22

Windows Azure supports the concept of Small, Medium, Large and Extra Large instances. It
may contain one, two, four or 8 processors equally increased amounts of RAM and local
storage. While some applications may be benefited from the usage of large sized Azure instance
to improve the throughput, others are missing the elastic scalability due to the change in VM
size which requires redeploy the service engine [36].

• Rules based Scaling

Though both EC2 and Azure provide auto scaling feature, but the major difference is the
architecture of two systems. EC2 provides a backbone and framework for auto scaling, whereas
Azure provides an API that can be extended. Some of the third-party providers are delivering
tools for Azure auto scaling.

A set of rules decide when to scale and by how will do. Windows Azure uses two categories of
rule for scaling applications. One of that is a rule which define to add or remove the capacity
from the system in particular time such as run 20 instances between 13.00-18.00 hrs and only 2
instances in other time every day. Another form is a rule based on a response to the metrics and
negotiation between service provider & user [37].

• Load Metrics

A metric based rule considers monitoring aspects of the system which may change over time
and take decisions to scale up or down. In this section, we will find some of the metrics that are
considered in Windows Azure scaling [37].

Primary Metrics

Primary metrics define the measurement of the work that are currently running into the system,
such as the number of requests per second, the number of queue messages being processed per
second and so on. Due of the highly stochastic nature of the most load profiles, it is necessary to
use some algorithm to make this metric smooth. A moving average would be sufficient one [36].

Secondary Metrics

Secondary metrics measure the result of the load that already applied to the system such as
CPU utilization, length of the queue, response time and so on. Few of these metrics are valuable
in time value; others will require smoothing [36].

Derivative Metrics

Derivative metrics are derived from other metrics. Rate of change in the queue length, the rate
of change in requests per second are the examples of this type of metrics. Derivative metrics
model the acceleration or deceleration of changes in load. It ensures the optimize capacity,
rather than adding far more capacity than required.

Page | 23

Accretive Metrics

These metrics track things that occur over time. It could include the total number of users of an
application, the spent time on Windows Azure Platform services for the given period, etc.

• Evaluating Business Rules

Azure evaluates business rules to determine a proposed action. Few of these rules are complex
and others are simple enough to code. Such as a rule that will take an action when a metric
crosses a given threshold is pretty straight forward. Followings are few of the examples of rules.

� Minimum no of instance is 10 and maximum is 50.
� If the average response time during last 30 seconds exceeds 500ms then add additional

instance.
� If the average response time over 30 seconds drops under 100ms then remove instance.
� Apply these rules until Monthly budget exceeds $4000 and inform Cloud user whether

additional expense need to meet deadline.

While adding and removing instances it is necessary to be aware about change that was

requested and need to consider when that change had completed. Azure applications need to

ensure that rules are cognizant of the time delay while adding increasing capacity [38].

• Azure Scaling Example

This section describes a sample scaling engine for Windows Azure Compute instances [48] which
considers two business rules. Assume that the business can determine minimum and maximum
number of instances to be running at specific time period where weekdays and weekends have
different thresholds. It is expected that number of target application users during weekend are
lower than weekdays. However, it may differ during particular occasion or reason such as
application which broadcast the live score of WorldCup football tournament in weekend.
Subject to the threshold that is set for the day of a week, the application takes the scaling
decisions around the collection of metrics. It monitors the current length of the queue and the
current number of requests per second to the web service that delivers up the application. If the
length of the queue grows quickly during a specific time period, a new worker instance is
started. [37].

Figure 2.2.6: Load management in Windows Azure [37]

As shown in figure 2.2.6, Loyalty Management
worker role. The web role adds items to a queue. The
and processes them. This application scales the instance count for the two roles according to
two parameters: amount of messages in the queue and the day of
contains the queue list. Load Client
the Loyalty Management web role. It can call the
per second. The Load Client is used to generate different levels of load on the application.

As shown in figure 2.2.7 Scaling Engine
scaling rules. The scaling engine can be placed in the cloud or on
built as a console application running on
and Performance counter (the number of web requests per second) from the Loyalty
Management application. Using these metrics, it determines when to scale up or down the
number of Azure instances. If scaling is needed, it calls the Azure Service Ma
start instance. Table storage stores the counts of performance counter and the queue length in
the table. Scaling engine put the queue length one of the tables in table storage. It reads the
performance counter from the table storage [37].

: Load management in Windows Azure [37]

Loyalty Management service [37] which contains a web role and a
adds items to a queue. The worker role picks items

and processes them. This application scales the instance count for the two roles according to
two parameters: amount of messages in the queue and the day of the week. Queue storage

Load Client is a client application that calls the web service hosted by
the Loyalty Management web role. It can call the Loyalty Management service maximum 4 times

is used to generate different levels of load on the application.

caling Engine is the core part which is responsible for enforcing the
scaling rules. The scaling engine can be placed in the cloud or on-premise. In this example, it is
built as a console application running on-premise. It collects metrics such as the queu

(the number of web requests per second) from the Loyalty
Management application. Using these metrics, it determines when to scale up or down the
number of Azure instances. If scaling is needed, it calls the Azure Service Management API to

stores the counts of performance counter and the queue length in
the table. Scaling engine put the queue length one of the tables in table storage. It reads the
performance counter from the table storage [37].

Loyalty Management

Page | 24

service [37] which contains a web role and a
picks items from the queue

and processes them. This application scales the instance count for the two roles according to
week. Queue storage

n that calls the web service hosted by
service maximum 4 times

is used to generate different levels of load on the application.

is the core part which is responsible for enforcing the
premise. In this example, it is

premise. It collects metrics such as the queue length
(the number of web requests per second) from the Loyalty

Management application. Using these metrics, it determines when to scale up or down the
nagement API to

stores the counts of performance counter and the queue length in
the table. Scaling engine put the queue length one of the tables in table storage. It reads the

Figure 2.2.7: Architecture of Scaling Engine in Windows Azure [37]

• AzureWatch

AzureWatch works on Microsoft cloud platform and adds dynamic scaling capabilities to
applications running into it. It was developed by a company
AzureWatch dynamically adjusts the number of compute instances dedicated to Azure
application according to real time demand. User
to provide optimize computing power during job processing. AzureWatch pl
Windows Azure similar to the CloudWatch in EC2 [39].

AzureWatch monitors, aggregates and analyzes performance metrics from Azure applications
and compare the metrics against user
the condition, scaling action occurs. Storage, aggregation and rule evaluation occur
AzureWatch servers running in the cloud. The process of monitoring metrics is done either from
host machine or its servers. It includes windows
configure different rules which has the dashboard with historical reports and charts.

AzureWatch scale-up or scale-down Azure instances based on Real
values of performance counters, historical demands, rate
size, reaction time to deploy instance and date
defined conditions are met. Safety mechanisms like built
built-in throttle controls are also included with it [39].

: Architecture of Scaling Engine in Windows Azure [37]

works on Microsoft cloud platform and adds dynamic scaling capabilities to
applications running into it. It was developed by a company named “Paraleap Technol
AzureWatch dynamically adjusts the number of compute instances dedicated to Azure
application according to real time demand. User-defined rules define when to scale up or down
to provide optimize computing power during job processing. AzureWatch pl
Windows Azure similar to the CloudWatch in EC2 [39].

monitors, aggregates and analyzes performance metrics from Azure applications
and compare the metrics against user-defined rules in every minute once. When a rule satisfies
e condition, scaling action occurs. Storage, aggregation and rule evaluation occur

servers running in the cloud. The process of monitoring metrics is done either from
It includes windows-based Control Panel utility to setup and

configure different rules which has the dashboard with historical reports and charts.

down Azure instances based on Real-time demand using latest
values of performance counters, historical demands, rate of increase or decrease demand, queue
size, reaction time to deploy instance and date-time. It also sends email alerts as soon as user
defined conditions are met. Safety mechanisms like built-in limits within predefined range and

s are also included with it [39].

Page | 25

: Architecture of Scaling Engine in Windows Azure [37]

works on Microsoft cloud platform and adds dynamic scaling capabilities to the
“Paraleap Technologies”.

AzureWatch dynamically adjusts the number of compute instances dedicated to Azure
defined rules define when to scale up or down

to provide optimize computing power during job processing. AzureWatch plays the role in

monitors, aggregates and analyzes performance metrics from Azure applications
defined rules in every minute once. When a rule satisfies

e condition, scaling action occurs. Storage, aggregation and rule evaluation occurs on scalable
servers running in the cloud. The process of monitoring metrics is done either from

nel utility to setup and
configure different rules which has the dashboard with historical reports and charts.

time demand using latest
of increase or decrease demand, queue

time. It also sends email alerts as soon as user-
in limits within predefined range and

2.2.5 RightScale

The RightScale Cloud Management Platform provides scalable and cost
infrastructure on demand. It reduces the complexity of cloud computing by allowing
organizations to deploy the business
manage and dynamically scale complex, multi
RightScale allows setting up and configuring the necessary trigger points, called
automatically react to various monitored conditions when thresholds are exceeded.
dynamic auto scaling which scales application servers to respond on demand and configures
the threshold that needs to be exceeded to start scaling and how fast the scaling should
achieved. The ServerTemplates [42] and the RightScale API are used to manage functional groups
of servers, facilitate change and ensure reliability in the production environments. The elegance
and power of the ServerTemplates

• Scalable Website Deployment

RightScale provides scalable website
website on cloud infrastructures with scalability and reliability. As shown in figure 2.2.
includes with two load balancers,
servers for the recovery and rolling backups to
rules, it scales up as demand grows and scales down as demand decreases. User decides when
and how fast to scale. The clone capability creates a test environment in which users can assess
performance under load and test their application in the cloud.
front-ends and provides graphical

Figure 2.2.

The RightScale Cloud Management Platform provides scalable and cost
infrastructure on demand. It reduces the complexity of cloud computing by allowing

business-critical applications [40]. Customers can easily deploy,
manage and dynamically scale complex, multi-cloud applications on this automated platform.
RightScale allows setting up and configuring the necessary trigger points, called

ct to various monitored conditions when thresholds are exceeded.
dynamic auto scaling which scales application servers to respond on demand and configures
the threshold that needs to be exceeded to start scaling and how fast the scaling should

[42] and the RightScale API are used to manage functional groups
of servers, facilitate change and ensure reliability in the production environments. The elegance

ServerTemplates results massive time savings [41].

Scalable Website Deployment

website deployment facility that runs a full customer
website on cloud infrastructures with scalability and reliability. As shown in figure 2.2.
includes with two load balancers, multiple application servers and replicated MySQL database

recovery and rolling backups to the cloud storage. Based on the user defined
rules, it scales up as demand grows and scales down as demand decreases. User decides when

to scale. The clone capability creates a test environment in which users can assess
performance under load and test their application in the cloud. It ensures

graphical monitoring and alerting.

2.2.8: Scalable website deployment [44]

Page | 26

The RightScale Cloud Management Platform provides scalable and cost-effective IT
infrastructure on demand. It reduces the complexity of cloud computing by allowing

ical applications [40]. Customers can easily deploy,
cloud applications on this automated platform.

RightScale allows setting up and configuring the necessary trigger points, called Alerts that
ct to various monitored conditions when thresholds are exceeded. It provides

dynamic auto scaling which scales application servers to respond on demand and configures
the threshold that needs to be exceeded to start scaling and how fast the scaling should be

[42] and the RightScale API are used to manage functional groups
of servers, facilitate change and ensure reliability in the production environments. The elegance

runs a full customer-facing
website on cloud infrastructures with scalability and reliability. As shown in figure 2.2.8 it

multiple application servers and replicated MySQL database
cloud storage. Based on the user defined

rules, it scales up as demand grows and scales down as demand decreases. User decides when
to scale. The clone capability creates a test environment in which users can assess

load-balanced at

Page | 27

• Development and Test in RightScale

The RightScale provides development and test Solution pack to launch resources in the cloud
with the specific configurations. Each user can easily launch and provision the specific
configuration that needs in every phase of the development cycle. Developers can launch an all-
in-one environment that runs the entire system (OS, app server + database) in a single machine.
Testers can twist up 3-tier architectures [63] where tier 1 is the Load balancer, tier 2 is the
Application server [63] layer and tier 3 runs a single Database server [63]. Software Architects can
get the similar to production environments to test application availability and reliability using
redundant load balancers, a scalable app server layer and master and slave database servers.
The Cloud Management Platform includes two user interfaces. A Self-Service Portal designed
for developers and testers to launch servers in the cloud. The Management Dashboard is
designed for systems administrators to customize the pre-configured environments delivered
with the solution [43]. For example, an Internet content sharing network achieved 70% savings
by setting up standalone deployments for software developers in the RightScale’s cloud.
Whenever needed, developers launch pre-configured environments and then decommission
them when it is completed. Shutting down cloud environments on weekends and overnight
provides significant savings. For that, developers must be able to preserve the environment and
easily re-launch it. That’s where RightScale’s management platform adds momentous value to
the customer [44].

