
⋄•⋄• ⋄• ⋄• ⋄• ⋄• ⋄• ⋄• ⋄•

⋄•
⋄•
⋄•⋄
•
⋄•⋄
•
⋄•
⋄•

⋄•⋄•⋄•
⋄•⋄•⋄
•⋄•

⋄•⋄• ⋄•
⋄• ⋄•⋄• ⋄•
⋄• ⋄•⋄
•

⋄•
⋄• ⋄•⋄
•

⋄•
⋄•

⋄•

⋄•
⋄•

⋄•

⋄•

⋄•

⋄•⋄•⋄•
⋄•⋄•⋄
•⋄•

⋄•⋄•⋄•
⋄•⋄• ⋄•⋄•
⋄•⋄• ⋄

•

⋄•
⋄•⋄• ⋄

•

⋄•
⋄•

⋄•

⋄•
⋄•
⋄•

⋄•

⋄•

⋄•⋄•⋄•⋄•⋄•⋄•⋄•

⋄•⋄•⋄• ⋄•⋄• ⋄•
⋄•
⋄•⋄• ⋄•

⋄•
⋄•⋄• ⋄•

⋄•
⋄•

⋄•

⋄•
⋄•
⋄•

⋄•

⋄•

⋄•⋄•⋄•⋄•⋄•⋄•⋄•

⋄•⋄• ⋄•⋄• ⋄•⋄•
⋄•

⋄• ⋄•⋄•
⋄•

⋄• ⋄•⋄•
⋄•

⋄•

⋄•

⋄•
⋄•

⋄•

⋄•

⋄•

Universität Stuttgart
Institut für Parallele und Verteilte Systeme
Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Master Thesis

Concepts for an Intuitive User Interface
for DLNA Using NFC Technology

Autor: Pinglei Wang

Matr.-Nr.: 2382412
Ausgabe: 07.04.2011
Abgabe: 07.10.2011

Betreuer: Dr. Frank Dürr, Klaus Röhrle(Sony)

Abstract

Consumption of digital media is dramatically increased by the development of conventional
connectivity technologies and the advent of home entertainment appliances. The evolution of
networking technology, hardware development and advanced services leads to an increased
sophistication of device manipulation and long learning curves for average users.

DLNA standardizes the interoperablity between media devices over a framework. With the
help of personal handheld devices and smart phones, a ubiquitous media network is formed at
home or on the road. NFC is a radio technology bridging physical and digital world, which is
now widely deployed in a varied number of application scenarios to ease Human-Computer
Interaction.

This master thesis proposes a system architecture based on the confluence of DLNA archi-
tecture and NFC technology to facilitate simple, intuitive and impromptu interaction with
media devices. This NFC-enabled DLNA Communication system architecture defines a
communication model which delivers the vision of NFC as the enabler of DLNA control
and communication, a network model, a set of diverse device functional components, a set of
dedicated devices and baseline principles of system architecture. Based on the generic sys-
tem architecture, a research is explored on A/V and image media sharing, UI retrieval, media
uploading/downloading and print document application fields. Six use cases are proposed,
they share the properties and principles defined in the system architecture and additionally
they maintain their own use case specific features and their proprietary NFC data formats.
Among them two use cases are explained in more detail. One use case, A/V Handover, deliv-
ers a consistent "tap and exchange" scenario. The other use case, Control Handover, grants
users an instantaneous access to the control UI.

A prototype implementation between smart devices or home appliances are presented show-
casing an instantaneous, rapid and spontaneous media sharing and management application.
Following the design paradigm presented in this thesis, more use cases in specific application
fields are easily to be implemented.

Contents

1. Introduction 6
1.1. Background . 6
1.2. Objectives . 8
1.3. Thesis Outline . 8

2. Background and Related Work 9
2.1. DLNA (Digital Living Network Alliance) 9

2.1.1. DLNA Overview . 9
2.1.2. Networking . 9
2.1.3. Media Transport and Media Formats 10
2.1.4. UPnP and UPnP A/V . 10
2.1.5. DLNA Categories and Classes . 14
2.1.6. DLNA System Usage Models . 15

2.2. Near Field Communication . 16
2.2.1. NFC Overview . 16
2.2.2. Product Proliferation . 16
2.2.3. Types of Communication . 19
2.2.4. Storage of Application Data . 20

2.3. Related Work . 22

3. System Architecture 24
3.1. Design Criteria . 24
3.2. Network Model . 24

3.2.1. Device Functional Components . 25
3.2.2. Devices . 28
3.2.3. Portability of Devices . 31

3.3. Communication Model . 32
3.4. NFC Message . 34
3.5. Control Collision in P2P Mode . 35
3.6. Steps of Setting up DLNA Communication 36

4. Use Cases and Design Concept 38
4.1. Design Concept . 38
4.2. Use Case Proposal . 38
4.3. Audio/Video Handover Use Case . 40

4.3.1. DLNA A/V Handover Case Specific Terminology 40
4.3.2. DLNA A/V Handover Case Specific Principles 42
4.3.3. General Steps to Set up DLNA Connection 43
4.3.4. Context Reasoning Algorithm of Confirming Interaction Mode (Step 4) 43

Contents III

4.3.5. Determining Media Flow (Step 5) 47
4.3.6. Trace Back to Real Content Source (Step 6) 50
4.3.7. NDEF Structure . 51

4.4. DLNA Image Share Use Case . 63
4.5. DLNA Control Handover Use Case . 66

4.5.1. NDEF Structure . 67
4.6. DLNA Upload/Download Use Case . 72

4.6.1. Upload and Download Capabilities 72
4.6.2. Usage . 73
4.6.3. NDEF Structure . 74

4.7. DLNA Synchronization Use Case . 76
4.8. DLNA Print Document Use Case . 77

5. Implementation 78
5.1. Development Environment . 78

5.1.1. Platform . 78
5.1.2. Android DLNA Tools . 79
5.1.3. Android NFC Tools . 82
5.1.4. Development Environment . 82
5.1.5. Development Network Layout . 82

5.2. Preliminary Notes on NFC . 83
5.2.1. NFC On Android . 83
5.2.2. NFC P2P Mode and NPP . 83

5.3. System Implementation . 83
5.3.1. NFC Application Implementation: NfcRW 84
5.3.2. NFC DLNA Cooperation Logic Implementation 89
5.3.3. DLNA Application Implementation 102

5.4. Enhancement . 105
5.4.1. Automatic Launch . 105
5.4.2. Preference Settings . 106

6. Evaluation 107
6.1. Test Cases . 107

6.1.1. Phone-to-Phone Communication . 108
6.1.2. Phone-to-TV Communication . 112
6.1.3. Phone-to-Server Communication . 112
6.1.4. Phone-to-PC Communication . 112

6.2. Open Issues . 112

7. Summary and Outlook 114
7.1. Summary . 114
7.2. Future Work . 115

A. Appendix 116
A.1. DDD of Sony Bravia KDL 32EX500 . 116
A.2. Tools Evaluation . 119
A.3. NfcRW Package Information . 122

IV Contents

A.4. Code Snippet: Provider’s MR and Controller’s MR are playing 123

List of Tables 132

List of Figures 132

Bibliography 135

Acronyms

The following acronyms are used in this thesis:

+DN+ Download Capability

+PU+ Push Controller

+UP+ Upload Capability

A/V Audio Video

ADT Android Development Tools

API Application programming interface

ARM Advanced RISC Machines

ARP Address Resolution Protocol

ASK Amplitude Shift Keying

AVT AV Transport Service

BSSID Basic service set identification

CDS Content Directory Service

CE Consumer Electronics

CMS Connection Management Service

CP Control Point

DCP Device Control Protocol

DDD Device Description Document

DHCP Dynamic Host Configuration Protocol

DIDL Digital Item Declaration Language

DLNA Digital Living Network Alliance

DMC Digital Media Controller

DMP Digital Media Player

DMR Digital Media Renderer

DMS Digital Media Server

GENA Generic Event Notification Architecture

GUI Graphical User Interface

HAVi Home Audio Video interoperability

HES Home Electronic System

HID Home Infrastructure Device

HND Home Network Device

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

I/F Interface

2 Contents

IP Internet Protocol

JNI Java Native Interface

LAN Local Area Network

LLCP Logical Link Control Protocol

M-DMD Mobile Digital Media Downloader

M-DMP Mobile Digital Media Player

M-DMS Mobile Digital Media Server

M-DMU Mobile Digital Media Uploader

MB Message Begin

ME Message End

MHD Mobile Handheld Device

M-NCF Mobile Network Connectivity Function

MIME Multipurpose Internet Mail Extensions

MIU Media Interoperability Unit

MoCA Multimedia over Coax Alliance

MRCP Media Renderer Control Point

MSCP Media Server Control Point

NAS Network Attached Storage

NDK Native Development Kit

NFC Near Field Communication

NFC-DEP NFC Data Exchange Protocol

NGN Next Generation Network

NDEF NFC Data Exchange Format

NPP NDEF Push Protocol

OSGi Open Services Gateway Initiative

OSI Open Systems Interconnection

RAM Random-Access Memory

RFID Radio-Frequency Identification

RFU Reserved for Future Use

RCS Rendering Control Service

RTD Record Type Definition

RTP Real-time Transport Protocol

RTSP Real-Time Streaming Protocol

RUI Remote User Interface

PDA Personal Digital Assistant

Contents 3

SCPD Service Control Protocol Description

SDD Service Description Document

SE Secured Element

SOAP Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

SSID Service Set Identifier

TCP Transmission Control Protocol

TNF Type Name Format

UDP User Datagram Protocol

UI User Interface

UPnP Universal Plug and Play

UPnP AV UPnP Audio/Video

UDA UPnP Device Architecture

UDN Unique Device Name

URI Uniform Resource Identifier

URL Uniform Resource Locator (this is a special case of an URI)

UUID Universally unique IDentifier

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

X_DLNA Extensible DLNA

4 Contents

Glossary

The following terms are defined in this thesis:

Active Controlling Component refers to the functioning DLNA Controlled Component
that is controlled by a DLNA Controlling component albeit multiple DLNA Controlled
Components are encapsulated into the same device.

Content/Media Holder is depicted to represent a DLNA Component that can send media
to other DLNA Component from use’s view. DLNA controlling devices in the network
would find out the real Content Source, i.e. server devices.

Content Receiver is an endpoint that consumes content received via a network transfer
from another endpoint[1].

Content Source is an endpoint that places content onto the network for transfer to another
endpoint [1].

Content/Media Target refers to the source receiver and playback side of Content/Media
Holder.

Control Point is an entity that uses the services that exposed to it from UPnP devices. A
control Point can invoke actions on services, set the input parameters and read out
output parameters. In addition, control point can discover UPnP enabled devices, sub-
scribe events at devices.

Controller is a device which receives and parses information from Provider via NFC. It ex-
tracts information related to DLNA control from Provider and utilizes this information
to set up DLNA control. It includes at least one of the 12 DLNA device classes.

Controlled Device is a type of devices provide services to controlling devices.

Controlling Device is a type of devices based on UPnP which are able to control Controlled
devices.

Destination Device is the device that a Provider intended to interact with and the infor-
mation is provided by Provider. It is used for Controller to identify the information
provided from Provider.

Device Functional Component Or Device Component, is a set of device functions re-
gardless of physical attributes.

Device Identification information is the information for a device to identify itself, for
instance UDN, Friendly Name.

Device Reference/Copy is the device identification information provided in an NFC Fo-
rum Tag (or NFC Forum Deivce in Card Emulation Mode), which points to another
device as if this tag is attached to that device.

DLNA Component is a DLNA Device Functional Component, which can be one of the
following types: DLNA Controlling, DLNA Controlled, DLNA Logic

DLNA Controlled Component is a functional block that implements one of the device
classes explained in 2.1.5. The device classes here are a subset of the defined ones, only
DMS, DMR, DMPr, M-DMS, M-DMP are within the selection. DLNA Controlled
Device Component implements one of the classes in the subset.

Contents 5

DLNA Controlling Component is a functional block in a device referring to the device
function UPnP Control Point (UPnP CP) or UPnP Printer Control Point (PrCP) defined
in DLNA guideline [1]. It can also refers to DLNA device classes M-DMD, and M-
DMU.

DLNA Logic is a functional block which can perform a control procedure against DLNA
Controlled Device Component functioning together with DLNA Controlling Device
Component. Generally, this DLNA Logic Component runs as a context reasoning
component together with DLNA Controlling Component in a device. DLNA Logic
Component is customized from case to case.

DLNA Renderer refers to DMR, M-DMP, or DMP

DLNA Server refers to DMS or M-DMS.

Interactor is the actual final device that interacts with Provider’s specified Local Device.

Local Device is a local device at Provider from Provider’s view, it is denoted for Controller
to identify the device information provided from Provider.

Media Item refers to an entity, for instance audio media item or audio/video media item in
A/V Handover use case, that users perceive as a single piece of content for consump-
tion.

Media Flow in A/V Handover use case refers a conceptual media transfer flow from users’
perspective. It is different from Streaming Flow.

NFC-enabled DLNA Network is a network where NFC is the enabler to trigger DLNA
communication or control.

NFC Communication Pair defines types of NFC Components of two devices, between
which an NFC communication can be set up.

NFC Component is a functional block in a device, which is in charge of NFC transactions.

OTHER It is a device which is not involved in an NFC transaction at the time when Provider
and Controller are interacting with each other. It includes at least one of the 12 DLNA
device classes and may contain NFC functionalities.

Provider is a device which provides information to Controller via NFC for setting up DLNA
control. It includes at least one of the 12 DLNA device classes.

Streaming Flow is denoted as the flow of sending audio or audio/video resource from a
Content Source to a Content Receiver[1].

1. Introduction

During the last ten years, the evolution of systems, networks and hardware enables new sce-
narios of connectivity possibilities, increased media consumption and emergence of inclusive
devices or technologies. The evolution at the same time increases the sophistication of user
interaction to average users without related expertise. Traditional manipulation methods do
not meet the demands in this rapid evolution, a new method that can leave average users out
of the complexity is expected. There is considerable research and development in the inter-
operability of a ubiquitous network or pervasive network. This thesis presents two appealing
technologies, NFC and DLNA, and addresses the convergence of these two technologies to
facilitate easy, intuitive, impromptu and application specific user interaction.

This chapter presents a short background of two technologies, and discusses the objective of
the project, scope and intended audience. Finally, the structure of the thesis is outlined.

1.1. Background

Since the introduction of analog television in households in the late 1950s and early 1960s,
media and entertainment have become one of the most favorite activities at homes. In the late
1990s, the new media and information technologies and the emerging Internet technology
have boosted the demands on digital media [2]. In recent years, conventional connectivity
technologies like Wi-Fi or Ethernet have changed the traditional applicable area of home ap-
pliances, more and more home appliances are able to interconnect with each other. Unlike
before devices in households are interconnected together. The confluence of home network-
ing and digital media management brings new application scenarios, but also results in the
lack of an interoperable framework due to the proliferation of media formats and complexity
of operation against media devices.

The initial purpose of Digital Living Network Alliance (DLNA) [3] is proposed to stan-
dardize the interoperability of networked home entertainment appliances in a home network.
There have been always many efforts in forming a standardized integrated architecture for
home entertainment appliances, besides DLNA such as HAVi (Home Audio Video interop-
erability) [4], HES (Home Electronic System) [5], X10 [6], OSGI (Open Services Gateway
Initiative) [7].

DLNA is a non-profit collaborative trade organization that comprises member companies
in the mobile, consumer electronics, PC and service provider industries. The mission of
the alliance is to create guidelines based on standardized technology in order to facilitate
consumers to share media resources. Various device classes implement DLNA technology
allowing media sharing within a home network.

The DLNA goal is to turn the isolated digital islands into interoperable interconnected de-
vices. The digital islands are differed from the network connectivity, types of transmitted

8 Introduction

payload, or perhaps the purpose of the product usage. See Figure 1.1 for the vision, there is
a group of devices composed of mobile devices, which can be connected with other CEs via
DLNA architecture.

Figure 1.1.: Digital Islands [8]

DLNA complied application shortens the learning curve of operation against media devices,
however, for certain specific application scenarios the interaction is still not intuitive and re-
quires related expertise. A various number of researches are dedicated to minimizing user’s
learning effort in specific application areas. An intriguing technology, Near Field Commu-
nication (NFC), is prevalent recently known for its natural and instantaneous interaction, as
well as low friction setup.

NFC is a contactless communication technology being standardized by the NFC Forum [9].
The technology is based on ISO/IEC 18092 [10] and ISO/IEC 14443 [11]. The NFC Forum
announced the start of a certification program since late 2010, and first NFC devices are
brought into the market. It is expected that NFC technology will be mainly used in mobile
phones, but also in other consumer electronics like TVs, laptops and accessories. At present,
NFC technology is widely used in network configuration, advertising, information exchange.
NFC is compatible with existing contactless smartcard technologies used for identification,
payment, access control and ticketing.

People expect ubiquitous network connectivity at home and on the go. Mobile devices, such
as cell phones, portable players, are considered as intermittent devices extending the home
network with their portability natures. The increased difficulty of management of media re-
sources promotes the adoption of smart devices in media management area. NFC technology
is expected in the foreseeable future to be used widely in mobile phones. The current trend
is toward the development of mobile devices with built-in NFC chip. DLNA guideline [1]
defines a dedicated device category of mobile devices. Multimedia featured phones, Sony
Ericsson phones for instance, have already included built-in DLNA functions.

Advantageously NFC (known as "shortcut" technology) is simple and inherently secure (se-
cure in the sense of its communication range which is too close not to discover the attack)
to use since all the transactions are done by one physical touch, and the DLNA technology
promises a seamless, interoperable methodology to form a uniform home network. Both of

1.2 Objectives 9

them are already promising and appealing with their existing properties respectively. The
idea of combining both of them appears feasible and compelling.

By combining NFC with DLNA (and possibly other technologies like Wi-Fi, Bluetooth),
NFC can be used for initiating DLNA media sharing,handing over DLNA device control,
managing DLNA media resource and allowing very user friendly implementations. NFC can
be an enabler technology simplifying complex scenarios that are possible with DLNA but
which cannot be achieved by the average user due to the complexity of the operation. By
combining NFC and DLNA the setup operation can become simpler to use, especially for
technologically inexperienced consumers.

1.2. Objectives

This master thesis evaluates and researches the methodology of interfacing NFC technology
to DLNA in detail. Because DLNA devices can take different roles (Media Server, Media
Player, Media Renderer, Control Point etc.) and NFC Forum devices can work in different
modes (Peer-to-Peer Mode, Reader/Writer Mode, Card Emulation Mode), there are various
combination options that can be implemented. This master thesis will investigate possible
options to be deployed in different scenarios, look into potential benefits and problems in de-
tail, and propose a recommendation on how DLNA and NFC should be implemented taking
different CE product categories into account. The master thesis will also address the methods
to improve NFC/DLNA interoperability to achieve a consistent user experience.

This thesis aims to benefit those interested in ubiquitous networking, pervasive computing,
home automation, smart devices or Android platform.

1.3. Thesis Outline

Chapter 2 introduces the fundamental background knowledge required for the rest of the
thesis and presents a survey of related work in the field of confluence of NFC and DLNA,
or similar technologies. Chapter 3 defines a general system architecture and communication
model. Chapter 4 enumerates a set of application-specific use cases, and looks further into
each use case proposal. The NFC data format design is explored for each use case. Chapter
5 shows a prototype implementation of two use cases. Chapter 6 evaluates and testifies the
implementation, and proposes the improvements which were found during implementation.
Finally, Chapter 7 presents an outlook on the potential related future work and draws the
conclusion.

2. Background and Related Work

This chapter gives an overview of DLNA Architecture and NFC technology. The technology
details that are relevant to this thesis are introduced in this chapter.

The last section presents a survey of related work of the convergence of NFC and DLNA
technology.

2.1. DLNA (Digital Living Network Alliance)

2.1.1. DLNA Overview

"DLNA was formed in 2003 to enable cross-industry convergence of multimedia content in
home networks. At its core, its goal is to enable a wired and wireless interoperable home
network where digital content in the form of images, music and video can be easily and
seamlessly shared across personal computers, consumer electronics and mobile devices."
[12]

DLNA does not introduce and specify new protocols, instead it is built upon a collection
of existing protocols. Figure 2.1 illustrates the functional components addressed in DLNA
Guideline [1] and their technology ingredients. In the subsequent subsections further expla-
nations will be given on thses technologies. Notwithstanding no new protocol is introduced,
DLNA guideline defines an interoperable and manageable framework so that all the protocols
and standards can work together seamlessly.

DLNA Guideline[1] in addition defines twelve device classes, three device categories, vari-
ous system usages on users’ behalf, and additional capabilities which enhance users’ experi-
ence.

Finally, DLNA also offers DLNA Certification to testify and standardize DLNA Certified
Products for market standardization and acceleration.

2.1.2. Networking

Network connectivity addresses the solution of physical connection. The underlying physical
network can be either wired or wireless, as shown in Figure 2.1.

Network Stack addresses how the devices communicate with each other. The IPv4 Protocol
Suite are applied in the DLNA architecture. The main industry-standard protocols in the IPv4
Protocol Suite are: IP [13] [14] (Internet Protocol), TCP [15] (Transmission Control Proto-
col), UDP [16] (User Datagram Protocol), ICMP [17] (Internet Control Message Protocol),
and ARP [18] (Address Resolution Protocol). Devices are addressed in IPv4 format.

2.1 DLNA (Digital Living Network Alliance) 11

Network Connectivity

Network Stack

Device Discovery &
Media Management
and Remote UI

Media Transport

Media Formats

Figure 2.1.: DLNA Functional Components.

2.1.3. Media Transport and Media Formats

Media Transport functional block addresses how the media content is transferred. As stated
in [19]: "In accordance with current Internet Practice, where the majority of video traffic
is currently carried using HTTP (HTTP 1.0 [20] and HTTP 1.1 [21]) over TCP, the DLNA
architecture relies on HTTP and TCP to transfer content from source to receiving devices."
Besides HTTP, the DLNA architecture also uses RTP [22] (Real-Time Transport Protocol)
over UDP, and RTSP [23] (Real Time Streaming Protocol) for session control.

The Media Formats Component describes how the media content is formatted and encoded
in the DLNA Architecture.The UPnP AV does not limit the content formats, thus a very wide
range of formats are supported. While DLNA guideline[1] specifies the supported media
range. The DLNA Architecture supports specified image media formats, specified audio
formats, specified Audio/video formats, and specified collection, container formats, as well
as print document formats. Along with each media format, a DLNA Protocol Information
field should be presented. See the following example:

audio/mpeg:DLNA.ORG_PS=1;DLNA.ORG_CI=0;DLNA.ORG_OP=01;DLNA.
ORG_PN=MP3;DLNA.ORG_FLAGS=01700000000000000000000000000000

The DLNA Data Format guideline [24] describes all the supported media formats.

2.1.4. UPnP and UPnP A/V

UPnP (Universal Plug and Play) Device Architecture 1.0 [25] and UPnP AV 1.0 [26] are the
core DLNA functional blocks. They are mainly used for media distribution, device discovery,
device control and media management.

12 Background and Related Work

UPnP

UPnP is used for device discovery and device control in DLNA Architecture as stated in
DLNA Guideline [1].

UPnP architecture featured with zero-configuration and automatic discovery, ad-hoc net-
working, programmatic and manual device control properties, is formed in October 1999.
It is promoted by UPnP Forum initiative[27] and has more than 954 leading companies in-
volved (till Oct. 2011).

The UPnP architecture is designed to implement a pervasive network connectivity at homes,
office and every local networks. It leverages the existing technologies and protocols as out-
lined in Figure 2.2. Those technologies and protocols are the baseline for the further ad-
dressing, discovery, description, control, eventing and presentation capabilities. With these
capabilities the UPnP technology-enabled devices can seamlessly communicate with each
other.

The UPnP architecture is primarily a set of protocols and can be developed on any
platform[28].

Figure 2.2 illustrates all the UPnP functionalities.

Figure 2.2.: UPnP Functionalities[29]

• UPnP Nomenclature: Device, Service, Action, Control Point are the abstraction of
UPnP technology.

– Device: A UPnP Device is an entity that implements UPnP specified protocols.
A device can contain several embedded UPnP devices. A device provides one or
more services. A device exposes its services to control point.

– Service: It is implemented by UPnP devices, and it contains a set of actions.
Service is like a collection of APIs in OOP (Object Oriented programming) lan-
guage.

2.1 DLNA (Digital Living Network Alliance) 13

– Action: It accepts zero or more input parameters and it returns zero or more
output parameters. Action is like a method in OOP language.

– Control Point: A Control Point is an entity that uses the services that exposed
to it from UPnP devices. A control Point can invoke actions on services, set the
input parameters and read out output parameters. In addition, control point can
discover UPnP enabled devices, subscribe events at devices.

• UPnP Phases: All UPnP devices follow the following steps, see Figure 2.3:

– Advertising/Addressing: The first time a UPnP Device joins the network, it ac-
quires an IP-based network address so that other devices or control points can
communicate with it.
The addresses are acquired through DHCP [30] (Dynamic Host Configuration
Protocol). So all DLNA device must implement a DHCP client. In case the ab-
sence of DHCP Server in the network, devices obtain IP address through AUTO-
IP (an IP self-generation mechanism, the IPv4 address from the UPnP recom-
mended range between 169.254.1.0 and 169.254.254.255 [25]). Whenever a
DHCP server is found, the addressing method is switched back to DHCP method.

– Description: In this phase, device generates an XML-based file to expose its
properties, services and capabilities. The descriptor of device is abbreviated as
DDD [25] (See Appendix A.1 for an example DDD of Sony TV), and for service
description a term called SDD [25] is introduced. In addition, Control URL,
Event URL are supported.

– Discovery: In this phase, a discovery protocol, SSDP [31], is used to make
UPnP devices discovered by control points. The devices’ information would be
retrieved by control points.
Control points send M-SEARCH requests to the multicast address
(239.255.255.250:1900) its interested services or devices (SSDP Search).
See the following example from the implementation, which is looking for a
Media Renderer device of DLNA v1:

M-SEARCH * HTTP/1.1
Host: 239.255.255.250:1900
Man: ssdp:discover
MX: 3
ST: urn:schemas-upnp-org:device:MediaServer:1

All the devices listens to the multicast address, when a device finds that it is
the targeted device or contains the targeted service, it will send a M-SEARCH
Response back to the control point in a Uni-cast communication way. Control
point can retrieve device’s information by visiting LOCATION URL for more
detailed DDD. See example below, which is captured from the implementation
results:

HTTP/1.1 200 OK
CACHE-CONTROL:max-age=1800
DATE:Mon, 01 Aug 2011 08:45:00 GMT
EXT:
LOCATION:http://43.196.178.53:50688/

14 Background and Related Work

ST:upnp:rootdevice
USN:uuid:c8377069c836-0101-8000-a21492f47ee8::upnp:rootdevice
SERVER:Windows/6.1 UPnP/1.0 SOHDms/2.0
X-AV-Physical-Unit-Info:pa="deatcs000lt978"
X-AV-Server-Info:av=5.0;hn="deatcs000lt978";cn="Sony
Corporation";mn="Sony HomeNetwork SDK";mv="2.0.00"

A message named NOTIFY message is used for a UPnP device to advertise its
presence. It is also a SSDP Alive Message.

Finally, a message used to exit Advertisements is called SSDP BYE-BYE mes-
sage.

For more information or examples, please see [31].

– Control: Control Point invokes actions that are provided by devices’ services.

– Eventing: When a state change occurs, the control point which has subscribed
this state from a device, will be notified.

– Presentation: Devices offer html-based administrative User Interfaces for control-
ling.

Advertising DiscoveryDescription

Presentation ControlEventing

Figure 2.3.: UPnP Phases

UPnP AV

UPnP Audio/Video (AV) is the media management solution for DLNA architecture.

In UPnP AV[26], two new device types, UPnP AV Media Server (MS) and UPnP AV Media
Renderer (MR), are introduced, as well as new services that are implemented by new devices.
CP manipulates against MS or MR and initializes the connection between MS and MR.
The subsequent communication (Out-of-Band communication) between MS and MR is not
controlled by CP.

1. Media Renderer (MR) [32] is a device with a new device type, which renders the media.
It implements the following services:

• ConnectionManager Service [33] [34]: allows control points to query the
playable transport protocols at MR, and current connection information.

2.1 DLNA (Digital Living Network Alliance) 15

• RenderingControl Service [35] [36]: provides control points the ability to adjust
playback properties, such as sharpness, Loudness, Brightness etc.

• AVTransport Service [37] [38]: is an optional service. If a MR supports this,
typically is the system model is in "Pull" mode [26]. It enables control points to
control the playback process, such as seek, play, stop, pause, change playback
resource etc.

2. Media Server(MS) [39] is a device with a new device type, which stores the media. It
implements the following services:

• ConnectionManager Service [33] [34]: allows control points to query the
playable transport protocols at MR, and current connection information.

• ContentDirectroy Service [40] [41]: allows control points to manage the content
directory against MS. Control Point can browse, search content in the form of
Media Items.

• AVTransport Service [37] [38]: is an optional service. If a MS supports this,
typically is the system model is in "Push" mode [26]. It enables control points
to control the playback process, such as seek, play, stop, pause, change playback
resource etc.

2.1.5. DLNA Categories and Classes

DLNA introduces three device Categories and twelve device classes for categorizing DLNA
products. Additional device capabilities and roles are also specified in [1].

DLNA guideline[1] defines DLNA Category as "a grouping of Device Classes that share
common environmental characteristics (requirements) with System Usages". There are three
categories defined:

1. Home Network Devices (HNDs): is a group of home network devices(stationary).

2. Mobile Handheld Devices (MHDs): is a group of home network devices(portable).
Compared to HNDs, MHDs have different requirements.

3. Home Infrastructure Device (HID): "supports interoperability between Device
Categories"[1].

HND category and MHD category differs from network interoperability layer and media data
formats layer.

The twelve device classes are derived from the device categories:

1. In HND category: DMS, DMR, DMP, DMC, DMPr, for more information please see
[1].

2. In MHD category: M-DMS, M-DMP, M-DMC, M-DMU, M-DMD, the intended
reader can refer to [1].

3. In HID category: M-NCF(Mobile Network Connectivity Function) provides a bridg-
ing function between MHDs and HNDs; MIU(Media Interoperability Unit) provides
the capability of transforming between the data formats supported on MHDs and data
formats supported on HNDs. For more information please see [1].

16 Background and Related Work

Additional device capabilities that described explicitly in DLNA guideline[1] are: Push
Controller (+PU+), Printing Controller-1 (+PR1+), Printing Controller-2 (+PR2+), Up-
load Controller (+UP+), Download Controller (+DN+), Upload Synchronization Controller
(+UPSYNC+), Download Synchronization Controller (+DNSYNC+), RUI Pull Controller
(+RUIPL+), RUI Source capability (+RUISRC+), RUI Sink capability (+RUISINK+), RUI
Controller (+RUICTRL+).

