
Institute of Parallel and Distributed SystemsUniversity of StuttgartUniversitätsstraÿe 38D�70569 Stuttgart
Master's Thesis Nr. 3188Optimized Aquisitionof Spatially DistributedPhenomenain Publi Sensing SystemsJarosªaw Stahowiak

Course of Study: Computer SieneExaminer: Prof. Dr. Kurt RothermelSupervisor: Dipl.-Inf. Damian Philipp
Commened: April 4, 2011Completed: Otober 25, 2011CR-Classi�ation: C.2.1, C.2.2, C.2.3, C.2.4

DelarationAll the work ontained within this thesis,exept where otherwise aknowledged, wassolely the e�ort of the author. At nostage was any ollaboration entered intowith any other party.

(Jarosªaw Stahowiak)

Abstract

Nowadays, an increasing number of popular consumer electronics is shipped
with a variety of sensors. The usage of these as a wireless sensing platform,
where users are the key architectural component, and ubiquitous access to
communication infrastructure has established a new application area called
public sensing.
We present an opportunistic public sensing system that allows for a flexible
and efficient acquisition of sensor readings. This work considers the usage of
smartphones as a sensor network in a model-driven sensor data acquisition. We
focus on efficiency of query dissemination to mobile nodes, while retaining high
effectiveness regarding defined sensing quality of collected data. We adopted
and extended an existing geographic routing protocol to design an efficient com-
munication system that executes model-driven data acquisition and is robust
to changing sensors availability. We use in-network processing paradigm to
efficiently distribute queries to mobile nodes and to collect results afterwards.
The developed approach was simulated using OMNeT++ network simulator.
To verify implemented algorithms and test the overall system performance, we
run simulations in different scenarios and evaluate them using adequate cov-
erage metrics. Moreover, we verify our intuitive extension to adopted routing
protocol and show that it can have a strong impact on the efficiency of protocol
in question.

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Problem Formulation . 10
1.3 Thesis Outline and Contributions 10

2 Background 13
2.1 Public Sensing . 13
2.2 Model-driven Sensor Data Acquisition 15

2.2.1 Introduction . 15
2.2.2 Prediction Model . 16
2.2.3 Modelling Sensor Data 17
2.2.4 Quantifying Sensing 18
2.2.5 Offline Sensor Selection 19
2.2.6 Related work . 20

2.3 Positioning Systems . 21
2.4 Routing in MANETs . 23

2.4.1 Basic Principles of MANETs 23
2.4.2 Topology-based Routing Techniques 25
2.4.3 Position-based Routing 26
2.4.4 Geographic Unicast Routing 28
2.4.5 Greedy Perimeter Stateless Routing 29

3 System Model 31
3.1 System Model. 31
3.2 Challenges and Requirements 33

4 System Design 35
4.1 Introduction . 35
4.2 Architecture . 36
4.3 Public Sensing . 38

4.3.1 Gateway . 38
4.3.2 Statistical Model. 40
4.3.3 Queries . 40

6 Contents

4.3.4 Area Division into Regions. 42
4.3.5 Query Delivery Models 43
4.3.6 In-Network Planning 44
4.3.7 In-Network Aggregation 46
4.3.8 Premature Routing Termination 47

4.4 Location Information Management 48
4.4.1 Division of Roles. 48

4.5 GPSR Protocol . 49
4.5.1 Delivery Area . 50
4.5.2 Burst Mode. 51
4.5.3 Planarization . 52

5 Implementation 53
5.1 Network Simulator . 53

5.1.1 Ad-hoc Routing in INETMANET 54
5.1.2 IP Module Interface 54

5.2 UMTS. 55
5.3 GPSR Protocol . 55

5.3.1 Beaconing . 55
5.3.2 Neighbour Table . 57
5.3.3 Greedy and Perimeter Mode 58

5.4 GPSR Application Programming Interface 61
5.4.1 API Interface and Messages 61
5.4.2 Processing of API Messages 63

5.5 GPSR Extensions . 63
5.5.1 Packet Formats . 63
5.5.2 Burst Mode. 64
5.5.3 Support for Mac-layer Failure Feedback 67
5.5.4 Integration with OMNeT++ 67

5.6 Public Sensing . 69
5.6.1 Packet Formats . 69
5.6.2 Gateway . 70
5.6.3 Node . 71

5.7 Location Information Management 71
5.7.1 Custom Location Information 71
5.7.2 Regions and Populated Regions 73
5.7.3 Packet Formats . 73

5.8 Simulation Parameters . 75

6 Evaluation 77
6.1 Methodology . 77
6.2 Sensor Dataset . 77
6.3 System Setup . 78

6.3.1 Network . 78
6.3.2 Mobile Node . 80
6.3.3 Mobility . 81

Contents 7

6.3.4 NIC Settings . 82
6.4 Metrics . 82
6.5 Experiments . 83

6.5.1 Validation of GPSR protocol 84
6.5.2 Burst Mode. 84
6.5.3 System Parameters . 85

7 Summary 87
7.1 Conclusion . 87
7.2 Future Work . 88

Bibliography 91

Chapter 1

Introduction

1.1 Motivation

Technological evolution in networking, micro-fabrication, embedded microcontrollers, and
integration of physical sensors in the past few decades has led to emerge of consumer
electronics as wireless sensor platforms. Examples of such devices are smartphones (e.g.,
Android-based or Apple iPhone), PDAs (e.g., Nokia N810), and MP3 players (e.g., Nike +
iPod). Today, sensors such as cameras, gyroscopes, and accelerometers, are becoming more
and more prevalent in smartphones carried by billions of people. In parallel, other external
sensors can be easily connected using for instance Bluetooth. As a consequence, user
generated content has been extended to sensed data of the environment, e.g., humidity,
temperature, pressure, pollution, and others. The wide adoption of smartphones with
positioning systems, like widely-used GPS, enable a generation of massive-scale sensor
networks formed from consumer devices. This creates a unique chance for widespread
public participation in data collection that can be shared with everyone for the grater
public good, and is refereed to as public sensing [14].

Traditionally, we used sensor networks composed of geographically dispersed cus-
tomized sensor nodes that worked together to monitor physical or environmental condi-
tions, such as air pressure, temperature, or pollution. Some drawbacks of sensor networks
include the need to conserve resources at all costs, expensive maintenance, lack of ro-
bustness, difficulties to cover a larger area in static deployments and others. The idea
of public sensing is to use a huge number of heterogeneous devices with sensing capabili-
ties and exploit uncontrolled mobility of people carrying these devices. According to the
ITU, by the end of 2010, there was an estimated 5.3 billion mobile cellular subscriptions
worldwide. They report that access to mobile networks is now available to 90% of the
world population and 80% of the population living in rural areas [44]. Therefore, if only
a fraction of those users participate in public sensing, we have a huge number of available
sensing devices.

Turning users into creators, custodians, actuators, and publishers of the data they
collect, creates a new kind of interesting application areas. We are no longer required to
deploy wireless networks of static sensors to monitor environmental conditions. Public

10 1 Introduction

sensing extends our possibilities by taking advantage of the large scale of sensors already
existing in form of mobile devices. A large-scale weather forecasts can be formed with the
aid of information collected through participatory public sensing [26]. Consider another
example of monitoring noise pollution [34]. In urban areas, noise pollution is a major
problem that affects human behaviour, well-being, productivity and health. In order to
better understand the problem and develop counter measures, real world data needs to be
gathered to assess the current noise climate in the city. In this example, mobile phones are
used as noise sensors that actively involve users to provide additional qualitative input,
e.g., annoyance rating. While these examples reveal some of the many benefits that public
sensing offers, this is just the beginning to a new world of application possibilities.

1.2 Problem Formulation

In the area of public sensing, we study methods to acquire information from consumer
sensing devices to provide valuable services. Such devices can be used for sensing envi-
ronmental data such as temperature or air pollution. The potential of public sensing for
these applications comes from the large number of people covering large public spaces
while carrying their mobile phones. However, the use of these mobile sensors introduces
two main challenges. Firstly, no guarantees about coverage of sensed area and data quality
can be made, due to the uncontrolled mobility of people and lack of control over actions
that influence this coverage. This can lead to sensing coverage gaps. Secondly, sensing
should not interfere with normal usage of devices. In general, this requires efficiency in
terms of energy consumption, i.e., sensing and communication of mobile nodes needs to
be restricted. Therefore, we seek efficient methods for executing model-driven data ac-
quisition, given the characteristics of a target phenomenon being sensed. The focus of
this thesis is the algorithmic part of adapting optimized sensor data acquisition to public
sensing systems.

1.3 Thesis Outline and Contributions

In detail, this thesis consists of the following tasks:

• Study of related work, particularly from the field of public sensing systems, model-
driven sensor data acquisition and mobile ad-hoc networking.

• Design of an adaptive algorithm for selecting alternate sensor readings.

• Design of an efficient communication system for executing model-driven data acqui-
sition.

• Preparation and configuration of a simulation environment.

• Analysis and evaluation of implemented approach.

In the following chapters, we present some background on public sensing systems, mod-
el-driven data acquisition, different positioning systems, and routing principles in mobile
ad-hoc networks (Chapter 2). Then, we introduce our system model, and discuss some
challenges and requirements (Chapter 3). Afterwards, we present the design specification

1.3 Thesis Outline and Contributions 11

of system in question, before moving on to the implementation details (Chapter 4). Then,
we present the simulation setup, define different metrics suitable to our scenario, and dis-
cuss results (Chapter 5). Finally, we conclude this thesis and give a brief outlook on the
future work (Chapter 6).

Chapter 2

Background

2.1 Public Sensing

Figure 2.1. Public sensing is one of the aspects of people-centric sensing [15].

Over the past decade, the focus of wireless sensor networking research has evolved from
static networks of small resource-limited embedded devices to a people-centric approach,
in which the focal point of sensing and the presentation of sensor-based information is
for the benefit of the general public, rather than domain-specific scientists. As Liu et al.
shows, such devices achieve a much higher coverage compared to the same number of static
sensor nodes [33]. Areas that might never be covered in a stationary sensor network, can
now be reached by moving sensors. The sensing capabilities found in modern consumer
devices, combined with positioning systems, enabled a variety of sensing applications that
can be supported. These applications are mainly driven by the needs to develop better
social software to facilitate interaction and communication among groups of people, and
predict the real-time change of real world to benefit human life [50]. There are many
application areas, e.g., environmental monitoring, urban sensing, human health, social
networks, and others.

Including human-carried devices as a fundamental block of a public sensing system
raises the question to what extent people, as sensing device custodians, should be involved

14 2 Background

in sensing tasks. The community of researches has divided the spectrum of custodian
awareness and involvement into opportunistic and participatory [32]. A participatory ap-
proach incorporates people into significant decision stages of the sensing system. Thus, the
focus is put on tools and mechanisms that assist people in managing people-centric data.
It also satisfies the requirements for privacy, and encourages involvement of the public, us-
ing social techniques. Participatory sensing puts the burden of supporting an application
on the custodian, e.g., an application can request the user to rate taken picture. Since
people have limited tolerance to endure interruptions on behalf of an application, this
can limit the scale and diversity of applications that a purely participatory system could
support. Opportunistic sensing, on the other hand, eliminates the requirement for active
and conscious human participation. Instead, a sensing device is used whenever it matches
the requirements of an application, e.g., a geographic location has been reached. The user
is responsible only for configuring the privacy and transparency restrictions, i.e., the use
of the device should not impact normal user experience. Regardless of the fact that par-
ticipatory and opportunistic approaches are considered to be complementary, Lane et al.
[32] believe that an opportunistic system design supports better large scale deployments
and application diversity, since it does not place demands on user involvement.

Public sensing has been classified by Campbell et al. [15] as one of the three aspects of
people-centric sensing (Figure 2.1). The first one, public sensing, covers the widest scope
and focuses on gathering information that can be shared with everyone for the grater
public good. The remaining two applications include: personal sensing, that focuses on
personal monitoring (e.g., a physiological condition of the body), and social sensing, in
which information about ourselves is shared within social and special interest groups.
Every application reveals different challenges in terms of sampling data, understanding,
presenting, and eventually sharing it with others. In this thesis, we focus on public sensing
of environmental phenomena.

To give an intuition of what public sensing is about, consider the following examples.
With wireless sensor platforms in the hands of masses, we can leverage community sensing
to provide new opportunities for environmental monitoring and natural resource protec-
tion. Steed et al. [41] explored the area of monitoring carbon monoxide pollution. A set
of tracked, mobile devices equipped with pollution sensors was used to collect data from
pedestrians and cyclists. From analysis of raw GPS logs, they found some well-known spa-
tial and temporal properties of CO. Further, they discovered that tracked mobile sensors
allow for a fine-grained mapping of environmental sensors. Although, a study of CO was
made, they further argued that these techniques can be applicable to other environmental
properties such as temperature, humidity, noise and so on. The BikeNet application is
another example of a project targeting environment pollution measurement [20]. Several
metrics are measured to give a holistic picture of the cyclist experience, including the CO2
levels. It facilitates public sensing by enabling multiple users merge their individual data,
for example, to create pollution and allergen maps of their city.

2.2 Model-driven Sensor Data Acquisition 15

2.2 Model-driven Sensor Data Acquisition

In this section, we provide background on model-driven sensor data acquisition, as well
as basic terminology and concepts used in this thesis. We explain the idea of a prediction
model and choose appropriate statistical model for the phenomena of interest. Afterwards,
we specify the notion of sensing quality, to determine which set of sensors is preferable
over another. We conclude with a description of an adopted sensor selection algorithm.

2.2.1 Introduction

In traditional static sensor networks it is difficult to gather all data of interest. The world
consists of a set of observable phenomena that are continuous both in time and space.
Sensing techniques acquire samples of physical phenomena at discrete points. Unfortu-
nately, often they tend to acquire as much data as possible from the environment. This is
a counter measure for incomplete query answers that are a result of faulty sensors, high
packet loss rates, and others. Due to the energy constraints inherent to sensor networks, it
is desirable to minimize the amount of sensed data. Querying all available sensors results
in increased execution time and excessive consumption of resources, e.g., shorter battery
life and increased network traffic.

For a given query, as more data is collected from participating devices, the total qual-
ity of query generally increases. However, querying all available nodes in the network
leads to unnecessary resources usage that can result in, e.g., faster battery depletion or
increased congestion in the communication medium. Since data from multiple sensors
with overlapping and continuous sensing regions is usually correlated, we should try to
remove redundant information by exploiting this property.

To make sensor systems more robust to these problems, many researches considered
using a model for the phenomenon being sensed [19] [31] [18]. For example, a temperature
of sensors geographically close to each other are likely to be correlated (spatial correla-
tion), which can be captured by means of any non-trivial statistical model. Such statistical
models can be used afterwards, to estimate the values of missing sensors from other corre-
lated sensor readings, can account for biases in spatial sampling, or even identify readings
that are returned by faulty sensors. Furthermore, models provide a way for optimizing
the acquisition of sensor readings. A sensor should be tasked if the model itself is not
sufficiently accurate to answer the query with acceptable confidence.

They key goal in public sensing is to continue to select the best subset of sensing de-
vices to estimate a complex spatial phenomenon. Quantifying the usefulness of querying
a sensor, e.g., by measuring how much a sensor reading is likely to improve the confidence
of model-driven estimates, allows to find a “good” set of sensors to sample. We rely on
existing information about abut the phenomenon to make sensor selections that promise
to provide the maximum value of information. This minimizes the amount of sensed
data, thereby reduces the power needed for consumer devices to make data measurements
and transmit them through the network. Furthermore, resource limitations on consumer

16 2 Background

devices require that public sensing systems are able to adapt to changing resources avail-
ability. For example, a mobile phone might run out of memory or power before a required
sensing task is completed. Furthermore, the consumer devices are not only heterogeneous
in terms of resources (e.g. CPU power, memory, battery capacity), but also in terms of
functionality that determines their sensing capabilities. This has a direct impact on the
time and effort that must be taken to sense data with sufficient accuracy. Users of less
capable devices might not meet the requirements of optimal sensing conditions.

In this thesis, we enrich interactive sensor querying with statistical modelling tech-
niques. We consider temperature as the phenomenon of interest. A simple, yet often
effective approach [19], is to assume that temperatures have a Gaussian multivariate dis-
tribution. A Gaussian model is used to capture spatial correlations between sensor readings
and to derive requested readings. We use it to optimize the number of selected sensors
but not the communication costs related to disseminating a query, since the topology is
an unknown. With the aid of a model, we can decide when to query the sensor network
to obtain new physical readings and refine estimates that yield high uncertainty. It is
important to mention, however, that our approach is flexible enough with respect to the
model and allows to incorporate other models with different characteristics. This forms
the base of our model-driven approach for data acquisition.

2.2.2 Prediction Model

We introduce now a basic formalization of the world for model creation. The most common
approach to formalize the problem of sensor selection is to treat sensor readings as random
variables for which statistics such as mean, variance, and covariance are known or can be
inferred. To map the raw sensor readings onto physical reality, a model of reality needs
to be constructed. To simplify the following description, we assume that all sensors are of
the same type and there is one attribute per sensor type, i.e., temperature.

Prediction can be performed on the basis of some predefined model, whose parameters
can be learnt from historical data [40] or assigned by virtue of a priori knowledge. Consider
a finite set V denoting all possible observations that we can make. Each s ∈ V corresponds
to a position of a modelled sensor (hereafter, s is also identified with the underlying
sensor). With each element s ∈ V, a random variable Xs is associated. This random
variable reflects a physical reading taken. For a subset A ⊆ V with |A| = k, a realization
xA is a vector of values xA = (xs1 , . . . , xsk

), where xsk
denotes a sensor reading taken at

sensor sk. A prediction model is a joint probability distribution function P (X1, . . . , X|V|)
(a priori pdf) over all random variables XV . It assigns a probability P (XA = xA) for each
joint realization of vector xA.

Suppose that we observe the value of attribute XA to be xA, we can use Bayesian rule
to condition our joint pdf P (XV) on this value, obtaining:

P (XV\A | XA = xA) =
P (XV\A)

P (XA = xA) .

2.2 Model-driven Sensor Data Acquisition 17

P (XV\A | XA = xA) is also refereed as the posterior density given the observation xA.
This posterior distribution encodes the uncertainty in the prediction and can be used to
make decisions, e.g, to interrogate the sensor network for updated readings. The process
of computing the posterior distribution of variables given evidence (observed variables) is
called probabilistic inference. In general, we make a vector of observations xA, and, after
conditioning on these observations, obtain P (XV\A | XA = xA), the posterior probability
of our set of attributes XV\A, given xA. Having P (XV\A | XA = xA), we can derive values
of unobserved attributes XV\A with some confidence.

2.2.3 Modelling Sensor Data

Many different mathematical approaches are used to model the phenomena of interest,
which vary in accuracy and complexity. Yoon and Shahabi [49] mathematically model the
property of spatial correlation using measured sensor data from different environments.
According to their findings, linear correlation model and spherical model fit best their
requirements to represent stochastic dependencies of temperature and light intensity phe-
nomena. To give more intuition, we explain the modelling concepts on an example of
simple linear correlation.

When we ask questions such as “Is an attribute X is related to Y ?”, or “Does attribute
X predict Y, and how well?”, we are interested in measuring and better understanding
the relationship between two variables. Linear correlation is a straight-line relationship
between two variables, which measures the extent to which values for one variable can
be predicted from values of another variable. The most familiar measure of dependence
between two quantities is the Pearson product-moment correlation coefficient. Given two
variables X and Y with expected values µX and µY and standard deviations σX and σY ,
the Pearson coefficient rX,Y is defined as:

rX,Y = E [(X − µX)(Y − µY)]
σXσY

, rX,Y ∈ 〈−1; 1〉

where E is the expected value of a random variable. The closer the coefficient is to
-1 or 1, the stronger is the correlation between the variables.