• Grid Processing

In RightScale’s Grid Computing Solution Pack user gets a complete, scalable grid application
environment in the cloud. It includes a preconfigured framework to deploy grid processes that
are automated, error resilient and fully auditable. It is designed to leverage Amazon Web
Services specifically Amazon EC2 [21], Simple Queue Service [17] and Amazon S3 [45] capabilities
that processes large numbers of jobs in a scalable and cost efficient manner. Grid processing
serves compute-intensive applications where algorithms and data require massive amounts of
computing power. The number of servers set up for grid processing is often limited due to the
available tools and complex data processing requirements that result low capacity utilization
over time. To solve this issue, Grid processing offers super high computing power with an
acquisition model that allows businesses to pay just for what is used [44].

As shown in figure 2.2.9 Grid processing requires three parameters from users. User needs to
define Minimum and maximum worker array sizes which will be used to scale up and down. It
also requires some basic policies from user for scaling up and down. In addition it is necessary
to mention the locations for the input data and where results should be stored.

Figure 2.2.

RightScale provides batch computing solution that allows customers to util
virtually unlimited cloud resources for grid processing. The benefits of using the Grid Solution
comes out in two different forms

� Cloud Resources can be accessed for a limited time and then turned off.
for what they actually used.

� In time critical projects, user
capacity or budget in most of the internal data centers [47]. As a result, they get their
projects completed in exceptional timeframe.

Figure 2.2.10 Job processing in Local data Canter and RightScale platform [44]

Figure 2.2.9: RightScale Grid processing [47]

RightScale provides batch computing solution that allows customers to utilize the on demand,
virtually unlimited cloud resources for grid processing. The benefits of using the Grid Solution
comes out in two different forms

Cloud Resources can be accessed for a limited time and then turned off.
ally used.

In time critical projects, user can access massively parallel resources beyond their
capacity or budget in most of the internal data centers [47]. As a result, they get their
projects completed in exceptional timeframe.

ocessing in Local data Canter and RightScale platform [44]

Page | 28

ize the on demand,
virtually unlimited cloud resources for grid processing. The benefits of using the Grid Solution

Cloud Resources can be accessed for a limited time and then turned off. Users pay only

massively parallel resources beyond their
capacity or budget in most of the internal data centers [47]. As a result, they get their

ocessing in Local data Canter and RightScale platform [44]

Figure 2.2.10 illustrates the savings between the virtually infinite grid capacity in RightScale’s
infrastructure and running a finite number of dedicated machines in
seen in figure 2.2.10, the task is to run 10,000 jobs with a single server instance (which process 10
jobs per hour) require 1,000 hours of compute time. Since pricing is based on usage, running the
1,000-hour project in the cloud costs same as single s
servers for 500 hours (three weeks) or for one hour on 1,000 cloud servers, gives huge
optimization in timeframe. This achievement can be used for the

2.2 Feedback control system

Unlikely other (mechanical or aeronautical
is considered in Cloud Computing
the elasticity benefit of the shared resources. This theory uses input
linear systems from the monitoring system:
(how efficiently SLOs are achieved),
change in input) and Processing time

Control systems are classified as
controlled directly by an input signal
system could be an amplifier and a motor. The amplifier receives a low
amplifies it to drive the motor to perform the desired job. Open
accurate as a closed-loop control system

Figure 2.3.1: Basic Block Diagram of Open

As shown in figure 2.3.1 an Open Loop System
output of the amplifier is proportional to the
the input signal is fed to the motor, which moves the output shaft (load) in the direction that
corresponds with the input signal. The
input signal is reduced to zero or removed. This
controls speed and direction of movement of the output by
could be controlling the input by either a mechanical or an electrical

The concept of Feedback control is used to measure the system’s outputs such as response time,
throughput and utilization to achieve certain goals. As the measured ou
determine the control inputs and the inputs then affect the outputs, the entire architecture is
called Feedback or Closed-loop system

illustrates the savings between the virtually infinite grid capacity in RightScale’s
infrastructure and running a finite number of dedicated machines in the internal data center. As

, the task is to run 10,000 jobs with a single server instance (which process 10
jobs per hour) require 1,000 hours of compute time. Since pricing is based on usage, running the

hour project in the cloud costs same as single serve. However, when it runs on two cloud
servers for 500 hours (three weeks) or for one hour on 1,000 cloud servers, gives huge

This achievement can be used for the bidding sites or related area.

Feedback control system

(mechanical or aeronautical) disciplines of Engineering, linear control theory [14]
Computing to automate the dynamic adaptation of resources

the elasticity benefit of the shared resources. This theory uses input-output relationships of
linear systems from the monitoring system: Stability (finite inputs produces finite out
(how efficiently SLOs are achieved), Response time (how quickly the system r

Processing time (how long it takes to reach in steady state) [8]

Control systems are classified as either Open-Loop or Closed-Loop. An Open-Loop Control System
input signal only, without the benefit of feedback. An example of such

an amplifier and a motor. The amplifier receives a low-level inpu
to drive the motor to perform the desired job. Open-loop control

loop control system [64].

Figure 2.3.1: Basic Block Diagram of Open-Loop control system [64]

Open Loop System has an input signal that is fed to the amplifier. The
output of the amplifier is proportional to the amplitude of the input signal. After amplification,

motor, which moves the output shaft (load) in the direction that
onds with the input signal. The motor will not stop driving the output shaft until the

input signal is reduced to zero or removed. This system usually requires an operator who
controls speed and direction of movement of the output by varying the input. The
could be controlling the input by either a mechanical or an electrical linkage.

is used to measure the system’s outputs such as response time,
throughput and utilization to achieve certain goals. As the measured outputs are used to
determine the control inputs and the inputs then affect the outputs, the entire architecture is

loop system. An example of a Feedback Control System

Page | 29

illustrates the savings between the virtually infinite grid capacity in RightScale’s
internal data center. As

, the task is to run 10,000 jobs with a single server instance (which process 10
jobs per hour) require 1,000 hours of compute time. Since pricing is based on usage, running the

erve. However, when it runs on two cloud
servers for 500 hours (three weeks) or for one hour on 1,000 cloud servers, gives huge

bidding sites or related area.

) disciplines of Engineering, linear control theory [14]
of resources and take

ut relationships of
finite inputs produces finite out-puts), Bias
(how quickly the system responds to a

[8].

Loop Control System is
of feedback. An example of such

level input signal and
 system is not as

Loop control system [64]

input signal that is fed to the amplifier. The
After amplification,

motor, which moves the output shaft (load) in the direction that
motor will not stop driving the output shaft until the

system usually requires an operator who
varying the input. The operator

is used to measure the system’s outputs such as response time,
tputs are used to

determine the control inputs and the inputs then affect the outputs, the entire architecture is
Feedback Control System could be the

Thermostat in a House. A Thermostat
furnace cycle or fan (input). The desired temperature is maintained even when outside
temperature increases or decreases (disturbance).

Figure 2.3.2: Block diagram of feedback control system [1]

As seen in figure 2.3.2, the system is a single input and single output (SISO) control system that
has single Control input (i.e: MaxClients in Apache HTTP server) and single
CPU Utilization). In this diagram, the
Measured Output. The Controller
that the Measured Output is equal to the
system that needs to be controlled.
Measured Output .Disturbance Input
input influences the Measured Output
output produced by the target system.
conversion or delay [1].

From the cloud platform aspect, the major challenge is to find out a set of perceptible sensors
and actuators to enable control policies to function effectively.
design methodology that consists of two steps
and present Input values to past and present
model of the system. Then define
function. Techniques from control theory are used to predict how the system will react when
event is generated to it. This control policy can be modified with
dynamic target range which decreases as the accumulated actuator values increases.
Proportional thresholding can be used for dynamic range while maintaining a certain CPU
utilization target [7].

Integral Control can be defined by,

U(r+1) = U(r) + Ki * Pref –

hermostat achieves the desired temperature (output) by adjusting the
furnace cycle or fan (input). The desired temperature is maintained even when outside
temperature increases or decreases (disturbance).

Figure 2.3.2: Block diagram of feedback control system [1]

igure 2.3.2, the system is a single input and single output (SISO) control system that
(i.e: MaxClients in Apache HTTP server) and single Measured output

CPU Utilization). In this diagram, the Reference Input is the desired value of the system’s
Controller adjusts the setting of the Control input to the

is equal to the Reference Input. The Target system is the computing
system that needs to be controlled. Control Error is the different between Reference Input and

.Disturbance Input is the change that affects the way in which the Control
input influences the Measured Output. Noise input is the effect that changes the measured

rget system. The Transducer represents the effect such as unit

From the cloud platform aspect, the major challenge is to find out a set of perceptible sensors
and actuators to enable control policies to function effectively. Consider the classical controller
design methodology that consists of two steps [15]. Design a transfer function which relates past

values to past and present Output values. These transfer functions constitute a
model of the system. Then define an event that occurs based on properties of the transfer

. Techniques from control theory are used to predict how the system will react when
event is generated to it. This control policy can be modified with Integral control

c target range which decreases as the accumulated actuator values increases.
Proportional thresholding can be used for dynamic range while maintaining a certain CPU

Integral Control can be defined by,

 Pt

Page | 30

esired temperature (output) by adjusting the
furnace cycle or fan (input). The desired temperature is maintained even when outside

igure 2.3.2, the system is a single input and single output (SISO) control system that
Measured output (i.e:
alue of the system’s
to the Target system so

is the computing
Reference Input and

is the change that affects the way in which the Control
. Noise input is the effect that changes the measured

represents the effect such as unit

From the cloud platform aspect, the major challenge is to find out a set of perceptible sensors
lassical controller
which relates past

values. These transfer functions constitute a
erties of the transfer

. Techniques from control theory are used to predict how the system will react when
Integral control [13] by using a

c target range which decreases as the accumulated actuator values increases.
Proportional thresholding can be used for dynamic range while maintaining a certain CPU

Page | 31

Where u(r) is the current status, Ki is the integral Gain parameter [8], Pref is the current size of the
queue, Pt is the threshold. The parameter Ki> 0 is called the gain. In this scenario, the increasing
size of the request queue will create an event notification to the Worker to process a job as well
as maintain higher CPU utilization. To reduce the over provisioning cost of cloud resources, we
define PH and PL as the high and low of request in the queue, which defines the target range. So,
the modified integral control is as follows:

U(r) + Ki * PH – Pt, if PH < Pt

U(r+1) = U(r) + Ki * PL – Pt , if PL < Pt

 U(r) otherwise

This approach will ensure resource provisioning on time by generating specific trigger when
the queue is above the high threshold.

Page | 32

Page | 33

3. Policy based scaling

This chapter describes the major aspects of Policy Based Approach to provide the elasticity. It will
define the basic concept of this scaling, Event and several types of Triggers that will be generated
to provision cloud resources on demand according to SLA. It also illustrates several the Capacity
planning and the Optimization algorithms that were used to ensure optimal usage of cloud
resources. At the end of this chapter, resources provisioning technique will be described in
details.

3.1 Define Policy Based Scaling

The Policy based scaling system enables users to deploy their application into clouds based on
SLAs such as deployment deadline period, preferred maximum pricing and response time or
the throughput. This scaling method is performed automatically based on the application,
platform, and system events. Events can also be generated from the environment in case of
deadline period is nearby or price of a resource changes. In this approach, a monitoring system
tracks the length of the request queue, response time or throughput of the system and resource
provisioning time. Then the optimization process is ensured with the information received from
monitoring system using one optimizing algorithm. The Optimization will be performed
through management of the workload and dynamic provisioning of cloud resources.
Optimization process decides when to send trigger to provision new Cloud resource. It will
ensure maximum utilization of Cloud resources by making the appropriate amount of delay if
necessary, while provisioning rather than provisioning immediately.

3.1.1 Events

An event is a collection of individual histories which is used to characterize an environmental
message transmitted to the system. Events are also called stimuli. [7]. Email confirmation of an
airline reservation or a message that reports an RFID sensor reading, are different kinds of
events. An event may be time-based, activity-based or derived event which come up after
occurrence of another events inside system. In Cloud, a partially ordered set of events either
bounded or unbounded where the partial orderings are imposed by the causal, timing and
other relationships between the events [8]. In this method, activity such as filling job queue,
high CPU utilization, lower storage capacity has been considered as events. Here event will
appear in order to a trigger an action.