2.1.6. DLNA System Usage Models

DLNA guideline[1] defines 12 DLNA System Usage models for mapping all the possible
scenarios of DLNA application. They are: 2-Box Pull System Usage, 2-Box Push System
Usage, 3-Box System Usage, 2-Box Printing System Usage, 3-Box Printing System Usage,
Download System Usage, Upload System Usage, Upload Synchronization System Usage,
Download Synchronization System Usage, 2 Box RUI Pull with/without A/V System Usage,
3 Box UI only System Usage, 3 Box UI with A/V System Usage. Of which only 3-Box
System Usage, 3-Box Printing System Usage, Download System Usage, Upload System
Usage are in the scope of discussion. Figure 2.4 shows the 3-Box System Usage layout. For
others please refer to [1]. The following steps are performed in 3-Box System Usage:

DMR DMS/M-DMS

DMC/M-DMC

MRCP MSCP

UPnP CP

Content

IP Connectivity

IP Connectivity
IP Connectivity

MRD
MSD

UPnP Device UPnP Device

Media Transport
Client

Media Transport
Client

12

3

4:
Out-of-Band

Figure 2.4.: 3-Box System Usage

1. Controlling device browses or searches content on server device, and selects one.

2. Controlling device verifies renderer’s playback capabilities(via CMS service) to see
whether the selected content can be playback on the renderer. Controlling device sets

2.2 Near Field Communication 17

the resource(via AVT:setTransportURI) against renderer, a connection is set up be-
tween rendering device and server device.

3. Rendering device requests the content for playback against server.

4. Server begins to transport the content to rendering device. This is named Out-of-Band
transfer.

2.2. Near Field Communication

2.2.1. NFC Overview

NFC technology is easy to use and secured. It brings in the concept of intuitive interaction,
whereby users initiate data process by a simple touch.

NFC is a wireless connectivity and low power technology that enables convenient short-
range communication between electronic devices [42]. Communication operates on a carrier
frequency of 13.56 MHZ.It supports communication speeds of 106, 212 or 424 kbps.

NFC essentially evolves from conventional RFID technology, they differ in the following
aspects at physical layer and data link layer:

• At physical layer, NFC complies with ISO/IEC 18092 standard, ISO/IEC 14443 Type
A, Type B and JIS X 6319 [43]. The real RFID standard is ISO/IEC 15693 [44] which
NFC does not include. NFC operates only on a working frequency of 13.56 MHZ,
whereas RFID frequency range is from 125 KHZ (LF) to 2.45 GHZ (active) [45].

• NFC is known as proximity technology, which works in a very short range of 1 to 4
cm. Theoretically it can be up to 10 cm. Whereas RFID based device can function at
distance of up to more than 100 meters.

• NFC uses only ASK modulation scheme.

2.2.2. Product Proliferation

NFC Forum is an industry consortium formed in 2004 to advance the use of NFC technology
by developing specifications, guaranteeing interoperability among devices and services.

The NFC Forum differentiates between NFC Forum Devices and NFC Forum Tags.

NFC Forum Device

An NFC Forum Device is a device that complies with the High Level Conformance Require-
ments (which outlines the set of functionalities and features required to be supported by NFC
Forum-compliant devices [46]) and implements at least the mandatory parts of the NFC Fo-
rum Protocol Stack (Table 2.1) and at least the mandatory NFC Forum Operating Modes
[47].

18 Background and Related Work

ISO/OSI Layer NFC Forum
L4 and up: Transport, Session, Pre-
sentation, Application

Tag Type Platforms, SNEP [48],
NDEF [49], RTDs [50], Applica-
tions

L3: Network None
L2: Data Link LLCP [51]

Digital Protocol, Activity
L1: Physical Analog

Table 2.1.: NFC Forum Protocol Stack vs. OSI Protocol Stack [47]

The mandatory operating modes for NFC Forum devices is P2P (or Peer) Mode and Read-
er/Writer Mode, while Card Emulation Mode is optional. NFC Forum Device Requirements
specification [52] also defines further requirements which is not important to this thesis.

• Peer Mode: NFC Forum Device is in P2P mode when communicating with another
NFC Forum Device.

• Reader/Writer Mode: NFC Forum Device is in Reader/Writer mode when commu-
nicating with other NFC Forum Tags or contactless cards.

• Card Emulation Mode: Card Emulation can refer to emulate a secure card which
requires secure hardware in the NFC Forum Device or to tag emulation not requiring
such hardware. The secure Hardware is named Secure Element(SE). Figure 2.5 shows
the layout of a phone embedded with an NFC chip and a SE chip, SE chip is a discrete
chip from NFC chip.

Figure 2.5.: NFC Secure Element

NFC Forum Tag

An NFC Forum Tag can be any contactless component that an NFC Forum Device is capable
of accessing, as defined by one of the Type X (1 - 4) Tag operation specifications[47].

There are two different types of tag: Static Tag and Dynamic Tag.

• Static Tag means the content of tag can not change from time to time, since it does

2.2 Near Field Communication 19

not have a micro-controller attached to it. Its content can only be changed via external
NFC R/W or NFC Forum Device in R/W mode.

• Dynamic Tag: Enabling a new style NFC communication, Dynamic Tag is incorpo-
rated in devices and enables an instant and convenient data exchange.
As an example, an NFC Dynamic Tag product named also FeliCa Plug is considered.
FeliCa Plug [53] module consists of a Host CPU and RF antenna chip RC-S801/802
[54]. Host CPU module communicates with RC-S801/802 through Host Interface (I/F).
On RC-S801/802 a RAM is embraced, so that the Host CPU can update the content of
the RAM from time to time. Whenever there is an NFC R/W or an NFC Forum Device
in R/W mode in the near range, the magnetic field changes and that powers the tag up
to trigger the communication between R/W device and dynamic tag. See Figure 2.6
for the operations and layout.

Figure 2.6.: Left top shows the FeliCa Plug [55]; right top shows the communication
operation[55]; bottom shows the health care application example [55].

Figure 2.6 shows a typical application scenario of FeliCa Plug. It is often used in health
wellness area. Like in the picture, the dynamic tag is embedded in the pedometer, and
it updates the data from time to time. Whenever the data needs to be read out, an
up-to-date date will be transferred.

NFC Reader/Writer (Terminal)

NFC Reader/Writer is a device that can parse NFC Forum tags, smart cards or NFC Forum
device emulating a smart card [52]. There are different types of NFC Reader/Writer, station-
ary type for public transport payment, handheld type such as CASIO IT-800R-35 Handheld
[56], PC-linked type such as RFID/NFC reader/writer ACR122 [57], PaSoRi RC-S330 [58],
and any other devices with built-in NFC chips.

Passive Device and Active Device

A Passive Device can not generate its own RF field, it draws power from other device’s RF
field. An Active device can generate its own RF field.

20 Background and Related Work

In passive communication mode, one device generates the RF field, whereas in Active Com-
munication mode always the sender of message generates the field.

Devices can not be both passive and the active one shall generates the RF field. If both
devices are active, they generate the RF field alternatively.

In passive communication mode, data is sent using a weak load modulation [59]. Figure 2.7
shows the load modulation procedure. Due to the alternating magnetic field generated by
the reader’s antenna, a resonant transponder gains energy from it when placed within. By
measuring the voltage difference over the resistance at reader’s side, the amount of energy
transferred can be decided. With the supply of energy, the transponder can effect the voltage
changes at reader’s side by switching on and off the load resistance. If this switching is
determined by data stream, then it’s equivalent that data stream is transferred between these
two systems.

Figure 2.7.: Load Modulation[60]

NFC Forum Tag, contactless card, NFC Forum Device in Card Emulation mode are consid-
ered to be passive devices, i.e. they do not need power but are capable of drawing power
from active devices.

NFC Reader/Writer, NFC Forum Device in R/W mode and P2P mode are considered to be
active devices.

2.2.3. Types of Communication

Based on the concept of passive and active communication mode, NFC devices work in three
types of communication [61]:

1. Communication between NFC Forum Device and NFC Forum tag or contactless card,
which is a master/slave based communication model.

2. Communication between NFC Forum Devices, known also as peer-to-peer communi-
cation, which is a peer to peer communication model.

2.2 Near Field Communication 21

3. Communication between legacy NFC Reader/Writer and NFC Forum Tag or contact-
less card, which is a master/slave based communication model.

See Figure 2.8 for all the communication possibilities between NFC featured objects.

Reader
/Writer

NFC Forum Device

P2P
Card
Emulation

(mandatory)
(optional)(mandatory)

Reader
/Writer

NFC Forum Device

P2P
Card
Emulation

(mandatory)
(optional)(mandatory)

NFC Forum
Tag

NFC
Reader/
Writer

Figure 2.8.: NFC Communication Possibilities

2.2.4. Storage of Application Data

The Application Data stored in an NFC Forum Tag is wrapped into an NDEF message.

NDEF

The NFC Data Exchange Format (NDEF) specification defines a message encapsulation for-
mat to exchange information. NDEF is a lightweight, binary message format that can be
used to encapsulate one or more application-defined payloads of arbitrary type and size into
a single message construct. Each payload is described by a type, a length, and an optional
identifier [49]. NDEF record is the unit that carries the payload within the NDEF message.
One NDEF contains one or more NDEF records, see Figure 2.9. For an overview of NDEF

NDEF Message

R1 MB=1 ... RrR s R t ME=1

Figure 2.9.: NDEF Message with a Set of Records

message structure, see Figure 2.10. The fields in Figure 2.10 are defined as follows:

22 Background and Related Work

MB ME CF SR IL TNF

TYPE LENGTH

PAYLOAD LENGTH0

PAYLOAD LENGTH3

PAYLOAD LENGTH2

PAYLOAD LENGTH1

ID LENGTH

TYPE

ID

PAYLOAD

7 6 5 4 3 2 0...

NDEF
Header

Record
Header

Figure 2.10.: NDEF Record Layout

• Payload Length: It specifies the number of octets contained in Payload field. This
field can be one or 4 bytes long. By setting the SR field , the payload length field is 1
byte.

• Payload: Information differs according to the application.

• Type Length: It indicates the number of octets contained in Type field.

• Type: Payload Type indicates the type of Payload. NDEF supports MIME type con-
structs [62], URI types [63], NFC Forum Well-known types[50], and NFC Forum Ex-
ternal types [50]. The length of Type field is specified by Type Length field.

• ID Length: It defines the number of octets contained in ID field, this field may be
omitted.

• ID: It enables payload to cross-reference other payloads. The field is presented in
NDEF Record only when the IL field is set. The length of this field is defined by ID
Length field. This field may be omitted.

• MB: Message Begin is a one-bit field indicates the including record is the beginning
of NDEF message.

• ME: Message End is a one-bit field indicates the including record is the end of NDEF
message.

• SR: Short Record is a one-bit field indicating that Payload Length field is one byte
when set, otherwise Payload Length field is 4 bytes when it is cleared.

• IL: ID Length is a one-bit field indicating that, if set, ID Length field is present and
also ID field. Otherwise ID length field and ID field is omitted.

2.3 Related Work 23

Value TNF
0x00 Empty
0x01 NFC Forum Well-Known Type[50]
0x02 MIME Type as defined in [62]
0x03 Absolute URI Type as defined in [63]
0x04 NFC Forum External Type[50]
0x05 Unknown
0x06 Unchanged[64]
0x07 Reserved

Table 2.2.: TNF Values

• CF: Chunk Flag is a one-bit field indicating that whether this is a chunked payload(not
the last chunk). See [64] for more information.

• TNF:Type Name Format is a 3-bit field indicating the structure of the value of the Type
field. The value is defined in the table 2.2 below:

RTD

NFC Record Type Definition (RTD) specifies NFC-specific data types.

The NFC Forum has specified several optimized record types which can be carried in NDEF
records. Each NFC Forum record type is specified in a Record Type Definition document
(RTD). NFC defines the following RTDs:

• NFC Text RTD[65]

• NFC URI RTD[66]

• NFC Smart Poster RTD[67]

• NFC Connection Handover RTD[68]

• NFC Generic Control RTD[69]

• NFC Signature RTD[70]

Application Data Encapsulation

The Application Data stored in an NFC Forum Tag is wrapped into an NDEF message and
upon this NDEF message Tag Type X (1-4) operation is applied to encapsulate the NDEF
message into suitable data structure to be complied with Tag Type X platform. The NFC
Forum Tag Type X platform is used to ensure the interoperability of application data.

2.3. Related Work

A survey of related work is explained in this section.

There is not yet such published work has been identified on the combination of DLNA and

24 Background and Related Work

NFC technology while researches and literatures on either DLNA or NFC are available read-
ily.

Sony Ericcson research group proposes a methodology of using barcode scanned by the mo-
bile phone to provide connectivity information of DLNA network based on NGN (Next Gen-
eration Network) [71]. In [72] the architecture for the phone-based delivery of NGN services
into residential environments introduces the possible solution of publishing connectivity and
accessibility information about residential devices and services to a presence server, and this
server can be accessed as a URL form which is transmitted to the mobile phone using new
proximity technology (Barcode, NFC). [73] introduces a method to use a mobile phone to
initiate the communication between DLNA Control Point and an Image Forming Apparatus.

Since UPnP technology is the core underlying concept of DLNA, the researches related to
UPnP and NFC is also within the scope.

[68] shows an example of encapsulating UPnP Device Discovery message (SSDP) in an NFC
message. Similarly is the concept of using NFC in a variety of service discovery scenarios in
[74]. Also a patent is registered related to service discovery of UPnP devices [75].

Some researches combine UPnP technology and RFID technology: [28] proposes a concept
of using RFID technology to control the service access of UPnP transmission, where RFID
creates a service and user authentication process. [76] and [77] introduce a design of UPnP
A/V Session Manager (USM) for automatically moving a user’s A/V session information
from one UPnP device to another, by making use of light-weight and low-price RFID readers.

Other researches present the methodology of using NFC as the initiator of other technologies,
which is also within the scope of this thesis. [78] proposes a two-communication session
method for enabling Bluetooth transmission over NFC.

3. System Architecture

This chapter proposes a generic system architecture, that describes an NFC-enabled DLNA
use case scenario System. A communication model, named Two-Session Communication
model, is defined to generalize the communication methodology over the NFC-enabled
DLNA network, whereby reduces the design complexity. A network model is defined to
describe the NFC enabled DLNA network topology. Three different kinds of devices that
comprise the network is defined, as well as their functional components. The NFC message
is to be exchanged is covered in the latter section.

Finally, device portability and control collision problem are addressed.

3.1. Design Criteria

The system architecture design follows the following Criteria:

1. Minimal user interaction.
That is, the system architecture follows its own context reasoning rules, and therefore
is context aware. The whole communication and control procedure should involve
user interaction as less as possible. The system has its own logic and is able to run the
procedure spontaneously or avoid interaction as much as possible. User interaction is
only involved unless there is a must or for security issues.

2. Interaction Easement.
Interaction Easement refers to the fact that the interaction with users is required to be
easy and single-handed on users’ behalf.

3. Versatile Application Fields.
Versatile Application Fields refers to the fact that various application use cases can be
realized by the design.

4. Sustainability.
Sustainability refers to the fact that a new feature can be easily added on top of the
previous version of design.

5. NFC and DLNA Seamlessly Work Together.
It indicates that users should not be aware of NFC communication and DLNA commu-
nication. The handling logic runs invisibly, and is totally transparent to users.

3.2. Network Model

Figure 3.1 shows the layout of the network from user’s view. There are multiple DLNA
based devices within a network. Each of them is able to function as a DLNA device, either

26 System Architecture

controlling or controlled one, some of them have NFC functionalities. These devices are
named ranging from T1 to TN where N is larger than one. Note that the device types such as
cell phone, TV set are not necessary the same as illustrated in the figure.

T
T

T

T T

1

2

3
4

N

Figure 3.1.: Network Layout

When users touch T1 with T2, T1 and T2 are obliged to maintain NFC functionalities in them
to initialize an NFC transaction instantaneously. DLNA transaction will be initialized after
the touch.

The above is how the network appears to average users, who are not aware of the underlying
structure. A model is proposed to represent the topology of this network and its elements as
exhibited in Figure 3.2.

This model presents a network model, NFC-enabled DLNA Network Model, to describe a
DLNA network with NFC’s involvement. The NFC technology functions as the initiator
for the subsequent DLNA application scenarios which are triggered essentially by UPnP AV
actions.

Controller and Provider are the devices which are involved in NFC transaction, TN (or
OTHER) is the device that finally interacts with Provider (or its reference) in the network.
The real physical location of TN can be anywhere in the network, even can be in Controller
or Provider. These three devices, Controller, Provider and OTHER, are the fundamental
elements of an NFC-enabled DLNA network. Compared with Figure 3.1, Controller and
Provider are mapped to T1 and T2.

Over the network, every device shall be able to function as DLNA device, in addition devices
intend to join NFC transaction are obliged to maintain NFC functions. As illustrated in
Figure 3.2, functional components are incorporated to represent DLNA and NFC functions.
These components are the basic elements for a device.

3.2.1. Device Functional Components

Device Functional Components, also known as Device Components, is defined to represent
a set of device functions aggregated to be used in this thesis. The real physical attributes

3.2 Network Model 27

Figure 3.2.: NFC-enabled DLNA Network Model

are independent of Device Components. There are different types of Device Components
defined:

1. DLNA Component

2. NFC Component

DLNA Component

DLNA component is a Device Functional Component. In this thesis it can be one of the
following types:

• DLNA Controlling (Device) Component.

• DLNA Controlled (Device) Component.

• DLNA Logic Component.

DLNA Controlling Device Component is a functional block in a device referring to the de-
vice function UPnP Control Point (UPnP CP) or UPnP Printer Control Point (PrCP) defined
in DLNA guideline [1]. It can also refers to DLNA device classes M-DMD, and M-DMU.

UPnP CP contains Media Management Components of MSCP and MRCP and has the full
control over both rendering devices and servers. UPnP CP is the most commonly used DLNA

28 System Architecture

Controlling Device Component in a lot of use cases, especially the use cases that follow the
three-Box System Usage (Section 2.1.6). DLNA Controlling Device Component as PrCP is
only applied to three-Box Printing System Usage. DLNA Controlling Device Component as
M-DMD is only applied to Download System Usage. DLNA Controlling Device Component
as a M-DMU is applied only in Upload System Usage.

A DLNA Controlling Device Component can have only one of the device functions (UPnP
CP or PrCP) at the same time.

An Active DLNA Controlling Component refers to the functioning DLNA Controlling
Component that invokes the actions exposed by the DLNA controlled devices. At the same
instant of time, only one active DLNA Controlling Component functions for DLNA control,
whereas the coexistence of multiple DLNA Controlling Components is possible.

DLNA Controlled Device Component is a functional block that implements one of the
device classes explained in 2.1.5. The device classes here are a subset of the defined ones,
only DMS, DMR, DMPr, M-DMS, M-DMP are within the selection. DLNA Controlled
Device Component implements one of the classes in the subset. The shared property amongst
these classes is that they expose their actions to controlling for DLNA control against them.

A device may have zero or multiple DLNA Controlled Device Components.

An Active DLNA Controlled Component refers to the functioning DLNA Controlled Com-
ponent that is controlled by a DLNA Controlling component albeit multiple DLNA Con-
trolled Components are encapsulated into the same device.

Finally, DLNA Logic Component, is a functional block which can perform a control pro-
cedure against DLNA Controlled Device Component functioning together with DLNA Con-
trolling Device Component. Generally, this DLNA Logic Component runs as a context rea-
soning component together with DLNA Controlling Component in a device. DLNA Logic
Component is customized from case to case.

A device may have multiple DLNA components running on it.

NFC Component

A single NFC Component is a functional block in a device, which is in charge of NFC
transactions. There are various NFC components of five different types: NFC Reader/Writer,
NFC Forum Device in P2P mode, NFC Forum Device in R/W mode, NFC Forum Device in
Card Emulation mode and NFC Forum Tag.

A device can contain multiple NFC Components with different types. Despite of the proba-
bility of containing more than one NFC Component, when communicating with another NFC
Component, only one is active.

An NFC Communication Pair defines types of NFC Components of two devices, between
which an NFC communication can be set up.

In this thesis, only the following NFC communication mode pairs in Table 3.1 are supported:

♯1 NFC Reader/Writer NFC Forum Tag
♯2 NFC Reader/Writer NFC Forum Device in Card Emulation Mode
♯3 NFC Forum Device in R/W Mode NFC Forum Device in Card Emulation Mode

3.2 Network Model 29

♯4 NFC Forum Device in R/W Mode NFC Forum Tag
♯5 NFC Forum Device in P2P Mode NFC Forum Device in P2P Mode
♯6 NPP Server NPP Client

Table 3.1.: NFC Communication Mode Pairs

In this table, each pair presented in one row, implies a communication type between two
devices. [52] specifies communication types of NFC Communication Mode Pairs ♯1 to ♯5.
Pair ♯6 is utilized for NPP [79] only, an NFC P2P protocol on Android which is adopted only
in this thesis, other protocols can be used alternatively like SNEP [48]. When two devices
do the NFC transaction, in order to communicate with each other they should contain NFC
components in the form of pairs defined above.

NFC Forum Tag in this thesis, refers to a tag sticker attached to device in most cases, which
means the tag should provide information related to the attached device in its content. It
functions as a label of its attached device. A device can attach either a static tag or a dynamic
one with it, such as FeliCa Dynamic Tag [53]. An NFC Forum Tag can exist independently
only when its content is considered as a copy or reference of a device within the network,
the same to NFC Forum Device in Card Emulation mode whose provided information should
relate to its parent NFC Forum device. A Device Reference/Copy is the device identifica-
tion information provided in an NFC Forum Tag (or NFC Forum Deivce in Card Emulation
Mode), which points to another device as if this tag is attached to that device.

Figure 3.3.: Left shows the case that an NFC Forum tag as a label stick to a NAS; Right
shows the case that an NFC Forum tag as a Device Reference pointing to an
Image Printer

Figure 3.3 on the left hand side shows the case that an NFC Forum tag (e.g. Topaz [80],
an NFC Forum Type 1 Tag) as a label stick to a NAS, and on the right hand side shows the
case that an NFC tag (e.g. FeliCa [53], an NFC Forum Type 3 Tag) as a Device Reference
pointing to an Image Printer.

3.2.2. Devices

Devices are comprised of functional components. As shown in Figure 3.2, there are different
device types over the NFC-enabled DLNA network: Controller, Provider, and TN (or denoted
as OTHER). The further explanation on their composition and function will be given in this
section. A set of rules are defined for the design of devices.

30 System Architecture

Devices involved in NFC transaction at one instant of time are named Controller and
Provider. Note that here at one instant of time only two devices are involved assuming anti-
collision mechanism is well applied. Provider is a device which provides information via
NFC to the counterpart for setting up DLNA control. The information transferred can include
other information that is irrelevant to DLNA control. Controller is a device which receives
and parses information from Provider via NFC. Controller extracts information related to
DLNA control from Provider and utilizes this information to set up DLNA control. Both of
them implement at least one of the twelve DLNA device classes.

The other device which is not involved in NFC transaction is named OTHER. It may contain
NFC functionalities, but those functionalities are not functioning at that time. It includes at
least one of the twelve DLNA device classes since it is in an DLNA communication network.

Map NFC Components

As two endpoints of NFC communication, both Provider and Container shall contain at least
one NFC Component.

Since Provider provides information to counterpart, Provider should maintain one of the
following NFC Components: NFC Forum Tag, NFC Forum Device in Card Emulation Mode,
NPP Client or NFC Forum Device in P2P mode. Controller shall be capable of reading
the information from Provider, thus Controller should maintain one of the following NFC
Components: NFC R/W, NFC Forum Device in R/W mode, NPP Server or NFC Forum
Device in P2P Mode. They shall include the NFC Components according to the counterpart
as the NFC Communication Mode Pair suggests.

OTHER which is not involved in NFC Communication Session, may not contain NFC Com-
ponent.

Rule 0: Both Provider and Container shall contain at least one NFC Component, which
shall form an NFC Communication Mode Pair. OTHER is not obliged to contain
NFC Component.

Map DLNA Components

There shall be at least one DLNA Controlling Component on either Provider or Controller.
This is to ensure that the DLNA concept is involved. The communication between two con-
trolled devices can not be established without the controlling device setting up their initial
connection (Controlling device sets up initial communication only, and the following transac-
tions are out-of-band communication.) according to the UPnP specification [25]. Moreover
it is impossible for Provider and Controller to find a controlling device out of themselves
without controlling device’s presence. That leads to the rule:

Rule 1: There should be at least one active DLNA Controlling Component between
Provider and Controller for the further DLNA Communication.

3.2 Network Model 31

There is one possibility to establish the communication between Controller and Provider
when the DLNA controlling component is absent on both sides: using the eventing mech-
anism defined in UPnP specification [25]. To be more specific, assume that Controller and
Provider run as DLNA rendering devices which are playing some media, a Controller receives
NFC message from Provider, e.g. Provider’s rendering device ID. The controlling device TN

in the network has subscribed to Provider of its current transport state (from State Variable
of Provider: AVTransport:TransportState). As soon as Provider stops playing, the stopped
event will be notified at TN . If TN knows beforehand that Controller intends to interact with
Provider, TN will invoke action on Controller to interact with the newly received event from
Provider. Otherwise if TN does not know Controller’s intention, it has to broadcast this event
to all the controlled devices over the network and the device which is interested in this event
will have to use another event to notify the controlling device its interest and thus TN can
initialize the communication between Controller and Provider directly. The shortcoming of
this probability is stated here as follows:

1. Provider transport state change event is required, which makes simple scenario more
difficult to realize.

2. Either TN has to be aware a Controller and Provider’s interests with each other, or TN

has to broadcast Provider’s event over the whole network to find out the follow-ups.

3. In real DLNA certified products, the eventing mechanism is not widely adopted even
though the concept is already outlined in DLNA guidelines 2006 [81] and 2009 [1].

These arguments show that it is more practical and effortless to follow Rule one to include
one Controlling role in Provider or Controller.

A Controller should maintain a DLNA Controlling Device Component. This can be proved
by listing all the hypotheses and applying Reductio ad absurdum principle on them:

• Assume that device Controller is an NFC Forum Device in R/W mode or an NFC R/W
Terminal, without Controlling Component in it, while Provider functions as passive
tag or NFC Forum Device in Card Emulation mode with Controlling Component in
it. Also assume that Provider can successfully set up the DLNA Communication Ses-
sion. When they communicate, Controller can read the tag information provided by
Provider in the NFC Communication Session, and head for establishing the DLNA
control which will be failed without the Controlling Component. However, only Con-
troller can obtain additional DLNA setup information, Provider with Controlling Com-
ponent obtains nothing. It appears that Provider gets no additional information. That
means that either Provider can not set up the connection due to the lack of necessary
information or Provider can set up the connection without any additional information.
The latter case does not make any sense, since actually there is no NFC communication
influences upon DLNA control session in this case. So a conclusion can be made that
Device in NFC R/W mode or as NFC R/W should be co-existed with active DLNA
controlling role.

• Likewise is the case for Provider with Controlling Component as NFC Forum Device
in P2P (as the party that receives the information) or as NPP Client. It can not obtain
additional information from a Controller, since itself is capable of providing informa-
tion but not a Controller, which does not make sense.

32 System Architecture

Deduced from the statements above another rule is established:

Rule 2: Controller offers active DLNA Controlling Component for DLNA Communi-
cation.

Since Controller processes the information received, the DLNA Logic Component is also
part of Controller, which leads to Rule three:

Rule 3: Controller should maintain a DLNA Logic to process NFC Messages received
from Provider.

Provider as discussed should provide at least one of its own DLNA Device ID information, or
run as an independent tag referencing other devices in the network. Since DLNA Controlling
Component is not addressed in the DLNA Architecture, it is impossible to provide DLNA
Device ID information of DLNA Controlling Component. Then the active DLNA Compo-
nent on Provider or device referenced by Provider for the following DLNA communication
should be DLNA Controlled Component. Otherwise there will be no Device Identification
information provided. Rule 4 is formed consequently:

Rule 4 The active DLNA Component on Provider or referenced by Provider should be
DLNA Controlled Component.

The other DLNA device in the network, denoted TN or OTHER, communicates with Provider
or Reference Device as DLNA Guideline specified. This communication is initialized by
Controller, and the following Out-of-Band transfer with Provider is not under Controller’s
control. This implies the following rule:

Rule 5: The active DLNA Component on TN (OTHER) should be DLNA Controlled
Component.

3.2.3. Portability of Devices

NFC is known as a proximity communication technology, the magnitude field can be detected
in centimeters. It is natural for NFC devices or tags to function as portable objects. In this
thesis, the device that contains NFC Component is Controller and Provider.

Controller is normally designed portable, since Provider needs to provide its own Local De-
vice information in most cases to Controller, and a Provider contains a DLNA Controlled
Component in it. Despite there are three device categories (HND, HID, MHD) defined in
DLNA guideline [1], still the stationary DLNA certified CEs hold a huge market share. Fol-
lowing Rule 6, it is natural for a Controller being designed portable.

3.3 Communication Model 33

For convenient NFC interaction, Rule 6 is formalized:

Rule 6: At least one of Controller and Provider is portable, and in most cases Con-
troller is designed portable.

3.3. Communication Model

This section addresses a communication model to formalize the communication over an
NFC-enabled DLNA network.

The communication is separated into two sessions: one is NFC Communication Session
where only NFC communication involved and the other one is DLNA Communication Ses-
sion where only DLNA communication involved.

NFC Communication Session is called also the first communication session for the reason
that NFC transaction happens at the time of the touch. NFC functionalities function only
in this session. Controller receives messages from Provider and parses information. The
information that has nothing to do with DLNA control is handled in this session, while the
information for setting up DLNA control are extracted and passed to DLNA Communication
Session for further process. Since the DLNA communication functions based on the as-
sumption that devices are in the same LAN, Controller checks with the presence of message
passing network connectivity information in NFC Communication Session. If after the check
Controller finds that Controller are not in the same LAN as the LAN specified in the mes-
sage and can not be connected to the the specified LAN, the following operations will not be
proceeded. If no connectivity information presents, Controller will proceed into the DLNA
Communication Session albeit potential risk. This method reduces processing overhead.

The DLNA Communication Session, which is the second communication session, is not
involved in any NFC transaction activity, and should not been involved. In this session
Controller uses the message passed from NFC session, and determines the control inten-
tion (which use case it wants to implement) delivered by Provider. Finally, DLNA controls
between devices will be set up according to different intentions. A logic for parsing the
control intention should be always applied in this session.

To sum up, the NFC technology is used in the NFC Communication Session as the enabler
or initiator of the DLNA Communication Session, see Figure 3.4.

The control flow in the communication model as observed, is sequential. Figure 3.5 shows
how this communication model is applied to Controller device. The input as NDEF mes-
sage to Controller is consumed by its NFC component, Handover Select Records and Smart-
Poster Records are consumed maybe for other DLNA-irrelevant applications. The input to
DLNA Controlling Component is a parsed DLNA record which may have been consumed by
NFC Component partly already (for network connectivity for example). The final output are
DLNA actions upon DLNA controlled devices.

This different communication sessions method is similar to a communication method that a
device uses the low communication rate NFC for the first communication mode and uses a

34 System Architecture

[fail]
/ exit

First Communication Session /
NFC Communication Session

Second Communication Session /
DLNA Communication Session

NFC_msg received
/parse

[! netw_conn_msg] / extract DLNA_msg

[ntw_conn_msg] /
parse ntw_conn_msg

[in_the_same_LAN] / extract DLNA_msg

[! in_the_same_LAN]
/ reconnect

[succeed]
/ extract DLNA_msg

Figure 3.4.: Two-Session Communication Model

NDEF msg

SP
Rec

Hs
Rec

....DLNA Rec

NFC
Comm
Session

DLNA
Comm
Session

DLNA
 msgInput

User
Data Output :

actions

Controller

NFC Component DLNA Controlling
 Component

Figure 3.5.: Two-Session Communication Model Implemented by Controller

3.4 NFC Message 35

higher communication rate technology for the second communication mode. Based on the
concept of using NFC as the enabler for bluetooth Simple Paring configuration and Wi-Fi
Protected Setup (WPS) configuration are already standardized. "The communication de-
vice includes a packet generation section and a communication control section. The packets
generation section generates a first portion containing authentication information used for
connection authentification for the second communication mode and a second portion other
than the first portion" [78].

