
Institute of Parallel and Distributed Systems
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3260

A Hardware Architecture for
Numerical Instability Detection
Based on Discrete Stochastic

Arithmetic

Yousef Baroud

Course of Study: Information Technology

Examiner: Prof. Dr. Sven Simon

Supervisor: MSc. Wenbin Li

Commenced: 9. May 2011

Completed: 8. November 2011

CR-Classification: G.1.0, D.2.5, B.2.1, B.6.0, B.8

Abstract

Numerical validation of computed results is of great importance especially in sceintific
computing. Due to the use of finite representation of real numbers, round-off errors are
introduced and accumulated in arithmetic operations. Nowadays, softwares tend to run
longer. This exaggerate the problem as the computed results would get severely contaminated
by the propagation of the round-off errors which might, at some point, lead to obtaining
unreliable results.

The Discrete Stochastic Arithmetic (DSA) provides an effective and reliable approach to
validate the numerical accuracy of the computed results. In DSA, a code is run N times with
random rounding at every floating point operation, and the numerical accuracy information
can be obtained by calculating the confidence interval of the randomly rounded results.

In this work, we present a novel hardware architecture which efficiently implements the
DSA. A Numerical Analysis Unit (NAU) that estimates the numerical accuracy of any
intermediate result and detects numerical instabilities has been implemented based on a
hardware-reduced approach. The NAU has been integrated into a high-performance FPGA
system that consists of two PowerPC processors which use stochastic floating point units.
Upon catching numerical instabilities, the NAU raises exceptions to the PowerPCs stopping
them at the instruction that caused the exception.

In contrary to the existent implementations, the proposed implementation has been de-
veloped to meet three constrains; minimal original source code modifications, minimizing
hardware resource cost and exhibiting a good performance.

An extension to a state of the art debugger has been developed for the debugging of numerical
instabilities in a code. This extension adds functionalities which facilitate communicating
with the FPGA system. Moreover, functionality specific to numerical accuracy, such as
getting more details about a NAU exception or resuming execution after catching one, is
provided through this extension.

3

Acknowledgments

I would like to thank my advisor M.Sc. Wenbin Li for his continuous support and advice
throughout working on this thesis. I would like also to thank Prof. Dr. Sven Simon for
giving me the chance to work on such an interesting problem.

Thanks also go to the department of Parallel Systems for making it easy for me to conveniently
work on the thesis by providing the necessary software tools and the evaluation board.

Special thanks to Dipl.-Phys. Alen-Pilip Prskalo and Dr. Andrew Aird for their support and
advice.

Finally, I would like to thank my family for their patience and support; especially my
brother Hashem for proofreading the thesis. I would also like to thank Mahmoud, Liana,
Mohammed, A. Sleem, L. Mustafa and A. Bannoura.

5

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 The Scope of Work . 14

1.3 Thesis Structure . 14

2 Review of Stochastic Discrete Arithmetic 17

2.1 Floating Point Representation . 17

2.2 Discrete Stochastic Arithmetic . 18

2.2.1 The CESTAC Method . 19

2.2.2 Informational Zero . 20

2.2.3 Stochastic Relations . 20

2.3 CADNA Library . 21

2.3.1 Technical Deception . 21

2.3.2 Numeric Example Using CADNA . 22

2.4 Hardware Implementation by Avot-Chotin and Mehrez 23

3 System Model 27

3.1 Stochastic Floating Point Unit . 27

3.1.1 Description and Features . 27

3.1.2 Technical Information . 28

3.2 Numerical Analysis Unit . 29

3.3 System Model . 29

4 Hardware Implementation 33

4.1 Significant Bits Estimation Unit . 33

4.1.1 Generic Data Path . 33

4.1.2 Simplified Data Path . 36

4.1.3 Synthesis and Performance Metrics . 38

4.1.4 Extendability . 39

4.1.5 Verification . 40

4.2 Comparison Support Unit . 40

4.3 Synchronization Unit . 42

4.4 NAU Controller and Syndrome Register . 43

4.5 Changes to The STFPUs . 45

4.5.1 Loading data to NAU . 45

4.5.2 Support for Stochastic Relations . 45

4.5.3 Raising Exceptions to The PowerPC . 46

7

Floating Point Exception Modes in The PowerPC 46

Raising NAU Exceptions to The PowerPC 48

Design Generics and Configurations . 49

4.6 System Integration . 49

4.6.1 Detailed System Architecture and Performance Metrics 49

4.6.2 Testing and Simulation . 49

5 Software and Debugging Support 55

5.1 Interrupt Classification in The PowerPC . 55

5.2 Program Interrupt Processing . 56

5.3 Exception Management on The Software Level 57

5.4 Localizing and Getting More Info About The NAU Exceptions 57

5.4.1 XMD . 58

First Approach: Localize the source of exception and abort 59

Second Approach: Localize the source of exception and resume 59

5.4.2 GDB . 62

6 Performance Evaluation 63

6.1 FP Performance Benchmark . 63

6.2 Configuration of The Components . 63

6.3 Xilinx FPU Vs. STFPU . 64

6.4 STFPU Vs. STFPU with NAU Attached . 64

6.5 The Proposed Architecture Vs. CADNA . 67

7 Conclusion and Future Work 71

A Appendix 75

A.1 Look-up Tables . 75

A.1.1 Look-up Tables Entries – The Generic Data Path 75

A.1.2 Look-up Tables Entries – The Simplified Data Path 76

A.2 C Code emulating SBEU . 76

A.3 Benchmarks . 80

A.3.1 Evaluating The Hardware Architecture 80

A.3.2 Evaluating The Software Solution . 81

Without CADNA . 81

With CADNA . 82

A.4 Numerical Analysis Debugging Script . 84

Bibliography 87

8

List of Figures

2.1 Single precision floating point number representation. 17

2.2 Double precision floating point number representation. 18

2.3 Stochastic floating point unit [ACM04] . 24

2.4 System architecture of the stochastic FPU [ACM04] 24

3.1 Hardware architecture of the STFPU. 27

3.2 System model . 31

4.1 SBEU data-path (with N = 2m samples). 37

4.2 SBEU data-path (optimized for two samples). 38

4.3 SBEU simulation. 40

4.4 Comparison Support Unit data path. 41

4.5 The building block of the Synchronization Unit. 42

4.6 NAU controller state machine. 44

4.7 Normal non-autonomous multiplication operation with no exception. 47

4.8 Non-autonomous multiplication operation which generates an overflaw ex-
ception. 48

4.9 Detailed system architecture. 50

4.10 Loss of accuracy exception generated by NAU and caught by the PowerPC. . . 52

5.1 Catching a NAU exception. 58

5.2 XMD localizing a NAU exception. 60

5.3 XMD catching two consequent NAU exceptions. 62

5.4 gdb localizing a NAU exception. 62

6.1 MFLOPS obtained upon running FPU and Xilinx FPU autonomously. 65

6.2 MFLOPS obtained upon running FPU and Xilinx FPU non-autonomously. . . 65

6.3 MFLOPS obtained upon running STFPU with and without the NAU non-
autonomously for the generic data path. 66

6.4 MFLOPS obtained upon running STFPU with and without the NAU non-
autonomously for the simplified data path. 66

6.5 MFLOPS obtained upon running STFPU with and without the NAU au-
tonomously for the generic data path. 67

6.6 MFLOPS obtained upon running STFPU with and without the NAU au-
tonomously for the simplified data path. 68

6.7 MFLOPS obtained upon running the benchmark with and without CADNA. . 68

6.8 MFLOPS obtained when using CADNA vs. using our architecture. 69

9

6.9 Slow down factors when using our architecture vs. using the CADNA library. 70

List of Tables

3.1 Hardware utilization and maximum operating frequency. 28

3.2 Latencies of the floating point operators in STFPU. 29

4.1 Latencies of different double precision FP operators. 34

4.2 Parameters and pre-calculated constants used in the simplified approach . . . 35

4.3 Latencies of the different operators used in SBEU. 39

4.4 Maximum operating frequency of SBEU. 39

4.5 Resource utilization for N samples . 40

4.6 Performance of the comparison unit. 41

4.7 Resource utilization for N = 2m STFPUs. 42

4.8 The data loaded to NAU when different instructions are executed. 45

4.9 Changes to STFPU to support stochastic relations. 46

4.10 Floating point exception modes in the PowerPC. 46

4.11 The generics used in the architecture. 53

4.12 Hardware utilization and maximum operating frequency for NAU considering
the two data paths provided in Figure 4.1 and 4.2. 54

4.13 Latencies of the floating point operators in STFPU (precise mode) after inte-
grating NAU. 54

6.1 Configuration of the components used in the performance evaluation. 64

A.1 Look-up table entries for the generic data path. 75

A.2 Look-up table entries for the simplified data path. 76

List of Listings

2.1 Original source code without the use of CADNA library. 22

2.2 Modified source code with the use of CADNA library 22

5.1 Exception handler to dereference the Syndrome Register. 61

A.1 A program to emulate SBEU on the bit level. 76

10

A.2 The benchmark used to evaluate the hardware architecture. 80

A.3 The benchmark used to evaluate the original performance of the processor
(without CADNA). 81

A.4 The benchmark used to evaluate the performance of the processor when using
CADNA . 82

A.5 The Numerical Analysis Debugging Tool . 84

11

1 Introduction

1.1 Motivation

Representing infinitely many real numbers in a finite number of bits (usually 32 or 64)
requires approximate representation. Thus, if a result of a floating point calculation cannot
be exactly representable on the target machine, it needs to be rounded to fit into the finite
representation. This approximation introduces the round-off error. As the program runs
longer, the propagation of this error from one floating point operation to another might, at
some point, lead to badly affecting the computed result making it inaccurate or even wrong.
Validation of the numerical results in scientific computing is possible by applying Discrete
Stochastic Arithmetic (DSA).

The basic idea of DSA can be summarized as follows:

1. Running the same code synchronously N times while randomly rounding the results
(up or down) at every floating point operation.

2. Based on the results obtained after every floating point operation from the N runs, it is
possible to estimate the accuracy of the calculation.

An efficient implementation of DSA should satisfy these three points:

1. Requires minimal changes to be incorporated in the original source code.

2. Does not notably slow down the execution of a program.

3. Requires minimal additional hardware.

There are at least two existent implementations supporting DSA. The first one is the CADNA
library which is a software implementation of DSA. The execution time of a program, when
using CADNA, will be orders of magnitude the execution time of the original program.
More important, many modifications to the source code are required to migrate the code to
make use of the CADNA library. This is tedious and error prone especially in softwares with
multiple thousands SLOC1. The second implementation of DSA is a hardware implemen-
tation presented in [ACM04]. This implementation requires modifications to the original
source code and does not support all floating point operations.

In this thesis we present a new hardware implementation of DSA. Tendency to meet the
three points stated earlier has been a core target. The proposed implementation is centered

1Source Lines of Code

13

1 Introduction

around a hardware-reduced approach for estimating the accuracy of results. While saving
hardware resources and giving a good estimation of the accuracy of results, this approach
made it possible to reach lower latencies and higher operating frequencies.

On the software level, a numerical accuracy debugging tool to help localizing numerical
instabilities has been developed. Getting more details about the type of a numerical instability
has become also possible using this tool.

1.2 The Scope of Work

The work in this thesis can be categorized into two parts:

Hardware: A Numerical Analysis Unit (NAU), which is able to detect numerical instabilities
and raise exceptions upon catching one, has been implemented.

Software: A means has been developed means to catch the exceptions raised to the proces-
sors and check their cause.

The original floating point units used in the architecture were implemented in a previous
project and not in the scope of this thesis. Though, changes have been carried out on these
units in order to properly integrate the NAU and communicate the numerical instability
exceptions, as applicable, to the processors.

1.3 Thesis Structure

This thesis is written in seven chapters (including the introduction) and an appendix. A brief
description of these chapters is provided as follows:

1. Chapter 2: The theoretical basis of the CESTAC method and DSA is presented along
with the discussion of two existent implementations of DSA.

2. Chapter 3: Basic components of the systems are presented.

3. Chapter 4: A detailed description of the different components of the numerical analysis
unit is provided. Performance metrics and resource utilization is also provided. In
addition, The necessary changes that are required for the stochastic floating point unit
are presented.

4. Chapter 5: Managing exceptions is discussed. The mechanism of catching and process-
ing numerical instability exceptions is presented as well.

5. Chapter 6: Performance evaluation of different DSA implementations is presented
based on benchmarking.

6. Chapter 7: The features of the proposed implementation are summarized along with
possible future enhancements.

14

1.3 Thesis Structure

7. Appendix A: Look-up tables used in the implementation and benchmarks used for
performance evaluation are provided. In addition, a C program that is used for
validation purposes and a TCL script that works as a numerical accuracy debugging
tool are provided.

15

2 Review of Stochastic Discrete Arithmetic

In this chapter, a brief introduction of floating point (FP) numbers and round-off error
is presented in Section 2.1. The Discrete Stochastic Arithmetic (DSA) is introduced in
Section 2.2. Two implementations of DSA, one in software (Section 2.3) and the other in
hardware (Section 2.4), are presented and evaluated.

2.1 Floating Point Representation

Real numbers can be represented as (s · be · m), where: s is the sign, m is the mantissa
(significant) that satisfies the inequality 1 ≤ m < b and b is the basis of exponent e. The same
convention is followed when representing a floating point number on a machine where b
is chosen as 2, and m is approximated to m′ due to the limited number of bits used in the
representation.

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) defines five basic formats [iee08].
The most used representations are the single precision and double precision. As depicted in
Figure 2.1, the single precision representation is encoded in 32 bits; 1 bit is used to encode
the sign (0 for + and 1 for −), the exponent is encoded in 8 bits and 23 bits are used to
represent the mantissa. As the exponent might be of a negative value, a bias is added to
the actual exponent. In single precision, the bias is 127. Similarly, the double precision
representation, depicted in Figure 2.2, is encoded the same way but with different number of
bits for the mantissa and the exponent. The bias added to the actual exponent in the double
precision format is 1023.

As limited bits are used to represent floating point numbers, not every real number is exactly
representable. Let F be a floating point number which cannot exactly be represented in
the target format, F+ be the next larger representable number and F− be the next smaller
representable number. Then, F is either approximated to F+ or F− depending on the
rounding mode being used. These rounding modes are:

e + 127s m’

11 88 99 313100

Figure 2.1: Single precision floating point number representation.

17

2 Review of Stochastic Discrete Arithmetic

e + 1023s m’

11 1111 1212 636300

Figure 2.2: Double precision floating point number representation.

• Round to nearest, ties to even: The value which is closer to F is used. In case of a tie
(F has equal distance to F+ and F−), the one that is even (least significant bit in the
mantissa is 0) is used.

• Round toward zero: Also known as truncation. The smaller one in magnitude is used.

• Round toward +∞: Also known as rounding up. F+ is used.

• Round toward −∞: Also known as rounding down. F− is used.

It is essential here to introduce the concept of random rounding. If a number that results
from an FP operation is not exactly representable, then random rounding is the process of
choosing either F− or F+ with equal probability to represent that number.

This rounding solution introduces round-off error. A real number x that is represented exactly
as: x = s ·m · be, can be represented on the machine as: X = x · (1 + b−pα) · be, where: p is
the number of bits in the mantissa, α is the normalized relative error and b−pα is the relative
error [Che]. Depending on the rounding mode used, α can take these values:

• Round to nearest: α ∈ [−0.5, 0.5[.

• Round toward zero: α ∈ [0, 1[.

• Round toward +∞: α ∈ [−1, 1[.

• Round toward −∞: α ∈ [−1, 1[.