3.1.2 Trigger Management

A trigger defines an action that should be taken when some events occurs into the system. In
database concept, a trigger is a script that executes before or after specific data manipulation
language (DML) events occur [75]. Triggers are used to maintain complex integrity constraints
and business rules. It is also used to notify system for automatic signaling other programs that
action needs to take place when changes occurred. A trigger has two states “Before” or “After”.

Page | 34

This section illustrates several types of triggers that can be sent to create an event in order to
provision Cloud resources. A generic concept like following:

Trigger Structure

Create trigger triggerName on (ObjectName)

Condition

 trigger_events

Action

 IaaS cloud-enabled actions (e.g. deploy new Instance)

3.1.2.1 User Initiated trigger

User Initiated trigger is requested by the user that initiates a request to start or stop an instance
on demand at a particular time. This type of trigger is particularly required in any exceptional
circumstance or occasion. For example, consider a website that becomes incredibly popular
suddenly and receive a large influx with visitors or application that deals with disaster
situations (earthquakes, tsunami, etc) could be an example here.

3.1.2.2 Time based Trigger

Time based trigger will be generated to start an instance of an application that needs to run in
between a particular timeframe of the day and stop after running certain amount od duration.
The Scheduled timeframe have to be agreed by both parties and mentioned in SLA. Provider
will issue this trigger as per agreement. For example, a trigger that runs 20 instances for an
application between 9.00-17.00 business hours due to large number of user access, but in other
time it runs only 2 instances. A trigger that runs an application only 12.00-14.00 hrs which
processes restaurant orders during lunch and dinner could be another example of this type of
trigger.

3.1.2.3 Pricing Trigger

In the SLA, users have to mention maximum affordable cost to deploy an application into the
Cloud. Provider may offer multiple time slots (e.g: Peak and Off-Peak) with variable prices to
ensure maximum utilization of resources. Peak and Off-Peak time slot will be defined by the
provider as per resource utilization metrics. Pricing Trigger will be issued by the provider when
the cost of the instance fits to the SLA within deadline. Let’s consider a case, where a cloud user
can have agreed to pay $50 per month as computing cost for a specific application (e.g:

Page | 35

promotional campaign). Here cloud provider will decide when to start the instance of this
application and when to stop cost after analyzing the cost with maximum resource utilization.

3.1.2.4 Infrastructure Trigger

This type of trigger will be generated on the basis of system monitoring information. It’s a
reactive trigger that will provision Cloud resources on demand. Several system events may
occur that will generate this trigger. Events may be occurred based CPU utilization of servers,
number of requests per second and the length of the queue or demand for the storage capacity.

• Increasing Job Queue

When the request queue is filling up quickly and exceeds the threshold, Infrastructure Trigger
will be sent automatically to start new instance. Similarly, when the queue is below the
tolerance level, it will stop additional instance. For example, when the average number of
request to the queue during last 20 minutes is 30% higher than average number of request over
the last hour and it already significant by being over 50%, then Infrastructure Trigger will be
issued to start more instances to handle this excessive workload. Similarly, if average number of
request to the queue during last 20 minutes is 50% lower than average number of request over
the last hour, stop additional instance.

• Performance Trigger

Cloud Provider’s Monitoring system will examine CPU utilization metrics or response time to
deploy an instance and notify an event when it finds any uneven change in the metrics. This
event generates this trigger to start or stop instances to distribute this workload. For example,
an event can be set that interrogates average CPU utilization during last 30 minutes is 20%
higher than average CPU utilization over the last hour and it already significant by being over
50%, then triggers of scale up initiated automatically. Again, if the average response time
during last 30 seconds exceeds 500ms then send this trigger to add additional instance. If the
average response time over 30 seconds drops under 100ms then remove instance.

• Storage Trigger

Monitoring system will check existing storage usage information. It will create an event to
generate trigger whenever additional Storage is required. Provider is responsible to issue this
trigger as per your system requirement within user’s budget constraints. For example, one user
belongs an account to store 1TB data storage into the cloud. However, for a certain application it
is necessary to have 1.5TB of storage capacity. In this case, provider sends a trigger to allocate
additional capacity for this user. In this case, user will be liable to accept this cost.

3.1 Capacity Planning:

Capacity planning is simpler for
changes in capacity. However, planning
as analysis of historical proje
respective stakeholders [26]. Cloud Infrastructure provider need
recourse provisioning within budget constraint and maximum resource utilization. To do that
capacity planning is necessary
applications requires resources such as CPU, RAM, Disk (persistent or non
Network transfer (in and out). This section illustrates the Capacity planning model which was
used in this Policy Based Scaling.

Figure 3.1

3.2.1 Determine Service Level Requirements

The first step is to categorize the type of work done
experience as it relates to that work. In this step, providers need to look overall process of
establishing service level requirements demands. Before that they need to determine the unit of
measuring the incoming work. Finally, establish service level requirements that are supposed to
deliver [15].

� Define Workloads

In this step of capacity planning, workloads must be defined and a reliable service definition

must be created. A Workload is a logical classification of wor

Capacity Planning:

for an existing system with few adjustments to meet expected
planning for a new system requires other prerequisite tasks such

analysis of historical project archives, industry standards and information obtained
respective stakeholders [26]. Cloud Infrastructure provider needs to ensure on demand

budget constraint and maximum resource utilization. To do that
capacity planning is necessary on the Cloud provider side. Each instance of
applications requires resources such as CPU, RAM, Disk (persistent or non

This section illustrates the Capacity planning model which was

Figure 3.1: 3-Steps model of Capacity Planning

Determine Service Level Requirements

The first step is to categorize the type of work done by the system and quantify the user
experience as it relates to that work. In this step, providers need to look overall process of
establishing service level requirements demands. Before that they need to determine the unit of

Finally, establish service level requirements that are supposed to

In this step of capacity planning, workloads must be defined and a reliable service definition

is a logical classification of work performed on a computing

Page | 36

adjustments to meet expected
requires other prerequisite tasks such

ct archives, industry standards and information obtained
to ensure on demand

budget constraint and maximum resource utilization. To do that
loud provider side. Each instance of Cloud based

applications requires resources such as CPU, RAM, Disk (persistent or non-persistent) and
This section illustrates the Capacity planning model which was

by the system and quantify the user
experience as it relates to that work. In this step, providers need to look overall process of
establishing service level requirements demands. Before that they need to determine the unit of

Finally, establish service level requirements that are supposed to

In this step of capacity planning, workloads must be defined and a reliable service definition

k performed on a computing

system. Three major issues are need to considered here: “

of work is being done and “How

� Determine the Unit of

It is necessary to define an associate

quantity of the work done against

work. For example, for an online workload,
an interactive or batch workload, the unit of work

Figure 3.1.2 Fundamental pieces of Metric collection systems [

One motivating way is to consider one of the capacity tracing tools, like Metric collection

system. As shown in figure 3.1.2

physical machine being monitored and a single server aggregates and displays the metrics.
When the number of node increase

environment. Agent collects data from the host machine and sends a summary to the metric

aggregation server. Then metric aggregation server stores the metrics of individual machine

which will be displayed by different manner [26]. Most aggregation servers use database such
as Round-Robin Database (RRD) [66] in this case.

� Establish Service Level

A Service Level Agreement (SLA)

consumer that delivers acceptable

system. Three major issues are need to considered here: “Who” is doing the work, ‘

How” the work is being done [15].

nit of Work

define an associate Unit of work with a workload which is

quantity of the work done against the amount of system resources required to accomplish that

. For example, for an online workload, the unit of work may be a transaction

tch workload, the unit of work may be a process. [15].

undamental pieces of Metric collection systems [15

One motivating way is to consider one of the capacity tracing tools, like Metric collection

2, the architecture consists of an “Agent” that runs on each of the

physical machine being monitored and a single server aggregates and displays the metrics.
number of node increases, we need to assign more servers like as data center

llects data from the host machine and sends a summary to the metric

aggregation server. Then metric aggregation server stores the metrics of individual machine

which will be displayed by different manner [26]. Most aggregation servers use database such
[66] in this case.

Establish Service Level

Service Level Agreement (SLA) is an agreement between the service provider and service

at delivers acceptable Services [25]. This includes items like CPU Utilization by

Page | 37

” is doing the work, ‘What’ -type

of work with a workload which is a measurable

the amount of system resources required to accomplish that

transaction, similarly for

15]

One motivating way is to consider one of the capacity tracing tools, like Metric collection

chitecture consists of an “Agent” that runs on each of the

physical machine being monitored and a single server aggregates and displays the metrics.
, we need to assign more servers like as data center

llects data from the host machine and sends a summary to the metric

aggregation server. Then metric aggregation server stores the metrics of individual machine

which will be displayed by different manner [26]. Most aggregation servers use database such

agreement between the service provider and service

CPU Utilization by

Page | 38

Workload response time or throughput, processing time for each request and minimum number

of requests that can be processed in a given period of time. The workloads help the process of

developing SLAs, as it can be used to measure the system according to client requirements. In
the case of scheduling application, a SLA includes the number of requests that should be

processed within deadline. Ideally, SLAs are ultimately determined by business requirements

based on past experience. To make SLAs on present actual service levels, user needs to analyze

current capacity before setting service levels. [24].

For example, organizations may want to make reservations to guarantee specific SLA. In that

case, SLA needs to be configured on assumption in different tier level [26].

� Tier 1: Allocate 100% of configured memory

� Tier 2: Allocate 50% of configured memory

� Tier 3: No memory reservations set.

The reservation number is defined by the amount of RAM required to run the workload as per

SLA. If it is a rule, then need to provision the correct amount of memory for Instances.

Excessive configuration of RAM on Instances will create an inefficient platform.

3.2.2 Analyze current system capacity

Before planning for the additional capacity, imperative study needs to be performed to evaluate
the organizations current capacity. Cloud service providers need to monitor system resource

utilization such as CPU utilization, memory, hard drive & network and to find out which

workloads are the major users of each resource, where it spends most of the time, allowing one

to determine which system resources are responsible for the greatest portion of the response
time for each workload. Record and track utilization of system resources to determine where

capacity adjustments need to be made to support business processes as defined by the client. In

case of having no existing system, information such as historical project archives, industry

standards, information obtained from vendors or customer need to consider [23].

� Measure overall resource usage

TeamQuest research noticed that CPU utilization is about 64% during time period 7:00 AM -
10:00 AM on a particular day. That means resource seems not to be saturated high memory
operations [25]. To determine minimum amount of memory requirement we can consider factor
like observing excessive paging in the guest operating system indicates that the Instance is not
be performing optimally. The exact workload demand is for the Instance will ensure adequate
reservation [26].

Page | 39

� Measure resource usage by workload

CPU Utilization is also a determining factor to measure expected future workload that we chose
to treat appointment processes as a workload. Cloud provider needs to set up workloads to
correspond to different business activities, thus allow analyzing performance from various
requirements from different stakeholders.

� Identify components of response time

Components of response time analysis shows the average resource or component usage time for
a unit of work. It provides the contribution of each component to the total time required to
complete a unit of work. To determine the amount of time which is required to process a unit of
work is essential. The resources takes the major response time indicates the concentrate of
efforts to optimize performance [26]. TeamQuest Model [25] determines the components of
response time on a workload by workload basis that can predict which components will be
ramp-up in business.

3.1.3 Forecast future system

Cloud provider need to forecast expected workloads for a particular period of time. It is
necessary to understand how the changes in workloads affect the business processes and
systems for which it was built. Translation of those changes into technical requirements is also

necessary to maintain the system at a level that satisfies user demands.

� Determining of future processing requirements

In addition to SLA, forecasting of the organization’s future is the vital key input into the
capacity planning process. Future processing requirements come from multiple sources such as

expected growth in the business, requirements for implementing new applications, planned

acquisitions, budget limitations and requests for consolidated resources [25].

� Planning for future system configuration

To make a suitable plan for future system usage Cloud providers need to create a capacity plan
that combines current configuration, required future configuration and the scope to accomplish
any necessary system change. They need to monitor and analyze the expected growth rate of
the system. The threshold of the queue need to be defined that represents utilization levels and
trigger necessary actions to increase capacity. For example, when running instances CPU
utilization reaches 90% of its capacity, need to start additional instances. Incident plan take an
actions in response to identified capacity triggers to meet the capacity.