There are a lot of advantages for this layered communication structure, such as the reduced
complexity, shortened learning curve and reduced processing effort for the DLNA communi-
cation.

All the operations are transparent to users. Upon this baseline communication concept,
DLNA and NFC technologies work seamlessly together.

3.4. NFC Message

The NFC message carries information of setting up the DLNA Control, and probably other
information that is not relevant to DLNA. The message is transferred from Provider to Con-
troller in the NFC Communication Session.

It is recommended that the NFC message should include time-invariant data, for the major
cases universal unique also. For instance the IP address of devices is not suitable to be
carried in NFC message. For the static NFC Forum tag, users should never include dynamic
information into it. Here static does not mean the placement is stationary, but means that the
device with the NFC Forum tag attached might not have an internal connection with NFC
writing processor, so the content of the NFC tag can not be dynamically updated. If the NFC
data can be updated dynamically, for instance the host processor can change the content of
message dynamically, dynamic information can be encapsulated. With one nascent advent
of FeliCa dynamic tag, this dynamically-assigned information can be kept in the tag for the
reason dynamic tag can also be updated dynamically as the tag is connected with a micro-
processor on chip.

Rule 7: The NFC message, especially whose physical carrier is a static NFC Forum
Tag or whose carrier is not connected to a host processor, is strongly recom-
mended to contain the time-invariant data, device name or MAC address for in-
stance, other than dynamically-assigned IP address which varies from time to
time.

Provider as discussed in this chapter is the device which provides the information to Con-
troller in order to set up the DLNA communication. It provides its own device identification
information so that Controller can identify the DLNA Controlled Components embraced in
Provider and set up connection between Provider and other devices (OTHER).

Two terms are defined here: Local Device and Destination Device. Local Device is a local
device at Provider from Provider’s view, it is denoted for Controller to identify the device

36 System Architecture

information provided from Provider. Destination Device is the device that a Provider in-
tended to interact with and the information is provided by Provider. It is used for Controller
to identify the information provided from Provider. It is not necessary for a Provider to spec-
ify it’s desired Destination, Controller has the DLNA Logic Component to figure out the real
Interactor or the decision would be left to users during DLNA communication "run-time".

Note that:

Interactor refers to the final device that interacts with Provider’s specified Local Device, so

Interactor , Destination Device

Only when a Destination Device is specified by Provider and final Out-of-Band communica-
tion between Provider’s Local Device and Interactor can be set up successfully by Controller,
a Destination Device is equivalent to an Interactor.

Rule 8 sums up the NFC message transferred from Provider to Controller.

Rule 8: Provider provides its own DLNA Controlled Component identification infor-
mation and probably the DLNA Controlled Component identification informa-
tion of other devices that Provider wants to interact with, which are denoted as
Local Device and Destination Device respectively in NFC message.

Reference/Copy of the other device refers to that an NFC Forum tag’s content points to some
other device and stated that device in the tag as a Local Device, as if the tag is physically
attached to that device. It is always used in an independent tag, i.e. no devices are accompa-
nied.

Rule 9: If a Controlling Component is present in device itself, then it is reasonable to
include information of other devices in NFC Message.If a device does not con-
tain a Controlling Component, even not the acting one, and if it is considered
as Provider, it is recommended that it should not give the information of other
devices except its own identification information in NFC message unless it is an
independent NFC Forum Tag written by a NFC reader/writer and reference to
the other device.

Requestor and Selector in NFC P2P Mode
It is not guaranteed that a Provider’s counterpart contains the DLNA Controlling Component,
therefore the DLNA Communication Session can not be set up. In order to ensure that the
request sent from Provider is properly handled, using NFC P2P mode is recommended. In
P2P mode, a Controller runs as a selector, while a Provider plays the role of requestor. The
requestor will first check the DLNA Controlling Component’s existence at selector, only
when the Controlling Component exists the interaction between selector and requestor can
proceed.

3.5. Control Collision in P2P Mode

If two counterparts can run as both Provider and Controller. This is a scenario that roles
of Controller and Provider at both sides are switchable, each side is equivalent to the coun-

3.6 Steps of Setting up DLNA Communication 37

terpart. The moment they work in Peer Mode, it is possible that the DLNA Controlling
Component and DLNA Logic Component at both sides run at the same time. The control at
that time will not run as it is supposed. See Figure 3.6.

Figure 3.6.: Control Collision at P2P Mode

It is recommended to include a mechanism to avoid this kind of control collision by informing
counterpart the presences of its DLNA Controlling Component and DLNA Logic Component
in P2P Mode via NFC. Otherwise, device can not figure out counterpart’s containing Con-
trolling Component and Logic Component. Make sure that at same instant of time, only one
device as Controller can function. It is also recommended that the presence of both parts’
Controller role should be shown to users and ask users’ decision.

Rule 10: In P2P Mode, if both sides can function as Controller and Provider, the pres-
ence of its own Controller role should be informed to the counterpart via NFC to
avoid control collision.

The control collision avoidance information presented in NFC message can be one NFC
record indicating the presence of Controller at its own side. The DLNA Logic should handle
this information to avoid collision. This can be handled, for instance, by giving a Controller
higher priority the chance of continuing running the control and ignoring the counterpart’s
control. The priority can be defined by users. It is recommended to define priority by com-
bining it with Local Device ID information. For example, the local device who has higher
number Local Device ID will get the higher priority to be continued.

NFC on Android handles this with a chooser dialog, if the dialog is shown to users.

3.6. Steps of Setting up DLNA Communication

The following steps are performed in NFC-enabled DLNA network:

1. Controller retrieves NFC message from Provider.

2. Controller parses the message, extracts the network information if it exists. Controller
checks and reconfigures the network connections if necessary.

38 System Architecture

3. Controller determines the device that Provider wants to interact with if needed.

4. Controller invokes actions on Interactor and Provider respectively according to the
current context of Controller, Interactor and Provider together with the additional NFC
message (not required to be presented) provided by Provider. The decision of which
kind of actions are going to be invoked is made by DLNA Logic Component at Con-
troller’s side.

5. Interactor does the Out-of-Band transfer with Provider autonomously.

4. Use Cases and Design Concept

Chapter 3 proposes a system architecture and defines the design criteria. This chapter will
follow the design criteria to propose a design applicable to different application specific use
cases. Six use cases are proposed and discussed, two of which, A/V Handover and Control
Handover, are discussed in more detail, see Section 4.3 and Section 4.5.

4.1. Design Concept

Chapter 3 defines a set of design criteria. To meet the requirement of "Versatile Application
Fields", which asks a design to be able to be applied in various application scenarios. New use
cases in media sharing and management areas will be proposed in the subsequent sections.

To full fill the design criteria "Sustainability", there comes the idea to define proprietary
NDEF message for each use case. Each time a new use case is proposed, a new NDEF
message will be introduced accordingly. It is easy to explore new use cases based on this
concept, which meets the design criteria of "Sustainability". Considering NDEF properties,
a use case can be defined as a record, with a type name to identify its use case type. Each use
case record can have multiple local records nested in it. Those local records can be used to
claim intended operations, stating properties, reduce processing effort, identify objects etc.

For each use case, when being sent via NFC as a record, Controller shall be able to parse ,
identify and pass it to a use-case-specific handler. That is, Controller’s DLNA Logic Compo-
nent shall be able to handle different use cases, for each use case a specific context reasoning
rules shall be given. It is like that a DLNA Logic Component has several reasoning blocks
and each block is specific to one use case. Finally the block fulfills the query stated in the
NFC message.

As illustrated in Figure 4.1, the following steps are performed:

1. Controller’s NFC Component receives NDEF message, parses it

2. Controller’s NFC Component gets use case’s type and maps it to the corresponding
reasoning block at DLNA Logic Component.

3. The block completes parsing and invokes DLNA Controlling Component to control
other Controlled Components.

4.2. Use Case Proposal

Being Compelled by the design criteria "Versatile Application Fields", one major target of
this project is to propose more use cases. The following areas are the major DLNA applica-
tion areas:

40 Use Cases and Design Concept

Figure 4.1.: Use-Case-Specific Design

• Media Streaming,

• Media Sharing (physical or digital),

• Media Organization.

Media Streaming enables sharing audio or audio/video in real-time. In Media Sharing field
users share media with others in a physical or digital manner. The last focus Media Organi-
zation enables the management of media or media device, such as content synchronization.

Deviated from these application areas, six use cases are proposed in this thesis:

• A/V Handover: Due to the emergence of mass storage hardware, the rapid devel-
opment of networking, as well as the rich entertaining media resource on the market,
the demands of the media sharing for personal users are booming. Typical scenario is:
users touch a phone with television, the movie played on phone is transferred to TV
set.

• Image Sharing: The DLNA guideline processes image resource and audio or au-
dio/video resource differently, it uses different operation sets, different protocols, hence
in this thesis hereby the media sharing case is categorized into two different categories.
One is for audio or audio/video sharing, the other one is for image sharing. Media shar-
ing in this context does not only refers to exchanging media but also refer to streaming
media from one location to another.

• Control Handover: This use case helps users retrieve a UI after a tap for instance.

• Upload and Download: Considering that DLNA specification introduces capabilities,
of uploading and downloading. Taking advantage of them, a new use case combining
NFC and DLNA technology for uploading and downloading purposes is depicted in
this chapter. In this use case, users can experience zero configuration to upload and
download media with a touch. The upload/download transaction will be setup during
this touch and run in background.

• Synchronization: This use case reduces the media synchronization effort. After a
touch to a server device, the logic behind will help users to synchronize contents in
background automatically without users’ awareness.

4.3 Audio/Video Handover Use Case 41

• Print Document: The scenarios described above are all based on the digital electronic
media sharing. This use case turns digital electronic media into physical resource.
DLNA provides the capability to record media, namely context of content. Thus media
can be burnt onto CDs, DVDs or any other network sources. However, here in this
thesis a view that turns electronic content into paperwork will be discussed. Users
can print the image displaying on any of their portable devices with tapping them on
the DLNA certified printer. Furthermore, user can print out the content list of storage
server as a tree formatted paper, current playing music’s media information or lyrics
cooperated with web search functions.

In the subsequent sections, these six use cases are further explained, two of which are ex-
plained in more detail.

4.3. Audio/Video Handover Use Case

One of the key users’ interests is the easement of audio or audio/video, hereafter A/V, shar-
ing. Being restricted by the network access speed, hardware process speed, large number
of different audio video codecs and decodecs, the size of media items themselves, or cross-
platform limits etc., audio or A/V sharing is the headache for Home networking or user share
experience.

Typical scenario is as follows:

Scenario 1: Consider the case, two users, say Controller_X and Provider_X, touch their
mobile phones, on which both are playing with some media available in the network.
After the touch, users have their previously played media exchanged. Now Con-
troller_X is resuming Provider_X’s previous content on his own phone, Provider_X
is resuming Controller_X’s previous content on his own phone.

This scenario illustrates handover concept. It appears to users as if there are media streams
from Controller_X to Provider_X and vice versa, they take over each other’s media.

4.3.1. DLNA A/V Handover Case Specific Terminology

Some terms that are specific in A/V Handover use case are defined a priori.

• (Content/Media) Holder

• (Content/Media) Target

• Media Flow

• Media Item

• Interaction Mode

Media Flow in A/V Handover use case refers to a conceptual media transfer flow from user’s
perspective. It is different from Streaming Flow in DLNA guideline [1], which is denoted
as the flow of sending audio or audio/video resource from a Content Source to a Content

42 Use Cases and Design Concept

Receiver [1]. The two endpoints of Streaming Flow are the real physical source location and
sink location for a media resource. Endpoints of Media Flow are not designated to depict
the real media source and sink. As discussed in previous chapters, all the technique details
are hidden to users. When an A/V Handover use case takes place, as in Scenario 1 ,users
can only perceive the Media Flow from Controller_X to Provider_X or vice versa. But the
fact is Provider_X takes over the media from one DLNA Server device (OTHER_X) within
the network and likewise Controller_X. Hence the streaming Flow in this example is from
OTHER_X to Controller_X, while the Media Flow is from Provider_X to Controller_X.
Noted: The other Media Flow from Controller_X to Provider_X, which is similar to the
Media Flow from Provider_X to Controller_X, is omitted here for brevity.

Content/Media Holder is depicted to represent a DLNA Component that can send media
to other DLNA Component from user’s view. DLNA controlling devices in the network can
find the real Content Source, i.e. server devices.

In this section, the Media Item hereinafter refers to an entity, for instance audio media item
or audio/video media item in A/V Handover use case, that users perceive as a single piece of
content for consumption.

Potential Content/Media Holders exist in the following two forms:

• A rendering device (M-DMP or DMR) can be taken as Content/Media Holder only
when this rendering device is playing some media item at the instant of time that the
NFC-transaction is being handled. The Content/Media Holder here refers to the current
playing media item on DMR/M-DMR.

• A Server device (DMS/M-DMS), its notion is fully compliant with the definition of
Content Source in DLNA Guideline [1]. The Holder usually refers to one media item
on DMS/M-DMS. To identify the Content Holder as a (M-)DMS, Media Information
is expected to be accompanied with the server device’s own Device ID information.

Content/Media Target refers to the source receiver and playback side of Content/Media
Holder. For visible A/V Handover effect, usually users demand the receiving part of the
Content Holder is capable of showing the handover effect to users. Thus a rendering function
needs to exist in Content Target side as a M-DMP or DMR.

Interaction Mode is used to describe the Media Flow of a "Provider vs. Interactor" pair. The
Provider here refers to Provider’s UPnP AV device type [39] of its local DLNA Controlled
Component. It is denoted as, for example, Provider:MR. In UPnP AV specification [39],
there are three device types: MediaServer (MS for short), MediaRenderer (MR for short) and
ControlPoint (CP for short). Mapping them to device class defined in DLNA guideline [1],
MS refers to DMS or M-DMS, MR refers to DMR or M-DMP and CP refers to DMC and
M-DMC. The Interactor here refers to Interactor’s UPnP device type of its DLNA Controlled
Component likewise.
There are 3 different types of Interaction Mode:

1. Provider:MR vs. Interactor:MS, Media Flow is from Interactor to Provider.

2. Provider:MR vs. Interactor:MR, Media Flow can be identified only together with the
context reasoning rules.

3. Provider:MS vs. Interactor:MR, Media Flow is from Provider to Interactor.

4.3 Audio/Video Handover Use Case 43

4.3.2. DLNA A/V Handover Case Specific Principles

Before going further, some A/V Handover use-case-specific rules are defined.

By conventional definition in DLNA specification, renderer can only function as Content
Receiver. Whereas in this thesis, inexperienced users do not have any knowledge of DLNA
and may perceive that the media content is transferred from one renderer to another renderer,
which seems the renderer provides the media content as a Content Source from user’s view.
For the renderer role, the Content is considered to be the item which is currently playing on
the renderer, but in fact this media item may be pulled from or pushed to by other DLNA
servers over network.

In order to see the effect of Media Flow, there should be at least one DMR or M-DMP in the
network at the time doing media sharing. Furthermore for a direct rendering effect, the Con-
tent/Media Target usually contains at least one DMR or M-DMP role in itself. Whereas the
Content/Media Holder can be either a DMS/M-DMS or playing DMR/M-DMP (following its
definition in Section 4.3.1). Finally, an assumption is made to simplify the problem: there is
one and only one Content/Media Holder in one transaction, and likewise for Content/Media
Target. To sum up, a use-case-specific rule is defined as follows:

Use-Case-Specific Rule 1: From uses’ perspective, there is a visible Media Flow either:

• from a playing DMR/M-DMP to a DMR/M-DMP
or

• from a DMS/M-DMS to a DMR/M-DMP.

The NFC message is used to set up the DLNA control. The minimal NFC message required
to set up a DLNA control is sent to Controller which contains an active DLNA Controlling
Component. The message would be parsed by Controller and DLNA Logic Component
would do further actions to initiate a DLNA A/V Handover use case.

Use-Case-Specific Rule 2: The minimal information set required for setting up the
connection is Content Holder Device ID information and Content Target Device
ID information. The information set is not necessary all provided by Provider
via NFC, a DLNA Logic Component at Controller side should have the capability
of forming a context-aware environment and deducing the missing information.
Users can also claim their needs via user interface when zero interaction is not
that necessary.
• When the Content Holder is media items on a DMS/M-DMS, the information

is recommended to provide along the information of media item that is ready to
playback, in addition to DMS/M-DMS Device ID information.

• When the Content Holder is a current playing media item on DMR/M-DMP, the
presence of DMR/M-DMP (as Content Holder) Device ID information is enough.

44 Use Cases and Design Concept

4.3.3. General Steps to Set up DLNA Connection

The steps follow the steps defined in Chapter 3, which are, however, slightly modified for
A/V Handover use case:

1. Controller retrieves NFC message from Provider.

2. Controller parses the message, extracts the network information if it exists. Controller
checks and reconfigures the network connections if necessary.

3. Controller gets Provider’s local device.

4. Controller is responsible for figuring out the device that Provider wants to interact
with via context reasoning algorithm or Provider’s NFC message. Till this step, the
Interaction Mode "Provider:XX vs. Interactor:XX" is determined.

5. Once 2 endpoints (Provider and Interactor) are determined, Controller is in charge of
determining Holder and Target role of these 2 endpoints. The Media Flow is deter-
mined.
Controller invokes actions on Interactor and Provider respectively according to the
current context of Controller, Interactor and Provider together with the additional NFC
message (not required to be presented) provided by Provider. The decision of which
kind of actions are going to be invoked is made by DLNA Logic Component at Con-
troller’s side. The A/V Handover use case featured steps processed by DLNA Logic
Component is as follows:

• After both local and destination devices (from Provider’s view) are determined.
Controller checks further with the DLNA device classes and devices’ states to
establish Content Holder and Target roles respectively on devices.

• Additional DLNA A/V Handover specific NFC message would influence the pro-
cedure of determining Content Holder and Target.

6. Controller finds the real Content Source of Holder and real Content Receiver of Target
respectively. Controller invokes actions against Content Source and Content Receiver
to set up the DLNA connection between them.

7. The Out-of-Band streaming from real Content Source to Content Receiver runs intu-
itively.
Despite the fact that streaming is from Content Source to Content Receiver, from users
perspective, it is from Holder to Target. Holder and Content Source are not necessary
referring to the same device.

4.3.4. Context Reasoning Algorithms of Confirming Interaction Mode
(Step 4): Top-down and Bottom-up Methods

Two solutions are defined for either users or Controller DLNA Logic Component to establish
an Interaction Mode, with the help of customized algorithm if necessary. One is named
top-down solution, and the other is named bottom-up solution. An intended Interactor can
be specified in Provider’s NFC message (in this case refers to a Destination Device), or be
left to Controller’s decision. Once the Interactor is specified, Controller has to establish the

4.3 Audio/Video Handover Use Case 45

Interaction Mode and try to invoke actions against Interactor unless Interactor can not be
reached.

The name Top-down indicates that an Interaction Mode, as the final outcome, can only be
established at the end, while the name Bottom-up indicates that an Interaction Mode is known
at the very beginning.

Provider has to provide its own Local Device Information in any case.

Top-down Solution

Top-down means the connection setup depends completely on Controller. Provider may pro-
vide its own Local Device Information only. It is not guaranteed that Provider provides the
destination device’s information, so it is fully up to DLNA Logic Component’s decision at
Controller side. The transient states of Controller, Provider and other devices in the network
will influence the final Media Flow establishment.

Top-down solution aims to establish a "Provider:MR vs. Interactor:MR" interaction mode,
in order to build a visible A/V handover scenario.
In the case that Provider specifies the Destination as a MS, Controller has to obey the spec-
ified Interaction Mode if that can be set up. If Provider’s Local Device is a MS, Controller
can only try to set up a "Provider:MS vs. Interactor:MR" Interaction Mode if possible.

Once the Interaction Mode "Provider:MR vs. Interactor:MR" is fixed, Controller has to de-
cide the Media Flow according to the customized DLNA Logic Component’s algorithms,
Provider’s Local Device’s playback mode, Interactor’s playback mode, Local Device’s set-
tings and Interactor’s settings. In the top-down solution, the customized DLNA Logic Com-
ponent algorithms for "Provider:MR vs. Interactor:MR" interaction mode is not specified,
they differ from case to case. For one customized implementation example please refer to
Chapter 5.

Controller will try its best to establish a "Provider:MR vs. Interactor:MR" Interaction Mode.
Whenever the Interaction Mode can not be set up, Controller will go on to look for other
Interaction Modes. The algorithm to set other Interaction Modes is customized, please refer
to Chapter 5 for a detailed example.

Figure 4.2 depicts all the actions that a Controller may process in the top-down solution.
The dark grey process block represents a customized algorithm of "Provider:MR vs. Interac-
tor:MR" interaction mode, which is not defined in the scope of top-down solution.

The light blue process block is noted as a customized algorithm when "Provider:MR vs. In-
teractor:MR" Interaction Mode can not be found in any case, which is not defined in the scope
of the top-down solution. The dark blue process block stands for a customized algorithm for
a "Provider:MR vs. Interactor:MR" Interaction Mode where Interactor is from network.

All the colorful blocks indicate that Media Flow can not be determined, further processes are
needed. The text in the colorful blocks specify the decision criteria.

Bottom-up Solution

This solution first specifies the Interaction Mode. These two endpoints’ information can
be delivered by Provider or can be pre-set by Controller (only for Interactor). This solution

46 Use Cases and Design Concept

S
tart

D
st specified?

check Local type

M
R

?

Logic+
Local setting+

D
st setting+

Local&
D

st
playback m

ode

YM
R

check D
st type

M
R

?

M
R

check Local type

N

M
R

?

M
R

check C
ontroller type

M
R

?

M
R

Logic+
Local setting+

D
st setting+

Local&
D

st
playback m

ode

check C
ontroller type

M
R

?

M
R

M
S

E
nd

S
et up

P
rovider:M

S
->

C
ontroller:M

R

S
et up

P
rovider:M

R
->

D
st:M

S

M
S

F
ind M

R
 in N

etw
ork

M
S

/N
oneIs there M

R
?

Y

Logic+
Local setting+

D
st setting+

Local&
D

st
playback m

ode

D
LN

A
 Logic

C
om

ponent
D

ecides

N

F
ind M

R
 in N

etw
ork

M
S

/N
one

Is there M
R

?

Logic+
Local setting+

D
st setting+

Local&
D

st
playback m

ode

D
LN

A
 Logic

C
om

ponent
D

ecides

Y

N

check D
st type

M
R

?

S
et up

P
rovider:M

S
->

D
st:M

R

M
R

M
S

M
S

N
F

C
 m

essage received
from

 P
rovider

Figure 4.2.: (Flow Chart)Top-down Solution

4.3 Audio/Video Handover Use Case 47

reduces Controller’s reasoning effort, and users are able to control and define the Media Flow
process.

As shown in Figure 4.3, Media Flow is categorized in a geographical manner from user’s
view, the media flow can be between (OTHER as defined, is other devices in the network
except Controller and Provider):

ProviderProvider

Provider Provider

OTHER1

OTHER2

OTHER

OTHEROTHER

Controller

Controller

Controller

Controller

1 2

43

OTHEROTHER

OTHER

OTHER

OTHER OTHER

OTHER

Figure 4.3.: Media Flow Topology

• Provider� Controller (see Figure4.3 image 1):
information of Controller’s DLNA Controlled Component is provided by Provider as
destination device or pre-set by Controller.

Example: Assume that Provider provides its Local Device Information (as MS) and
media item (the one users want to playback) information. In addition Controller
pre-set its MR as the Interactor. Whenever users touch Provider to the Controller,
Controller will set up the connection between itself and Provider directly (Media
Flow: Provider → Controller) and the media specified will be played on Con-
troller.

• Provider� OTHER (see Figure4.3 image 2):
information of OTHER’s DLNA Controlled Component is provided by Provider as
destination device or pre-set by Controller.

48 Use Cases and Design Concept

• Controller� OTHER(see Figure4.3 image 3):
Provider represents itself as the reference/copy of OTHER,
information of Controller’s DLNA Controlled Component is provided by Provider as
destination device or pre-set by Controller.

Example: Assume that Provider is a static tag reference to a TV set (OTHER) in the
network. In this tag, Provider provides media item(the one users want to play-
back) information. In addition Controller pre-set its MS as the Interactor. When-
ever users touch this tag to the Controller, Controller will set up the connection
between itself and TV set directly (Media Flow: Controller → TV set) and the
media specified will be played on TV.

• OTHER1� OTHER2(see Figure4.3 image 4):
Provider represents itself as the reference/copy of one of the OTHERs,
information of the other OTHER’s DLNA Controlled Component is provided by
Provider as destination device or pre-set by Controller.

Example: Assume Provider is a static tag reference to a TV set (OTHER1) in the net-
work. In this tag, Provider also specifies that the Destination Device is a NAS
(OTHER 2), together with media item (the one users want to playback) infor-
mation. Whenever users touch this tag to Controller, Controller will set up the
connection between NAS and TV set directly (Media Flow: NAS→ TV set) and
the media specified will be played on TV.

If one endpoint is MS type, then the one-way Media Flow can be determined immediately.

If both endpoints are MR type ("Provider:MR vs. Interactor:MR" interaction mode), then the
direction of Media Flow is still pending and it is left to the decision of Controller’s DLNA
Logic Component. In this case, the decision is a customized algorithm.

4.3.5. Determining Media Flow (Step 5)

Once the Interaction Mode is deduced, i.e. Interactor and Provider are fixed, pursuant to
the general steps the next step is to figure out Media Flow. If Interaction Mode is either
"Provider:MS vs. Interactor:MR" or "Provider:MR vs. Interactor:MS", the Media Flow is
actually from MS side to MR side, since MS can not be taken as Target. When the Interaction
Mode is "Provider:MR vs. Interactor:MR", the method of finding Media Flow is customized.
Deducing Media Flow from this Interaction Mode depends on current playback modes of
both Provider and Interactor, users’ preferences, network status etc.

It depends on how the DLNA Logic Component is designed. Normally, there will be a
priority check table pre-defined in the DLNA Logic Component. Please see Implementation
Chapter for a direct view.

For the case that DMR/M-DMP runs as Content Target, the playback mode check is the cru-
cial aspect. Especially when both Content Target and Content Holder are rendering devices.

4.3 Audio/Video Handover Use Case 49

There are seven playback modes (Transport states) defined in UPnP AV specification [37]
and Vendor-specific is allowed:

Value R/O Explanation
STOPPED R indicates the transport state is

stopped
PLAYING R indicates the transport is playing

with media
TRANSITIONING R "The AVTransport is allowed to

temporarily go to this state before
going back to "PLAYING". This
might be appropriate for devices
that need to start buffering or com-
pletely download the media before
playback can start."[37]

NO_MEDIA_PRESENT O indicates currently no media associ-
ated with the AVTransport on ren-
dering device. rendering starts its
process always from this state on.

PAUSED_PLAYBACK R if Pause() action is
implemented

indicates the transport state is
paused from playing state

PAUSED_RECORDING R if Pause() action and
Record() action imple-
mented

indicates the transport state is
paused from recording state

RECORDING R if Record() action is
implemented

indicates the transport state is
recording

Vendor-defined O arbitrary value

Table 4.1.: AVTransport: TransportState State Variable’s Value. R indicates required, while
O indicates Optional.

In this thesis, only "STOPPED", "PLAYING", "TRANSITIONING",
"NO_MEDIA_PRESENT" are utilized.

Figure 4.4 shows transitions between playback modes. Playback Modes changed generally
by Controller actions, while the transition from "TRANSITIONING" state to "PLAYING"
state is automatically processed. However, the temporary "TRANSITIONING" state is not
guaranteed to be implemented in devices, once not state would be changed from "STOPPED"
to "PLAYING" by the invocation of AVT::Play (). When playback procedure is completed,
i.e. reach the end of stream, device will change its playback mode from "PLAYING" to
"STOPPED" automatically.

Playback mode always starts from NO_MEDIA_PRESENT state, which indicates that there
is no media resource associated at DMR/M-DMP.

Actions used in this thesis are depicted in the figure, other actions not used like AVT:Previous
(), AVT::Next () are not present.

Here an example is given to show the method to determine Holder and Target through play-
back modes.

50 Use Cases and Design Concept

NO_MEDIA_PRESENT

 TRANSITIONING

 PLAYING

 STOPPED

AVT::SetAVTransportURI()

AVT::Play()

AVT::Play()

AVT::Stop()

or when reaching
the end of stream

 PAUSED_PLAYBACK

AVT::Pause() AVT::Play()

AVT::Seek()

AVT::Seek()

AVT::Seek()

AVT::SetAVTransportURI()
with an empty URI

: when error occurs

AVT::Seek()

Figure 4.4.: Transitions of Playback Modes

Exemplary Algorithm of "Provider:MR vs. Interactor:MR" Interaction Mode

In "Provider:MR vs. Interactor:MR" Interaction Mode, a customized algorithm should be
provided by Controller’s DLNA Logic Component to further determine Media Holder and
Media Target.

Following the rule that a MR can be a Holder only at the time when it is playing media, an
example is given.

When both MR are stopped, the Interactor device needs to be changed since there is no
Holder between Provider and Interactor. As in the proposed example, Controller tries to
change Interactor to any of the MRs in the network. In other implementation, Controller can
just abort further procedure and give a warning to Provider.

When both are playing, then both can be taken as Holder. The algorithm is designed to
exchange current playing content with each other. Other proposals can be, for instance, stop
one MR and resume the content on the counterpart. This depends on how the implementation
is designed and also on users’ preferences.

When one MR is playing, the other is stopped, the playing MR is considered as Holder. In the
example above, the media will be resumed on the stopped MR and the previous playing one
will be stopped by Controller. However, there are a lot of other operations can be performed
against these 2 MRs depending on the algorithm design and users’ preferences. For example,
the stopped MR can replay the content playing on the counterpart, and previously playing
one does not need to be stopped.

4.3 Audio/Video Handover Use Case 51

Provider’s
Local Device

 stopped?

Start

Interactor
 stopped?

Interactor
 stopped?

look for
MR in
ntw.

resume
Interactor’s

Media
on Provider

resume
Provider’s

Media
on Interactor

exchange
Interactor’s
Media and
Provider’s

Y

Y Y

N

NN

End

Figure 4.5.: Algorithm of "Provider:MR vs. Interactor:MR" Interaction Mode

4.3.6. Trace Back to Real Content Source (Step 6)

As discussed above, there are two different kinds of Content Holders in A/V Handover use
case. The Content Holder concept is from use’s perspective. To get the real Content Source,
the inner DLNA Logic Component together with DLNA Controlling Component should be
capable of locating it.

• DMS/M-DMS as Content Holder:
As depicted in Figure 4.6, the following steps are taken typically:

1. DLNA Logic Component first figures out the targeted DMS/M-DMS device
which functions as a Content Holder in this handover procedure.

