
 
 Universität Stuttgart 

 
Institut für Leichtbau Entwerfen und Konstruieren 

Prof. Dr.-Ing. Werner Sobek 

Prof. Dr.-Ing. Balthasar Novák 

 
 

  2007    
 

An Intelligent Genetic Design Tool (IGDT) 
Applied to the Exploration of  
Architectural Trussed Structural Systems 
 

 

Von der Fakultät Bau- und Umweltingenieurwissenschaften 
der Universität Stuttgart 

zur Erlangung der Würde eines Doktors der 

Ingenieurwissenschaften (Dr.-Ing.) genehmigte Abhandlung 

 

 

Vorgelegt von 

Peter von Bülow 

Aus Pasadena, Kalifornien USA 

 

 

 
 
Hauptberichter: 
Prof. Dr.-Ing. Werner Sobek 
Institut für Leichtbau Entwerfen und Konstruieren 
Universität Stuttgart 
 
 
Mitberichter: 
Prof. Dr.-Ing. Ekkehard Ramm 
Institut für Baustatik 
Universität Stuttgart 
 
 
Tag der mündlichen Prüfung: 5 Juni 2007 



 

 

2 

Table of Contents 
 

 Abstract 4 
 Zusammenfassung 5 
 

1 Design in Architectural Engineering 6 
1.11.11.11.1    Definition of DesignDefinition of DesignDefinition of DesignDefinition of Design    8888    
1.1.1 Trichotomy of Design 8 
1.1.2 Practice of Design 12 
1.21.21.21.2    Study of DesignStudy of DesignStudy of DesignStudy of Design    11117777    
1.2.1 Theory and Practice of Design 17 
1.2.2 Design Models 22 
1.2.3 Design Mechanisms 35 
1.31.31.31.3    Tools for DesignTools for DesignTools for DesignTools for Design    47474747    
1.3.1 Non-computational Design Tools 47 
1.3.2 Computational Analysis versus Design 58 
1.3.3 Computational Design Tools 64 
1.3.4 The IGDT Design Tool 84 
 

2 The Intelligent Genetic Design Tool 93 
2222.1.1.1.1    ConConConConstructing Genetic Toolsstructing Genetic Toolsstructing Genetic Toolsstructing Genetic Tools    93939393    
2.1.1 Design Objectives 93 
2.1.2 Encoding Techniques 95 
2.1.3 Search and Exploration 102 
2222.2.2.2.2    Implementation of the IGDTImplementation of the IGDTImplementation of the IGDTImplementation of the IGDT    111111113333    
2.2.1 Defining Problem Parameters 113 
2.2.2 Topology Search 115 
2.2.3 Geometry Search 117 
2.2.4 Running the IGDT 123 
 

3 Examples and Results 125 
3.3.3.3.1111    Flat Deck BridgeFlat Deck BridgeFlat Deck BridgeFlat Deck Bridge    111126262626    
3.1.1 Problem Description and Setup 126 
3.1.2 Use of the IGDT 127 
3.1.3 Comparison of Results 136 
3.1.4 Conclusions 141 
3.3.3.3.2222    Arch TrussArch TrussArch TrussArch Truss    141414141111    
3.2.1 Problem Description and Setup 142 
3.2.2 Use of the IGDT 144 
3.2.3 Comparison of Results 146 
3.2.4 Conclusions 147 
3.3.3.3.3333    Cantilever TrussCantilever TrussCantilever TrussCantilever Truss    111147474747    
3.3.1 Problem Description and Setup 148 
3.3.2 Use of the IGDT 150 
3.3.3 Comparison of Results 152 
3.3.4 Conclusions 154 
3.3.3.3.4444    High Speed GantryHigh Speed GantryHigh Speed GantryHigh Speed Gantry    111154545454    
3.4.1 Problem Description and Setup 155 



 

 