Page | 40

Capacity planning often requires tradeoffs to accommodate capacity limitations, quality issues,
budget concerns, etc. However, these tradeoffs have to be mentioned in SLA and agreed upon
by the both parties. A provider has the scope to choose one of the three strategies while doing
capacity planning [25].

� Lead strategy: adds capacity in anticipation of an increase in demand.

� Lag strategy: adds capacity after demand has increased beyond existing capacity.

� Match strategy: adds capacity incrementally in response to changes in demand

3.3 Optimization & Algorithm

Event based workload management system offers user to deploy their application into clouds
based on SLAs such as deployment deadline period, preferred maximum pricing, optimized
power consumption etc. Optimization will be performed through the management of the
workload and providing the dynamic resource provisioning into cloud. This section depicts the
optimization process and algorithms that were used to provision the optimal number of cloud
resources.

3.3.1 Static Vs Dynamic Scaling

Static Scaling determines the minimum number of instances required to achieve maximum
availability at the peak workload and then runs all of those for the desired duration. It provides
the best case result for a static allocation that achieves near to 100% availability since there is
prior knowledge of the number of instances required. However it is quite difficult to determine
the exact number of instances that is needed. In this scenario, users need to maintain multiple
times the instances than required to ensure that they will be able to serve their customers even
when they have heavy traffic. Though static provisioning ensures maximum availability, it
takes higher cost to ensure that. Static Scaling is considered as Vertical Scaling [2] which provides
the facility to change assigned resource into a running instance such as adding more physical
CPU for the running instance. It scales the resource through resizing and replacement of the
instances. However, the most operating systems do not support changes without rebooting on
the available CPU or memory to support this Vertical Scaling.

Dynamic Scaling of Cloud resource is the most significant feature in Cloud Computing which is
also defined as Horizontal Scaling [2]. Horizontal Scaling allows adding new server replicas and
loading balancers to distribute the workload among all available replicas. As shown in figure
3.3.1, it provides two scheme Virtual Machine (VM) replication and Network Scalability. VM
replication will be delivered by using the Load Balancer Algorithm along with Load Balancer
Scalability.

On the other hand, Network Scalability
demand creation of Virtual Network
resource. It also provides Network Slicing
on demand network utilization
bandwidth [2]. In this policy based approach, scaling will be ensured through the workload
Optimization Algorithm which will decide when and how much Cloud resource need to
provision. After analyzing the monitoring information (e.g : Q
budget constraints , provision trigger will be sent.

Figure 3.

3.2.2 Energy Optimization

Determining Virtual Machine (instance)
key factors in the Policy based scaling
scaling method can reduce power consumption and resulting
demand Cloud resource provision and customized configuration settings from each user
this challenging to achieve a greener computing environment.
instances with a configuration setting that contains
installed Middleware solution [71]. All of these resources consume different
example, the average power consumption of
different types of processors, six
150-610 Walts per hour [62].
configuration and using this information

Selecting the appropriate type of instance configuration
energy optimization. When an application re
provider resource pool, the request can be served almost
in the pool, more efficient way would be to modify the configuration of a running instance
rather than provisioning and booting an instance
consumption. Another challenge is

Network Scalability is the scalability of Cloud network that pr
Virtual Network [48] by instantiating bandwidth provisioned network

Network Slicing that keeps the application flow separate
network utilization of each application and dynamically allocates network

bandwidth [2]. In this policy based approach, scaling will be ensured through the workload
which will decide when and how much Cloud resource need to

provision. After analyzing the monitoring information (e.g : Queue Length, Response time) and
budget constraints , provision trigger will be sent.

Figure 3.3.1 Horizontal and Vertical Scaling

Energy Optimization

Virtual Machine (instance) power consumption and its operating costs
Policy based scaling Approach. Removing unutilized resources with

can reduce power consumption and resulting CO2 Emissions
demand Cloud resource provision and customized configuration settings from each user

to achieve a greener computing environment. A cloud application request
configuration setting that contains type of the Processor, Operating System and

[71]. All of these resources consume different amount of power. For
the average power consumption of Amazon EC2 cloud infrastructure with five

six different memory configuration and nine different OS types is
]. This section describes the challenges of capturing VM

and using this information how to optimize the power consumption.

of instance configuration to run is one of the major challenges for
an application requests an instance which is available in the

request can be served almost instantaneously. However, if it is not
he pool, more efficient way would be to modify the configuration of a running instance

rather than provisioning and booting an instance from the scratch to reduce the
challenge is to determine the number of available resources i

Page | 41

is the scalability of Cloud network that provides on
provisioned network

the application flow separate by adapting
ly allocates network

bandwidth [2]. In this policy based approach, scaling will be ensured through the workload
which will decide when and how much Cloud resource need to

ueue Length, Response time) and

operating costs is one of the
unutilized resources with this auto

 significantly. On
demand Cloud resource provision and customized configuration settings from each user make

cloud application request
perating System and
amount of power. For

cloud infrastructure with five
configuration and nine different OS types is

challenges of capturing VM
power consumption.

is one of the major challenges for
quests an instance which is available in the

However, if it is not
he pool, more efficient way would be to modify the configuration of a running instance

the scratch to reduce the Energy
to determine the number of available resources in the pool

Page | 42

to minimize the Energy consumption and their maintenance cost. In addition, each individual
configuration in the pool varies in Energy consumption and cost. So it is quite challenging to
navigate tradeoffs between Energy consumption and the response time of the dynamic scaling
of different sets of instances configuration.

In the Policy based scaling considered that Cloud user provides a configuration of the Demand
Model that describes the setting for each type of instance that the application needs during its
execution lifecycle. Every new request for an instance must contain a Demand Model. It is a text
based domain specific language that describes each configuration requested in the configuration
model. Cloud Service Provider belongs the configuration of Adaptation & Energy Model that
specifies the time required to add or remove an instance as well as the power consumption
required to run an instance as per Demand Model. The cost of the power consumption will be
calculated in the provider side. Then the combination of Demand Model, Adaptation & Energy
Model and the Workload Estimation Model are used to derive the optimal scaling setup.

The objective function of the power consumption reduction and maintenance cost has derived
from the Response Time and the instance Demand Model configuration. The Response Time Rt, can
be defined from the configuration Demand Model as:

Rt = min (T0 , T1 , T2 ,… Tn , (STRUP (Rq))

Where, Rt is the expected response time , n is the total number of feature in a Demand Model, Ti
is the Expected request completion time , STRUP (Rq) is the time to start a new instance to fulfill
the request Rq .

The expected response time, Rt would be the fastest time available to complete the request. The
time to complete the request (Ti) will be zero if the configuration already exists in the resource
pool. In other case, the time to complete the request is equal to the time needed to modify the
configuration as per request.

Now for each instance configuration Ki, energy consumption can be defined as:

Energy (Ki) = ∑ ���	���
�	

Where Q is a set of features that describes the selection state of each instance configuration and
E is the energy consumption cost model resulting from the feature in a running instance
configuration.

Each set of variables, Ki Є K, describes the selection state of the features for an instance in the
queue. For each variable, qij Є Ki ; if qij = 1 in a derived configuration, it indicates that the jth
feature has selected by the ith instance configuration.

Page | 43

So the overall Energy consumption minimization objective function is defined as

 ε = Energy (K0) + Energy (K1) + Energy (K2)+ …….+ Energy (KN)

By using Virtualization [69] and Consolidation, the energy consumption is further reduced by
switching-off unutilized servers. This scaling approach mostly focused on the inclusion of
overall carbon efficiency of all the Cloud providers in scheduling and resource provisioning
decisions. If Cloud users have flexible deadline and don’t have urgent scheduling of the
applications, then datacenters can be run at higher energy efficiency and carbon gain can be
achieved. Moreover, this optimized power consumption policy also gives better return to the
Cloud Service provider.

3.2.3 Fitness function

The fitness function needs to ensure the desired optimization goal by maximizing the
application throughput while minimizing the cost. When Cloud providers allocate required
resource to the user application, they need to consider the system throughput. This section
illustrates the fitness function of the Policy based scaling method.

Assume that resource is allocated the from provider resource pool (R) to the worker (W). The
role of a worker can be defined with the function role(w) for w ∈ W.

role (w) = ∑i wti .taski, , where wti is the weight of the task i.

Each resource has an estimated performance for different roles which is calculated by weighted
sum of its performance on each of the task. The estimated performance of resource r for the role
role(w) can be denoted as capacity(role(w), r).

Each resource has a fixed cost independent of the role. The challenge is to assign the best fits
worker to a resource that maximizes the performance of the application and minimizes the cost.
The throughput of a worker is the minimum capacity of the resource that is assigned for
particular role.

throughput (w) = w Є W Min capacity (role(w))

 ∑ wt .task

So the throughput of the system will be as:

Page | 44

 throughput system = throughput (w) | role(w)

The cost of the application is the sum of assigned resource cost.

 Cost system = w Є W ∑ cost (role(w))

Therefore the fitness function of the system can be defined as

 Fitnesssystem = throughput system / Cost system

3.2.4 Policy based scaling Algorithm

In this algorithm, Feedback control model (explained in section 2.3) was used to maximize the
cloud resources utilization while satisfying the Deployment Time Constraint, Resource Budget,
Response Time and Power Consumption. Here Virtual Cloud Resources (Virtual Machine
(instance), Memory) are dynamically provisioned according to the environment conditions &
parameters. The major challenge is to finish all the submitted requests before user specified
deadline in SLAs within Budget Constraints.

In this control model we have several components such as Maximum Resources Cost (CMax) that
is affordable by the Client, Application Deployment Deadline (Td) which mutually agreed in
SLA between the both Cloud User and Provider, Average instance provision time is TRP , Average
Start Up delay dRP and the successful deployment after considering all factors denoted as
MIFsuccess. .

If we define the total Workload WN as Vector, then

WN = (Ji , ni)

Where each Job group (Ji) has ni number of submitted jobs.

The Computing Power (P) of an instance Ij can be represented as a vector. Computing Power
indicates that how many jobs from a job group can be successfully completed before the
deadline arrives. Assume that all jobs in the queue will be finished with current instance. So, the
Deadline and Individual Job Completion Time ratio will be as following:

Pi = (Ji ,
dT ∗	
�

RP
T∑ ∗		
�

)

Where ni is the number of submitted jobs in the queue and TRP is the Average Processing time.

So the computing power of the Pending instance can be calculated as,

Page | 45

i

RP

()*
 (J ,)

T *

d RP

i

T d fi n
P

n

− −

=

∑

Where RPd is the average start up delay and fi is the spent time after the instance started.

So the total computing power at ith time stamp ∑ Pi .

If ∑�� < WN , then more instances need to provision to distribute additional workload. At this
time, optimization process needs to find one of the best fits instance with Computing Power

 Pi1 = WN- ∑Pi

and the cost would be (Min Cinew∑), but with maximum computing power,

 Max (∑Pi1) to

optimize the resource budget.

So the cost of the new instances would be within budget constraint

Cinew∑ +∑Ci <= CMax

Where CMax is the maximum Budget for a resource and Ci is the cost of an instance .

Since VM Instances are charged to User based on operating hours even though full hour may
not be used, additional instances need to shut down before full hour completion. So, the
computing power without that instance needs to calculate and compare with current workload.

∑Pi – P1i > WN

Considering the Energy consumption factor described in section 3.2.3, total energy must be

Min(∑ εI type), where Itype is the instance type.

So, the success of the Management Influencing Factor (MIF) can be defined as

MIFsuccess = ∑Ci + NewCi∑ <= CMax , ∑TRP + ∑ dRP <=Td , Min (∑ εItype)

Page | 46

Algorithm 3.2.3 Cost Function for an Instance Vector considering the price of
minimal instances

Procedure Cost (instances[],minInstanse[], C [])

Cinew ← 0;
For i ← 0; i< instances[] do

If instance [i] ≥ minInstanse [i] then
Cinew ← Cinew + instance [i] · C [i];

Else
Cinew ← Cinew + minInstanse[i] · C [i];

End if
End for
Return Price

End Procedure

Algorithm 3.2.4 Optimization of Deadline, Budget & Energy Constraint

Procedure Optimization (Inscurrent , C [], InsType, TRP , dRP , ni , Energy)

instances [];

int Threshold;

while (ni >= Threshold) do

Ctemp = Cost (Inscurrent, minInstance[], C []

Energy = Instype . Inscurrent;

If (Ctemp < CMax && TRP + dRP < TDeadline && Energy <=Min(Energy))

Send Provisioning Trigger;

Inscurrent ++;

 End if

 Return int InsReq, int Inscurrent;

 End While

End Procedure

3.4 Resource Provisioning

According to the Policy based scaling
provision resources. Client can only request for additional resource, but provider will decide
when to provision. Provider is liable to provision resources as per SLAs. The decision of
resource provisioning will be controlled

The process Monitor keeps track of
startup delay of the instance. By
send best fit provisioning trigger to prepare
its own algorithm that analyzes environment conditions while sending a trigger.
manager (PvM) works as the adapter between
resources as per the decision from
into three types: Standard, high-
types of applications where as
application such as image processing
intensive applications [21]. Similarly, based on the type of the application,
instance to the user.