2. If Media Item information (indicating the media item to be handed over) is spec-
ified inside received the NFC message, DLNA Controlling Component on Con-
troller invokes CDS::Search() action on targeted DMS/M-DMS, and find the re-
sources of the media item. One of the action’s input parameters, search criteria
should be wrapped in Media Item Information and Controller should be able to
parse it. Be aware that, it is not guaranteed this procedure will succeed, since
CDS::Search() action is not mandatory to be implemented in DLNA specifica-
tion. However, the majority of DLNA server devices implement it. If this action
failed due to no implementation, an Error code "720" will be received by Con-
trolling Component indicating "Cannot process the request".
If Media Item Information is not specified, then users are asked to choose a Me-
dia Item. After a Media Item key information is input by the user, it is the same
handling manner as the Media Item is specified within the NFC message. If Me-

52 Use Cases and Design Concept

dia Item is confirmed via a GUI of targeted DMS/M-DMS, then Controller obtain
the resources by CDS::Browse() action.

3. A sub-set of the resource results (URI or URIMetaData or both) would be set as
the input parameter by Controller calling the targeted Content Target’s AVTrans-
port::setAVTransportURI() action, whereby the playback resource is set.

4. Further actions, for example AVT:Seek(), can be performed to control the play-
back mode.

Controller
Content Holder
as MS

Content Target

AVT::Play()

AVT::Seek()

AVT::SetAVTransportURI()

CDS::Search()

Figure 4.6.: Sequence Diagram of Locating a Real Content Source from Holder as a MS

• Playing DMR/M-DMP as Content Holder:
As depicted in Figure 4.7, following steps are taken typically:

1. DLNA Logic Component first figure out the targeted DMR/M-DMP device which
is functioned as a Content Holder in this handover procedure.

2. Controller invokes AVTransport::GetMediaInfo() action exposed by Content
Holder, this action would return CurrentURI and CurrentURIMetaData results.
Those are the real Content Source URI information.

3. Controller invokes AVTransport::SetAVTransportURI() action exposed by Con-
tent Target, the input parameters are the results returned in the previous step,
whereby the playback resource is set.

4. Further actions against Holder and Target, for instance AVT:Seek() or
AVT:Stop(), can be invoked to control the playback state. Be aware that, a wait
condition is required between AVT:Play() and AVT:Seek() due to a possible pres-
ence of "TRANSITIONING" playback mode.

4.3.7. NDEF Structure

Each use case has its own proprietary NDEF message structure. For A/V streaming handover
case, a DLNA A/V Handover Record is defined. The content of DLNA A/V Handover mes-
sage is an NDEF message consists of one record called Dlna A/V Handover Record. Multiple

4.3 Audio/Video Handover Use Case 53

Controller
Content Holder
as MR

Content TargetContent Source

AVT::Stop()

AVT::Play()

AVT::Seek()

AVT::GetPositionInfo()

AVT::SetAVTransportURI()

AVT::GetMediaInfo()

Out-of-Band Streaming

Previous Out-of-Band Streaming

Figure 4.7.: Sequence Diagram of Locating a Real Content Source from Holder as a MR

local records are nested in this record, see Figure 4.8. DLNA A/V Handover Record uses ex-
ternal type since this record can use neither NFC well-known type nor absolute URI type to
identify itself. A MIME media type is possible to be used, but a proprietary type is required,
for instance, "application/x-de.sony.dlna.avh". An External Type is identified in an NDEF
record by setting the TNF field value to 0x04. A canonical version of the External Type
Name would look like: "urn:nfc:ext:de.sony.dlna.avh". Similar to NFC Forum Well Known
Types, the binary encoding of External Type Name inside NDEF messages MUST omit the
NID and the NSS prefix of "ext". Finally a type name, named "de.sony.dlna.avh", is used
in this case. If there is only one record in the NDEF message, the message begin (MB) and
message end (ME) bit should be set to 1.

NDEF HEADER
(MB=0x1,ME=0x01,TNF=0x04)

TYPE LENGTH

PAYLOAD LENGTH

ID LENGTH

TYPE
(de.sony.dlna.avh)

(0x10)

ID

Record 1

Record 2

Record n

...

Figure 4.8.: DLNA A/V Handover Record

54 Use Cases and Design Concept

UDN Record

A DLNA Controlled Component can be discovered and identified by DLNA Controlling
Components via its Device Identification Information. The identification information can be
Unique Device Name (UDN), Friendly Name or MAC address, sometimes can even be IP
address. MAC address is not within the scope of DLNA (but may be used for the static UUID
generation process), and it is not the addressing method in a DLNA network. IP address as a
carrier is not recommended as stated in Rule 7 in Section 3.4. Friendly Name is sometimes
not unique in the network, but it is still used to facilitate inexperienced users especially when
a DLNA Controlling Component is absent at Provider. The most recommended content for
identification information is the Unique Device Name, which contains a UUID (Universally
Unique Identifier) used for addressing and identification as described in DLNA guideline [1].
Standardized data format for UDN is: "uuid:device-UUID" [25].

A UDN record is designed to identify DLNA controlled devices (DLNA Controlled Com-
ponents). It specifies its own UDN (at Provider or device referenced by Provider) which is
noted as Local UDN and in addition it can specify Interactor’s UDN which can be either
as Holder or as Target. The Interactor specified in UDN Record is noted as a Destination
Device. A field designated to identify the types of UDN has five different types: local MR
(DMR/M-DMR), local MS (DMS/M-DMS), destination MR, destination MS, and unknown
type.

In all, a UDN Record is an NFC Forum Local Type Record specific to DLNA A/V Handover
Record, it supplies universal unique device identification information. It is defined and used
only within the scope of DLNA A/V Handover Record. The syntax is as follows:

The NFC Local Type Name for the UDN Record is "udn" (0x75 0x64 0x6e), the reason
why a lower case is used here is referred to [50]: NFC Forum Local Types are available for
use within the context of another record. A processing application must not process these
types when application context is not available. Local types are used whenever the burden of
using a long, domain name-based external type is too much, and there is no need to define its
meaning outside of the local context.

A UDN Record consists of two parts, a one-byte enumeration type field of local MR, local
MS, destination MR, destination MS, unknown type, see formula 4.1, and a UDN data filed
which is used for the content of device identification information.

udnType ∈ {LOCAL_RENDERER, LOCAL_S ERVER, (4.1)
DS T_RENDERER,DS T_S ERVER,UNKNOWN}

Value Device Type
0 local renderer
1 local server
2 destination renderer
3 destination server
4 undefined

5..0xff RFU

Table 4.2.: UDN Type Value

4.3 Audio/Video Handover Use Case 55

Be aware that the maximum length of the UDN field according to [25] is limited to a size of
maximal 68 bytes including "uuid:" scheme. A DLNA A/V Handover record can have more
than one UDN records, it is recommended to use UDN Record other than Friendly Name
Record to identify the device since UDN Record is globally unique to identify a device.

Typical NDEF Record format of UDN record is illustrated in Figure 4.9. The device type can
be one of the enumerated types, as stated in Table 4.2.

NDEF HEADER

TYPE LENGTH

PAYLOAD LENGTH

ID LENGTH

TYPE

ID

(TNF = 0x04)

(udn)

(0x03)

Device Type
(LOCAL_MR/LOCAL_MS/DST_MR/DST_MS/UNKNOWN)

UDN

(Example:uuid:c9cc84d5-f247-481d-81dd-1135cf0f861c)

Figure 4.9.: UDN Record

Friendly Name Record

Friendly Name Record generally works the same as UDN Record, its type is defined as "fn"
which is also an NFC Forum Local Type. Similar to UDN Record it consists of also two
parts, one for identifying the device type and the other one for implying intended Interactor
as a helper for DLNA Controlling Components. The friendly name field shall be encoded
in a human readable US-ASCII way. Be aware that the results using friendly name record
to find a device within network by controlling device maybe not unique, since the friendly
name is not a unique naming method. It is recommended to either use UDN Record only or
combine Friendly Name Record with UDN Record. Typical Friendly Name Record example
is shown in Figure 4.10, the friendly name shown here is from the renderer part of a DMP
of a Sony TV set. Usually the friendly name can be renamed by users otherwise the device
will use the default name pre-set by the manufacturers. So there are potential risks of having
the same friendly name for two different devices in the network which leads to unexpected
device location.

Multiple Friendly Name Record can be presented in one DLNA A/V Handover Record.

Media Information Record

Imagine this scenario: Provider is a server device and Controller is a rendering device, after
the touch Controller plays back a media item stored at Provider. For zero-configuration pur-

56 Use Cases and Design Concept

NDEF HEADER

TYPE LENGTH

PAYLOAD LENGTH

ID LENGTH

TYPE

ID

(TNF = 0x04)

(fn)

(0x02)

Device Type
(LOCAL_MR/LOCAL_MS/DST_MR/DST_MS/UNKNOWN)

Friendly Name

(Example:Sony Bravia KDL)

Figure 4.10.: Friendly Name Record

pose the media item information is required to be presented via NFC besides Provider’s Local
MS UDN Information and perhaps Controller’s MR UDN information. With the purpose to
represent media information, a Media Information Record is designed.

Media Information Record is designed to describe properties of media items within a DLNA
A/V Handover Record. It is used to help DLNA Controlling Components to find a media
item resource on a server (through the invocation of CDS::Search () or CDS::Browse ()).

The NFC Forum Local Type for the Media Information Record is "mi" (in NFC binary en-
coding 0x6d, 0x69). It is only used in the DLNA A/V Handover Record. It shall not be used
elsewhere.

A Media Information Record consists of a list of media informa-
tion data (MEDIA_INFORMATION), probably a list of server references
(SERVER_DEVICE_REFERENCE) and the counts of lists respectively as depicted in
Figure 4.11.

In this record, server reference list may be omitted. When this list is omitted, its accompany-
ing count field shall also be omitted. The count of media information data list shall be one or
more.

A media information data is composed of three parts as depicted in Figure 4.12.

A length field (MEDIA_INFORMATION_LENGTH) is an unsigned 8-bit integer that speci-
fies the length of media information type field (MEDIA_INFORMATION_TYPE) and media
information content field (MEDIA_INFORMATION_CHAR). The value of length field shall
be larger than zero if is present in Media Information Record.

Media information type field is a one-byte field indicating the type of media information.
These types are mapped into a set of CDS properties [41] as stated in Table 4.3:

4.3 Audio/Video Handover Use Case 57

Value Media Information Type CDS Property
0x00 None, nothing given, the media information field

should set to null also
-

0x01 Title, title of selected A/V or audio media item dc:title
0x02 Author, the author of selected A/V or audio media

item
upnp:artist

0x03 Art, genre of selected music or movie media item upnp:genre
0x04 Year, the publishing year of selected A/V or audio me-

dia item
dc:date

0x05 Container, name of the folder contains this selected
media item

dc:title

0x06 Creator, name of the creator who creates this A/V or
audio media item

dc:creator

0x07 Album, name of the album collects the selected audio
or A/V media item

upnp:album

0x08 Date, date of the created date of container or an A/V
or audio media item

dc:date

0x09 Class, class of an A/V, audio media item or container.
Its content is an enumeration type.

upnp.class

0x0a Producer, producer of an A/V media item upnp.producer
0x0b Actor, actor of an A/V media item upnp.actor
0x0c Director, director of an A/V media item upnp.director
0x0d Duration, duration of an A/V or audio a media item res@duration
0x0e Size, size in bytes of an A/V or audio media item res@size
0x0f Bitrate, bitrate of an A/V or audio media item res@bitrate
0x20 Resolution, resolution of an A/V media item res@resolution
0x21 Profile information (A set of transfer and encoding

parameters associated with a media resource[19])
res@protocolInfo

0x22 Resource URI, the URI that identifies a media re-
source within the network

res

0x23..0xff RFU -

Table 4.3.: Media Information Type Values

There are more CDS properties can be mapped into Media Information Record in A/V Han-
dover use case, however, only the ones listed here in the thesis are defined.

Media information content field is the actual content of a specified media item property. The
formats of media item properties’ presentation are compliant with UPnP AV CDS specifi-
cation [41]. It is encoded in US-ASCII string with a size limit of 254 bytes. In this use
case, the content with Class type is one of the following types, any other values are not
allowed: "audioItem", "videoItem", "container", "musicTrack", "audioBroadcast", "audio-
Book", "movie", "videoBroadcast" and "musicVideoClip". Vendor specific classes are also
allowed, but it requires that the counterpart (Controller) is capable of parsing these specific
classes otherwise they are ignored.

Each value refers to a class identifier defined in UPnP AV CDS specification [41]. A class

58 Use Cases and Design Concept

MEDIA_INFORMATION_COUNT

MEDIA_INFORMATION_1

MEDIA_INFORMATION_N

DEVICE_REFERENCE_COUNT

SERVER_DEVICE_REFERENCE_1

SERVER_DEVICE_REFERENCE_N

Figure 4.11.: Media Information Record’s Payload Layout, without Record Header depicted.

MEDIA_INFORMATION_LENGTH

MEDIA_INFORMATION_CHAR

MEDIA_INFORMATION_TYPE

Figure 4.12.: Media Information Layout

identifer appears as the value of element <upnp:class> in the CDS XML description page.
Only a subset of those identifiers are referred in this use case regarding A/V application,
object.container’s extended classes are not considered here for instance. Figure 4.13 shows
the class hierarchy of the referred class identifiers in this use case.

The arrow in Figure 4.13 implies the inheritance relationship denoted the same as in UML
class diagram. The class object is the parent class, and it has two children: object.item and
object.container. The same to the other derived classes. The class object and object.item are
not mapped here. The mapping relationship is for instance, audioItem (in media Information
content) vs. object.audioItem (as class identifier).

An example of the representation of a music item from implementation is shown in Table
4.4:

Value Media Information Type Media Information Content
0x01 Title (dc:title) "Beethoven’s Symphony No. 9"
0x02 Author (upnp:artist) "Ludwig van Beethoven, composer"
0x03 Genre "classical"
0x04 Date (dc:date) "2002-00-00"
0x05 Container (dc:title) "Musik"
0x07 Album (upnp:album) "Beethoven: Symphonies Nos. 5 & 9

"Choral""

4.3 Audio/Video Handover Use Case 59

0x09 Class (upnp:class) "musicTrack"(object.item.audioItem.
musicTrack)

0x0d Duration "00:01:15"
0x0e Size "618692"
0x0f Bitrate "44100"
0x22 Resource URI "http://192.168.1.134:58080/mshare/1/

10004:18:prima-
ry/Beethoven’s%Symphony%No9.mp3"

Table 4.4.: An Audio Item Media Information Example: a music track item stored in UShare
[82].

Usually Media Information Record with only Media Information in Title type given would
be enough for a controlling device to find the expected resource information on a server.
However, sometimes it is better that users attach more media information in the record for
a controlling device to find the match media item that a user would like to playback. There
shall be at least one Media Information data for one Media Information Record. There is a
restriction that the defined Media Information is not applicapable in some cases, since not
every DLNA DMS/M-DMS supports those search capabilities.

The Server Device Reference list is used to bind media item information to specified servers
to form a complete Content Holder by referencing to ID field of the server device identi-
fication record (UDN or Friendly Name Record with local or destination MS type) within
the same DLNA A/V Handover Record. If the pointed UDN or Friendly Name Record
does not exist in the DLNA A/V Handover Record, the pointer (Server Device Refer-
ence in Media Information Record) is illegal. The Media Information Record can contain
any number of references, but usually one or zero. The Server Device Reference Length
field (SERVER_DEVICE_REFERENCE_LENGTH) is a one-byte field implying that the ID
length of a UDN record should be less than 255 bytes. Figure 4.14 depicts the layout of a
member from Server Device Reference list.

An example given in Figure 4.15 delivers a more straightforward view.

Recommend Action Record

This is a record designed for suggesting Controller the recommended playback actions upon
the DMR/M-DMP. It is recommended that this record recommends actions against Provider’s
own local DMR/M-DMP, and the action against remote rendering devices is defined by their
own device holders or Controller’s Logic Component.

This record is a Local Type of the DLNA A/V Handover record with type name assigned
as "ra" (in NFC binary encoding 0x72, 0x61). Within one DLNA A/V Handover Record,
multiple Recommended Action Records are possible.

The payload of a Recommended Action Record consists of a one-byte recommended action
type field (Recommended Action Type) for recommending the action to Controller, a list of
rendering device references (Local MR Udn Reference X) and an unsigned one-byte field
(Local MR Udn Reference Count) counting the size of list. In this use case, only UDN

60 Use Cases and Design Concept

musicTrack

audioBroadcastaudioItem

audioBook

item

object

container

videoItem

movie

videoBroadcast

musicVideoClip

Vendor -
extended
Classes

Figure 4.13.: Class Structure for Items and Containers in A/V Handover Use Case

SERVER_DEVICE_REFERENCE_LENGTH

SERVER_DEVICE_REFERENCE_CHAR

Figure 4.14.: Server Device Reference Encoding

Record is used to identify a rendering device. At least one rendering device shall be referred,
i.e. the size of rendering device reference list shall not be zero. Figure 4.16 shows the
structure of a Recommended Action Record.

The Recommended Action values implies the action recommended to Controller. Controller
shall first try to treat the specified rendering device as it is recommended. Controller deals
with it as a strong suggestion but may also ignore it depending on the Controller’s UI design.
All the action types are interpreted in Table 4.5.

Carrier Record and Handover Record

The DLNA home network is ground on the preassumption that all the devices are within the
same Local Area Network. It is possible that in real life two touched devices are in different
LAN. Once this happens it will lead to unexpected control failure or condition: it is probably
no device can be found or the device expected is different from the one being found or even
cross-influence between devices.Hence, a record to pass the network connection information
is necessary in a DLNA record. The network type may be either Bluetooth or Wi-Fi.

Two different types of record are defined in this use case. One is called Carrier Record, and
the other one is called Handover Record. The previous one is a simple Handover Record
but for Wi-Fi only, and it passes only the pre-configured wireless network information. Pre-
configured information indicates that if it is the first time that Controller to connect to the
network which is specified in the Carrier Record information, the connection intention can
not be fulfilled successfully. For complete connection information a Handover Record should
be included instead.

Carrier Record is NFC Forum Local Type with type name "carrier" (in NFC binary encoding

4.3 Audio/Video Handover Use Case 61

NDEF HEADER

TYPE LENGTH

PAYLOAD LENGTH

ID LENGTH

TYPE

ID

(CF=0, SR = 1, TNF = 0x04)

(mi)

(0x02)

Media Information Type
(TITLE:0x01)

Media Information
(Maid with the Flaxen Hair)

Media Information Count
(0x02)

Length of First Media Information Field

9

0

1

2

3

4...5

6

7

(0x1a)8

0x0a...0x22

Offset

(0)

Length of Second Media Information Field

Media Information Type

Media Information

(AUTHOR:0x02)

(0x01)

(Richard Stoltzman)

0x23

0x24

0x25..0x35

(0x12)

Udn Reference Count
(0x01)0x36

Udn Reference Length

Udn Id Reference
(dst-ms:1)

(0x08)0x37

0x38..0x3f

(0x39)

NDEF HEADER

TYPE LENGTH

PAYLOAD LEN

ID LENGTH

ID
(dst-ms:1)

PAYLOAD

UDN Record

TYPE
(udn)

Figure 4.15.: Media Information Record Example, short record, ID: 0, with two media infor-
mation defined for one media item, and refers to one server device

0x63, 0x61, 0x72, 0x72, 0x69, 0x65, 0x72). It contains two field, one field indicates the
type of the network carrier, and the other field is the content of the network carrier with the
assigned type. Figure 4.17 shows the overall layout of a Carrier Record, and Table 4.6 lists
carrier types.

Handover Record in this thesis uses only static handover record [68] but not a negotiated
handover [68] record in NFC P2P mode. The Handover Record concept, either negotiated
or static one, is already standardized by NFC Forum organization. Figure 4.18 shows an
example of a static Handover Record.

In this example, the Handover Selector Record [68] offers the requestor both Wi-Fi and
Bluetooth the configuration data. Wi-Fi and Bluetooth are indicated as "active" (the carrier
is currently powered on) in this record, so the Handover Requestor device will expect both
carriers to be available.

Handover Record is already standardized.

62 Use Cases and Design Concept

NDEF HEADER

TYPE LENGTH

PAYLOAD LENGTH

ID LENGTH

TYPE

ID

(TNF = 0x04)

(ra)

(0x02)

Recommended Action Type

Local MR Udn Reference Count

Local MR Udn Reference Length 1

Local MR Udn Reference 1

Local MR Udn Reference Length N

Local MR Udn Reference N

Payload

NDEF HEADER

TYPE LENGTH

PAYLOAD LEN

ID LENGTH

ID

PAYLOAD

UDN Record

TYPE
(udn)

LOCAL_RENDERER

Figure 4.16.: Recommended Action Record Layout

Value Recommended Action Type
1 STOP_AS_HOLDER. When the reference is a Holder, Controller

stops this device after the connection is set between Holder and
Target

2 KEEP_PLAYING_AS_HOLDER. When the reference is a
Holder, Controller does nothing against device after the connec-
tion is set between Holder and Target

3 REPLAY_AS_TARGET. When the reference is a Target, Con-
troller replays the media, which is played previously on Holder,
on the reference.

4 RESUME_AS_TARGET. When the reference is a Target, Con-
troller resumes the media, which is played previously on Holder
as a MR, on the reference. When the source is a DMS, then this
is equivalent to the action REPLAY_AS_SINK_MR

5 DOING_NOTHING_AS_TARGET. When the reference is a Tar-
get, Controller does nothing.

0x06..0xff RFU

Table 4.5.: Recommended Action Type values

4.3 Audio/Video Handover Use Case 63

NDEF HEADER

TYPE LENGTH

PAYLOAD LENGTH

ID LENGTH

TYPE

ID

(TNF = 0x04)

(carrier)

(0x08)

Payload
Carrier Type

Carrier Information

(SSID/BSSID/NETWORK_ID)

Figure 4.17.: Carrier Record Layout

Value Carrier Type
0 SSID, Wi-Fi SSID
1 BSSID, Wi-Fi BSSID
2 NETWORK_ID
0x06..0xff RFU

Table 4.6.: Carrier Type values

Minimum DLNA A/V Handover Message Example

The mandatory record in a DLNA A/V Handover Record is an identification record provides
Provider’s embedded device or a reference device stated in Provider as if it is an embedded
device of Provider, i.e. UDN Record or Friendly Name Record of local device type. So the
minimum DLNA A/V Handover Record is with only one UDN Record or Friendly Name
Record in it.

A UDN Record is used here. The binary layout of a minimum DLNA A/V Handover Record
is shown in Table 4.7.

Offset Content Length Explanation
0 0xd4 1 MB=1, ME=1, SR=1, IL=0,

TNF=0x04, DLNA A/V
Handover Record’s NDEF
Header

1 0x10 1 Record Type Length, 16 bytes
2 0x2f 1 Record Payload Length
3 0x64, 0x65, 0x2e, 0x73, 0x6f, 0x6e,

0x79, 0x2e, 0x64, 0x6c, 0x6e, 0x61,
0x2e, 0x61, 0x76, 0x68

0x10 Record Type: "de. sony.dlna.
avh"

64 Use Cases and Design Concept

19 0xd4 1 starting of DLNA A/V Han-
dover Record’s payload, MB
=1, ME=1, SR=1, IL=0,
TNF=0x04, UDN Record’s
NDEF Header

20 0x03 1 UDN Record’s Type Length
21 0x29 1 UDN Record’s Payload

Length
22 0x75, 0x64, 0x6e 3 UDN Record’s Type: "udn"
25 0x75, 0x75, 0x69, 0x64, 0x3a, 0x30,

0x30, 0x30, 0x30, 0x30, 0x30, 0x30,
0x30, 0x2d, 0x30, 0x30, 0x30, 0x30,
0x2d, 0x31, 0x30, 0x31, 0x30, 0x2d,
0x38, 0x30, 0x30, 0x30, 0x2d, 0x35,
0x34, 0x34, 0x32, 0x34, 0x39, 0x31,
0x38, 0x45, 0x46, 0x41, 0x41

0x29 UDN Record’s Payload:
"uuid:000000000000
1010800054424918EFAA"

Table 4.7.: Binary Content of a Minimum DLNA A/V Handover Message

General DLNA A/V Handover Message Example

Assume Provider offers its own DLNA Controller component as a rendering device and spec-
ifies the intended Interactor as a server device. Its own local device information is identified
by a UDN Record, while for the Destination Device is identified by a Friendly Name Record.
A mediaInformation Record is given within this A/V Handover Record for Controller to
find the playback item. Provider offers additionally a Recommended Action and a Handover
Record. The structure of the record is depicted as in Figure 4.19.

4.4. DLNA Image Share Use Case

Image Share Use Case is conceptually the same as DLNA A/V Handover Use Case which
focuses on audio or A/V media sharing area. They are not subsumed under one heading
because in DLNA guideline image media and A/V media are treated differently. They have
different search and sorting criteria, they deal with different media formats, finally the trans-
port method for image items are not streaming transport so the real time requirement for
Image Share case is not that important.

Holder and Target Concept can still be applied in this use case, as well as the Interaction
Mode concept. The context reasoning algorithms which run on Controller’s DLNA Control-
ling Component are not that complicated as they are in A/V Handover use case. To explain
this further an example is given as follows:

Scenario 1: Users’ friends visit users’ apartment and users want to show to them their fam-
ily album saved in their cell phone. Users touch this cell phone displaying a photo with
a large-screen picture frame, picture frame displays this photo after this touch.

Simply put, the algorithm here is defined as follows:

4.4 DLNA Image Share Use Case 65

Figure 4.18.: A Static Handover Record: Wi-Fi and Bluetooth Configuration Data on NFC
Forum Tag[68].

 DLNA A/V Handover Record
(NFC EXT "de.sony.dlna.avh")

UDN Record(NFC EXT "udn", id ’0’)

Fri. Name Rec(NFC EXT "fn", id ’1’)

Recomm. Action Rec.(NFC EXT "ra")

Media Info. Record(NFC EXT "mi")

Handover Select Record
 (NFC WKT "Hs")

Alternative Carrier Rec.

Wi-Fi Carrier Config. Rec.

uuid:0cfeaaa56 LOCAL_MR

Sony Linkstation Destination_MS

1(Title): 7 Days MS reference ’1’

MR reference ’0’3(replay as Targ.)

Figure 4.19.: General DLNA A/V Handover Record Layout

66 Use Cases and Design Concept

1. Holder is an MS or an MR rendering an image item, and Target is an MR, which are
exactly the same as defined in DLNA A/V Handover use case.

2. Interaction Modes of "Provider:MX vs. Interactor:MX" are the same as defined previ-
ously.

3. To determine a Media Flow, in case the destination is absent in Provider’s message,
Controller’s rendering devices are considered as the default Interactors. If Controller is
not capable of rendering the image item, a decision is left to users through Controller’s
UI: listing all the rendering devices which are capable of rendering the specified image
item within the network and asking users to select one for rendering.

An Image Share Record is defined as an NFC Forum External Type with type name:
"de.sony.dlna.is". Similar to A/V Handover use case, an Image Share Record is comprised
of several local records: UDN Record, Friendly Name Record, Carrier Record, Handover
Record or Media Information Record. Recommended Action Record may be applied in Im-
age Share case, but with different operation semantics. Media Information Record is applied
to help Controller initiates the connection at server device (Holder). It is the same concept
as it functions in A/V Handover use case, but with different Media Information Types to
describe a media item, see Table 4.8.

Value Media Information Type CDS Property
0x00 None, nothing given, the media information field

should set to null also
-

0x01 Title, title of selected image media item dc:title
0x05 Container, name of the folder contains this selected

media item
dc:title

0x06 Creator, name of the creator who creates this image
media item

dc:creator

0x07 Album, name of the album collects the selected image
item

upnp:album

0x08 Date, date of the created date of container or an image
media item

dc:date

0x09 Class, class of an image media item or container. Its
content is an enumeration type.

upnp.class

0x0e Size, size in bytes of an image media item res@size
0x20 Resolution, resolution of an image item. Standardized

format of this content is "HxV", where H and V are
integer numbers fro horizontal and vertical length in
pixel of the image item.

res@resolution

0x21 Profile information (A set of transfer and encoding
parameters associated with a media resource [19])

res@protocolInfo

0x22 Resource URI, the URI that identifies a media re-
source within the network

res

0x23..0xff RFU -

Table 4.8.: Image Share Use Case: Media Information Type Values

The Media Information types here are a subset of Media Information types in A/V Handover

4.5 DLNA Control Handover Use Case 67

use case to comply with image properties. Moreover, the value of media information content
field with Class type (0x09) is assigned with one of the following values: "imageItem",
"photo", "container", "album", "photoAlbum" and any other vendor specific ones. They
are mapped into the elements set of class structure illustrated in Figure 4.20. That is, "im-
ageItem" is mapped to object.item.imageItem, "photo" is mapped to object.item.imageItem,
"container" is mapped to object.container, "album" is mapped to object.container.album,
"photoAlbum" into object.container.album.photoAlbum and vendor specific ones are mapped
into object.XX.XX.XX.vendorExtendedClass but named as vendorExtendedClass only with-
out prefix.

imageItem photoitem

object

container album

Vendor -
extended
Classes

photoAlbum

Figure 4.20.: Class Structure for Items and Containers in Image Share Use Case

Due to the comparably small size of image item, a MIME Image Record can be encapsulated
into Image Share Record. This MIME Image Record provides the binary data of image
directly nested in the Image Share Record, which can also be considered as a Holder. This
record is a Media-type as defined in RFC 2046 [62] with TNF value 0x02. The MIME
type for the image items is "image/∗", for instance for a JPEG profile it is presented as
"image/jpeg".

4.5. DLNA Control Handover Use Case

This use case helps users access the control UI of full or specific functionalities. The use
cases described so far solve specific scenarios for media distribution, however in some cases
a more generic approach, which allows more flexible control over a device would be useful.

For a device (Provider) to hand over its control to the other device (Controller), it is recom-
mended to hand over only Provider’s local device’s control or its reference’s in order to make
the handover more intuitive and easily understood from user’s perspective. That is, when two
devices are touched there is no other devices’ control out of these two can be handed over.
The handover is from Provider to Controller. Provider provides Controller device identifica-
tion information and other information for Controller presenting a control UI to users.

The following application scenarios present how the design of DLNA Control Handover use
case facilitates users:

Scenario 1: A DLNA certified CD player is playing a music, users pass by and rush to bed-
room. With a touch between users’ cell phone and CD player, users retrieve the media
control panel of your CD player in less than one second. Users are happy operating
against the CD player in their bedroom afterwards.

68 Use Cases and Design Concept

Scenario 2: Users touch a stereo system, a NAS or any other DLNA certified devices with
their tablet. They retrieve a presentation page popped up in their tablet’s browser. Sud-
denly the tablet turns into a DLNA controlling device which actually may not have any
DLNA Apps installed. See Figure 4.21 for a similar example.

NASM-DMP

Figure 4.21.: Touch the phone with a NAS, users will get the presentation page of NAS on
the phone

As defined in [83], UPnP presentation pages are HTML-based Web pages, hosted by
a device that can be viewed in any web browser on the network. Instead of having a
complex control point application, users can view information about a device by sim-
ply pulling up its presentation page in a web browser.Presentation pages can provide
many different types of information, ranging from static information held in the device
description document (manufacturer, model, version, and so on) to dynamic informa-
tion about current state variable values. Enterprizing devices can even offer the ability
to invoke actions from a presentation page, although this is uncommon. This page is
especially useful when the counterpart does not support controlling function.
Noted: Since it is not required that Controller should also contain a DLNA Controlling
Component, it breaks Rule 2 defined in Section 3 when there is no DLNA Controlling
Component presented in Controller .