In computational intensive programs that run for longer time (days or even weeks) the study
of propagation of round-off error in consecutive FP operations is of crucial importance. The
accuracy of final results might be badly affected by these errors to the point that a final result
is considered as of unacceptable accuracy or even wrong.

2.2 Discrete Stochastic Arithmetic

Discrete Stochastic Arithmetic (DSA) is the association of the synchronous implementation
of the CESTAC method (Section 2.2.1), the informational zero concept (Section 2.2.2) and the
stochastic relations (Section 2.2.3)[Vig04].

18

2.2 Discrete Stochastic Arithmetic

2.2.1 The CESTAC Method

Controle et Estimation Stochastic des Arrondis de Calculs (CESTAC) method was first
developed by J. Vignes and M.L. Porte in [VP74] in order to estimate the effect of round-off
error propagation on results and to detect numerical instabilities.

For better understanding of the method, let us first consider this scenario. Assume we have
a code of n floating point operations. This code is run several times, with the intermediate
results at every FP operation rounded up or down, so as to consider all the possible
propagations of the round-off error. The number of common digits, k, of the results obtained,
ri ∈ R, is noted. Logically, this number also gives the first k exact significant digits of the
exact result r.

What makes this approach unusable is the high cost imposed by running the code 2n times
in order to cover all the possible propagations of the round-off error. The CESTAC method,
which is based on a probabilistic approach, is developed to overcome this problem.

In this probabilistic (stochastic) approach [Vig93], only a subset of the computed results,
r̂i ∈ R̂ | R̂ ⊂ R, is further considered. The elements of the subset R̂ are obtained by randomly
rounding the calculated results up or down at every FP operation with equal probability.
Every sample, r̂i, of these N samples can be modeled as:

r̂i = r +
n

∑
k=1

gk(d)2−pαk + O(2−2p),

where r is the exact result, n is the number of floating point operations, gk(d)’s are quantities
depending exclusively on data and algorithm, p is the wordlength of the mantissa, αk’s
are normalized rounding errors which are independent and identically distributed random
variables. The computed result is taken as the average of all the samples r̂i:

r̄ =
1
N

N

∑
i=1

r̂i.

The exact significant digits of r̄ is given by the formula [Vig93]:

Cr̄ = log10

(√
N · |r̄|

τβ · σ

)
,

19

2 Review of Stochastic Discrete Arithmetic

where σ2 = 1
N−1 ·

N

∑
i=1

(r̂i− r̄)2, and τβ is the value of the Student distribution for N− 1 degrees

of freedom and a probability level 1− β.

In the CESTAC method, two hypotheses must hold true for the model to be reliable [Vig04]:

1. The elementary round-off errors αi of the FP arithmetic operations are independent,
centered and uniformly distributed variables.

2. The negligibility of the items in the order of 2−2p is legitimate.

The first hypothesis holds true due to the robustness of the Student’s test. However, for the
second hypothesis to hold true, two more checks must be taken into account [Vig04]:

1. The operands of any multiplication are both significant (i.e. not an informational zero).

2. The divisor of any division is significant.

2.2.2 Informational Zero

A result is considered as an informational zero (denoted as @.0), when one of these conditions
is true [Vig93]:

1. ∀i, i = 1, . . . , N, r̂i = 0.

2. Cr̄ ≤ 0.

2.2.3 Stochastic Relations

Relational operators need to be redefined in order to only consider the significant part of the
operands. Let X and Y be N-samples provided by CESTAC method, then [Vig93]:

• X =s Y if X−Y = @.0, where =s is the stochastic equality.

• X >s Y if X̄ > Ȳ and X − Y 6= @.0, where >s is the stochastic greater than
inequality.

• X ≥s Y if X̄ ≥ Ȳ or X−Y = @.0, where ≥s is the stochastic greater than or equal
inequality.

The way we run the code N times is crucial. If the code is run sequentially, there will be no
means to check the validity of the second hypothesis. Thereby, asynchronous implementation
is considered unreliable.

20

2.3 CADNA Library

2.3 CADNA Library

Control of Accuracy and Debugging for Numerical Accuracy (CADNA) software library
implements DSA. CADNA supports programs written in ADA, C or FORTRAN, and during
the run of the code it monitors [cad, p. 5 - p. 6]:

• The numerical error due to round-off errors.

• Branching instabilities (when an informational zero (Subsection 2.2.2) is detected in
branching).

• The numerical accuracy of all the intermediate results.

The implementation is done by performing N times (N = 3) each FP operation before
proceeding to the next operation. Upon the detection of an instability or accuracy loss of the
intermediate results, information is be written to the standard output.

Using the CADNA library is costly in terms of memory and running time. When using
CADNA, the program runs orders of magnitude times slower, and uses more than three times
the memory footprint it needs when run normally [JC08]. We have tested the performance
using a benchmark on a T6600 intel processor, and CADNA increased the running time of
the program more than 170 times.

2.3.1 Technical Deception

CADNA introduces new (stochastic) data types to be used in the code which are float_st
and double_st which are correspondent to the normal float and double, respectively. A
stochastic data type is merely a triplet of floating point values, where the randomly rounded
results after each FP operations are saved. FP operations (+, -, *, /) are overloaded to
support the new data types and to perform the random rounding for the values after each
computation. Order relations (<,≤,==,≥,>) are overloaded as well and redefined as in
Subsection 2.2.3. Functions in math.h (such as sin, cos, log...) are also overloaded to
make use of stochastic data types [cad, p. 8].

Furthermore, functions such as printf() and scanf() cannot be used directly to display or
read-in stochastic data types. In the printf() case, it should be used in joint with strp()
library function which outputs a string instead of a floating point number. This string gives
the mean value of the N triplet with only its significant digits. In the scanf() case, it is used
at first to save the value to a normal floating point data type. Then, assignment is used to
assign this value to the stochastic floating point data type variable.

The number of exact significant decimal digits can be retrieved by a call to the library function
x.nb_significant_digit(). Upon the loss of significance of x, a call to the function will
return 0. The N triplet is displayed using the x.display() function call.

21

2 Review of Stochastic Discrete Arithmetic

2.3.2 Numeric Example Using CADNA

For comparison, a small program with and without the use of CADNA Library is given
in Listing 2.1 and Listing 2.2 respectively. In Listing 2.2 changes to the source code are
highlighted in red. Apparently, many changes are needed to be incorporated in the original
source code to make use of CADNA and this is not trivial in the case of complex existent
programs to use CADNA.

1 #include <stdio.h>
2

3 int main()
4 {
5 double x = 1.1;
6 double y = 1.3;
7 double res;
8

9 res = x + y;
10 printf("res=%f\n",res);
11 }

Listing 2.1: Original source code without the use of CADNA library.

1 #include <cadna.h>
2 #include <stdio.h>
3

4 int main()
5 {
6 // This function is used to define the type of stability to be detected
7 cadna_init(-1);
8

9 // The use of stochastic data types
10 double_st x = 1.1;
11 double_st y = 1.3;
12 double_st res;
13

14 res = x + y;
15

16 // The triplet res.x, res.y, res.z is displayed
17 res. display();
18

19 printf ("Number of significant digits = %d\n",res.nb_significant_digit());
20

21 // Note how printf is used here with %s NOT %f
22 printf("res=%s\n", strp(res));
23

24 // Release the resources reserved by CADNA and exit
25 cadna_end();
26 }

Listing 2.2: Modified source code with the use of CADNA library

The output after running the code is:

22

2.4 Hardware Implementation by Avot-Chotin and Mehrez

--
CADNA_C 1.1.1 software --- University P. et M. Curie --- LIP6
Self-validation detection: OFF
Mathematical instabilities detection: ON
Branching instabilities detection: ON
Intrinsic instabilities detection: ON
Cancellation instabilities detection: ON
--
+2.3999999999999999e+00 -- +2.3999999999999999e+00 -- +2.4000000000000004e+00
Number of significant digits = 15
res= 0.239999999999999E+001
--
CADNA_C 1.1.1 software --- University P. et M. Curie --- LIP6
No instability detected
--

CADNA library with the help of a debugger (gdb or idb) can localize the statement which
caused the instability. This is possible by running the program from the debugger after
setting a break point on the instability internal library function, which is called upon
detecting any type of stability, then using the command where or backtrace to localize the
instability source.

2.4 Hardware Implementation by Avot-Chotin and Mehrez

The Authors of [CM, ACM04] implemented DSA in hardware. Their implementation consists
of two parts:

1. A floating point unit which supports the floating point operations (+, -, *), conversion
between integer and floating point and comparison.

2. A specific hardware to implement the CESTAC method.

The stochastic floating point is shown in Figure 2.3. The hardware calculates the number
of significant bits, detects informational zeros and performs stochastic floating point order
relations as defined in Subsection 2.2.3.

The most notable part of the implementation is that they have used a simplified approach
than the one presented in Section 2.2. This approach is summarized in three steps:

1. Computation of the distances between the samples; d1 = |r̂1 − r̂2|, d2 = |r̂1 − r̂3|,
d3 = |r̂2 − r̂3|.

2. For each distance di, the position of the first bit equal to 1, pi, is noted.

3. The number of significant bits is min{pi}.

The number of subtractors, Nsub, is a function of number of samples, N, and can be calculated
using the equation Nsub =

N(N−1)
2 . Thus, this approach becomes costly in terms of hardware

when number of samples grows.

23

2 Review of Stochastic Discrete Arithmetic

Figure 2.3: Stochastic floating point unit [ACM04]

Figure 2.4: System architecture of the stochastic FPU [ACM04]

The complete architecture of a system which uses the stochastic floating point unit is shown
in Figure 2.4. The system consists of:

• The FPU is packaged as a coprocessor and connected via a Virtual Component Interface
(VCI) wrapper to the PI-bus.

• Mips R3000 processor.

• Memory to save binaries and data.

• Bus Control Unit (BCU) which manages the communication between the different
components on the bus.

24

2.4 Hardware Implementation by Avot-Chotin and Mehrez

In this architecture, there is no support for the instruction set of the processor. Consequently,
use of function calls (or assembly instructions) to communicate the data to / from the
processor is required and that implies many changes to the source code of the original
program. In addition, FP division and FP square root operations are not supported.

25

3 System Model

In this chapter, the components used in the design are briefly described. In Section 3.1,
the Stochastic Floating Point Unit which was developed in a previous project is presented.
Section 3.2 provides functional description of the Numerical Analysis Unit used to detect
numerical instabilities. Section 3.3 gives the big picture of how different components of the
system are utilized on the evaluation board.

3.1 Stochastic Floating Point Unit

3.1.1 Description and Features

In a previous project a STochastic Floating Point Unit (STFPU) has been developed [Li10].
The STFPU is packaged as a coprocessor and attached to the PowerPC through the Auxiliary
Processor Unit (APU).

FCB

Decoder FPSCRFPSCR LFSR

Pipeline
Interlock

Controller

Floating
Point

Registers

Add

Mul

Div

Sqrt

Abs/Neg

FP/Int

CMP

Rounding mode

St
al

l

OP1

OP2

MAC

Mode

RES

APU
Controller

PowerPC
440 #1

Instruction

Load Data

Store Data

Instruction Valid

Data Valid

Done

Figure 3.1: Hardware architecture of the STFPU.

27

3 System Model

The architecture of the STFPU is depicted in Figure 3.1. The STFPU supports random
rounding by using a random number generator based on a Linear Feedback Shift Register
(LFSR). When the random rounding mode is used, rounding up or down is dependent on
the output of the LFSR. The features of the STFPU are:

• The ablility to decode and execute, in a fully pipelined manner, standard PowerPC
processor floating point instructions defined in [boo02, p. 98 - p. 106].

• Supporting single precision and double precision formats.

• Detecting and raising floating point exceptions (Overflaw, Underflaw,...).

• Supporting IEEE-754 rounding modes as well as random rounding.

• Supporting two running modes:

1. Autonomous mode: In this mode the PowerPC can continue executing integer
operations while the floating point instruction is being executed by the FPU.
Moreover, more than one floating point instruction can be executed at the same
time. No exact exceptions 1 can be caught by the PowerPC in this mode.

2. Non-Autonomous mode: Floating point instructions which returns result to the
PowerPC stalls the processor till it finishes the execution. Only one instruction
can be executed in the FPU at a time in this mode. Exact exceptions can be caught
by the PowerPC.

3.1.2 Technical Information

Table 3.1 summarizes the hardware utilization of the STFPU and the maximum operating
frequency when synthesized on XC5VFX130T Virtex-5 FPGA with speed grade −2.

Description Value

Number of Slice Registers 6385
Number of Slice LUTs 8730

Maximum operating frequency 103 MHz

Table 3.1: Hardware utilization and maximum operating frequency.

The latencies of decoding and executing the elementary floating point operations, when the
STFPU runs non-autonomously, are summarized in Table 3.2. The information in Table 3.2
will be used for evaluation purposes later in the thesis.

1By Exact exceptions we mean that the very instruction which caused the exception can be identified.

28

3.2 Numerical Analysis Unit

Operation Latency
(Clock cycles)

Add/Subtract 23
Multiply 24
Divide 50

Multiply-Accumulate 29

Table 3.2: Latencies of the floating point operators in STFPU.

3.2 Numerical Analysis Unit

The Numerical Analysis Unit (NAU) is centered around a resource-reduced architecture and
it will be presented in great details in the next chapters. In this section, only a functional
description is given. The NAU is composed of:

1. Synchronization Unit:

This unit is responsible for synchronization of the FPUs in the design in order to ensure
synchronous implementation of DSA. Section 2.2.3 explains the importance of such
implementation.

2. Significant Bits Estimation Unit (SBEU):

This unit represents the core of the NAU. It is responsible for:

a) Validating the significance of the multiplication operands and the divisor.

b) Checking if the results are of acceptable accuracy.

c) Check if a cancellation error occurs in an addition / subtraction operation.

d) Checking whether the differences in a comparison operation are significant or not.

e) Raising exceptions to the STFPU upon detecting any instability.

3. Comparison Support Unit:

The task of this unit is to support stochastic relations according to the definitions
provided in Section 2.2.3.

3.3 System Model

Figure 3.2 shows the system model of our design (some details are omitted for clarity). As
a hardware platform for our design, we have chosen ML510 evaluation board. This board
provides a high performance Xilinx XC5VFX130T Virtex-5 FPGA, two hardwired PowerPC
processors which can operate on a frequency up to 400MHz, two 512MB DDR2 SDRAM,
two serial ports.

29

3 System Model

Xilinx Microprocessor Debugger (XMD) connects to the board through a JTAG connection.
XMD can connect to the two processors on the board in one debugging session. XMD is
the means to download executables to the processor. It supports many debugging features
such as reading the value of a register, stopping and continuing execution from a preset
breakpoint or watchpoint. One of the most important features of XMD is the possibility to
extend its original functionality by means of custom TCL scripts.

GDB (The GNU Debugger) might be used to connect through a TCP connection (either
remotely or locally) to the XMD server. This provides an easier way of debugging on the
source code level with the help of a Graphical User interface (GUI).

The main target of using XMD and GDB here is to catch exceptions raised from NAU when
detecting a numerical instability. Furthermore, they are used to localize the source of an
exception (on the assembly instruction level or on the C-statement level), and to identify the
type of instability.