Figure 3.8: Cloud Resource provisioning

As seen in figure 3.8, Optimizer is the core of this scaling mechanism. Depending
workload and historical job information
parameters set in configuration file, it sends a best fit trigger to the provisioning Manager (

Resource Provisioning

Policy based scaling approach, the Cloud service provider is responsible to
n resources. Client can only request for additional resource, but provider will decide

when to provision. Provider is liable to provision resources as per SLAs. The decision of
resource provisioning will be controlled by changing the configuration file in provider side.

keeps track of historical job processing time, request arrival pattern and
startup delay of the instance. By maintaining this historical information, Optimizer
send best fit provisioning trigger to prepare for possible workload surges early. Optimizer has
its own algorithm that analyzes environment conditions while sending a trigger.

works as the adapter between Optimizer and cloud Provider.
ision from Optimizer. For example, Amazon EC2 instances are grouped

-CPU and High-memory. Standard instances are
where as High-CPU instances mostly suited for computing intensive
image processing and High-memory instances are dedicated to
s [21]. Similarly, based on the type of the application, PvM

Figure 3.8: Cloud Resource provisioning

3.8, Optimizer is the core of this scaling mechanism. Depending
historical job information from performance monitor and

set in configuration file, it sends a best fit trigger to the provisioning Manager (

Page | 47

Cloud service provider is responsible to
n resources. Client can only request for additional resource, but provider will decide

when to provision. Provider is liable to provision resources as per SLAs. The decision of
provider side.

request arrival pattern and
Optimizer can decide to

ly. Optimizer has
its own algorithm that analyzes environment conditions while sending a trigger. Provisioning

and cloud Provider. PvM allocated
Amazon EC2 instances are grouped

Standard instances are suitable for all
computing intensive

instances are dedicated to I/O
PvM starts a new

3.8, Optimizer is the core of this scaling mechanism. Depending on real-time
monitor and configuration

set in configuration file, it sends a best fit trigger to the provisioning Manager (PvM)

Page | 48

to start an instance. After getting notification from Optimizer, Provisioning manager determine the
instance startup plan. In contrast, releasing instance actions are initialed it decides which
instance is approaching full hour operation and could be the potential shut-down targets. In this
case, PvM notifies Optimizer to check whether remaining computing power is large enough to
handle the workload.

3.6.1 Deadline Accomplishment

Satisfying deadline is one the major MIF factors in this Policy based approach. When workload

have Changed but deadline is fixed, PvM follows the Earlier Deadline First Schedule (EDFS) [67]

method that allows finishing jobs those are approaching to deadline. If necessary, it provision

new instance to handle this excessive workload. When the job has completed, it shut down the

additional instance. On the other hand, when workload is fixed, but user initiated trigger has

sent (request on demand), PvM first reset the job provisioning priority according to deadline.

Then it schedules the higher priority job at first and then others.

3.6.2 Peak and Off-Peak Slot

Whenever in SLA cloud user put lengthy timeframe as deadline, provider has the scope to

move the application deployment into cloud in one of the suitable time slots. For example,

large volume data processing applications which need data computation and analysis can be

performed during day time, whereas data backups and movements can be shifted durings

nights and holidays according to SLA conditions.

Cloud user will define the types of application that shall be deployed into the Cloud. This

scaling mechanism will schedule computing intensive applications such image processing and

scientific computation during Peak hours (8.00-20.00 hrs) using High-CPU instance within

budget constraints since most of the scientific tasks are made this period. Similarly, I/O

intensive or memory oriented applications like backup or storage services can be served in off-

peak hour using high-memory instances. Off-peak hours will be duration between 21.00 – 8.00

hrs. The peak and off-peak slot is dependent of data-center location such as US & EMEA has

different time zone. These time slot will be defined by cloud provider and every provider have

their own peak and off-peak slots as per their request traffic.

3 Implementation

This chapter describes the implementation technique of the
provides the system architecture as well as the scenario of the test environment. The prototype
of this Policy based scaling system w
also includes few other Amazon web services platform like as Simple Queue Services (SQS) and
Auto scaling. The test bed was developed on Java eclipse environment.

4.1 Client-Worker Paradigm

The traditional Client-Worker paradigm
seen in figure 4.1.1. In this implementation Client was
“Worker”. Requester sends message to the Amazon SQS Queue (described in next sectio
which can be granted as client request for cloud
the message from the queue. The worker is configured with the same queue as the requester
uses for sending.

Figure 4.1.

Implementation

the implementation technique of the Policy based scaling
s the system architecture as well as the scenario of the test environment. The prototype

system was implemented on Amazon Elastic Cloud platform which
also includes few other Amazon web services platform like as Simple Queue Services (SQS) and
Auto scaling. The test bed was developed on Java eclipse environment.

Worker Paradigm

Worker paradigm [68] was considered to implement the thesis concept
. In this implementation Client was renamed as “Requester” and worker as

orker”. Requester sends message to the Amazon SQS Queue (described in next sectio
which can be granted as client request for cloud infrastructures services. The Worker will read

The worker is configured with the same queue as the requester

Figure 4.1.1: Implementation Scenario

Page | 49

Policy based scaling approach. It
s the system architecture as well as the scenario of the test environment. The prototype

as implemented on Amazon Elastic Cloud platform which
also includes few other Amazon web services platform like as Simple Queue Services (SQS) and

was considered to implement the thesis concept as
named as “Requester” and worker as

orker”. Requester sends message to the Amazon SQS Queue (described in next section)
he Worker will read

The worker is configured with the same queue as the requester

In the implementation scenario, b
figure 4.1.2 which is stored in Amazon S3 storage. The
parameter: no of message per minute. Upon initialization, Requester creates its own, ra
Amazon SQS queue which receives reply message from Worker. When the requester sends a
message, it includes the response queue as well as a unique message id. After
response queue receives a proce
processing time along with ID to a log file.

Figure 4.1.

The Worker considered SQS as input queue. It has also one configuration parameter: Processing
time (the amount of time it takes to process a messag
requester, the worker processes the message (waits amount of time mentioned into the
configuration file) and sends back a confirmation message to the respective “Callback Queue”
of the requester. The test result (mess
through the Callback Queue.

When a client invokes a two-way asynchronous operation on an object, it passes an object
reference for a reply handler as a parameter. The reply handler object refere
the worker, but instead is stored locally by the client. When the Worker replies, the client
receives the response and dispatches it to the appropriate callback operation on the reply
handler provided by the client application. In this
queue is also a SQS Queue which sends the confirmation message to the requester and writes ID
and respective processing time in a log file.

The Worker is one of the AMIs (Amazon machine image) inside EC2. When

the incoming requests to the queue is very high, it creates overload to the existing workers, an

event occurs as per monitoring information to send a provisioning trigger to the provisioning

manager to start additional worker. Similarly,

manager stops additional worker to reduce infrastructure cost, power consumption and

optimize maximum usage of cloud resources.

plementation scenario, both Requester and Worker have Configuration File
which is stored in Amazon S3 storage. The Configuration File

parameter: no of message per minute. Upon initialization, Requester creates its own, ra
Amazon SQS queue which receives reply message from Worker. When the requester sends a
message, it includes the response queue as well as a unique message id. After

receives a processed message with the same id and write
to a log file.

Figure 4.1.2: Requester-Worker Configuration File

as input queue. It has also one configuration parameter: Processing
time (the amount of time it takes to process a message. When it receives a message from the
requester, the worker processes the message (waits amount of time mentioned into the
configuration file) and sends back a confirmation message to the respective “Callback Queue”

The test result (message processing time and Message Id) is stored in a log file

way asynchronous operation on an object, it passes an object
reference for a reply handler as a parameter. The reply handler object reference is not passed to
the worker, but instead is stored locally by the client. When the Worker replies, the client
receives the response and dispatches it to the appropriate callback operation on the reply
handler provided by the client application. In this implementation seen in figure 4.1.
queue is also a SQS Queue which sends the confirmation message to the requester and writes ID

processing time in a log file.

The Worker is one of the AMIs (Amazon machine image) inside EC2. Whenever the number of

the incoming requests to the queue is very high, it creates overload to the existing workers, an

event occurs as per monitoring information to send a provisioning trigger to the provisioning

manager to start additional worker. Similarly, as per monitoring information provisioning

manager stops additional worker to reduce infrastructure cost, power consumption and

optimize maximum usage of cloud resources.

Page | 50

Configuration File shown in
Configuration File contains one

parameter: no of message per minute. Upon initialization, Requester creates its own, random
Amazon SQS queue which receives reply message from Worker. When the requester sends a
message, it includes the response queue as well as a unique message id. After a while, the

writes the message

as input queue. It has also one configuration parameter: Processing
e. When it receives a message from the

requester, the worker processes the message (waits amount of time mentioned into the
configuration file) and sends back a confirmation message to the respective “Callback Queue”

age processing time and Message Id) is stored in a log file

way asynchronous operation on an object, it passes an object
nce is not passed to

the worker, but instead is stored locally by the client. When the Worker replies, the client
receives the response and dispatches it to the appropriate callback operation on the reply

seen in figure 4.1.1, Callback
queue is also a SQS Queue which sends the confirmation message to the requester and writes ID

ever the number of

the incoming requests to the queue is very high, it creates overload to the existing workers, an

event occurs as per monitoring information to send a provisioning trigger to the provisioning

as per monitoring information provisioning

manager stops additional worker to reduce infrastructure cost, power consumption and

As per configuration constraints, AMI
message. During this period, it reads a message from the queue
Queue and send back the confirmation message to the respective “Callback Queue” of the
requester. The callback Queue writes the
“Evaluation file” as shown in figure 4.1.2. It contains Message ID and relevant message
processing time.

4.2 System Architecture

4.2.1 Monitoring

In this approach, monitoring plays one of the vital roles beh
We will monitor incoming requests
through following monitors:

Request Monitor: The Request Monitor mechanism keeps track of the execution
client requests, in other way it informs about size of the queue. Messages which are visible into
the Queue have different levels. As seen in figure 4.2.
can be handled by existing Workers.
alarm the Trigger management. As it reaches the firing point, immediately sends a signal to the
Trigger management module to start more workers.

Figure 4.2.

Figure 4.1.3 Evaluation file

As per configuration constraints, AMI Worker takes certain amount of time
message. During this period, it reads a message from the queue, delete this message from the

confirmation message to the respective “Callback Queue” of the
The callback Queue writes the result of the execution into a text file which called

“Evaluation file” as shown in figure 4.1.2. It contains Message ID and relevant message

System Architecture

In this approach, monitoring plays one of the vital roles behind cloud resource provisioning.
requests in the queue from Cloud users. Monitoring is ensured

Request Monitor mechanism keeps track of the execution
her way it informs about size of the queue. Messages which are visible into

the Queue have different levels. As seen in figure 4.2.1, “Tolerance level” is the first level that
can be handled by existing Workers. When the queue size exceeds threshold, an ev
alarm the Trigger management. As it reaches the firing point, immediately sends a signal to the
Trigger management module to start more workers.

Tolerance

Threshold

Fire

Figure 4.2.1: Request Queue status

Page | 51

time to process a
delete this message from the

confirmation message to the respective “Callback Queue” of the
result of the execution into a text file which called

“Evaluation file” as shown in figure 4.1.2. It contains Message ID and relevant message

ind cloud resource provisioning.
loud users. Monitoring is ensured

Request Monitor mechanism keeps track of the execution status of
her way it informs about size of the queue. Messages which are visible into

, “Tolerance level” is the first level that
an event occurs to

alarm the Trigger management. As it reaches the firing point, immediately sends a signal to the

VM Monitor system monitors the availability of VMs and their resource entitlements.
the history information of resource provisioning duration as well as stopping additional
Resources.

4.2.2 Optimizer and Trigger

Optimizer analyzes the Management Influencing Factors (
handling time behind each request.
network usage and similar cloud infrastructure resources.
conditions, triggers will be sent to provision additional cloud resources.

the availability of VMs and their resource entitlements.
the history information of resource provisioning duration as well as stopping additional

Figure 4.2.2: System Architecture

and Trigger Management

Management Influencing Factors (MIFs) such as provisioning or request
behind each request. It also considers price, deadline, power consumption,

network usage and similar cloud infrastructure resources. If it fits with the surrounding
conditions, triggers will be sent to provision additional cloud resources.