Scenario 3: Users are interested in their friends’ DLNA M-DMP App running on their
friends’ phone. Users tap their own phone to their friends’, the same App will be
launched if this App is installed otherwise they will be led to google search page to
look for more information or to the purchase page for market information (goes to
Android Market if the device specified in the message is an Android Application).
This application scenario is similar to the scenario proposed by Google I/O [84] in
May, 2011: one phone user is playing a game on Android system, and the other player
wants to join this game. What the new player needs to do is to touch his own phone
with the other’s and if the new player already has the game installed, the game will be
launched directly and this head-to-head game will be initialized, or if this game is not
installed yet then users will be sent to the Android market download page of this App.

4.5.1. NDEF Structure

The DLNA Control Handover Record is an NFC External type record with type name
"de.sony.dlna.ch". One Control Handover Record may embrace multiple records as de-
picted in Figure 4.22. The nested record can be UDN record, Friendly Name Record, Car-

4.5 DLNA Control Handover Use Case 69

NDEF HEADER
(MB=0x1,ME=0x01,TNF=0x04)

TYPE LENGTH

PAYLOAD LENGTH

ID LENGTH

TYPE
(de.sony.dlna.ch)

(0x0f)

ID

Record 1

Record 2

Record N

Figure 4.22.: Control Handover Record Layout

rier Record, Handover Record, Control Preference Record, URL Record or URL Auxiliary
Record.

UDN Record and Friendly Name Record

They are the most important records in the DLNA Control Handover Record, as defined in
DLNA A/V Handover Record (Section 4.3.7 and Section 4.3.7), UDN Record or Friendly
Name Record can help a controlling device to identify the device and invoke actions exposed
by the device. They are still local records with the same type name and TNF as defined
previously, and they are not local to DLNA A/V Handover Record but to Control Handover
Record. One difference is that only LOCAL_RENDERER type and LOCAL_SERVER type
are used in control handover use case while DST_RENDERER type and DST_SERVER type
are excluded. The other difference is only one UDN or Friendly Name Record can exist in
one DLNA Control Handover Record, if a Friendly Name Record and a UDN Record exist at
the same time then the Friendly Name Record is considered as the supplementary description
of the device (this UDN Record and Friendly Name Record identify the same device).

Carrier Record And Handover Record

They function exactly the same as they are in the DLNA A/V Handover Record except in this
use case a Carrier Record is considered to be local to a Control Handover Record. If none
of them is present, devices will be considered to be in the same network which is a potential
risk for the following DLNA control (in DLNA Communication Session).

Control Preference Record

The Control Preference Record is an NFC Forum Local Type Record, with type name defined
as "pref" (encoded as 0x70, 0x72, 0x65, 0x66). The main design purpose of this record is to
inform Controller the control type it wants to be handed over. A Controller try to present the

70 Use Cases and Design Concept

UI with required type to users, but it is not guaranteed that the UI with specified control type
can be retrieved. Figure 4.23 shows the layout of Control Preference Record.

Record Header

CONTROL_PREFERENCE

(TNF=0x04, Type = ’pref’)

(Payload field)

Figure 4.23.: Control Preference Record Layout

The record’s payload (CONTROL_PREFERENCE) is an unsigned one-byte value indicating
the control preference, Table 4.9 lists all the preference types.

Value Control Preference Type
0x01 PRESENTATION_PAGE, Controller will launch the presentation page

in a browser if the presentation page is retrievable.
0x02 API_LIST, Controller will launch a full user interface to users if a con-

trolling component exists.
0x03 MR_MEDIA_PLAY_BACK_PANEL, is used only when the device

provided by Provider is a DMR/M-DMP, indicating that the type of
UDN or Friendly Name being passed should be LOCAL_MR. It will
present to users a media control panel with basic operations, such as
stop, seek, pause, play, volume up, volume down, brightness control
etc.. Then in this case a Controller should contain one MRCP (media
renderer control point). If users want to select and browse media items
on DMS/M-DMS, then Controller should contain one MSCP (media
server control point).

0x04 MS_FILE_SYSTEM, is used only when the device provided by
Provider is a DMS/M-DMS, indicating that the type of UDN or Friendly
Name being passed should be LOCAL_MS. It will present to users the
file system structure of this DMS/M-DMS in a graphical way. A Con-
troller should embed at least a MSCP, not necessary a full CP.

0x05 MS_CONTENT_LIST, is used only when the device provided by
Provider is a DMS/M-DMS, indicating that the type of UDN or Friendly
Name being passed should be LOCAL_MS. It will present to users the
file system structure of this DMS/M-DMS in a more textfile-based way
(for logging purpose probably), users can print out the file system struc-
ture. A Controller should embed at least one MSCP, not necessary a full
CP.

0x06 MARKET_PAGE, is used when the device provided by Provider is
a DMR/DMS/M-DMP/M-DMS. It will launch product purchase web
page, if this application is a Android App it will go directly to the An-
droid market page.

0x07 SEARCH_PAGE, is used when the device provided by Provider is a
DMR/DMS/M-DMP/M-DMS, it will launch the google search page
with search keyword set as the name of this device or application.

4.5 DLNA Control Handover Use Case 71

0x08 LOCATION_PAGE, is used when the device provided by Provider is
a DMR/DMS/M-DMP/M-DMS, it will show to users the location page
in the browser, and in this page users obtain a XML-formatted file, de-
scribing the device general information, control page, service page etc.
It is more of developers’ interests.

0x09 PLAYING_MEDIA_INFO, is used only when the device provided by
Provider is a DMR/M-DMP, indicating that the type of UDN or Friendly
Name is LOCAL_MR. It will present to users the current playing me-
dia’s information, title information, album information, author informa-
tion for instance.

0x0a..0xff RFU

Table 4.9.: Control Preference Values

DLNA URL Record

NFC Forum well-known URI Record [66] or NFC Absolute URI Record is an NFC RTD
describing a record to be used with the NFC Data Exchange Format (NDEF) to retrieve a
URL stored in a NFC-compliant tag or to transport a URI from one NFC device to another
[66].DLNA URL Record functions similar to NFC Forum well-known URI Record [66] or
NFC Absolute URI Record. DLNA URL Record is mainly used for storing URL information
in NDEF and its linked resource provides control related information.The only difference is
that only URL is supported in DLNA records and only four types of URI schema prefix are
supported in DLNA Architecture: http://www., http://, rtsp:// and rtspu://. Scheme rtspu:// is
not defined within the scope of NFC Forum well-known URI Record or NFC Absolute URI
Record.

The well-known Type for an URI record is "U" (0x55 in the NDEF binary representation).The
structure of well-known URI Record payload consists of two parts: one-byte of URI identifier
code, and N-bytes of URI field in UTF-8 string. As defined in NFC Forum well-known URI
Record, in order to shorten the URI, the first byte of the record data describes the protocol
field of an URI. There are 36 prefixes for encoding and decoding the URI, though applications
MAY use the 0x00 value to denote no prefixing when encoding, regardless of whether there
actually is a suitable abbreviation code [66]. "http://www." is abbreviated as 0x01, "http://"
as 0x03, and "rtsp://" as 0x12, finally rtspu:// in DLNA Control Handover Record is defined
as 0x24 which in [66] is reserved for future use, see Table 4.10.

Decimal Hex Protocol
0 0x00 N/A.
1 0x01 http://www.
3 0x03 http://
18 0x012 rtsp://
36 0x24 rtspu://

Table 4.10.: DLNA URL Abbreviation Table, i.e. URL Identifier Code

A URL http://www.google.com in DLNA URL Record is presented in hex dump format as:

72 Use Cases and Design Concept

0000: 01 67 6f 6f 67 6c 65 2e 63 6f 6d .google.com

Whenever the DLNA URL Record is used in the DLNA Control Handover Record, it is rec-
ommended to use a URL Auxiliary Record at the same time to reference to this URL Record.
Also whenever a URL Record is referenced or requested to be appended with additional
information, an ID field is required to be assigned in the URL Record.

User can attach information in the payload of URL Record, such as presentation page address,
internet resource address.

URL Auxiliary Record

URL Auxiliary Record is an NFC Forum Local Type Record, with its type name "urlaux"
(NFC binary encoding 0x75 0x72 0x6c 0x61 0x75 0x78). It is only allowed to exist within
DLNA Control Handover Record, out of this scope it shall not be used. The TNF field is as-
signed to 0x04 indicating that this record is an NFC Forum external record. Its main purpose
is to identify the type of the URL Record presented within one DLNA Control Handover
Record and help a Controller to parse the passed URL information more effectively and intu-
itively. This record is not mandatory in DLNA Control Handover Record, it is recommended
to use when there is an anonymous URL Record accompanied in DLNA Control Handover
Record. If there is no URL Record included within the DLNA Control Handover Record, the
URL Auxiliary Record shall not be present.

Its payload layout is described in Figure 4.24. A DLNA Control Record can contain multiple
URL Auxiliary Records.

URL_TYPE _IDENTIFIER

URL_RECORD_REFERENCE_COUNT

URL_REFERENCE_LENGTH_1

URL_REFERENCE_CHAR_1

URL_REFERENCE_LENGTH_N

URL_REFERENCE_CHAR_N

Figure 4.24.: URL Auxiliary Record Payload Layout

Inferring from Figure 4.24, reference to multiple URL Record is allowed. The
first field named URL_TYPE_IDENTIFIER is a one-byte field to assign a prop-
erty to referenced URLs, see Table 4.11 for possible assignments. The

4.6 DLNA Upload/Download Use Case 73

URL_RECORD_REFERENCE_COUNT is a one-byte field indicating that the number of
references holded in this URL Auxiliary Record. URL_REFERENCE_LENGTH_N indi-
cates the length of URL_REFERENCE_CHAR_N. Finally URL_REFERENCE_CHAR_N
is a pointer to a URL Record, the content here is a URL Record’s ID value.

ASCII Value Hex Value Explanation
P 0x50 PRESENTATION_PAGE, indicates the URL is

linked to a presentation page, which leads users
to the web based control page

M 0x4d MARKET_PAGE, indicates this URL will lead
users to Android Market(if the application runs
on Android) or product purchase page.

S 0x53 SEARCH_PAGE, will lead users to search page
through search engine.

L 0x4c LOCATION_PAGE, will lead users to the
location page (UPnP description for root
device[25])

U 0x55 UNDEFINED

Table 4.11.: Control Handover Record’s Internal URL Type Identifier List

4.6. DLNA Upload/Download Use Case

Nowadays, people are not satisfied with just viewing media online. With the advent and
popularity of mobile devices or portable devices which connect to home network in an inter-
mittent manner and join and leave the home network frequently, new scenario for download-
ing and uploading application is introduced. This use case enables the possibility of sharing
media on the road. DLNA organization includes these upload and download capabilities in
their DLNA certified products to fulfill users’ demands after the initial DLNA specification.
There are two new device classes, Mobile Digital Media Downloader (M-DMD) and Mobile
Digital Media uploader (M-DMU), being introduced based on the initial UPnP A/V standard.

4.6.1. Upload and Download Capabilities

An Upload Controller (+UP+) is a device capability that, when installed in a host, allows
the host to upload content to a server (DMS or M-DMS). The receiving server needs to
implement the optional upload functionality, otherwise it will not accept requests to upload
content. Upon completion of an upload operation, the receiving server exposes the new
content to the network. The +UP+ controller is the entity that implements a Media Server
Control Point (MSCP) and includes in this component some specifically designed UPnP
upload functionality. The +UP+ controller uses the HTTP POST method to transfer contents
from the host device to a server device [19].

Similarly a Download Controller (+DN+) is a device capability that allows the host to down-
load on its own from a server (MS or M-DMS) . This capability is supported by most of the

74 Use Cases and Design Concept

servers. Be aware that to download an audio item or A/V item and to stream them is differ-
ent. Download means a copy of a file would be generated in receiving host, while stream a
file means only to transfer packet with minimal buffer and at certain pace so that the media
content can be played back instantaneously.

4.6.2. Usage

Examples of M-DMDs or M-DMUs are digital cameras, cell phones, mp3, mp4. Typical
usages of this use case are as follows:

• An mp3 as a M-DMD touches a NAS at home, whereby it enables music stored on
NAS downloaded to mp3 via Wi-Fi connection.

• A digital camera as M-DMU touches a PC, a collection of photos are uploaded to PC
afterward.

• A cell phone touches a TV set which is playing a movie, after the touch the movie
begins to be downloaded in background on the phone.

The common features of these usages follow a patten: NFC triggers DLNA controlling de-
vice to set up the connection between two touched devices, the content are transferred via
a domestic connectivity technology like Wi-Fi, Bluetooth. This patten is designed based on
the Two-Session-Communication model.

The interaction between touched devices adopts DLNA Download System Usage Interaction
Model [1] for downloading case as in Figure 4.25 and Upload System Usage Interaction
Model [1] for uploading case as in Figure 4.26.

M-DMD
or
w/ +DN+

DMS/M-DMS

Content

IP Connectivity
IP Connectivity

MSCP
MSD

UPnP CP
UPnP Device

Media Transport
Client

Media Transport
Client

3

2

1

Figure 4.25.: DLNA Download System Usage Interaction Model

As shown in Figure 4.25, the communication is between a M-DMD or a UPnP device with
+DN+ capability and a (M-)DMS device. (M-)DMS side functions as an Interactor and the
counterpart functions as Controller, since the DLNA control is invoked by M-DMD or UPnP
device with +DN+ and according to Rule 2 defined in Chapter 3. The following steps are
performed in this usage model:

1. Controller (M-DMD or UPnP device with +DN+) invokes CDS::Browse() or
CDS::Search() to find content to download.

2. Controller sends request to download the selected content.

3. Content are transported from server device to Controller.

4.6 DLNA Upload/Download Use Case 75

Provider can contain either a DMR/M-DMP or a (M-)DMS. When a Provider includes a
DMR/M-DMP, Controller as a M-DMD for instance can download the media current playing
on DMR/M-DMP while the (M-DMS) is the real content source. Controller is required to
maintain a MRCP component in order to trace back to the real content source. When Provider
includes a (M-)DMS, it is recommended that a provider at the same time runs as an Interactor.

M-DMU
or
w/ +UP+

DMS/M-DMS

Content

IP Connectivity
IP Connectivity

MSCP
MSD

UPnP CP
UPnP Device

Media Transport
Client(+upload)

Media Transport
Client (+upload)

1

2

Figure 4.26.: DLNA Upload System Usage Interaction Model

As shown in Figure 4.26, the communication is between a M-DMU or a UPnP device with
+UP+ capability and a (M-)DMS device. (M-)DMS side functions as an Interactor and the
counterpart functions as Controller, since the DLNA control is invoked by M-DMU or UPnP
device with +UP+ and according to Rule 2 defined in Section ??. The following steps are
performed in this usage model:

1. Controller invokes UPnP control action to create a CDS entry for the content to be
uploaded.

2. Content are transported from Controller to server device.

A Provider can contain either a DMR/M-DMP or a (M-)DMS. When a Provider includes
a DMR/M-DMP, Controller as a M-DMU for instance can upload the media current to a
server device and makes the DMR/M-DMP to play a media item. Controller is required
to maintain a MRCP component in order to manipulate against rendering device. When a
provider includes a (M-)DMS, it is recommended that a provider at the same time runs as an
Interactor.

4.6.3. NDEF Structure

DLNA Upload/Download Message is one Upload/Download Record which is NFC External
Type Record, with type name assigned as "de.sony.dlna.ud". Its TNF value is 0x04 identi-
fying an NFC External Type Record. The Record consists of multiple records, like UDN
Record, Friendly Name Record, Media Information Record, Handover Record and Carrier
Record which are the same as defined in DLNA A/V Handover use case.

Capability Record

This record provided by a (M-)DMS indicates its supported upload types. When a DLNA
Upload/Download Record is received at Controller, Controller first checks the presence of
Capability Record. If it presents, Controller will check further whether the content to be
uploaded is supported by the server device. Once it is not supported, a Controller stops

76 Use Cases and Design Concept

NDEF HEADER
(MB=0x1,ME=0x01,TNF=0x04)

TYPE LENGTH

PAYLOAD LENGTH

ID LENGTH

TYPE
(de.sony.dlna.ud)

(0x0f)

ID

Record 1

Record 2..

Record N

Figure 4.27.: DLNA Upload/Download Record Layout

parsing the rest records. This check procedure can be processed in NFC Communication
Session since no DLNA control is involved in this procedure.

A DMS or M-DMS contains a tag identifying its capabilities of downloading and uploading
in its DDD (Device Description Document): <dlna:X_DLNACAP>. As described in [1]:
The <dlna:X_DLNACAP> is a comma-separated list of Capability ID values that appears at
most once for each device element in the device description document. The syntax of the
<dlna:X_DLNACAP> value, dlnacap-value, is defined as follows:

• dlnacap-value = capID *("," capID)

• capID= *<"a"-"z", "A"-"Z", "0"-"9", "_","’-">

The capID token must always be a value defined by the DLNA guidelines and the length of
the token must not exceed 512 bytes. The name space for the <dlna:X_DLNACAP>must be
"urn:schemas-dlna-org:device- 1-0" and the namespace prefix must be "dlna:". Example:

<dlna:X_DLNACAP xmlns:dlna="urn:schemas-dlna-org:device-1-0">

av-upload,image-upload,audio-upload

</dlna:X_DLNACAP>

audio-upload means the UPnP AV MediaServer supports the upload AnyContainer operation
for the Audio media class. image-upload points out the UPnP AV MediaServer supports the
upload AnyContainer operation for the image media class. av-uplaod indicates The UPnP
AV MediaServer supports the upload AnyContainer operation for the AV media class. Be-
sides which stated in the example, create-child-container means the UPnP AV MediaServer
supports the OCM: create child container opperation. create-item-with-OCM-destroy-item
whereas specifies the UPnP AV MediaServer supports to create CDS item with OCM: destroy
object capability for the upload AnyContainer operation. This Capability ID must coexist
with at least one of audio-upload, imageupload or av-upload. Identifier codes are given as
below.

Controlling device achieves these capabilities via CDS:X_GetDLNAUploadProfiles action.

The Capability Record is an NFC Forum Local Type Record, with type name defined as

4.7 DLNA Synchronization Use Case 77

Identifier Value Explanation
0 audio-upload
1 image-upload
2 av-uplaod
3 create-child-container
4 create-item-with-OCM-destroy-

item

Table 4.12.: Capability Identifier Lookup Table

"cap" (binary decoding: 0x63, x061, 0x70). The layout is illustrated in Figure 4.28. CA-
PABILITY_IDENTIFIER field is a one-byte field indicating supported upload file types on
(M-)DMS, Table 5.1 lists all the values defined here.

NDEF HEADER

TYPE LENGTH

PAYLOAD LENGTH

ID LENGTH

TYPE

ID

(TNF = 0x04)

(cap)

(0x03)

CAPABILITY_IDENTIFIER

Figure 4.28.: Capability Record Layout

4.7. DLNA Synchronization Use Case

Being evolved from Download and Upload use case, synchronization scenario is becoming
more and more demanding application area. A Download Synchronization Controller Device
is used to receive changes in the content or metadata stored on a DMS/M-DMS and those
changes are applied to the local storage.

The Media Server tracks changes (a number) within its metadata database and makes that
information available to a controller. A Controller determines elements to download to the
local storage. The following steps are performed in this use case as stated in [1]:

1. The Download Synchronization Controller invokes UPnP actions to obtain a list of
changes on the Media Server since the last synchronization.

2. The Download Synchronization Controller receives the resulting information from the
Media Server on the changes that have occurred in the database.

78 Use Cases and Design Concept

3. The Download Synchronization Controller decides what actions to carry out to syn-
chronize its local storage with the changes present on the Media Server.

4. The Download Synchronization Controller obtains the information necessary to down-
load the required information (URLs and metadata)

5. If necessary the Download Synchronization Controller transfers the relevant content
from the Media Server to the controller.

4.8. DLNA Print Document Use Case

All the use cases above deals with digital media, in addition DLNA specifies two print usage
models (2-box and 3-box), a DMPr device and two print control capabilities (+Pr1+, +Pr2+)
. Typical application scenarios are as follows:

• A digital camera showing a photo touches a printer, the photo is printed out at printer.

• A cell phone touches a NAS in the living room, a list of image items are shown to users
asking for users’ choices. Once an item is selected and the transaction is confirmed, a
printer in users’ bedroom starts to print out this selected image item.

There are a variety of NFC-enabled print applications proposed and put into production line.
[85] demonstrates a scenario of printing document with a simple touch with the help of a
Touch2Print service. The concepts behind are similar. The only difference is DMPr is a
DLNA certified Printer, it has its unique name (e.g. ssUDN) and exposes its service [86] to
print controllers. The definition of UDN Record, Friendly Name Record, Carrier Record and
Handover Record is still available.

5. Implementation

This chapter presents the implementation prototypes of DLNA A/V Handover use case and
DLNA Control Handover use case. These two were implemented due to their demonstration
effects.

5.1. Development Environment

5.1.1. Platform

The choice of suitable platform was not a sole one. The following platforms have been
evaluated: Windows PC platform, Linux PC Platform and Android Platform. Other phone
platforms have not been included due to the lack of NFC enabled phones. It was difficult
to implement a cross-platform prototype, therefore a choice needed to be made. After some
weeks’ experiment on Windows and Linux, finally the decision to switch to Android Platform
was made.

Windows Platform and DLNA Setup

For the development on Windows and Linux a small LAN was created, and over this LAN
couples of DLNA devices were running.

Ushare is a Linux based DMS, which implements the server component that provides UPnP
media devices with DLNA protocol information on available multimedia files. It uses the
built-in http server of libupnp to stream the files to clients [82]. It could not be compatible
with Sony Bravia KDL-32EX5 (DMP) TV set, after modification of the Ushare source code,
finally it could be detected by Bravia and its CDS and CMS actions could be invoked by
Bravia.

Developer Tools for UPnP Technologies v0.0.52 was used as Control Point, and UPnP
MS (not (M-)DMS, DLNA is not backward compatible with UPnP), UPnP MR (not M-
DMR/DMR) running on Windows. The Developer Tools for UPnPT M Technologies is a set
of development and reference tools for creating software that is compatible with the UPnP
specifications. These tools includes generic devices and control points, stack generation
tools and UPnP AV debug and reference tools. Most of the tools are written in C♯ but a small
C/C++ stack can also be generated. This project is open source under the Apache 2.0 license
[87].

Beside those, available tools used were a Buffalo LinkStation NAS functioned as DLNA
DMS [88], a mini DLNA Gateway including a mini DLNA DMS, a Sony PlayStation 3 as

80 Implementation

DMR and a VAIO with built in Microsoft Media Player 11 as DMP, as well as an open source
Control Point (can be considered as DMC) in Java from CyberGarage [89].

The DLNA functions were performed well over the network. A DMC could be easily modi-
fied according to uses’ demands, a DMS could also be modified accordantly. Then the NFC
function were going to be blended into the implementation. Looked into all the available re-
sources, an open source project called NfcPy [90] as an NFC Reader/Writer Terminal driver
(here Pasori RC-S330 [58])in Python was adopted. Interface among Python, C and Java
codes is required, and finally came out a solution: Swig (Simplified Wrapper and Interface
Generator) for allowing interpreted codes calling native C libraries and vice versa.

Android vs. PC: Pros and Cons

A problem with Linux and Windows Platform was addressed: the PC can not natually behave
as an NFC Forum Device as other mobile devices, PC is not portable to show the advantage
of using NFC Technology.

There were couple of Samsung Google Nexus S phones equipped with NXP NFC chip at
hand. They were taken as the experimental devices on Android Platform.

Advantages of developing on Android can be gained from the following properties of An-
droid:

• Samsung Nexus S could be considered as an NFC Forum Device.

• Since NFC technology is a proximity technology, its radio signal range is extremely
short, a portable device is more flexible.

• Android is an open source project, it is easy to develop and debug.

• NFC APIs [91] are issued public via Android SDK since Android 2.3. This built-in
NFC API stack makes NFC development on Android easy and effortless.

• Android DLNA Apps are available on the market.

• It shows better demonstration effect.

Finally a decision to go on with the implementation on Android Platform was made based on
the advantages listed above.

Android Platform

All applications on Android are written using the Java programming language. Java on An-
droid is executed in Dalvik java virtual machine, which is optimized for mobile devices.
Android includes a set of native C/C++ libraries, which can be called by Java code using
"JNI". Android is built upon ARM Cortex A8-Core [92], so ARM compiler is part of the
Android Native Development Kit.

Development on Android should focus not only on the control logic design but also the GUI
design.

5.1.2. Android DLNA Tools

After the decision for the target platform, it is the time to select DLNA device classes on
Android phone. For development, open source ones would significantly shorten the devel-

5.1 Development Environment 81

opment life cycle and effort on baseline DLNA structure design. It is not necessary that
the software runs directly on Android, if the software runs previously on PC then it can be
adapted to Android platform.

Sorting Criteria

A sorting criteria for selecting Android DLNA tools is defined according to the following
aspects:

1. Does it run on Anroid? If not, check whether it can be adapted to run on Android. The
one that runs on Android is chosen.

2. Is DLNA supported? The one that supports DLNA is chosen.

3. Does it support the required DLNA class? Mandatory, it has to behave exactly as
expected.

4. Is it still maintained? It is better if it is still maintained.

5. Is it free software? Free version would be better than paid version.

6. Is it open source coded? Open source code has the priority.

7. If it is open source software, which programming language is used? In order to develop
on Android, Apps in Java is the best choice.

M-DMC

There are two open source implementations available: one is CyberlinkForJava, and the other
one is Cling [93]. Both of them are programmed based on Java. The latter one is designed
for Android specifically. Finally, CyberlinkForJava, namely CyberGarage, is chosen, for
the reason that in the previous PC based implementation more experience were gained from
CyberGarage. After the modification of its SSDP search socket, search response socket,
threading issues, logging issues, finally it ran also stable on Android. Cling appears very
promising, and as it is stated on its website, it is designed for Android platform and after
some research the results show that a number of DLNA compliant software also adopt Cling
as their DLNA control base control component, take Bubble UPnP for example.

M-DMS

Until now, there is no open source M-DMS available on the market. Furthermore it is impos-
sible to port the open source DMS from PC. One problem is the cross programming language
problem. The other problem is that most of the DMS software running on PC are bound to
PC intrinsic file system. It would take a lot of effort to port them to be conformed to Android
platform. However, there is a rich set of candidate applications for stable DLNA compatible
M-DMSs available on the market.

M-DMP

Similar to M-DMS, there is no open source M-DMP available on the market. Furthermore
it is very hard to find a real DLNA M-DMP available on the Android Market. Unlike the
promissed functionalities claimed in their application descriptions, most of the Apps are only

82 Implementation

normal renderers using built-in native Android Media Player. They can not be discovered by
DMC/M-DMC/DMP/M-DMP, which means they do not comply with DLNA specification,
not mention the availability of mandatory exposed APIs. In addition to transplant DMR from
PC is difficult, since the majority of the DMR implementation is bound to native media play-
ers. Take Intel UPnP Tools for example, they have two different kinds of Media Renderers:
Intel AV Media Renderer which supports only HTTP GET for audio items, and Intel AV Me-
dia Renderer-WM9 as a plug-in of Windows Media Player 9. Finally, Intel tools implement
only UPnP AV protocol, but not DLNA protocol.

Final Candidates for M-DMR were down to Bubble UPnP [94] and ArkMc [95]. Both of
them are not open source Apps. Both have their disadvantages. Some of the disadvantages
are even critical for the realization. As the development process being presented, these draw-
backs would be explained further.
After conducting tests, the fact that Bubble UPnP can function as a M-DMP and a M-DMR is
confirmed, as well as the fact that ArkMc can function as a M-DMP, M-DMR, and M-DMS.
Both of them are linked to local Android Media Player for rendering purpose. Despite of
taking advantage of local renderer, they can still be detected as M-DMRs by DMC/DMP/M-
DMC/M-DMP.

Overall DLNA Compliant Apps Evaluation And Final Choices

Except the candidates sorted out above, more Apps and libraries have been tested during the
implementation. They were not chosen due to certain restrictions or difficulties of applica-
tion. Please refer to the Appendix for the overall comparison list.

After all the comparison, tests and judgements, in our project the following Apps and Li-
braries were used in the development:

• On Android (Nexus S, Android 2.3.4 Gingerbread):

– M-DMS: ArkMc, Twonky Mobile

– M-DMR: Bubble UPnP, ArkMc

– M-DMC: Adapted Cybergarage library with part of the Cidero [96] UPnP AV
Service Interface, as well as customized Service implementation

• Independent DLNA Certified products:

– DMS: Buffalo Linkstation NAS, Netgear built-in mini DLNA Server

– DMR: Sony Bravia KDL-32EX5, Playstation 3(occasionally)

– DMC/DMP: Sony Bravia KDL-32EX5 as DMP

• DLNA Compliant Software on PC:

– DMS: UShare on Linux, VAIO Server

– DMR: None

– DMP/DMC: Intel UPnP Control Point, Cybergarage on PC, Windows Media
Player 11

• Other software which implements only UPnP AV (as companion tools):

– Intel UPnP Server

5.1 Development Environment 83

– Intel UPnP Renderer

5.1.3. Android NFC Tools

None of them are open source ones, a customized application is required to be designed in
this implementation.

FeliCa cards [53] are utilized as NFC Forum Tags (Type 3 tags), which support NFC-F tech-
nology only.

5.1.4. Development Environment

Develop Environment is on Eclipse (Indigo, with option -Xmx512m added) with integrated
JDK, Android SDK, Android Development Tools (ADT) Plugin, and Third-party Google
USB Driver package (revision 4). The whole development is mainly based on Java, some of
the utility programs are in python, and for UShare part is in C. The minimum Android SDK
version is 9, which should be stated in the Manifest.xml file as follows:

<uses-sdk android:minSdkVersion="9" />

5.1.5. Development Network Layout

Figure 5.1 depicts the connection layout for development.

Internet

Linux Vm

Windows XP

UShare
DMS

UPnP
MR

UPnP
MS

UPnP
CP

MSCP DMR

DMR
DMS

GW

DMS

+

M-DMR

M-DMC

: Controlling Component

:controlled Component

: non-UPnP/DLNA component

M-DMC

ArkMc
M-DMR

ArkMc
M-DMS

NfcRWNfcRW

BubbleUPnP

NIC

eth0 eth1

Figure 5.1.: Network Connection Layout

84 Implementation

5.2. Preliminary Notes on NFC

Android 2.3.3 includes NFC Reader/Writer APIs, and provides a limited supports for Peer-
to-Peer mode. It can work as an NFC Forum Device in R/W mode or in P2P mode.

5.2.1. NFC On Android

A background service runs from the time NFC functionality is enabled on Android, which
is the core of NFC architecture on Android. It implements a set of APIs and provides these
APIs to functions in android.nfc and android.nfc.tech packages via AIDL. All the APIs in
framework coded in Java can use JNI to invoke lower layer native C codes or libraries, libnfc,
libnfc_ndef for instance, and DLLs.

5.2.2. NFC P2P Mode and NPP

The NDEF Push Protocol (NPP) is an Android specific protocol built on top of LLCP which
is designed to push an NDEF message from one device to another. The procedure itself is one
way and defines pushing NDEF messages from a client to a server. A device that supports
NPP MUST always run an NPP server, and MAY run the NPP client procedure when it has
an NDEF message available to push. This allows for bi-directional NDEF exchange between
NPP devices [79].

After some tests, a result came out indicating NPP is not capable of distinguishing P2P
Target or Initiator, since it is built upon LLCP while LLCP is based on NFC-DEP (NFC
data exchange protocol). P2P is already abstracted at LLCP, but NPP uses LLCP Sockets
to do the communication. Despite all the P2P Initiator/Target role information are hidden at
NPP level, the communication between two Nexus S devices is still P2P communication.