In the earlier considerations, we set the random variable Xs to model the temperature
at some sensor s ∈ V. Other possible probability distribution that has been considered
to model a temperature as a spatial process is the multivariate Gaussian distribution
[19]. A multivariate Gaussian distribution (hereafter, simply Gaussian) is the natural
generalization of the unidimensional normal pdf, known as the “bell curve”, to higher
dimensions:

P (XV = xV) = 1
(2π)

n
2 |ΣVV |

e−
1
2 (xV−µV)T

∑−1
VV (xV−µV),

where µV is the mean vector and
∑
V V is the covariance matrix. If we consider a subset,

A ⊆ V, of the attributes, we simply select entries in µ and Σ corresponding to these
attributes, and drop the other entries obtaining a lower dimensional mean vector µA and
covariance matrix ΣAA. This is called marginalization, or projection, of given pdf P (XV)

18 2 Background

to a density over a subset of attributes XV . In the broader meaning, it is the process of
deriving the joint distribution of a subset of XV . If we condition a Gaussian on the value
of some attributes, the resulting pdf is also Gaussian. This makes marginalization pretty
straightforward. The mean and covariance matrix of this new Gaussian can be determined
by simple matrix operations.

Suppose that we observed a set of sensors measurements XA = xA. Then we can pre-
dict the value of defined attribute at any sensor y ∈ V conditioned on those measurements,
P (Xy | xA). The distribution of Xy is a Gaussian whose mean µy|A and variance σ2

y|A are
given by:

mean : µy|A = µy + ΣyAΣ−1
AA(xA − µA),

variance : σ2
y|A = Σyy − ΣyAΣ−1

AAΣAy,

where ΣyA is a covariance vector with one entry for each u ∈ A with value Σyu, and
ΣAy = ΣT

yA.

This distribution represents spatial correlation of temperature in our sensor network.
The advantage of the Gaussian is that it can be compactly represented (only the mean
vector µV ∈ Rn and the covariance matrix

∑
V V ∈ Rn×n have to specified or derived from

data) and allows efficient inference, since we only have to perform basic matrix operations.
Finally, it is more accurate than trivial models based on linear correlations.

2.2.4 Quantifying Sensing

To reduce the amount of transmitted data and conserve energy resources of participating
nodes, we have to decide carefully which most informative sensors to query. The core
problem of selecting a set of sensors is how to predict the information gain of sensors before
obtaining readings. In practice, the prediction must be based on information currently
available in the model. We define a notion of sensing quality to determine, which set
of sensors is preferable over another. Consider a set function F (A) : 2V → R, which
assigns each subset A of sensors a real number value. Empty subset of sensors provides no
information F (Ø) = 0. The goal is to select a subset A that maximizes the information
utility function F (A). Gathering more information should never reduce the sensing quality
but at some point, adding a sensor to an existing set of most informative sensors is not as
beneficial as if we would have chosen few sensors so far.

The information utility function can be defined in many different ways depending
on the context, e.g., for spatial prediction, interesting metrics are the entropy criterion,
mutual information and predictive variance, whereas for facilitating a decision making
process, the decision theoretic value of information should be considered [30].

One sensing quality function that is commonly used in practice, is the Shannon entropy
criterion, which measures the randomness of a given random variable. Mathematically,

2.2 Model-driven Sensor Data Acquisition 19

entropy can be defined as

H(XA) = −
ˆ

(p (xA)) logp(xA)dxA,

where p is the mass probability function, XA is the random vector of selected sensors,
and xA is its realization. Generally speaking, the smaller the entropy is, the more certainty
we have about the value of the random variable. Therefore, the information utility measure
based on entropy could be defined as

F (A) = H(XA),

since the goal is to find sensors that reveal the highest degree of uncertainty. We are
maximizing the entropy H(XA) of a subset of sensors. This selects the most uncertain
sensors.

In practice, we are more often interested in selecting a subset of sensors that most
effectively reduce the uncertainty about unavailable sensors. We thus can set our informa-
tion utility function to maximize the information gain. This is known under the mutual
information criterion and defined as

F (A) = H (XB)−H (XB | XA) = I (XB;XA) ,

where B ⊆ V is a subset of unobserved sensors whose uncertainty we want to reduce.
This quantity measures the mutual dependence of random variables, i.e., it measures how
much knowing some of these variables reduces uncertainty about the others. If all random
variables are independent, then neither one of them contains any information about the
others, therefore mutual information is zero.

If we are interesting in predicting temperature at all unavailable sensors, we can set
B = V \ A, i.e., the unavailable sensors depend on the observed sensors A. Our goal is to
maximize

F (A) = H
(
XV\A

)
−H

(
XV\A | XA

)
.

Mutual information requires an accurate estimate of the joint model P (XV), while
the entropy criterion only requires an accurate estimate at the selected sensors, P (XA).
Based on the findings of Guestrin et al. [22], it can be concluded that using the mutual
information criterion is often a better approach for sensor selection in Gaussian models
than entropy, both qualitatively and in prediction accuracy.

2.2.5 Offline Sensor Selection

The offline sensor selection task is about choosing the most informative sensors that have
not been incorporated into the model yet. In the earlier considerations, we defined a notion
of sensing quality and choose mutual information as our primary metric. Guestrin et al.
have done an extended research on many interesting sensing problems that satisfy the

20 2 Background

diminishing returns law [22]. Adding a sensor to an existing set of sensors helps more, if
we have chosen few sensors so far, and less if we selected already many. Mutual information
satisfies this property. For such information utility functions, when attempting to select
the best subset of sensors, the simple greedy algorithm (Algorithm 2.1) finds a solution
which guarantees a constant-factor approximation of (1−1/e) of the optimal sensing quality.
We have to require only that the number of chosen sensors is small in comparison to the
number of all modelled sensors.

Algorithm 2.1 Greedy algorithm for maximizing information utility function [22].
Input: Submodular function F : 2V → R, k
Output: Subset A ⊆ V
1: A ← ∅
2: for (j = 1→ k) do
3: for (y ∈ V \A) do
4: δs ← F (A ∪ {s})− F (A)
5: end for
6: s∗ ← argmaxs∈V\Aδs
7: A← A ∪ {s∗}
8: end for

We adopt the mutual-information-based greedy sensor selection algorithm for our sen-
sor selection task. The algorithm starts with the empty set A = ∅, and adds iteratively
a sensor that increases the sensing quality most. The information utility function F is
given in form of a mutual information criterion and satisfies the diminishing returns prop-
erty.

2.2.6 Related work

Krause [30] performs an extended research of observation selection problems. He presents
a novel class of approaches for sensing and information gathering. Most importantly, he
shows that many problems reveal structural properties such as intuitive law of diminishing
returns, locality and conditional independence.

Deshpande et al. [19] proposes a model-based query prototype called BBQ, which uses
a belief model based on time-varying multivariate Gaussians. Within proposed framework,
the authors demonstrate that such models can help provide meaningful information and
lead to efficient performance gains, in contrast to traditional data acquisition techniques.

In [22] Guestrin et al. considers near-optimal sensor placements modelled as Gaussian
processes. The concept of mutual information is used to measure the effect of sensor
placement on the posterior uncertainty of the model. Firstly, a proof that maximizing
the expected quality is a NP-complete problem is given. Following that, the authors
exploit submodularity of mutual information and design an approximation algorithm with
a bounded error.

2.3 Positioning Systems 21

Yoon and Shahabi [49] investigates spatio-temporal correlations to improve existing
in-network aggregation techniques. The Clustered AGgregation (CAG) forms clusters
of nodes sensing similar values. The study confirmed that CAG can perform energy
efficient in-network aggregation leveraging from spatio-temporal correlations, since the
number of transmissions is significantly reduced, and the query uncertainty is bounded by
a predefined threshold.

2.3 Positioning Systems

In mobile ad-hoc networks, position is of great importance in the context of geographic
routing protocols [12]. The routing decision at each node is mostly based on the current
positions of the forwarding node’s neighbours and the geographic information of the des-
tination. This localized decision scheme reduces the amount of traffic generated in the
process of route discovery and sometimes significantly decreases the amount of state infor-
mation that each participating node has to maintain. Before such decision can be made,
a geographic position of a node must be somehow available.

The term “position” have many different meanings that vary across the applications.
On an example of Global Positioning System (GPS), a physical location is provided in
terms of latitude, longitude, and altitude. Modern positioning systems have pushed out
many older terrestrial radio navigation systems, e.g., LORAN (LOng RAnge Navigation).
In LORAN the locations are usually given with respect to fixed beacon locations [4]. The
position of a mobile node can be determined in two ways: in a form of actual geographic
coordinates, as obtained through the use of GPS, or virtual relative coordinates, which
is the result of introducing a local coordinate system, e.g., with respect to the network
topology [51].

There are many measurement techniques, which use known characteristics of signal
propagation, to obtain a fine-grained location of an object. The most common measure-
ment methods are the received signal strength, time-based, and directional methods [12].
The first method is used primarily to determine proximity. It makes use of signal attenua-
tion, which can significantly vary in different environments, thus making it inappropriate
for accurate distance measurements. Time-based methods measure distances by record-
ing the time, which takes for a signal to be sent from the transmitter to the receiver.
Directional methods use angle of arrival (AoA) or direction of arrival (DoA) to compute
locations.

The GPS utilizes the concept of one-way time of arrival (TOA) ranging [27], and as
a consequence it employs a time-base method. This is used as our primary positioning
system, thus it is important to understand the innerworkings of GPS. The GPS satellite
constellation nominally consists of 24 satellites arranged in 6 orbital planes with 4 satel-
lites per plane. The TOA ranging concept is about measuring the time it takes for a signal
transmitted by a satellite at a known location to reach a user receiver. This time interval,
which is the signal propagation time, is used then to obtain the satellite-to-receiver dis-
tance. By measuring the propagation time of the signal broadcast from multiple satellites

22 2 Background

at known locations, the receiver can determine its position. This technique requires that
the user receiver contains a clock that is synchronized with the satellite clocks. In reality,
the system time is not accurately known, thus four measurements are required to deter-
mine user latitude, longitude, height, and receiver clock offset from internal system clock.
GPS accuracy can be expected to be within 5 meters of true position in open sky settings
and can decrease to 10 metres under canopies [46].

Other examples of positioning systems using time-based techniques are GALILEO
[2], Russian GLONASS [7], and Chinese BeiDou [1]. The GALILEO satellite system
is a project by the European Union, independent of GPS and dedicated specifically for
civilian use worldwide. It is planned to be a 30-satellite constellation, fully compatible
with the GPS. When completed, GALILEO is expected to provide multiple levels of service
to users throughout the world. Among five defined services, the most appropriate one for
public sensing is the Open Service (OS), since it is free of charge and meant for public use.

Figure 2.2. Determining location using Skyhook’s system [8].

Many smartphones now include embedded GPS capabilities to locate a user in the
event of an emergency or to support a wide variety of location-based services. These
devices are used quite often in areas where GPS signals might be very weak (e.g., indoors
or dense urban areas), making the demodulation of the GPS navigation data very difficult
or even impossible. With mobile network assistance, however, it is possible to determine
the location of a mobile phone under difficult circumstances. Assisted GPS (A-GPS)
methods grew out of the need to simultaneously reduce the time to produce a first position
fix (TTFF) and increase sensitivity further. A standalone GPS receiver needs orbital
information of the satellites to calculate the current position. This information includes
ephemeris data, used to calculate the position of each satellite in orbit, and information
about the time and status of the entire satellite constellation, called the almanac. The
network can accurately predict the GPS signal, that the handset receives, and convey that
information to the mobile, greatly reducing search space size and shortening the TTFF
from minutes to a second or less.

2.4 Routing in MANETs 23

If a phone is not equipped with a GPS receiver or cannot obtain a fix for some reason,
there are other advanced methods, including Wi-Fi positioning and a cell tower triangu-
lation, that can help achieve the same goal. All Wi-Fi access points constantly broadcast
signals that can travel hundreds of meters in all directions. Cellular towers signals, on
the other hand, can travel thousands of meters. Skyhook [8] gathers these information
with advanced hybrid positioning algorithms using basically two methods. Company em-
ployees drive the streets of medium-to-large cities around the world in vehicles that have
sensitive GPS and Wi-Fi receivers. They also collect snapshots of Wi-Fi signals that their
customers transmit in order to obtain a fix. When a user requests its position, Skyhook
is able to quickly and accurately calculate location regardless of physical environment. It
maintains a massive reference database of Wi-Fi access points and cell tower IDs. The
lack of a GPS module in the first generation of iPhones was a surprise, given the fact that
the device was integrated with Google Maps [6]. It turned out that Skyhook’s system was
used by the iPhone’s Location Service (including the Maps software powered by Google
Maps).

2.4 Routing in MANETs

In this chapter, we discuss some of the characteristic features of mobile ad-hoc networks
(MANETs) that make them distinct and provide a brief overview of different routing
aspects in such networks. We focus on position-based routing, and explain in details the
functionality of adopted routing scheme.

2.4.1 Basic Principles of MANETs

Figure 2.3. An example of a Mobile Ad-hoc Network (MANET).

Mobile ad-hoc networks are self-forming and self-organizing collections of nodes character-
ized by dynamic topologies with no fixed infrastructure [9]. Collaboration among nodes is
fundamental to the function of a MANET. However, every mobile node is an autonomous
and independent wireless device. A sample model of a mobile ad-hoc network is presented
in Figure 2.3. Now, we discuss some properties of MANETs in the context of information
exchange [13] [47].

Communication paradigm - a mobile ad-hoc network is built on the fly, where a num-
ber of nodes work in a cooperation without the engagement of any fixed infrastructure

24 2 Background

or base station. No node is given priority over another, and transmission can occur be-
tween any pair of nodes in range. Mobile nodes communicate in a bidirectional manner
through multiple wireless links with transmission ranges of up to hundreds of meters.
It is important the wireless communication medium efficiently is shared efficiently, since
transmissions from different nodes that use the same communication channel at the same
time may result in either a truncated message, or corrupted data received. Each node
serves as a host, which generates user and application traffic, and a router, which carries
out network control and routing protocols. A node communicates with other nodes that
are outside its transmission range using a multi-hop routing strategy. All mobile nodes
have globally unique IDs (e.g., MAC address or IP address), making the routing problems
address-centric.

Resource constraints - participating entities are resource-constrained. Nodes are typ-
ically hand-held devices powered by rechargeable batteries. Power-aware and energy–
efficient routing algorithms can improve the performance of the system and should be
preferred. Nowadays, a typical smartphone has a strong processor, sufficient amount of
memory to run more demanding applications and rechargeable battery that can last for
several hours. Although the nodes are battery-powered, the energy consumption is of sec-
ondary importance (a difference to the wireless sensor networks), since each device could
have its battery recharged or replace when needed. The most important aspect is to assure
a certain quality of service (QoS) and scalability in context of a changing topology, lim-
ited bandwidth, and limited transmission power. A routing protocol, apart from providing
a high delivery ratio of packets, should also be aware of the delay and throughput for the
route of a source-destination pair, and be able to verify its longevity.

Dynamic network topology - the nodes in a MANET can move almost without any
constraints, thus mobility becomes a great challenge. Wireless links are established in
an arbitrary fashion. Network topology is more vulnerable to changes, making discovered
routes prone to error. It is very difficult, if not impossible to use traditional wired network’s
routing mechanisms. In MANETs nodes can have different levels of scattering leading to
various levels of density. The density is defined as the number of nodes in a predefined
area. This has a major influence on how robustness is achieved. Generally, the data-link
layer helps to ensure the reliability of one-hop transmissions. Thus, the correctness of
routing protocol is an important part of the design.

We mentioned so far unique aspects of MANETs that make the task of routing com-
plicated. The nodes move freely and randomly in the network. Every node can act as
a host and a router at the same time. To communicate with each other, nodes use wire-
less communication without any fixed infrastructure, and are mainly battery-powered.
Considering these special properties of MANETs, when thinking about frequent topology
changes, we generally distinguish two different approaches for routing: topology-based and
position-based routing [35].

Topology-based routing protocols exploit information about the links that exist in the
network to establish and maintain source-destinations paths. This leads to a question

2.4 Routing in MANETs 25

whether the nodes should track information about routes to all possible destinations, or
instead, track only destinations of immediate interest. The routing protocols are further
divided into: proactive, reactive and hybrid approaches. Position-based (geographic) ap-
proaches build on the proactive and reactive techniques, eliminating some of the limitations
by incorporating geographical information in routing.

2.4.2 Topology-based Routing Techniques

Proactive protocols employ classical routing strategies such as distance-vector routing
(e.g., DSDV [38]) or link-state routing (e.g., OLSR [17]). They are often refereed to as
table-driven, since they continuously exchange topological information among the network
nodes. Thus, information about available routes is accessible immediately, even if they are
currently not used. The main drawback of this approach is that the cost of maintaining
routes can be very high, e.g., if the network topology changes too frequently.

Reactive protocols, on the other hand, establish new routes to destinations on demand
basis and maintain only those, which are currently in use (e.g., DSR [25], AODV [37]).
However, they still reveal some limitations. Firstly, before the packet can be transmitted,
a route discovery has to be typically performed. As a consequence, the initial packet to
be transmitted on the previously unknown route, is delayed. Secondly, significant amount
of traffic can be still generated under frequent topology changes, even though the routing
algorithm is restricted to the routes that are currently in use. Finally, there is a chance
that the packet en route will get lost, if the current route breaks.

Figure 2.4. An example of a routing zone of node A with radius equal to 2 hops. E,
D, B, J, E and H are the border nodes.

Hybrid routing protocols, such as Zone Routing Protocol (ZRP) [23], combine some
characteristics of proactive and reactive protocols, since a mixture of both might yield
a better solution. In ZRP, each node proactively maintains local routing information based
on the periodic exchange of neighbour discovery messages. This local routing information
is termed as routing zone and is not necessarily limited to a single-hop transmission range.
The size of a zone is given by a routing zone radius. More precisely, a node’s routing zone
is composed of nodes whose minimum distance in hops from the node in question is not
greater than the zone radius. An example of a routing zone is in Figure 2.4. Each node

26 2 Background

maintains its own routing zone, thus the routing zones of neighbouring nodes overlap.
The ZRP’s global route discovery mechanism is reactive. A route query is initiated, on
demand, when no route is locally available. The query is then relayed to a border node
where the zones overlap. Upon recipient of a route query packet, a node checks if the
destination lies in its zone, or if a valid route to it, is available in its route cache. If the
answer is positive, a route reply is sent back to the source via the reverse path. If not, the
border node relays the query again.

A topology-routing protocol can also incorporate additional information about geo-
graphic positions of nodes, if available, to improve its efficiency. Instead of performing
a network-wide search, it could employ directional flooding of control and data packets
towards the final destination. A review of routing protocols for mobile ad-hoc networks
can be found in [9]. In this thesis, we focus on the position-based routing because it is the
base point for our public sensing system.

2.4.3 Position-based Routing

Position-based routing relies solely on geographic position information of nodes in the net-
work. A dominant group of position-based routing techniques do not require establishing
and maintaining end-to-end paths, as they mostly use positions of one-hop neighbours to
forward packets. Topology changes affect only local knowledge of a sender, and therefore
have a lesser impact on geographic routing than compared to topology-based routing. This
makes geographic protocols highly scalable.

The main prerequisite for a geographic routing algorithm is that every node in the
network knows its position. This can be achieved through different positioning techniques,
e.g., GPS. Secondly, a sender must be able to figure out a geographic position information
of the destination. Typically, a location service is responsible for maintaining up-to-date
information about positions of nodes in the network [42]. The sender directly queries
a location service for geographic position of the destination. This information is afterwards
fixed in the header of a packet. It might be updated by an intermediate node though, if
the node happens to know a more accurate position of the destination.

Geographic forwarding is a forwarding mechanism that moves a packet to gradually
approach and eventually reach the intended destination. Semantics of a destination can
vary among different approaches: it can be specified as a single position, list of positions or
as a geographic region [36]. These semantics determine different types of delivery methods:

• Geographic unicast routing - uses geographic position information of nodes in the
network to deliver data packets from a single source to a single destination. This is
the most simple approach. It usually operates in one of the following two modes:
greedy forwarding and recovery mode (void handling). These techniques are extracted
from their respective geographic forwarding protocols and are discussed later in this
chapter.

• Geographic multicast - is used to deliver packets from a single source to a list of des-
tinations (Figure 2.5). Multicast routing could be trivially implemented using either

2.4 Routing in MANETs 27

Figure 2.5. An example of geographic multicast.

network-range flooding, or unicast routing to each destination. Both approaches are
correct but inefficient in terms of network resources, since paths from the source
to each different destination may have many links in common. Thus, a multicast
routing focuses strongly on minimizing the consumption of network resources by
reducing redundant links.