Page | 52

the availability of VMs and their resource entitlements. It keeps
the history information of resource provisioning duration as well as stopping additional

such as provisioning or request
also considers price, deadline, power consumption,

with the surrounding

Cloud providers allow user to request more resources. Unlimited resources scale applications to
extremely large size, but need to pay for ever
scenario, Optimizer selects the payment method (described in sec

Cloud instances acquisition requires certain amount of time since acquisition request come to
make the instance available. Optimizer
monitoring and predicted average start up time to prepare early for workload surges.
Considering all the monitoring & environment constraints,
provisioning triggers (seen in sec. 3.4) to request a resource. In this implementation seen in
figure 4.2.2, the trigger request for an EC2 AMI as worker to distribute extended load among
multiple workers. Optimizer also provides auto scaling mechanism to avoid the fractiona
amount of VM instances as EC2 consider 10 minutes and 60 minutes as equal time. It select the
best suitable EC2 instance among all three (described in section 4.2.3) to deliver
and energy effective service.

4.2.3 Provisioning Manager

After receiving provisioning trigger from Trigger Management module,
(PvM) execute VM (Virtual machine) start up plan
Amazon AMI instance (Worker)

Amazon EC2 provides two types of booting up of an instance. Boot from an S3
known as Instance store AMI and
life cycle models. Average instance startup time in Amazon
changes time to time. However, VM shut down time is more likely stable, usually 2
[21].

Figure 4.2.4: S3

As shown in figure 4.2.4, life cycle of the
little time in “pending” state and waits for the reservation. As soon as it begun to boot,
“running” state starts that continue until giving terminating command. Before terminating,
instances wait little amount in “shutting down” state.

Cloud providers allow user to request more resources. Unlimited resources scale applications to
extremely large size, but need to pay for every cycle used and byte transferred to cloud. In this

selects the payment method (described in sec 3.3) to provision

Cloud instances acquisition requires certain amount of time since acquisition request come to
Optimizer process collects previous start up information from

monitoring and predicted average start up time to prepare early for workload surges.
Considering all the monitoring & environment constraints, Optimizer sends one of best fit

rs (seen in sec. 3.4) to request a resource. In this implementation seen in
, the trigger request for an EC2 AMI as worker to distribute extended load among

also provides auto scaling mechanism to avoid the fractiona
amount of VM instances as EC2 consider 10 minutes and 60 minutes as equal time. It select the
best suitable EC2 instance among all three (described in section 4.2.3) to deliver

Provisioning Manager (PvM)

After receiving provisioning trigger from Trigger Management module, Provisioning Manager
execute VM (Virtual machine) start up plan. In this implementation, PvM starts an

(Worker) if necessary and shut down to optimize budget constraints.

Amazon EC2 provides two types of booting up of an instance. Boot from an S3
and other one is EBS-backed AMI. Each boot up delivers different

Average instance startup time in Amazon is 10 minutes, however also
changes time to time. However, VM shut down time is more likely stable, usually 2

Figure 4.2.4: S3-Backed AMI Instance [19]

life cycle of the S3-backed AMI instance starts as we lunch
little time in “pending” state and waits for the reservation. As soon as it begun to boot,
“running” state starts that continue until giving terminating command. Before terminating,
instances wait little amount in “shutting down” state.

Page | 53

Cloud providers allow user to request more resources. Unlimited resources scale applications to
byte transferred to cloud. In this

) to provision new instance.

Cloud instances acquisition requires certain amount of time since acquisition request come to
process collects previous start up information from

monitoring and predicted average start up time to prepare early for workload surges.
sends one of best fit

rs (seen in sec. 3.4) to request a resource. In this implementation seen in
, the trigger request for an EC2 AMI as worker to distribute extended load among

also provides auto scaling mechanism to avoid the fractional billed
amount of VM instances as EC2 consider 10 minutes and 60 minutes as equal time. It select the
best suitable EC2 instance among all three (described in section 4.2.3) to deliver the most cost-

Provisioning Manager
. In this implementation, PvM starts an

get constraints.

Amazon EC2 provides two types of booting up of an instance. Boot from an S3-backed AMI
. Each boot up delivers different
is 10 minutes, however also

changes time to time. However, VM shut down time is more likely stable, usually 2-3 minutes

starts as we lunch it. It stays
little time in “pending” state and waits for the reservation. As soon as it begun to boot,
“running” state starts that continue until giving terminating command. Before terminating,

In contrast, EBS-backed AMI instance
spends little time in the “pending” state until moves to “running” state. From there it can be
rebooted or shut down, like S3-backed AMI instances. In addition, it
again or terminated. EBS-backed AMI instance is more expensive than S3
instances are not charged when it is in “stopped” state, but the attached EBS volumes cost
money. EBS-backed AMI instance deletes the as

only, so the cost of the EBS boot volume is there

pricing issue of EBS-backed AMI instance

has higher budget and need to r
will be more suitable. In other case,

Manager.

Figure 4.2.

4.3 Asynchronous Messaging with Amazon SQS

Unlikely other asynchronous messaging system, Amazon Simple Queue Service Queue follows
Fire-and-Forget information exchange process. Sender of an asynchronous messaging system
does not need to wait for a response from the recipient since messaging infrastructur
the delivery of the message. It is also one of the vital components in
where the components in a system can work together without being dependent to each other
particularly in web services. SQS also allows participants to
the parties is temporarily offline, busy or unavailable.

backed AMI instance shown in figure 4.2.5 also begins its’ life when launched,
spends little time in the “pending” state until moves to “running” state. From there it can be

backed AMI instances. In addition, it can also “stop” and “start”
backed AMI instance is more expensive than S3-backed. Usually,

instances are not charged when it is in “stopped” state, but the attached EBS volumes cost
backed AMI instance deletes the associated EBS boot volume when it is terminated

only, so the cost of the EBS boot volume is there [20]. Provisioning Manager
backed AMI instance when launching an instance. Application which

has higher budget and need to reboot within short duration EBS-backed AMI instance

will be more suitable. In other case, S3-backed AMI instance will be selected by

Figure 4.2.5: EBS-Backed AMI Instance [19]

Asynchronous Messaging with Amazon SQS

ly other asynchronous messaging system, Amazon Simple Queue Service Queue follows
Forget information exchange process. Sender of an asynchronous messaging system
need to wait for a response from the recipient since messaging infrastructur

the delivery of the message. It is also one of the vital components in Loosely Coupled Systems
where the components in a system can work together without being dependent to each other
particularly in web services. SQS also allows participants to communicate reliably even if one of
the parties is temporarily offline, busy or unavailable.

Page | 54

also begins its’ life when launched,
spends little time in the “pending” state until moves to “running” state. From there it can be

can also “stop” and “start”
backed. Usually, EC2

instances are not charged when it is in “stopped” state, but the attached EBS volumes cost
sociated EBS boot volume when it is terminated

Provisioning Manager considers the
when launching an instance. Application which

backed AMI instance can

will be selected by Provisioning

ly other asynchronous messaging system, Amazon Simple Queue Service Queue follows
Forget information exchange process. Sender of an asynchronous messaging system
need to wait for a response from the recipient since messaging infrastructure ensures

Loosely Coupled Systems
where the components in a system can work together without being dependent to each other,

communicate reliably even if one of

4.3.1 SQS Message Lifecycle

A single message size in SQS is limited to
multiple is also possible. User can create u

Figure 4.3.1: Message Visibility Time out [18]

A Received Message Request is the request from the receiver to receive the message that
will not be returned until the
duration that a received message from a queue will be invisible to other receiving components
when they try to receive messages.
deleted. Otherwise, Amazon SQS blocks with a visibility tim
Amazon block message to avoid further reading and processing by another process.
visibility time out for a message in SQS Queue is
Visibility time out for the entire queue. T
takes to process and delete a message from the queue

4.3.2 SQS Functionality

SQS message send-receive monitoring process and Load balancing algorithm indicate that, SQS
Queues are not FIFO (First-In-
processing [17]. AWS scalability mechanism redirects messages to different servers.
messages from same application can be stored in two dif
and scalability mechanism may redirect the
then from Server 1 which results delivery of the messages in random order.

Message Lifecycle

A single message size in SQS is limited to 8K. SQS ensures at least one delivery of message,
multiple is also possible. User can create unlimited number of queues with one

Figure 4.3.1: Message Visibility Time out [18]

is the request from the receiver to receive the message that
will not be returned until the Visibility Timeout has passed. Visibility
duration that a received message from a queue will be invisible to other receiving components
when they try to receive messages. Messages those successfully finished reading need be
deleted. Otherwise, Amazon SQS blocks with a visibility time out, period of time during that
Amazon block message to avoid further reading and processing by another process.
visibility time out for a message in SQS Queue is 30. User has the opportunity to change
Visibility time out for the entire queue. Typically, the visibility timeout is the average time it
takes to process and delete a message from the queue [18].

receive monitoring process and Load balancing algorithm indicate that, SQS
-First-Out), rather it shows the randomization of message

. AWS scalability mechanism redirects messages to different servers.
application can be stored in two different servers. Amazon

ability mechanism may redirect the receiver to receive messages first from
results delivery of the messages in random order.

Page | 55

. SQS ensures at least one delivery of message,
 account.

is the request from the receiver to receive the message that
Visibility Timeout is the

duration that a received message from a queue will be invisible to other receiving components
Messages those successfully finished reading need be

e out, period of time during that
Amazon block message to avoid further reading and processing by another process. Default

30. User has the opportunity to change
ypically, the visibility timeout is the average time it

receive monitoring process and Load balancing algorithm indicate that, SQS
Out), rather it shows the randomization of message

. AWS scalability mechanism redirects messages to different servers. Two
Amazon load balancing

receiver to receive messages first from Server 2 and

Figure 4.3.2: SQS arbitrary Message processi

As seen figure 4.3.2, sender sends message A
distributed any of the across the SQS servers. Receiver
message A is returned. While message A is being processed, it
send subsequent receive requests
A from the queue to avoid the multiple
timeout expires.

4.3.3 SQS Queue Implementation

To use Amazon Web Service properties, every user need to have an authorized AWS account.
An AWS account consists of secured formation such as User name, secured password, Access Id

key & Secret Access key. Among
Worker message sending scheme [17].

CreateQueue

It Creates queue using authorized AWS account in any o
Queue name is defined by the unique URL.
request queue “SQS Queue” and the response queue “Callback Queue”.

Figure 4.3.2: SQS arbitrary Message processing and Visibility time out

ender sends message A, B, C to a queue and the message is randomly
across the SQS servers. Receiver retrieves messages from the queue, and

essage A is being processed, it remains in the queue and
subsequent receive requests during visibility timeout duration. Receiver

multiple received and processed of this message

Queue Implementation

ervice properties, every user need to have an authorized AWS account.
ecured formation such as User name, secured password, Access Id

Among all features, followings were used to implement Requeste

message sending scheme [17].

Creates queue using authorized AWS account in any of the Amazon distributed server.
Queue name is defined by the unique URL. In this implementation, it was used to create the
request queue “SQS Queue” and the response queue “Callback Queue”.

Page | 56

ng and Visibility time out [17]

ueue and the message is randomly
retrieves messages from the queue, and

remains in the queue and doesn’t
 deletes Message

message after visibility

ervice properties, every user need to have an authorized AWS account.
ecured formation such as User name, secured password, Access Id

all features, followings were used to implement Requester-

f the Amazon distributed server.
In this implementation, it was used to create the

Page | 57

List 4.3.3 : SQS Create Queue Implementation

SendMessage:

In this implementation, it was used to send a message request to a specified queue URL to
add a message and stored it one of the distributed Amazon Server.

List 4.3.4 : SQS Message Sending

Public static String createQueue(String queueName) {

sqsService =new AmazonSQSClient(new

PropertiesCredentials(MainRequester.class.getResourceAsStream("AwsCredentials.pr

operties")));

msgQueue= new CreateQueueRequest(queueName); // request to create the queue

url= sqsService.createQueue(msgQueue).getQueueUrl(); // URL is the unique identifier

 of the queue which is used to send and receive message from the queue.

return url;

}

Public synchronized void sendMessage(SQS_Message sqsMessage, String

myQueueUrl) {

 String msg=createMessage(sqsMessage);

System.out.println(this.getClass().getName()+ "Message sent to:"+

myQueueUrl);

System.out.println("Message:"+ msg);

 SendMessageRequest smr=new SendMessageRequest(myQueueUrl,msg);

 sqsService.sendMessage(smr);

 }

Page | 58

ReceiveMessage

ReceiveMessage function was used here to return one or more messages from a specified
queueUrl.

