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Abstract

The importance of piecewise-smooth and especially that of discontinuous system mod-
els is well-established. One of the properties of these systems is the possibility of border
collision bifurcations, which can form complex bifurcation scenarios. In this thesis, the
description of the recently discovered nested period incrementing bifurcation scenario
is significantly extended to form a more complete understanding of its topological
structure. It is shown that the scenario is governed by codimension-two big bang bi-
furcations, in which well organised families of periodic orbits appear. The symbolic
description of these families is determined by the unstable periodic orbits of the in-
vestigated system. This work introduces concise rules based on symbolic dynamics,
by which the structure of the bifurcation scenario in the two-dimensional parameter
space is fully described. It is furthermore shown that the results are easily transferred
to discontinuous piecewise-linear systems defined on n partitions, in general.

Keywords: border collison bifurcation, big bang bifurcation, symbolic dynamics, U-
sequence, discontinuous flat top tent map
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1 Introduction

The main topic of this thesis is the bifurcation analysis of a particular class of time-
discrete dynamical systems, which are given by one-dimensional maps defined on sev-
eral partitions, featuring discontinuities and constant function branches. The impor-
tance of discontinuous and piecewise-smooth system models has been well established
by now. Such systems are useful in many areas from engineering over biology to eco-
nomics, and one of their key properties is the exhibition of so-called border collision
bifurcations [5, 3, 6, 1].

Border collision bifurcations have been under steady investigation for over two
decades, and there are several examples of bifurcation scenarios which are dominated
by border collisions. One example is the well-known period adding scenario, which
can be described using a Farey tree structure. Recently, the so-called nested period
incrementing bifurcation scenario was discovered and investigated [2]. It constitutes
a two-dimensional structure in parameter space and belongs to the class of border
collision scenarios. The system for which the scenario can be observed, the so-called
discontinuous flat top tent map, is defined on three partitions, on one of which the
system function is constant. So far, all possible stable periodicity regions have been
identified, as well as rules for their principal topology in one dimension of the bifur-
cation structure, which can be described by an infinite binary tree. This has given us
a good understanding of the scenario on a “global” level. However, the mechanisms
which generate the families of orbits which have been observed to emerge together
within the scenario, have not yet been described.

In this work, the previous findings are significantly extended in order to better
understand the nested period incrementing bifurcation scenario on a “local” level.
This includes the investigation of codimension-two big bang bifurcations, which can
be found all over the parameter space of the discontinuous flat top tent map. It
turns out that these organising points, appearing in families along one dimension of
the structure, generate local period incrementing cascades of new orbits within the
already existing structure. The form of these new stable periodic orbits is thereby
closely linked to the unstable orbits of the system.

The importance of these results is illustrated with the examination of a relevant
system from economics. It is shown that this system can be investigated with the
same techniques developed in this work, and that the results concerning the dynamical
properties of the system are similar.
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1 Introduction

Outline

This thesis is structured as follows. In Sec. 2, the previous work on the nested period
incrementing scenario is summarised, and terminology used for further investigation
established.

Sec. 3 shows in detail, how the big bang bifurcations occurring in the investigated
parameter space are organised, and in which way they generate new periodic orbits.
The structure of all locally emerging families of cycles is discussed in Sec. 3.1. In
Sec. 3.2 and 3.3, it is shown where the big bang bifurcations are located in parameter
space, and how they are related to the well-known period doubling scenario and the
closely related U-sequence. The role and types of codimension-one border collision
bifurcations within this nested scenario are shortly presented in Sec. 3.4.

In Sec. 4, we see that some of the results for the discontinuous flat top tent map
can also be transferred to similar systems with more than three partitions. First, an
economic model is investigated and parallels to the previous results are presented. The
investigative procedure used for this system is further generalised in Sec. 4.2 to the
case of systems with arbitrarily many partitions.

The work is concluded with a short summary in Sec. 5.

2



2 The Discontinuous Flat Top Tent Map

The discontinuous flat top tent map is given by

xn+1 = f
(
xn
)

with f(x) =


fL(x) = 2αx if x ≤ 1−γ

2

fC(x) = β if 1−γ
2
< x < 1+γ

2

fR(x) = 2α(1− x) if x ≥ 1+γ
2
,

(2.1)

and this system’s behavior of interest occurs in the parameter region (α, β) with

α ∈
(

1

2
,∞
)
, β ∈ [0, 1] and γ = const ∈ (0, 1).

The last parameter γ can be chosen constant, as it does not influence the qualitative
bifurcation structure. (For numerical investigation, its value is assumed to be γ = 1

10

unless explicitly noted otherwise.) Within these ranges the map’s domain and image
satisfy

f : [0, 1]→
[
0, α(1− γ)

]
∪ {β},

so consequently, diverging orbits are possible if α > α? = 1
1−γ .

2.1 Dynamical Properties

Fig. 2.1 shows four period and bifurcation diagrams, respectively, each of them for
fixed α and varying β:

a) For α = 0.6, we can see an interval where two symmetric incrementing cascades
exist with an period increment of 1, accumulating at the boundaries of β ∈ [0, 1].

b) For α = 0.75, the scenario as in a) is interrupted between any two adjacent periods,
by a pair of incrementing cascades with a period increment of 2, accumulating at
a common point.

c) For α = 0.85, the scenario as in b) is interrupted between any two adjacent periods,
by a pair of incrementing cascades with a period increment of 4.

d) At α = 0.9, the scenario is already much further developed and the diagram already
demonstrates the overall complexity of the fully developed bifurcation structure.

3



2 The Discontinuous Flat Top Tent Map
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Figure 2.1: Representative period diagrams (left) and the corresponding bifurcation dia-
grams (right) for different values of α (compare Fig. 2.2) showing the following phenomena:
a) pure period-1 incrementing scenario for α = 0.6, b) pairs of opposed period-2 incrementing
scenarios nested in-between for α = 0.75, c,d) even further nesting for α = 0.85 and α = 0.9.

Due to the series of successively occurring nested period incrementing cascades, this
scenario is referred to as nested period incrementing. Apparently, the complexity of
the scenario increases with increasing α up to the value α?. To explain this increasing
complexity it is necessary to consider the bifurcation structure in the aforementioned
2D parameter region, which is presented in Fig. 2.2. This figure also indicates the
locations of the 1D bifurcation diagrams presented in Fig. 2.1.

For increasing α ∈
[

1
2
, α?
]
, we see that new regions appear successively, giving rise

to the mentioned increase in complexity. This process terminates at the value α = α?.
Here, the situation is similar to that of the logistic map xn+1 = axn(1−xn) at a = 4. In
both cases, the map becomes surjective, all possible periodic orbits (the stable three-
partition orbits and the unstable two-partition orbits) exist—because all homoclinic
bifurcations have already occurred—and the divergent behavior begins. Moreover,
for α → ∞ we see that all non-diverging three-partition orbits accumulate at two
organizing centers at β = 0 and β = 1.

In order to classify and distinguish all possible orbits, equation (2.1) is investigated
with the familiar tools of symbolic dynamics, based on the system’s natural partitions

IL =

[
0,

1− γ
2

]
, IC =

(
1− γ

2
,
1 + γ

2

)
and IR =

[
1 + γ

2
, 1

]
.

4



2 The Discontinuous Flat Top Tent Map

S(α)

β

π
4

π
2

0

1
(a) (b) (c) (d) α?

β=α(1−γ)

Figure 2.2: 2D bifurcation structure in the (α, β)-plane, for α ∈
(

1
2 ,∞

)
, via the transfor-

mation S(α) = arctan(2α). At α?, diverging behavior (grey) becomes possible. The labels
(a)–(d) indicate the locations of the 1D scenarios in Fig. 2.1.

For any orbit O = (x0, x1, x2, . . . , xn) of the discontinuous flat top tent map, the
corresponding symbolic sequence s = s0s1s2 . . . sn is defined, such that

si =


L if xi ∈ IL
C if xi ∈ IC
R if xi ∈ IR.