• Geocast - enables the delivery of data packets to all nodes that are within a specified
region. In a geocasting protocol, the members of a multicast group are determined
by their physical locations. The source specifies a region, called the geocast region,
and a geocasting protocol tries to deliver data packets only to nodes in this region.
A geocasting protocol unusually operates in two major steps, as in Figure 2.6. Firstly,
a data packet is forwarded from a source to one or more nodes in the geocast region.
Secondly, a packet is distributed from one or more nodes in the geocast region to all
nodes in this region.

Figure 2.6. An example of geocasting.

28 2 Background

2.4.4 Geographic Unicast Routing

Geographic unicast routing delivers data packets to a single destination and usually op-
erates in one of the two following modes: greedy forwarding and void handling. In the
greedy mode, a data packet is forwarded to a one-hop neighbour that is located closer to
the intended destination than the forwarding node itself. The selection of the neighbour
depends on the optimization criteria of the algorithm. If greedy forwarding fails to move
the packet further due to the presence of communication voids, the recovery mode is trig-
gered. Since a topologically valid path may still exist, the sender attempts to route the
the data packet around the void.

Generally, there is a number of different greedy forwarding strategies a sender can use,
e.g., a next-hop node is chosen as the nearest neighbour with positive progress. In order
to apply a specific strategy, the sender must know the positions of its neighbours. This
is typically achieved by employing a beaconing scheme. Each node periodically transmits
a beacon, which includes its own position and possibly other information (e.g., nodes
residual energy). The beaconing rate is closely related to the accuracy of positions. Even
though the beaconing frequency can be adapted to the degree of mobility, there is always
a fundamental problem of outdated position information. Inappropriately configured bea-
coning rate might lead to a significant decrease in the packet delivery ratio in dynamic
topologies.

Figure 2.7. A communication void, with respect to the destination D, occurs at node
S where greedy forwarding fails.

A greedy forwarding algorithm, that considers link reliability when sending packets
to next-hop nodes, has to access the MAC layer to obtain information about possible
packet errors. Thus, a typical geographic routing protocol that uses a greedy forwarding
algorithm is actually a cross-layer protocol.

The recovery mode is triggered when the greedy forwarding reaches a local maximum
from which it cannot recover (Figure 2.7). There are many different approaches to handle
voids [16], including planar-graph-based, topology-based, link-reversal-based, geometric,

2.4 Routing in MANETs 29

heuristic, and hybrid. We focus on planar graphs, since adopted routing protocol uses
them in void handling.

Figure 2.8. The RNG planarization algorithm.

In graph theory, a planar graph is a graph in which no two edges intersect. However,
underlying graph of a mobile network is usually not planar. Additional algorithms are
required to extract a planar subgraph from the original graph. Existing approaches include
distributed planarization algorithms such as Relative Neighbourhood Graph (RNG) and
Gabriel Graph (GG). In Figure 2.8, an example of RNG planarization algorithm is given,
where an edge (x, y) remains in the planar subgraph if no witness node w is located within
the shaded area. Planarization is essential for void handling. Otherwise, routing paths
may contain loops.

2.4.5 Greedy Perimeter Stateless Routing

Greedy Perimeter Stateless Routing (GPSR) is a responsive and efficient routing protocol
for datagram1 mobile, wireless networks. It exploits the correspondence between geo-
graphic position and connectivity in a wireless network, and supports a variety of different
network classes, e.g., rooftop, ad-hoc, sensor and vehicular networks. Unlike traditional
Internet routing algorithms, e.g., Distance Vector or Link State, which use graph-theoretic
notions of shortest paths and transitive reachability to find routes, GPSR maintains only
states from immediate neighbours, which is sufficient to make correct forwarding decisions,
without any additional topological information. We adapted this protocol to work with
our public sensing system.

The state is described by a geographic position, which a mobile node can obtain
through a positioning system (e.g., GPS). A simple proactive beaconing algorithm provides
all nodes with their neighbour’s positions: periodically, each node broadcasts a beacon,
containing its own IP address and position. An intermediate node makes packet forward-
ing decisions based on its knowledge of the neighbours’ positions and the destination’s
position, inserted in the packet header by the originator of the packet. By default, packets

1In other words, connectionless networks, where the communication between the two sites is on a one-off
basis. The packet contains the full addressing information needed to transmit it.

30 2 Background

are greedily forwarded to a neighbour that allows for the greatest progress to the desti-
nation, i.e., the distance to the destination’s position is minimal from the chosen node.
When no such neighbour exists, perimeter forwarding is used to recover from a local void.
The packet traverses the face of the planarized local topology subgraph by applying the
right-hand rule, until greedy forwarding can be resumed. The right-hand rule is guaran-
teed to find a path from the source to the destination, if there exists at least one such
path in the original non-planar graph. However, the edge to the chosen next-hop must
not intersect the line defined by the perimeter entry position and the final destination. In
perimeter mode, if at any time node finds another candidate, from which the distance to
the final destination is smaller than from the perimeter entry position, then the packet is
returned to greedy mode again.

Perimeter routing is a complete void recovery solution proposed in GPSR, consisting of
a distributed planarization algorithm that uses either RNG or GG, and a planar traversal
algorithm. All nodes execute the distributed planarization algorithm periodically. It is
important to notice that the decision, whether an edge is within the planar subgraph or
not, can be made locally by each node, since each node knows the positions of all its
neighbours. When a packet arrives at a local maximum, the planar traversal algorithm
is used in GPSR to handle the void. The header of the packet usually carries additional
information such as the position of the node where it entered the recovery mode, the first
edge traversed on the current face, and the position of the last intersection, where a face
change occurs. Therefore, each node can make all routing decisions in a highly localized
manner.

Chapter 3

System Model

In this chapter, we present a system model and identify the assumptions made in this
thesis. Afterwards, we discuss challenges and present requirements for our public sensing
system.

3.1 System Model

Figure 3.1. Overall system model.

We assume large-scale public sensing systems composed of possibly thousands of mobile
nodes. An overview of our hybrid network is shown in Figure 3.1. The main elements of

32 3 System Model

our Public Sensing System (PSS) are the Public Sensing Gateway (PSG), and a number of
mobile nodes. The PSS requires that every node carries or has access to a set of environ-
mental sensors. To extend sensing capabilities of a node (e.g., measure temperature), other
external sensors can be easily connected using, e.g., a Bluetooth interface. For simplicity,
we assume that each device carries required sensors. The PSG is an interface for users and
a variety of applications to submit queries. Its main responsibility is to distribute queries
in the system and report back sensor readings. It is connected to the Internet via a wired
high-speed connection.

A mobile node supports two types of communication interfaces. A WiFi interface is
used for a fast bidirectional communication between nodes over short distances, and an
UMTS interface is used at any time for Internet access. We assume also that each node
operates in an ad-hoc wireless mode and is aware of its communication range, thus can
determine its neighbouring nodes. Furthermore, every node knows its current position
through a built-in GPS receiver. The receiver itself does not provide ideal position fixes.
We assume that an error for position fixes follows a two-dimensional normal distribution
with a mean equal to zero and a standard deviation of σ. Moreover, every node runs our
dedicated public sensing software, which comprises the sensing application and triggers
adopted routing scheme. A node has also the ability to recharge itself. These charac-
teristics form base requirements for a mobile node to be capable of executing a sensing
task.

We use GPSR protocol to route packets between mobile nodes. In order for GPSR to
work correctly, it is also required that a node can reach all other nodes within its radio
range. The communication has to be bidirectional because IEEE 802.11 MAC protocol
sends an acknowledgement for all unicast packets [43]. If a sender does not detect an
ACK within given timeout, it tries to retransmit a packet reducing the link throughput
and fairness, and increasing the number of collisions. Two-way communication over WiFi
can be relaxed, what is beyond the scope of this thesis.

The whole playground is composed of smaller units called regions. Information about
supported regions is fixed and stored in the PSG. We assume that every mobile node that
executes sensing tasks must be associated with exactly one supported region. Otherwise,
it is not considered as participant of our system and simply ignored. The playground can
be divided in a variety of ways, from custom settings (e.g., grid-based), to infrastructure
specific configurations (e.g., UMTS antenna coverage). A participating node has always
information about its current region assignment. If a node moves out of a region, it requests
a new assignment from the PSG. The concept of regions limits the scope of a query to
only these sensors, which are bounded by a respective region.

When an application makes a request to the PSG, it needs to specify an area of
interest. Philipp et al. [39] provided a flexible sensor abstraction in a form of virtual
sensor. A virtual sensor v is described by its position, a sensing radius r, a type of
reading (e.g., temperature) and a sensing period. A node n is said to cover v (fill the
role of v), iff δ(n, v) ≤ r, where δ is used to denote the distance between two objects.

3.2 Challenges and Requirements 33

A node n takes a reading (on behalf of a virtual sensor), iff n can fill the role of specified
virtual sensor. A sensing radius of a virtual sensor is assumed to be less than or equal to
the communication range of a mobile node. A virtual sensor outputs a stream of virtual
readings immediately upon accessing the sensor. An application defines an area of interest
through a set of virtual sensors V . This approach provides a very flexible way to specify
queries independently of node’s mobility.

An application explicitly specifies a set of virtual sensors that form the area of interest.
To get meaningful results, it is the application responsibility to define a “good” level of
coverage, i.e., specify a sufficient number of virtual sensors. The PSG is responsible for
distributing application query in the system. If a query spans more than one region, it is
decomposed into many partial queries, each bounded by a respective region. Afterwards,
queries are delivered to regions, which form entry points for queries. Mobile nodes are
responsible for distributing locally a partial query using adopted routing scheme. We have
no possibility of knowing in advance, which node can fill the role of specified virtual sensors,
if at all. The nodes that can fill the role of virtual sensors are determined dynamically.
After a reading is taken, it is sent back to the gateway via respective entry node. Finally,
results are filtered and reported back to the application. We use WiFi communication
wherever possible, since a study about energy consumption in mobile phones revealed
that ad-hoc communication (e.g., WiFi) consumes less energy per packet compared to the
cellular technologies (e.g., UMTS) [11]. To measure the amount of energy used to send
packets over WiFi, an energy model presented by Xiao et al. is used [48].

Sensing resources form the foundation of the entire system. The phenomenon of inter-
est monitored by the environmental sensors follows a known spatial distribution. In our
considerations, we focus on monitoring temperature and model spatial correlations among
sensor readings with the aid of a multivariate Gaussian distribution [19]. The model is
learnt from historical data using standard algorithms [40].

In the following, we assume that our system is deployed in an urban setting. Moreover,
the most local infrastructure components (e.g., cellular base stations) belong to different
administrative domains, therefore we have no influence over their functionality, nor can
we run our algorithms on these components. We also assume that the mobile network is
formed by interconnected nodes, i.e., every node has several other nodes within its WiFi
range.

3.2 Challenges and Requirements

The public sensing paradigm has several advantages. It enables large spatial coverage,
which is not easy to achieve with a dedicated system because of infrastructural costs or
jurisdictional issues. Resources can be shared opportunistically, hence the costs of sensing
can be amortized over a large number of applications that run on the mobile devices.
Furthermore, a shared infrastructure enables a community effect, which makes the devel-
opment of new sensing applications feasible. For instance, a participant with a built-in
camera can take pictures of damaged sidewalks that usually do not yield any significant

34 3 System Model

findings, since the observation was taken in a very limited space and time window. Now,
if multiple mobile phone owners share this type of information, the aggregation can be
interesting enough to plan, e.g., to repair facilities. However, when many resources are
shared across multiple applications that want to access sensor data, several challenges
arise.

A shared system is more useful as the number of participants increases. This in-
troduces significant challenges for scalability. To support system scalability in terms of
query workload, a number of techniques for “scaling out” can be used. It is not feasible
for a single gateway to handle user requests over a large area. One possible approach is
to introduce loosely-coupled servers in role of proxy gateways, which are coordinated by
a master gateway. Huge advances in high-speed communications, such as Gigabit Eth-
ernet and Fibre Channel technology, have contributed greatly to the availability of ever
larger, loosely-coupled server configurations. Network Attached Storage (NAS) can, e.g.,
be a very economical way of providing many gateways with rapid access to a common set
of data.

Other practical considerations in enabling widespread adoption of a public sensing
system arise in flexible and natural interfacing with the system itself, and efficient query
dissemination that addresses power and bandwidth constraints. The user must be able
to explicitly specify the points of interest, in which the reading should take place. After
providing such specification, the system needs to be able to determine which mobile nodes
are the most suitable to take an accurate reading. This is a complicated task because
nodes are in constant movement and different positioning systems vary in accuracy. Fur-
thermore, data collection from sensors should be minimized whenever possible. Instead
of using information from all available sensors, approximate answers should be computed
on carefully chosen subset of sensors. An efficient query distribution is also a non trivial
task. Many reading requests can target sensors that are nearby each other. Such requests
should be grouped and transported together. Accumulation of results should be performed
before sending them back to the gateway. Since we have no control over the mobility of
participating nodes, it can happen that a requested reading cannot be taken.

Chapter 4

System Design

This chapter presents a complete design specification of the system in question. Identified
requirements are mapped to various components, and relationships between these compo-
nents are defined. Following that, a detailed discussion on different aspects of the system
is conducted.

4.1 Introduction

Figure 4.1. A general overview of system architecture.

The aim of this thesis is to implement an opportunistic public sensing system that enables
efficient acquisition of point-wise readings from various kinds of sensors distributed over
large areas. Our approach provides a flexible and intuitive way to execute various types of
queries and acquire several types of sensor readings in parallel. The utility of applications
that are envisioned to run in our system motivated us to design an architecture that
meets identified requirements and takes advantage of various types of interactions between
integral elements of the system. We specify a two-tier architecture and define a minimum
set of required functionalities at each tier. The architecture is flexible enough not to
impose any requirements on particular set of hardware platforms. An overview can be
found in Figure 4.1.

The first tier (Public Sensing Gateway) is responsible for creating and distributing
queries, and acts as a sink for data gathered in the second tier. Applications have the
possibility to submit queries that are periodic and vary in execution time - so called
periodic queries. Since the state of our public sensing system changes constantly, e.g.,

36 4 System Design

due to the uncontrolled mobility of nodes, periodic queries are implemented as one-shot
queries submitted at the beginning of each period. This temporal decomposition enables to
reconsider which nodes should be tasked each time and also counteracts situations, in which
the results of a periodic query are stale. Afterwards, the gateway performs initial spatial
decomposition, i.e., groups the targets of a query by region. Resulting partial queries
are submitted to the second tier. The second tier (Public Sensing Node) is responsible
for selecting nodes to fill the role of virtual sensors specified in partial queries, distribute
these reading requests to selected nodes, and transport accumulated sensor readings back
to the gateway.

4.2 Architecture

At a high level, the system can be viewed as composed of two tiers: the Public Sensing
Gateway and the Public Sensing Node. Each tear is further composed of abstraction layers
forming a communication framework. Control is passed from one layer to the next, starting
at application layer in one tier, proceeding to the bottom, over the channel to the next
tier and back up the hierarchy. Furthermore, the system can be viewed as comprising four
classes of functional components: temporal, spatial, sensor specific, and others. A detailed
system architecture is presented in Figure 4.2.

The first tier is responsible for issuing queries based on the application input. The
most interesting part is the application layer that supports end-user processes. The re-
maining layers perform typical tasks as defined in TCP/IP model. In the Internet layer
takes place device addressing, basic datagram communication and routing. The link layer
is responsible for interfacing the suite to the physical hardware. The physical layer is
not covered because the data link layer is considered the point which interfaces to the
underlying networking architecture.

The application layer of the first tier is composed of the Gateway Application (GA),
Network Transformator (NT) and supporting modules. The GA responsibility is to pro-
vide a flexible interface for user applications to specify a query, execute the query, filter the
results and report them back to the application. Query execution is performed with the
aid of Statistical Model (SM) and appropriate Sensor Selection Algorithms (SSA) com-
ponents. The SM maintains information about correlations between modelled sensors. If
a model does not contain sufficient information to evaluate a query, then an optimal set
of virtual sensors is determined and a request is submitted to the system. This choice is
made with the support of SSA component that uses the model to select the most infor-
mative set of sensors to query. In the present specification of our system, only a greedy
selection scheme is supported. The System Control (SC) component contains the actual
view of the world and is used to verify prediction accuracy of the model. The Sensor
Data Logging (SDL) component provides a location for the communal amalgamation of
collected sensor information. Details about modelled virtual sensors, per-query and per–
target statistics are stored in this location. The NT component provides independence
from differences in data representation by translating between the gateway application

Figure 4.2. A detailed system architecture.

38 4 System Design

and network format, and vice versa. Furthermore, it performs the initial spatial decom-
position of queries, since it groups query targets by region. The Node-Region Association
Manager (NRAM) is responsible for employing the area strategy division and managing
associations of participating nodes to corresponding regions.

The second tier performs the actual query execution, as it delivers reading requests
to mobile nodes that can fill the role of specified virtual sensors. The application layer
consists of modules that support the execution of sensing tasks. The Sensing Application
queries the Sensor component once per reading request. The sensor is either built-in, or
available through short range wireless connectivity technologies, e.g., Bluetooth. Taken
readings are enriched with a position fix obtained from the GPS Module. A mobile node
becomes a participant of the system, when it is associated by the gateway with a region of
its residence. After breaking this association due to the mobility, the participant notifies
the PSG immediately, by requesting a new assignment. The technical details of associa-
tion and dissociation of a node are encapsulated in the Subscription Manager component.
The Internet layer, on the other hand, is augmented with a geographical routing protocol
to facilitate the delivery of requests. The sensing application is responsible for invoking
adapted routing scheme upon receiving a partial query from the gateway. It achieves that
through the GPSR Application Interface (GPSR API), which provides a clean and neat
methods to commission a delivery of reading requests specified in the query. Grouping of
requests is possible through the Burst Mode component incorporated in the routing mod-
ule. If a reading request cannot be delivered, GPSR protocol notifies the application about
that fact through its API. The application is given an opportunity to take appropriate
action. Alternate Sensor Selection component is used to compensate the unavailability of
sensors by determining other suitable sensors to query. This process relies on the knowl-
edge contained in the statistical model stored on the PSG side, and requires additional
information to be submitted with the query. This is be further explained in the following.

4.3 Public Sensing

This section presents major components forming the base of our system. We discuss
different aspects of our design that contribute to public sensing. The concept of a gateway
is covered in details. Afterwards, we introduce our interactive sensor querying enriched
with statistical modelling techniques. Following that, the area division method and query
distribution models are covered. Afterwards, we introduce the idea of in-network planning
to select alternate sensors during query execution. Finally, a scheme is proposed for
in-network aggregation of sensor readings.

4.3.1 Gateway

The Public Sensing Gateway (PSG) is one of the two major components forming our
system. So far, overall architecture and information flow in the PSG were presented.
Now, we focus on different aspects of its functionality that contributes to the overall
system design.

4.3 Public Sensing 39

Firstly, we are interested in computing approximate answers derived from the model.
When monitoring spatial phenomena, such as the temperature, it is of fundamental impor-
tance to decide on the most informative sensors that should perform a reading. However,
to find sensors which predict the phenomena best, one needs a model of the spatial phe-
nomenon itself. Our model is initially learnt from historical data. Afterwards, we gain
interactively information about taken sensor readings by examining user queries. This
phase is called the learning phase. When the model is assumed to reach a state, in which
predictions about unavailable sensor readings can be made with acceptable confidence, we
move along to another phase, called the prediction phase. The statistical model is stored
in a compact form and can be easily transported over the network. The main idea behind
using a model is to improve the performance of the system by utilizing acquired, up to
the present moment, data.

Figure 4.3. Exploiting locality results in decreased number of hops.