30

3.3 System Model

PPC 440 #1

A
P

U

STFP
U

 #1

PPC 440 #2

A
P

U

ST
FP

U
 #

2

Synch. Unit

SBEU Unit

Comparison
Suppot Unit

Virtex-5

ML 510 Xilinx Evaluation Board

GDB

XMD
TC

P

JTAGJTAG

Figure 3.2: System model

31

4 Hardware Implementation

In this chapter we introduce the three different components used to implement DSA –
namely Significant Bits Estimation Unit (SBEU) in Section 4.1, Comparison Support Unit
in Section 4.2 and the Synchronization Unit in Section 4.3. For every unit, we provide the
performance metrics. Then, we introduce the mechanism to generate different NAU excep-
tions in Section 4.4. The necessary changes made to the STFPUs are provided in Section 4.5.
Finally, we present the complete architecture to illustrate how different components were
integrated on the evaluation board to implement DSA correctly in Section 4.6.

4.1 Significant Bits Estimation Unit

Two data paths for this unit are presented – the first is generic and can be readily extended
(Subsection 4.1.1), and the other is optimized for two samples only (Subsection 4.1.2).

4.1.1 Generic Data Path

The equation used to calculate the number of significant digits in Section 2.2 is repeated here
for convenience:

Cr̄ = log10

(√
N · |r̄|

τβ · σ

)
,

where σ2 = 1
N−1 ·

N

∑
i=1

(r̂i− r̄)2, and τβ is the value of the Student distribution for N− 1 degrees

of freedom and a probability level 1− β.

The hardware cost of using floating point operators to calculate the square root, logarithm
and division is high. Also, the high latency imposed upon using them degrades the overall
performance of a system. Table 4.1 shows the hardware resource utilization and maximum
operating frequencies for some FP operators at different latencies when synthesized on
XC5VFX130T Virtex-5 FPGA with speed grade −2. From this table, we can observe that FP
operators with shorter data format not only utilize less resources but also can operate at
higher frequencies.

33

4 Hardware Implementation

Operator Latency Data format Resource utilization Maximum
(clock cycles) Exp. Mant. Slice Registers Slice LUTs frequency (MHz)

FP Add
4 11 52 560 1005 245.78
4 11 4 109 184 292.91

FP Mul
2 11 52 293 3215 134.43
2 11 4 50 126 363.80

FP Div 57 11 52 6009 3225 345.74
FP Sqrt 57 11 52 3298 1856 345.74

Table 4.1: Latencies of different double precision FP operators.

A simplified approach is presented in [Li10]. This approach is based on simplification of the
calculation as follows:

Cr̄ = log10

(√
N · |r̄|

τβ · σ

)
= log10

√
N

τβ
+ log10

|r̄|
σ

= log10

√
N

τβ
+ log10

|r̄|√
1

N−1 ·
N
∑

i=1
(r̂i − r̄)2

= log10

√
N · (N − 1)

τβ
+ log10

|r̄|√
N
∑

i=1
(r̂i − r̄)2

By defining v := log10

√
N·(N−1)

τβ
and ρi = r̂i − r̄, the equation can be rewritten as:

Cr̄ = v + log10
|r̄|√

∑N
i=1(ρi)2

As lower precision floating point operators require less hardware resources and can operate
at higher frequencies, it is logical to decrease the precision of the floating point operators
whenever possible, provided that the final result is not seriously affected.

Let Ẑ :=
N

∑
i=1

(ρi)
2 ≈

N

∑
i=1

(ρ̂i∗̂ρ̂i)

∣∣∣∣
LP

, where: ρ̂i is the truncated value of ρi, ∗̂ is the floating

point multiplication and ∑
∣∣∣∣

LP
is the pairwise summation – all in lower precision format.

Moreover, recalling from Section 2.1 that any floating point number F can be represented as
F = s ·M · 2E, where s is the sign, M is the mantissa and E is the exponent. The equation
can be further simplified to:

34

4.1 Significant Bits Estimation Unit

Cr̄ ≈ v + log10
|r̄|√

Ẑ
= v + log10

M|r̄| · 2E|r̄|√
MẐ · 2EẐ

= v +

(
E|r̄| −

EẐ
2

)
· log10 2 + log10

M|r̄|√
MẐ

In order to avoid the costly division and logarithm calculations, the term log10

M|r̄|√
MẐ

is

approximated to log10

M̂|r̄|√
M̂Ẑ

, where: M̂|r̄| is assigned the first three most significant bits

(MSBs) of M|r̄| and M̂Ẑ is assigned the first two MSBs of MẐ.

Ĉr̄ := v +

(
E|r̄| −

EẐ
2

)
· log10 2 + log10

M̂|r̄|√
M̂Ẑ

This equation gives the significant number of digits in base-10. As a final simplification,
we divide the two sides of the equation by log10 2 to avoid the floating point multiplication
(× log10 2). This gives the value of Ĉr̄ in base-2. With (Ĉr̄

log10 2) denoted as [Ĉr̄]2 and v
log10 2

denoted as v2, the final equation turns to be:

[Ĉr̄]2 = v2 +

(
E|r̄| −

EẐ
2

)
+ log2

M̂|r̄|√
M̂Ẑ

=

(
E|r̄| −

EẐ
2

)
+ f (M̂|r̄|, M̂Ẑ)

Let the number of bits in the mantissa and exponent of the reduced precision format be
denoted as nM and nE respectively. The design parameters used in this thesis and the
constants, which are calculated accordingly, are listed in Table 4.2.

Design parameters Constants
N β nM nE τβ v v2

2 95% 4 11 12.71 −0.9532 −3.1666

Table 4.2: Parameters and pre-calculated constants used in the simplified approach

f (M̂|r̄|, M̂Ẑ) can be implemented in hardware as a small look-up table with 2(3+2) (32) entry.
The contents of this look-up table are provided in Appendix A.1.

From this equation, the data-path shown in Figure 4.1 can be derived for N = 2m samples.
In order to calculate the average, m is subtracted from the exponent of the sum of the

35

4 Hardware Implementation

samples. 1023 is subtracted from the exponents in order to get rid of the bias before using
the exponents in the fixed point operations. The "shift right" block is used to evaluate EẐ

2 .
Shifting maintains the MSB unchanged in order to keep the sign of EẐ which might be
negative after removing the bias. The blue dashed lines and operators show how the data
path can be extended when m > 1. If m 6∈ Z, then an FP division operator, to calculate

1
N

N

∑
i=1

r̂i, is required to replace the block "exponent - m" in the figure. Further in this thesis,

we refer the data path provided in Figure 4.1 as "the generic data path".

SBEU decides if the average of the samples is of sufficient accuracy ([Ĉr̄]2 > CTH) and if it is
an informational zero ([Ĉr̄]2 < 0) according to the conditions stated in Subsection 2.2.2.

The effect of using the lower precision and the look-up table is proved to guarantee that
[Li10]: |Ĉr̄ − Cr̄| < 0.1. This is indeed a good approximation bearing in mind the high
reduction in terms of hardware resources and latencies.

4.1.2 Simplified Data Path

For N = 2, a further simplification for the data-path provided in Figure 4.1 can be done.

Recalling that σ =

√
2

∑
i=1

(r̂i − r̄)2 and [Cr̄]2 = log2

(√
2·|r̄|

τβ·σ

)
, and that (r̂1 − r̄)2 = (r̂2 − r̄)2, we

can rewrite [Cr̄]2 in this form:

[Cr̄]2 = log2

(
|r̄|

τβ · |(r̂1 − r̄)|

)
= log2

(
|(r̂1 + r̂2)|

τβ · |(r̂1 − r̂2)|

)
.

By defining |d| = |(r̂1 − r̂2)| and |s| = |(r̂1 + r̂2)|, we have:

[Cr̄]2 = log2

(
1
τβ

)
+ log2

(
M|s|
M|d|

)
+ (E|s| − E|d|) .

Let M̂|s| be the first three MSBs of M|s| and M̂|d| be the first two MSBs of M|d|, we have:

[Ĉr̄]2 = (E|s| − E|d|) + w(M̂|s|, M̂|d|) ,

where w(M̂|s|, M̂|d|) = log2

(
1
τβ

)
+ log2

(
M|s|
M|d|

)
. w is calculated based on the different 2(2+3) =

32 combinations of M̂|s| and M̂|d|, and the parameters provided in Table 4.2. The contents of
this look-up table is provided in Appendix A.1

The data path for 2 samples is shown in Figure 4.2. Further in this thesis, we refer to this
data path as the "simplified data path".

The simplified data path exhibits better approximation than the generic data path in many
cases due to the fact that there is no truncation error in the former.

36

4.1 Significant Bits Estimation Unit

+

Rn R2R1

--

xx

+

-

Exponent - m

-1023

-1023
Shift
Right -Look-up

Table

x

-

<

CTH

>

0

Informational Zero Loss of Accuracy

2 bits

3 bits

Double
Precision FP
operation

Reduced
Precision FP
operation

Fixed Point
Arithmetic

+

-

+-

Figure 4.1: SBEU data-path (with N = 2m samples).

37

4 Hardware Implementation

+

R2R1

-

Double
Precision FP
operation

Fixed Point
Arithmetic

Look-up
Table

<
CTH

>
0

Informational Zero Loss of Accuracy

+
-

+-

`

-

-

Figure 4.2: SBEU data-path (optimized for two samples).

4.1.3 Synthesis and Performance Metrics

The two data-paths were implemented in a fully pipelined manner. The target of the
implementation in terms of efficiency can be described by these criteria:

min

(
L

b f1m
f2o
c

)

f1o = n · f2o, n ∈ Z+,

where: L is the overall latency in (clock cycles), f1m is the maximum operating frequency of
SBEU obtained in synthesis, f2o is the actual operating frequency of STFPU and f1o is the
actual operating frequency of SBEU. All frequencies are in MHz.

The first criterion is set such that the minimum latency, in terms of elapsed time, of the
data path is obtained. Having two clock domains in the design, the metastability problem
might arise. This problem is easier to overcome when one clock domain frequency is integer
multiples of the other. Hence, the second criterion is introduced. This also explains the floor
function in the denominator of the first criterion.

38

4.1 Significant Bits Estimation Unit

Different latencies for the FP operators were tried out and the optimum values according to
our criteria for the two approaches are summarized in Table 4.3.

Operator Type The generic data path The simplified data path
(clock cycles) (clock cycles)

Double precision FP Add/Sub 4 4
Reduced precision Mul 2 –
Reduced Precision Add 4 –
Fixed point part 2 1

Overall latency 16 5

Table 4.3: Latencies of the different operators used in SBEU.

When the designs were synthesized on XC5VFX130T Virtex-5 FPGA with speed grade −2,
the maximum frequencies summarized in Table 4.4 were obtained.

The generic data path The simplified data path
(Mhz) (MHz)

245 245

Table 4.4: Maximum operating frequency of SBEU.

4.1.4 Extendability

Assuming that the number of samples is N = 2m, m ∈ Z+. Referring to Figure 4.1, we can
see that the data path is readily extendable. In order to calculate the average of the samples,
double precision adders are to be arranged in a tree-like structure. Then, the average is
calculated by subtracting m from the exponent of the result. This structure requires N − 1
adder arranged in m levels. The same holds for the reduced precision addition. Table 4.5
generalizes the number of different resources utilized when the number of samples is N. 64
bit registers are used to buffer the samples and maintain pipeline, and 14 bit registers are
used to buffer the first 3 bits of the mantissa and the 11 bits of the exponent of the mean of
the samples and to maintain the pipeline.

Applying the same assumption and referring to Table 4.3, we describe the overall latency L
as a function of m as follows:

L = 8(m + 1)

It is important to mention here that in order to improve the estimation by one significant
digit we need to multiply N by 100. It is not practical to increase the number of samples in
such away, especially that a small number such as N = 2 or N = 3 gives a good estimation
of the number of significant digits[Vig04].

39

4 Hardware Implementation

Operator Type No. of resources

Double precision FP Add N − 1
Double precision FP Sub N
Reduced FP Mul N
Reduced FP Add N − 1
64 bit register 8×m
14 bit register 6 + 4×m

Table 4.5: Resource utilization for N samples .

4.1.5 Verification

A C program which emulates the behavior of the two designs on the bit level was developed
in order to facilitate validating the functionality of SBEU. Final and intermediate values of
the signals in the HDL design were compared to the corresponding variables obtained from
the C program. The source code for this program is provided in Appendix A.2.

Figure 4.3 shows how SBEU responds when loaded with different samples. At 95 ns, SBEU
is loaded with two samples of sufficient accuracy (i.e. [Ĉr̄]2 > CTH). Then, two samples
that are of insufficient accuracy (i.e. 0 < [Ĉr̄]2 ≤ CTH) are loaded at 105 ns. At last, two
samples with no accurate digits at all (i.e. [Ĉr̄]2 < 0) are loaded at 115 ns. The number of
significant bits in fixed point notation, [Ĉr̄]2, for the respective samples is calculated at 145
ns, 155 ns and 165 ns. The fixed point is between the sixth and seventh bit from right. For
instance "[00528]16 = [10100.101000]2", which means 20.625 significant bits or equivalently
20.625× log10 2 = 6.209 significant digits. Similarly, "[0037C]16" means 13.928 significant bits
(4.193 significant digits) and so on. In this simulation, CTH = 5 significant digits.

80 ns 100 ns 120 ns 140 ns 160 ns

Figure 4.3: SBEU simulation.

4.2 Comparison Support Unit

This unit is designed to support stochastic relations according to the definitions provided in
Subsection 2.2.3. The function of this unit can be described as follows:

40

4.2 Comparison Support Unit

• Calculating the differences between the samples. These differences are then loaded to
the SBEU to be checked against informational zeros.

• Comparing the averages (or sum) of the samples and sending the result to the STFPUs.

The data path for the unit is shown in Figure 4.4. In this figure, an and bn are the comparison
operands sent from STFPU#n. The blue dashed lines and operators shows how the data path
can be extended when N > 2.

The design is fully pipelined. The latency and maximum operating frequency are listed in
Table 4.6.

- - + +

a1 b1 a2 b2 a1 a2 b1 b2

To SBEU

To SBEU

FP Comparator

To STFPUs

aN bN

-

aN bN

To SBEU

Double
Precision FP
operation

Figure 4.4: Comparison Support Unit data path.

Applying the same assumption made in Subsection 4.1.4, the comparison unit can be readily
extended. Referring to Figure 4.4 and recalling that the latency of the utilized Add / Sub
operators is 4 clock cycles, the number of resources needed can be generalized as in Table 4.7.
Also the total latency of the unit can be expressed as:

L = 4×m + 1

Latency Frequency
(Clock cycles) (MHz)

5 245

Table 4.6: Performance of the comparison unit.

41

4 Hardware Implementation

Operator Type No. of instances

FP Add 2(N − 1)
FP Sub N

FP comparator 1

Table 4.7: Resource utilization for N = 2m STFPUs.

4.3 Synchronization Unit

When a floating point operation is started on one STFPU and not on the other, the synchro-
nization unit issues a stall signal to the STFPU which has started the FP operation. This
signal is asserted to maintain the targeted STFPU in the same state till the other STFPU
catches up with the stalled one. Only then, the Synchronization Unit deasserts the stall
signal. The basic building block of the Synchronization Unit is depicted in Figure 4.5.

FP
U
1
_O

P

FP
U
2
_O

P

FP
U
N
_O

P

Stall_FPU1

Stall_FPU1

Stall_FPUN

Figure 4.5: The building block of the Synchronization Unit.

The Synchronization Unit is composed of five of these building block to synchronize addi-
tion/subtraction, multiplication, division, comparison and square root operation on the two
STFPUs. Then, the stall signals, from every building block, targeting an STFPU are logically
ored.

42

4.4 NAU Controller and Syndrome Register

4.4 NAU Controller and Syndrome Register

NAU is highly configurable. In order to support this, a state machine controller has been
designed. The controller also writes information about the type of an exception to a special
register (we call Syndrome Register) which can be read by the help of XMD. The Syndrome
Register is connected to the PLB of one of the processors.