This orbit can thereafter be unambiguously denoted as Os, and the periodicity region1

of said orbit in parameter space as Ps.
With this notation established, several important properties can be stated and easily

checked, where the restrictions on the investigated parameter region formulated above

1or existence region

5



2 The Discontinuous Flat Top Tent Map

are assumed to hold:

Lemma 2.1 (Admissibility). Any admissible orbit Os must satisfy

∃i (si = C) =⇒ @k (k 6= i ∧ sk = C),

i.e. the symbolic sequence s contains the symbol C no more than once. Therefore, any
admissible symbolic sequence can be written as s = σ or s = Cσ, where σ ∈ {L,R}n.

Lemma 2.2 (Stability). The admissible limit cycle Os is stable if and only if

∃i (si = C),

i.e. the symbolic sequence s contains the symbol C exactly once.

Lemma 2.3 (Existence and Uniqueness). Assume α ≥ α?. For all sequences σ,
the unstable periodic orbits Oσ coexists independently of β. For every sequence Cσ,
β ∈ [0, 1] can be chosen such that the stable periodic orbit OCσ exists and is the unique
stable orbit.

Note: Lemma 2.3 does not hold for α < α?!

Lemma 2.4 (Stable Set). Assuming α ≤ α?, the stable set2 of any orbit intersecting
IC is dense in [0, 1]. Naturally, this includes all stable periodic orbits OCσ.
This implies that also the union of all periodicity regions

⋃
PCσ is dense in [0, 1].

The existence of all stable orbits can be proved by induction using the following
basic idea. Given a stable periodic orbit

x0 x1 · · · xn−1

fL/R fL/R fL/R

fC (2.2)

we can insert an extra iteration directly after the point xn−1 ∈ IC by changing β to a
preimage of the initial value x0, which results in fC(x) = f−1

L/R(x0):

xn x0 x1 · · · xn−1

=

f−1
L/R(x0)

fL/R fL/R fL/R

fC

fL/R

(2.3)

It is easy to check that the fixed point OC exists for β ∈ IC. All other stable orbits
are obtained by recursive application of (2.2) and (2.3). This reasoning lets us obtain
the periodicity region PCσ of any stable periodic orbit for fixed α as follows:

PCσ = f−1
σ

(
IC
)

= f−1
σ1
◦ f−1

σ2
◦ · · · ◦ f−1

σn−1

(
IC
)

(2.4)

This means that, given α, the n-periodic orbit OCσ exists if and only if β ∈ PCσ as
determined by (2.4). For proofs of Lemmata 2.1–2.4 the reader is referred to [2].

2or basin of attraction

6



2 The Discontinuous Flat Top Tent Map

2.2 Complete Bifurcation Scenario

We can easily retrace the partitioning of the β-axis into periodicity regions with certain
symbolic sequences. The locations of these regions are given by (2.4), as already
stated. By applying this equation one symbol at a time, all regions can be calculated
in a recursive manner: in the first step, it is only known that the interval [0, 1] is
subdivided (in β-ordering) into the three partitions IL, PC and IR. PC = IC is of
course the existence region of the stable fixed point OC, whereas the partitions IL and
IR subsume all periodicity regions with the common prefix CL or CR, respectively.
For instance, any stable periodic orbit existing for β ∈ IL has the point x1 ∈ IL
and therefore must have a symbolic sequence beginning with CL, possibly followed by
further symbols.

Now, for α = α? the function f−1
L maps the interval [0, 1] linearly onto the parti-

tion IL, which is therefore further subdivided into the following three partitions (one
periodicity region and two common-prefix regions):

IL2 = f−1
L (IL), PCL = f−1

L
(
PC
)
, ILR = f−1

L (IR) (2.5)

For the right partition IR, the situation is the same, but as f−1
R has a negative slope,

the subdivision occurs in the opposite order:

IR2 = f−1
R (IR), PCR = f−1

R
(
PC
)
, IRL = f−1

R (IL) (2.6)

In summary, this procedure so far yields the following order of periodicity and common-
prefix regions along β ∈ [0, 1]:

IL2 PCL ILR︸ ︷︷ ︸
IL

PC IR2 PCR IRL︸ ︷︷ ︸
IR︸ ︷︷ ︸

I=[0,1]

(2.7)

Carried out ad infinitum, this procedure generates all sequences of stable orbits by
subdividing the common-prefix regions level by level, the order of subdivision depend-
ing on the slope of the corresponding function branch, as explained for f−1

R above.
The sign of the slope of a function branch can be determined by the parity of the
corresponding symbolic sequence, which is defined as follows:

Definition 2.1 (Parity; Even and Odd Sequences).
The parity of a symbolic sequence s = s1s2 . . . sn is defined as

par s =

(
n∑
i=1

par
(
si
))

mod 2,

where par
(
L
)

= 0, par
(
C
)

= 0 and par
(
R
)

= 1.

Sequences with par s = 0 are called even, whereas sequences with par s = 1 are odd.

7



2 The Discontinuous Flat Top Tent Map

It is easy to check that the function branch fσ = fσn ◦ · · · ◦ fσ2 ◦ fσ1 has a slope, the
sign of which is given by (−1)parσ. From the preceding argument, the following basic
property of the discontinuous flat top tent map can be deduced:

Theorem 2.1 (β-Order). For fixed α, the total order of periodicity regions along the
parameter β ∈ [0, 1] is equivalent to the complete binary tree generated by the rules
• The root node contains the sequence C.
• To each node with the even sequence Cσ

– add a child node containing CσL to the left
– add a child node containing CσR to the right.

• To each node with the odd sequence Cσ
– add a child node containing CσR to the left
– add a child node containing CσL to the right.

This binary tree is denoted as the suffix tree. The resulting order is increasing in β
from left to right.

It follows from Lemma 2.3 and Theorem 2.1 that, for α = α?, the structure of the
stable periodic orbits for β ∈ [0, 1] is completely determined by the suffix tree. For
this reason, we refer to the case at α? as the complete bifurcation scenario.

For α > α? the situation is qualitatively the same, except for the additional possi-
bility of diverging dynamics. By contrast, for α < α? much less periodic orbits exist,
and hence not every sequence is possible. To understand the reason for this, consider
equation (2.4) for obtaining the periodicity region of OCσ. It must be guaranteed that
each preimage along the “inversion chain” in (2.4) lies (at least partially) within the
proper domain, i.e.

f−1
σn−1

(
IC
)
∩ Iσn−1 6= ∅

f−1
σn−2
◦ f−1

σn−1

(
IC
)
∩ Iσn−2 6= ∅
...

f−1
σ

(
IC
)

= f−1
σ1
◦ f−1

σ2
◦ · · · ◦ f−1

σn−1

(
IC
)
∩ Iσ1 6= ∅

For α = α? all points in [0, 1] have two preimages under fL/R, and so these conditions
are satisfied for all possible sequences Cσ. With α < α? this is no longer the case.
For practical reasons it may be noted that the preimages of an arbitrary interval (a, b)
evaluate to:

f−1
L

(
(a, b)

)
=
(
a

2α
, b

2α

)
∩ IL,

f−1
R

(
(a, b)

)
=
(
1− b

2α
, 1− a

2α

)
∩ IR

With this restriction, (2.4) may lead to PCσ = ∅ for certain sequences and particular
choices of α. In this case the orbit OCσ does not exist in these parameter regions.

8



2 The Discontinuous Flat Top Tent Map

2.3 Milnor Attractors

So far, the only attractors which have been considered are the stable orbits of the
discontinuous flat top tent map, i.e. the limit cycles containing a point in IC. These
occur when the parameter β is chosen such that fC maps the middle interval into one
of its preimages. There are however singular situations when an altogether different
behaviour emerges, namely when β is not located in one of the periodicity regions,
but on one of the numerous unstable orbits, or preimages thereof.

For instance, consider the most simple case β = 0. From the initial value x0 = 1
2
,

the orbit is mapped to the unstable fixed point x1 = 0 in one iteration, where it
remains in absence of disturbance. If the orbit is driven away ever so slightly from
the unstable fixed point, it will eventually reach the interval IC and then the unstable
fixed point again, according to Lemma 2.4. The same is the case for β = f−1

R (0) = 1,
although here the orbit, after reaching IC, first makes an additional iteration in IR
before reaching the fixed point. Attractors of this kind are commonly denoted as
Milnor attractors or weak attractors.