To limit the resources demand for a query execution over large regions, we introduced
earlier the concept of regions. These logical entities are nothing more than a local group
of nodes. Firstly, we want to reduce the number of hop counts to deliver reading requests.
Exploiting locality through regions can have a favourable impact on routing between
mobile nodes, since we use a position-based approach. Secondly, the Tobler’s First Law of
Geography states that: “nearby objects are more alike than are objects that are farther
away”. The degree of dependency among the observations of given phenomenon varies by
absolute location across the space dimension, i.e., these relations expose local features.
These local features motivate usage of local statistics to detect local patterns, which vary
over distance and direction between points. Consider a situation presented in Figure
4.3. An application has submitted a query specifying two virtual sensors that belong
to regions in the completely opposite parts of the playground. In the first example, the
reading request for a second sensor has to travel all the way along the playground to reach
a node supporting specified virtual sensor, and report back the reading via the same route.

40 4 System Design

The shortcoming of this approach is the communication overhead in terms of hop count
and higher likelihood that the return route breaks, which forces the node at which this
happens to transmit the result directly to the gateway. In the second example, readings
request are sent to one of the nodes in the regions containing specified virtual sensor. To
find an appropriate node fewer hops will be required, yielding a lower overall resource
consumption and a lesser chance that the return route breaks.

4.3.2 Statistical Model

The aim of a model is to capture aspects of a phenomenon that are relevant to inquiry
and to explain how the data could have come out as the realization of a random experi-
ment. Important to understand is that a statistical model is a description of a sampling
mechanism, not a description of specific data that it is applied to. For simplicity though,
we think of a model in terms of data it describes. As mentioned before, its parameters are
estimated using the data at hand. Our model-assisted inference is used to answer ques-
tions about the most valuable set of virtual sensors to query, when others are unavailable.
In other words, the model becomes the lens through which we view the problem itself, in
order to ask and answer questions of interest.

Model selection, diagnosis, and discrimination are important steps in the model-build-
ing process. This is typically an iterative process, starting with an initial model and
refining it. In order to provide meaningful answers, the model must be correct to the ex-
tent that it sufficiently describes given phenomena. This state of art defines a valid model,
in which predictions can be made. If at any time a model is considered to be invalid, no
predictions are made and the model has to be updated. The learning phase starts. In the
present design of system, we update the model by recomputing it from the scratch. To
support this process, we defined the following disjoint sets of virtual sensors:

• Non-Modelled. These sensors are explicitly requested by the gateway. If a sensor is
not available, no reading can be returned.

• Modelled. Correlations about readings obtained from these sensors are captured in
a model. If a reading for a modelled virtual sensor is not available, a prediction
attempt is made using other most informative virtual sensors. Those sensors are
firstly queried for a reading.

• Control. Control readings are used to verify the validity of the model and are chosen
at random. If the the control readings and corresponding predicted readings exceed
a defined threshold, the model is considered invalid and learning phase is initiated.
This determination is made on the basis of properties of the estimators. In our
particular validation scheme we use an absolute mean error (EMA) and a mean
error quadratic root square (RMSE) property.

4.3.3 Queries

As mentioned earlier, a query can be thought of as a collection of target points where
sensing tasks should be executed. Since mobile nodes that can execute these sensing tasks
are not known in advance, thus the query itself is specified by a set of virtual sensors.

4.3 Public Sensing 41

A query distribution strategy is responsible for determining the most efficient method to
reach the nodes capable of supporting defined virtual sensors.

The PSS can handle execution of one-shot and periodic queries. One-shot query means
that the data processing is essentially done once, in response to the posted query, e.g.,
a one-shot SQL query over a large amount of data. Periodic queries are a natural pro-
jection of one-shot queries onto continuously changing volumes of data. Consider our
wireless network of mobile sensors used for environmental monitoring. The key objective
for such systems is to continuously monitor and correlate sensor measurements. Periodic
queries are executed with the aid of one-shot queries. They are not directly implemented
because we have to consider at the end of each period, which sensors should be selected
for tasking. This is a direct consequence of continuous state changes in our system, e.g.,
uncontrolled mobility of participating nodes. The gateway performs temporal decomposi-
tion and submits a one-shot query to the public sensing system at the beginning of each
period. Moreover, our system can handle multiple concurrent queries to run in parallel.
Each query executed in the system has a globally unique ID (Query ID) assigned. This ID
is used to track which readings responses are related to the posted query. It is important
to mention that query IDs are globally unique in the system scope and do not require
central coordination. If more than one public sensing gateway is to be used, a query ID
incorporates as well the gateway ID.

Figure 4.4. Model-driven execution scheme.

We defined two types of queries that our system supports: unoptimized query (UQ) and
model-driven query (MDQ). An UQ simply queries all virtual sensors that are specified
by the user. When a sensor is not available, no reading is taken. The quality of a query
results depends directly on the availability of virtual sensors. A MDQ, on the other hand,
uses a statistical model of real-world phenomenon and queries only these sensors, whose
readings cannot be derived from the model with sufficient acceptable confidence. The
MDQ execution comprises two phases: learning and optimized. In the learning phase, the
system simply submits unoptimized one-shot queries. During this period we rely only on
the physical availability of sensors and cannot provide predictions, since we have not feed
sufficient information about sensor readings so far into the model. After query execution
has been completed, we integrate collected readings into the model. The prediction phase
starts when the model has collected sufficient number of samples. At every time when
the application query is specified, the gateway tries to answer it at first using information

42 4 System Design

contained in the model. When the answer cannot be provided with sufficient confidence,
respective readings requests are sent to the network using optimized one-shot query. If at
any point the model is considered to be invalid, the learning phase is initiated. Important
to mention is that even though our system defines a learning period, it reports to the user
application sensor readings immediately.

A model-driven query follows an execution scheme as presented in Figure 4.4. A multi
round scheme is followed in order to attempt answering the specified query. The number
of rounds is a system defined parameter. Firstly, we choose the most informative set of
sensors to be tasked based on the knowledge contained in the model. In most cases this set
is already smaller than the one specified within the application query. Since at the time of
query submission we have no practical knowledge of whether all selected sensors can find
their counterparts, we assume a more pessimistic scenario in which not all readings are
taken. After query execution has been completed, we identify unavailable sensor readings
if there were such, select alternate sensors to query and submit a new request again. We
continue to do so until an application query can successfully be answered or we reach the
maximum number of specified rounds, which means at this point that unavailable readings
are assumed to be unresolvable in the current state of the system.

4.3.4 Area Division into Regions

In our public sensing system user applications gather data about phenomenon distributed
over space. We operate in an area, in the frame of which user has the possibility to
collect information by indirectly executing sensing tasks, thus we term it the sensed area.
This area is further divided into equally-shaped regions. At present stage, our system
supports two different structure schemes: grid-based and honeycomb-based. It internally
keeps a list of regions it supports (e.g., defined by system administrator) and a dynamic
list of respective resources (e.g., mobile nodes) that when tasked are most likely to return
data consistent with the region.

Figure 4.5. Grid-based vs. honeycomb-based structuring scheme.

Grid-based structure is a two dimensional structure made up of series of intersecting ver-
tical and horizontal axes. It is the most intuitive structuring scheme. Honeycomb, on the
other hand, enables modelling a mobile phone network, which is structured of cells. These
cells are usually thought of as regular hexagons, making up a “honeycomb” structure. In
reality these structural units are irregular due to site availability and topography. This
is not an issue though in our case, since we are not interested in giving the exact reflec-
tion of network structure, but rather establishing a simple spatial structure model for our

4.3 Public Sensing 43

considerations. The difference between two defined schemes is that honeycombs overlap
whereas cells in a grid adhere to each other as in Figure 4.5.

In some cases, when a region does not yield sufficient node density, some part of the
query can leave the region of interest. This is a direct consequence of routing strategies
that our geographic protocol employs. The concept of regions is suppose to limit the
number of hops required to reach nodes supporting specified virtual sensors. However,
this does not guarantee that participating nodes in a region can be reached from every
other node in this region. If an orphaned entry node is chosen by the gateway to distribute
the query, then the query may have to temporarily leave the region to route around a void
to be successfully executed.

4.3.5 Query Delivery Models

Figure 4.6. Overlapping readings in a region broadcast.

The gateway performs the first phase of spatial decomposition and assigns each partial
query to a region. Nodes willing to participate in the sensing task register themselves
with the system and are assigned a region. The gateway maintains information only
about nodes’ availability within a region, not their actual position. The density of nodes
in a region determines the type of query delivery that we employ. We defined two different
types of delivery methods: region broadcast and position-based.

In region broadcast we send our query directly to every node associated with a region.
A node can take a reading on behalf of one virtual sensors and send it back to the gateway.
If a node cannot fill the role of any virtual sensor, no response is sent. Occasionally (Figure
4.6) it can happen that returned readings will overlap, since we have no information about
the proximity of nodes beforehand, and are sending blindly our query to the assigned
region. In such case, the gateway incorporates more than one reading taken for a virtual
sensors into the set of returned readings and passes them to the user application. To
summarize, the following steps are taken:

1. Firstly, the most informative sensors are selected and an optimized query is specified
at the gateway.

2. Query is decomposed into partial queries that correspond to supported regions.

44 4 System Design

3. A region broadcast is performed to distribute a partial query. Each node within
a region receives the same partial query via UMTS.

4. Each node that can support specified virtual sensors takes a reading. Possibly more
than one reading request can be satisfied by a node.

5. Nodes report the readings directly to the gateway via UMTS.

Figure 4.7. Grouping of reading requests sent in the same direction.

When the node density of a region allows for usage of position-based routing, we select
a starting node for our query in the region of interest. This node is called the entry
node. The gateway sends the query via UMTS to this particular node, which is made
responsible for initiating position-based routing. Our adopted routing scheme handles
the second phase of spatial decomposition. Readings requests for virtual sensors are sent
towards their final destinations using intermediate mobile nodes. It can happen that
more then one reading is sent in the same direction as in Figure 4.7. Those requests are
always sent in a group and gradually distributed at each intermediate node to intended
destinations. Selected nodes take a sensor reading and send it back via the same route to
the entry node. Finally, the entry node sends accumulated query results via UMTS to the
gateway. To summarize, the following steps are taken:

1. Firstly, the most informative sensors are selected and an optimized query is specified
at the gateway.

2. Query is decomposed into partial queries that correspond to supported regions.

3. For each region that corresponds to a partial query an entry node is selected.

4. A partial query is sent to an entry node via UMTS. The entry node is an entry point
for the query.

5. Entry nodes relay optimized query to other nodes via WiFi. Possibly more than one
reading request can be satisfied by a node.

6. Nodes take a sensor reading and send results back to the entry node.

7. Every entry node passes collected results via UMTS to the gateway.

4.3.6 In-Network Planning

When a query is submitted to the system, we have no a priori knowledge about the
availability of virtual sensors specified in the query. The uncontrolled mobility of nodes

4.3 Public Sensing 45

can lead to gaps making some readings unavailable. Large number of unavailable readings
yields a rather low accuracy of query results. A model-driven query is executed in rounds
to solve the problem of missing readings. In each round an optimized one-shot query is
submitted with a set of virtual sensors determined by the sensor selection algorithm after
incorporating information about the unavailability of virtual sensors from the previous
round. Every time the query did not provide a sufficient coverage of virtual sensors, the
gateway submitted a new one specifying virtual sensors with the highest information value
in order to predict the unavailable ones. Additional necessity for communication yields
more energy usage of mobile devices. Therefore, if the query is being already executed
and requirements to obtain a reading cannot be satisfied, alternative sensors should be
considered on-demand.

In our model-driven approach we address this problem by incorporating the model
along with the submitted query. In a default setting, the statistical model is only available
at the gateway, where the sensor selection scheme takes place. We shift the burden of
sensor selection process to sensing applications running on mobile nodes, if a requested
virtual sensor is not available. This process is called alternate sensor selection.

4.3.6.1 Alternate Sensor Selection

Alternate sensor selection provides means to refine the quality of query results during
query execution. It is not applicable with region broadcast because nodes communicate
only with the gateway, not with each other. In the position-based routing, on the other
hand, a reading request can be as undeliverable leading to a reading drop. A node should
be given a possibility to countermeasure this situation, since it knows already what virtual
sensors are not reachable during the query execution. In a MDQ round-based approach,
on the other hand, unavailability of virtual sensors can be detected at earliest at the end
of each round, after the completion of optimized one-shot query. This is not very optimal,
since the results have to be firstly reported back to the gateway.

Alternate sensor selection is a more efficient approach, since it does not involve the gate-
way in the process of sensor selection. All necessary readings can be taken in one round.
Important to mention is that each node makes the decision about alternate sensors indi-
vidually. In rare cases it can happen that two nodes in the same region select the same
virtual sensor. As a consequence, a redundant reading is taken, which does not provide
any additional information for the prediction model. Since this situation occurs rather
infrequently, we simply ignore it.

The complete information that is required to complement the unavailable readings is
stored at the gateway side. For mobile nodes to be able to execute alternate selection
scheme, additional data should be carried along the query. This includes the model, which
comprises virtual sensors and their roles, and status about availability of all modelled
nodes. Sending the roles explicitly is required, as some of these sensors may have already
been successfully queried (thus, a reading is stored at the gateway).

46 4 System Design

The algorithm for alternate sensor selection requires information about the region
boundaries and three sets of sensors:

• Available sensors. This is a set of modelled sensors the algorithm can choose from.
The data submitted along the query contains information about all available sensors
in the system. When virtual sensors are detected as unavailable and alternates have
to be selected, the set of all available sensors is firstly reduced by newly detected
as being unavailable. This updated information is also passed along newly created
requests. Afterwards, the set is limited to the current region and passed to the
algorithm.

• Taken readings and control readings. These are the sets of modelled sensors for which
normal readings and control readings either have been obtained or which have been
requested and are not detected as unavailable.

The algorithm outputs two sets of sensors. The first one specifies additional virtual
sensors that have to be queried, where as the second one defines a set of control readings
to verify the validity of the model. The node where the alternate sensor selection process
took place is responsible for distributing new requests to the network. These requests
carry additional data to support alternate sensor selection algorithm at possibly some
other node.

In some cases a part of the query can leave the region of interest and be dropped
in a different one. The reason behind is that adopted routing scheme finds a route to
a virtual sensor at all costs, disregarding the region assignment. If a part of the query is
dropped at an intermediate node, then sensor selection algorithm is initiated. The current
set of available sensors is reduced by the newly detected as being unavailable. Since the
query execution time at the gateway is limited, the readings obtained as a consequence of
alternate sensor selections are sent directly to the gateway. The gateway can figure out
that different sensors are selected, since from its perspective these are the ones that it did
not request. This process ends when all readings for selected alternates are taken or we
ran out of available sensors.

4.3.7 In-Network Aggregation

A query specifying virtual sensors is injected by the gateway, also known as a sink, into
the network through an entry node. Readings are taken by mobile nodes throughout some
area, and then need to be reported back to the gateway to be further processed, and
eventually forwarded to the user application. Since reducing resource consumption and
increasing overall network efficiency is a major goal in distributed processing of data, we
employ an in-network aggregation scheme to relay data back to the sink.

The gateway reduces already the amount of data transmitted over the network by
requesting only the most informative set of virtual sensors, instead of all sensors defined
in the user query. The mobile nodes supporting specified virtual sensors need to transport
a sensor reading back to the sink, after taking one. The simplest and least optimal query
plan would require each node to report its own readings via UMTS back to the gateway.

4.3 Public Sensing 47

One problem is that a large number of packets must be sent to the gateway. The increased
number of small packet transmissions necessary to propagate needed data is expensive.
We can reduce the network overhead and resource consumption by locally processing raw
data before it is transmitted.

In order to conserve both energy and bandwidth we aggregate sensor readings at spe-
cific intermediate nodes, termed the entry nodes. We do not perform any data processing
but focus on merging data coming from different nodes into a single packet. When an
entry node receives a query from the gateway, it initiates the query distribution process in
the network. Every reading request is relayed via intermediary nodes until a reading can
be taken. At each step the underlying routing algorithm tracks the route of the request
in the network. The reverse-route consists of a list of intermediary IP addresses of nodes,
including the entry node itself. It is a “reverse” source route indicating that the request
was relayed through each node on the list (the last node in the list is the most recent
relay). This list is used as a source route to send back a reading to the entry node. If at
any time the reverse-route breaks, the result is sent directly to the gateway. The gateway
can correlate received readings with the main query because each reading response carries
a query ID.

In order to effectively aggregate data in the network, nodes must follow a coordinated
communication scheme. For example, before forwarding data on the node, a parent should
wait long enough until it has received readings from all of its child nodes. In our approach,
the gateway is the root node of the gathering tree and dictates the maximum awaiting
time for query results. The information about the query execution time is passed along
the query. Other nodes need to apply a timing strategy in order to adapt. Determining
how long to wait for readings from other participants is a difficult problem. If a node waits
too long, the data may become stale and will not be useful to the gateway. We adjust the
timeout of a node, after which it sends collected reading responses, depending on the node’s
position in the gathering tree. Each successor waits for a half time of its predecessor’s
awaiting time for query results. This means that nodes lower in the gathering tree should
experience a timeout before the nodes that are closer to the gateway. After a timeout,
the entry node will forward accumulated data to the gateway. Unfortunately, non-trivial
delays in the underlying communication network can lead to late readings responses. In
this case, late readings can be incorporated for user inquiry.

4.3.8 Premature Routing Termination

A region contains many mobile nodes but only few of them can fill the role of virtual
sensors. When an entry node receives a query from the gateway, it is made responsible
to initiate query distribution in a region of interest. Before reading requests reach their
intended target nodes, they travel through intermediary nodes. Some of these nodes can
be supporting other virtual sensors but were not initially selected. Independently, they are
not as informative as targeted virtual sensor but as a collective, they can yield nearly the
same information contribution. This forms the base for premature routing termination.
In general, if we gather enough sensor readings from the intermediary nodes that can

48 4 System Design

compensate for the targeted reading, we can terminate the routing and report the results
back to entry node. This reduces the network traffic in terms of hops required to reach
intended target, and as a consequence, decreases power consumption of nodes.

This requires for an intermediate node to have an insight into the currently relayed
packet and a limited control over routing. We addressed these requirements by extending
adopted routing protocol. Additionally, the gateway would have to be informed that
different sensors were queried than initially intended. This information could be contained
within the packet. This is merely a concept of premature routing termination and is not
investigated in details as part of this thesis.

4.4 Location Information Management

In position-based routing protocols the main component is the geographic location infor-
mation of nodes. In our system, we have assumed so far that such protocol is used in order
to perform routing between participating nodes. The fact that each node is equipped with
GPS, through which current position is obtained, can be further exploited as a means to
achieve scalability in large networks by limiting the number of hops required for a routing
scheme to deliver packets. We use a location management scheme that partitions the
entire network area into regions, where each region contains nodes - the subscribers of
the location management system. The gateway and mobile nodes are integral part of this
system but play a different role in the location information management scheme.

4.4.1 Division of Roles

Figure 4.8. A node moves forth and back violating its region assignment.

The gateway is responsible for keeping track of the location information of the nodes.
However, in regular location management schemes, when a node changes its position it
must update its location information at the location server. This approach might be ex-
pensive in terms of packet updates that each nodes needs to perform for the purpose of
maintaining fresh location information by the gateway. We reduce this cost by main-
taining only region-wise information about mobile nodes instead of their current location
information. We introduced earlier in this chapter two different area partition schemes:
grid-based and honeycomb-based. The gateway enforces one of these partition schemes
specified by the system administrator. The module responsible for managing nodes sub-
scriptions is the Node-Region Association Manager. When a mobile node makes initially
a subscription request to the gateway, it is logically associated with one of the supported

4.5 GPSR Protocol 49

regions and becomes an active participant of the system. The gateway in return sends
a subscription response containing information about node’s region assignment. If a node
was already subscribed, thus was associated with a region, the gateway firstly removes pre-
vious assignment, then creates a new one, and afterwards notifies respective node about
its subscription update. If a node is detected as being unreachable due to, e.g., ICMP
errors, it is simply removed from the association manager.

The nodes forming an ad-hoc mobile network, on the other hand, are responsible for
informing the gateway about any changes violating their present region assignment. Upon
making an initial subscription request, a node is associated with a region and informed
about the borderlines of aforementioned region in the response. Since the nodes forming
the network move in an unconstrained manner, at some point this association can be vio-
lated. If that is the case, the node is made responsible to request a new region assignment
from the gateway. However, such action should not be taken immediately upon a violation
detection. This can result in a burst of packets being sent to the gateway and increase
overall network overhead. In Figure 4.8 a node is moving back and forth between adjacent
regions. To address this issue, we define a relaxation period. A node can only request a new
region assignment, after a number of position updates of a node have been confirmed to
violate the present region assignment.