Different types of signals are communicated from the two STFPUs to the NAU. These signals
are:

• Results of FP operations (Add / Subtract, Multiply, Divide, Square root, Comparison).
These are being checked if they are of acceptable accuracy.

• Operands of multiplication and divisor are loaded to be checked against informational
zeros.

• Operands of (addition / subtraction) are loaded to check if a cancellation is pointed out.

• Operands of Comparison.

Cancellation is the case when the minimum of the number of exact significant digits of
the two operands is 3 digits 1 greater than the number of exact significant digits in the
result, provided that both the operands and the result must be of acceptable accuracy
([Ĉr̄]2 > CTH)2.

The state machine of the controller is shown in Figure 4.6. It is connected to the same clock
used in the STFPUs. The transition from the "add" state to the "cancel" state occurs when
[Ĉr̄]2s for the operands are calculated. In the "cancel" state, [Ĉr̄]2 for the result is subtracted
from the minimum of the two [Ĉr̄]2s. If the difference is greater than 3 digits, a cancellation
exception is generated and relevant data is written to the Syndrome Register. In the figure,
the transitions that generate exceptions (and writes data to the Syndrome Register) are
colored in red for clarity.

Every group of the signals communicated from the STFPUs to the NAU has its own "VALID"
signal. That makes it possible for the controller to distinguish between the types of data
loaded to SBEU. Based on the context of the data, the controller may either generate
exceptions depending on the detection of an informational zero or loss of accuracy. For
instance, if the results of multiplication are loaded to SBEU, then the controller raises an
exception to the STFPUs when it detects that the loss of accuracy signal is asserted. On the
other hand, if the divisors are loaded to SBEU, a check for informational zero is carried out
and an exception might be raised accordingly. In both cases, information about the type of
exception is written to the Syndrome Register.

With the use of The Syndrome Register, five types of exceptions can be reported. The type of
an exception might be:

1This value is passed as a generic to the NAU.
2If [Ĉr̄]2 < CTH for the results, then a loss of accuracy exception will be generated.

43

4 Hardware Implementation

1. Loss of accuracy: When the accuracy is less than a predefined number of digits.

2. Cancellation: When a sudden loss of accuracy in an Add / Sub FP operation is detected
due to cancellation.

3. Insignificant divisor: When the divisor is informational zero.

4. Insignificant multiplication operand: When at least one of the multiplication operands
is informational zero.

5. Branching instability: When informational zero is detected in the differences of
operands of a comparison.

idle

div

Mul, div
operands loaded

res

Results loaded

cmp

Comparison
operands

loaded

mul0

Second mul
operands loaded

mul1

SBEU_VALID
^ ¬@.0

except

SBEU_VALID
^ @.0

SBEU_VALID
^ ¬@.0

SBEU_VALID
^ @.0

SBEU_VALID
^ ¬@.0

SBEU_VALID
^ @.0

SBEU_VALID
^ ¬ Accuracy Loss

SBEU_VALID
^ ¬ @.0

SBEU_VALID
^ Accuracy Loss

Transitions which write data
to the Syndrome Register

Normal transitions

add

Add operands
loaded

SBEU_VALID
^ Accuracy Loss

SBEU_VALID
^ Cancellation

SBEU_VALID
 ^ ¬ Accuracy Loss
^ ¬ Cancellation

cancel

Figure 4.6: NAU controller state machine.

44

4.5 Changes to The STFPUs

4.5 Changes to The STFPUs

Some necessary changes have been carried out on the STFPUs. These changes can be put
into three categories:

1. A data loading mechanism to communicate data to the NAU.

2. Necessary changes in order to support Stochastic Relations.

3. Catching and forwarding exceptions from NAU to the PowerPC.

In the following three subsections these changes are presented in more details.

4.5.1 Loading data to NAU

A multiplexer is added to the STFPU in order to load applicable data to NAU according to
the instruction being executed. For instance, in a multiplication operation the operands of
multiplication as well as the result is communicated to NAU one after the other. On the
other hand, in a division operation only the divisor and the result are loaded to NAU. The
data communicated from an STFPU to NAU is summarized in Table 4.8.

Instruction Add / Subtract, Multiply Divide Square root Compare

Data loaded Operands Divisor
Result Operands

to NAU and result and result

Table 4.8: The data loaded to NAU when different instructions are executed.

4.5.2 Support for Stochastic Relations

Instead of making decision for comparison operation in every STFPU, the operands are sent
to NAU and a unified decision is made for all the STFPUs. As shown in Figure 4.4, the
result of comparison based on the sums is saved in a register in the STFPU. The differences
are calculated and loaded to SBEU so as to be checked against informational zero. Three
bits of the signal FCMAPUCR are sent to the PowerPC as a result for comparison. They
correspond to equal (==), greater than (>) and smaller than (<) respectively. The processor
can check for "greater than or equal" (>=), or "smaller than or equal" (<=) by logically oring
the two corresponding bits. Table 4.9 shows how these bits are set in order to comply to the
definitions provided in Subsection 2.2.3.

45

4 Hardware Implementation

X−Y X̄?Ȳ FCMAPUCR
== < > == < >

@.0 X X X 1 0 0
¬@.0 0 1 0 0 1 0
¬@.0 0 0 1 0 0 1

Table 4.9: Changes to STFPU to support stochastic relations.

4.5.3 Raising Exceptions to The PowerPC

Floating Point Exception Modes in The PowerPC

There are two bits in the Machine State Register (MSR) which are used to set the floating
point exception mode in the PowerPC [boo02, p. 39 - p. 41], namely the FE0 and FE1. These
two bits are sent to the STFPUs through the APU interface by the signals APUFCMMSRFE0
and APUFCMMSRFE1 respectively. Based on these two signals the STFPU will either run
autonomously or non-autonomously (see Section 3.1 for more details). These modes are
summarized in Table 4.10.

MSR
Mode Description

FE0 FE1

0 0 Ignore Exceptions In this mode the PowerPC does not check for floating
point exceptions and the STFPU runs autonomously.

1 0 Imprecise Recoverable In this mode an exception raised might be caught by
the PowerPC at some point at or beyond the instruc-
tion which caused the exception. There is no means
to identify the instruction which caused the exception
in this mode.

0 1 Imprecise Recoverable In our STFPU, this mode is equivalent to the imprecise
recoverable mode.

1 1 Precise This mode guarantees that any floating point excep-
tion will be taken exactly. The STFPU in this mode
runs non-autonomously.

Table 4.10: Floating point exception modes in the PowerPC.

We are more interested in the precise mode as it is the only means to raise exceptions which
can be timely caught by the PowerPC. In order to raise exceptions correctly over the APU
interface to the PowerPC, a strict sequence must be followed. After the instruction is sent
over the APU interface and the STFPU is willing to generate an exception, then this sequence
must occur:

46

4.5 Changes to The STFPUs

... FC0D0032 - Multiply no exception ...

fcb_clk

apufcminstruction ... FC0D0032 - Multiply no exception ...

apufcmmsrfe0

apufcmmsrfe1

fcmapuconfirminstr

apufcmwritebackok

fcmapudone

fcmapuexception

fcmapufpscrfex

Figure 4.7: Normal non-autonomous multiplication operation with no exception.

1. Do not assert FCMAPUCONFIRMINSTR after receiving the instructions. i.e. do not confirm
that the instruction will not generate exceptions.

2. FCMAPUEXCEPTION must be asserted and held.

3. FCMAPUFPSCRFEX must be asserted and held.

Then, the APU responds as follows:

1. Sets APUFCMWRITEBACKOK = 1 if the exception was accepted or APUFCMWRITEBACKOK = 0
if not.

2. Sets APUFCMFLUSH = 0 if the exception was received, APUFCMFLUSH = 1 if not.

To complete the transaction, the STFPUs responds with:

1. Asserts FCMAPUDONE and deasserts FCMAPUEXCEPTION and FCMAPUFPSCRFEX if
APUFCMWRITEBACKOK = 1 was received.

2. Deasserts FCMAPUEXCEPTION and FCMAPUFPSCRFEX if APUFCMFLUSH = 1 was received.
STFPU should not assert FCMAPUDONE.

To illustrate this, Figure 4.7 and Figure 4.8 are provided. Figure 4.7 shows a normal
multiplication which does not generate an exception. Figure 4.8 shows a multiplication
operation which generates an overflaw exception.

47

4 Hardware Implementation

... FC0D0032-Mul. overflaw exception ...

fcb_clk

apufcminstruction ... FC0D0032-Mul. overflaw exception ...

apufcmmsrfe0

apufcmmsrfe1

fcmapuconfirminstr

apufcmwritebackok

fcmapudone

fcmapuexception

fcmapufpscrfex

Figure 4.8: Non-autonomous multiplication operation which generates an overflaw
exception.

Raising NAU Exceptions to The PowerPC

We have adopted a similar methodology to the one presented in Subsection 4.5.3 which
is originally used to raise normal floating point exceptions (division over zero, overflaw,
underflaw . . .) to the PowerPC. This mechanism is described as follows:

1. When data is sent to the NAU, a flag is set in the STFPUs indicating that NAU is busy
(NAU_BUSY).

2. While NAU_BUSY is set, the STFPUs cannot assert the FCMAPUCONFIRMINSTR.

3. When NAU is done with calculations it asserts the signal NAU2FPU_NAUvalid along
with NAU2FPU_EXCEP = 0 or NAU2FPU_EXCEP = 1. This will clear the NAU_BUSY flag.

a) If NAU2FPU_EXCEP = 0, then FCMAPUCONFIRMINSTR is asserted and the STFPU con-
tinues normally.

b) If NAU2FPU_EXCEP = 1, then the STFPUs assert and hold the FCMAPUEXCEPTION and
FCMAPUFPSCRFEX signals while keeping FCMAPUCONFIRMINSTR deasserted. Then the
APUs responds with APUFCMWRITEBACKOK = 1. Consequently, The STFPUs assert
FCMAPUDONE and clear the signals FCMAPUEXCEPTION and FCMAPUFPSCRFEX.

48

4.6 System Integration

Design Generics and Configurations

Here we summarize the different modes supported in our architecture. At first, we start
with the automatic support (no need to rebuild the hardware) for the autonomous and
non-autonomous mode of an STFPU. As we stated in Subsection 4.5.3, there are two sig-
nals responsible for setting the running mode of an STFPU, namely APUFCMMSRFE0 and
APUFCMMSRFE1. In our design, unless these two signals are both 1’s, the STFPUs run as if
there is no NAU connected to them. The importance of this mode is giving the possibility
for users, who are not interested in localizing the sources of numerical instabilities in their
codes, to gain the speed up from running the code autonomously while still being informed
concerning the numerical accuracy of the final results.

There are several configurations supported by our architecture. Table 4.11 presents these
configurations. For instance, we can easily disable the check for multiplication operands
and disable the exceptions upon the detection of an informational zero in comparison by
changing the applicable generics.

4.6 System Integration

4.6.1 Detailed System Architecture and Performance Metrics

We have integrated the different components of the system presented in the previous
sections of this chapter. The underlying platform is the ML510 evaluation board from Xilinx.
Table 4.12 shows the resource utilization of the NAU when considering the two designs for
SBEU (both the generic and simplified ones). Comparing this table to Table 3.1, we can see
that NAU, considering the simplified data path, consumes about 55% as much as an STFPU
in terms of slice registers and about 73% as much as an STFPU in terms of slice LUTs.

All the timing constraints set by Xilinx tools have been met successfully. The latencies for
different FP operations after integrating NAU in the system, considering the two data paths
of SBEU, are provided in Table 4.13. Comparing Table 3.2 to Table 4.13, we can see that the
latency of the FP operation is not affected at all after integrating NAU in the system.

Figure 4.9 shows the detailed and final system architecture. It shows how different compo-
nents interact with each others, with the main changes done to the STFPU highlighted for
clarity.

4.6.2 Testing and Simulation

The components have been thoroughly tested separately by means of testbenches. In addition,
After the integration of all the components in the system, a complete system simulation
has been conducted using Modelsim. We have created many test scenarios to validate the
correctness of the implementation. Finally, the hardware was downloaded on the FPGA
and tested by executing programs and benchmarks. One of these test cases is shown in

49

4 Hardware Implementation

N
A

U

N
A

U
 C

o
n

tro
ller

Syn
ch

. U
n

it

C
o

m
p

ariso
n

 Su
p

p
o

rt

N
EA

R
2

R
1

-
-

+
+

a
1

b
1

a
2

b
2

a
1

a
2

b
1

b
2

To
 N

EA

To
 N

EA

FP
 C

o
m

p
arato

r

To
 STFP

U

FPU1_OP

FPU2_OP

Stall_FP
U

1

Stall_FP
U

2

+
--

Lo
o

k-u
p

Tab

le

-

<
C

TH

>
0In

fo
rm

atio
n

al Zero
Lo

ss o
f A

ccu
racy

+
-

+
-

id
le

d
iv

M
u

l, d
iv

o
p

eran
d

s lo
ad

ed
res

R
esu

lts lo
ad

ed

cm
p

C
o

m
p

ariso
n

o

p
eran

d
s

lo
ad

ed

m
u

l0

Seco
n

d
 m

u
l

o
p

eran
d

s lo
ad

ed

m
u

l1

N
EA

_V
A

LID
^ ¬@

.0

excep
t

N
EA

_V
A

LID
^ @

.0

N
EA

_V
A

LID
^ ¬@

.0

N
EA

_V
A

LID
^ @

.0

N
EA

_V
A

LID
^ ¬@

.0
N

EA
_V

A
LID

^ @
.0

N
EA

_V
A

LID
^ ¬ A

ccu
racy Lo

ss

N
EA

_V
A

LID
^ ¬ @

.0

N
EA

_V
A

LID
^ A

ccu
racy Lo

ss

Tran
sitio

n
s w

h
ich

 w
rite d

ata
to

 th
e Syn

d
ro

m
e R

egister

N
o

rm
al Tran

sitio
n

s

ad
d

A
d

d
 o

p
eran

d
s

lo
ad

ed

N
EA

_V
A

LID
^ A

ccu
racy Lo

ssN
EA

_V
A

LID
^ C

an
cellatio

n

N
EA

_V
A

LID
 ^ ¬ A

ccu
racy Lo

ss
^ ¬ C

an
cellatio

n

can
cel

STFP
U

#1

Excep
tio

n

M
an

agem
en

t SM

FC
B

D
eco

d
er

FP
SC

R
FP

SC
R

LFSR

P
ip

elin
e

In
terlo

ck
C

o
n

tro
ller

Flo
atin

g
P

o
in

t
R

egisters

A
d

d

M
u

l

D
iv

Sq
rt

A
b

s/N
eg

FP
/In

t

C
M

P

R
o

u
n

d
in

g m
o

d
e

Stall

O
P

1

O
P

2

M
A

C

M
o

d
e

R
ES

A
P

U

C
o

n
tro

ller
P

o
w

erP
C

4

4
0

In
stru

ctio
n

Lo
ad

 D
ata

Sto
re

 D
ata

In
stru

ctio
n

 V
alid

D
ata V

alid

D
o

n
e

FC
B

A
P

U

C
o

n
tro

ller
P

o
w

erP
C

4

4
0

STFPU#2

PLB

U
A

R
T

B
R

A
M

s

Syn
d

ro
m

e
R

egister
Typ

e o
f excep

tio
n

Start A
d

d
/Su

b
tract, Start M

u
l, Start D

iv, Start Sq
rt, Start C

m
p

SB
EU

Figure
4.9:D

etailed
system

architecture.