The regions in parameter space, where an unstable orbit Oσ becomes a Milnor
attractor shall be denoted by Bσ. This is of course the set of pre-periodic points
of Oσ = (x1, x2, . . . , xn), which are given by the preimages f−1

%

(
x1

)
of the unstable

orbit’s innermost point3. Each of these particular points is given by B%σ, so that
Bσ =

⋃
B%σ. This notation is still ambiguous, as f−1

%

(
x1

)
= f−1

%σn

(
x1

)
. Therefore, %

shall always be chosen as the shortest, non-empty sequence out of all sequences which
would lead to the same point. For varying α, Bσ becomes a set of curves in parameter
space. Furthermore, the number of curves in Bσ increases whenever the unstable orbit
Oσ undergoes a homoclinic bifurcation. In that case, more preimages of Oσ become
available and so a whole family of new “paths” % to the Milnor attractor are possible.

Although Milnor attractors only exist on a set of Lebesgue measure zero in param-
eter space, and are therefore structurally unstable, we will see that these attractors
as well as their location play an important role as accumulation points of the minor
incrementing cascades that lead to the complete scenario. Under certain conditions,
the existence of the pre-periodic point B%σ implies the existence of a family of stable
orbits with the symbolic sequences C%σn.

3see also Definition 3.1 on page 12

9



3 Nested Structures

By now we have a description of the fully developed bifurcation scenario for α ≥ α?,
where all possible unstable orbits O{L,R}n and stable orbits OC{L,R}n exist. For
1
2
< α < α? we know how the periodicity regions PCσ are ordered over the parame-

ter β. We have also seen that the discontinuous flat top tent map displays a simple
incrementing structure for small α, as well as some levels of embedded incrementing
structures with higher period-increments. But of all the concrete bifurcation scenarios
occurring along the way, little is known so far.

It turns out that the successive emergence of unstable orbits provides a skeleton
for the stable periodicity regions, which becomes increasingly complex and eventually
evolves into the structure already described.

3.1 Accumulation Curves and Big Bang Bifurcations

In Fig. 3.1 we see the curve in parameter space where IC is mapped directly onto the
unstable fixed point in the right partition, and where this fixed point consequently
becomes a Milnor attractor. For those values of α, where this curve does not yet exist,
the bifurcation scenario consists of the periodicity region of the stable fixed point
OC, plus two incrementing cascades for increasing and decreasing β on either side.
Explicitly marked are the periodicity regions (up to period 6) of the orbits forming
these two cascades, namely orbits of the form C(L|R)Ln.1

This situation changes at α = αR. Here we see a codimension-2 bifurcation where
a region emerges between PC and PCR, at the heart of which lies the Milnor attractor
curve BRR. Within this region, there is an incrementing cascade of periodicity regions
PCRRn , n ≥ 1, approaching BRR in an alternating fashion, i.e. with even n to one side
of the accumulation point, and odd n to the other.

From the symmetry of the discontinuous flat top tent map we know that, on the
other side of the interval IC, the same scenario occurs between PC and PCL, with
the incrementing cascade PCLRn , n ≥ 1 and accumulation curve BLR. In fact, we can
see similar bifurcations occurring all over the parameter plane. As we know that
all periodicity regions are related to the fixed point periodicity region as backward
orbits thereof (2.4), it is clear that all scenarios occurring in the vicinity of PC can be
transferred to all other existing regions PCσ. Organizing centers like these, which create

1This family of sequences could also be written as CR{0,1}Ln, but the notation that was chosen
better reflects the general symmetry of the bifurcation scenario: for each orbit OCLσ existing for
some β = β′, there is an orbit OCRσ at β = 1− β′ and vice versa.

10



3 Nested Structures

α

β

0.5 1.2
0

1

PC

PCR

PCRL

PCRL2

PCRL3

PCRL4

PCL
PCL2

PCL3
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PCL5

PC

PCR
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PCR4

PCR5

PCR6

PCR7

PCR8

αR

BRR

Figure 3.1: Blowup of a big bang bifurcation associated with the unstable fixed point OR.
At this point, the curve BRR emerges where OR becomes a Milnor attractor, along with a
family of periodicity regions PCRn associated with this attractor.
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3 Nested Structures

an infinitude of periodicity regions, are commonly known as big bang bifurcations. It
stands to reason that these systematically give rise to the families of stable orbits
which eventually form the complete scenario described in Sec. 2.2.

These big bang bifurcations and the resulting incrementing cascades appear at those
points in state space and parameter space, where the associated Milnor attractors
come into existence. Because the unstable orbits of the discontinuous flat top tent
map structurally coincide with those of the well-known tent map, but are virtual as
long as some of their points lie in the middle partition, we must regard the region
where the last of these points passes a border of IC.

Definition 3.1 (Canonical Sequence). The representation Oσ = (x1, x2, . . . , xn) of an
unstable orbit and its sequence σ = σ1σ2 . . . σn ∈ {L,R}n shall be denoted canonical if

∀ i = 2 . . . n

∣∣∣∣x1 −
1

2

∣∣∣∣ < ∣∣∣∣xi − 1

2

∣∣∣∣,
i.e. the (symbolic) representation starts with the orbit’s innermost point x1, which is
denoted for all orbits by xσ1 .

Definition 3.2 (Emerging Point). For each unstable orbit Oσ the emerging point
ασ is the value of the parameter α for which the orbit’s innermost point lies on the
boundary of IC, i.e.

xσ1 ∈
{

1− γ
2

,
1 + γ

2

}
.

As stated above, the unstable orbit Oσ is virtual for α < ασ, whereas for α > ασ the
orbit exists with one point very near the flat interval IC. There are now two possible
cases.

3.1.1 Incrementing Cascade for Odd Orbits

First, we consider an unstable orbit with the canonical sequence σ and odd parity at
α = ασ + ε slightly beyond its emerging point, where ε > 0 is chosen such that

f 2
σ

(
xb

)
∈ IC where xb =

{
1+γ

2
if σ1 = R

1−γ
2

if σ1 = L
(3.1)

This situation is depicted in a neighbourhood of IC in Fig. 3.2. The red dashed path
shows that (3.1) holds, in which case we say that α is in the emerging domain of the
odd unstable orbit Oσ.

Now regard the periodicity regions PCσn , assuming, without loss of generality, that
σ starts with the symbol R:

• For the orbit OCσ we have PCσ = f−1
σ

(
IC
)

=
(
f−1
σ (1+γ

2
), f−1

σ (1−γ
2

)
)

. Note that

this orbit already exists for α < ασ with PCσ = f−1
σ

(
IC
)

=
[

1+γ
2
, f−1
σ (1−γ

2
)
)
.

12
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x

IC

fσ

Ũ

U . . .

. . .

PCσ

PCσ2

PCσ3

PCσ4

PCσ5

Bσ
σ

Figure 3.2: Schematic of an incrementing cascade for α = ασ + ε in a neighbourhood of
the middle partition, where σ = Rσ2σ3 . . . σn is the canonical sequence of an odd orbit.

• For the orbit OCσ2 we get PCσ2 = f−2
σ

(
IC
)

=
[

1+γ
2
, f−2
σ (1+γ

2
)
)
, which is directly

adjacent to PC.

• For the orbit OCσ3 we get PCσ3 = f−3
σ

(
IC
)

=
(
f−3
σ (1+γ

2
), f−1

σ (1+γ
2

)
]
, which is

directly adjacent to PCσ.

• Consequently, all regions PCσn , n > 2, lie densely between PCσ2 and PCσ, and
approach the (for f−1

σ stable) focus Oσ from alternating sides.

In summary there is a neighbourhood (cf. Fig. 3.2)

Ũ =
[

1+γ
2
, f−1
σ

(
1+γ

2

) ]
, satisfying Ũ =

( ∞⋃
i=1

PCσσi
)
∪ Bσσ , (3.2)

which subsumes all orbits of the new incrementing cascade. We can think of this
cascade as “belonging to” the (already existing) orbit OCσ. From the viewpoint of the
fixed point OC, basically the same scenario is given by the region

U = fσ

(
Ũ
)

=
[

1+γ
2
, f−1
σ

(
1+γ

2

) ]
,

which additionally includes part of PCσ. Due to the system’s symmetry, the same
scenario takes place on the other side of IC, yet mirrored and all sequences beginning

13



3 Nested Structures

with L. In conclusion the local scenario around IC in the emerging domain of Oσ is
given by:

PCσ̄
∣∣ cascade associated with PCσ̄ (β ∈ 1− eU)︷ ︸︸ ︷
PCσ̄σ2

∣∣PCσ̄σ4 · · · Bσ̄σ · · · PCσ̄σ3

∣∣PCσ̄σ ∣∣PC ∣∣
cascade associated with PCσ (β ∈ eU)︷ ︸︸ ︷

PCσσ
∣∣PCσσ3 · · · Bσσ · · · PCσσ4

∣∣PCσσ2

∣∣PCσ︸ ︷︷ ︸
cascade associated with PC (β ∈ U)

,

where we define the mirrored orbit of σ as

σ̄ = Sσ2σ3 . . . σn, S =

{
L if σ1 = R
R if σ1 = L,

i.e. the orbit obtained by inverting the first symbol.

x

IC

fσ

U

. . .