4.5 GPSR Protocol

To reduce the network overhead caused by frequent location information updates from the
mobile nodes, we maintain only region-wise information about the nodes at the gateway.
In consequence, the gateway can not know in advance which node can fill the role of virtual
sensors specified in the query. This imposes a requirement for on-demand selection schemes
of nodes to obtain sensor readings. Since each virtual sensor is defined by its position and
a sensing radius, position-based schemes are perfectly suited to fulfil this task. We adopted
GPSR scheme as our default routing protocol to transport packets between mobile nodes
and perform the discovery of nodes that can support specified virtual sensors. Moreover,
it has been shown in the literature that WiFi communication is more energy-efficient when
compared to UMTS cellular technology [11].

We have extended the default implementation of GPSR protocol to support directional
grouping of packets (burst mode), which enables each intermediate node to forward a group
of packets as a single one, to possibly more than one node lying in the general direction
of the destination. This supports resource-efficient query dissemination, since we are
no longer required to send packets one by one in the same direction. Moreover, adopted
routing protocol assumes the use of exact location information about the destination node.
A node defines a notion of coverage of a virtual sensor in order to perform a reading. Thus,
using exact location information about the destination is not sufficient to find a suitable
virtual node. Instead of routing to a specific destination at a known position (x, y), we
are interested in routing to a specific destination whose position is somewhere in a circle
C with a known centre and radius. Finally, to make premature routing termination
possible, each sensing application running on an intermediate node must able to access

50 4 System Design

the currently forwarded packet. We introduced a notion of tight coupling between the
application and underlying routing protocol, which will be discussed as part of GPSR
Application Programming Interface.

4.5.1 Delivery Area

(a) radius ≤ 1
2 T xR (b) radius > 1

2 T xR

Figure 4.9. Transmission range (TxR) of a node vs. delivery radius.

When a node wishes to send a geographic packet, it specifies the exact location informa-
tion about the destination D and the surrounding delivery radius of the packet. These
two parameters form a circular delivery area. The packet shall reach at most all nodes
n, for which distance to the destination is less than or equal to the specified radius
(n.distanceTo(D) ≤ radius, where the distanceTo method returns a real valued num-
ber representing the distance between two points). A node can determine whether its
position falls within the delivery radius because the required information is contained
within the packet itself. A reading request always corresponds to only one reading re-
sponse, thus only one node must perform a reading, if at all. Since we are using a distance
metric to define a circular delivery area, it can happen that more than one node is in the
area, which would violate our assumption about message exchange pattern. If a node falls
within the radius of delivery, it is asked to propagate the packet to a node that distance
to the destination is smallest among others. In this case, two possible scenarios apply
(Figure 4.9).

In the first example (Figure 4.9a), a node that received a reading request can easily
forward the packet to its intended recipient. This decision can be made immediately based
on the local knowledge of a node. A fundamental requirement for position-based routing
protocols is that each node maintains updated information about neighbouring nodes with
their current position, i.e., all nodes within transmission range. In the second example,
on the other hand, the node does not have information about all nodes in the delivery
area. This would require a distributed decision making algorithm to agree upon a node
in the delivery region to be the closest to the destination, which is beyond the scope of
this thesis. A sensing radius of a virtual sensor is assumed to be less than or equal to the
WiFi range of a mobile node.

4.5 GPSR Protocol 51

4.5.2 Burst Mode

GPSR protocol is enhanced with the ability to handle multiple application requests at
once. In order to give some intuition, consider a burst mode in automatic firearms, where
a predetermined number of rounds can be fired with a single pull of a trigger. By analogy,
we adapt the concept of burst mode to the process of sending packets. Instead of sending
packets one by one, we transport them in a burst of packets in one shot over the channel.
This can reduce delivery costs, without trading off against delivery ratio at all. The
grouping criterion defines nodes affiliation to different bursts. The nodes affiliation is
indicated by specific fields in the GPSR packet:

• Next-hop. This is the IP address of the next node along the path to the final
destination.

• Packet mode (GPSR). This is a flag indicating whether a packet is in greedy mode
or perimeter mode.

• Lf (GPSR). This field is a point on a line connecting sending node’s and final
destination’s position, shared between the previous and new face of a planar graph.

We identified these fields after careful analysis of original routing algorithms from the
work of Karp et al. on the GPSR protocol [28]. The next-hop address is returned upon
successful completion of GPSR algorithms, and the two remaining fields are GPSR specific
and can be modified internally by these algorithms. All aforementioned fields form a burst
key that can uniquely identify GPSR packets belonging to the same burst.

Example 4.1. Structure denoting a single target.

1 struct TargetInfo {
2 Coord destPos ;
3 double radius ;
4 cPacketPtr appPacket ;
5 }

To support burst mode without the necessity of modifying the original algorithms,
we extended the regular GPSR packet to handle multiple targets (GPSR burst packet).
A target is specified by a circular delivery area, i.e., a destination position and delivery
radius, and an application specific packet to be transported (Listing 4.1).

Figure 4.10. Processing of burst packets.

A GPSR burst packet is essentially a GPSR packet with a collection of targets. GPSR
internal algorithms cannot handle burst packets directly. Every time when these algo-

52 4 System Design

rithms need to be invoked, original burst packet is broken into GPSR packets containing
only a single target, passed as the input parameters to the underlying algorithms, and the
output is grouped into bursts using a burst key. The overall process is presented in Figure
4.10.

To give an overview of how the concept of burst packets is correlated with virtual
sensors consider the following example. A user application is interested in measuring
a temperature at certain points of the sensed area. The gateway submits a query to
the network as a single reading request. The query is a collection of different virtual
sensors specified by the user application. When a query arrives at the entry node, it
is firstly decomposed into smaller reading requests, each corresponding to one virtual
sensor (indirect spatial decomposition). It immediately follows that only one reading can
be taken at a time. These reading requests are application specific. Afterwards, the
sensing application delegates creation of protocol specific packets to the API and supplies
additional information required to successfully deliver the packet, i.e., information about
the targets. A target destination position and delivery radius are set accordingly to the
characteristics of a virtual sensor contained within the decomposed request. From this
point forward, it is the GPSR protocol responsibility to deliver the packets to the respective
mobile nodes.

4.5.3 Planarization

GPSR protocol uses faces in the planar subgraph to perform perimeter routing, which
guarantees packet delivery. The main objective of a network planarization is to get a con-
nected planar subgraph of a network. Following planarization schemes have been con-
sidered: Gabriel Graph and Relative Neighbour Graph. They depend on having current
position information for a node’s set of neighbours. As nodes move, a planarization be-
comes stale, and less useful for accurate perimeter forwarding. Therefore, we replanarize
the graph upon acquisition of a new neighbour, loss of a former neighbour, by a neigh-
bour’s beacon timeout, and a MAC transmit failure indication. According to Karp this
is not sufficient if nodes only move within a node’s radio range, but no nodes move into
or out of it [29]. In order to keep the planarized graph maximally up to date, we update
planarization upon receipt of every beacon that affected the neighbour table, e.g., a beacon
carries a new position of a node that figures already in a set of known neighbours.

Chapter 5

Implementation

5.1 Network Simulator

OMNeT++ is an extensible, modular, component-based, C++ simulation library and
framework which also includes an integrated development and a graphical runtime [45].

OMNeT++ provides a generic component architecture. The model designer has the
flexibility to map concepts such as network devices, protocols or the wireless channel into
the model. Model components are termed modules, which primarily communicate with
each other via message passing either directly, or via predefined conditions. Simple mod-
ule can be grouped into compound modules; the number of hierarchy levels is unlimited.
Messages may represent events, packets, commands, jobs or other entities depending on
the model domain.

Modules communicate by exchanging messages that may contain any type of data, in
addition to regular attributes such as a timestamp. Simple modules can send messages
either directly to their destination, or along a predefined path, through gates and connec-
tions. Compound modules transparently relay messages between their inner realm and
the outside world. The message can arrive from another module or from the same module
(self-messages are used to implement timers). Gates are the input and output interfaces
of modules. Messages are sent out through output gates and arrive through input gates.
An input gate and output gate can be linked by a connection. Connections are created
within a single level of module hierarchy: within a compound module, corresponding gates
of two submodules, or a gate of one submodule and a gate of the compound module can
be connected.

OMNeT++ has the basic machinery and tools to write simulations, but itself it does
not provide any components specifically for computer networks or any other domain.
Instead, these elements are provided by different simulation models and frameworks such
as the INET Framework and INTEMANET. INET Framework contains models for several
Internet protocols: UDP, TCP, SCTP, IP, IPv6, Ethernet, PPP, IEEE 802.11, MPLS,
OSPF, and others. INETMANET is a fork of the INET Framework, and extends INET

54 5 Implementation

with support for mobile ad-hoc networks. INETMANET supports AODV, DSR, OLSR,
DYMO and other ad-hoc routing protocols [5].

5.1.1 Ad-hoc Routing in INETMANET

Ad-hoc routing schemes incorporated in OMNeT++ are mostly existing public versions
of protocols [10], which are available in different implementations. The best candidates
to be migrated to OMNeT++ were considered those, which were realised to work with
the Linux kernel. Unfortunately, at the time of writing this thesis, there was no mature
implementation of GPSR that has been validated in a realistic application scenario. Thus,
we had to provide a custom solution, which notably increased the implementation effort
and time. Moreover, the documentation of INETMANET on how to provide custom
extensions to the framework, was incomplete.

5.1.2 IP Module Interface

IP module allows very flexible interfacing with higher-layer protocols. Before sending
a packet over IP, the sending module must fill in an IPControlInfo object and attach it
to the packet with C++ method setControlInfo() method. IPControlInfo carries control
information for sending/receiving packets over IP. When sending to a higher-layer proto-
col, the following fields are required: destination IP address and encapsulated protocol.
INETMANET defines several higher-layer protocols (name (number) : output gate):

• TCP (6) : 0

• UDP (17) :1

• ICMP (1) : 2

• IGMP (2) : 3

• RSVP (46) : 4

• OSPF (89) : 5

• SCTP (132) : 6

• MANET (254) : 7

• MANET (135) : 7

When delivering a packet to a higher-layer protocol, the output gate is determined
from the protocol field in the IP header. A mapping from a protocol number to an output
gate can be modified in the configuration files. For more details, please refer to the
documentation.

When a packet is sent to the network, the sending module must fill the following fields
in an IPControlInfo: destination IP address, source IP address and protocol. If we want
to avoid using IP routing, a next-hop address and an output interface must be additionally
specified. IP module controls also the lifetime of a packet using a hop counter field in an
IPControlInfo object. Before sending a datagram, a hop counter check is performed and,
if its zero then an ICMP error message is sent to the sender.

5.2 UMTS 55

IP module allows two different modules on the same host to communicate with each
other. This is accomplished by setting the destination address in the IP header to the
loopback address. Sending and receiving modules must be connected to the appropriate
gates defined in the network layer. These packets are not transmitted outside of a host, and
are discarded if the gate is disconnected. This mechanism is used to implement two-way
communication between GPSR module and its API.

5.2 UMTS

Mobile phones are equipped with a number of communication channels. In our scenario
we are using a hybrid communication setting, i.e., Wireless Local Area (Wireless LAN, or
WLAN) and Universal Mobile Telecommunication System (UMTS). UMTS is a high-tier
system that is currently a standard for 3G mobile networks. It addresses the growing
demands of the mobile and Internet applications. This component is used by the public
sensing system, running on a stationary server in the Internet, to communicate with mobile
nodes and perform queries in a distributed fashion.

Institute of Parallel and Distributed Systems at the University of Stuttgart provided
an UMTS module [21], which is a suitable abstraction of real UMTS communication
system based on empirical studies. This model was implemented in OMNeT++ simulation
network and integrated into the INTEMANET framework.

The architecture of UMTS is based on the GSM/EDGE standard. This allows a simple
migration for existing GSM operators. It specifies a complete network system, covering
the radio access network (UMTS Terrestrial Radio Access Network, or UTRAN), the core
network (Mobile Application Part, or MAP) and the authentication of users via SIM cards.

5.3 GPSR Protocol

Our protocol is a complete implementation of Greedy Perimeter Stateless Routing scheme
[28]. We further extended the protocol to handle multiple targets. Implemented module
can be easily integrated with INETMANET framework. Detailed information on the
GPSR specific packet formats can be found in the original work.

5.3.1 Beaconing

Position information available at each node is a key element in geographical routing.
GPSRBeacon module implements a simple proactive beaconing algorithm that provides
nodes with positions of their neighbours: each node periodically broadcasts a hello message
(called a beacon, Listing 5.1), which contains an IP address of a sending node (srcAddr) and
its position (srcPos). A nextHopAddr field represents a broadcast address, and timeToLive
is always set to 1 because INETMANET framework supports only a single-hop broadcast
scheme. A beacon from a neighbouring node is processed as follows:

1. If a sender of a beacon was unknown, it is added to a neighbouring table with status
recent and planarization is triggered, to reflect possible topology changes. Since the

56 5 Implementation

receiving node was not aware of the sending node, it can make an assumption that
the sending node does not have any knowledge whatsoever about the receiver. In
this case, a beacon can be immediately scheduled but this could trigger another
immediate beacon broadcast from the sender side, since the sender was before not
aware about the receiver and makes an identical assumption. This can result in
increased network traffic and therefore, it is the system administrator responsibility
to make a trade off between accuracy of information in a neighbouring table and
network traffic. An optional parameter immediateBeacon is defined to control this
behaviour.

2. If a sender was already in the neighbouring table, its status is reset to recent and
its position is possibly updated when it differs form the formerly known. When
a position update occurs, planarization must be triggered again.

Example 5.1. GPSR beacon packet format.

1 packet GPSRBeaconPacket {
2 IPAddress srcAddr ;
3 Coord srcPos ;
4 IPAddress nextHopAddr ;
5

6 short timeToLive ;
7 }

The interval B between two consecutive beacons can be specified. To avoid synchro-
nization of neighbour’s beacons we jitter each transmission by 50% of the interval B
[28]. The mean inter-transmission interval between beacons is uniformly distributed in
[0, 5B; 1, 5B]. When a neighbour does not send a beacon for a longer than specified period
T , a node assumes that the neighbour is gone out of range and deletes the neighbour from
its table. This is a two-step process: after the first timeout T , a node is unmarked as
being recent, and after the second timeout it is finally removed from the neighbour table.
In this thesis, we use T = 4.5B, three times the maximum jittered beacon interval. The
following parameters control timing behaviour of GPSRBeacon module:

• beaconJitter - jitter in beaconing interval expressed in percentages.

• beaconInterval - beaconing interval (B).

• beaconExpiry - timeout period of a beacon (T = 4.5B).

To minimize the cost of beaconing, GPSR makes the most of the sent data packets,
by adding a position of local sending node to the GPSR packet. Piggybacking, at a small
cost in bytes, allows all GPSR packets to serve as beacons. When a node sends a data
packet, it can afterwards reset its inter-beacon timer. This optimization reduces beacon
traffic in regions of the network that actively forward data packets.

Optionally information such as addition, deletion, and update of a neighbour are for-
warded to the application using GPSR API.

5.3 GPSR Protocol 57

5.3.2 Neighbour Table

GPSR protocol relies on geographic location information to make correct forwarding de-
cisions. It is nearly stateless and requires propagation of topology for only a single-hop.
The neighbour table is used to maintain information about present state of immediate
neighbours and performs the following:

• it adds and removes neighbours,

• it updates and looks up status of neighbours,

• it finds next-hop node for greedy forwarding,

• it finds clockwise node for perimeter forwarding,

• it creates a planarized subgraph.

The aforementioned functionalities are implemented in the GPSRNeighTable module.

Geographic location information is used to make forwarding decision but we use Internet
Protocol for communication to relay packets across the network. Thus, each entry in
a neighbour table must contain information about node’s poisition and IP address. The
basic building block used by a neighbour table is HostEntry, a subclass of NodeEntry
as in Listing 5.2. NodeEntry contains information about node’s IP address and position.
HostInfo adds additional information about node’s status. Current implementation defines
two different statuses: recent and active. It is assumed that the IP address of a mobile
node is unique among all nodes participating in routing.

Example 5.2. Basic information block in a neighbour table.

1 class NodeEntry : public cPolymorphic {
2 protected :
3 IPAddress nodeID ;
4 Coord pos;
5 }
6

7 class HostEntry : public NodeEntry {
8 protected :
9 uint status ;

10 }

Forwarding an IP datagram generally requires the node to choose the address and relevant
interface of the next-hop node or (for the final hop) the destination host. A neighbour
table can be seen as a limited routing table.

When a node is going to forward a packet, it must determine whether it can send it
directly to its destination, or whether id needs to pass it through another node. If the
latter applies, it needs to determine which node to use. This determination is solely done
based on geographical locations of immediate neighbours. Thus, the neighbour table needs
to store additional information along the IP address.

58 5 Implementation

• NEIGH_STATUS_RECENT - used when a node is added or updated in a neighbour
table. It is primarily used to keep the table up to date.

• NEIGH_STATUS_ACTIVE - determines which node participates in routing and is
used in planarization.

Apart from basic node management, the neighbour table is responsible for triggering
planarization, finding the greedy node and applying the right-hand rule for traversing
a graph in the perimeter mode.

5.3.3 Greedy and Perimeter Mode

Algorithm 5.1 Forwarding a GPSR greedy packet.
Input: GPSR packet (gpsrp 6= ∅)
Output: forward packet or enter perimeter mode
1: destPos← get destination position from gpsrp
2: nextHop← find greedy node to destPos
3: if (nextHop = ∅) then
4: enter perimeter mode
5: else
6: forward packet to nextHop
7: end if

When a GPSR data packet is created, it is initially in greedy mode. The originator also
sets the geographic location of the destination. This field is left unchanged as the packet
is forwarded through the network.

GPSRGreedy module is responsible for finding a neighbour that is geographically closest
to the packet’s destination. Internally, the GPSRGreedy module delegates this task to
the GPSRNeighbourTable, since it maintains all information about neighbours. In Algo-
rithm 5.2, a detailed explanation of greedy scheme is presented. There are situations in
which the only route to a destination requires a packet to move temporarily farther in
geometric distance from the destination.

GPSRPerimeter module provides a means to handle such situations by forwarding a packet
around voids. Some fields of a GPSR packet can be changed, such as the position where
the packet entered perimeter mode, the first edge traversed on the current face, and the
position of the last intersection, where a face change occurs. The detailed explanation on
how perimeter forwarding scheme is implemented and how face changing is achieved, is
presented respectively in Algorithm 5.2 and Algorithm 5.3. Every module, after finishing
processing of a packet, can modify the packet and either produce a routing decision, or
drop it.

Algorithm 5.2 Forwarding a GPSR perimeter packet.
Input: GPSR packet (gpsrp 6= ∅)
Input: information whether packet enters perimeter mode (init)
Output: forward packet or drop packet
1: nextHop← ∅
2: destPos← get destination position from gpsrp
3: node← get current node IP address and position
4: if (init = true) then
5: set packet mode to perimeter
6: nextHop← find clockwise node about itself from destPos
7: if (nextHop = ∅) then
8: drop packet // no path
9: end if

10: gpsrp.Lp← node.pos
11: gpsrp.Lf ← node.pos
12: gpsrp.Le← (node, nextHop)
13: else
14: nextHop← find greedy node to destPos
15: if (nextHop 6= ∅) then
16: if (gpsrp.Lp 6= nextHop.pos) then
17: set packet mode to greedy
18: forward packet to nextHop
19: end if
20: end if
21: nextHop← find clockwise node about itself from gpsrp.srcPos
22: if (nextHop = ∅) then
23: drop packet // no path
24: end if
25: tailNode← gpsrp.Le.tail
26: headNode← gpsrp.Le.head
27: if ((nodePos = tailNode.pos) and (nextHop.pos = headNode.pos)) then
28: drop packet // loop on perimeter
29: end if
30: if (faceChange(gpsrp, inout nextHop) = false) then
31: drop packet // no path
32: end if
33: forward packet to nextHop
34: end if

Algorithm 5.3 Changing face in a planar graph.
Input: GPSR packet (gpsrp 6= ∅)
Input: next-hop node (inout nextHop 6= ∅, can be modified)
Output: true upon successful determination of nextHop on a new face, false otherwise
1: destPos← destination position from gpsrp
2: node← current node IP address and position
3: loop
4: line1← find equation of a line given gpsrp.Lp and destPos
5: line2← find equation of a line given node.pos and nextHop.pos
6: intersectionPoint← find intersection point of line1 and line2
7: if (intersectionPoint = ∅) then
8: return true
9: end if
10: // this node borders an edge where the inersection point lies
11: distToLf ← find distance from destPos to gpsrp.Lf
12: distToIntersectionPoint← find distance from destPos to intersectionPoint
13: if (distToLf ≤ distToIntersectionPoint) then
14: return true // no progress to the destination
15: end if
16: gpsrp.Lf ← intersectionPoint
17: nextHop← find clockwise node about itself from gpsrp.Lf
18: if (nextHop = ∅) then
19: return false
20: end if
21: end loop

5.4 GPSR Application Programming Interface 61

5.4 GPSR Application Programming Interface

Figure 5.1. Overview of GPSR API communication scheme.