50

4.6 System Integration

Figure 4.10 where an exception is generated due to the loss of accuracy of FP addition results.
The figure is annotated for clarity. EXCEP_CLASS signal writes the type of exception to The
Syndrome Register.

51

4 Hardware Implementation ���������	
���
��	������������������������������������� ������������������� ����!����"� ��	
���
������������� ����������"��� �������!�������� #!�������"��� ����"������� ����$�������������!�������������������	 �� ���%��������������� ��������	����������������������� �����������������������&''()*+,-./,)0*123(043-5*'+(5-3(605'3'7 89:;<:=>?@=;A<:;?BAC:CD EFGGHFIHJKKLMJKNHOPKOQRSFTHUOROKROUHSTHVWXYHZTIFHSGH[MSRROTHRFHR\OH]NTUMF̂OH_ÒSGROMY abcdefghijklgmdnjopjqrstujlinjclvwxfjopjfxdjthydktz{Figure
4.10:Loss

of
accuracy

exception
generated

by
N

A
U

and
caught

by
the

Pow
erPC

.

52

4.6 System Integration

U
ni

t
G

en
er

ic
V

al
ue

D
es

cr
ip

ti
on

ST
FP

U
C

M
P_

M
O

D
E

0
T

he
re

su
lt

s
of

co
m

p
ar

is
on

ar
e

se
nt

to
N

A
U

.
A

n
ex

ce
p

ti
on

is
ge

ne
ra

te
d

if
re

su
lt

s
se

nt
fr

om
th

e
tw

o
ST

FP
U

s
ar

e
no

t
th

e
sa

m
e.

1
T

he
op

er
an

d
s

of
co

m
pa

ri
so

n
ar

e
se

nt
to

N
A

U
.T

hi
s

m
od

e
gi

ve
s

su
pp

or
t

fo
r

st
oc

ha
st

ic
re

la
ti

on
s.

N
A

U

C
M

P_
M

O
D

E

0
Su

pp
or

ts
to

ch
as

tic
re

la
tio

ns
.N

o
ex

ce
pt

io
ns

up
on

th
e

de
te

ct
io

n
of

an
in

fo
rm

at
io

na
lz

er
o

ar
e

se
nt

to
th

e
ST

FP
U

s.
1

Su
pp

or
ts

to
ch

as
tic

re
la

tio
ns

.E
xc

ep
tio

ns
ar

e
se

nt
to

ST
FP

U
s

up
on

th
e

de
te

ct
io

n
of

an
in

fo
rm

at
io

na
lz

er
o.

O
PE

R
A

N
D

S_
M

O
D

E

0
N

o
C

he
ck

s
fo

r
th

e
si

gn
ifi

ca
nc

e
of

th
e

m
ul

tip
lic

at
io

n
op

er
an

ds
an

d
di

vi
so

r
ar

e
do

ne
.

1
E

xc
ep

ti
on

s
ar

e
se

nt
if

th
e

m
ul

ti
pl

ic
at

io
n

op
er

an
d

s
or

th
e

d
iv

is
or

ar
e

in
fo

rm
at

io
na

lz
er

os
(T

he
fir

st
co

nd
it

io
n

in
Su

bs
ec

ti
on

2
.2

.2
is

no
t

ap
pl

ie
d)

.

N
O

_A
C

C
U

R
A

T
E_

D
IG

IT
S

00
00

00
10

00
01

00
11

1 2
Sp

ec
if

y
th

e
m

in
im

u
m

ac
ce

p
ta

bl
e

ac
cu

ra
cy

(i
n

ba
se

-2
)

in
fi

xe
d

po
in

tn
ot

at
io

n
(C

T
H

in
Fi

gu
re

4
.2

).
Th

e
fix

ed
po

in
ti

s
be

tw
ee

n
th

e
si

xt
h

an
d

se
ve

nt
h

bi
t

fr
om

ri
gh

t.

C
A

N
C

EL
_L

EV
EL

00
00

00
01

01
00

00
00

0 2
Sp

ec
if

y
th

e
ca

nc
el

la
ti

on
le

ve
l(

in
ba

se
-2

)
in

fi
xe

d
po

in
t

no
ta

ti
on

.
Th

e
fix

ed
po

in
t

is
be

tw
ee

n
th

e
si

xt
h

an
d

se
ve

nt
h

bi
t

fr
om

ri
gh

t.

C
A

N
C

EL
_C

H
EC

K
0

G
en

er
at

e
ex

ce
pt

io
n

w
he

n
ca

nc
el

la
ti

on
in

A
dd

/
Su

b
oc

cu
rs

.
1

N
o

ch
ec

k
fo

r
ca

nc
el

la
ti

on
.

Ta
bl

e
4.

11
:T

he
ge

ne
ri

cs
us

ed
in

th
e

ar
ch

it
ec

tu
re

.

53

4 Hardware Implementation

SBEU data path Description Value

The simplified data path
Number of Slice Registers 3541

Number of Slice LUTs 6418
Maximum operating frequency 245 MHz

The generic data path
Number of Slice Registers 4450

Number of Slice LUTs 8014
Maximum operating frequency 220 MHz

Table 4.12: Hardware utilization and maximum operating frequency for NAU considering
the two data paths provided in Figure 4.1 and 4.2.

SBEU Operation Latency
(Clock cycles)

The generic data path

Add/Subtract 23
Multiply 28
Divide 55

Multiply-Accumulate 29

The simplified data path

Add/Subtract 23
Multiply 24
Divide 50

Multiply-Accumulate 29

Table 4.13: Latencies of the floating point operators in STFPU (precise mode) after
integrating NAU.

54

5 Software and Debugging Support

In this chapter we give a brief introduction about interrupts management and classification
in the first two Sections (5.1, 5.2) with focus on the type of exceptions generated by NAU.
Then, we introduce the support provided by the Standalone BSP on the software level to
manage exceptions in Section 5.3. In Section 5.4, we explain how to localize the source of
exception and how to get more info about the type of exception using XMD and gdb.

5.1 Interrupt Classification in The PowerPC

An interrupt is the action in which the processor saves its state and changes the normal
execution of the program to a predefined interrupt-handler address. Exceptions are the
events that cause the processor to take an interrupt.

Interrupts in the PowerPC can be categorized based on the dependency on the instruction
execution into two categories [Mil, p. 127 - p. 128]:

1. Asynchronous Interrupts: These Interrupts are caused by events that have nothing to
do with the instruction being executed (such as external interrupts).

2. Synchronous Interrupts: They are caused by the instruction being executed. They can
further be classified into two classes.

a) Precise: These interrupts indicate exactly the instruction which caused the excep-
tion.

b) Imprecise: They might indicate the instruction which caused the exception or
some instruction that comes after that one.

Based on their priority, the interrupts can also be classified as [Cli01, p. 8]:

1. Critical: Critical interrupts have a higher priority (such as debug events and some
external interrupts).

2. Non-Critical: They are of lower priority. If a non-critical interrupt happens at the same
time with a critical interrupt, the processor will service the critical one first. Interrupts
that are caused by instruction execution or timers are considered non-critical.

Based on this description, we classify the interrupts caused by NAU generated exceptions
as Synchronous (Precise) Non-critical Interrupts or equivalently Program Interrupts. A set of
registers are used by the processor to manage exception handling upon processing such an
interrupt. These register are [boo02, p. 144 - p. 147]:

55

5 Software and Debugging Support

• Machine State Register (MSR): Defines the state of the processor. It has bits related to
enabling and disabling interrupts.

• Save/Restore Register 0 (SRR0): Used to save the instruction which caused the interrupt.

• Save/Restore Register 1 (SRR1): Used to save MSR before entering the interrupt handler
and restore it upon returning from the exception handler (executing rfi).

• Exception Syndrome Register (ESR): Used to distinguish between the different kinds of
exceptions that can generate the same interrupt.

• Interrupt Vector Prefix Register (IPVR): Specifies the high-order 48 bits of the address
of the exception handler.

• Interrupt Vector Offset Registers (IVOR0 to IVOR15): Every register of them is used to
provide the low-order 12 bits (the remaining 4 bits are affixed to 0s) of the address of
the exception handler depending on the interrupt type.

5.2 Program Interrupt Processing

Processing NAU interrupts , which are Program Interrupts, is preformed in five consecutive
steps as follows:

1. SRR0 is loaded with the instruction that caused the exception.

2. ESR is loaded with more information about the exception type. This information is
concerning the built-in exceptions supported by the PowerPC and does not know any
thing about NAU and the numerical instability exceptions discussed earlier and that is
why we introduced our own Syndrome Register.

3. SRR1 is loaded with a copy of MSR value.

4. Bits FP, FE0, FE1 are set to 0. FP stands for floating point and when this bit is set to
zero, the processor cannot execute floating point instructions.1

5. Execution of the exception handler starts with the new updated MSR. The address of
the exception handler is calculated by means of IVPR and IVOR6, where IVOR6 is the
offset for a "Program Interrupt".

6. Upon reaching the end of the exception handler and calling rfi, MSR restores its old
value from SPR1 and the processor resumes execution at the address saved in SPR0.

The processor executes the instruction which caused the exception twice. At the first time it
assert the APUFCMWRITEBACKOK to inform the STFPU that the exception is accepted. At the
second time it asserts APUFCMFLUSH to inform the STFPU that a previous instruction was
received.

1Some other bits are updated as well, but they are irrelevant to our work.

56

5.3 Exception Management on The Software Level

5.3 Exception Management on The Software Level

In our System, there is no operating system. However, A minimal operating system func-
tionality is provided by the Standalone Board Support Package (BSP). The Standalone BSP
library libxil.a contains the boot code, memory management and most important for us is
the support for managing exceptions [Xil].

Three functions are used to manage exceptions and they are declared in the
xexception_l.h:

• void Xexc_Init(void): This function sets up the interrupts vector table and registers
a function which does nothing for every exception. The interrupt vector table can
be described as a table which contains the addresses of exception handlers for every
exception type.

• void XExc_RegisterHandler(Xuint8 ExceptionId, XExceptionHandler Handler,
void *DataPtr): This function registers a handler for a specific exception rather than
the initial do-nothing one. ExceptionId is set to XEXC_ID_PROGRAM_INT2 which is used
to address NAU exceptions, XExceptionHandler is a pointer to the exception handler
and DataPtr is a pointer to some data structure that can be passed to the exception
handler.

• void XExc_mEnableExceptions (EnableMask): This function is used to enable crit-
ical or non-critical or both exceptions. Since NAU exceptions are non-critical, the
EnableMask is set to XEXC_NON_CRITICAL2.

5.4 Localizing and Getting More Info About The NAU Exceptions

XMD and powerpc-eabi-gdb are used to localize the source of NAU exceptions. Getting
more details about an exception is possible by accessing the Syndrome Register.

Figure 5.1 shows the interactions between different components when an exception is
generated in the NAU. When a numerical instability is detected in NAU the following
actions take place:

1. The exception is sent from NAU to the STFPUs.

2. The STFPUs will assert and deassert applicable signals in order to properly communi-
cate that exception to the processor through the APUs (see Subsection 4.5.3).

3. The exception is caught by XMD, which stops exactly at the instruction that had caused
the exception. Reading the Syndrome Register will give more information about the
exception.

2Predefined Macro

57

5 Software and Debugging Support

int main(){

…

c = a*b;

z = x/y;

…

}

…

fmul..

fdiv..

…

powerpc-eabi-gcc

XMD

powerpc-
eabi-gdb

TCP

P
P

C
 4

4
0

 #
1

APU

STFPU #1

P
P

C
 4

4
0

 #
2

APU

STFPU #2

Sy
n

ch
. U

n
it

N
EA

 U
n

it

C
o

m
p

ar
is

o
n

Su

p
p

o
t

U
n

it

V
it

ex
-5

M
L

5
1

0
 X

ili
n

x
Ev

al
u

at
io

n
 B

o
ar

d

JTAG

source.c

source.elf

…

more_details()..

proceed()..

…

script.tcl

SB
EU

V
ir

te
x

Figure 5.1: Catching a NAU exception.

4. By connecting gdb to XMD through a TCP connection, one can also localize the source
of exception on the C statement level.

5.4.1 XMD

XMD has some built-in features that make it possible to catch the exceptions. It can establish
connections with the two processors on the board in one session. Switching between the
processors is straightforward. It can be used also as a normal debugger to set breakpoints,
watchpoints, read the values of registers and change them, and read memory locations. It
can also be configured to catch exceptions upon their occurrence. One of the most important
features of XMD is that it accepts Tool Command Language (TCL) scripts. This allows more
functionality to be added.

58

5.4 Localizing and Getting More Info About The NAU Exceptions

First Approach: Localize the source of exception and abort

In order to catch the NAU exceptions, a TCL script (provided in Appendix A.4) is loaded to
XMD which does the following:

1. Downloads the executables to the BRAMS (or SDRAMS) of the correspondent Power-
PCs.

2. Sets the MSR register, in the two processors, value to 0x2900, i.e. setting the bits of FP,
FE0 and FE1 to ones, respectively. That means let the STFPUs run non-autonomously.

3. Enables the safemode of XMD. Only with this mode XMD traps (stops at) the exceptions
upon their occurrence.

4. Instructs the processors to start the execution of the code.

If a NAU exception is generated, it will be caught and the memory address of source of the
exception will be printed on the screen. In order to get more details about the exceptions,
a call to the function more_details in the TCL script will read the value of the Syndrome
Register. Based on that value, the type of exception will be printed on the screen.

Using powerpc-eabi-objdump it is possible to disassemble the executable file. A text ed-
itor might be used to search for the address of the assembly instruction that caused the
exception.

In this approach the original source is kept as-is. Hence, there is no support for exception
handling. XMD is only able to localize the source of exception and after that it will not be
possible to resume the execution of the program normally.

Note that if we want to run the program autonomously we have simply to change the value
set to the processors in step 1 to 0x2000.

Figure 5.2 shows XMD localizing the source of a NAU exception and giving more details
about the type of the exception. The disassembled file in the background is opened in a text
editor and the source of exception instruction is highlighted in green.

Second Approach: Localize the source of exception and resume

In order to support recovering from the exception and resuming the execution of the code
minor changes to the original source code are required. These changes are:

• Include the xexception_l.h header file.

• Upon entering main, make a call to Xexc_Init in order to initialize the exception vector
table.3

3It is necessary to add .vector section to the linker script.

59

5 Software and Debugging Support

Figure 5.2: XMD localizing a NAU exception.

With these changes, the same TCL script is loaded to XMD. When an exception occurs,
XMD localizes the source of the exception. Afterwards, an attempt to resume the execution
of the program will result in calling the do-nothing exception handler. After calling rfi,
the execution resumes at the instruction which caused the exception (see Section 5.2). The
processor is supposed to execute the same instruction once again, but this time it should
flush it. However, this is not the case for some unknown reason. The processor executes the
instruction and XMD catches the exception again and then the whole process repeats over
and over.

Fortunately, due to the automatic support of our architecture of attaching and detaching NAU,
and consequently enabling / disabling its exceptions, by detecting the signals APUFCMMSRFE0
and APUFCMMSRFE1 which reflect the values of the bits FE0 and FE1 in MSR, a workaround
the problem is possible.

A new function is added to the TCL script, namely proceed. This function is to be called
upon the willingness of resuming execution after catching an exception. A call to this
function does the following actions:

60

5.4 Localizing and Getting More Info About The NAU Exceptions

1. Reads the Program Counter Register and sets a breakpoint on the two processors based
on that address. This value is actually the address of the instruction which caused the
exception.