PCσ

PCσ2

PCσ3

PCσ4

PCσ5

Bσ
σ

Figure 3.3: Schematic of an incrementing cascade for α = ασ + ε in a neighbourhood of
the middle partition, where σ = Rσ2σ3 . . . σn is the canonical sequence of an even orbit.

3.1.2 Incrementing Cascade for Even Orbits

In the case that the considered unstable orbit with the canonical sequence σ is even,
the situation is slightly different, as shown in Fig. 3.3. Again, we observe the point xσ1
of Oσ at α = ασ + ε. Now however, ε > 0 is chosen such that

fσ
(
xb

)
∈ IC where xb =

{
1+γ

2
if σ1 = R

1−γ
2

if σ1 = L
(3.3)

14
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(Note the difference in the iteration order compared to (3.1).) This situation is de-
picted in a neighbourhood of IC in Fig. 3.3. Here, when (3.3) holds, we say that α is
in the emerging domain of the even unstable orbit Oσ.

Again assuming that σ starts with the symbol R, we regard the periodicity regions
PCσn :

• For the orbit OCσ we have PCσ = f−1
σ

(
IC
)

=
[

1+γ
2
, f−1
σ (1+γ

2
)
)
, which is already

directly adjacent to PC.

• Consequently, all regions PCσn , n > 1, lie densely side by side and approach the
(for f−1

σ stable) node Oσ from below.

Now the containing neighbourhood U (cf. Fig. 3.3) is given by

U =
[

1+γ
2
, xσ1

]
, satisfying U =

( ∞⋃
i=0

PCσσi
)
∪ Bσσ . (3.4)

Due to the system’s symmetry, the same scenario takes place on the other side of IC,
yet mirrored and all sequences beginning with L. This mirror-scenario is contained to
the region

1− U =
[
1− xσ1 ,

1−γ
2

]
, satisfying 1− U =

( ∞⋃
i=0

PCσ̄σi
)
∪ Bσ̄σ . (3.5)

In conclusion the local scenario around IC in the emerging domain of Oσ is given by:

Bσ̄σ · · · PCσ̄σ4

∣∣PCσ̄σ3

∣∣PCσ̄σ2

∣∣PCσ̄σ ∣∣PCσ̄︸ ︷︷ ︸
left cascade associated with PC (β ∈ 1− U)

∣∣PC ∣∣ PCσ ∣∣PCσσ ∣∣PCσσ2

∣∣PCσσ3

∣∣PCσσ4 · · · Bσσ︸ ︷︷ ︸
right cascade associated with PC (β ∈ U)

3.1.3 Conclusion

For both cases that have been examined above, the scenario can be transferred to
all periodicity regions already existing at the emerging point ασ. Let the set of all
periodicity regions PC% existing for α < ασ be given by Pσ. As shown in Sec. 2.1,
these regions are given as preimages of IC in parameter space. Therefore, the scenario
observed at a boundary of the fixed point region PC can also be observed at the
boundaries of other periodicity regions PC%. Depending on the parity of %, the derived
scenario occurs either in the same direction (% even), or mirrored (% odd). Also, for
any sequence Cs in the original cascade, each derived orbit is given by C%s. From the
preceding observations, the following two central theorems are easily derived.

Theorem 3.1 (Odd Incrementing Cascade). Consider the emerging point ασ of an
unstable orbit Oσ with odd parity. Now assume α > ασ in the emerging domain
given by (3.1). In the neighbourhood of each periodicity region PC% ∈ Pσ there is an
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alternating cascade of new periodicity regions PC%σk , k ≥ 1, approaching the point B%%.
The position of this cascade relative to PC% thereby depends on the parity of % and the
first symbol of σ in the following way:

PC%
k−−−→

PC%σ2k · · · B%σ · · ·
k←−−−−−

PC%σ2k−1 if par
(
σ1%
)

= 1,

PC%σ2k−1

−−−−−→
k

· · · B%σ · · · PC%σ2k

←−−−
k

PC% if par
(
σ1%
)

= 0.

Theorem 3.2 (Even Incrementing Cascade). Consider the emerging point ασ of an
unstable orbit Oσ with even parity. Now assume α > ασ in the emerging domain
given by (3.3). In the neighbourhood of each periodicity region PC% ∈ Pσ there are two
monotonic cascades of new periodicity regions PC%σk+1 , PC%σ̄σk , k ≥ 0, approaching the
points B%% and B%̄%. The position of these cascades relative to PC% thereby depends on
the parity of % and the first symbol of σ in the following way:

B%σ̄σ · · ·
k←−−−−

PC%σ̄σk PC%
k−−−−→

PC%σk+1 · · · B%σσ if par
(
σ1%
)

= 1,

B%σσ · · · PC%σk+1

←−−−−
k

PC% PC%σ̄σk−−−−→
k

· · · B%σ̄σ if par
(
σ1%
)

= 0.

Knowing the local structures of these big bang bifurcations and how they are deter-
mined by the Milnor attractors which emerge at these points, it would be interesting
to know in which of these unstable orbits appear at which stage. That means, how are
the emerging points ασ ordered for increasing α? As the unstable orbits are indepen-
dent of β, we can answer this question by regarding a special case of the discontinuous
flat top tent map, namely the case where the map is continuous. This case has already
been under thorough investigation by several authors, and the appearance of unstable
orbits is readily explained.

3.2 Digression: Period-Doubling Cascades

The continuous case of (2.1) satisfies β = α(1− γ), and yields the well-known flat top
tent map given by

f(x) =


fL(x) = 2αx if x ≤ 1−γ

2

fC(x) = α(1− γ) if 1−γ
2
< x < 1+γ

2

fR(x) = 2α(1− x) if x ≥ 1+γ
2
.

(3.6)

This location of this case in parameter space is graphically represented in Fig. 2.2 as a
red curve.2 The system belongs to the class of unimodal maps under consideration in

2Although linear for fixed γ, the relationship β = α(1 − γ) becomes a curve in this figure, as the
bifurcation diagram is scaled in α in order to accommodate values approaching infinity.
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the famous work [4] by Metropolis-Stein-Stein, who developed a recursive set of rules
for determining the α-order of the flat top tent map’s stable periodic orbits.

Their main result was that the prototypical bifurcation scenario in unimodal maps—
being governed by flip and fold bifurcations—is made up from period doubling cas-
cades. Using a symbolic notation equivalent to the one used in this thesis, the authors
showed that the successive orbits in such a cascade are determined by their so-called
harmonic and anti-harmonic extensions. These results will be briefly reiterated, start-
ing with the following definition.

Cσ
Lσ

(a)

Cσ

Lσ

(b)

Cσ→Rσ

Lσ

(c) α = αRσ

Lσ

Rσ

CσRσ

(d)

Figure 3.4: The higher order iterate fn in a neighbourhood of IC for increasing α: (a)
saddle-node bifurcation creating the orbits Cσ (stable) and Lσ (unstable), (b) situation
within the Cσ-window, (c) the stable cycle Cσ crosses the right border and becomes Rσ
(unstable), whereby the stable orbit CσRσ emerges (d). In this case, σ is a word of length
n− 1 with even parity. Remark: Note that these schematics are not to scale! In particular,
the branches fLσ and fRσ may vanish in figure (a).
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Definition 3.3 (Harmonic and Anti-Harmonic Symbol). The harmonic and anti-
harmonic symbol of a symbolic sequence σ are defined as

H(σ) =

{
R if σ is even

L if σ is odd,
A(σ) =

{
L if σ is even

R if σ is odd,

respectively.