An important aspect of GPSR implementation was to make the application logic inde-
pendent from the underlying routing protocol. We defined a set of particular rules and
messages that modules exchange to communicate with each other. GPSR API describes
the expected behaviour while the GPSR protocol provides an actual implementation of
this set of rules. The API defines a two-way communication scheme that exploits an
existing infrastructure of interconnected modules as in Figure 5.1.

5.4.1 API Interface and Messages

GPSR API uses gates of a Sensing Application module to exchange messages along a pre-
defined path with the routing protocol. The message is firstly sent through the output
gate of an application, then forwarded through the network layer, and eventually arrives
at the input gate of a routing module in question. The routing module uses the same path
to send messages back to the application, which then calls handleMessage() method of the
API instance. This clean design concept avoids using C++ interfaces between the calling
and the called module, thus breaking a notion of loose coupling to implement two-way
communication.

To exchange messages, a GPSR API packet is defined (Listing 5.3). The IP module
imposes a requirement for all messages that are passed through the module to represent
packets. However, within a GPSR API packet, arbitrarily complex data structures can
be carried. For simplicity, we refer later to API packet as API message. API message
specifies information about the action (actionType) that should be taken upon the object
that is being carried (obj). Moreover, the message itself has also limited capabilities to
control routing by cancelling currently relayed packet (cancelRouting).

Sensing Application has no knowledge of how the routing protocol operates internally. The
creation of protocol specific packets is delegated to the API, and additional information
required to successfully deliver the packet are supplied, i.e., information about targets.
After specifying targets, sendGPSRPacket() is called. Targets can be either supplied as
a list, or one by one. This determines whether burst mode is active or not.

62 5 Implementation

Example 5.3. GPSR API packet.

1 packet GPSRAPIPacket {
2 short actionType enum(ActionType) = 0;
3 cOwnedObjectPtr obj = NULL;
4 bool cancelRouting = false ;
5 }

Action type determines which participant of the communication is responsible for han-
dling the object and how he should act upon it. GPSR API defines following action
types:

• SEND actions are intended for the routing protocol to signal that a packet is newly
created and should be processed accordingly. The API generates a SEND message,
when an application requests to send a GPSR packet by passing information about
targets.

• RECV actions are intended for the API and inform that a packet is delivered to its
destination. Application must consume the packet specified in API message.

• DROP actions are intended for the API. An application must consume the packet.
This enables an application to act upon packets that fail to reach their destination.
A recovery mechanism can be implemented in case of such drops.

• RELAY actions are intended for the API and the GPSR protocol. When a packet
is en route from its source node to the destination, it can be passed on, at an
intermediate node, to the application. When the API receives a RELAY message, it
passes it to the application. The application must not consume the packet contained
in API message, otherwise an error occurs. However, it has the possibility to cancel
routing by setting an appropriate flag in API message. The API is made responsible
to guarantee that this packet is not eventually forwarded to the network.

Example 5.4. GPSR API interface.

1 class IGPSRApiInfo {
2 public :
3 virtual ~ IGPSRApiInfo () { }
4 virtual void receiveApiInfo (GPSRApiInfo * apiInfo) = 0;
5 };

Application that wants to receive notifications from GPSR API, needs to conform
to a contract that specifies what operations an API supports. We defined an interface
IGPSRApiInfo that contains one single method receiveApiInfo() (Listing 5.4).

5.5 GPSR Extensions 63

5.4.2 Processing of API Messages

To provide more insight into how API messages are processed consider an example of API
message arriving from the routing protocol. A detailed processing scheme of the message
is presented in Algorithm 5.4.

Algorithm 5.4 Processing of API message.
Input: API message (apim 6= ∅)
Output: Consume or relay carried object (apim.object)
1: action← apim.actionType

2: if (action is SEND) then
3: error // GPSR module is responsible for originating packets
4: end if
5: if (action is RECV) then
6: pass apim to application
7: // application processing
8: confirm that application consumed carried object (apim.object)
9: end if

10: if (action is RELAY) then
11: pass apim to application
12: // application processing
13: cancelRouting ← check if cancel routing flag is set in apim
14: if (cancelRouting = true) then
15: delete apim.object
16: else
17: relay apim.object to GPSR module
18: // indirect send through network layer
19: end if
20: end if
21: if (action is DROP) then
22: confirm that application consumed carried object (apim.object)
23: end if
24: delete apim

5.5 GPSR Extensions

5.5.1 Packet Formats

One of the main contributions to the overall GPSR functionality is the burst mode. In
Listing 5.5 a detailed definition of GPSRBurstBasePacket can be found. The packets is
capable of specifying a number of targets that are in the general direction of the des-
tination. copyTargets flag is used when a packet is duplicated and determines whether
information about targets must be copied to a newly created packet or not. Since one
target is a special case of a number of targets, GPSR burst packet is a super class of

64 5 Implementation

Example 5.5. GPSR burst packet definition.

1 packet GPSRBurstBasePacket extends GPSRBasePacket {
2 bool copyTargets = true;
3 abstract TargetInfo targets [];
4 }
5

6 // query targets
7 virtual void addTarget (const TargetInfo & target ,
8 bool updateLength = true);
9 virtual TargetInfo & getTarget (unsigned int k);

10 virtual TargetInfoVector getTargets ();
11 virtual unsigned int getTargetsCount () const;
12 virtual bool hasSingleTarget () const ;
13

14 // burst control unit
15 virtual BurstControlUnit :: Ptr getBurstControlUnit () const ;
16 virtual void setBurstControlUnit (BurstControlUnit :: Ptr ptr);
17 virtual bool isBurstPacket () const ;
18 virtual bool isPartOfBurstPacket () const ;

GPSR packet. For convenience, hasSingleTarget() method is specified to determine if the
packet is in a state that allows for a packet to be processed by GPSR algorithms.

5.5.2 Burst Mode

Algorithm 5.5 Decomposing a GPSR burst packet for processing.
Input: GPSR burst packet (gpsrburstp 6= ∅)
Output: GPSR packet(s)
1: if (gpsrburstp target count < 1) then
2: error
3: else if (gpsrburstp target count > 1) then
4: // packet contains many targets
5: gpsrburstp.copyTargets← false
6: bcu← create BCU for gpsrburstp
7: bcu.collectedPackets← ∅
8: while (gpsrburstp has more targets) do
9: t← remove first target from gpsrburstp
10: gpsrp← duplicate gpsrburstp fields (ignores remaining targets)
11: gpsrp.target← t
12: gpsrp.bcu← attach bcu
13: process gpsrp // contains a single target
14: end while
15: else
16: // packet contains a single target
17: process gpsrburstp
18: end if

5.5 GPSR Extensions 65

A GPSR packet is considered to be a GPSR burst packet if it specifies more than one
target. Initially, all packets are assumed to specify multiple targets. Implemented routing
algorithms can handle only one target at a time, thus additional processing is required.
Burst Control Unit (BCU) class is used to decompose a GPSR packet with multiple targets
before calling GPSR algorithms, and after their completion is responsible for collecting
decomposed GPSR packets along with their routing decision. One BCU is bonded to
exactly one GPSR burst packet. In Algorithm 5.5, a process of decomposing a GPSR
burst packet into many single-target GPSR packets is presented. If only one target is
specified, a GPSR burst packet is handled directly.

Algorithm 5.6 Collecting GPSR packets after processing is completed.
Input: GPSR packet (gpsrp 6= ∅)
Input: Routing decision
Output: Collected GPSR packets
1: if (gpsrp has attached BCU) then
2: bcu← get from gpsrp
3: key ← generate key from routing decision and gpsrp specific fields
4: bci.collectedPackets← (key, gpsrp)
5: if (bci has all parts) then
6: aggregate and forward packets
7: end if
8: else
9: forward packet

10: end if

The GPSRBurstKey class implements a burst key concept. The burst key is a unique
combination of packet specific fields and a routing decision. We firstly convert these
elements to an appropriate string representation and then combine them by appending
one string to another. When the processing of a GPSR packet is completed, every routable
packet is collected using a burst key in its BCU. After the last packet of a burst is collected,
routable GSPR packets are further aggregated and send to the network. An overview of
this process is presented in Algorithm 5.6.

The GPSR algorithms can either produce a routing decision, or determine that a packet
is unroutable. This yields two different directions of forwarding depending on the outcome:
a packet can be either passed to an upper layer (application), or a lower layer (network).
Moreover, each direction of forwarding specifies further an aggregation strategy. The
application is interested in the type of action it should take upon receiving a packet,
therefore all packets with the same action type are aggregated accordingly. The network,
on the other hand, requires a packet with filled IP control information set accordingly
to the respective routing decision. In these two distinct cases different keys are defined:
for application, packets are grouped based on the action type, and for the network, using
a burst key. Aggregation of collected GPSR packets is presented in Algorithm 5.7.

Algorithm 5.7 Aggregating collected GPSR packets.
Input: Map of collected GPSR packets (collectedPackets)
Output: Map of aggregated GPSR burst packets (aggregatedPackets)
1: aggregatedPackets← ∅
2: if (all packets of a burst are collected) then
3: for all (cEntry in collectedPackets) do
4: key ← cEntry.key
5: gpsrp← cEntry.value
6: gpsrburstp← ∅
7: for all (aEntry in aggregatedPackets) do
8: if (key = aEntry.key) then
9: gpsrburstp← aEntry.value
10: break
11: end if
12: end for
13: if (gpsrburstp = ∅) then
14: gpsrburstp← duplicate gpsrp fields
15: gpsrburstp.bcu← ∅ // detach BCU
16: gpsrburstp.copyTargets← true
17: end if
18: add gpsrp.target to gpsrburstp.targets
19: delete gpsrp
20: end for
21: return aggregatedPackets
22: else
23: error
24: end if

5.5 GPSR Extensions 67

5.5.3 Support for Mac-layer Failure Feedback

In order to make wireless communication more robust in mobile scenarios, we react to link
layer notifications, e.g., when a packet exceeds its maximum number of retransmissions
to the next-hop1. This can be an indication that a neighbour node has failed or gone out
of range, or that a network is in in congestion collapse state, in which little or no useful
communication can happen due to congestion. Consider a network where round-trip time
for a packet exceeds the maximum retransmission interval for any node. That node begins
to introduce more and more copies of the same datagrams into the network. Eventually,
all available buffers in the node are full and packets must be dropped. This does not
happen in our scenario, since we are not flooding the network with packets. We interpret
indications of link-level retransmission failures as not receiving a beacon from a neighbour
for a longer than specified timeout (the neighbour has gone out of range). To enable link
layer notifications, a routing module must call during initialization phase linkLayerFee-
back() method and override virtual processLinkBreak() method.

A problem with unavailability of a neighbour node can also happen during resolution of
network layer addresses into link layer addresses. ARP module retries a predefined number
of times to send an ARP Request, and if no reply is returned, the packet in question is
dropped. We extended default ARP module functionality to provide custom notifications
about dropped packets. However, in case of ARP failures no actual countermeasure can
be taken, since if ARP requests are not resolved, no data packets can be sent either. We
avoid this situation by not introducing excessive network congestion.

5.5.4 Integration with OMNeT++

Figure 5.2. Connection of an ad-hoc routing module to the network layer.

Ad-hoc routing protocols included in the INETMANET framework are managed through
a MANET manager [10]. Existence of this module is fundamental to trigger the ad-hoc
routing procedures in the IP network layer. For this reason, we had to reproduce a mini-
mum set of functionalities from the MANET manager to integrate GPSR scheme.

MANET dispatcher is a managing module that instantiates dynamically at runtime
GPSR protocol, manetroutingprotocol, and connects it to the appropriate IP interface of
the MANET dispatcher (Figure 5.2). It is connected to the IP module and manages
message dispatching from one module to another. The GPSR protocol module is a child
module of MANET dispatcher.

1The standard defines seven retransmissions in IEEE 802.11.

Algorithm 5.8 Processing of packets in MANET dispatcher.
Input: Network packet p
Output: Forward or drop packet
1: if (MANET routing is not active) then
2: delete p
3: else
4: if (p arrived from IP module) then
5: // arrived on "from_ip" gate
6: if (chosen protocol is supported) then
7: if (p is type of ControlManetRouting) then
8: if (p.optionCode = MANET_ROUTE_NOROUTE) then
9: error
10: end if
11: delete p // ControlManetRouting packets are not forwarded
12: else
13: send p directly to routing module
14: // send directly to "from_ip" gate of routing module
15: end if
16: else
17: delete p // unsupported protocol
18: end if
19: else
20: if (chosen protocol is supported) then
21: if (p did not arrive from routing module) then
22: delete p // unknown gate, should arrive on "from_manet" gate
23: else
24: send p to routing module
25: // send to "to_ip" gate of IP module
26: end if
27: else
28: delete p // unsupported protocol
29: end if
30: end if
31: end if

5.6 Public Sensing 69

In addition to triggering ad-hoc routing procedures, it is partially in charge of control-
ling the IP table. At the beginning of simulation, all entries in the IP table are erased.
The IP module is forced to transfer any forwarded packets to MANET dispatcher, which
relays them further to a routing module. The GPSR protocol is responsible for aug-
menting a packet with an IP control information required by the IP module to forward
packets. Moreover, MANET dispatcher interprets ControlManetRouting messages from
the IP module and throws an error if GPSR protocol did not specify enough routing in-
formation for the IP module. Detailed processing of packets in MANET dispatcher can
be found in Algorithm 5.8.

5.6 Public Sensing

5.6.1 Packet Formats

Example 5.6. GatewayApplication packets.

1 packet DataRequest {
2 int queryID ;
3 double timestamp ;
4 double queryPeriod ;
5

6 VirtualSensor :: Ptr virtualSensors [];
7 SensorRole sensorRole [];
8 }
9

10 packet INPDataRequest extends DataRequest {
11 VirtualSensor :: Ptr allVirtualSensors [];
12 SensorRole allSensorRoles [];
13 SelectSensorsIntMGMIntelLab :: CoordSet virtualSensorAvailability ;
14 SelectSensorsIntMGMIntelLab :: Ptr sensorSelector ;
15 }
16

17 packet DataResponse {
18 int queryID ;
19 double requestTimestamp ; // timestamp copied from the request
20 double readingTimestamp ; // timestamp when the reading was taken
21 double reading ;
22

23 VirtualSensor :: Ptr virtualSensor ;
24 SensorRole sensorRole ;
25 Coord actualPosition ;
26 }

Two different classes of packets are specified. The first class carries domain specific knowl-
edge (Listing 5.6). The GatewayApplication creates a query with a globally unique ID
(queryID) that is completed after a specified period of time (queryPeriod). A correspond-
ing DataRequest packet is created to request readings from the system and is consumed
by Sensing Application. virtualSensors array contains, specified in the query virtual sen-
sors, with each having an explicit role assigned. The readings request is forwarded to

70 5 Implementation

the NetworkTransformator. For simplicity, we consider DataRequest to be equivalent to
a query because they mutually describe themselves. INPDataRequest packet extends abil-
ity of DataRequest to carry information about the model and currently employed sensor
selection algorithm. These type of packets are used only when in-network planning is ac-
tive. DataResponse packet is consumed by the GatewayApplication and stores information
about taken reading, timestamps, and a position of a node that took the reading.

Example 5.7. NetworkTransformator packets.

1 packet PSGatewayReq {
2 IPAddress destAddr ;
3 IPAddress srcAddr ;
4 bool useInNetworkProcessing = false ;
5 bool regionBroadcast = false ;
6 }
7

8 packet PSGatewayResp {
9 IPAddress destAddr ;

10 IPAddress srcAddr ;
11 cArray readings ;
12 }

The second class of packets (Listing 5.7) travels over a network and encapsulates pack-
ets supplied from higher layers. PSGatewayReq carries a packet passed from the Gate-
wayApplication and provides additional information on how the packet must be further
processed in a Public Sensing Node. PSGatewayResp packet is sent from Public Sensing
Node and carries at least one DataResponse packet. destAddr and srcAddr fields are used
to address appropriate sides of communication, e.g., if a Public Sensing Node sends PS-
GatewayResp then destAddr points to the IP address of the Public Sensing Gateway, and
srcAddr is set to the IP address of the sending node.

5.6.2 Gateway

Public Sensing Gateway (PSG) is modelled using the NED language. IPSGateway inter-
face is specified to define gates used exchange packets with network layer, and parameters
to control behaviour of the gateway (See Section 5.8). PSGateway module implements
IPSGateway interface and is composed of two modules:

• GatewayApplication is responsible for providing a flexible user interface for appli-
cations to specify a query, and afterwards communicate query results back to the
application. It triggers in-network planning by sending INPDataRequest packets in-
stead of regular DataRequest. The module is provided by the IPVS of University in
Stuttgart, and as such is not discussed in details.

• NetworkTransformator serves as an intermediate layer between the GatewayAppli-
cation and the network, and as such provides independence from differences in data
representation. Furthermore, it performs spatial decomposition of a query in ques-
tion. If a query spans more than one region, then it is decomposed into many partial

5.7 Location Information Management 71

queries, each corresponding to a region of interest. A collection of supported re-
gions is always available from the Node-Region Association Manager. A detailed
information on how this is achieved is presented in Algorithm 5.9.

5.6.3 Node

Public Sensing Node (PSN) runs Sensing Application that interprets requests from the
gateway. PSN specifies configuration parameters that are described in details in Section
5.8. If a request is made from the gateway to PSN, then a node in question is called
the entry node. Upon receiving PSGatewayReq, the entry node determines the delivery
method and acts accordingly. Processing of a gateway request is presented in Algorithm
5.10. If a region broadcast is not specified, the entry node starts a local query and
delegates creation of protocol specific packets to GPSR API. Afterwards, it awaits reading
responses for a specified period of time. The process of collecting reading responses is
presented in Algorithm 5.11. In in-network planning, Sensing Application can counteract
dropped GPSR packets carrying reading requests by selecting alternate sensors to query
(Algorithm 5.12). In order for this to happen, current region boundaries are made available
from Subscription Manager. If a node is an active participant of the system, SM can
provide such information at any time.

5.7 Location Information Management

5.7.1 Custom Location Information

Example 5.8. Extending GPSRProtocol class to use a custom location information.

1 class GPSRProtocolExtended : public GPSRProtocol {
2 protected :
3 psf :: IGPSChip * gpsChip ;
4

5 virtual double getXPos ();
6 virtual double getYPos ();
7 virtual double getSpeed ();
8 virtual double getDirection ();
9 };

In a default configuration, a position of a node is obtained using methods specified in
ManetRoutingBase class. To enable position updates, ManetRoutingBase has to be in-
structed to subscribe for host position updates category. During the initialization phase
of GPSRProtocol module, registerPosition() function must be called. If we are interested
in using a custom location information without interfering with current implementation,
GPSRProtocol class should be subclassed and appropriate methods ought to be redefined
as in Listing 5.8. In the version of system, a GPS chip module from IPVS is used to
provide uncertain location updates.