List 4.3.5 : SQS Receive Message

DeleteMessage

In this implementation, it was used to remove a message from a particular queueUrl after
reading. ReceiptHandle The receipt handle associated with the message to delete it from the
Queue.

List 4.3.6 : SQS Delete Message

public SQS_Message recieveMessage(String myQueueUrl) {
SQS_Message recievedMsg= new SQS_Message();

 Message message=null;

message = sqsService.receiveMessage
(receiveMessageRequest).getMessages().get(0);

System.out.println(message.getAttributes().size()); // this line shows the
 number of attributes that included with the message

 return recievedMsg;
 }

public DeleteMessageRequest(String queueUrl, String receiptHandle) {
 sqsService.deleteMessage(new DeleteMessageRequest().
withQueueUrl(myQueueUrl).withReceiptHandle(amazonMessage.getReceiptHandl
e()));

// Receive Handler the unique acknowledgement received from the receiver and
used to delete messages from the queue

}

Page | 59

4.3.3.1 PrintQueueList

To Prints the list of QueueUrl of one or more Queues this method is used. In this
implementation, it prints the list of the queue which has already created.

List 4.3.6 : SQS PrintQueue List

4.3.3.2 GetQueueAttributes

GetQueueAttributes were used to show the queue attributes such as
ApproximateNumberOfMessages and CreatedTimestamp. ApproximateNumberOfMessages
returns the approximate number of visible messages in a queue and CreatedTimestamp returns
the time when the queue was created. In this implementation, Worker put a timestamp when it
read the message from the request queue and send the confirmation to the response queue.

Public static void printQueueList(AmazonSQS sqs) {
 for (String queueUrl : sqs.listQueues().getQueueUrls()) {
 System.out.println(" QueueUrl: " + queueUrl);
 }
 }

Page | 60

Page | 61

5. Evaluation

5.1 Workload Scenarios

This section demonstrates different workload scenarios on test case environment in local
machine as well as in Amazon EC2 Cloud. It will also analyze test case results with a variety of
optimization algorithms.

5.1.1 Test case 1 : Static Load

In the figure 5.1.1 One Requester and one Worker were considered during the entire execution
period. Requester send message to the Amazon SQS queue in a static manner (one message in
every 10sec). Since there is no change to the worker, the worker takes nearly same processing
time to finish one request.

Figure 5.1.1: Static Load generated by the Requester & Message processing duration by the

Worker

Note : For every figure horizontal axis represent the execution duraion (min).

5.1.2 Test case 2 : Static Increase

In this test case, only one Requester sends message to the Amazon SQS queue in increasing
manner. In each time slot, additional messages are coming to the queue that increases the
Worker load for processing a message. Total execution duration was 5 minutes. In the first
minute of execution the rate of msg/min is 4, in next minute 6, in 3rd minute 12msg/min, then
15/min and in last minutes 20/min.

0

5

10

1
 m

in

1
 m

in

2
 m

in

3
 m

in

3
 m

in

4
 m

in

5
 m

in

5
 m

in

6
 m

in

Request : Static No of Msg/Min

0

5

10

15

1
 m

in

1
 m

in

2
 m

in

3
 m

in

3
 m

in

4
 m

in

5
 m

in

5
 m

in

6
 m

in

Worker : Message Processing

Total Processing Time

Page | 62

Figure 5.1.2: Static Increasing Load by Requester & processing duration by one Worker

The figure 5.1.2 represents the worker processing time during the test case execution period.
After monitoring, it was found that at the beginning worker takes nearly same processing time
and behaves like as FIFO while reading read messages from the Queue. However, the rapid
increase of incoming messages to the queue decreases the chance of reading message as FIFO.
Rather, it takes the message from the queue in arbitrary order and needs more time to process.
This shows the arbitrary message reading policy of Amazon SQS queue.

Figure 5.1.3: Message processing duration by two and Three Workers respectively

In order to reduce worker load (message processing time), number of worker was increased. As
seen in figure 5.1.3 two workers are reading message simultaneously from the queue which
results less time to read message.

After adding one more Worker, in total three are running simutinously, takes approximately
constant processing time during the entire execution period.

0

5

10

15

20

25
1

 m
in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

4
 m

in

5
 m

in

5
 m

in

Static Increase

0

50

100

150

200

250

300

350

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

4
 m

in

0

5

10

15

20

25

30

35

40

45

50

1
 m

in

2
 m

in

3
 m

in

3
 m

in

4
 m

in

5
 m

in

5
 m

in

5
 m

in

6
 m

in

6
 m

in

6
 m

in

7
 m

in

7
 m

in

0

2

4

6

8

10

12

14

16

18

20

1
 m

in

1
 m

in

2
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

5
 m

in

5
 m

in
5

 m
in 6

6
 m

in

6
 m

in

6
 m

in

7
 m

in

7
 m

in

7
 m

in

Page | 63

5.1.3 Test case 3 : Sudden Increase

As seen in figure 5.1.4., at one particular time, Requester increases the number of message
sending to the queue dynamically and makes the Queue full of message. It ultimately generate
huge overload to the Worker while processing a message.

Figure 5.1.4: Sudden Load Increase by Requester and message processing by Worker

In this scenario it has been found that, at the beginning worker behaves as FIFO.
However when the queue is overloaded with messaged then it follows the random
method to read message from the queue that results higher processing time (10 times in
few cases).

5.1.4 Test case 4 : Peak Increase

Figure 5.1.5: Peak Load increase by the Requester

In this test case figure 5.1.5, Requester send message to the queue in typical rate, but at
particular time slot it increases the message rate dynamically and continues for certain duration.
After a while it comes back to previous message rate.

0
5

10
15
20
25
30
35

1
 m

in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

4
 m

in

4
 m

in

0

50

100

150

200

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

3
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

0

10

20

30

40

1
 m

in
1

 m
in

1
 m

in

1
 m

in
1

 m
in

1
 m

in
2

 m
in

2
 m

in
2

 m
in

2
 m

in

3
 m

in
3

 m
in

3
 m

in
3

 m
in

Page | 64

The test observation in figure 5.1.6 shows that the workload was distributed among multiple
workers. Typically one worker takes more than ten times higher time than two workers to
process one message. When two workers are running simultaneously, after the peak increase (at
first minute) both worker comes peak to normal behavior. Similar to the others scenario, chance
of behaving as FIFO in message reading reduces as soon as the queue is overloaded with
messages.

Figure 5.1.6: Message processing time by one Worker and two Workers respectively

5.1.5 Test case 5 : Static Decrease

Figure 5.1.7: Static Load decrease by the Requester

As seen in figure 5.1.7 requester sends message to the queue in decreasing manner. As
the execution time progresses, number of messages coming to the queue decreases.

0

50

100

150

200

250

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

2
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

2 per. Mov. Avg. (Total processing Time)

5

7

9

11

13

15

17

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

4
 m

in

0

5

10

15

20

25

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

4
 m

in

4
 m

in

Page | 65

In the middle of the execution such as minute 2-3 when the queue is full with messages,
processing time increases rapidly. After adding one more worker, processing time
becomes to one fourth and nearly constant at the end of execution period. Though this
provides better performance to reach deadline, besides it indicates over provisioning of
resources.

Figure 5.1.8: Message processing time by one Worker and two worker repectively

5.1.6 Sudden Decrease

In figure 5.1.9 we can observe that at one point in time, Requester decreases the number of
message sending to the queue indolently which supposed to reduce the worker message time
and trends to move to the balanced processing time. However, as at the beginning of execution
the queue is overloaded, the decreased message rate is not able create an impact to the
processing time.

Figure 5.1.9 Sudden Load decrease by the Requester and message proceesing by the
Worker.

0

50

100

150

200

250

300

350

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

4
 m

in

5
 m

in

6
 m

in

6
 m

in

0

20

40

60

80

100

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

5
 m

in

6
 m

in

2 per. Mov. Avg. (proc time)

0

2

4

6

8

10

12

14

1
 m

in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

4
 m

in 0

50

100

150

200

250

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

Page | 66

5.1.7 Peak Drop

In the last test case seen in figure 5.1.10, in a particular time slot Requester decreases the
number of message sending to the queue indolently. After a while that it again comes back to
previous message sending rate. So, the queue must have fewer messages during that period of
particular time slot.

Figure 5.1.10 Peak Load drop by the Requester

In figure 5.1.11, message processing time by the worker should reduce eventually. However, the
test observation says that since at the beginning of the execution queue was overloaded, the
decreased message rate even could reduce the processing time. Rather, adding one more
worker provides better result and brings down the processing time to one fifth of previous
execution. This eventually shows the randomized message reading behavior of Amazon SQS
Queues.

Figure 5.1.11: Message processing time by one Worker and two worker repectively

0

2

4

6

8

10

12

14
1

 m
in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

4
 m

in

4
 m

in

Request: Peak Drop

0

20

40

60

80

100

120

140

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

4
 m

in

5

7

9

11

13

15

17

19

1
 m

in

1
 m

in

1
 m

in

1
 m

in

1
 m

in

2
 m

in

2
 m

in

3
 m

in

3
 m

in

3
 m

in

4
 m

in

4
 m

in

4
 m

in

5
 m

in

Page | 67

6. Summary

This thesis has proposed an optimal resource provision method for the Cloud service providers

that can be integrated into their Cloud. Cloud provider will be benefited by optimizing the

energy consumption and their maintenance cost, maximizing the Cloud resource utilization,

increasing the system throughput and ensuring a cost-efficient on demand resource

provisioning into the Cloud. On the other hand, Cloud application users can get the price

efficient, deadline oriented and flexible application deployment facility into the Cloud with this

event based application management system. The proposed optimized queue scaling

mechanism reduces the total power consumption and operational cost compared to current

infrastructure offerings from the Cloud vendors.

Though every algorithm has its particular benefits and disadvantages, this thesis enables Cloud

computing users to allocate resources dynamically within their limited budget and time

constraint. It is quite noticeable that typical static resource provisioning [2] in traditional data

center scenario wastes energy and money while providing minor increases in availability. This

thesis enables the elasticity rules to the application provider to expand and shrink their

resources as per demand. It has also provided a competent capacity planning model to the

Cloud provider for provisioning the resources. The energy optimization theory will

significantly reduce the amount of power consumption that enables to maintain the concern of

Green Computing. The Cost function algorithm and policy based algorithm ensures the

maximum resource utilization within minimal cost and energy. It is also capable to meet the

deadline of application provisioning into the cloud.

 The depicted system architecture describes each of the components such as monitoring system,

optimizer and provisioning manager that need to work simultaneously to provision Cloud

resources. It is able to allocate required resources as per the trigger sent to the provisioning

manager.

A prototype was implemented using AWS Eclipse toolkit and AMAZON Elastic Cloud EC2

environment. AMAZON S3 storage system was used to store a configuration file which can be

used to keep the rules and policies of SLAs in the production environment.

Page | 68

6.1 Limitation & Outlook

Cloud computing is still a relatively new paradigm, so the changes in standards, infrastructural
capabilities and component APIs are inevitable. Among other major challenges during the
implementation period, the customized pricing and energy consumption information into the
Cloud environment was highly mentionable. Unfortunately, due to the limitation of the used
Cloud properties, it was not possible to collect this information. The proposed scaling
mechanism in this thesis would be more effective if following issues can be solved.

• Implementation inside data center environment

For designing the optimize solutions of scheduling and resource provisioning of applications
inside Cloud data center, factors such as cooling, network, memory and CPU need to be
considered. Though the consolidation of VMs is effective to minimize the overall power usage
of data center, it raises the issues of redundancy and geo-diversity [73] to maintain the SLAs
with users.

• Lack of enhanced cost model

Due to the lack of running resource costs information such as traffic or provision cost, the cost
function became quite simple. However, it can be integrated with the addition information.

• Challenge to Green Computing

To ensure the Green Computing Cloud provider needs to measure the existing power and
cooling design, power consumption of services and their cooling requirements. To do that they
should have appropriate modeling tools to measure the energy usage of all the components and
services of from a user PC to data center where the application is hosted.

Page | 69

7. Bibliography

7.1 Glossary

Access Key ID An alphanumeric token that uniquely identifies request sender.
This ID is associated with your Secret Access Key.