The transition from one stable orbit OCσ to its period-doubled successor is depicted
from the view of the iterate fn in Figs. 3.4 and 3.5, for even and odd sequences σ,
respectively. We see there that, first, the stable orbit with the symbolic sequence Cσ
emerges along with the unstable orbit A(σ)σ. Subsequently, the stable orbit crosses
the border and two orbits emerge: the unstable H(σ)σ and the stable period-doubled
orbit CσH(σ)σ = Cσ̃. The location of this latter bifurcation in parameter space is of
course what we earlier defined as the emerging point αH(σ)σ.

Cσ′
Rσ′

(a)

Cσ′

Rσ′

(b)

Lσ′←Cσ′

Rσ′

(c) α = αLσ′

Lσ′

Rσ′

Cσ′Lσ′

(d)

Figure 3.5: The converse case of Fig. 3.4, where σ′ is a word with odd parity. If σ′ = σRσ,
then (a) depicts the higher order iterate f2n at the same point α = αRσ as Fig. 3.4c. In that
case, this figure represents the next step in the same period doubling cascade.
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Here the process repeats itself with the appearance of Cσ̃ and A(σ̃)σ̃, which is of

course simply A
(
σH(σ)σ

)
σH(σ)σ =

(
H(σ)σ

)2
, and so forth.

Lemma 3.1 (Doubling Operator for Stable Orbits). The operator generating the sym-
bolic sequence of the next stable orbit in a period doubling cascade, based on that of
the preceding orbit OCσ, is given by

DH : Cσ 7→ CσH(σ)σ

and shall be denoted as the harmonic doubling operator. For convenience, the anti-
harmonic doubling operator is defined accordingly:

DA : Cσ 7→ CσA(σ)σ.

This explains all stable orbits occurring in a period-doubling cascade, beginning
with a certain orbit OCσ. This “base sequence” can also be determined from the rules
given by Metropolis-Stein-Stein, here slightly paraphrased:

Lemma 3.2 (Base Seqences of the Period-Doubling Cascades). The first base sequence
in α-order is given by C, the last is given by CRL∞. Between any two adjacent base
sequences s1 and s2 (given in α-order) there is a third base sequence s, which is given
by the longest common prefix of the (infinite) sequences D∞H (s1) and D∞A (s2). The
complete α-order of base sequences follows from recursion.

To get a raw image of the resulting structure, here are the α-ordered base sequences
after three iterations of this rule:

C

CRLRRR

CRLRR

CRLRRLR

CRL

CRLLR

CRLL

CRLLL

CRL∞

H

(A)

H

A

H

(A)

H

A

H

A

H

A

H

(A)

α
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3.2.1 Map Replacement

While the recursive application of DH is sufficient to generate the complete doubling
cascade following an arbitrary base sequence, it is also worth noting that all these
cascades can be derived directly from the first doubling cascade via map replacement.

Lemma 3.3 (Map Replacement). Assume a given base sequence C% represents a
feasible orbit of the flat top tent map. Then the sequences of the doubling cascade
{C%, C%H(%)% . . . } associated with this sequence can be obtained from the prototypical
cascade {C, CR, CRLR . . . } by applying the following symbolic replacement:

MR%(σ) :


L 7→ A(%)%

C 7→ C%
R 7→ H(%)%.

Note: This rule satisfies len
(
MR%(σ)

)
= len(σ)·len

(
C%
)
, and also par MR%(σ) = par σ,

which follows from Definition 3.3, i.e. this replacement rule preserves parity.

Proof. Consider a sequence Cσ from the first doubling cascade.

a) Doubling the sequence and then applying the replacement rules gives

Cσ DH−−→ CσH(σ)σ
MR%−−→ C%MR%(σ) MR%

(
H(σ)

)
MR%(σ).

b) Applying map replacement first and then doubling results in

Cσ MR%−−→ C%MR%(σ)
DH−−→ C%MR%(σ)H

(
%MR%(σ)

)
% MR%(σ).

It is easy to check that MR%

(
H(σ)

)
= H(%σ)% = H

(
%MR%(σ)

)
%, simply by performing

a case-by-case analysis of the different parity constellations. Therefore, DH and MR%

are commutative. The rest follows from induction, noting that MR%(C) = C%.

Note that the replacement rule MR% is of course also valid if used to obtain the
unstable orbits in a period doubling cascade with a given base sequence from the
canonical sequences of the unstable orbits in the first cascade. In this case, the se-
quences which the replacement rules yield are also in canonical form, as L% and R%
(the first two orbits to appear in a cascade) must be canonical sequences if OC% is an
admissible orbit of the flat top tent map.

3.3 Big Bang Bifurcation Cascades

So much for the stable periodic orbits of the flat top tent map. As stated earlier,
the emergence of the accompanying unstable orbits in the explanation of the doubling
cascade does not depend on the map’s middle partition, and is therefore equally valid
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for the discontinuous flat top tent map and the occurrence of the incrementing cascades
explained in Sec. 3.1.1 and 3.1.2. Note that—as a result of the structure of the doubling
cascades—even unstable orbits only emerge at the very beginning of a period-doubling
cascade. Therefore, the beginning of such a cascade is marked by the emerging point
ασ of an even unstable orbit, and all further steps by the emerging points of the
subsequent odd orbits.

Theorem 3.3 (Doubling Operator for Unstable Orbits). The operator generating the
symbolic sequence of the next emerging point in a period doubling cascade, based on
that of the preceding sequence σ, is given by

Du : σ 7→

{
σ̄ = H(σ1)σ2 . . . σn if parσ = 0

σ̄σ = H(σ1)σ2 . . . σnσ1σ2 . . . σn if parσ = 1.

Proof. If σ is even, then the corresponding emerging point ασ marks the beginning of
a period-doubling cascade, and the next unstable orbit in the cascade is given by σ̄, as
shown in Sec. 3.2. The statement for odd orbits follows easily from Lemma 3.1, since

αL αR αLR αRRLR

BRL

BLL

C

CR

CL

CRR

CLR

BRR

BLR

CRRLR

CLRLR

BRRLR

BLRLR

CRRLRRRLR

CLRLRRRLR

BRRLRRRLR

BLRLRRRLR

Figure 3.6: Schematic of the Big Bang Cascade starting at the emerging point αL in the
neighbourhood of IC . Each grey region around the Milnor curve B%σ contains a cascade with
the sequences C%σn.
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doubling the sequence Cσ twice yields

DH
(
Cσ
)

= CσH(σ)σ︸ ︷︷ ︸
σI

and D2
H
(
Cσ
)

= CσH(σ)σH
(
σH(σ)σ

)
σH(σ)σ

= CσH(σ)σH2(σ)σH(σ)σ︸ ︷︷ ︸
σII

,

and clearly σII = Du

(
σI
)
.

As stated in Theorems 3.1 and 3.2, at each emerging point ασ occurs an infinitude
of big bang bifurcations, with a family of stable periodic orbits created from each one.
The α-order of these emerging points can be determined by the aforementioned rules.

αRRL αLRL αRRLLRL

BRRLRRL

BLRLRRL

C

CRRL

CLRL

CRRLLRL

C(LRL)2

BRRLLRL

BLRLLRL

C(RRLLRL)2

C(LRL)2RRLLRL

BRRLLRLRRLLRL

B(LRL)2

RRLLRL

Figure 3.7: Schematic of the Big Bang Cascade starting at the emerging point αRRL in the
neighbourhood of IC . Each grey region around the Milnor curve B%σ contains a cascade with
the sequences C%σn. The hatched area contains orbits already existing at αRRL, i.e. orbits
with sequences s ∈ LRRL.
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Theorem 3.4 (Complete Big Bang Bifurcation Scenario). For each base sequence
C% given by Lemma 3.2, there is a series of emerging points αkσ, k = 0 . . .∞, with
σk = Dk

u

(
A(%)%

)
. The only stable periodic orbit existing for α < αL is the fixed point

OC. The set of stable periodic orbits generated by each subsequent emerging point is
given by Theorems 3.1 and 3.2.