In this thesis, an NPP Client is designed. And as conventional NPP client, the software here
is able to dispatch NFC message to the foreground.

5.3. System Implementation

DLNA A/V Handover use case and DLNA Control Handover use case is realized in this
thesis.

Three Apps are implemented:

1. NfcRW is the core implementation in this thesis. It implements NFC Reader/Writer
mode function and P2P mode function, in addition it does the DLNA A/V handover
control and DLNA control handover control, for more details see Section 5.3.1 and
5.3.2. Figure 5.3 on the left side shows all the Apps implemented during this thesis.

2. There is one stand-alone application called Android_DLNA_NFC, which is only for
DLNA control as explained in Section 5.3.3.

3. The last one is called DLNA Finder with a magnifying glass icon, which is used for

5.3 System Implementation 85

composing a DLNA NDEF Message for all the local devices or devices in the network.
This DLNA Finder Application can be stand-alone, or it can be invoked by NfcRW as
part of NfcRW application.

5.3.1. NFC Application Implementation: NfcRW

The NFC Application is coded from scratch since there is no open source NFC application
on Android. The Application is called NfcRW. It is capable of writing and reading NFC tags
in Reader/Writer mode. It is capable of pushing NDEF Message to the background as in
P2P mode, or as an NPP Client[79]. It is capable of maintaining data in its own database.
Finally it is capable of reading binary formatted .ndef data from SD card and saving tags as
.ndef files on SD card. The capability of functioning as DLNA Message handler or DLNA
Message writer is not discussed in this section but in 5.3.2.

NfcRW GUI Layout

Figure 5.3 on the left hand side shows the icon of this App on desktop.

Figure 5.2.: NfcRW GUI(left) and Menu Options(right)

Figure 5.2 shows the GUI design of NfcRW Application. On the left hand side is the main
GUI, while on the right hand side is the menu options.

The layout of main GUI is composed of the following widgets:

• Button P2P: When it is pressed, tags could be pushed to the foreground, NfcRW App
can function as an NPP Client.

86 Implementation

• Button Attach Dlna Info: When it is pressed, it would bring users to the DLNA tag
composition process and finally push the composed tag to foreground, as shown in
Figure A.2

• Button Import: When pressed, it would show a list of all the .ndef messages in your
SD card file system, see Figure 5.5 on the right top. If one of the files is chosen, it will
directly begin the writing procedure. A tag at that point of time needs to be touched
for a complete writing process.

• Button Debug: This is a companion tool for developers. It shows saved items in repos-
itory when pressed.

• Button History: When pressed it shows the list of all the tags that have been detected
before. The most recent detected tag is shown on the top. In this implementation, it
is limited to 50 tags, which can be changed only in the code. See Figure 5.6 for the
history layout.

• Button Clear: It is used to clear history. On the left hand side of Figure 5.6, this button
is grey for the reason that there is no tag saved in the application currently. While on
the right hand side, it is in the normal enabled state, which indicates the repository is
not empty.

• Menu Option Exit: Exit the application when clicked.

• Menu Option About: It shows vendor information and application information.

• Menu Option Help: It shows instruction of NfcRW.

• Menu Option DLNA Enabled: Indicates current DLNA status. Normally DLNA starts
in the background at the time that the application is started. It can be terminated only
through this menu option or when the application is killed. When this option is clicked,
it terminates the DLNA function, and it can be restarted when its clicked again.

• Menu Option Settings: When clicked it will bring users to the DLNA featured settings,
see Figure 5.18.

NfcRW: NFC Intents and Intent Filters

"Intent messaging is a facility for late run-time binding between components in the same or
different applications. The intent itself, an Intent object, is a passive data structure holding
an abstract description of an operation to be performed – or, often in the case of broadcasts,
a description of something that has happened and is being announced."[97]

Figure 5.3 on the right hand side shows the scene that whenever a tag or an NFC Forum
device with NPP client touches Nexus S, a chooser list would be shown to users if more than
one App registered Intent Filters for one of the following intents. If they match any of them,
the Application Chooser Dialog would be displayed to users:

<intent-filter>
<action android:name="android.nfc.action.NDEF_DISCOVERED"/>

</intent-filter>

<intent-filter>

5.3 System Implementation 87

<action android:name="android.nfc.action.TECH_DISCOVERED"/>
<meta-data android:name="android.nfc.action.TECH_DISCOVERED"

android:resource="@xml/your_nfc_tech_filter.xml" />
</intent-filter>

<intent-filter>
<action android:name="android.nfc.action.TAG_DISCOVERED"/>

</intent-filter>

Figure 5.3.: Icon(Left) and NFC Compliant Activity Chooser(Right)

If a tag is detected and there is no call to the enableForegroundDispatch method, then the
system broadcasts three intent actions in this order, from specific (checking the content) to
generic (just a tag) [98]. Tag dispatch procedure would be like as it is shown in Figure 5.4

ACTION_TECH_DISCOVERED

ACTION_NDEF_DISCOVEREDEnableForegroundDispatch()

ACTION_TAG_DISCOVERED

Figure 5.4.: Tag Dispatch Procedure

android.nfc.tech package provides classes to expose technology specific functionality. In

88 Implementation

Section 2.2, a list of NFC Forum Tag Technologies is given. Until Android 3.2, the following
technologies are supported by Android [91]:

Class Description
NfcA Provides access to NFC-A (ISO 14443-3A) properties

and I/O operations.
NfcB Provides access to NFC-B (ISO 14443-3B) properties

and I/O operations.
NfcF Provides access to NFC-F (JIS 6319-4) properties and

I/O operations.
NfcV Provides access to NFC-V (ISO 15693) properties

and I/O operations.
ISO-DEP Provides access to ISO-DEP (ISO 14443-4) proper-

ties and I/O operations.
NDEF Provides access to NDEF data and operations on NFC

tags that have been formatted as NDEF.
MifareClassic Provides access to MIFARE Classic properties and

I/O operations, if this Android device supports MI-
FARE.

MifareUltralight Provides access to MIFARE Ultralight properties and
I/O operations, if this Android device supports MI-
FARE.

Table 5.1.: Supported NFC Technologies on Android

In /res/xml/you_nfc_tech_filter.xml, a list of interested NFC Technology is manifested, see
the following example from development:

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">
<!– capture anything using NfcF –>
<tech-list>

<tech>android.nfc.tech.NfcF</tech>
</tech-list>

<tech-list>
<tech>android.nfc.tech.NfcA</tech>
<tech>android.nfc.tech.MifareClassic</tech>
<tech>android.nfc.tech.Ndef</tech>
<tech>android.nfc.tech.NfcB</tech>

</tech-list>
</resources>

In this implementation, the most often used NFC Forum Tag Type is NfcF. Since the NFC
Forum Tags used during implementation are Sony FeliCca Tags, which uses NfcF technology.

NfcRW NFC Functionalities

Figure 5.5 left shows when a tag or an NFC Forum Device in Card Emulation mode is de-
tected by NfcRW. The left hand side shows a DLNA A/V Handover Record. The message

5.3 System Implementation 89

is parsed and shown on the GUI, with its ID field, Type field, TNF field and payload field
presented, as well as payload in HEX format (which is not important to users but to devel-
opers only). For this A/V Handover Record the Type field and TNF field is not like what
we described to use an NFC Forum External Type in Section 2.2.4, but a proprietary MIME
type. In Section 5.4, a further reason for message dispatch improvement would be given.

Figure 5.5 right bottom shows that a real NFC Forum Tag can be overwritten by the chosen
content (Write Immediately Option) and the chosen content can be pushed to foreground
(Share Option). If the content is pushed to foreground, then the next time when the other
NFC Forum Device in P2P mode and with NPP supported, would get this content. Save
Option is used to save current content on the SD card as .ndef file in binary format. This
binary format is complied with NfcPy Project [90].

Figure 5.5.: Tag detected by NfcRW(left); The scenario when import button is pressed(right
top); Write a tag or push a tag to foreground(right bottom).

Not every NDEF Record can be identified in NfcRW application. NfcRW is capable of
parsing SmartPoster Record, URI Record, Text Record, DLNA A/V Handover Record, and
DLNA Control Handover Record. When these Records are detected, there will be a notifi-
cation message (toast message) on the GUI displayed, and also in history the parsed content
would be showed. If Records detected can not be parsed, an Unknown record sign would be
showed on that record field.

Take Figure 5.6 for example, the left side shows the history. Message 6 and 7 is a smart poster
composed of Title record and URI Record; message ♯5 is an unknown record as it stated,
which actually is a Bluetooth Handover Record; Message ♯4 is a DLNA A/V Handover
Record with only one UDN Record; Message ♯3 is a Text Record with one of the Characters
not coded in UTF-8; Message ♯2 is a DLNA A/V Handover Record with one UDN Record,
one Carrier Record (in Uni-Stuttgart Network: eduroam).

90 Implementation

The right side of Figure 5.6 is the view when the clear button is pressed.

Figure 5.6.: History View(Left);Clear History(Right).

5.3.2. NFC DLNA Cooperation Logic Implementation

This NFC DLNA Cooperation logic is all done in NfcRW Application. Figure 5.7 shows the
overall structure of the project implementation. In this figure, Img 1 shows the overall layout
of this Android based project.

Img 2 shows all resources, including global settings, GUI design in NfcRW implementation:

• In folder drawable-hdpi/-ldpi/-mdpi, all the drawable files including icons, widget
backgrounds, view backgrounds are defined.

• In folder drawable, all the customized widgets, dialogs, progress notifications are de-
fined.

• In folder layout, all the customized layouts are defined.

• In folder values, all the application-specific values are defined.

• In folder xml, tag technology intent filters are defined, as well as global settings.

Img 3 shows the source code structure which is the most important part of the implementa-
tion, it includes 15 packages. Appendix A.3 lists the detailed information of each package.

Img 4 shows required libraries:

• guava-r09.jar [99]: contains several of Google’s core libraries that the implementation
relies on in the Java-based projects: collections, caching, primitives support, specific
exceptions, precondition checks,common annotations, basic string processing, I/O, etc.

5.3 System Implementation 91

Img 2

Img 1

Img 3

Img 4

Figure 5.7.: Img1 shows the overall outline of this project. Img2 shows res folder. Img 3
shows layout of source code. Img 4 shows required libraries.

• xercesImp.jar: provides the necessary XML Parser classes.

• kml-2.1.7.jar: is necessary for CyberGarage.

• dlna04.jar: is a recompiled library for DLNA control on Android in this project. It
contains modified CyberGarage library for UPnP control, Cidero [96] CDS and AVT
abstract interfaces, Cidero DLNA Utilities, customized CDS, AVT interface derived
from Cidero CDS, AVT and customized DLNA utility class.

NfcRW is capable of parsing, composing DLNA A/V Handover Record and DLNA Control
Handover Record. In package com.wpl.nfc.record.dlna, DLNA local records which can be
shared among all the six use cases are defined. Besides all these records, the DLNA record
types and TNFs and other shared properties are defined globally in this package. DLNA local
records defined here are:

• Carrier Record and Handover Record (shared by all the DLNA use case records),

• UDN Record and Friendly Name Record (shared by all the DLNA use case records),

• Media Information Record (shared by Image Share case and A/V Handover case),

• MIME Record,

• DLNA URL Record (shared by Control Handover case and A/V Handover case),

• Role Record.

In package com.wpl.nfc.record.dlna.avHandover, until now two specific records are defined:

• DLNA A/V Handover Record: is used to compose and parse a DLNA A/V Handover
Record.

• Recommended Action Record: is a local Record which is specifically designed for
DLNA A/V Handover Record, see Section 4.3.7.

92 Implementation

In package com.wpl.nfc.record.dlna.controlHandover, until now three specific records are
defined:

• DLNA Control Handover Record: is used to compose and parse a DLNA Control
Handover Record.

• Control Preference Record: is a local Record which is specifically designed for DLNA
Control Handover Record, see Section 4.5.1.

• URL Auxiliary Record: is a local Record which is specifically designed for DLNA
Control Handover Record, see Section 4.5.1. This has to be used together with generic
DLNA URL Record.

In package com.wpl.nfc.record.dlna.uploadDownload, until now two specific records are de-
fined:

• DLNA Upload/Download Record: is used to compose and parse a DLNA Upload/-
Download Record.

• Capability Record: is a local Record which is specifically designed for DLNA Upload-
/Download Record, see Section .

NfcRW application implements complete AVTransport Service for (M-)DMR and CDS Ser-
vice for (M-)DMS, which are the most important DLNA Services.

package com.wpl.nfc.rw is the most important package in the whole project. It includes files
as follows:

• DlnaRecordActor: is the real handling logic for DLNA Records.

• NfcRWActivity: has NFC Forum Device Reader/Writer and NPP Client function as
described in Section 5.3.1. It also has the capability of handling DLNA records.

• NfcRWApplication: does NfcRW application specific actions and saves NfcRW appli-
cation specific values.

• MyControlPoint: is a customized DLNA Control Point.

• SettingPreferenceActivity: is used for setting preferences.

NfcRW enables the DLNA M-DMC role as soon as it is started, and this M-DMC will run till
the application is forced to be killed from Android actvity stack. Therefore even the NfcRW
application is not visible in the foreground, the M-DMC is running in background to update
detected devices. Users have the permission to disable or enable the M-DMC function. But
it is not necessary for inexperienced users to know the M-DMC role. What they are aware
of, is whether DLNA is enabled or disabled, as the options shown to them.

For the easement of composing a DLNA Record from one of the six use cases, a DLNA
Finder Application is designed. It is a stand-alone application. However, through clicking
the button "Attach DLNA Info" at NfcRW, this application will be launched as it is a part of
NfcRW Application.

In this work, the DLNA Finder is not implemented based on DLNA or UPnP. It only has the
capability to search DLNA compliant devices, but it is not obligatory that the device contains
a DLNA controlling role. The DLNA Finder uses SSDP to find the DLNA devices despite
that this is also the device discovery protocol of UPnP and DLNA. Thus a controlling device
is not necessary to be presented, and a device can run purely like a DLNA Record data Writer
without any other DLNA roles on it.

5.3 System Implementation 93

Figure 5.8 shows the main user interface and the DLNA Records composition user interface.
The main user interface has two buttons to find all the local DLNA devices (running only in
this device where the DLNA Finder Application exists) and all the DLNA devices within the
current connected local area network. By clicking one of them, it goes to the composition
state.

Figure 5.8.: DLNA Finder Main UI(left), Composition UI(right)

User chooses one of the 6 use cases to start writing corresponding DLNA records. The im-
plementation in the current phase is capable of composing only two types of DLNA records:
DLNA A/V Handover Record and DLNA Control Record. In order to start a composition
procedure, a use case is required to be selected. For the composition of differnet use case
records, different views will be presented.

Composing A DLNA A/V Handover Record

Steps to compose a DLNA A/V Handover Record of a local Renderer device is illustrated
is Figure 5.9, the composition of the DLNA A/V Handover Record of a local server device
is slightly different. The main design concept is: at each step, user can decide whether a
new local record is needed to be included in DLNA A/V Handover record. If needed, a new
local record will be encapsulated into the NFC message (Recommended Action Record for
instance).

94 Implementation

The Recommended Action selector dialog is as Figure 5.10.

Composing A DLNA Control Handover Record

Steps to compose a DLNA Control Handover Record is similar to composing a DLNA AV
Handover Record. Due to the different types of record contents, each step in Control Han-
dover composition view will generate a new proprietary local record (URL Auxiliary Record
for instance).

Interact with DLNA A/V Handover Record

NfcRW polls for reading in tags. When a tag is detected, NfcRW parses this tag and handles
it accordingly. Whenever a DLNA A/V Handover Message is detected and identified, NfcRW
will call the DLNA A/V Handover Handler (in DlnaRecordActor.java) to handle this tag.

NfcRW functions as the Controller, whereas the side that sends the DLNA A/V Handover
Message is the Provider.

The implementation aims to reduce user’s interaction as much as possible. Thus the Con-
troller, here NfcRW, tries to locate media holder and media target as far as its DLNA Logic
Component can process. It stops only until there is no other way for the Controller to make
the decision autonomously. Then the option would be left to users.

In this implementation, NfcRW’s DLNA Logic Component design follows Top-down
Method which means the final result is pending, depending on NfcRW’s own status (referring
to all the Controlled Components’ roles at Controller), OTHERs’ (other DLNA controlled
components within the network) status, and the context reasoning rules.

A priority mechanism is designed to find an Interactor and determines a Media Flow. This
is the baseline algorithm of DLNA Logic Component in this implementation which will be
explained later.

NfcRW handles the message according to the following steps as discussed in Section 4.3.3:

Step 1: Controller retrieves NFC message from Provider.

Step 2: Controller checks and reconfigures the network connections if necessary.
the DLNA A/V Handover Handler at Controller parses the Provider’s message and
checks whether the Carrier or Handover Record is presented. If not, then by de-
fault Controller considers the Provider (including the destination devices specified by
Provider) and Controller are in the same network, a potential risk warning will be given.
If one of them is given, then Controller would check whether they are in the same net-
work based on the information provided by Provider and Controller’s own connection
status. If after check, Controller finds that they are not in the same network, Controller
will try to connect to the network specified by Provider (if it is Handover Record,
connection information is also provided) and re-initialize its own DLNA Controlling
component.

Step 3: Controller extracts local device role at Provider.
Controller figures out local device claimed in Provider’s UDN Record or Friendly
Name Record within the DLNA A/V Handover Record. As depicted in Figure 5.11,

5.3 System Implementation 95

Figure 5.9.: FSM of composition of DLNA A/V Handover Record of a local Renderer device

96 Implementation

Figure 5.10.: Recommended Action Selector Dialog(left), Control Preference Selector Dia-
log(right)

Controller determines the role (MR or MS) of local device defined in Provider’s mes-
sage. For different roles, Controller handles differently. The local device is always
presented, whereas the destination maybe missing. If local device is missing, Con-
troller will give the warning information to users, in this implementation "Unable to
parse the message.". As stated in the statechart, there are two new superstates. One
is "Case:LOCAL_MR_DST_TODO" indicating that the local device is a renderer, and
the other one is "Case:LOCAL_MS_DST_TODO" indicating that the local device is a
server.

Step 4: Controller tries to determine the Interactor or the Interaction Mode.
After the local device role of Provider is fixed, for each superstate Controller checks
whether the destination device UDN or Friendly Name Record is given in Provider’s
DLNA record. If the destination device is already specified in Provider’s message,
Controller tries to set up the connection between Provider’s local device and Provider’s
destination device. And if Controller can not create the connection (usually because
destination device is not reachable since local device’s availability is checked already
in Step 1), Controller will handle this as if there is no destination device specified by
Provider.

1. Figure 5.12 shows the statechart when Provider’s local device is a server(DMS or
M-DMS). As discussed above, Controller checks first whether a destination de-
vice (only renderer can be a destination device here) is presented by Provider. A
Media Information Record is required in this case, since to set up the connection
between a server and renderer the playback media is required.

5.3 System Implementation 97

Figure 5.11.: Statechart of Overall DLNA Logic in NfcRW.
"Case:LOCAL_MR_DST_TODO" indicates that the local device is a
renderer, and "Case:LOCAL_MS_DST_TODO" indicates that the local device
is a server.

The implementation allows user to select a media item to playback. The human
icon in statechart is presented whenever there is a user interaction. Some user
interactions may be missing for simplifying of the statechart, for example the
endstate of "Flow: Provider(MS+MI) –> OTHER(MR)" may involve user inter-
action to select a media item. Also all the user interactions for security issues are
not presented here, for instance the case when destination device is not reachable
and Controller determines another device to take over the rendering job which
normally should ask users’ permission for security reason.
When destination device information is missing, Controller applies its own al-
gorithm to find the Interactor. The Algorithm here is to try to find a rendering
device. Controller’s own rendering component has the highest priority, which
means when there are no rendering component at Controller it will try to find
other rendering component within the network. In the procedure of finding ren-
dering components users maybe asked to select a component when there are mul-
tiple choices.

For this "Case:LOCAL_MS_DST_TODO" case, it is easier to identify a Media
Flow once the Interactor is fixed since a Media Flow can be only from MS to MR
but not an opposite way. Hence Step 5,6 are not elaborated and are presente in
Figure 5.12 all together.

2. Figure 5.13 shows the statechart when Provider’s local device is a renderer(M-
DMP, DMR or DMP). It also first checks that whether a destination device
(whether Provider’s message defines a local MR UDN/Friendly Name Record
in it) is specified. If it is specified and it is a renderer or a server, Controller will
process in different ways which are not present in this thesis but in the code. The

98 Implementation

Case:LOCAL_MS_DST_TODO

Figure 5.12.: Statechart of Implementation: Case - Provider is a MS, Step 4,5,6

case when destination device is not specified is shown in Figure 5.14. In state-
chart 5.14 some user interactions may be omitted, especially the user interaction
regarding security issues.
For a better demonstration effect, Controller aims to find a rendering device (as
Interactor). The playing rendering device has higher priority than the stopped
rendering device since a playing rendering device can also function as a Holder
which provides more possible demonstration effect. The playing rendering device
on Controller has the highest priority in this implementation. The overall priority
is designed as follow:

A Specified Destination > A Playing Renderer on Controller > A Stopped
Renderer on Controller > A Playing Renderer in the Network >

A Renderer in the Network > A Server on Controller > A Server in the
Network

Step 5,6: After Interaction Mode is worked out, Controller checks further with the DLNA
roles and devices’ states to establish Holder and Target roles respectively on devices at
that instant of time. Controller has to trace back to real Content Source from Holder.
For the case depicted in Figure 5.14, the implementation focuses on both Interactor and
Provider’s local device are MR. Another algorithm for determining Holder and Target
is defined.
The current playback mode is the most important factor of this algorithm. Listing 5.1

5.3 System Implementation 99

Figure 5.13.: Statechart of Implementation: Case - Provider is a MR

shows how the playback mode is retrieved and how NfcRW uses playback modes to
determine the Media Flow.

Listing 5.1: Code Snippet: Check Playback Mode

1 //check local renderer’s play mode
action = UtilDlna.getActionByName(ctrlp,

3 "GetTransportInfo",localUdn);
mLocalMode = avt.

5 actionGetTransportInfo_
CurrentTransportState(action);

7 //check remote renderer’S play mode
action = UtilDlna.getActionByName(ctrlp,

9 "GetTransportInfo",
local_mr_from_remote.get(0));

11 mRemoteMode = avt.actionGetTransportInfo_
CurrentTransportState(action);

13 //do the logic
if((mRemoteMode.toLowerCase().

15 equals(playing_mode.toLowerCase()))&&
(mLocalMode.toLowerCase().

17 equals(stopped_mode.toLowerCase()))||
(mLocalMode.toLowerCase().

19 equals(no_media_present_mode.toLowerCase()))){

100 Implementation

Figure 5.14.: Statechart: Case - Provider is a MR and No Interactor Specified

5.3 System Implementation 101

21 //NfcRW decides, tries to resume
caseRemoteIsPlayingLocalIsStopped_resume(context,

23 ctrlp,local_mr_from_remote.get(0), localUdn);
}else if((mRemoteMode.toLowerCase().

25 equals(stopped_mode.toLowerCase()))||
(mRemoteMode.toLowerCase().

27 equals(no_media_present_mode.toLowerCase()))&&
(mLocalMode.toLowerCase().

29 equals(playing_mode.toLowerCase()))){
//NfcRW decides

31 caseRemoteIsStoppedLocalIsPlaying_resume(context,
ctrlp,local_mr_from_remote.get(0), localUdn);

33 }else if((mRemoteMode.toLowerCase().
equals(playing_mode.toLowerCase()))&&

35 (mLocalMode.toLowerCase().
equals(playing_mode.toLowerCase()))){

37 //up to the user
caseRemoteIsPlayingLocalIsPlaying(context,

39 ctrlp,local_mr_from_remote.get(0), localUdn);
}else if(((mRemoteMode.toLowerCase().

41 equals(stopped_mode.toLowerCase()))||
(mRemoteMode.toLowerCase().

43 equals(no_media_present_mode.toLowerCase())))&&
((mLocalMode.toLowerCase().

45 equals(stopped_mode.toLowerCase()))||
(mLocalMode.toLowerCase().

47 equals(no_media_present_mode.toLowerCase())))){
//both are stopped,

49 //check whether there are media
//Infomation attached

51 //media information is given,
//NfcRW lists all the MSs containing

53 //this media within the network
//asks usera to choose

55 if(dlnaAVHRecord.getmMediaInfoRecordArray().
size()!=0){

57 ...
}else{

59 caseRemoteIsStoppedLocalIsStopped_resume(context,
ctrlp,local_mr_from_remote.get(0), localUdn);

61 }
}

In this implementation, when one part of Interactor and Provider is playing and the
other one is stopped, the playing one is considered as the Holder. Holder will then
transfer its current playing media to Target to resume (either to resume or replay de-
pending on NfcRW’s preference setting, default setting is "resume"), and the opera-

102 Implementation

tion to the Holder after the transaction is finished depends on Recommended Action
Record or Controller’s preference setup. If no Recommended Action Record is passed
by Provider or no preference is preset at NfcRW side, a default action "stop" will take
place. Code snippet ?? shows a fragment of the implementation when Provider’s MR
is playing and Controller’s MR is stopped. The result after the touch (between NfcRW
and Provider) is that NfcRW’s MR resume Provider’s media and Provider is stopped.

Listing 5.2: Code Snippet: Provider’s MR is playing and Controller’s MR is stopped

private static void
2 caseRemoteIsPlayingLocalIsStopped_resume

(Context context, ControlPoint ctrlp,
4 String remoteUdn , String localUdn){

String mUri;
6 String mUriMetaData;

//control point decides, try to resume
8 //get current remote playing medium’s uri

action = UtilDlna.getActionByName(ctrlp,
10 "GetMediaInfo",remoteUdn);

mUri = avt.actionGetMediaInfo_CurrentURI(action);
12 //get uri Meta data

mUriMetaData = avt.actionGetMediaInfo_
14 CurrentURIMetaData(action);

action = UtilDlna.
16 getActionByName(ctrlp,

"SetAVTransportURI",localUdn);
18 //get remote renderer’s playing position

action = UtilDlna.getActionByName(ctrlp,
20 "GetPositionInfo",remoteUdn);

mPosition = avt.
22 actionGetPositionInfo_RelTime(action);

//play the local one
24 action = UtilDlna.getActionByName(ctrlp, "Play",

localUdn);
26

try {
28 Thread.sleep(3000);

} catch (InterruptedException e) {
30 log.ev(TAG,e.getMessage());

}
32 //seek the position locally

action = UtilDlna.getActionByName(ctrlp, "Seek",
34 localUdn);

36 action = UtilDlna.getActionByName(ctrlp, "Stop",
remoteUdn);

38

5.3 System Implementation 103

}

If both parts are playing, then both parts can be considered as Holder. It is up to
user to decide which one is taken as Holder or both parts are taken as Holder. The
operations after the media exchange or transfer the media depend on Recommended
Action Record or user preset preferences on NfcRW or default settings. Please refer to
Appendix for the implementation of this case.
If both parts are stopped, then NfcRW application will go back to Step 4 to find a
playing MR within the network. For example, 2 phones are touched and they do not
have media playing on them, it is probably a playing Bravia TV will be stopped by
NfcRW and its previous playing content will be send to one phone. For security issues,
user will be asked for permission: "Resume on your Bubble UPnP from Bravia TV?".
Once the permission is granted, Bubble UPnP on Provider will resume the content
previously played on TV and TV will be stopped.

Step 7: The Out-of-Band streaming runs from Content Source to Content Receiver.

Interact with DLNA Control Handover Record

See Figure 5.15, that flow chart depicts how the NfcRW handles Control Handover Record:
Currently, only 4 preferences are implemented: API LIST as UI, Presentation page, LOCA-
TION page, media control panel.

1. Controller checks and reconfigures the network connections if necessary.

2. Controller extracts local device role at Provider.

3. Controller checks with Control Preference.

5.3.3. DLNA Application Implementation

A stand-alone Application Android_DLNA_NFC is implemented in this thesis. This program
is based on CyberGarage library, aiming to provide a User Interface to users. All the DLNA
devices and UPnP devices can be found and listed to the users. Users choose one of the
devices and do the corresponding control.

Figure 5.3 on the left side shows all the Apps implemented during this thesis. The App at the
first line the second column is Android_DLNA_NFC Application with a DLNA Logo as its
icon.

Figure 5.16 shows the starting view of Android_DLNA_NFC Application on the left hand
side and on the right hand side it shows all the DLNA and UPnP devices detected within
current network(router is a UPnP device).

Figure 5.17 shows the main file structure of this application.

• MyCtrlPoint.java: defines a customized Control Point derived form Cyber-
Garage.ControlPoint

• Android_DLNA_NFC_MainActivity.java: shows to users the main view, see Figure
5.16 left.

104 Implementation

Carrier or Handover
Record

present?

Start

NfcRW and
Provider in

the same network?

Provider can be
found in the ntw?

Reconnect
WiFi

and reinitialize
DLNA

Check Control
Preference

Y

Y

Y

N

NN

End

NfcRW received
DLNA Control

Handover Record

Reconnection
Success?

Fail

Prensentation
Page?

LOCATION
Page?

API_LIST?
Media Ctrl

Panel?

Launch UI Launch browser
and show page

Launch browser
and show page

Y

YY

Show GUI

Y

Y
Fail

NN

N

N

N

Figure 5.15.: (Flow Chart) How the NfcRW handles Control Handover Record

5.3 System Implementation 105

Figure 5.16.: Android_DLNA_NFC Layout.

Figure 5.17.: Main Structure of Android_DLNA_NFC Project.

106 Implementation

• DeviceListFoundActivity.java: shows all the available DLNA and UPnP devices within
the current connected LAN, see Figure 5.16 right.

• ServiceListFoundActivity.java: shows all the available services exposed by a selected
device.

• ActionListFoundActivity.java: shows all the actions for a selected device in its speci-
fied service.

• ActionTriggeredActivity.java: shows User Interface of a specific action. Users can
input the passing parameters here.

• ResultReturnActivity.java: shows the result when an action is triggered.

• GlobalStore.java: global values of the whole application.

The most important DLNA compliant development is combined with NFC, which is mainly
in NfcRW Application. This would be presented more in Section 5.3.2.

5.4. Enhancement

This section presents some solutions to enhance the development performance. During the
stepwise development, it came out that user interactions were involved far more than ex-
pected, either for security issues or multiple choices which could not been figured out by
DLNA Logic Component autonomously. Despite sometimes it is necessary to ask users but
it should also be able to meet customized preferences.

5.4.1. Automatic Launch

As discussed, NfcRW registered for NFC action Intent filters. And DLNA Records are de-
signed as NFC external type, there is no further NFC action intent filter for external type
that can also be registered for different further data types. So the Chooser Dialog is always
needed when a DLNA Record is detected on Android since Nexus S provides a built-in App
"Tags" registered for all the NFC action intent filters.

By changing the type of DLNA records to proprietary MIME type, this chooser list can
be avoided. First, the DLNA record’s type field, take DLNA AV Handover for example,
should be changed to "application/x-de.sony.dlna.avh". Then change the manifest.xml file in
NfcRW, modify it like as follows, with a further data type filter added:

<intent-filter>
<action android:name="android.nfc.action.NDEF_DISCOVERED"/>
<data android:mimeType="application/x-de.sony.dlna.avh"/>
<category android:name="android.intent.category.DEFAULT"/>

</intent-filter>

The NfcRW application afterwards can be started automatically without chooser list query
(if there is no more applications have registered for this proprietary MIME type NDEF NFC
action), when an NDEF message is detected.