Algorithm 5.9 Sending partial queries to regions.
Input: A query (query), Node-Region Association Manager (manager)
Output: Send partial queries, each to a respective region
Output: Drop a partial query, if no nodes are associated with the region
1: sensorsAssigned← false
2: regionPartialQueryMap← ∅ // maps a region to a partial query
3: supportedRegions← get supported regions from manager
4: for all region in supportedRegions do
5: if (sensorsAssigned = query.count) then
6: break
7: end if
8: partialQuery ← get partial query for region from regionSensorListMap
9: for all (virtual sensor vs in query) do
10: if (vs.pos is contained within region) then
11: partialQuery ← add vs to the list
12: sensorsAssigned← sensorsAssigned+ 1
13: end if
14: if (sensorsAssigned = query.count) then
15: break
16: end if
17: end for
18: end for
19: for all (entry in regionSensorListMap) do
20: region← entry.key
21: partialQuery ← entry.value
22: if (no nodes in region) then
23: drop query
24: else
25: if (node density in region is less than specified threshold) then
26: // use region broadcast
27: for all (node in region.registeredNodes) do
28: send partial query to node
29: end for
30: else
31: // use geographic routing
32: node← select one node from region.registeredNodes
33: send partial query to node
34: end if
35: end if
36: end for

5.7 Location Information Management 73

5.7.2 Regions and Populated Regions

To represent regions in a flexible manner, AbstractRegion and AbstractPopulatedRegion
are specified. AbstractRegion interface defines methods for testing whether a specified
position is within boundaries of a region in question, and calculating its area. Abstract-
Populated interface defines methods to register, unregister, and test whether a node is
already registered. PouplatedRegion class implements these interfaces and forms a base
for the location management system.

5.7.3 Packet Formats

Algorithm 5.10 Processing of a gateway request in the entry node.
– Main routine
Input: Gateway request (req 6= ∅)
Output: Start a local query or take readings and send them back to gateway
1: if (req.isRegionBroadcast = true) then
2: nodePos← get current node position
3: collectedReadings← ∅
4: for all (virtual sensor vs in req.partialQuery) do
5: dist← distance from nodePos to vs.pos
6: if (dist ≤ vs.radius) then
7: reading ← take reading
8: collectedReadings← collect reading
9: end if

10: end for
11: if (collectedReadings is not empty) then
12: send readings back to gateway
13: end if
14: delete req
15: else
16: queryID ← req.partialQuery.queryID
17: queryPeriod← req.partialQuery.queryPeriod/2
18: start a local query with queryID and queryPeriod
19: end if
– Local query routine
Input: Gateway request (req 6= ∅)
Output: Distribute reading requests
1: create a list of reading requests from req.partialQuery
2: assign to each reading request local queryID
3: // each reading request corresponds to a virtual sensor specified in req.partialQuery
4: if (req.inNetworkProcessing = true) then
5: pass the list of reading requests to GPSR API
6: else
7: pass reading requests one by one to GPSR API
8: end if
9: // GPSR API is responsible for wrapping reading requests into protocol-specific pack-

ets and sending them to routing module

Algorithm 5.11 Collecting reading responses in the entry node.
Input: Reading response (resp 6= ∅)
Input: Reverse route of the reading response (reverseRoute)
Output: collect reading or send back to gateway
1: if (reverseRoute is empty) then
2: // response arrived at the entry node
3: queryID ← get local query ID from resp.queryID
4: query ← get query with queryID from query manager
5: if (query = ∅) then
6: // response is late
7: send reading back to gateway
8: else
9: add reading to query results
10: end if
11: else
12: // route is broken at intermediate node
13: send reading back to gateway
14: end if

Algorithm 5.12 Selecting alternate sensors in a node.
Input: INPDataRequest (inp), Region boundaries (region)
Output: A list of readings and control readings to request
1: // sensors known to be available at the time of submitting the query
2: availableSensors← get available sensors from inp
3: // restrict available sensors to respective region
4: for all (vs in availableSensors) do
5: if (vs is not contained within region) then
6: remove vs from availableSensors
7: end if
8: end for
9: // an assumption is made that all readings have been taken and returned to the

gateway except newly detected as being unavailable
10: takenReadings← inp.allV irtualSensors
11: takenControlReadings← inp.allV irtualSensors
12: for all (vs in inp.query) do
13: remove vs from availableSensors
14: remove vs from takenReadings
15: remove vs from takenControlReadings
16: end for
17: // select sensors from availableSensors knowing that some readings have been taken
18: result ← run greedy selection algorithm with availableSensors, takenReadings and

takenControlReadings as parameters
19: readingsToRequest← extract readings to request from result
20: controlReadingsToRequest← extract control readings to request from result

5.8 Simulation Parameters 75

Example 5.9. Packets exchanged as part of location information management.

1 packet SubscriptionReq {
2 IPAddress destAddr ;
3 IPAddress srcAddr ;
4 Coord srcPos ;
5 }
6

7 packet SubscriptionResp {
8 IPAddress destAddr ;
9 IPAddress srcAddr ;

10 RegionPtr region ;
11 }

To support location information management, a number of packets is defined to implement
two-way communication over the channel (Figure 5.9). SubscriptionReq packet is sent from
the node to subscribe to the gateway or carry out a subscription update. destAddr and
srcAddr fields contain respectively the IP address of the server and the sending node.
Position obtained from GPS module is stored in srcPos. SubscriptionResp packet, on the
other hand, is sent from the gateway to the mobile node and contains information about
the assigned region. In the following, underlying details of the structure being passed are
explained.

5.8 Simulation Parameters

Parameters used in the simulation can be assigned in either the NED files or the config-
uration files, e.g., omnetpp.ini. A default value can also be given, which is used if the
parameter is not assigned otherwise. A value assigned in NED cannot be overwritten form
ini files. We “hardcode” some parameters in NED files, since they are considered to be part
of the model. All other parameters that are considered to change during experimentation
are put into ini files. Finally, all parameters are evaluated at the start of the simulation
and cannot be change later.

Parameters are grouped by module name. For convenience, wildcard matching pattern
of modules is provided in the brackets . We defined the following parameters with their
default values:

1. Net80211 module

• numManetHosts
• pgs_x

2. SimulationControl module (*.simulationControl)

• useInNetworkPlanning
• useOptimizedOperation
• warmup

76 5 Implementation

3. GPSRRouting module (**.manetroutingprotocol)

• timeToLive (64)
• immediateBeacon (false)
• beaconJitter (0.5)
• beaconInterval (1s)
• beaconExpiry (3 * beaconInterval * (1 + beaconJitter))
• numOfBeacons (0)
• planarization (1)
• eraseTimedOutFragmentsAfter (20s)
• tightlyCoupled (false)

4. EnhancedManetHost module (*.mobileStation[*])

• mobilityType
• gpsChipType (“ExactGPSChip”, hardcoded in parent)
• psCpuType (“PSCpu”, hardcoded in parent)

5. PSGateway interface (**.psGateway)

• useInNetworkProcessing (true)
• nodeDensityThreshold (0.5)
• regionPartition (0)
• numColumns (1)
• numRows (1)

6. PSCpu module (*.mobileStation[*].psCpu)

• sendPosAfterXUpdates (5)
• psCpuLog
• wiredServer

Chapter 6

Evaluation

To check the effectiveness and efficiency of our algorithms, we evaluated them using
a dataset representing environmental readings gathered over time. This chapter presents
the simulation setup and performance evaluation results.

6.1 Methodology

Our public sensing system is implemented using OMNeT++ 4 network simulator and
INETMANET framework. A node uses 802.11 implementation from INETMANET for
ad-hoc WiFi communication. To improve the runtime of our simulations, the effective
communication distance is restricted to 125m. For the mobile Internet access, we use
a simple model of a UMTS channel shared amongst all nodes [21]. Node mobility is
modelled using the Random Waypoint mobility model. Nodes are initially randomly
distributed over a simulation area.

We run our simulations for one simulated day each. Adopted GPSR protocol requires
initial convergence time. Nodes need to have sufficient time to gather information about
neighbours, before making any forwarding decisions. A warmup period of 10s is introduced
to delay the first query submission. We adjust the timespan between consecutive queries,
so that at most one query is active in the system.

To run the actual simulations with real sensor data, we firstly run preliminary simula-
tions. The main objective of preliminary simulations is to determine the optimal system
parameters. We test the fraction of sensors for which a reading is obtained in simulations
with a varying number of nodes, size of simulation area and sensing radius of a virtual
sensor. After finding a “sweet spot”, we verify the effectiveness and efficiency of our
algorithms with real sensor data.

6.2 Sensor Dataset

In the network research community many datasets are publicly available, but only few are
suitable for public sensing. We run our simulations with the Intel Lab data [3], which is
the sensor data collected in a specific sensor deployment in the Intel Berkley Research lab.

78 6 Evaluation

Figure 6.1. Sensor’s arrangement in the Intel Berkley Research lab.

The dataset contains continuous time series of 54 sensors, monitoring different environ-
mental parameters such as temperature, humidity and illuminance. These sensors reflect
spatial correlations of the phenomena being monitored. A diagram representing sensor
arrangement of sensors is shown in Figure 6.1. Using the original Intel Lab dataset as the
input, a sensor reading at a specific point in space and time is made available to a node
supporting specified virtual sensor.

Example 6.1. Intel Lab data provider module.

1 simple IntelLabDataProvider like BasicDataProvider {
2 double warmup = default (0);
3 string filename ;
4 double stretchFactor_x = default (1.0);
5 double stretchFactor_y = default (1.0);
6 double stretch_time = default (1.0);
7 bool keepNAN = default (true);
8 }

IntelLabDataProvider models the sensor data used in our simulation. If a reading is
not available in the original dataset, a NaN value (Not a Number) is stored to indicate
this fact. Otherwise, the provider reports the last seen value. A stretch factor is defined
in the IntelLabDataProvider module to extrapolate the original dataset over specified
playground. To avoid excessive network traffic, we also manually adjust the timespan
between consecutive queries. The module definition can be found in Listing 6.1.

The original Intel Lab data provider module is supplied by the IPVS. We had to adapt
it, in order to integrate it with our public sensing system.

6.3 System Setup

6.3.1 Network

We defined a network that primarily consists of mobile nodes and a wired host. The wired
host plays the role of public sensing gateway. Every mobile node has a sensing application

6.3 System Setup 79

Figure 6.2. Overall network setup for Intel Lab data.

running that performs basic sensing tasks. The nodes act also as routers, since they
forward data packets to other nodes. The overall network setup is presented in Figure
6.2. A network requires additional modules to make a simulation runnable. The following
named modules are defined:

• networkConfigurator performs auto configuration of a network. It configures IP
addresses and routing tables of all modules which have the @node property. The
module only runs once, at the beginning of the simulation. All hosts and routers
are in the same network and only differ in the host part. For simplicity, the module
assigns one IP address to all interfaces of a node (mobile nodes are equipped with two
interfaces: UMTS and WiFi). It is essential that IP addresses are unique throughout
the network because current implementation of GPSR protocol uses them as unique
IDs to store neighbours.

• channelControl is responsible for housekeeping associated with radio channels in
wireless simulations. This module gets informed about the location of nodes, and
determines which nodes are within communication or interference range. The packets
are sent directly to the recipient and there is no dynamic connections creation.

• nodeBTable is a part of UMTS system and maintains information about all Node
B’s in the network. This includes their position, maximum transmission range and
the provider ID.

• nodeBPlacement is a part of UMTS system. Node B placement module determines
how Node B’s are laid out in the network. The module enables more realistic sim-
ulations of mobile networks, e.g., where the maximum range of different node B’s
varies.

• umtsConfigurator maintains routing tables of all Node B’s and mobile nodes to
allow data forwarding based on routing tables. The module only runs once, at the
beginning of the simulation.

• simulationControl loads the configuration parameters of specified model (e.g., Intel
Lab model), creates continuously different types of queries, records physical and
virtual readings, validates and updates the model if necessary.

80 6 Evaluation

• dataProvider serves as a bridge between an application and the actual data source.
Information about sensor readings is stored in a file in form of a matrix. The data
provider is used to retrieve sensor data from the file, provide readings upon request
and determine the query periods.

Example 6.2. Network parameters setup.

1 network Net80211_intelLab {
2 parameters :
3 @display ("i=block/ network ");
4 int numManetHosts ;
5 int num_Provider ;
6 double pgs_x;
7 double pgs_y = psg_x;
8 string placementType ;
9 }

The simulated network requires a basic parameters setup as in Listing 6.2. The number
of nodes used in a simulation is determined by numManetHosts. num_Provider specifies
a number of UMTS providers. Nodes are randomly deployed in a square playground of
side-length pgs_x. placementType determines the lay out of Node B’s in the network.

6.3.2 Mobile Node

Figure 6.3. Extended mobile node module.

We defined an internal structure of a mobile node as in Figure 6.3. The host is equipped
with the new IEEE 802.11g implementation. The mobility model is dynamically specified
with the mobilityType parameter. The remaining significant modules are:

6.3 System Setup 81

• interfaceTable contains a table of network interfaces (eth0, wlan0, etc.) in the host.
Interfaces are registered dynamically during the initialization phase of NICs modules.

• routingTable maintains an IPv4 routing table and is directly accessed from other
modules via C++ interface.

• notificationBoard makes possible for several modules to communicate in a publish-
subscribe manner.

• mobility is responsible for moving around the node in the simulated playground.

• wlan is a network interface card that implements a 802.11g communication in ad-hoc
mode. A wireless energy model can be defined.

• umts is a network interface card that encapsulates elements required for UMTS
communication.

• networkLayer represents protocols of the network layer: IP, ARP and ICMP. The
ErrorHandling module receives and logs ICMP error replies. The IP module per-
forms IP encapsulation/decapsulation and routing of datagrams. The ARP module
performs address resolution for interfaces and acts as a bridge between the IP module
and the NICs. ICMP deals only with sending and receiving ICMP error packets.

• associationClient is a part of UMTS system.

• manetmanager dynamically creates GPSR protocol module and maintains two-way
communication between the module and networkLayer.

• gpsChip adds uncertainty to the specified mobility model.

• psCpu performs basic public sensing tasks.

6.3.3 Mobility

Example 6.3. Mobility settings.

1 *. mobileStation [*]. mobilityType = " RandomWPMobility "
2 *. mobileStation [*]. mobility .x = -1
3 *. mobileStation [*]. mobility .y = -1
4 *. mobileStation [*]. mobility . updateInterval = 1s
5 *. mobileStation [*]. mobility .speed = uniform (1mps ,3 mps)
6 *. mobileStation [*]. mobility . waitTime = 1s

A mobility module plays an important role in the simulation, since it provides location
information of a node and handles its movement in an unobstructed rectangular plane.
A mobility module is needed even if the node is stationary, because it stores the location
of a node, needed to compute wireless transmission range. After consideration, we have
chosen the Random Waypoint mobility model, which configuration is given in Listing 6.3.
This model assumes that nodes move in line segments. A random destination position is
uniformly chosen for each line segment over the whole playground. The speed is defined
also as a variate uniform(minSpeed,maxSpeed). When a node reaches a target position, it
waits for a specified amount of time (waitTime), calculates a new random position and

82 6 Evaluation

the node moves on. The initial x, y coordinates of nodes are randomly distributed over
the playground.

6.3.4 NIC Settings

Two interesting things to be mentioned about the 802.11g radio module are sensitivity
and the bit error rate table parameter. The sensitivity determines which received signals
with power below should be ignored. In other words, it limits the range of communication
between two nodes. Firstly, we calculate the minimum receive power of an incoming
signal (Equation 6.1). Then, the effective coverage area of a transmitter is given by
Equation 6.2. This radio wave propagation model is implemented in the current version
from INETMANET 802.11g radio module.

minReceivePower = 10
sensitivity

10 (6.1)

communicationDistance =

(

lightSpeed
carrierFrequency

)2
× transmitterPower

16×Π2 ×minReceivePower

1

alpha

(6.2)

The bit error rate table parameter allows to define a file with precomputed values of
packet error rates (PERs). The file contains entries in which for different speeds of wireless
medium, packet sizes and signal-to-noise (SNR) ratios, a bit error rate is defined. This
stipulates a more realistic simulation. The file was already included in INETMANET
framework.

6.4 Metrics

Accurate evaluation of our public sensing system requires two elements: a representative
workload and a set of suitable metrics. Queries are our primary mechanism for retriev-
ing sensor readings from a network and are represented by a set of virtual sensors. In
the following considerations, we define quality of query results and efficiency of query
execution.

Quality of a query is measured by coverage, which is defined as the ratio of number
of obtained sensor readings to the total number of all sensors specified in the query. This
definition is intuitive enough for a user, since it can be easily determined from the coverage,
whether a query captured complete picture of the real world. From a user perspective,
an increased coverage leads to more meaningful results, which is the main goal in terms
of effectiveness. Furthermore, we examine the prediction accuracy of predicted readings
that is assessed by root mean square deviation. This is a frequently used measure, used
to measure differences between values predicted from a model and the values actually
observed.

6.5 Experiments 83

To measure the degree of optimization in terms of efficiency, we define the following
metrics:

• Network load is defined as the total number of transmitted packets in the network
(WiFi and UMTS).

• Number of saved sensor readings. Since we enrich our interactive sensor querying
with statistical modelling techniques, this number represents the difference in the
number of sensors initially specified in a query and the number of sensors required to
answer the query with sufficient confidence. A large number of saved sensor readings
has a positive impact on the network load.

• Number of redundant sensor readings. In proposed model-driven execution scheme
we submit optimized queries in rounds. If a query from the first round does not
provide sufficient coverage, another attempt is made to take sensor readings. This
increases the energy consumption of nodes and the overall network load, therefore
each additional reading taken in next rounds, is considered to be redundant.

6.5 Experiments

Table 6.1. Different simulation scenarios.

Scenario name Use MDQE Query delivery method Use INP
Naive no region broadcast no
MDQE yes region broadcast no

Optimized no region broadcast + position-based no
Optimized MDQE yes region broadcast + position-based no
Adaptive MDQE yes region broadcast + position-based yes

To verify the performance of our system, we specified five different simulation scenarios
as shown in Table 6.1. In the model-driven query execution (MDQE) scheme, a statistical
model is used to query these sensors, whose readings cannot be derived from the model
itself with sufficient confidence. This contributes to the number of saved sensor readings.
The region broadcast is the most naive query delivery method, as it blindly sends a query
via UMTS to each node contained within a region. In position-based approach, a query
is delivered to an entry node in a region of interest and disseminated via WiFi. However,
position-based approach is used only if the node density in a region is above a predefined
threshold. This threshold is determined in preliminary simulations. Lastly, in-network
planning (INP) triggers alternate sensor selection, if a sensor happens to be unreachable.
This is performed during query execution and can have a positive impact on the number
of redundant sensor readings.

In the following, we firstly validate the correctness of GPSR protocol implementation.
This is a necessary requirement to make meaningful conclusions in determining optimal
system parameters, and running the actual simulations. Secondly, we confirm our intuitive
concept of burst mode and show that results have an impact on GPSR efficiency. Finally,
we determine optimal system parameters and perform the actual simulations.

84 6 Evaluation

6.5.1 Validation of GPSR protocol

The effects of incorrect protocol implementation can have a significant impact on perfor-
mance, not mentioning bringing down an entire network. However, network protocols are
difficult to test due to the exponential size of the state space they define. We are in no
position to perform tests for all possible combinations of events (packet arrivals, packet
losses, timeouts, etc.) and protocol states.

We took an advantage of the fact that GPSR protocol is implemented in OMNeT++,
and propose the following simplified validation scheme adapted to our system:

1. Get from the simulator information about mobile nodes.

2. Specify a query in the following way: for each mobile node define a corresponding
virtual sensor, whose position is equal to the position of a node in question, and
sensing radius is adjusted to the node’s mobility.

3. Choose an entry node.

4. Start a query.

5. Run Dijkstra algorithm to compute shortest paths to all other nodes. Await readings
from reachable nodes. If a path exists, GPSR protocol guarantees packet delivery.

6. Collect query results.

7. If the query timeouts, check whether all results are collected.

8. Select a different entry node and go back to point 4. If all nodes have been selected,
finish the simulation.

Assumptions made and things worth to keep in mind:

• Queries must not overlap. The timespan between consecutive queries must be ex-
perimentally adjusted.

• Positions of nodes do not overlap and, as such, neither corresponding virtual sensors.

• TTL of GPSR packet should be specified accordingly to the number of nodes.