This theorem gives a complete and concise description of the two-dimensional nested
period incrementing bifurcation scenario, as occurring in the (α, β) parameter plane
of the discontinuous flat top tent map, including all big bang bifurcations contained
therein and the families of symbolic sequences these big bangs generate. Practically,
this statement should be taken with a grain of salt. Already at the end of the first
doubling cascade, i.e. for α > αD∞u (L), it is obviously not possible to enumerate all
existing periodic orbits in a closed form. After all, the very structure of successive
nesting in Lemma 3.2 does not permit us to determine the following adjacent base
sequence in α-order.

However, if a maximal period for all stable orbits under consideration is fixed a priori,
the number of emerging points ασ becomes finite, and the procedure of enumerating
all stable orbits pretty much straightforward.

To get an impression of the complexity of the bifurcation structure, which the discon-
tinuous flat top tent map produces, we can take a brief look at two concrete cascades
of big bang bifurcations. The very first of these cascades occurs at the emerging point
αL = 1

2
, and a schematic of the big bang bifurcations of this cascade occurring in the

vicinity of IC is shown in Fig. 3.6. The emerging points of this scenario are given by

αL < αR < αLR < αRRLR < αLRLRRRLR < · · ·

As already known, the set of stable periodic orbits existing for α < αL contains only
the fixed point OC. The set of all symbolic sequences existing for α < ασ shall be
denoted as Lσ and so we have LL =

{
C
}

. The orbits emerging at αL follow from
Theorem 3.2, and so the sequences existing before the next emerging point αR are
given by

LDu(L) = LR =
{
C, CL, CL2, . . . , CR, CRL, CRL2, . . .

}
= LL ∪

{
C(L|R)Lk | k ≥ 0

}
.

The orbits emerging next follow from Theorem 3.1, and so all sequences existing for
αR < α < αLR are given by

LDu(R) = LLR = LR ∪
{
C%Rk | C% ∈ LR, k ≥ 1

}
.

These sequences of course form the basis for all orbits which exist just after the next
emerging point αLR:

LDu(LR) = LRRLR = LLR ∪
{
C%(LR)k | C% ∈ LLR, k ≥ 1

}
.

Generally, for this first doubling cascade, the set of symbolic sequences existing before
any emerging point αDu(σ) is given by LDu(σ) = Lσ ∪

{
C%σk | C% ∈ Lσ, k ≥ 1

}
, and
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consequently, the set of symbolic sequences generated in the big bang bifurcations of
the preceding emerging point ασ can be given completely as Gσ = LDu(σ) \ Lσ. At
any point along this first doubling cascade, the set of all orbits created so far can be
described in a closed form

LDi+1
u (L) =

{
CR{0,1}La(LR)b(RRLR)c . . . (Di

u(L))k | a, b, c, . . . , k ≥ 0
}
,

as can the set GDiu(L) of all orbits created at any emerging point αDiu(L). But for
significantly larger values of α the same can, of course, no longer be said.

Fig. 3.7 shows the doubling cascade which starts at the emerging point αRRL and
is therefore located somewhat further along the α-axis. The families of orbits which
can be found in this cascade are obtained in the same manner:

LLRL = LRRL ∪
{
C%(RRL)k | C% ∈ LRRL, k ≥ 1

}
for αRRL < α < αLRL

LR2L2RL = LLRL ∪
{
C%(LRL)k | C% ∈ LLRL, k ≥ 1

}
for αLRL < α < αR2L2RL

...

Note, however, that we have no closed expression for the set of symbolic sequences
LRRL which exist for α < αRRL. As a consequence, it is not possible to list all orbits
appearing at αRRL, but we do know that all these orbits share a characteristic (RRL)k

suffix.

3.4 Border Collision Curves

Much has been said so far about the codimension-2 big bang bifurcations, in which—
prosaically put—all periodic orbits “are born”. Also of interest are the codimension-1
bifurcations in the nested period incrementing scenario, which separate one periodicity
region from the other. These are of the border collision (BC) type, which is a typical
situation for piecewise-smooth and discontinuous systems.

The BC bifurcations in this scenario are fairly “harmless”, as they always lead from
one globally stable periodic orbit to another, or to diverging behaviour. In other
systems, especially those exhibiting chaos, the transition of dynamical behaviour at
a border collision can be of a much more radical nature. For more information on
border collision bifurcations, the reader is referred to [5, 3, 6].

The simplest case of border collision can be observed for the case of the fixed point
OC which is given by x = β. This orbit exists only for β ∈ PC = IC, as we have already
seen. If β crosses either the left

(
1−γ

2

)
or right border

(
1+γ

2

)
of the partition IC, the

fixed point ceases to exist. These two BC bifurcations are given by

Ψl
C =

{
(α, β)

∣∣∣ β =
1− γ

2

}
and Ψr

C =

{
(α, β)

∣∣∣ β =
1 + γ

2

}
,

which represent the two lines in parameter space, which separate the periodicity region
PC from the rest of the discontinuous flat top tent map’s dynamical behaviour.
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It was shown in Sec. 2.1, that the periodicity region of each stable periodic orbit
OC% is given by a preimage of IC, and that at least for α > α? this preimage is always
complete, meaning that every point in IC has a preimage under f−1

% . Consequently,
the BC curves of all these orbits can be derived from those of the fixed point:

Ψl
C% =

{
(α, β)

∣∣∣ β = f−1
%

(
1−γ

2

)}
and Ψr

C% =

{
(α, β)

∣∣∣ β = f−1
%

(
1+γ

2

)}
, (3.7)

These curves in parameter space shall be denoted as the endogenous border collision
curves of the orbit OC%, because they represent the case when the point x0 ∈ IC of this
orbit collides with one of the borders of the middle partition from within. Note that
the endogenous BC curves of every periodic orbit3 intersect at either (α = +∞, β = 0)
or (α = +∞, β = 1). Furthermore, the relative location of Ψl

C% and Ψr
C% in β-direction

depends on the parity of %, as for odd orbits the situation is mirrored with respect to
the fixed point region PC.

In contrast to the stable fixed point OC however, the periodicity regions PC% are
bounded not only by the two endogenous BC curves, but also by a third border
collision bifurcation. For example, in Fig. 3.8 we can see that the periodicity region
PCR (shown in a pale green) is “overshadowed” from below by the periodicity region
of the fixed point. In this case, PCR is bounded by the three curves Ψl

CR, Ψr
CR and Ψr

C.
In fact, in Sec. 3.1 we have seen that every periodicity region PC% is bounded on

one side by the endogenous BC bifurcation of another orbit, as long as α is within the
emerging domain of the unstable orbit which gives rise to OC%. This is the reason why
the periodicity regions of an incrementing cascade lie densely adjacent to each other.

Fig. 3.8 shows an example of such an incrementing cascade around the curve BRR,
with the orbits OCRk , k > 1. As this is an odd incrementing cascade, each of the
regions PCRk borders on the region PCRk−2 on one side. This means that, for example,
the periodicity region of the orbit OCR3 is bounded by its own endogenous BC curve
Ψr
CR3 on one side, but by the curve Ψr

CR of its neighbour on the other. In this case,
when traversing the latter bifurcation curve for increasing β, the symbolic dynamics
of the discontinuous flat top tent map changes in the following way:

CRRR → CR

This means that the third point x2 ∈ R (with the corresponding symbol underlined
above) of the stable periodic orbit OCR3 collides from outside with the right boundary
of the middle partition IC. This bifurcation is therefore referred to as the exogenous
border collision bifurcation of this particular orbit, and the corresponding bifurcation
curve is denoted by ΦCR3 . In general, we can say that each4 periodicity region PC% is
bounded by the three BC curves

Ψl
C% , Ψr

C% and ΦC%.

3except for the fixed point OC
4again, with the exception of the fixed point region PC
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α

β

0.5 1.2
0.45

1.0

PCR

PCR2

PCR4

PCR5

PCR3

BRR

BR2L
R

PCR2LR

PCR2LR3

PCR2LR5

PCR2LR4

PCR2LR2

Figure 3.8: Two cases of incrementing cascades with the increment R. The orbits OCRk ,
k > 1 originate from a single big bang bifurcation, and each exogenous BC curve ΦCRk is
given by Ψl/r

CRk−2 . The orbits OCR2LRk do not originate from a single bifurcation, but are
spread out over α, and all exogenous BC curves ΦCR2LRk are given by Ψr

C .