5.4 Enhancement 107

5.4.2. Preference Settings

For customized preferences, a function of Preference Setting was designed. By setting up the
preference, users can be set free from queries. See Figure 5.18.

Figure 5.18.: Left side shows the Customized Preference Settings view, right side shows
when "Both Parts Playing" is chosen.

"Preferred Local Renderer" option is used to set default active renderer’s name when there
are multiple renderers running on Controller. Once set up, the next time user received a
DLNA message, NfcRW will choose this renderer as default responding renderer if it can be
reached, without any query dialog to users.

"Both Parts Playing" defines the default operation when both Interactor and Provider are
playing. Then the next time a DLNA AV Handover message is detected and both Controller
and Provider are playing, default operations will be performed without asking users. In
Figure 5.18, "Exchange Current Playing" will be set as the default action.

Likewise the other options.

6. Evaluation

In Chapter 5, DLNA A/V Handover use case and DLNA Control Handover Case is imple-
mented. In Section 6.1, the experiments using the software designed in previous chapter
would be conducted upon different devices. In Section 6.2, the problems of experiments
obtained from the results would be addressed.

6.1. Test Cases

The experiments were carried out in different combinations of communication pairs. In this
section first an evaluation between mobile phones is performed, then evaluations between
one DMP and DMS are performed.

Two LANs are available: NFC_Test (in SSID name).and NFC-Showroom (in SSID name).

In tests, only UDN Record were used to identify devices, the alternative of using Friendly
Name Record was not used. Carrier Record was used, but no Handover Record was used.

For DLNA A/V Handover tests, the following software performance in specified test cases
were taken into consideration:

1. Check Carrier Record: Can this record be parsed? Can this record be used to
change the network connection? If it can reconnect to the specified network, how is
the performance afterwards? If the specified network is impossible to be connected
with, how does the software handle?

2. The Absence of Carrier Record: What will happen if the devices (Controller and
Provider) are not in the same LAN?

3. Controller and Provider both have Renderers, and both of them are playing: As-
sume that Controller and Provider are already in the same LAN, Destination Device
ID is not presented in UDN Record, Controller only has one active Renderer. No Rec-
ommended Action is provided.
How does the software deal with it?

4. Controller and Provider both have Renderers, and Controller is playing, Provider
is stopped: Assume that Controller and Provider are already in the same LAN, Des-
tination Device ID is not presented in UDN Record, Controller only has one active
Renderer. No Recommended Action is provided.
How does the software deal with it?

5. Controller and Provider both have Renderers, and Provider is playing, Controller
is stopped: Assume that Controller and Provider are already in the same LAN, Des-
tination Device ID is not presented in UDN Record, Controller only has one active

6.1 Test Cases 109

Renderer and no Recommended Action is provided.
How does the software deal with it?

6. Controller and Provider both have Renderers, and both of them are stopped:
Assume that Controller and Provider are already in the same LAN, Destination Device
ID is not presented in UDN Record, Controller only has one active Renderer and no
Recommended Action is provided.
How does the result look like?

7. Controller and Provider both have Renderers, and Provider is playing, Controller
which has more than one active Render are stopped: Assume that Controller and
Provider are already in the same LAN, Destination Device ID is not presented in UDN
Record. No Recommended Action is provided.
Can the active Renderer be chosen by users and how is the performance?
Can the active Renderer be chosen by default without user interaction?
If there is one Renderer playing on Controller, how does the software process it?
Other test cases with different playback modes should function the same as test case
3,4,6 with the same operation in this test case.

8. Controller and Provider both have Renderers, and Provider is playing with Des-
tination ID specified: Assume that Controller and Provider are already in the same
LAN. No Recommended Action is provided.
The play mode of Controller does not influence the final result if the specified Desti-
nation Device is reachable.
If the Destination is also a Renderer, how does the software process it?
If the Destination is a Server, how does the software process it?

9. Controller and Provider both have Renderers, and Controller is playing, Provider
is stopped, Provider sends along the Recommended Action Record:Assume that
Controller and Provider are already in the same LAN, Destination Device ID is not
presented in UDN Record.
How does the software process it?
Same concept to other cases under this preassumption with different Recommended
Actions or playback mode.

10. Reserved: Nothing

For DLNA Control Handover tests, the following software performance in specified test cases
were taken into consideration (based on the latest implementation till Sep 20, 2011):

1. Presentation Page: Can the presentation page be shown to users?

2. API list: Can the Provider’s API list be shown to users? Can users operate against
Provider via API List UI?

3. Location Page: Can the Location page be presented to users?

6.1.1. Phone-to-Phone Communication

This is a communication scenario between two DLNA MHDs.

Both phones are equipped with NfcRW, DLNA Finder Apps. Additionally, ArkMC and
Bubble UPnP are installed and launched.

110 Evaluation

As shown in Figure 6.1, the left hand side shows the internal structure of Nexus S, there is
an NXP controller and an NFC antenna at the back cover. Two spring-loaded contacts make
the connection. A secure Element is also included on the blue board shown at bottom left.
Whenever two Nexus S touches, they would run in P2P mode (NPP on the top of LLCP and
NFC-DEP) if NFC function is enabled at both sides, see Figure 6.1 right. The NfcRW is
launched directly since for improvement, the DLNA AV Handover record type is modified to
proprietary MIME type, this will be covered later in Section 5.4.

Phone1 Phone2

Figure 6.1.: Left top shows the internal structure of Nexus [100]; left bottom 1 shows the
NXP Controller [100]; left bottom 2 shows the NFC antenna at backcover [100];
right shows the Phone-2-Phone Communication experiment in this thesis.

Test DLNA AV Handover Use Case

Phone 1 and Phone 2 used DLNA Finder to compose their DLNA AV Handover Record, to-
gether with their own UDN Record, Carrier Record. Phone 2 included also Recommendation
Record of type REPLAY_AS_SINK_MR if a Recommended Action Record was required
during tests.

They were originally in the same LAN NFC_Test (in SSID). An additional LAN NFC-
Showroom (in SSID) is available. ArkMC ran on Phone 1, Bubble UPnP ran on Phone
2.

Both Phone 1 and Phone 2 would get a Chooser List or go to the handling phase directly. If
both sides process the received message at the same time, this will probably cause unexpected
behavior (See Rule 7). Here in this implementation, try to avoid selecting NfcRW to run at
the same time on both sides. In the tests, to avoid the control collision, Phone 1 was set as
Controller, Phone 2 was set as Provider. That means the Chooser Dialog at Phone 2 side was
not chosen, only at Phone 1 side.

Tests of DLNA AV Handover use cases were taken as the follows:

1. Check Carrier Record: Change Phone 1 to the other network NFC-Showroom. Re-
initialize Bubble UPnP (Bubble UPnP has to be re-initialized when Wi-Fi connection

6.1 Test Cases 111

changed due to Bubble UPnP’s design problem.). Phone 2 is playing media currently.
Touch them. Phone 1 would pops a progress dialog saying: "Reinitializing WiFi and
DLNA", after 12 seconds, Phone 1 would connect back to NFC_Test and start
processing Phone 2’s DLNA AV Handover record.
However, due to design flaw of Bubble UPnP, the process can not be proceeded since
NfcRW’s Controlling Component can not find Bubble UPnP any more. Theoretically,
if M-DMR does not need to be restarted after Wi-Fi connection reset this test would
succeed.

2. The Absence of Carrier Record: If Phone 1 and Phone 2 were in the same LAN, it
would go on with following processes. If not, warning would be given as "Can not find
device within the network, make sure they are in the same network and try again." and
"Nothing was done here.".

3. Controller and Provider both have Renderers, and both of them are playing:
Phone 1 was playing music on ArkMc and Phone 2 was playing on Bubble UPnP.
When they were touched, immediately there was a Dialog popped up asking users’
preference (extracted from settings.xml of the project):

<item>Stop me and playto remote?</item>
<item>Stop me and resume on remote?</item>
<item>Stop remote one and replay on me?</item>
<item>Stop remote one and resume on me?</item>
<item>Exchange current media content and play over?</item>
<item>Exchange current playing?</item>
<item>Stop both</item>

One side chose the interaction, say Phone 1 was chosen, and operations were chosen as
"Stop me and resume on remote?". Phone 2 would resume to play Phone 1’s previous
content and Phone 1 would be stopped.
All the cases were verified successfully.
To reduce user interaction, a "Both Parts Playing" preference could be set in settings
menu options. Then for the next time touch, there would be no dialog shown to users
when both parts were playing.

4. Controller and Provider both have Renderers, and Controller is playing, Provider
is stopped: Since no Destination Device ID was provided from Provider, What Con-
troller played would be resumed on Provider directly, Controller stopped playing.

5. Controller and Provider both have Renderers, and Provider is playing, Controller
is stopped: Since no Destination Device ID was provided from Provider, What
Provider played would be resumed on Controller directly, Provider stopped playing.

6. Controller and Provider both have Renderers, and both of them are stopped:
Since no Destination Device ID was provided from Provider, Controller would try to
find Content Holder for Renderer. Controller was not playing, the search of Content
Holder switched to find it within LAN.
Controller found all the playing MRs in the network. If only one was found, the media
playing on Interactor would be resumed on Provider without asking users and Interac-
tor stopped. If multiple were found, found devices list would be shown to users waiting
for user decision. As soon as one was chosen, the media playing on Interactor would
be resumed on Provider and Interactor stopped.

112 Evaluation

If no MR was found by Controller, for current implementation, Controller gave the
MSs list on itself.

7. Controller and Provider both have Renderers, and Provider is playing, Controller
which has more than one active Render are stopped: Since Destination Device ID
is not presented in UDN Record, no Recommended Action is provided, at first a dialog
would be shown to users asking users to choose a MR to interact with Provider.
Once it was chosen, the following steps were the same as test case ♯5.
In Preference, users can set the proffered active MR by friendly name snippet. Then the
next time doing the same operation, there would be no choose dialog shown to users
but directly use the pre-set MR to interact with Provider.

8. Controller and Provider both have Renderers, and Provider is playing with Des-
tination ID specified:
Assume the Destination Device was reachable.
If the Destination was also a Renderer, Controller checked with the playback mode of
Interactor, then repeated the step of Case ♯3, ♯4, ♯5, ♯6 accordantly as if Interactor was
Controller.
If the Destination was a Server, Controller gave the warning "No media information
attached, media information needed!".
If the Destination Device could not reach, for security issues Controller gave the infor-
mation to users: "Can not reach Device XXXXX, interact with me?. If users chose yes,
then repeated the step of Case ♯3, ♯4, ♯5, ♯6 accordantly since Interactor was switched
to Controller by user. If users did not agree, progress was aborted.

9. Controller and Provider both have Renderers, and Controller is playing, Provider
is stopped, Provider sends along the Recommended Action Record:
The Recommended Action Record could be parsed.
Provider would take over Controller’s playing content and replayed it(not resume it by
default). Controller stopped playing. Controller could set its playback mode when it
was taken over.

10. Reserved: Nothing

For DLNA Control Handover tests, the following software performance in specified test cases
were taken into consideration (based on the latest implementation till Sep 20, 2011):

1. Presentation Page: The Presentation Page of Provider can not be shown to users since
there were no presentation page provided by Bubble UPnP and ArkMc. Nothing have
been done here.

2. API list: The API List of Provider can be shown to users and users could operate
against Provider.

3. Location Page: The Location Page of Provider could be shown to users in the web
browser successfully.

All the tests could perform successfully expect test case 1 due to the design flaw of Bubble
UPnP. Besides, Bubble UPnP could not be stopped if there were multiple media presented in
the current container, it would jump to the next media item. This is also due to the design
flaw of Bubble UPnP.

6.2 Open Issues 113

6.1.2. Phone-to-TV Communication

TV set Bravia was chosen and the TV set did not contain a Controller role in it. So the TV
set could be performed only as a Provider. The tests were performed in fact between a tag
and a phone, see Figure 6.2. This tag behaved as a copy/reference to the TV set, including
TV set’s UDN Record, Carrier Record, Recommended Action Record if necessary. The Tag
was generated under the help of companion App - DLNA Finder or it could be imported as
.ndef file from file system which was generated by NFC Reader/Writer via NfcPy software
[90] on PC. By touching the tag, NfcRW can control TV and share media with it at any place
within the range of LAN.

Figure 6.2.: Working Environment (Left), Emulating TV with Felica Tag (Right)

The test cases, either of DLNA AV Handover Use Case or DLNA Control Handover User
case, functioned similar to Phone-Phone Communication. However, TV set could be stopped
without any problem.

In all, Phone-to-TV Communication delivered a stable and nice performance.

6.1.3. Phone-to-Server Communication

Only DLNA Control Handover Use Case was tested. Buffalo was used to run as a Server.

Since the Presentation Page provided by Buffalo, the Control Handover Case of Presenta-
tion Page preference did function in this set-up, see Figure 6.3 for the test that Buffalo’s
Presentation Page shows on the phone.

Other cases with different Control Preferences also functioned successfully.

6.1.4. Phone-to-PC Communication

Only use phone to communicate with the tag including the information of Intel UPnP
Renderer-WM9 as a reference. Similar to Phone-to-TV test cases, all tests were performed
successfully.

6.2. Open Issues

The design flaws of available M-DMR limits the quality of demonstration.

114 Evaluation

Figure 6.3.: DLNA Control Handover Implementation: Buffalo Presentation Page

Bubble UPnP used the same UUID, so it was impossible to run Bubble UPnP on more than
one phone, one of which could not be found. This Problem was fixed since the latest version
after Sep 20, 2011.

Bubble UPnP can not be stopped if there were multiple media presented in the current con-
tainer, it would jump to the next media item. This is also due to the design flaw of Bubble
UPnP.

Bubble UPnP and ArkMc are required to be restarted after the Wi-Fi is reset.

Once ArkMc is stopped, it went to NO_MEDIA_PRESENT transition (playback mode)
mode, and it could not be controlled by Controller at this state.

7. Summary and Outlook

7.1. Summary

This thesis combines two promising technologies: DLNA and NFC. The initial target is to
present a methodology of interfacing NFC to DLNA technology. The design is required to
minimize user interactions as much as possible, to demonstrate versatile application usage
scenarios, to deliver a sustainable design concept and realize a friendly UI. The vision that
NFC functions as an enabler of DLNA media sharing and management use cases is realized
and demonstrated, a zero-configuration media sharing and management scenario is shown.
The feasibilities of other use cases are discussed as well.

A system architecture is proposed to provide a baseline architecture for concrete use cases.
The system architecture defines a set of DLNA functional components to represent DLNA
device classes and a set of NFC functional components to represent NFC Forum tag, NFC
R/W and NFC devices in different modes. These functional components are incorporated in
devices in any combination. Three system devices are defined by the system architecture:
Controller and Provider which are involved in NFC communication, and OTHER generally
refers to the device which is not involved in NFC communication but may be involved in
the DLNA communication. A communication model is proposed to describe the commu-
nication manner over NFC-enabled DLNA network. The communication model, namely
Two-Session-Communication, separates NFC and DLNA communication into two sessions.
The first session processes only NFC communications. The receiving side parses and ex-
tracts DLNA related message and finally brings the communication into the next stage, i.e.
DLNA Communication Session. In this session, no NFC communication is involved, Con-
troller controls devices via UPnP or UPnP AV control. Due to the use case specific NFC
message, Controller maintains a logic component to analyze and control differently from
one use case to another. With this communication model, it is simple to develop a new use
case. This communication model can unburden processing effort by checking with messages
which may influence the subsequent DLNA control in NFC Communication Session.

In order to deliver a sustainable implementation, a use case specific design concept is pro-
posed. That is for each use case defining its own proprietary record, including use case
specific properties or operations as local records passing to the counterpart via NFC.

Six use cases are discussed considering market trends combining with DLNA capabilities:
A/V Handover, Control Handover, Image Share, Image Print, Media Downloand/Upload
and synchronization use case. All the use cases are expected to take effect without users’
awareness of underlying mechanisms.

Due to the time limit, two use cases are implemented. One is DLNA A/V Handover use case
and the other is DLNA Control Handover use case.

The AV Handover use case focuses on AV streaming area, with which users can seamlessly

116 Summary and Outlook

exchange or playback media between two devices within a network with a simple touch.
AV Handover specific communication algorithm, message set and two general solutions are
addressed. Based on those proposals, a user friendly implementation is built on smart phones
and tested under different test cases successfully. The outcome of this implementation varies
from users’ preferences.

The Control Handover use case covers the market trend of media management, with which
users can get information or UI of the touched device. It maintains its own proprietary mes-
sage set and algorithms in addition to general rules. Based on those properties, this use case
is implemented and verified successfully and a stable performance is shown.

These two use cases are implemented in a common software application and feasibility of
other use cases is shown. The outcome of the implementation also demonstrates a seamless,
quick and intuitive interoperability performance.

7.2. Future Work

The concept frame of the other four use cases are already proposed and discussed in this
thesis, however, more detailed use-case-specific design of NFC data format and context rea-
soning rules are required for realization.

In addition, more use cases can be developed depending on users’ needs.

A. Appendix

A.1. DDD of Sony Bravia KDL 32EX500

<?xml version="1.0" encoding="UTF-8" ?>
<root xmlns="urn:schemas-upnp-org:device-1-0"
xmlns:pnpx="http://schemas.microsoft.com/windows/pnpx/2005/11"

xmlns:df="http://schemas.microsoft.com/windows/2008/09/devicefoundation">
<specVersion>

<major>1</major>
<minor>0</minor>

</specVersion>
<device>

<deviceType>urn:schemas-upnp-org:device:MediaRenderer:1</deviceType>
<friendlyName>BRAVIA KDL-32EX500</friendlyName>
<manufacturer>Sony Corporation</manufacturer>
<manufacturerURL>http://www.sony.net/</manufacturerURL>
<modelName>KDL-32EX500</modelName>
<UDN>uuid:00000000-0000-1010-8000-54424918EFAA</UDN>
<dlna:X_DLNADOC

xmlns:dlna="urn:schemas-dlna-org:device-1-0">DMR-1.50</dlna:X_DLNADOC>
<iconList>

<icon>
<mimetype>image/png</mimetype>
<width>32</width>
<height>32</height>
<depth>24</depth>
<url>/MediaRenderer_32x32x24.png</url>

</icon>
<icon>

<mimetype>image/png</mimetype>
<width>48</width>
<height>48</height>
<depth>24</depth>
<url>/MediaRenderer_48x48x24.png</url>

</icon>
<icon>

<mimetype>image/png</mimetype>
<width>60</width>
<height>60</height>
<depth>24</depth>

118 Appendix

<url>/MediaRenderer_60x60x24.png</url>
</icon>
<icon>

<mimetype>image/png</mimetype>
<width>120</width>
<height>120</height>
<depth>24</depth>
<url>/MediaRenderer_120x120x24.png</url>

</icon>
<icon>

<mimetype>image/jpeg</mimetype>
<width>32</width>
<height>32</height>
<depth>24</depth>
<url>/MediaRenderer_32x32x24.jpg</url>

</icon>
<icon>

<mimetype>image/jpeg</mimetype>
<width>48</width>
<height>48</height>
<depth>24</depth>
<url>/MediaRenderer_48x48x24.jpg</url>

</icon>
<icon>

<mimetype>image/jpeg</mimetype>
<width>60</width>
<height>60</height>
<depth>24</depth>
<url>/MediaRenderer_60x60x24.jpg</url>

</icon>
<icon>

<mimetype>image/jpeg</mimetype>
<width>120</width>
<height>120</height>
<depth>24</depth>
<url>/MediaRenderer_120x120x24.jpg</url>

</icon>
</iconList>
<serviceList>

<service>

<serviceType>urn:schemas-upnp-org:service:RenderingControl:1</serviceType>
<serviceId>urn:upnp-org:serviceId:RenderingControl</serviceId>
<SCPDURL>/RenderingControlSCPD.xml</SCPDURL>
<controlURL>/upnp/control/RenderingControl</controlURL>
<eventSubURL>/upnp/event/RenderingControl</eventSubURL>
</service>

A.1 DDD of Sony Bravia KDL 32EX500 119

<service>

<serviceType>urn:schemas-upnp-org:service:ConnectionManager:1</serviceType>

<serviceId>urn:upnp-org:serviceId:ConnectionManager</serviceId>
<SCPDURL>/ConnectionManagerSCPD.xml</SCPDURL>
<controlURL>/upnp/control/ConnectionManager</controlURL>
<eventSubURL>/upnp/event/ConnectionManager</eventSubURL>
</service>

<service>

<serviceType>urn:schemas-upnp-org:service:AVTransport:1</serviceType>
<serviceId>urn:upnp-org:serviceId:AVTransport</serviceId>
<SCPDURL>/AVTransportSCPD.xml</SCPDURL>
<controlURL>/upnp/control/AVTransport</controlURL>
<eventSubURL>/upnp/event/AVTransport</eventSubURL>

</service>
</serviceList>
<av:X_MaxBGMCount

xmlns:av="urn:schemas-sony-com:av">64</av:X_MaxBGMCount>
<av:X_StandardDMR

xmlns:av="urn:schemas-sony-com:av">1.1</av:X_StandardDMR>
<av:X_IRCCCodeList xmlns:av="urn:schemas-sony-com:av">

<av:X_IRCCCode
command="Power">AAAAAQAAAAEAAAAVAw==</av:X_IRCCCode>

<av:X_IRCCCode command="Power
ON">AAAAAQAAAAEAAAAuAw==</av:X_IRCCCode>

<av:X_IRCCCode command="Power
OFF">AAAAAQAAAAEAAAAvAw==</av:X_IRCCCode>

</av:X_IRCCCodeList>
<pnpx:X_compatibleId>MS_DigitalMediaDeviceClass_DMR_V001
</pnpx:X_compatibleId>
<pnpx:X_deviceCategory>MediaDevices</pnpx:X_deviceCategory>
<pnpx:X_hardwareId>VEN_SONY&DEV_BRAVIA_DMR&REV_01

VEN_0033DEV_0006&REV_01
urn:schemas-upnp-org:device:MediaRenderer:1</pnpx:X_hardwareId>

<df:X_deviceCategory>Display.TV Multimedia.DMR</df:X_deviceCategory>
</device>

</root>

120 Appendix

A.2. Tools Evaluation

Software Type Prog.
Lang

Open
Source

Free Linux

Cling Core [101] CP Upnp Java X X X
Cling Media Ren-
derer [102]

MR (Stand
alone)

Java X X X

Eyecon[103] CP X
iMedia Share
[104]

CP X

Intel SDK[87] ALL C,C++,C♯ X X Bugs
Twonky
Mobile[105]

CP,MS 2.99

ProSyst Media
Server[106]

MS Trial Ver-
sion

Skifta [107] CP
Cyber Link[89] CP.. Java X X X
Ushare[82] MS C X
Mini DNLA
[108]

MS X X X

VLC + Cyber-
Link Upnp plugin
[109]

MR C,C++,
Objective-
C

X X X

UPnPlay [110]
PlugPlayer [111]
Cidero[96] CP Java X X
Coherence [112] Python
Rhythmbox
ArkMC Me-
dia Server and
Player[95]

CP, DMR 2.83 free
trial version

ShareME [113]
BubbleUPnP
(Audio Only)[94]

CP, MR 9.9/ 15days
free

Windows Media
Player [114]

X

imedia [104]
airWolf [115] MS C♯ X X ?
Software Windows Mac OS Android DLNA UPnP AV
Cling Core X X X
Cling Media Ren-
derer

X X

Eyecon X X X
iMedia Share X X X

A.2 Tools Evaluation 121

Intel SDK X ?Promissing X X
Twonky Mobile X iphone X X
ProSyst Media
Server

X Android
1.5 1.6 2.0

X

Skifta X X DLNA
certified

Cyber Link X
Ushare X(bug

fixed)
X

Mini DNLA X but
works
only with
Samsung
LE40B650,
sony PS3

VLC + Cyber-
Link Upnp plugin

X X X

UPnPlay
PlugPlayer
Cidero X
Coherence
Rhythmbox
ArkMC Media
Server and Player

X X

ShareME X
BubbleUPnP
(Audio Only)

X Android
3.1

X

Windows Media
Player

X

imedia
airWolf ? ? ? X
Software UPnP Still Main-

tained
Cling Core X 1.0.3

(2011.7.18)
Cling Media Ren-
derer

X X

Eyecon X v2.5.2 May
25, 2011

iMedia Share X Version
3.61 Jul
2011

Intel SDK X v0.0.51 Not
maintained

122 Appendix

Twonky Mobile X 4/29/2011
ProSyst Media
Server
Skifta
Cyber Link
Ushare X
Mini DNLA
VLC + Cyber-
Link Upnp plugin

X

UPnPlay
PlugPlayer
Cidero X NO
Coherence
Rhythmbox
ArkMC Media
Server and Player

X

ShareME
BubbleUPnP
(Audio Only)

X Jun.2011

Windows Media
Player
imedia
airWolf X ?

note: ? indicates unknown, X indicates yes

A.3 NfcRW Package Information 123

A.3. NfcRW Package Information

NfcRW includes 15 packages as follows:

• Package com.dlna.nfc.util: is used to ease the access of CyberGarage library

• Package com.wpl.nfc.record: is used to parse and compose general records, such as
SmartPoster Record, URI record, Text Record.

• Package com.wpl.nfc.record.dlna: is used to parse and compose generic DLNA local
records which can be shared among six use cases.

• Package com.wpl.nfc.record.dlna.avHandover: is used to parse and compose DLNA
A/V Handover Record and DLNA A/V Handover local records.

• Package com.wpl.nfc.record.dlna.controlHandover: is used to parse and compose
DLNA Control Handover Record and DLNA Control Handover local record.

• Package com.wpl.nfc.record.dlna.ImageSharing: is used to parse and compose DLNA
Image Share Record and DLNA Image Share local record.

• Package com.wpl.nfc.record.dlna.print: is used to parse and compose DLNA Print
Record and DLNA Print local record.

• Package com.wpl.nfc.record.dlna.synchronization: is used to parse and compose
DLNA Synchronization Record and DLNA Synchronization local record.

• Package com.wpl.nfc.record.dlna.unknown: is reserverd for future DLNA use case
records design.

• Package com.wpl.nfc.record.dlna.uploadDownload: is used to parse and compose
DLNA Upload/Download Record and DLNA Upload/Download local record.

• Package com.wpl.nfc.rw: is the most important part of this implementation which
would be explained in detail later.

• Package com.wpl.nfc.rw.controlHandoverReactor: is used to handle the case when
NfcRW receives a DLNA Control Handover Record, and this record asks for API_LIST
as stated in its control preference.

• Package com.wpl.util: includes all the general utilities used for all the applications.
Utilities include customized logging, fake Ndef Message generator, .ndef file parser
compliant with NfcPy, platform utility, customized Android widget and data conver-
sion utility.

• Package com.wpl.util.dlna: defines AVTransport service, CDS service and DLNA util-
ities.

• Package com.wpl.util.network: defines all the utilities for accessing network and ob-
taining network information.