2. When the breakpoints are reached, sets the two MSRs to 0x2000, i.e. let the STFPUs
run autonomously (detach NAU).

3. Instructs the processors to step one instruction.

4. Reloads MSRs again with 0x2900, i.e. let the STFPUs run non-autonomously (reattach
NAU).

5. Instructs the processors to continue normally.

It is worthwhile mentioning that it is also possible to write a small exception handler which
dereferences the Syndrome Register and accordingly prints on stdout the type of exception
being detected. This is possible as shown in listing 5.1

1 #include <stdio.h>
2 #include <xexception_l.h>
3 /* The exception handler code goes in this function */
4 void Handler_fun(void *DataPtr) {
5 /* The address of the Syndrome Register is 0xc9200000 */
6 printf ("Syndrome_Register = %x\n",*(long int *)0xc9200000);
7 }
8

9 int main()
10 {
11 /* Declare a pointer to a function */
12 void (*Handler_ptr)(void *DataPtr);
13 /* Let the pointer point to the handler function */
14 Handler_ptr = Handler_fun;
15 /* Initialize the Interrupt vector table */
16 XExc_Init();
17 /* Register Handler_fun to be called upon the detection of a program exception */
18 XExc_RegisterHandler(XEXC_ID_PROGRAM_INT, (XExceptionHandler) Handler_ptr, NULL);
19 /* Enable NON_CRITICAL exceptions to be trapped */
20 XExc_mEnableExceptions(XEXC_NON_CRITICAL);
21 /*
22 The code of the original program goes here.
23 */
24 }

Listing 5.1: Exception handler to dereference the Syndrome Register.

Figure 5.3 shows XMD catching two consequent NAU exceptions. At first, XMD stops at an
fmadd instruction that has caused a loss of accuracy exception. Then, a call to the function
proceed resumes execution till XMD stops again at fmul which also has caused an exception.

61

5 Software and Debugging Support

Figure 5.3: XMD catching two consequent NAU exceptions.

Figure 5.4: gdb localizing a NAU exception.

5.4.2 GDB

powerpc-eabi-gdb can be used to localize the source of exception on the C-statement level. If
an exception takes place upon using one of the approaches presented in 5.4.1. It is possible
to use powerpc-eabi-gdb to connect to either one of the processors through a TCP connection
to XMD. Upon establishing the connection successfully, the C-statement which caused the
exception will be highlighted automatically. Figure 5.4 shows powerpc-eabi-gdb highlighting
a C-statement which caused a NAU exception.

62

6 Performance Evaluation

In this chapter, the performance of the proposed architectures are presented. In Section 6.1,
the benchmark used to measure the performance is introduced. In the sections that follow,
comparison between the performance of different architectures with different optimization
levels are presented. Finally, comparison between the performance of the CADNA library vs.
the performance of the proposed architecture is presented in Section 6.5.

6.1 FP Performance Benchmark

The steps to measure the FP performance can be summarized as follows:

• A bunch of FP instructions are executed for a sufficiently adequate time (approximately
100 seconds).

• The time elapsed for the execution in micro-seconds (T) is noted.

• The number of the FP operations executed (N) is also noted.

• The performance is measured in terms of Mega Floating Point Operation per Second
(MFLOPS) and calculated as follows:

MFLOPS =
N
T

The benchmarks used to evaluate the FP performance are provided in Appendix A.3.
The loop that contains the FP instructions is adopted from the Whetstone benchmark1.

6.2 Configuration of The Components

The components used for performance evaluation in the following sections are configured
as summarized in Table 6.1. The two PowerPCs were configured to run at their maximum
operating frequency. The FPUs were also configured to operate at their maximum operating
frequency when optimized for low latency (i.e. C_LATENCY_CONF is set to 1). The NAU is
configured to run at twice the operating frequency of an STFPU. An Intel T6600 processor is
used to evaluate the CADNA performance.

1The Whetstone benchmark can be downloaded from www.roylongbottom.org.uk/whets.c

63

www.roylongbottom.org.uk/whets.c

6 Performance Evaluation

Component Operating frequency Notes

PowerPC#1 400 MHz
PowerPC#2 400 MHz
Xilinx FPU 133 MHz Optimized for low latency
STFPU#1 100 MHz Optimized for low latency
STFPU#2 100 MHz Optimized for low latency
NAU 200 MHz
Intel T6600 2200 MHz Used for CADNA evaluation

Table 6.1: Configuration of the components used in the performance evaluation.

6.3 Xilinx FPU Vs. STFPU

In order to give a feeling of the performance of the proposed architecture, a comparison
is held between an STFPU2 and Xilnix FPU (v1.01a). Four variants of the benchmark were
used. The first two are compiled with no optimization (-O0), and the others are compiled
with aggressive optimization (-O3). For each of these optimization levels, the FPUs were
configured to run autonomously and non-autonomously.

Figure 6.1 (Figure 6.2) shows the results of comparison when the FPUs run autonomously
(non-autonomously) for the two optimization levels. The STFPU is slightly slower than Xilinx
FPU as it operates at 75% of the frequency of Xilinx FPU. Another reason is that the latencies
for the FP operators in the two FPUs are not exactly the same. Although the autonomous
mode exhibits better performance, the PowerPC can not catch exact exceptions in this mode.
So the NAU exceptions can only be caught in the non-autonomous mode.

6.4 STFPU Vs. STFPU with NAU Attached

The four variants of the benchmark presented in Section 6.3 are used here in order to compare
a system that uses the original STFPU to a system that uses two modified STFPUs with the
NAU attached.

In the non-autonomous case, Figure 6.3 and Figure 6.4 show the results of comparison
when SBEU is implemented based on the generic data path and the simplified data path,
respectively. As shown in the figures, the performance is only slightly reduced when the
NAU is integrated to the system. The results shown in the two figures collide with the
information provided earlier in Table 4.13.

In the autonomous case, there is no difference at all in the performance. Figure 6.5 and
Figure 6.6 show the results of the comparison between STFPU and STFPU with NAU

2NAU is not attached to the STFPUs.

64

6.4 STFPU Vs. STFPU with NAU Attached

 0

 5

 10

 15

 20

 25

 30

 35

 FPU -O0 STFPU -O0 FPU -O3 STFPU -O3

M
F

LO
P

S

5.992 5.654

32.820

19.277

Figure 6.1: MFLOPS obtained upon running FPU and Xilinx FPU autonomously.

 0

 1

 2

 3

 4

 5

 6

 FPU -O0 STFPU -O0 FPU -O3 STFPU -O3

M
F

LO
P

S

3.657

2.914

5.797

4.124

Figure 6.2: MFLOPS obtained upon running FPU and Xilinx FPU non-autonomously.

65

6 Performance Evaluation

 0

 1

 2

 3

 4

 5

 6

 STFPU -O0 STFPU+NAU -O0 STFPU -O3 STFPU+NAU -O3

M
F

LO
P

S

2.914 2.883

4.124 4.095

Figure 6.3: MFLOPS obtained upon running STFPU with and without the NAU
non-autonomously for the generic data path.

 0

 1

 2

 3

 4

 5

 6

 STFPU -O0 STFPU+NAU -O0 STFPU -O3 STFPU+NAU -O3

M
F

LO
P

S

2.914 2.914

4.124 4.124

Figure 6.4: MFLOPS obtained upon running STFPU with and without the NAU
non-autonomously for the simplified data path.

66

6.5 The Proposed Architecture Vs. CADNA

 0

 5

 10

 15

 20

 25

 30

 35

 STFPU -O0 STFPU+NAU -O0 STFPU -O3 STFPU+NAU -O3

M
F

LO
P

S

5.654 5.654

19.277 19.277

Figure 6.5: MFLOPS obtained upon running STFPU with and without the NAU
autonomously for the generic data path.

attached considering the generic data path and the simplified data path, respectively. The
obtained results are expected because the NAU is logically detached when the STFPUs run
autonomously (refer to Section 4.5.3).

6.5 The Proposed Architecture Vs. CADNA

The main disadvantage of using the CADNA library is that it requires modifications of the
original source code. However, in this section we present the impact of using the CADNA
library on the performance.

The benchmark is first run on a T6600 2.2Ghz intel processor and the MFLOPS were noted.
Then, appropriate modifications were done to the benchmark in order to use the CADNA
library. The benchmark is then run with the MFLOPS noted. Figure 6.7 shows the MFLOPS
obtained when running the benchmark with and without CADNA. Apparently, using the
CADNA library extremely slows down the perforamce. Every FP operation is evaluated three
times with random rounding. Moreover, every addition operation requires evaluation of the
number of significant digits of the two operands and the result to decide if a cancellation has
occurred. Check for the significance of the two operands and divisor at every multiplication
FP and division FP operation, respectively, is required. These reasons explain the dramatic
slowdown of the performance when using the CADNA library.

67

6 Performance Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 STFPU -O0 STFPU+NAU -O0 STFPU -O3 STFPU+NAU -O3

M
F

LO
P

S

5.654 5.654

19.277 19.277

Figure 6.6: MFLOPS obtained upon running STFPU with and without the NAU
autonomously for the simplified data path.

 1

 10

 100

 1000

 W
ith CADNA -O0

 No CADNA -O0

 W
ith CADNA -O3

 No CADNA -O3

M
F

LO
P

S

2.759

491.257

3.120

745.163

Figure 6.7: MFLOPS obtained upon running the benchmark with and without CADNA.

68

6.5 The Proposed Architecture Vs. CADNA

 0

 5

 10

 15

 20

 CADNA -O3 Hardware -O3 Hardware -O3

M
F

LO
P

S

3.120
4.124

19.277

non-autonomous autonomous

Figure 6.8: MFLOPS obtained when using CADNA vs. using our architecture.

Figure 6.8 shows the MFLOPS obtained when using CADNA vs. using the proposed
architecture with "-O3" as the optimization level. In the figure, "Hardware" stands for our
architecture. Our architecture in the two modes exhibits better performance and particularly
in the autonomous mode where it is almost seven times faster than the software solution. It
can even exhibit a better performance when implemented on ASIC.

Since CADNA is evaluated on a different architecture, it is logical to compare our architecture
to CADNA library by means of slow down factors, where:

slow down factor =
MFLOPS obtained originally

MFLOPS obtained when implementing DSA

, holding that the same optimization levels are applied.

Figure 6.9 shows the slow down factors when using our architecture vs. using the CADNA
library. Our architecture does not slow down the performance at all in both the autonomous
and non-autonomous mode. However, localizing the instruction that is the source of a
numerical instability exception is only possible when the STFPUs run non-autonomously. In
contrary, the use of CADNA library severely reduces the performance of the system.

For completeness, our architecture does not require any excess memory. On the other
hand, the CADNA library requires at least three times the original memory footprint of a
program.

69

6 Performance Evaluation

 1

 4

 16

 64

 256

 Hardware -O0

 Hardware -O3

 CADNA -O0

 CADNA -O3

S
lo

w
 d

ow
n

fa
ct

or

1.0 1.0

178.056
238.834

Figure 6.9: Slow down factors when using our architecture vs. using the CADNA library.

70

7 Conclusion and Future Work

In this work, a hardware architecture for numerical accuracy analysis has been proposed
and implemented. In this architecture, arithmetic and relational operations have been
implemented according to the definition of the Discrete Stochastic Arithmetic (DSA), and
a Numerical Analysis Unit (NAU) has been implemented such that the information of
numerical accuracy can be obtained for any intermediate or final computational result
during run time of a program. In the design of the NAU, two simplified approaches for
estimating the number of significant digits are used in order to reduce the hardware cost.
The first one is generic and can be readily extended, and the other one is optimized for two
samples. The latter requires less hardware resources and exhibits better performance.

In order to maintain the reliability of the DSA, operands of multiplication and divisor of divi-
sion are checked against informational zeros. In addition, exceptions can be generated upon
catching a numerical instability (e.g. if the number of significant digits of any intermediate
result is less than a predefined value or cancellations are detected in a code) or violation of
the hypotheses of the DSA. Information about an exception is written to a special register
which can be further accessed by means of a debugger.

There are two existent implementations of DSA – one in software and the other in hardware.
Using the software implementation, CADNA library, requires many modifications to be
carried out on the original source code. When the source code is not available (e.g. when
precompiled library is used), CADNA could not be used. It also imposes a dramatic slow
down of the performance. In addition, the memory footprint of a program when using
CADNA is at least three times the original one. The existent hardware implementation as a
co-processor does neither support all the floating point operations nor the instruction set
of the processor. Hence it requires many modifications to be incorporated in the source
code, and the additional programing effort is even more than the software solution. For
these reasons, it is unlikely to use these solutions in real life. Compared to the existing
implementations of the DSA, the architecture proposed in this work exhibits the following
advantages and features:

1. Minor modifications to the source code: The STFPUs used in the architecture au-
tomatically support the instruction set of the PowerPC. The only required source
code modification was the inclusion of the xexception_l.h header file and calling
Xexc_Init() upon entering main(). This modification is not even required if the user
does not want to resume after catching an exception. This feature makes the proposed
solution usable even in the case of precompiled libraries.

71

7 Conclusion and Future Work

2. Reduced hardware cost: This was achieved by using a reduced-hardware approach for
calculating the number of significant digits. Using this approach, it was also possible
to operate at higher frequencies.

3. Maintaining the original performance of the architecture: This was possible using
the reduced-hardware approach and properly implementing the NAU to operate at
twice the frequency of the STFPU. By avoiding the use of the costly division, square
root and logarithm calculation; the proposed architecture reduces the hardware cost.
Benchmarking showed that the performance was not affected at all after integrating
the NAU into the system. Although the STFPUs operate at 100MHz, the performance
achieved using our implementation supersedes the software implementation. When
implemented on ASIC, it can even exhibit a better performance.

4. Possibility to distinguish different types of numerical instabilities: This was possible by
utilizing a special register. Upon generating an exception, the NAU writes info about
the type of the exception to this register.

5. Localizing the source of an exception and getting more details about them: The
possibility to extend the functionality of XMD by loading custom TCL scripts made this
possible. A TCL script was developed to facilitate communication with the architecture.
Functionality to get more details about exceptions upon their occurrence is also added.
Resuming the execution of a program after an exception is caught is provided as well.
Helped by the feature, the user may consider to change the code of the statements that
caused the exceptions.

6. Wide configuration options: It was made possible to configure the architecture based
on the deemed level of reliability through changing a set of generics in the design. For
instance, a check for informational zeros in the multiplication operands can be relaxed.

Future Work

For the PowerPC processor, the only way to raise floating point exceptions is when
an STFPU runs non-autonomously. This degrades the performance to some extent.
However, there are other interrupts that can be caught by the processor; such as external
interrupts. The NAU can be modified to generate such interrupts while the STFPUs
run autonomously. The processor will stop, however the challenge is to localize exactly
the instruction that caused the exception. This approach will indeed enhance the
performance of the architecture.

In the current implementation, the conversion from floating point to integer is done
separately on the two STFPUs. This conversion is better done based on the average
of the samples instead. In addition, It would be nice to add support for the printf
function on the hardware level to print the average of the samples instead of printing
them separately.

72

The standalone BSP which provides minimal functionality of an operating system
runs on the PowerPCs in our architecture. Still, other operating systems can be also
used. Open source operating systems can be modified to support managing the NAU
exceptions. This can be doable by incorporating the functionality of the TCL script
loaded to XMD in the operating system. This would add a good feature to the proposed
solution.