Which point of the orbit exactly collides in the exogenous bifurcation at ΦC% is deter-
mined by the respective incrementing cascade, in which the orbit OC% is created.

Proposition 3.1. If the orbit OC% lies within the incrementing cascade corresponding
to the Milnor attractor curve B%̃σ, which originates at the emerging point ασ,5 then the
colliding point in the exogenous BC bifurcation ΦC% is given by the first letter of the
suffix σ for even cascades, or of the suffix σ2 for odd cascades.

This follows straightforward from Theorems 3.1 and 3.2. To take two examples
from the cascades shown in Fig. 3.7: The exogenous BC bifurcation for the orbit
OCLRL(RRL)2 in the even incrementing cascade corresponding to BLRLRRL is given by the
collision of the orbit’s 8th point with the right border of IC, or in symbolic notation

CLRLRRLRRL.

5This implies that the symbolic sequence of this orbit is of the form C% = C%̃σk.
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3 Nested Structures

The exogenous BC bifurcation for the orbit OCRRL(LRL)2 in the odd incrementing
cascade corresponding to BRRLLRL is given by the collision of the orbit’s 5th point with
the left border of IC, or in symbolic notation

CRRLLRLLRL.

Note that neither the existence of a family of orbits with sequences C%σk, nor the
existence of any Milnor attractor curve B%σ constitutes the necessary conditions for the
aforementioned proposition. For example, consider the periodicity regions PCR2LRk ,
which are shown in Fig. 3.8 together with the Milnor attractor curve BR2L

R . For all
these orbits, the exogenous bifurcations at ΦCR2LRk = Ψr

C are given by the collision of
the respective orbit’s second point x1 ∈ R with the right boundary of IC.

All these orbits, although they can obviously be regarded as increments of R, do not
emerge at αR and therefore don’t constitute a dense incrementing cascade as described
by Theorems 3.1. Rather, the orbits OCR2LRk appear successively along the α-axis,
each emerging as part of a different incrementing cascade. The reason for this is that
the Milnor attractor BR2L

R appears as part of a homoclinic bifurcation of the unstable
fixed point OR, after the emerging point αR.

In cases where the orbit lies at the brim of an incrementing cascade, the colliding
point can be found by determining the adjacent periodicity region.
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4 A System on Five Partitions

Consider the map given by

xn+1 = f
(
xn
)

with f(x) =


ε F (x) < ε

1− ε F (x) > 1− ε
F (x) otherwise

(4.1)

where

F (x) = x

(
1 + γ(1− ϕ)(1− x)

(
1

2x(1−ϕ)+2ϕ
+ 1

2x(1−ϕ)−2

))
. (4.2)

This map, shown in Fig. 4.1, models an economic system which is introduced in [1]
and describes an extension of the so-called Footloose Capital model. In this model,
manufactured goods are produced and consumed in two separate regions. For some
of these products, actors can choose to migrate factors of production between these
two regions (therefore the term ‘footloose’) in order to increase profitability. Other
products can only be manufactured in a certain region. The model includes a “trade
freeness” parameter ϕ, which represents the reciprocal transport cost, and a gain
parameter γ which models the speed with which each actor adjusts his production
process in response to changes in the system. For a more detailed description, see [1].

x

f(x)

0 1
0

1

ϕ = 0.06

ϕ = 0.20

Figure 4.1: The extended Footloose Capital model given by (4.1) for γ = 3.5, ε = 0.1 and
different values of ϕ.
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4 A System on Five Partitions

It is worth noting that the function (4.2) has three fixed points F (0) = 0, F
(

1
2

)
= 1

2

and F (1) = 1, and is symmetric to the point
(

1
2
, 1

2

)
, i.e.

F (x) = 1− F (1− x). (4.3)

For ϕ 6= 1, F (x) is continuous on x ∈ [0, 1]. In order to investigate the dynamical
properties of this system from a new angle, we can now proceed exactly as with the
flat top tent map in [2], by introducing the following discontinuous piecewise linear
system, which is shown in Fig. 4.2:

g(x) =



gL(x) = ax if 0 ≤ x ≤ δ

gC1(x) = e if δ < x < 1
2
− δ

gM(x) = 1−2aδ
2δ

(
x− 1

2

)
+ 1

2
if 1

2
− δ ≤ x ≤ 1

2
+ δ

gC2(x) = 1− e if 1
2

+ δ < x < 1− δ
gR(x) = a

(
x− 1

)
+ 1 if 1− δ ≤ x ≤ 1

(4.4)

Remark: for some orientation as to how a might be related to the original parameters
(γ, ϕ), note that the slope of F in the origin is given by

dF (x)

dx

∣∣∣∣
x=0

= 1 +
γ

2ϕ

(
1− ϕ

)2
.

Note that, similar to the parameter β of the discontinuous flat top tent map, e may
be varied independently, and the continuous case is given by e = aδ. In this case,

x

g(x)

0 1
0

1
L C1 M C2 R

a = 3.5

a = 5.0

Figure 4.2: The discontinuous piecewise-linear system given by (4.4) for δ = 0.2, e = 0.8
and different values of a.
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a

ε

3.5 5.5
0

1
a?

R

C2

M

C1

L

Figure 4.3: 2D bifurcation structure of (4.4) in the (a, e)-plane for δ = 0.2, showing the
curves separating regions of different period. The green regions correspond to preimages of
IC1 (these turn out to be periodicity regions with two coexisting orbits), whereas in the blue
regions correspond to preimages of IC2 (here, only one globally attracting cycle exists). The
red line shows the case e = aδ, where the system is continuous, as the original system (4.1).

(4.4) can be interpreted as an approximation of (4.1) (ignoring the original map’s
dynamically irrelevant1 constant branches in the neighbourhoods of x = 0 and x = 1).

The bifurcation diagram of (4.4) for δ = 0.2, a ∈ [3.5, 5.5] and e ∈ [0, 1] is depicted
in Fig. 4.3 and shows strong structural similarities with the bifurcation diagram of the
discontinuous flat top tent map (Fig. 2.2).

This simplified map is now defined on five partitions and possesses two constant
function branches gC1 and gC2 , as opposed to the single constant branch fC of the
discontinuous flat top tent map. Note that, in the parameter region of Fig. 4.3,

1cf. the investigation of the system’s parameter space in [1]
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4 A System on Five Partitions

the function branches are increasing-constant-decreasing-constant-increasing, in that
order. This corresponds to the shape of (4.1) for equivalently chosen parameters, as

F (x) is a bimodal function for γ > (ϕ+1)2

(ϕ−1)2 .
For symbolic analysis, the partitions of this system shall be denoted as

IL, IC1 , IM , IC2 and IR

from left to right, and the symbolic sequences defined accordingly. Analogous to the
discontinuous flat top tent map, there is a special case where the map given by g(x)
is surjective, i.e. the non-constant branches gL, gM and gR all map their respective
domains onto [0, 1]. This holds for a = a? = 1

δ
.

Here we can now argue exactly as in Sec. 2.2 with the successive subdivision of
common-prefix regions, in order to generate a complete order of periodicity regions.
First we must redefine the parity of a symbolic sequence s ∈

{
L,C1,M,C2, R

}n
(or

σ ∈
{
L,M,R

}n
accordingly) following Definition 2.1. The parities of the symbols,

according to the slopes of the corresponding branches of the map, are now of course

par(L) = 0, par(C1) = 0, par(M) = 1, par(C2) = 0 and par(R) = 0.

Now the order of periodicity regions can be generated by

. . . subdividing the unit interval into {IL, PC1 , IM , PC2 , IR},

. . . subdividing each common-prefix region Iσ where σ is even into the regions
{IσL, PσC1 , IσM , PσC2 , IσR} and

. . . subdividing each common-prefix region Iσ where σ is odd into the regions
{IσR, PσC2 , IσM , PσC1 , IσL}, i.e. in reverse order.