124 Appendix

A.4. Code Snippet: Provider’s MR and Controller’s MR
are playing

/***************************************
** see {@link ♯caseRemoteIsPlayingLocalIsStopped_resume
**(Context, ControlPoint, String, String)}
**/
private static void caseRemoteIsPlayingLocalIsPlaying(final Context context,

final ControlPoint ctrlp,
final String remoteUdn,final String localUdn){

//user decides what to do
String mUri;
String mUriMetaData;

//check whether the preference settings is set
SharedPreferences remote_play_local_play_pref = PreferenceManager

.getDefaultSharedPreferences(context);
String mPref;
mPref = remote_play_local_play_pref.getString(“remote_play_local_play",“");

if((!mPref.equals(“"))&&(!mPref.equals(context.getResources().
getStringArray(R.array.recommendActionOptions2)[0]))){
//Preference was set and it is not up to the user option
String[] actOpts = context.getResources().

getStringArray(R.array.recommendActionOptions);
if(mPref.equals(actOpts[0])){
//Stop me and playto remote

//first stop remote one
action = UtilDlna.getActionByName(ctrlp, “Stop", remoteUdn);
mFlag = avt.actionStop(action);

caseRemoteIsStoppedLocalIsPlaying_replay(context, ctrlp, remoteUdn, localUdn);

action = UtilDlna.getActionByName(ctrlp, “Stop", localUdn);
mFlag = avt.actionStop(action);

}else if(mPref.equals(actOpts[1])){
//Stop me and resume on remote

//first stop remote one
action = UtilDlna.getActionByName(ctrlp, “Stop", remoteUdn);
mFlag = avt.actionStop(action);

caseRemoteIsStoppedLocalIsPlaying_resume(context, ctrlp, remoteUdn, localUdn);

action = UtilDlna.getActionByName(ctrlp, “Stop", localUdn);
mFlag = avt.actionStop(action);

A.4 Code Snippet: Provider’s MR and Controller’s MR are playing 125

}else if(mPref.equals(actOpts[2])){
//Stop remote one and replay on me

caseRemoteIsPlayingLocalIsStopped_replay(context, ctrlp, remoteUdn, localUdn);

action = UtilDlna.getActionByName(ctrlp, “Stop", remoteUdn);
mFlag = avt.actionStop(action);

}else if(mPref.equals(actOpts[3])){
//Stop remote one and resume on me

caseRemoteIsPlayingLocalIsStopped_resume(context, ctrlp, remoteUdn, localUdn);

action = UtilDlna.getActionByName(ctrlp, “Stop", remoteUdn);
mFlag = avt.actionStop(action);

}else if(mPref.equals(actOpts[4])){
//Exchange current media content and play over

String mLocalUri;
String mLocalUriMetaData;
String mRemoteUriMetaData;
String mRemoteUri;

//get current remote playing medium’s uri
action = UtilDlna.getActionByName(ctrlp, “GetMediaInfo",

remoteUdn);
mRemoteUri = avt.actionGetMediaInfo_CurrentURI(action);

//get uri Meta data
mRemoteUriMetaData = avt.actionGetMediaInfo_CurrentURIMetaData(action);

//get current local playing medium’s uri
action = UtilDlna.getActionByName(ctrlp, “GetMediaInfo",

localUdn);
mLocalUri = avt.actionGetMediaInfo_CurrentURI(action);

//get uri Meta data
mLocalUriMetaData = avt.actionGetMediaInfo_CurrentURIMetaData(action);

//set local to play
action = UtilDlna.getActionByName(ctrlp, “SetAVTransportURI",

localUdn);
mFlag = avt.actionSetAVTransportURI(action, mRemoteUri,mRemoteUriMetaData);

action = UtilDlna.getActionByName(ctrlp, “Play", localUdn);

126 Appendix

mFlag = avt.actionPlay(action);

//set remote to play
action = UtilDlna.getActionByName(ctrlp, “SetAVTransportURI",

remoteUdn);
mFlag = avt.actionSetAVTransportURI(action, mLocalUri,

mLocalUriMetaData);
action = UtilDlna.getActionByName(ctrlp, “Play", remoteUdn);
mFlag = avt.actionPlay(action);

}else if(mPref.equals(actOpts[5])){
//Exchange current playing

String mLocalUri;
String mLocalUriMetaData;
String mRemoteUriMetaData;
String mRemoteUri;
String mRemotePosition;
String mLocalPosition;

//get current remote playing medium’s uri
action = UtilDlna.getActionByName(ctrlp, “GetMediaInfo",

remoteUdn);
mRemoteUri = avt.actionGetMediaInfo_CurrentURI(action);

//get uri Meta data
mRemoteUriMetaData = avt.actionGetMediaInfo_CurrentURIMetaData(action);

//get remote position
action = UtilDlna.getActionByName(ctrlp, “GetPositionInfo",

remoteUdn);
mRemotePosition = avt.actionGetPositionInfo_RelTime(action);

//get current local playing medium’s uri
action = UtilDlna.getActionByName(ctrlp, “GetMediaInfo",

localUdn);
mLocalUri = avt.actionGetMediaInfo_CurrentURI(action);

//get uri Meta data
mLocalUriMetaData = avt.actionGetMediaInfo_CurrentURIMetaData(action);

//get current local playing media position
action = UtilDlna.getActionByName(ctrlp, “GetPositionInfo",

localUdn);
mLocalPosition = avt.actionGetPositionInfo_RelTime(action);

A.4 Code Snippet: Provider’s MR and Controller’s MR are playing 127

//set local to play
action = UtilDlna.getActionByName(ctrlp, “SetAVTransportURI",

localUdn);
mFlag = avt.actionSetAVTransportURI(action, mRemoteUri,

mRemoteUriMetaData);

action = UtilDlna.getActionByName(ctrlp, “Play", localUdn);
mFlag = avt.actionPlay(action);

//set remote to play
action = UtilDlna.getActionByName(ctrlp, “SetAVTransportURI",

remoteUdn);
mFlag = avt.actionSetAVTransportURI(action, mLocalUri,

mLocalUriMetaData);
action = UtilDlna.getActionByName(ctrlp, “Play", remoteUdn);
mFlag = avt.actionPlay(action);

try {
Thread.sleep(3000);

} catch (InterruptedException e) {
}

//seek both
action = UtilDlna.getActionByName(ctrlp, “Seek", remoteUdn);
mFlag= avt.actionSeekWithRelTime(action,UtilDlna.getRoughPostion(mLocalPosition));

action = UtilDlna.getActionByName(ctrlp, “Seek", localUdn);
mFlag= avt.actionSeekWithRelTime(action,UtilDlna.getRoughPostion(mRemotePosition));

}
else{
//stop both
action = UtilDlna.getActionByName(ctrlp, “Stop", remoteUdn);
mFlag = avt.actionStop(action);

action = UtilDlna.getActionByName(ctrlp, “Stop", localUdn);
mFlag = avt.actionStop(action);
}

}

else{
//no preference stored or is set to up to user,
//ask user to select the option

final Dialog actionSetDialog = new Dialog(context);
actionSetDialog.requestWindowFeature(Window.FEATURE_NO_TITLE);

actionSetDialog.setContentView(R.layout.custom_dlg_listview);
actionSetDialog.setCancelable(true);

128 Appendix

((TextView)actionSetDialog.findViewById(R.id.TextView02)).setText(“Select Inten-
tion");

ArrayAdapter<String> dlgArray = new ArrayAdapter<String>
(context,
R.layout.my_simple_list_item_mutiple_choice_1);
final String[] actOpts = context.getResources().

getStringArray(R.array.recommendActionOptions);
for(int i=0;i<actOpts.length;i++){

dlgArray.add(actOpts[i]);
}
final ListView actDlgll = (ListView)actionSetDialog.

findViewById(R.id.dlg_listview);
actDlgll.setAdapter(dlgArray);
actDlgll.setChoiceMode(ListView.CHOICE_MODE_SINGLE);

ImageView iv = (ImageView)actionSetDialog.findViewById(R.id.ImageView02);
iv.setImageResource(R.drawable.dlna_logo_lpdi);
Button actDlgBtn1 = (Button)actionSetDialog.findViewById(R.id.Button02_1);
Button actDlgBtn2 = (Button)actionSetDialog.findViewById(R.id.Button02_2);

actDlgBtn1.setText(“OK");
actDlgBtn2.setText(“Cancel");

actDlgBtn1.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
int pos = actDlgll.getCheckedItemPosition();
if(pos != ListView.INVALID_POSITION){
String act = (String)actDlgll.getItemAtPosition(pos);
if(act.equals(actOpts[0])){
//Stop me and playto remote

//first stop remote one
action = UtilDlna.getActionByName(ctrlp, “Stop", remoteUdn);
mFlag = avt.actionStop(action);

caseRemoteIsStoppedLocalIsPlaying_replay(context, ctrlp,
remoteUdn, localUdn);

action = UtilDlna.getActionByName(ctrlp, “Stop", localUdn);
mFlag = avt.actionStop(action);

}else if(act.equals(actOpts[1])){
//Stop me and resume on remote

//first stop remote one
action = UtilDlna.getActionByName(ctrlp, “Stop", remoteUdn);
mFlag = avt.actionStop(action);

caseRemoteIsStoppedLocalIsPlaying_resume(context, ctrlp,
remoteUdn, localUdn);

A.4 Code Snippet: Provider’s MR and Controller’s MR are playing 129

action = UtilDlna.getActionByName(ctrlp, “Stop", localUdn);
mFlag = avt.actionStop(action);

}else if(act.equals(actOpts[2])){
//Stop remote one and replay on me

caseRemoteIsPlayingLocalIsStopped_replay(context, ctrlp,
remoteUdn, localUdn);

action = UtilDlna.getActionByName(ctrlp, “Stop", remoteUdn);
mFlag = avt.actionStop(action);

}else if(act.equals(actOpts[3])){
//Stop remote one and resume on me

caseRemoteIsPlayingLocalIsStopped_resume(context, ctrlp,
remoteUdn, localUdn);

action = UtilDlna.getActionByName(ctrlp, “Stop", remoteUdn);
mFlag = avt.actionStop(action);

}else if(act.equals(actOpts[4])){
//Exchange current media content and play over

String mLocalUri;
String mLocalUriMetaData;
String mRemoteUriMetaData;
String mRemoteUri;

//get current remote playing medium’s uri
action = UtilDlna.getActionByName(ctrlp, “GetMediaInfo",

remoteUdn);
mRemoteUri = avt.actionGetMediaInfo_CurrentURI(action);

//get uri Meta data
mRemoteUriMetaData = avt.actionGetMediaInfo_CurrentURIMetaData(action);

//get current local playing medium’s uri
action = UtilDlna.getActionByName(ctrlp, “GetMediaInfo",

localUdn);
mLocalUri = avt.actionGetMediaInfo_CurrentURI(action);

//get uri Meta data
mLocalUriMetaData = avt.actionGetMediaInfo_CurrentURIMetaData(action);

//set local to play

130 Appendix

action = UtilDlna.getActionByName(ctrlp, “SetAVTransportURI",
localUdn);

mFlag = avt.actionSetAVTransportURI(action,
mRemoteUri,mRemoteUriMetaData);

action = UtilDlna.getActionByName(ctrlp, “Play", localUdn);
mFlag = avt.actionPlay(action);

//set remote to play
action = UtilDlna.getActionByName(ctrlp, “SetAVTransportURI",

remoteUdn);
mFlag = avt.actionSetAVTransportURI(action,

mLocalUri,mLocalUriMetaData);
action = UtilDlna.getActionByName(ctrlp, “Play", remoteUdn);
mFlag = avt.actionPlay(action);

}else if(act.equals(actOpts[5])){
//Exchange current playing

String mLocalUri;
String mLocalUriMetaData;
String mRemoteUriMetaData;
String mRemoteUri;
String mRemotePosition;
String mLocalPosition;

// get current remote playing medium’s uri
action = UtilDlna.getActionByName(ctrlp, “GetMediaInfo",

remoteUdn);
mRemoteUri = avt.actionGetMediaInfo_CurrentURI(action);

// get uri Meta data
mRemoteUriMetaData = avt.actionGetMediaInfo_CurrentURIMetaData(action);

//get remote position
action = UtilDlna.getActionByName(ctrlp, “GetPositionInfo",

remoteUdn);
mRemotePosition = avt.actionGetPositionInfo_RelTime(action);

//get current local playing medium’s uri
action = UtilDlna.getActionByName(ctrlp, “GetMediaInfo",

localUdn);
mLocalUri = avt.actionGetMediaInfo_CurrentURI(action);

//get uri Meta data
mLocalUriMetaData = avt.actionGetMediaInfo_CurrentURIMetaData(action);

//get current local playing media position

A.4 Code Snippet: Provider’s MR and Controller’s MR are playing 131

action = UtilDlna.getActionByName(ctrlp, “GetPositionInfo",
localUdn);

mLocalPosition = avt.actionGetPositionInfo_RelTime(action);

//set local to play
action = UtilDlna.getActionByName(ctrlp, “SetAVTransportURI",

localUdn);
mFlag = avt.actionSetAVTransportURI(action

mRemoteUri,mRemoteUriMetaData);
action = UtilDlna.getActionByName(ctrlp, “Play", localUdn);
mFlag = avt.actionPlay(action);

//set remote to play
action = UtilDlna.getActionByName(ctrlp, “SetAVTransportURI",

remoteUdn);
mFlag = avt.actionSetAVTransportURI(action,

mLocalUri,mLocalUriMetaData);
action = UtilDlna.getActionByName(ctrlp, “Play", remoteUdn);
mFlag = avt.actionPlay(action);

try {
Thread.sleep(3000);

} catch (InterruptedException e) {
}

//seek both
action = UtilDlna.getActionByName(ctrlp, “Seek", remoteUdn);
mFlag = avt.actionSeekWithRelTime(action,

UtilDlna.getRoughPostion(mLocalPosition));

action = UtilDlna.getActionByName(ctrlp, “Seek", localUdn);
mFlag = avt.actionSeekWithRelTime(action,

UtilDlna.getRoughPostion(mRemotePosition));

}
else{
//stop both

action = UtilDlna.getActionByName(ctrlp, “Stop", remoteUdn);
mFlag = avt.actionStop(action);

action = UtilDlna.getActionByName(ctrlp, “Stop", localUdn);
mFlag = avt.actionStop(action);
}

}else{
Toast.makeText(context, “Nothing chosen!",
Toast.LENGTH_SHORT).show();
}
actionSetDialog.cancel();

132 Appendix

}
});
actDlgBtn2.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

actionSetDialog.cancel();

}
});

actionSetDialog.show();
}
}

Table A.2.: Provider as MR and Interactor as MR are playing

List of Tables

2.1. NFC Forum Protocol Stack vs. OSI Protocol Stack 17
2.2. TNF Values . 22

3.1. NFC Communication Mode Pairs . 28

4.1. AVTransport: TransportState State Variable’s Value 48
4.2. UDN Type Value . 53
4.3. Media Information Type Values . 56
4.4. An Audio Item Media Information Example . 58
4.5. Recommended Action Type values . 61
4.6. Carrier Type values . 62
4.7. Binary Content of a Minimum DLNA A/V Handover Message 63
4.8. Image Share Use Case: Media Information Type Values 65
4.9. Control Preference Values . 70
4.10. DLNA URL Abbreviation Table, i.e. URL Identifier Code 70
4.11. Control Handover Record’s Internal URL Type Identifier List 72
4.12. Capability Identifier Lookup Table . 76

5.1. Supported NFC Technologies on Android . 87

A.2. Provider as MR and Interactor as MR are playing 131

List of Figures

1.1. Digital Islands . 7

2.1. DLNA Functional Components. 10
2.2. UPnP Functionalities[29] . 11
2.3. UPnP Phases . 13
2.4. 3-Box System Usage . 15
2.5. NFC Secure Element . 17
2.6. FeliCa Plug: an NFC Dynamic Tag . 18
2.7. Load Modulation . 19
2.8. NFC Communication Possibilities . 20
2.9. NDEF Message with a Set of Records . 20
2.10. NDEF Record Layout . 21

3.1. Network Layout . 25
3.2. NFC-enabled DLNA Network Model . 26
3.3. Device Reference . 28
3.4. Two-Session Communication Model . 33
3.5. Two-Session Communication Model Implemented by Controller 33
3.6. Control Collision at P2P Mode . 36

4.1. Use-Case-Specific Design . 39
4.2. (Flow Chart)Top-down Solution . 45
4.3. Media Flow Topology . 46
4.4. Transitions of Playback Modes . 49
4.5. Algorithm of "Provider:MR vs. Interactor:MR" Interaction Mode 50
4.6. Sequence Diagram of Locating a Real Content Source from Holder as a MS 51
4.7. Sequence Diagram of Locating a Real Content Source from Holder as a MR 52
4.8. DLNA A/V Handover Record . 52
4.9. UDN Record . 54
4.10. Friendly Name Record . 55
4.11. Media Information Record’s Payload Layout . 57
4.12. Media Information Layout . 57
4.13. Class Structure for Items and Containers in A/V Handover Use Case 59
4.14. Server Device Reference Encoding . 59
4.15. Media Information Record Example . 60
4.16. Recommended Action Record Layout . 61
4.17. Carrier Record Layout . 62
4.18. A Static Handover Record . 64
4.19. General DLNA A/V Handover Record . 64
4.20. Class Structure for Items and Containers in Image Share Use Case 66
4.21. DLNA Control Handover Example . 67
4.22. Control Handover Record Layout . 68

List of Figures 135

4.23. Control Preference Record Layout . 69
4.24. URL Auxiliary Record Payload Layout . 71
4.25. DLNA Download System Usage Interaction Model 73
4.26. DLNA Upload System Usage Interaction Model . 74
4.27. DLNA Upload/Download Record Layout . 75
4.28. Capability Record Layout . 76

5.1. Network Connection Layout . 82
5.2. NfcRW GUI And Menu Options . 84
5.3. NFC Compliant Activity Chooser . 86
5.4. Tag Dispatch Procedure . 86
5.5. NfcRW As Tag Reader . 88
5.6. NfcRW History View . 89
5.7. NfcRW Implementation Structure . 90
5.8. DLNA Finder Layout . 92
5.9. Compose a DLNA A/V Handover Record(FSM) . 94
5.10. Recommended Action Selector Dialog, Control Preference Selector Dialog 95
5.11. Statechart of Overall DLNA Logic in NfcRW . 96
5.12. Statechart of Implementation: Case - Provider is a MS 97
5.13. Statechart of Implementation: Case - Provider is a MR 98
5.14. Statechart: Case - Provider is a MR and No Interactor Specified 99
5.15. DLNA Control Handover Record Handler . 103
5.16. Android DLNA UI Application Layout . 104
5.17. Android DLNA UI Application File Structure . 104
5.18. Customized Preference Settings . 106

6.1. Nexus S Internal Structure and Phone-2-Phone Communication 109
6.2. Phone-to-TV . 112
6.3. DLNA Control Handover Implementation: Buffalo Presentation Page 113

Bibliography

[1] Digital Living Network Alliance, DLNA guidelines, 08 2009.

[2] Alladi Venkatesh, Digital home technologies and transformation of households. Springer,
2008.

[3] DLNA, “About Digital Living Network Alliance.” http://www.dlna.org/about_us/about/,
09 2011.

[4] R. Lea, S. Gibbs et al., “Networking home entertainment devices with HAVi,” in Computer,
no. 9, 09 2000.

[5] http://hes-standards.org/, 10 2011.

[6] http://www.x10.com/homepage.htm, 1978.

[7] Lee, C., Nordstedt, D. et al., “Enabling smart spaces with OSGi,” in Pervasive Computing,
no. 3, 2003.

[8] DLNA, Use Case Scenarios, 1.0 ed., 06 2004.

[9] http://www.nfc-forum.org/resources/faqs#operating, May 2011.

[10] ISO/IEC, ISO/IEC 18092: Information technology - Telecommunications and information ex-
change between systems - Near Field Communication - Interface and Protocol (NFCIP-1), first
edition ed., 04 2004.

[11] ISO/IEC, ISO/IEC 14443 Identification cards - Contactless integrated circuit(s) cards - Prox-
imity cards, part 1-4., 06 2008.

[12] DLNA(TM), DLNA for HD Video Streaming in Home Networking Environments. Digital Liv-
ing Network Alliance, 2009.

[13] IETF, “RFC: 791, INTERNET PROTOCOL - DARPA INTERNET PROGRAM PROTOCOL
SPECIFICATION.” http://www.ietf.org/rfc/rfc791.txt, 09 1981.

[14] IETF, “RFC: 1122, Requirements for Internet Hosts – Communication Layers.” http://www.
ietf.org/rfc/rfc1122.txt, 10 1989.

[15] IETF, “RFC 793: TCP - Transmission Control Protocol.” http://www.ietf.org/rfc/
rfc793.txt, 09 1981.

[16] IETF, “RFC 768: UDP - User Datagram Protocol.” http://www.ietf.org/rfc/rfc768.txt,
08 1980.

[17] IETF, “RFC 792: ICMP - INTERNET CONTROL MESSAGE PROTOCOL.” http://www.
ietf.org/rfc/rfc792.txt, 09 1981.

[18] IETF, “RFC 826: ARP - An Ethernet Address Resolution Protocol.” http://www.ietf.org/
rfc/rfc826.txt, 11 1982.

Bibliography 137

[19] Edwin A.Heredia, ed., An Introduction to the DLNA Architecture: Network Technologies for
Media Devices. Wiley, 1 ed., May 2011.

[20] IETF, “RFC 1945: Hypertext Transfer Protocol – HTTP/1.0.” http://www.ietf.org/rfc/
rfc1945.txt, 05 1996.

[21] IETF, “RFC 2616: Hypertext Transfer Protocol – HTTP/1.1.” http://www.ietf.org/rfc/
rfc2616.txt, 06 1999.

[22] IETF, “RFC 1889: RTP - A Transport Protocol for Real-Time Applications.” http://www.
ietf.org/rfc/rfc1889.txt, 01 1996.

[23] IETF, “RFC 2326: RTSP - Real Time Streaming Protocol.” http://www.ietf.org/rfc/
rfc2326.txt, 04 1998.

[24] DLNA(TM), DLNA Networked Device Interoperability Guidelines, Volume 2: Media Format
Profiles. Digital Living Network Alliance, 08 2009.

[25] UPnP Forum, UPnP Device Architecture 1.0, 1.0 ed., 10 2008.

[26] John Ritchie and Thomas Kuehnel and Jeffrey Kang and Wouter van der Beek, UPnP AV Ar-
chitecture:1. UPnP Forum, 1.1 ed., 09 2008.

[27] UPnP Forum, “UPnP Forum.” http://www.upnp.org/, 1999.

[28] Roy Chang, “A Secure Service Discovery Protocol in Pervasive Computing - Based on RFID
and UPnP Network,” Master’s thesis, National Chung Cheng University, Taiwan, June 2006.

[29] Chih-Lin Hu, “Digital Home Network: A Case of AV Content Service,” 5 2010.

[30] IETF, “RFC: 2131, Dynamic Host Configuration Protoco.” http://www.ietf.org/rfc/
rfc2131.txt, 03 1997.

[31] IETF, “Simple Service Discovery Protocol/1.0 - Operating without an Arbiter.” http://tools.
ietf.org/html/draft-cai-ssdp-v1-03, 10 1999.

[32] UPnP Forum, MediaRenderer:1 Device Template Version 1.01, 1.01 ed., 06 2002.

[33] UPnP Forum, ConnectionManager:1 Service Template Version 1.01, 1.01 ed., 06 2002.

[34] UPnP Forum, ConnectionManager:1 Service Annex A - Control Point Requirements, 1.0 ed.,
10 2010.

[35] UPnP Forum, RenderingControl:1 Service Template Version 1.01, 1.01 ed., 06 2002.

[36] UPnP Forum, RenderingControl:1 Service Annex A - Control Point Requirements, 1.0 ed., 06
2010.

[37] UPnP Forum, ContentDirectory:2 Service Template Version 1.01, 1.0 ed., 09 2008.

[38] UPnP Forum, CAVTransport:1 Service Annex A - Control Point Requirements, 1.0 ed., 10 2010.

[39] UPnP Forum, MediaServer:1 Device Template Version 1.01, 1.01 ed., 06 2002.

[40] UPnP Forum, ContentDirectory:1 Service Annex A - Control Point Requirements, 1.0 ed., 10
2010.

[41] UPnP Forum, ContentDirectory:3 Service Template Version 1.01, 1.0 ed., 09 2008.

[42] Frank Dawidowsky, “Felica and NFC,” presentation, Sony STC, 09 2008.

138 Bibliography

[43] Japanese Industrial Standards Committee, Standards Board, Technical Committee on Informa-
tion Technology, JIS X 6319-4:2005 Specification of implementation for integrated circuit(s)
cards - Part 4: High speed proximity cards, 07 2005.

[44] ISO/IEC, ISO/IEC 15693:2000 Identification cards - Contactless integrated circuit(s) cards -
Vicinity cards, part 1-3, 07 2000.

[45] Gregor Höfert, “RFID und NFC Technologien, Vergleich und Anwendung,” seminar, TU
München, 12 2005.

[46] NFC Forum, NFC Forum Device Requirements - High Level Conformance Requirements ,
1.0 ed., 06 2010.

[47] NFC Forum, NFC Forum Architecture, 1.2 ed., 09 2009.

[48] NFC Forum, Simple NDEF Exchange Protocol Technical Specification, 1.0 ed., 08 2011.

[49] NFC Forum, NFC Data Exchange Format (NDEF) technical specification, 1.0 ed., 07 2006.

[50] NFC Forum, NFC Record Type Definition (RTD) Technical Specification, 1.0 ed., 07 2006.

[51] NFC Forum, Logical Link Control Protocol Technical Specification, 1.0 ed., 06 2011.

[52] NFC Forum, NFC Forum Device Requirements, 1.0 ed., 01 2010.

[53] Sony, “FeliCa.” http://www.sony.net/Products/felica/, 09 2011.

[54] Sony Corporation, RC-S801/802 User’s Manual, 0.9 ed., 12 2009.

[55] Stephen Tiedemann and Frank Dawidowsky, “Beyond Tags: Type 3 Platform and Developers,”
colloquium, Sony Corporation, 2011.

[56] Kestronics Ltd., “Casio IT-800R-35 Handheld with Mifare Card Reader NFC, WLAN, Blue-
Tooth, Barcode Scanner and Windows Mobile 6.5.” http://www.kestronics.com/, 09 2011.

[57] Advanced Card System Ltd., “ACR122 NFC Contactless Smart Card Reader - the World’s
First NFC Card Reader compliant to CCID Standard.” http://www.acr122.com/acr122.php,
09 2011.

[58] Sony Coporation, “PaSoRi RC-S330.” http://www.sony.jp/cat/products/RC-S330/, 01
2009.

[59] Ernst Haselsteiner and Klemens Breitfuss, “Security in Near Field Communication (NFC)
Strengths and weaknesses,” report, Philips Semiconductors, 2006.

[60] Klaus Finkenzeller, ed., RFID-Handbook. Wiley & Sons LTD, 3 ed., Aug 2010.

[61] NFC Forum, Best Practices for NFC Forum Terminology , 1.2 ed., 09 2009.

[62] IETF, “RFC 2046: Multipurpose Internet Mail Extensions (MIME) Part Two: media Types.”
http://www.ietf.org/rfc/rfc2046.txt, 11 1996.

[63] IETF, “RFC 3986: Uniform Resource Identifier (URI): Generic Syntax.” http://www.ietf.
org/rfc/rfc3986.txt, 01 2005.

[64] NFC Forum, NFC Data Exchange Format (NDEF) Technical Specification, 1.0 ed., 07 2006.

[65] NFC Forum, Text Record Type Definition Technical Specification, 1.0 ed., 07 2006.

[66] NFC Forum, URI Record Type Definition Technical Specification, 1.0 ed., 07 2006.

Bibliography 139

[67] NFC Forum, Smart Poster Record Type Definition Technical Specification, 1.0 ed., 11 2010.

[68] NFC Forum, Connection Handover Technical Specification, 1.1 ed., 11 2008.

[69] NFC Forum, Generic Control Record Type Definition Technical Specification, 1.0 ed., 07 2006.

[70] NFC Forum, Signature Record Type Definition Technical Specification, 1.0 ed., 11 2010.

[71] Andreas Fasbender, Stefan Hoferer et al., “Media Delivery to Remote Renderers Controlled by
the Mobile Phone,” report, Ericsson Research, Aachen, Germany, Tokyo, Japan, 2011.

[72] Andreas Fasbender, Stefan Hoferer et al., “Phone-controlled Delivery of NGN Services into
Residential Environments,” report, Sony Eutec, 2011.

[73] Young-sung SEO Soul, Yu-Naoh et al., “Control Point, Image Forming Apparatus, And Method
for Sending Fax Data Using Fax Data Transmission Function of The Image Forming Appara-
tus,” 08 2011.

[74] Zoe Antoniou, Franklin Reynolds et al., “Intuitive Service Discovery in RFID-enhanced net-
works,” report, Nokia Research Cente, 02 2006.

[75] Zoe Antoniou, “RFID tag record for service discovery of UPNP devices and services .”

[76] Taein Hwang, Hojin Park et al., “A Study on UPnP A/V Session Mobility Based on RFID,”
report, Digital Home Division, Department of Computer Engineering et al., 02 2008.

[77] Taein Hwang, Hojin Park et al., “A Study on Session Manager for Smart Home Environment,”
report, Digital Home Division, Department of Computer Engineering et al., 02 2008.

[78] Naoki Miyabayashi, Yoshihiro Yoneda et al., “Communication Device And Communication
Method,” 2011.

[79] Google, Android NDEF Push Protocol Specification Technical Specification, 1 ed., 02 2011.

[80] INNOVISION RESEARCH & TECHNOLOGY PLC, Topaz - NFC Forum Mandated Type 1
Tag Forma, 1.0 ed., 06 2007.

[81] Digital Living Network Alliance, DLNA Networked Device Interoperability Guidelines, 03
2006.

[82] dd-wrt, “UShare UPnP Media Server.” http://www.dd-wrt.com/wiki/index.php/Ushare_
uPnP_media_server, 09 2011.

[83] Michael Jeronimo and Jack Weast, ed., UPnP Design by Example: A Software Developer’s
Guide to Universal Plug and Play. Intel Press, 1 ed., 5 2003.

[84] Google, “Google io.” http://www.google.com/events/io/2011/index-live.html, 09
2011.

[85] Diego Lopez-de-Ipina, Iker Jamardo et al., “Touch Computing: Simplifying Human to Envi-
ronment Interaction through NFC Technology,” tech. rep., Faculty of Engineering (ESIDE),
University of Deusto, 11 2007.

[86] UPnP Forum, PrintBasic:1 Service Template Version 1.01. UPnP Forum, 08 2002.

[87] Intel, “Developer Tools For UPnP.” http://opentools.homeip.net/
dev-tools-for-upnp, 06 2011.

[88] Buffalo, “Buffalo LinkStation NAS.” http://www.buffalo-technology.com/products/
network-storage/linkstation/, 06 2011. [Online; visited on 13.06.2011].

140 Bibliography

[89] Satoshi Konno, “Cyberlink For Java.” http://www.cybergarage.org/twiki/bin/view/
Main/CyberLinkForJava, 06 2011. [Online; visited on 13.06.2011].

[90] Stephen Tiedemann, “NfcPy.” https://launchpad.net/nfcpy, 06 2011. [Online; visited on
13.06.2011].

[91] Android Developer, “Near Field Communication.” Website, 08 2011. http://developer.
android.com/guide/topics/nfc/index.html.

[92] Frank Mösler, “Android Colloquium,” colloquium, Sony Eutec, Sep. 2011.

[93] Cling, “Cling - Java/Android UPnP library and tools.” http://teleal.org/projects/
cling/, 07 2011. [Online; visited on 23.09.2011].

[94] AndroLib. http://de.androlib.com/android.application.
com-bubblesoft-android-bubbleupnp-pDCmx.aspx, 09 2011. [Online; visited on
27.09.2011].

[95] Android Market, “ArkMc.” https://market.android.com/details?id=com.
arkudadigital.arkmc.gm, 09 2011. [Online; visited on 27.09.2011].

[96] Cidero UPnP Applications, “Cidero UPnP Applications.” http://
cidero-upnp-applications.software.informer.com/, 09 2011.

[97] Android Developer, “Android Basics.” http://developer.android.com/guide/basics/
what-is-android.html, 07 2011. [Online; visited on 27.09.2011].

[98] Gustavo D. Gonzalez, “The new tag dispatch process in Android 2.3.3.” http://
gibraltarsf.com/blog/?p=217l, 03 2011. [Online; visited on 27.09.2011].

[99] Google, “Guava: Google Core Libraries for Java 1.5+.” http://code.google.com/p/
guava-libraries/, 09 2011. [Online; visited on 27.06.2011].

[100] KENNETH G. MAGES, “Nexus S teardown:How NFC fits in-
side the new Google phone.” http://nfcdata.com/blog/2010/12/18/
nexus-s-teardown-how-nfc-fits-inside-the-new-google-phone, 12 2010.

[101] Christian Bauer, “Cling Core.” http://www.teleal.org/projects/cling/core/manual/
cling-core-manual.html#section.BinaryLightServer, 09 2011.

[102] Christian Bauer, “Cling MediaRenderer.” http://www.teleal.org/projects/cling/
mediarenderer, 09 2011.

[103] Eyecon Resources, “Eyecon.” http://www.appbrain.com/app/eyecon/com.eyecon.cloud,
09 2011.

[104] Sitecom, “iMedia Control - Easily control all the digital photos, music and movies in
your home with your iPhone, iPod or iPad.” http://www.sitecom.com/mobile/apple/
imediacontrol/, 09 2011.

[105] Twonky Mobile, “Twonky Mobile - Publisher Description of Twonky Mobile.” http://www.
software112.com/products/twonky-mobile-free+download.html, 04 2011.

[106] MediaServer Android App, “MediaServer Android App.” http://www.software112.com/
products/twonky-mobile-free+download.html, 09 2011.

[107] Chris Davies, “Skifta DLNA - certified: Free, easy stream-

Bibliography 141

ing with an Android remote.” http://androidcommunity.com/
skifta-dlna-certified-free-easy-streaming-with-an-android-remote-20110202/,
02 2011.

[108] Jmaggard, “MiniDLNA.” http://sourceforge.net/projects/minidlna/, 09 2011.

[109] Rarst, “Stream and share media with UPnP server/player setup.” http://www.rarst.net/
software/upnp-media-share/, 09 2011.

[110] Bebopfreak, “UPnPlay.” http://www.fixya.com/support/p2662689-bebopfreak_
upnplay, 09 2011.

[111] Fboneol, “PlugPlayer - UpNp/DLNA PLayer UND Me-
dia Renderer.” http://www.android-hilfe.de/foto-multimedia/
60322-plugplayer-upnp-dlna-player-media-renderer.html, 09 2011.

[112] Coherence, “Welcome to Coherence.” http://coherence.beebits.net/, 01 2010.

[113] SyGem Software, “ShareMe - UPnP Server.” http://www.androidzoom.com/android_
applications/media_and_video/shareme-upnp-server_jocx.html, 09 2011.

[114] WMP 12, “Windows Media Player 12 als DLNA Geraet.” http://www.hundhome.de/index.
php?option=com_content&view=article&id=42:windows-7-pc-als-dlna-player&
catid=4:technology&Itemid=5, 08 2010.

[115] Airwolf, “Airwolf - A DLNA, SSDP enabled media server for home media centers and HT-
PCs..” http://code.google.com/p/airwolf/, 09 2011.

Declaration

Herewith, I declare that I have developed and written the enclosed thesis en-
tirely by myself and that I have not used sources or means except those de-
clared.

This thesis has not been submitted to any other authority to achieve an aca-
demic grading and has not been published elsewhere.

Stuttgart, 21. October 2011 Pinglei Wang