3 

3.4.2 Use of the IGDT 157 
3.4.3 Comparison of Results 161 
3.4.4 Conclusions 162 
3.3.3.3.5555    Interactive DesignInteractive DesignInteractive DesignInteractive Design    111162626262    
3.5.1 Problem Description and Setup 163 
3.5.2 Use of the IGDT 165 
3.5.3 Comparison of Results 167 
3.5.4 Conclusions 168 
 

4 Conclusion 169 
4.4.4.4.1111    SummarySummarySummarySummary    169169169169    
4.1.1 Aspects of Design 169 
4.1.2 Aspects of GAs and the IGDT 170 
4.4.4.4.2222    Results and RecommendationsResults and RecommendationsResults and RecommendationsResults and Recommendations    171171171171    
4.2.1 Applications 171 
4.2.2 Current Limitations 172 
4.2.3 Further Development 175 
4.4.4.4.3333    Closing RemarksClosing RemarksClosing RemarksClosing Remarks    111179797979    
 

5 Reference List 180 
 
 Appendix A Example Input/Output Files for the IGDT 189 
 
 Appendix B Graphic Depiction of the Geometry CHC 195 
 

 Appendix C Graphic Depiction of the Topology ES 196 
 

 Appendix D List of Program Routines 197 
 

 Appendix E Assessment of FEA calculations 202 
 
 Deutsche Kurzfassung 205 
 

 Vitae 227 



 4 

An Intelligent Genetic Design Tool (IGDT)  

Applied to the Exploration of  

Architectural Trussed Structural Systems 

 

Abstract 

This dissertation proposes a new class of computational tool, an Intelligent Genetic 

Design Tool (IGDT), intended for use in the area of conceptual design of architectural 

and civil engineering structures.  As a computer design aid the IGDT is innovative in its 

intelligent interaction with the designer.  The IGDT allows the user to explore a solution 

space in a way which promotes the development of creative designs.  Being based on 

Genetic Algorithms (GA's) the IGDT always submits a multiplicity of solutions 

(populations) for review by the designer, and is thus less likely to cause design fixation 

than most other optimization techniques.  The use of GA's also allows the designer 

greater latitude in exploring hard-to-code design criteria such as aesthetics, expression or 

meaning.  In this way it provides a service to the designer that is more useful than 

traditional design tools.  For this dissertation, a specific application of an IGDT in the 

area of architectural engineering is developed.  In order to exhibit the capabilities of the 

IGDT, examples are shown using different trussed systems under various design 

conditions.  The ability of the IGDT to intelligently respond to the designer's preferences 

and assist in the discovery of useful truss topologies is demonstrated.  Comparisons are 

made with other optimization tools and techniques.  It is concluded that the IGDT offers a 

significantly different approach to computer aided structural design which has the 

potential to enhance the designer's own creativity in discovering a good solution. 



 5 

"Intelligent Genetic Design Tools" (IGDT) 

angewandt auf den Entwurf von Fachwerksystemen 

in der Architektur 

 

Zusammenfassung 

Diese Arbeit stellt eine neue Art von Berechnungswerkzeug – ein intelligentes genetisches 

Entwurfswerkzeug (Intelligent Genetic Design Tool IGDT) vor, das für die frühen 

Entwurfsphasen in Architektur und des Bauingenieurwesen geeignet ist.  Als ein 

computerbasiertes Entwurfswerkzeug ist das IGDT im Sinne der intelligenten Interaktion 

mit dem Entwerfer erfinderisch.  Das IGDT fördert das Auskundschaften von 

Entwurfsräumen und unterstützt damit die Entwicklung von kreativen Entwürfen.  Auf 

genetischen Algorithmen (GA) basierend, stellt das IGDT immer eine Vielfalt von 

Lösungen (Populationen) vor, die vom Entwerfer beurteilt werden können.  Auf diese 

Weise ist die Gefahr, dass der Entwerfer auf eine Lösung fixiert werden könnte weniger 

wahrscheinlich als in den herkömmlichen Optimierungsverfahren.  Die Benutzung des 