Corresponding to the example (2.7) of the discontinuous flat top tent map on p. 7,
this is the second level of subdivision for the map (4.4):

IL2

∣∣PLC1

∣∣ILM ∣∣PLC2

∣∣ILR︸ ︷︷ ︸
IL

∣∣PC1

∣∣IMR ∣∣PMC2

∣∣IM2

∣∣PMC1

∣∣IML︸ ︷︷ ︸
IM

∣∣PC2

∣∣IRL ∣∣PRC1

∣∣IRM ∣∣PRC2

∣∣IR2︸ ︷︷ ︸
IR︸ ︷︷ ︸

I=[0,1]

4.1 Coexisting and Concatenated Orbits

There is now an important difference to the discontinuous flat top tent map in how this
order of periodicity regions determines the actual bifurcation structure. The regions
PσCi are not necessarily periodicity regions of only one periodic orbit, neither is the
period of the existing orbit(s) directly equal to the length of the symbolic sequence
which identifies the periodicity region. For example, all points x ∈ PσC1 , after a short
trajectory with the symbolic sequence σ, are mapped to the partition IC1 . How the
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4 A System on Five Partitions

orbit continues after that is determined by the value of e. This can lie on either of the
stable sets of IC1 and IC2 , i.e.

e ∈
⋃
σ

PσC1 or e ∈
⋃
σ

PσC2 , σ ∈ {L,M,R}n.

Due to the symmetry (4.3), the two constant function branches are related as follows:

e ∈ Ps0s1...sn ⇐⇒ (1− e) ∈ Ps̄0s̄1...s̄n where s̄i =



R if si = L

C2 if si = C1

M if si = M

C1 if si = C2

L if si = R

Consequently, there are two possible cases for the dynamics of the system:

1. e ∈ PσC1 : two coexisting stable orbits with the sequence C1σ and C2σ̄

=⇒ PσC1 = P{C1σ,C2σ̄}

(Regions of this kind are marked green in Fig. 4.3.)

2. e ∈ PσC2 : one globally attracting stable orbit with the sequence C1σC2σ̄

=⇒ PσC2 = PC1σC2σ̄

(Regions of this kind are marked blue in Fig. 4.3.)

In order to show that these results are also of relevance for the original map (4.1),
the bifurcation diagram of this system is depicted in Fig. 4.4. When comparing this
diagram to the one in Fig. 4.3, we can already see some structural similarities, such
as the occurrence of coexisting and concatenated orbits. Of course, the respective pa-
rameter spaces for these two bifurcation diagrams have slightly different “semantics”,
as the system (4.1) is always continuous. To investigate the similarities further, we
consider the case where (4.4) is also continuous. Therefore, e = aδ is chosen for the
linearized map, which gives us the 1D bifurcation diagram shown in Fig. 4.5a. Fur-
thermore, the original map shall be investigated in a region where its constant function
branches (corresponding to IC1 and IC2 of (4.4)) are of constant width. For δ = 0.2
the width of IC1/2

is 0.1, therefore the original system was investigated for 5 values of
ε, and the following values of ϕ were determined numerically, for which the width of
the constant branches of (4.1) is also 0.1:

ε ϕ
0.000 0.0455488499
0.025 0.0500471927
0.050 0.0548659984
0.075 0.0600301923
0.100 0.0655679604

These points closely fit the linear relationship ε = 4.9895ϕ − 0.225481, which is
shown as a red line in the 2D bifurcation diagram in Fig. 4.4. With this restriction,
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φ

ε

0 0.07
0

0.1

Figure 4.4: 2D bifurcation structure of (4.1) in the (φ, ε)-plane for γ = 3.5, showing the
curves separating regions of different period. The green regions correspond to coexisting
orbits, whereas in the blue regions correspond to orbits involving both flat branches. The
red line shows the case in which the system’s flat branches have an approximately constant
width of 0.1, therefore corresponding to the continuous case of (4.4).

a)

a

x

0.0

1.0

4.0 5.0

b)

φ

x

0.0

1.0

0.0652 0.0452

Figure 4.5: Comparison of the 1D bifurcation diagrams of the piecewise-linear map g and
the extended Footloose Capital model f . a) diagram for (4.4) with δ = 0.2 and the continuity
condition e = aδ. b) diagram for (4.1) with γ = 3.5 and the condition ε = 4.9895ϕ−0.225481,
which approximates a constant flat branch width of 0.1. Coexisting orbits are shown in green.

we get the 1D bifurcation diagram shown in Fig. 4.5b. Comparing these two diagrams,
we can see that, although the two systems obviously scale differently in their respective
parameters, the bifurcation scenarios are in fact very similar.
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4.2 Generalised Results

The results from above may also be generalised to a procedure for arbitrary n-partition
systems of the same class, i.e. discontinuous piecewise-affine maps from an interval I
onto itself with least one constant function branch.

Assuming the system’s symbolic description is given as

• A1, A2, . . . for all partitions with a positive slope,

• B1, B2, . . . for all partitions with a negative slope and

• C1, C2, . . . for all partitions where the system function is constant,

then the structure of the partitions can be represented as a list(
IS1 , IS2 , . . . , ISn

)
, I =

n⋃
k=1

ISk , Si ∈
{
A1, A2, . . . , B1, B2, . . . , C1, C2, . . .

}
.

In this notation the discontinuous flat top tent map, for example, would be given by(
IS1 , IS2 , IS3

)
=
(
IA1 , IC1 , IB1

)
, and the extended Footloose Capital model (4.1) by(

IS1 , IS2 , IS3 , IS4 , IS5

)
=
(
IA1 , IC1 , IB1 , IC2 , IA2

)
. The parity for the symbolic sequences

s ∈ {Sk}n of all these systems can be defined uniformly as

par s =

(
n∑
i=1

par
(
si
))

mod 2, where ∀i par
(
Ai
)

=par
(
Ci
)

=0, par
(
Bi

)
=1.

Now a “recipe” for generating the basic order of the preimages of the constant branches
Ci can be stated as follows:

1. The map’s domain I is subdivided into the partitions
(
U1, U2, . . . , Un

)
Ui =

{
ISi if Si ∈ {Ak, Bk}
PSi if Si ∈ {Ck}.

2. Each interval Iσ is further subdivided into partitions
(
Uk(1), Uk(2), . . . , Uk(n)

)
,

where

k(i) =

{
i if parσ = 0

n+ 1− i if parσ = 1
and Ui =

{
IσSi if Si ∈ {Ak, Bk}
PσSi if Si ∈ {Ck}.

3. Step 2 is repeated recursively.
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The situation of coexisting and/or concatenated orbits can become more or less arbi-
trarily complex if all constant branches can be varied independently, but can easily be
captured in a transition graph. For example, if our system has four constant branches
C1. . . C4 plus a number of branches with positive/negative slope, and we denote the
values of the constant branches as βi, one possible situation could be

β1 ∈ PσIC2
, β2 ∈ PσIIC3

, β3 ∈ PσIIIC2
and β4 ∈ PσIV C4

,

with the corresponding transition graph:

C1 C2 C3 C4
σI

σII

σIII

σIV

In this case, the system would possess two coexisting stable orbits, one with the
sequence C2σ

IIC3σ
III (to which also the partition IC1 is mapped), and the other with

the sequence C4σ
IV .

In conclusion, this procedure can help in determining the principal periodicity struc-
ture for a vast class of dynamical systems. As with the two maps that have been in-
vestigated in this thesis, one would need an additional existence condition in order to
determine the concrete bifurcation scenarios occurring in such a system, for all typical
parameter settings which lead the map under consideration to be non-surjective.
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5 Conclusions

This work has shown that the nested period incrementing scenario can not only be
concisely described on a global scale, as with the binary tree structure that was shown
in Sec. 2, but also locally by regarding the structure of big bang bifurcations. These
organising centers are accompanied by the appearance of unstable orbits and Milnor
attractors in the system. Depending on the parity of these unstable orbits, two types of
incrementing cascades can be generated at the corresponding big bang points. In the
case with even parity, any existing periodicity region is augmented by two neighbouring
cascades, where the periods increase monotonically in both directions. In the case with
odd parity, each existing region is augmented by an alternating incrementing cascade.
The investigation demonstrated that the resulting orbits can be easily classified using
symbolic dynamics.

The α-order of these big bang bifurcations is partly determined by the U-sequence
introduced by Metropolis, Stein and Stein. In this sense, the complete 2D structure of
the nested period incrementing scenario can be produced by first applying their rules
for the symbolic dynamics of the period doubling cascade, and extending the results
using the rules developed in this work.

It has been shown that the techniques used and developed in this work can be
used conveniently to investigate many-partition discontinuous systems with constant
function branches.
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