Amazon EC2 The Amazon Elastic Compute Cloud (Amazon EC2) is a web

service that enables user to launch and manage server instances in
Amazon's data centers using APIs and available tools and utilities.

AMI An Amazon Machine Image (AMI) is an encrypted machine

image stored in Amazon Simple Storage Service (Amazon S3). It
contains all the information necessary to boot instances of your
software.

Amazon SQS Amazon Simple Queue Service (Amazon SQS) offers a reliable,

highly scalable, hosted queue for storing messages as they travel
between computers.

Availability Zone Amazon EC2 locations are composed of Regions and Availability

Zones. Availability Zones are distinct locations that are
engineered to be insulated from failures in other Availability
Zones and provide inexpensive, low-latency network connectivity
to other Availability Zones in the same Region.

Auto Scaling group A representation of an application running on multiple Amazon

Elastic Compute Cloud (EC2) instances.

AWS Amazon Web services

EC2 instance A virtual computer running in the cloud. EC2 instances are

launched from an Amazon Machine Image (AMI).

Life cycle Auto Scaling term that refers to the life cycle state of the EC2

instances contained in an Auto Scaling group. EC2 instances
progress through several states like as Pending, In Service,
Terminating and Terminated over their lifespan.

LoadBalancer Elastic Load Balancing key term. A LoadBalancer is represented

by a DNS name and provides the single destination to which all
requests intended for your application should be directed.

Page | 70

7.2 References

1. Hellerstein, J. ; Diao, Y. : Feedback control of Computing System. Wiley Online Library,

2004 (Cited on pages 3 & 5)

2. Vaquero, Luis M. ; Buyya, R. : Dynamic Scaling Application in Cloud. ACM SIGCOMM

Computer Communication Review, 2011 (Cited on Page 47)

3. Leymann, F. ; Mietzner, R.: Applications in the Cloud. ITPC Cloud Day, 2009

(Cited on page 11)

4. Fehling, C : Provisioning of Software as a Service Applications in the Cloud, 2009
(Cited on page 14)

5. Leymann, F. and Fritsch, D: Cloud Computing: The Next Revolution in IT. Proceedings

of the 52th Photogrammetric Week, 2009. (Cited on page 5)

6. Nowak, A. and Leymann, F. and Mietzner, R.: Towards green business process
reengineering. Service-Oriented Computing, 2011 (Cited on page 5)

7. Lim, H. C. ; Babu, S. : Automated Control in Cloud Computing Challenges and
Opportunities. 2009 (Cited on page 2)

8. Parekh, S. : Using Control Theory to Achieve Service Level Objectives In Performance

Management, October 23, 2000 (Cited on page 3)

9. Chen, Y.; Tsai, S.: Optimal Provisioning of Resource in a Cloud Service, 2007. (Cited on

page 7)

10. Hohpe, G. ; Woolf, B.: Enterprise integration patterns: Designing, building, and deploying

messaging solutions. Addison-Wesley, 2004 (Cited on on page 38)

11. Zhu, J. : Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud

Data Center . 2010 IEEE 3rd International Conference on Cloud Computing, 2010 (

Cited on pages 373-375)

12. Buyya, R.: Cloud Computing Principles and Paradigms. Wiley , 2011 (Cited on pages

130-136)

13. Ogata, Katsuhiko; Modern Control Engineering. Prentice Hall, 3rd edition, 1997 (Cited

on page 76-78).

Page | 71

14. Parekh, S. : Using control theory to achieve service level objectives in performance

management. Springer, 2002 (Cited on page 7)

15. Allspaw, J.: The Art of Capasity Planning, O’REILLY, 2008 (Cited pages 19,26 & 122)

16. AMAZN.COM : AWS Simple Queue Services. - http://aws.amazon.com/sqs/ (Cited

on page 2)

17. AMAZN.COM : AWS Simple Queue Services Visibility Timeout. -

http://docs.amazonwebservices.com/AWSSimpleQueueService/latest/SQSDevelo

perGuide/ (Cited on page 2)

18. Mao, Ming; Li,Jie; Humphrey, Marty; Cloud Auto-scaling with Deadline and Budget

Constraints. ACM/IEEE International Conference on Grid Computing , 2010 (Cited

on Page 2)

19. SHLOMO Swidlers : EC2 Life Cycle . - http://shlomoswidler.com/2009/07/ec2-

instance-life-cycle.html (Cited on Page 1)

20. AMAZN.COM : Amazon Elastic Cloud EC2. - http://aws.amazon.com/ec2/ (Cited

on Page 3)

21. Manber, U.: Introduction to algorithms: a creative approach. Addison-Wesley, 1989

(Cited on pages 36 &48)

22. HHS.COM : Capacity Planning. -

http://www.hhs.gov/ocio/eplc/EPLC%20Archive%20Documents/34-

Capacity%20Planning/eplc_capacity_planning_practices_guide.pdf (Cited on Page

5)

23. KINGSTON.COM : Capacity Planning .-

http://www.kingston.com/branded/pdf_files/handrscapacity_wp.pdf (Cited on

Page 4)

24. Teamquest.Com : Capacity Planning.-

http://www.teamquest.com/pdfs/whitepaper/tqwp23.pdf (Cited on Page 5)

25. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice-Hall,

2005 (Cited on page 19)

Page | 72

26. CLOUDTWEAKS.COM : Cloud Platform .-

http://www.cloudtweaks.com/2011/05/auto-scaling-strategies-for-windows-

azure-amazons-ec2-and-other-cloud-platforms/

27. MSDN.COM : Windows Azure.-

http://blogs.msdn.com/b/gonzalorc/archive/2010/02/07/auto-scaling-in-

azure.aspx (Cited on page 5)

28. AMAZN.COM : Auto Scaling Developer Guide.- http://aws.amazon.com/as-dg/

29. Azeez, Afkham; Auto-scaling Web Services on Amazon EC2, University of Moratuwa,

 2009 (Cited on page 41)

30. AMAZN.COM: Autoscaling.- http://aws.amazon.com/autoscaling/ (Cited on page

3)

31. Cloud Compuning Journenal : AutoScaling in Windows Azure.-

http://srinivasansundararajan.sys-con.com/node/1626508/mobile (Cited on page

9)

32. AMAZN.COM: Elastic Load Balancing.- http://aws.amazon.com/awseb-ug/

33. SCALR.NET : Architecture.- http://wiki.scalr.net/Getting_Started (Cited on Page

5)

34. TECHCRUNCH.COM : Scalr auto Scaling.-

http://techcrunch.com/2008/04/03/scalr-the-auto-scaling-open-source-amazon-

ec2-effort/

35. MSDN.COM : Windows Azure.-

http://archive.msdn.microsoft.com/azurescale/Release/ProjectReleases.aspx?Relea

seId=4167 (Cited on page 11)

36. MSDN.COM : Windows Azure.-

http://blogs.msdn.com/b/gonzalorc/archive/2010/02/07/auto-scaling-in-

azure.aspx

37. Cloudcomputing.sys-con.com : Dynamic Scaling and Elasticity - Windows Azure vs

Amazon EC2.- http://cloudcomputing.sys-con.com/node/1626508 (Cited on page 2)

38. Paraleap.com : AzureWatch.- http://www.paraleap.com/(Cited on page 3)

39. RIGHTSCALE.COM: Social Networking.- http://st.free-

lance.ru/projects/upload/f_4be861b83ddf9.pdf

Page | 73

40. RIGHTSCALE.COM: Scalable Website.-

http://www.RIGHTSCALE.COM/products/cloud-computing-uses/scalable-

website.php (Cited on page 3)

41. RIGHTSCALE.COM: Dev & Test White Paper.-

http://www.RIGHTSCALE.COM/info_center/white-papers/RightScale-

Development-and-Test-White-Paper.pdf (Cited on pages 6 & 9)

42. RIGHTSCALE.COM: Test Benefits.-

http://www.RIGHTSCALE.COM/products/plans-pricing/dev-test-features-

benefits.php

43. RIGHTSCALE.COM: Dev & Test White Paper.-

http://www.RIGHTSCALE.COM/info_center/white-papers/RightScale-

Quantifying-The-Benefits.pdf (Cited on page 3)

44. AMAZN.COM: S3 Storage.- http://aws.amazon.com/s3/

45. RIGHTSCALE.COM: Grid Business.-

http://www.RIGHTSCALE.COM/info_center/white-papers/Grid-Whitepaper-

Business.pdf

46. Britannica.com: Event in Automation .-

http://www.britannica.com/EBchecked/topic/44836/automata-

theory/21502/Input-events-that-affect-an-automaton (Cited on page 7)

47. RIGHTSCALE.COM: Plans & Pricing.-

http://www.RIGHTSCALE.COM/products/plans-pricing/grid-edition.php

48. MICROSOFT.COM: Virtual Network.-

http://www.microsoft.com/windowsazure/features/virtualnetwork/

49. S. Hazelhurst; Scientific computing using virtual high-performance computing: a case study

using the Amazon elastic computing cloud, in: Proceedings of the 2008 annual research

conference of the South African Institute of Computer Scientists and Information

Technologists on IT research in developing countries: riding the wave of technology, ACM

New York, NY, USA, 2008, pp. 94–103.

50. AMAZN.COM: AWS Elastic Beanstalk.- http://aws.amazon.com/elasticbeanstalk/

(Cited on page 3)

51. Cloudcomputing.sys-con.com :Top 30 Cloud Service Providers.-

http://cloudcomputing.sys-con.com/node/1513491 (Cited on page 1)

Page | 74

52. VMWARE.COM :Virtualization & Virtual Machine .-

http://www.vmware.com/virtualization/virtual-machine.html (Cited on page 1)

53. SoftSummit.com :Utility based pricing model.-

http://www.softsummit.com/library/presentations/2003/HoganS.pdf

54. Ludwig, H.: A service level agreement language for dynamic electronic services. Electronic

Commerce Research, 2004 (Cited on page 2)

55. ORACLE.COM : Trigger.-

http://download.oracle.com/docs/cd/B19306_01/server.102/b14220/triggers.htm

56. AMAZN.COM: LoadBalancing.- http://aws.amazon.com/elasticloadbalancing/ (

Cited on page 4)

57. AMAZN.COM: Amazon Machine Images.- http://aws.amazon.com/amis (Cited on

Page 2)

58. SCALR.NET : API.- http://wiki.scalr.net/API

59. AMAZN.COM: EC Instance.- http://aws.amazon.com/ec2/instance-types/

60. AMAZN.COM: Amazon CloudWatch.- http://aws.amazon.com/cloudwatch/ (Cited

on page 5)

61. Helpcenter.com : NameSevers.- http://help.godaddy.com/article/45

62. Berl, A., Gelenb, E. : Energy-Efficient Cloud Computing, 28 July 2009.

63. MSDN.COM : 3-Tier Architechture.- http://msdn.microsoft.com/en-

us/library/ms685068(v=vs.85).aspx (Cited Page 2)

64. TPUB.COM : Control System .-

http://www.tpub.com/content/neets/14187/css/14187_92.htm (Cited on page 1)

65. AMAZN.COM: White paper on cloud architectures

http://aws.typepad.com/aws/2008/07/white-paper-on.html

66. FORMDUAL.CH: Round Robin Database.- http://www.fromdual.ch/round-robin-

database-storage-engine (Cited page 2)

67. Lipari, G.: Earliest Deadline First. Scuola Superiore Sant’Anna, Italy, 2005 (Cited on

page 3)

68. AMAZN.COM: Requester-Worker Paradigm.-

http://docs.amazonwebservices.com/AWSMechTurk/2008-02-

Page | 75

14/AWSMechanicalTurkRequester/Concepts_RequestersAndWorkersArticle.html (

Cited on Page 1)

69. Dougherty, B., Whiteb, J.: Model-driven Auto-scaling of Green Cloud

ComputingInfrastructure. Science of Computer Programming, 2010 (Cited on Page 5,

7 & 9)

70. Kupferman, J., Silverman, J.: Scaling Into the Cloud. CS270 Advanced Operating

Systems. 2011 (Cited on page 2)

71. Abrahiem, R.: A new generation of middleware solutions for a near-real-time data

warehousing architecture. IEEE International Conference, 2007 (Cited on page 3)

72. Nauturenet.com : Geo-Diversity :-

http://www.naturenet.net/biodiversity/geodiversity.html (Cited on page 1)

All Links were last followed on August 20, 2011.

Page | 76

Page | 77

Declaration

All the work contained within this thesis, except where otherwise
 acknowledged, was solely the effort of the author. At no stage
was any collaboration entered into with any other party.

 Sams Ul Arefin