GA bietet dem Entwerfer auch einen wichtigen Spielraum beim Auskundschaften von 

Kriterien, wie z.B. Ästhetik, Ausdruck u.a.m. an, die sich ansonsten nur sehr schwer 

einkodieren lassen.  Auf diese Weise dient das IGDT dem Entwerfer besser als 

herkömmliche Entwurfswerkzeuge.  Für die vorliegende Arbeit wurde eine besondere 

Anwendung eines IGDT für den Bereich der Architektur und des Bauingenieurwesens 

entwickelt.  Um die Mächtigkeit des IGDT zu demonstrieren, werden Beispiele dargestellt, 

die verschiedene Fachwerksystemen verwenden und verschiedene Entwurfskriterien 

haben.  Dabei wird die Fähigkeit des IGDT, intelligente Rückmeldungen auf die Wünsche 

des Entwerfers zu geben und dabei Entdeckungen von nützlichen Fachwerktopologien 

behilflich zu sein, demonstriert.  Es werden Vergleiche mit anderen 

Optimierungswerkzeugen und –methoden gezogen.  Abschließend wird dargestellt, dass 

das IGDT ein bedeutendes Konzept auf dem Gebiet der Digitalentwurfswerkzeuge für die 

Architektur und das Bauingenieurwesen bietet und auch die eigene Kreativität des 

Entwerfers bei der Entwicklung einer guten Lösung fördert. 



 6 

1 Design in Architectural Engineering 

This dissertation describes a new direction in the use of computational aids to the age old 

process of design.  Whereas, in recent decades millions of lines of programming code 

have been directed at providing designers with help in their activity, almost all of this 

work has been limited to the technical or knowledge based side of their activity, with 

almost no successful attempts to provide aid to the creative aspects of design as well.  

This dissertation presents a new approach which is intended to stimulate the designer's 

own creativity as well as offering technical assistance.  By being sensitive to the creative 

aspects of the design process, the proposed design aid can be employed with success in 

earlier, conceptual phases of design, where many currently offered tools fail to provide 

useful assistance. 

In discussing design tools, I draw a distinction between design and analysis which is often 

over looked by developers of computer programs.  There have been over the years 

several, very sophisticated, analysis tools developed, which through their user friendly 

input and easy to interpret output have been applied to the area of design.  But I would 

maintain, that there remains a fundamental distinction between the activities present in 

analysis versus design, and that the use of analysis tools for the activity of design is at 

best ineffective and at worst detrimental to the creative process.  Even as machines have 

filtered into almost all aspects of the profession, many designers still maintain a highly 

skeptical attitude toward the value of computer assistance in conceptual design.  This is 

true to the extent that many architecture schools deliberately make no use of computers 

in the fundamental design courses.  It is not unusual that some design faculty members 

will discourage (to the point of forbidding) the use of computers in all levels of design.  

One might attribute such behavior to a type of rigid conservatism and inability to adapt 

to changing methods - a condition certain to fade as the older, non-computing 

generation of designers leave the profession.  But again, on closer inspection, it is often 

younger, computer-experienced designers who hold this position. 

In this dissertation I have tried to isolate some of those aspects of computer usage in 

design which have given cause for so much concern.  The problem, I believe, lies not so 

much in the media or the machine itself, as in the conceptual analogy most 



 7 

programmers and users have of computers.  This is the analogy of the computer to our 

own brain, and programming as knowledge held or supplied to that brain.  In this 

analogy the user/designer tends to be dominated by the "brain".  The user takes on the 

roll of apprentice - posing questions to the master (computer), and respectfully awaiting 

the answer.  I propose reversing the rolls, and letting the machine act as our apprentice, 

to make proposals which the master craftsman can critique, with the expectation that the 

craft will be improved.  Those who have taught, know how stimulating provocative 

students can be to the development of one's own ideas.  Computer tools used in 

conceptual design should, and can, exhibit this same quality of creative stimulation. 