73

A Appendix

A.1 Look-up Tables

A.1.1 Look-up Tables Entries – The Generic Data Path

The entries for the look-up table utilized in the generic data path are listed in Table A.1. They

are calculated based on the formula f (M̂|r̄|, M̂Ẑ) = v2 + log2
M̂|r̄|√

M̂Ẑ

. Values of M̂|r̄| ranges

from [000]2 ([1.000]10) to [111]2 ([1.875]10), and values of M̂Ẑ ranges from [00]2 ([1.00]10)
to [11]2 ([1.75]10). In the implementation, seven bits are used to represent the value of
− f (M̂|r̄|, M̂Ẑ). For instance, a number such as 3.1664 is saved as [1100101]2 with the implicit
fixed point is between the second and third bit from left.

Key − f (M̂|r̄|, M̂Ẑ)
Key − f (M̂|r̄|, M̂Ẑ)M̂|r̄| M̂Ẑ M̂|r̄| M̂Ẑ

1.000 1.00 3.1664 1.500 1.00 2.5814
1.000 1.25 3.3274 1.500 1.25 2.7424
1.000 1.50 3.4589 1.500 1.50 2.8739
1.000 1.75 3.5701 1.500 1.75 2.9851
1.125 1.00 2.9965 1.625 1.00 2.4660
1.125 1.25 3.1575 1.625 1.25 2.6269
1.125 1.50 3.2890 1.625 1.50 2.7585
1.125 1.75 3.4002 1.625 1.75 2.8697
1.250 1.00 2.8445 1.750 1.00 2.3591
1.250 1.25 3.0054 1.750 1.25 2.5200
1.250 1.50 3.1370 1.750 1.50 2.6515
1.250 1.75 3.2482 1.750 1.75 2.7627
1.375 1.00 2.7070 1.875 1.00 2.2595
1.375 1.25 2.8679 1.875 1.25 2.4205
1.375 1.50 2.9995 1.875 1.50 2.5520
1.375 1.75 3.1107 1.875 1.75 2.6632

Table A.1: Look-up table entries for the generic data path.

75

A Appendix

A.1.2 Look-up Tables Entries – The Simplified Data Path

The entries for the look-up table utilized in the simplified data path are listed in Table A.2.
They are calculated based on the formula w(M̂|s|, M̂|d|) = log2

(
1
τβ

)
+ log2

(
M|s|
M|d|

)
. Values of

M̂|s| ranges from [000]2 ([1.000]10) to [111]2 ([1.875]10), and values of M̂|d| ranges from [00]2
([1.00]10) to [11]2 ([1.75]10). In the implementation, seven bits are used to represent the value
of −w(M̂|s|, M̂|d|). For instance, a number such as 3.6678 is saved as [0111001]2 with the
implicit fixed point is between the third and fourth bit from left.

Key −w(M̂|s|, M̂|d|)
Key −w(M̂|s|, M̂|d|)M̂|s| M̂|d| M̂|s| M̂|d|

1.000 1.00 3.6678 1.500 1.00 3.0829
1.000 1.25 3.9898 1.500 1.25 3.4048
1.000 1.50 4.2528 1.500 1.50 3.6678
1.000 1.75 4.4752 1.500 1.75 3.8902
1.125 1.00 3.4979 1.625 1.00 2.9674
1.125 1.25 3.8198 1.625 1.25 3.2893
1.125 1.50 4.0829 1.625 1.50 3.5524
1.125 1.75 4.3053 1.625 1.75 3.7748
1.250 1.00 3.3459 1.750 1.00 2.8605
1.250 1.25 3.6678 1.750 1.25 3.1824
1.250 1.50 3.9309 1.750 1.50 3.4455
1.250 1.75 4.1533 1.750 1.75 3.6678
1.375 1.00 3.2084 1.875 1.00 2.7610
1.375 1.25 3.5303 1.875 1.25 3.0829
1.375 1.50 3.7934 1.875 1.50 3.3459
1.375 1.75 4.0158 1.875 1.75 3.5683

Table A.2: Look-up table entries for the simplified data path.

A.2 C Code emulating SBEU

In order to help testing SBEU, the C code provided in Listing A.1 is used to emulate the
generic data path and the simplified data path on the bit level. Exact significant bits as well
as intermediate variables are printed out in order to be compared to the signal in the HDL
design.

1 #include "stdio.h"
2 #include "stdlib.h"
3 #include "math.h"

76

A.2 C Code emulating SBEU

4 /* This program is used to generate test cases for the generic data path
5 and the simplified data path.
6 */
7 int main()
8 {
9 /***********************Samples are loaded here**************************/

10 /* The first sample */
11 double a =100.0001;
12 /* The second sample */
13 double b =100.0003;
14 /**/
15 /* Local variables */
16 long long a_hex= *(long long*)(&a);
17 long long b_hex = *(long long*)(&b);
18 double man_R;
19 long long man_R_hex;
20 double man_Z;
21 long long man_Z_hex;
22 double R, a_R,a_R_2,b_R_2, b_R,sum,dif, Z, sigma;
23 long long R_hex, sum_hex, a_R_hex,a_R_2_hex,dif_hex, b_R_2_hex, b_R_hex, Z_hex;
24 int man_R_3;
25 int man_Z_2;
26 int man_sum_3;
27 int man_dif_2;
28 int exp_R;
29 int exp_Z;
30 double v = -0.9532;
31 double T = 12.71; /* tau */
32 double Cr;
33 int Cr_win;
34 double Cr_app;
35 double Cr_app_bits;
36

37 /* The look-up table for the generic data path */
38 int lookup_key[32] = {
39 0x65, 0x69, 0x6f, 0x72, 0x60, 0x65, 0x69, 0x6d,
40 0x56, 0x60, 0x64, 0x68, 0x57, 0x5c, 0x60, 0x63,
41 0x53, 0x58, 0x5c, 0x60, 0x4f, 0x54, 0x58, 0x5c,
42 0x4b, 0x51, 0x54, 0x58, 0x48, 0x4e, 0x52, 0x55
43 };
44

45 /* The look-up table for the simplified data path */
46 int look_up_2[32] = {
47 0x3B, 0x3F, 0x44, 0x48, 0x38, 0x3D, 0x41, 0x45,
48 0x36, 0x3B, 0x3E, 0x42, 0x33, 0x38, 0x3C, 0x40,
49 0x31, 0x36, 0x3B, 0x3D, 0x2E, 0x35, 0x39, 0x3C,
50 0x2D, 0x33, 0x37, 0x3B, 0x2C, 0x31, 0x36, 0x39
51 };
52 int key;
53 int exp_Z_app, exp_R_app;
54

55 /***********************Generic data path**************************/
56 R = (a+b)/2.0;
57 R_hex = *(long long*)(&R);
58 /* print the samples in hex */

77

A Appendix

59 printf ("a_hex = %llx\tb_hex = %llx\n",a_hex,b_hex);
60 /* print the average of the samples in hex */
61 printf ("R_hex = %llx\n", R_hex);
62 man_R_hex = R_hex & 0x000FFFFFFFFFFFFF;
63 man_R_hex = man_R_hex | 0x3FF0000000000000;
64 /* print the mantissa of the average in hex */
65 printf ("man_R_hex = %llx\n", man_R_hex);
66 /* extract the first three MSBs of the mantissa of the average */
67 man_R = *(double*)(&man_R_hex);
68 man_R_hex = man_R_hex & 0x000FFFFFFFFFFFFF;
69 man_R_3 = man_R_hex >> 49;
70 man_R_3 = man_R_3 << 2;
71 /* print the first three MSBs of the mantissa of the average */
72 printf ("man_R = %f\n", man_R);
73 /* extract the exponent of the average */
74 exp_R = (int) ((R_hex >> 52) & 0x00000000000007FF);
75 exp_R -= 1023; /* remove the bias */
76 exp_R_app = exp_R << 5;
77 /* print the unbiased exponent of the average */
78 printf ("exp_R = %d\n", exp_R);
79 /* calculate the difference between the average and the samples */
80 a_R = a-R;
81 a_R_hex = *(long long*)(&a_R);
82 a_R_hex = a_R_hex & 0xFFFF000000000000; /* truncate to lower precision */
83 a_R = *(double*)(&a_R_hex);
84 printf ("a_R_hex = %llx\n",a_R_hex);
85 b_R = b-R;
86 b_R_hex = *(long long*)(&b_R);
87 b_R_hex = b_R_hex & 0xFFFF000000000000; /* truncate to lower precision */
88 b_R = *(double*)(&b_R_hex);
89 printf ("b_R_hex = %llx\n",b_R_hex);
90 /* calculate the square of the differences */
91 a_R_2 = pow(a_R,2);
92 a_R_2_hex = *(long long*)(&a_R_2);
93 a_R_2_hex = a_R_2_hex & 0xFFFF000000000000; /* truncate to lower precision */
94 a_R_2 = *(double*)(&a_R_2_hex);
95 b_R_2 = pow(b_R,2);
96 b_R_2_hex = *(long long*)(&b_R_2);
97 b_R_2_hex = b_R_2_hex & 0xFFFF000000000000; /* truncate to lower precision */
98 b_R_2 = *(double*)(&b_R_2_hex);
99 /* calculate the sum of the squares */

100 Z = (a_R_2 + b_R_2);
101 printf ("sigma = %f\n",Z);
102 Z_hex = *(long long*)(&Z);
103 Z_hex = Z_hex & 0xFFFF000000000000;
104 printf ("Z_hex = %llx\n", Z_hex);
105 man_Z_hex = Z_hex & 0x000FFFFFFFFFFFFF; /* truncate to lower precision */
106 man_Z_hex = man_Z_hex | 0x3FF0000000000000;
107 printf ("man_Z_hex = %llx\n", man_Z_hex);
108 /* extract the two MSBs of the mantissa of sigma */
109 man_Z = *(double*)(&man_Z_hex);
110 printf ("man_Z = %f\n", man_Z);
111 man_Z_hex = man_Z_hex & 0x000FFFFFFFFFFFFF;
112 man_Z_2 = man_Z_hex >> 50;
113 /* extract the mantissa of sigma */

78

A.2 C Code emulating SBEU

114 exp_Z = (int) ((Z_hex >> 52) & 0x00000000000007FF);
115 exp_Z -= 1023; /* remove the bias */
116 exp_Z_app = exp_Z << 5;
117 printf ("exp_Z = %d\n", exp_Z);
118 /* Calculate number of exact significant digits Cr */
119 sigma = sqrt(pow(a-R,2)+pow(b-R,2));
120 Cr = log10(sqrt(2.0)*fabs(R)/(sigma*T));
121 printf ("exact Cr = %f\n",Cr);
122 /* Calculate the number of exact significant bits based on the generic data path Cr_win */
123 printf("man_R_3 = %d\tman_Z_2 = %d\n", man_R_3, man_Z_2);
124 key = (int) (man_R_3 | man_Z_2);
125 printf ("key = %d\n",key);
126 Cr_win = (exp_R_app - (exp_Z_app >> 1) - lookup_key[key]) << 1;
127 printf("Generic Cr =%x\n", Cr_win);
128

129 /***********************simplified data path**************************/
130 sum = (a+b);
131 dif = (a-b);
132 sum_hex = *(long long*)(&sum);
133 printf ("sum_hex =%llx\n", sum_hex);
134 dif_hex = *(long long*)(&dif);
135 printf ("dif_hex =%llx\n", dif_hex);
136 /* extract the first three MSBs of sum */
137 man_R_hex = sum_hex & 0x000FFFFFFFFFFFFF;
138 man_R_hex = man_R_hex | 0x3FF0000000000000;
139 man_R = *(double*)(&man_R_hex);
140 man_R_hex = man_R_hex & 0x000FFFFFFFFFFFFF;
141 man_sum_3 = man_R_hex >> 49;
142 man_sum_3 = man_sum_3 << 2;
143 printf ("man_sum = %f\n", man_R);
144 /* extract the first two MSBs of dif */
145 dif_hex = *(long long*)(&dif);
146 Z_hex = dif_hex & 0x000FFFFFFFFFFFFF;
147 man_Z_hex = Z_hex & 0x000FFFFFFFFFFFFF;
148 man_Z_hex = man_Z_hex | 0x3FF0000000000000;
149 printf ("man_diff_hex = %llx\n", man_Z_hex);
150 man_Z = *(double*)(&man_Z_hex);
151 man_Z_hex = man_Z_hex & 0x000FFFFFFFFFFFFF;
152 man_dif_2 = man_Z_hex >> 50;
153 printf ("man_dif = %f\n", man_Z);
154 printf("man_R_3 = %d\tman_Z_2 = %d\n", man_R_3, man_Z_2);
155 key = (int) (man_sum_3 | man_dif_2);
156 printf ("key = %d\n",key);
157 /* extract the exponent of the sum and dif */
158 exp_R = (int) ((sum_hex >> 52) & 0x00000000000007FF);
159 exp_R_app = exp_R << 6;
160 exp_Z = (int) ((dif_hex >> 52) & 0x00000000000007FF);
161 exp_Z_app = exp_Z << 6;
162 /* print the number of exact significant bits for the simplified data path */
163 Cr_win = ((exp_R_app - exp_Z_app) - ((look_up_2[key]) << 2));
164 printf("Simplified Cr =%x\n", Cr_win);
165 }

Listing A.1: A program to emulate SBEU on the bit level.

79

A Appendix

A.3 Benchmarks

The benchmarks used for performance evaluation of the software implementation (CADNA)
and the proposed hardware implementation are listed in Subsection A.3.1 and Subsec-
tion A.3.2, respectively.

A.3.1 Evaluating The Hardware Architecture

1 /* This is a benchmark to check the performance of the FPUs based on Whetstone benchmark */
2

3 #include "xparameters.h"
4 #include "xcache_l.h"
5 #include "stdio.h"
6 #include "xutil.h"
7 #include "xtime_l.h"
8 #include <time.h>
9

10 int main()
11 {
12 XCache_EnableICache(0x90000000); /* Enable instruction cache */
13 XCache_EnableDCache(0x90000000); /* Enable data cache */
14

15 /* Local variables */
16 int ix;
17 int xtra = 200;
18 int n1 = 1200;
19 int i;
20 int n1mult = 20;
21 double e1[4];
22 double t = 0.49999975;
23 double t2 = 2.0;
24 double t0 = t;
25 double no_of_fp_op;
26 double time_elapsed;
27 XTime start,end;
28 XTime clock_cycles;
29 e1[0] = 1.0;
30 /* Here add a redundent operation to synchronize the two FPUs */
31 e1[3] = e1[0] * 3.3242;
32 e1[1] = -1.0;
33 e1[2] = -1.0;
34 e1[3] = -1.0;
35

36 XTime_GetTime(&start); /* Read the Time Stamp Counter */
37 /* The variables xtra, n1 and n1mult were tuned to let the execution
38 loop run more than 30 sec */
39 for (ix=0; ix<xtra; ix++)
40 {
41 for(i=0; i<n1*n1mult; i++)
42 { /* 16 floating point operations in the loop */
43 e1[0] = (e1[0] + e1[1] + e1[2] - e1[3]) * t;

80

A.3 Benchmarks

44 e1[1] = (e1[0] + e1[1] - e1[2] + e1[3]) * t;
45 e1[2] = (e1[0] - e1[1] + e1[2] + e1[3]) * t;
46 e1[3] = (-e1[0] + e1[1] + e1[2] + e1[3]) * t;
47 }
48 t = 1.0 - t;
49 }
50 XTime_GetTime(&end); /* Read the Time Stamp Counter */
51 clock_cycles = end - start; /* No. of elapsed clock cycles*/
52 /* The results are printed to check correct functionality of the FPUs */
53 print("e1[0] e1[1] e1[2] e1[3]\n\r");
54 printf ("%f\t%f\t%f\t%f\n\n", e1[0], e1[1], e1[2], e1[3]);
55 /* MFLOPs = xtra * n1 * n1mult * 16 operations / elapsed time(in micro sec) */
56 printf ("MFLOPs = %d * %d * %d * 16 * 400 / %lld \n\n", xtra, n1, n1mult, clock_cycles);
57 XCache_DisableDCache();
58 XCache_DisableICache();
59 }

Listing A.2: The benchmark used to evaluate the hardware architecture.