• ARP timeouts can lead to missing sensor readings.

Proposed testing scheme generates continuously queries under nodes mobility. If a new
query is started before the previous one is completed, this can be an indication of a routing
problem (assuming that everything else is set appropriately). Proposed testing scheme can
be further extended to support overlapping queries by exploiting the query ID.

6.5.2 Burst Mode

The burst mode is an extension to the adopted routing protocol, responsible for group-
ing targets in the general direction of the destination. To get a more accurate impression
of how well this extension performs, we compared it to the naive approach, in which all
requests are sent one by one. The parameters chosen for our simulation are presented in
Table 6.2. We ran the simulation for every possible combination of parameter values. The

6.5 Experiments 85

Table 6.2. Values for the parameters in burst mode simulation.

Parameter name Value
numManetHosts 20..120 step 5

pgs_x 300, 500, 700
inNetworkProcessing false, true

Figure 6.4. Burst Mode vs. Naive Approach.

testing methodology is similar to the proposed validation scheme of GPSR protocol. When
the last chosen node finished executing a query specified by virtual sensors corresponding
to all other nodes, the simulation was completed. In this case we had do adjust the size
of data queue in NIC, since the number of messages sent in the naive approach exceeded
the default queue size of a node. Our simulations confirm initial expectations towards
this approach (Figure 6.4). Firstly, the number of forwarded packets in the network, re-
quired to reach every destination, is significantly smaller than in the naive approach. As
a consequence, the amount of energy required for WiFi transmission is reduced. Secondly,
the performance gain of burst mode decreases with the number of targets specified in one
shot. In a special case, if only one target is specified, the performance of burst mode and
the naive approach are considered to be equal.

6.5.3 System Parameters

Table 6.3. Values of parameters in specified scenarios.

Parameter name Value
numManetHosts 40, 50, 60, 70

pgs_x 100,120,140,160

86 6 Evaluation

Figure 6.5. Scenarios indicating fully connected networks of mobile nodes.

To determine the optimal system parameters, we firstly compare two specified scenarios:
region broadcast and position-based, with disabled model-driven query execution. Intu-
ition dictates that the former can yield worse results, if the network is partitioned. Recall
that in NIC settings, the transmission range of WiFi is limited to 125m. To avoid such
situations, we experimentally determine a minimum number of nodes for a given region
size required to form a network of interconnected nodes. In Figure 6.5, we present dif-
ferent scenarios from which information about fully connected networks can be inferred.
This does not show, however, that all nodes remain reachable at any time, but is rather
a clue what can be expected during simulations. Based on our preliminary research, we
specified parameters for the actual simulations as in Table 6.3. Unfortunately, the time
frame planned for this thesis did not allow us to investigate further, in order to test the
system with a representable workload.

Chapter 7

Summary

7.1 Conclusion

In this thesis, we presented an opportunistic public sensing system which takes an advan-
tage of user smartphones to perform a flexible and efficient acquisition of sensor readings.
The great potential of public sensing comes from the large number of people covering large
public spaces. However, the usage of smartphones as mobile wireless sensing platforms
introduces two main challenges. Due to the uncontrolled mobility of people, no guarantees
about coverage of sensed area and data quality can be made. This can lead to sensing cov-
erage gaps. Furthermore, sensing should not interfere with normal usage of smartphones,
which requires in general, efficiency in terms of energy consumption. We use statistical
modelling techniques to enrich interactive sensor querying. To design an efficient com-
munication system for query dissemination, we adopted and successfully extended GPSR
protocol.

We firstly specified a conceptual model that describes and represents our system. In
this model, a node is capable of WiFi communication over short distances. For the mobile
Internet access, a simple model of a UMTS channel is used. For the purpose of public
sensing, every node has access to an identical set of environmental sensors and runs our
sensing software. A GPS module is used to obtain a position fix. As part of the system
model, we defined also an interface for applications to submit queries, i.e., the gateway.
An application specifies a query through a set of virtual sensors. This approach provides
a flexible way to specify requests independently of node’s mobility. To reflect spatial
properties of phenomena of interest, we use a probabilistic Gaussian model.

In the system design, detailed architecture of our two-tier public sensing system was
presented. We provided multiple views on different aspects of implemented approach,
such as the gateway, model-driven execution scheme and different types of queries. Our
system supports unoptimized and model-driven queries. The former requests all virtual
sensors specified by the application. Model-driven query, on the other hand, requests only
these sensors, whose readings cannot be derived from the model with sufficient acceptable
confidence. A multi round scheme is implemented in order to attempt answering the
specified query. We use in-network processing paradigm to efficiently distribute queries

88 Summary

to mobile nodes, and collect results afterwards. To reduce the number of hops required
for adopted routing scheme to successfully deliver a request, we introduced the concept
of area division into regions. Different query delivery models were defined as well. To
refine the quality of query results during query execution, we use in-network planning to
employ alternate alternate sensor selection. Finally, we extended adopted routing protocol
to carry multiple targets in the general direction of the destination.

The system was simulated using OMNeT++ 4 and INETMANET extension. A dataset
reflecting spatial correlations of environmental phenomena, such as temperature, was used
to provide real sensor readings. To evaluate our public system, we defined metrics fitting
our scenarios. To measure the quality of query results, we investigated the fraction of
obtained sensor readings to all sensors specified in the query. Furthermore, we examined
the prediction accuracy of readings to determine how far predicted values varied from
the values actually observed. To perform actual simulations, adopted routing protocol
had to be verified to strengthen final conclusions. Our empirical studies confirmed the
correctness of implementation, as far as our system is concerned. Moreover, we showed that
intuitive concept of burst mode have a promising impact on GPSR efficiency. However, the
preliminary simulations results revealed that routing-base approach is suitable in rather
dense scenarios.

7.2 Future Work

The periodical broadcasting in GPSR of hello messages has several drawbacks such as
unnecessary utilization of network resources, interferences with regular data packets, and
consumption of scarce battery power. It is a time-based strategy that is applied by most
of other position-based routing protocols proposed in the literature [24]. Other beaconing
strategies based on the distance that node has travelled since last beacon and speed,
should be considered. Velocity and direction of nodes should be used to predict the time
when two nodes are not within transmission range.

In more mobile scenarios, the number of unreachable nodes in the neighbour table
of GPSR can increase due to the too greedy selection strategy employed in the original
design. Moreover, in reality transmission ranges may be strongly irregular due to obstacles
and interferences. Further research should be done to restrain too greedy selection and
introduce some notion of a safety margin.

The multivariate Gaussian distribution was used to model the temperature phenomena.
Although it performs well, it does not directly provide any information on temperature
at locations where no sensors were placed. In such cases, regression techniques could be
used to perform prediction [30]. Unfortunately, they provide no notion of uncertainty
about these predictions. Gaussian processes should be considered in the future work as an
extension of multivariate Gaussian distribution to infinite-sized collections of real-valued
variables.

List of Figures

2.1 Public sensing is one of the aspects of people-centric sensing [15]. 13
2.2 Determining location using Skyhook’s system [8]. 22
2.3 An example of a Mobile Ad-hoc Network (MANET). 23
2.4 An example of a routing zone of node A with radius equal to 2 hops. E, D,

B, J, E and H are the border nodes. 25
2.5 An example of geographic multicast. 27
2.6 An example of geocasting. 27
2.7 A communication void, with respect to the destination D, occurs at node S

where greedy forwarding fails. 28
2.8 The RNG planarization algorithm. 29

3.1 Overall system model. 31

4.1 A general overview of system architecture. 35
4.2 A detailed system architecture. 37
4.3 Exploiting locality results in decreased number of hops. 39
4.4 Model-driven execution scheme. 41
4.5 Grid-based vs. honeycomb-based structuring scheme. 42
4.6 Overlapping readings in a region broadcast. 43
4.7 Grouping of reading requests sent in the same direction. 44
4.8 A node moves forth and back violating its region assignment. 48
4.9 Transmission range (TxR) of a node vs. delivery radius. 50
4.10 Processing of burst packets. 51

5.1 Overview of GPSR API communication scheme. 61
5.2 Connection of an ad-hoc routing module to the network layer. 67

6.1 Sensor’s arrangement in the Intel Berkley Research lab. 78
6.2 Overall network setup for Intel Lab data. 79
6.3 Extended mobile node module. 80
6.4 Burst Mode vs. Naive Approach. 85
6.5 Scenarios indicating fully connected networks of mobile nodes. 86

Bibliography

[1] BeiDou Navigation System, Wikipedia.

[2] GALILEO Satellite System, Wikipedia.

[3] Intel Lab data, http://db.csail.mit.edu/labdata/labdata.html.

[4] LORAN General Information, http://www.navcen.uscg.gov/?pageName=loranMain.

[5] OMNeT++ Network Simulation Framework, http://www.omnetpp.org/.

[6] Researchers Crack IPhone’s Wi-Fi Positioning System.

[7] Russian GLONASS System, Wikipedia.

[8] Skyhook, http://www.skyhookwireless.com/howitworks.

[9] Mehran Abolhasan, Tadeusz Wysocki, and Eryk Dutkiewicz. A review of routing
protocols for mobile ad hoc networks. Ad Hoc Networks, 2(1):1 – 22, 2004.

[10] A. Ariza-Quintana, E. Casilari, and A. Triviño Cabrera. Implementation of manet
routing protocols on omnet++. In Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and systems &
workshops, Simutools ’08, pages 80:1–80:4, ICST, Brussels, Belgium, Belgium, 2008.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

[11] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. En-
ergy consumption in mobile phones: a measurement study and implications for net-
work applications. In Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference, IMC ’09, pages 280–293, New York, NY, USA, 2009. ACM.

[12] S. Basagni, M. Conti, S. Giordano, and I. Stojmenović. Mobile ad hoc networking.
IEEE Press, 2004.

[13] Doina Bein. Self-configuring, self-organizing, and self-healing schemes in mobile ad
hoc networks. In Guide to Wireless Ad Hoc Networks, Computer Communications
and Networks, pages 27–41. Springer London, 2009. 10.1007/978-1-84800-328-6

92 Bibliography

[14] Andrew T. Campbell, Shane B. Eisenman, Nicholas D. Lane, Emiliano Miluzzo, and
Ronald A. Peterson. People-centric urban sensing. In Proceedings of the 2nd annual
international workshop on Wireless internet, WICON ’06, New York, NY, USA, 2006.
ACM.

[15] Andrew T. Campbell, Shane B. Eisenman, Nicholas D. Lane, Emiliano Miluzzo,
Ronald A. Peterson, Hong Lu, Xiao Zheng, Mirco Musolesi, Kristóf Fodor, and
Gahng-Seop Ahn. The rise of people-centric sensing. IEEE Internet Computing,
12:12–21, July 2008.

[16] D. Chen and P.K. Varshney. A survey of void handling techniques for geographic
routing in wireless networks. Communications Surveys Tutorials, IEEE, 9(1):50 –67,
quarter 2007.

[17] Thomas Clausen and Philippe Jacquet. Optimized link state routing protocol (olsr).
RFC 3626, Internet Engineering Task Force, October 2003.

[18] Abhimanyu Das and David Kempe. Sensor selection for minimizing worst-case pre-
diction error. In Proceedings of the 7th international conference on Information pro-
cessing in sensor networks, IPSN ’08, pages 97–108, Washington, DC, USA, 2008.
IEEE Computer Society.

[19] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M. Hellerstein, and
Wei Hong. Model-driven data acquisition in sensor networks. In Proceedings of the
Thirtieth international conference on Very large data bases - Volume 30, VLDB ’04,
pages 588–599. VLDB Endowment, 2004.

[20] Shane B. Eisenman, Emiliano Miluzzo, Nicholas D. Lane, Ronald A. Peterson, Gahng-
Seop Ahn, and Andrew T. Campbell. Bikenet: A mobile sensing system for cyclist
experience mapping. ACM Trans. Sen. Netw., 6:6:1–6:39, January 2010.

[21] Thorsten Frosch. Umts-implementierung für omnet++, 2011.

[22] Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal sensor place-
ments in gaussian processes. In Proceedings of the 22nd international conference on
Machine learning, ICML ’05, pages 265–272, New York, NY, USA, 2005. ACM.

[23] Zygmunt J. Haas, Marc R. Pearlman, and Prince Samar. The zone routing protocol
(zrp) for ad hoc networks. Internet-draft, IETF MANET Working Group, July 2002.
Expiration: January, 2003.

[24] Marc Heissenbüttel and Torsten Braun. Optimizing neighbor table accuracy of
position-based routing algorithms, 2005.

[25] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless
networks. In Tomasz Imielinski and Henry F. Korth, editors, Mobile Computing,
volume 353 of The Kluwer International Series in Engineering and Computer Science,
pages 153–181. Springer US, 1996. 10.1007/978-0-585-29603-6

[26] Aman Kansal, Suman Nath, Jie Liu, and Feng Zhao. Senseweb: An infrastructure
for shared sensing. IEEE MultiMedia, 14:8–13, October 2007.

Bibliography 93

[27] E.D. Kaplan and C.J. Hegarty. Understanding GPS: principles and applications.
Artech House mobile communications series. Artech House, 2006.

[28] Brad Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for wireless
networks. In Proceedings of the 6th annual international conference on Mobile com-
puting and networking, MobiCom ’00, pages 243–254, New York, NY, USA, 2000.
ACM.

[29] Brad Nelson Karp. Geographic routing for wireless networks. PhD thesis, Cambridge,
MA, USA, 2000. AAI9988566.

[30] Andreas Krause. Optimizing sensing: Theory and applications. Dissertation, Carnegie
Mellon University, United States, Pennsylvania, 2008.

[31] Andreas Krause, Eric Horvitz, Aman Kansal, and Feng Zhao. Toward community
sensing. In Proceedings of the 7th international conference on Information processing
in sensor networks, IPSN ’08, pages 481–492, Washington, DC, USA, 2008. IEEE
Computer Society.

[32] Nicholas D. Lane, Shane B. Eisenman, Mirco Musolesi, Emiliano Miluzzo, and An-
drew T. Campbell. Urban sensing systems: opportunistic or participatory? In
Proceedings of the 9th workshop on Mobile computing systems and applications, Hot-
Mobile ’08, pages 11–16, New York, NY, USA, 2008. ACM.

[33] Benyuan Liu, Peter Brass, Olivier Dousse, Philippe Nain, and Don Towsley. Mobility
improves coverage of sensor networks. In Proceedings of the 6th ACM international
symposium on Mobile ad hoc networking and computing, MobiHoc ’05, pages 300–308,
New York, NY, USA, 2005. ACM.

[34] Nicolas Maisonneuve, Matthias Stevens, Maria E. Niessen, Peter Hanappe, and Luc
Steels. Citizen noise pollution monitoring. In Proceedings of the 10th Annual In-
ternational Conference on Digital Government Research: Social Networks: Making
Connections between Citizens, Data and Government, dg.o ’09, pages 96–103. Digital
Government Society of North America, 2009.

[35] M. Mauve, A. Widmer, and H. Hartenstein. A survey on position-based routing in
mobile ad hoc networks. Network, IEEE, 15(6):30 –39, nov/dec 2001.

[36] S. Misra, I. Woungang, and S.C. Misra. Guide to Wireless Ad Hoc Networks. Com-
puter communications and networks. Springer, 2009.

[37] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. In Mobile
Computing Systems and Applications, 1999. Proceedings. WMCSA ’99. Second IEEE
Workshop on, pages 90 –100, feb 1999.

[38] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers. SIGCOMM Comput. Commun.
Rev., 24:234–244, October 1994.

94 Bibliography

[39] Damian Philipp, Frank Dürr, and Kurt Rothermel. A sensor network abstraction
for flexible public sensing systems. In Proceedings of the 8th IEEE International
Conference on Mobile Ad-hoc and Sensor Systems, October 2011.

[40] Anton Schwaighofer, Volker Tresp, and Kai Yu. Learning gaussian process kernels via
hierarchical bayes. In In Advances in Neural Information Processing Systems (NIPS,
pages 1209–1216. MIT Press, 2004.

[41] Anthony Steed and Richard Milton. Using tracked mobile sensors to make maps of
environmental effects. Personal Ubiquitous Comput., 12:331–342, February 2008.

[42] Ivan Stojmenović. Location Updates for Efficient Routing in Ad Hoc Networks, pages
451–471. John Wiley & Sons, Inc., 2002.

[43] Y.C. Tay and K.C. Chua. A capacity analysis for the ieee 802.11 mac protocol.
Wireless Networks, 7:159–171, 2001. 10.1023/A:1016637622896.

[44] International Telecommunication Union. The World in 2010: ICT Facts and Figures,
2010.

[45] Andras Varga. Omnet++. In Klaus Wehrle, Mesut Güneş, and James Gross, editors,
Modeling and Tools for Network Simulation, pages 35–59. Springer Berlin Heidelberg,
2010. 10.1007/978-3-642-12331-3

[46] Michael G. Wing, Aaron Eklund, and Loren D. Kellogg. Consumer-grade global
positioning system (gps) accuracy and reliability. Journal of Forestry, 103(4):169–
173, 2005.

[47] S.L. Wu and Y.C. Tseng. Wireless ad hoc networking: personal-area, local-area,
and the sensory-area networks. Wireless networks and mobile communications series.
Auerbach Pub., 2007.

[48] Yu Xiao, Petri Savolainen, Arto Karppanen, Matti Siekkinen, and Antti Ylä-Jääski.
Practical power modeling of data transmission over 802.11g for wireless applications.
In Proceedings of the 1st International Conference on Energy-Efficient Computing
and Networking, e-Energy ’10, pages 75–84, New York, NY, USA, 2010. ACM.

[49] Sunhee Yoon and Cyrus Shahabi. The clustered aggregation (cag) technique leverag-
ing spatial and temporal correlations in wireless sensor networks. ACM Trans. Sen.
Netw., 3, March 2007.

[50] Daqing Zhang, Bin Guo, Bin Li, and Zhiwen Yu. Extracting social and community
intelligence from digital footprints: An emerging research area. In Zhiwen Yu, Ramiro
Liscano, Guanling Chen, Daqing Zhang, and Xingshe Zhou, editors, Ubiquitous In-
telligence and Computing, volume 6406 of Lecture Notes in Computer Science, pages
4–18. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-16355-5_4.

[51] Srdjan Čapkun, Maher Hamdi, and Jean-Pierre Hubaux. Gps-free positioning in mo-
bile ad hoc networks. Cluster Computing, 5:157–167, 2002. 10.1023/A:1013933626682.

	Introduction
	Motivation
	Problem Formulation
	Thesis Outline and Contributions

	Background
	Public Sensing
	Model-driven Sensor Data Acquisition
	Introduction
	Prediction Model
	Modelling Sensor Data
	Quantifying Sensing
	Offline Sensor Selection
	Related work

	Positioning Systems
	Routing in MANETs
	Basic Principles of MANETs
	Topology-based Routing Techniques
	Position-based Routing
	Geographic Unicast Routing
	Greedy Perimeter Stateless Routing

	System Model
	System Model
	Challenges and Requirements

	System Design
	Introduction
	Architecture
	Public Sensing
	Gateway
	Statistical Model
	Queries
	Area Division into Regions
	Query Delivery Models
	In-Network Planning
	In-Network Aggregation
	Premature Routing Termination

	Location Information Management
	Division of Roles

	GPSR Protocol
	Delivery Area
	Burst Mode
	Planarization

	Implementation
	Network Simulator
	Ad-hoc Routing in INETMANET
	IP Module Interface

	UMTS
	GPSR Protocol
	Beaconing
	Neighbour Table
	Greedy and Perimeter Mode

	GPSR Application Programming Interface
	API Interface and Messages
	Processing of API Messages

	GPSR Extensions
	Packet Formats
	Burst Mode
	Support for Mac-layer Failure Feedback
	Integration with OMNeT++

	Public Sensing
	Packet Formats
	Gateway
	Node

	Location Information Management
	Custom Location Information
	Regions and Populated Regions
	Packet Formats

	Simulation Parameters

	Evaluation
	Methodology
	Sensor Dataset
	System Setup
	Network
	Mobile Node
	Mobility
	NIC Settings

	Metrics
	Experiments
	Validation of GPSR protocol
	Burst Mode
	System Parameters

	Summary
	Conclusion
	Future Work

	Bibliography