A.3.2 Evaluating The Software Solution

Without CADNA

1 /* This is a benchmark to check the performance of the CPU without CADNA based on Whetstone
benchmark */

2 #include "stdio.h"
3 #include "stdint.h"
4 #include "stdlib.h"
5 #include "unistd.h"
6

7 /* This function is used to read the Time Stamp Register*/
8 static inline unsigned long long getrdtsc(void)
9 {

10 unsigned long long x;
11

12 #if defined (__i386__)
13 __asm__ __volatile__ ("rdtsc" : "=A" (x));
14 #elif defined (__x86_64__)
15 unsigned int tickl, tickh;
16 __asm__ __volatile__ ("rdtsc" : "=a" (tickl), "=d" (tickh));
17 x = ((unsigned long long)tickh << 32) | tickl;
18 #else
19 #warning "Architecture not yet supported in ASM"
20 #endif
21 return x;
22 }
23

24 int main()
25 { /*local variables*/
26 double e1[4];
27 long long unsigned ix;
28 long long unsigned xtra = 20;

81

A Appendix

29 long long unsigned i;
30 long long unsigned n1mult = 30000;
31 long long unsigned n1 = 1200;
32 double t = 0.49999975;
33 double t0 = t;
34 double t1 = 0.50000025;
35 double t2 = 2.0;
36 e1[0] = 1.0;
37 e1[1] = -1.0;
38 e1[2] = -1.0;
39 e1[3] = -1.0;
40 unsigned long long int start_tsc, stop_tsc;
41

42 start_tsc = getrdtsc(); /* Read the Time Stamp Counter */
43 /* The variables xtra, n1 and n1mult were tuned to let the execution
44 loop run more than 30 sec */
45 for (ix=0; ix<xtra; ix++)
46 {
47 for(i=0; i<n1*n1mult; i++)
48 {/* 16 floating point operations in the loop */
49 e1[0] = (e1[0] + e1[1] + e1[2] - e1[3]) * t;
50 e1[1] = (e1[0] + e1[1] - e1[2] + e1[3]) * t;
51 e1[2] = (e1[0] - e1[1] + e1[2] + e1[3]) * t;
52 e1[3] = (-e1[0] + e1[1] + e1[2] + e1[3]) * t;
53 }
54 t = 1.0 - t;
55 }
56 t = t0;
57

58 stop_tsc = getrdtsc(); /* Read the Time Stamp Counter */
59 printf("e[3]=%f\n",e1[3]);
60 printf("operations = %llu\n", xtra * n1 * n1mult * 16);
61 /* MFLOPs = xtra * n1 * n1mult * 16 operations / elapsed time(in micro sec) */
62 printf ("%f\n", ((float)(n1mult) * xtra * n1*16)/((stop_tsc - start_tsc)/2200.0));
63 }

Listing A.3: The benchmark used to evaluate the original performance of the processor
(without CADNA).

With CADNA

1 /* This is a benchmark to check the performance of the CPU with CADNA based on Whetstone
benchmark */

2 #include "stdio.h"
3 #include "stdlib.h"
4 #include "unistd.h"
5 #include "string.h"
6 #include <cadna.h>
7

8 /* This function is used to read the Time Stamp Register*/
9 static inline unsigned long long getrdtsc(void)

10 {

82

A.3 Benchmarks

11 unsigned long long x;
12

13 #if defined (__i386__)
14 __asm__ __volatile__ ("rdtsc" : "=A" (x));
15 #elif defined (__x86_64__)
16 unsigned int tickl, tickh;
17 __asm__ __volatile__ ("rdtsc" : "=a" (tickl), "=d" (tickh));
18 x = ((unsigned long long)tickh << 32) | tickl;
19 #else
20 #warning "Architecture not yet supported in ASM"
21 #endif
22 return x;
23 }
24

25 int main()
26 { /*local variables*/
27 double_st e1[4];
28 long long unsigned ix;
29 long long unsigned xtra = 40;
30 long long unsigned i;
31 long long unsigned n1mult = 100;
32 long long unsigned n1 = 1200;
33 double_st t = 0.49999975; /* Stochastic double instead of double */
34 double_st t0 = t; /* Stochastic double instead of double */
35 double_st t1 = 0.50000025; /* Stochastic double instead of double */
36 double_st t2 = 2.0; /* Stochastic double instead of double */
37 e1[0] = 1.0;
38 e1[1] = -1.0;
39 e1[2] = -1.0;
40 e1[3] = -1.0;
41 unsigned long long int start_tsc, stop_tsc;
42

43 /* Inititialize CADNA enabling all numerical instability checks */
44 cadna_init(-1);
45

46 start_tsc = getrdtsc(); /* Read the Time Stamp Counter */
47 /* The variables xtra, n1 and n1mult were tuned to let the execution
48 loop run more than 30 sec */
49 for (ix=0; ix<xtra; ix++)
50 {
51 for(i=0; i<n1*n1mult; i++)
52 {
53 e1[0] = (e1[0] + e1[1] + e1[2] - e1[3]) * t;
54 e1[1] = (e1[0] + e1[1] - e1[2] + e1[3]) * t;
55 e1[2] = (e1[0] - e1[1] + e1[2] + e1[3]) * t;
56 e1[3] = (-e1[0] + e1[1] + e1[2] + e1[3]) * t;
57 }
58 t = 1.0 - t;
59 }
60 t = t0;
61

62 stop_tsc = getrdtsc(); /* Read the Time Stamp Counter */
63 printf("e[3]=%s\n", strp(e1[3]));
64 /* MFLOPs = xtra * n1 * n1mult * 16 operations / elapsed time(in micro sec) */
65 printf ("MFLOPs = %g\n", (float)(xtra * n1 * n1mult * 16) / ((stop_tsc - start_tsc)/2200));

83

A Appendix

66 cadna_end();
67 }

Listing A.4: The benchmark used to evaluate the performance of the processor when using
CADNA

A.4 Numerical Analysis Debugging Script

The TCL script in Listing A.5 is used to facilitate communicating to the board. Upon loading
XMD with the script (source script.tcl), the two PowerPCs start the execution of the
executables. When an exception is caught, a call to more_details prints out more info about
the exception. Continuing from an exception is possible using proceed function.

1 #Connect to the first processor
2 connect ppc hw -debugdevice cpunr 1 fputype dp
3 #Disable resetting the processors upon downloading the executables\
4 #otherwise elf_verify would fail!
5 debugconfig -reset_on_run disable
6 #Download the first executable
7 dow ./cestac_check1/executable.elf
8 #Set the safemode in the XMD to on, i.e. stop at trapped exceptions
9 safemode on

10

11 #Connect to the second processor
12 connect ppc hw -debugdevice cpunr 2 fputype dp
13 #Disable resetting the processors upon downloading the executables\
14 otherwise elf_verify would fail!
15 debugconfig -reset_on_run disable
16 #Download the second executable
17 dow ./cestac_check2/executable.elf
18 #Set the safemode in the XMD to on, i.e. stop at trapped exceptions
19 safemode on
20

21 #Switch to the first PowerPC
22 targets 0
23 #Set a breakpoint at main
24 bps main
25 #Continue till the breakpoint is reached
26 con
27 #Update is used to force finishing "con" before proceding to the next line
28 update
29 #Set the mode to non-autonomous and enable exceptions, i.e. set the\
30 #bits FE0, FE1, FP in the msr to ’1’
31 rwr msr 0x2900
32 #rwr msr 0x2000; #would be used instead in the autonomous mode
33 #Continue execution
34 con
35 #Do the same for the other processor
36 targets 1

84

A.4 Numerical Analysis Debugging Script

37 bps main
38 con
39 update
40 rwr msr 0x2900
41 #rwr msr 0x2000; #would be used instead in the autonomous mode
42 con
43

44 #This function is used to read the syndrome register and state the type of the\
45 #caught exception.
46 proc more_details args {
47 targets 0
48 set reg [mrd 0xc9200000]
49 if {$reg=="C9200000: BBBBBBBB\n"} {
50 puts "Branching instability"
51 }
52 if {$reg=="C9200000: DDDDDDDD\n"} {
53 puts "Insignificant divisor"
54 }
55 if {$reg=="C9200000: 1F1F1F1F\n"} {
56 puts "Insiginificant multiplication operand"
57 }
58 if {$reg=="C9200000: 10551055\n"} {
59 puts "Loss of accuracy"
60 }
61 if {$reg=="C9200000: CACECACE\n"} {
62 puts "Cancellation"
63 }
64 }
65

66 #This function is to be called upon the willingness of resuming the execution\
67 #after catching an exception
68 proc proceed args {
69 targets 0
70 set temp 0x[string replace [rrd pc] 0 7];
71 set pc [string trimright $temp];
72 bps $pc;
73 con;
74 update
75 rwr msr 0x2000;
76 stp;
77 rwr msr 0x2900;
78 targets 1
79 bps $pc;
80 con;
81 update
82 rwr msr 0x2000;
83 stp;
84 rwr msr 0x2900;
85 con
86 targets 0
87 con
88 }

Listing A.5: The Numerical Analysis Debugging Tool

85

Bibliography

[ACM04] R. Avot-Chotin, H. Mehrez. Hardware implementation of discrete stochastic
arithmetic. Numerical Algorithms, pp. 21–33, 2004. (Cited on pages 9, 13, 23 and 24)

[boo02] Book E: Enhanced PowerPC Architecture, 2002. (Cited on pages 28, 46 and 55)

[cad] CADNA for C/C++ source codes. Laboratoire d’Informatique de Paris 6 Université
Pierre et Marie Curie - Paris 6 Paris, France. URL http://www.lip6.fr/cadna.
(Cited on page 21)

[Che] J.-M. Chesneaux. Validité du logiciel numérique. URL http://www-pequan.lip6.
fr/~jmc/polycopies/poly_vln.pdf. (Cited on page 18)

[Cli01] H. E. Cline. IBM PowerPC 440 Microprocessor Core Programming Model
Overview. Technical report, IBM Microelectronics, 2001. (Cited on page 55)

[CM] R. Chotin, H. Mehrez. Hardware implementation of a method to control round-off
errors. (Cited on page 23)

[iee08] IEEE Standard for Floating-Point Arithmetic. Technical report, Microprocessor
Standards Committee of the IEEE Computer Society, 3 Park Avenue, New York,
NY 10016-5997, USA, 2008. doi:10.1109/IEEESTD.2008.4610935. URL http://dx.
doi.org/10.1109/IEEESTD.2008.4610935. (Cited on page 17)

[JC08] F. Jézéquel, J. M. Chesneaux. CADNA: a library for estimating round-off error
propagation. Computer Physics Communications, 178(12):933–955, 2008. (Cited on
page 21)

[Li10] W. Li. Numerical Accuracy Analysis in Simulations on Hybrid High-Performance
Computing Systems. Technical report, Institue of Parallel and Distributed Systems,
University of Stuttgart, 2010. (Cited on pages 27, 34 and 36)

[Mil] T. Miller. PPC440 Processor User’s Manual. (Cited on page 55)

[Vig93] J. Vignes. A stochastic arithmetic for reliable scientific computation. Math. Comput.
Simul., 35:233–261, 1993. doi:10.1016/0378-4754(93)90003-D. URL http://dl.acm.
org/citation.cfm?id=165789.165792. (Cited on pages 19 and 20)

[Vig04] J. Vignes. Discrete Stochastic Arithmetic for Validating Results of Numerical
Software. 37(1–4):377–390, 2004. URL http://ipsapp009.kluweronline.com/
IPS/content/ext/x/J/5058/I/58/A/31/abstract.htm. (Cited on pages 18, 20

and 39)

87

http://www.lip6.fr/cadna
http://www-pequan.lip6.fr/~jmc/polycopies/poly_vln.pdf
http://www-pequan.lip6.fr/~jmc/polycopies/poly_vln.pdf
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dl.acm.org/citation.cfm?id=165789.165792
http://dl.acm.org/citation.cfm?id=165789.165792
http://ipsapp009.kluweronline.com/IPS/content/ext/x/J/5058/I/58/A/31/abstract.htm
http://ipsapp009.kluweronline.com/IPS/content/ext/x/J/5058/I/58/A/31/abstract.htm

Bibliography

[VP74] J. Vignes, M. L. Porte. Error Analysis in Computing. In IFIP Congress’74, pp.
610–614. 1974. (Cited on page 19)

[Xil] Xilinx. Standalone Board Support Package. (Cited on page 57)

All URLs were last followed on Nov. 1, 2011.

88

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Yousef Baroud)

	1 Introduction
	1.1 Motivation
	1.2 The Scope of Work
	1.3 Thesis Structure

	2 Review of Stochastic Discrete Arithmetic
	2.1 Floating Point Representation
	2.2 Discrete Stochastic Arithmetic
	2.2.1 The CESTAC Method
	2.2.2 Informational Zero
	2.2.3 Stochastic Relations

	2.3 CADNA Library
	2.3.1 Technical Deception
	2.3.2 Numeric Example Using CADNA

	2.4 Hardware Implementation by Avot-Chotin and Mehrez

	3 System Model
	3.1 Stochastic Floating Point Unit
	3.1.1 Description and Features
	3.1.2 Technical Information

	3.2 Numerical Analysis Unit
	3.3 System Model

	4 Hardware Implementation
	4.1 Significant Bits Estimation Unit
	4.1.1 Generic Data Path
	4.1.2 Simplified Data Path
	4.1.3 Synthesis and Performance Metrics
	4.1.4 Extendability
	4.1.5 Verification

	4.2 Comparison Support Unit
	4.3 Synchronization Unit
	4.4 NAU Controller and Syndrome Register
	4.5 Changes to The STFPUs
	4.5.1 Loading data to NAU
	4.5.2 Support for Stochastic Relations
	4.5.3 Raising Exceptions to The PowerPC
	Floating Point Exception Modes in The PowerPC
	Raising NAU Exceptions to The PowerPC
	Design Generics and Configurations

	4.6 System Integration
	4.6.1 Detailed System Architecture and Performance Metrics
	4.6.2 Testing and Simulation

	5 Software and Debugging Support
	5.1 Interrupt Classification in The PowerPC
	5.2 Program Interrupt Processing
	5.3 Exception Management on The Software Level
	5.4 Localizing and Getting More Info About The NAU Exceptions
	5.4.1 XMD
	First Approach: Localize the source of exception and abort
	Second Approach: Localize the source of exception and resume

	5.4.2 GDB

	6 Performance Evaluation
	6.1 FP Performance Benchmark
	6.2 Configuration of The Components
	6.3 Xilinx FPU Vs. STFPU
	6.4 STFPU Vs. STFPU with NAU Attached
	6.5 The Proposed Architecture Vs. CADNA

	7 Conclusion and Future Work
	A Appendix
	A.1 Look-up Tables
	A.1.1 Look-up Tables Entries – The Generic Data Path
	A.1.2 Look-up Tables Entries – The Simplified Data Path

	A.2 C Code emulating SBEU
	A.3 Benchmarks
	A.3.1 Evaluating The Hardware Architecture
	A.3.2 Evaluating The Software Solution
	Without CADNA
	With CADNA

	A.4 Numerical Analysis Debugging Script

	Bibliography