The program proposed in this dissertation is based on the methods of Genetic Algorithms 

(GA's) - a numerical technique derived from evolutionary biology.  The first chapter 

explores the context of design tools, and shows why the GA method is particularly well 

suited for the requirements of such a tool.  The second chapter discusses in more detail 

the programmatic aspects of Genetic Algorithms and their analogy to evolutionary 

genetics.  The third chapter explains the structuring of the design tool application which 

was developed - the Interactive Genetic Design Tool (IGDT).  The fourth chapter offers 

examples applied to design problems and comparisons with other computer based tools.  

The fifth chapter contains a discussion of results and recommendations for applications 

of similar techniques in other areas of design. 

The program itself is comprised of about 21,600 lines of ANSI-C code (approximately 

400 pages).  There are 176 routines compiled into 5 different executables that are run 

on a parallel LINUX cluster using PVM.  The current cluster of 30 CPU’s contains a mix of 

Intel Pentium II and III class processors.  Most of the examples in Chapter 4 have a run 

time of between 1 and 15 hours depending on the number of load cases and nodes in 

the solutions.  A table showing run times and problem parameters is shown in Chapter 5.  

Due to the size, a complete listing of the code is not provided.  The parts of the header 

file which define parameters and list all of the routines are provided in Appendix A and D 

along with the input and output files.  Appendix E also includes an assessment of the FEA 

analysis code of the IGDT as compared to a commercial FEA code. 



 8 

1.1 Definition of Design 

1.1.1 Trichotomy of Design 

Design is an activity that is found in all sectors of human endeavor.  Whenever purposeful 

consideration is given to a problem, design is present.  Design is also goal oriented in 

that it seeks the solution to a specific problem.  But in speaking about a "designed 

solution", the general implication is, that it contains something in addition to a standard, 

goal oriented, purposeful solution.  A designed solution is generally understood to 

contain some aspect that makes it non-standard.  A designed solution is creative.  Thus, 

in describing the design activity, these three attributes are in some way present: 

• purposeful 
• goal oriented 
• creative 
 

It is reasonable, that any aid to the design process must also respond to these aspects of 

the activity.  Designers have traditionally used many different aids or tools to help them in 

their work.  This dissertation will look briefly at some of those aids as they provide a 

context for the consideration of new design tools.  Specifically, in the area of computer 

based design tools, many programs have been written in recent years which respond well 

to the first two aspects of design, viz. purposeful and goal oriented, but in the area of the 

third aspect of design, the creative aspect, computer aids seem to flounder, and are often 

criticized as producing more hindrance than help.  The criticism is not wholly unjustified, 

as an over infusion of technical knowledge in the early stages of design development can 

actually stifle the development of exploratory, creative consideration of the problem.  This 

point is developed further in Section 1.2.2.2. 

The Intelligent Genetic Design Tool (IGDT) developed in this dissertation is intended to 

offer the designer purposeful, goal oriented, as well as creative support. 

1.1.1.1 Aspects of Design 

Theorists have proposed numerous approaches to design.  None the less, as stated 

above, it is generally agreed that design as an activity is purposeful, goal oriented and 

creative. 

Purposeful.  There is always a purpose which initiates a design.  This may seem self 

evident, but in the context of the heuristic tools used by an IGDT, it is perhaps well to 

formally make the point.  Many interesting and useful solutions can be stumbled upon 



 9 

purely by chance, and an appropriate problem might be found to which the solution 

could be advantageously applied.  This type of opportunism may be clever, but it is not 

design.  Design begins only after a purpose has been established.  Without a purpose it 

is impossible to establish goals. 

Goal Oriented.  Beyond having a purpose, design is a goal oriented activity.  A specific 

goal is established which can be described by criteria.  The goal usually involves finding 

the solution which best meets the criteria.  In order to find the best solutions, a search is 

usually a major part of the design process.  This is why optimization techniques are often 

used in computational design.  Optimization is a search method which attempts to find 

the solution which best satisfies the goal.  In optimization, goal criteria are often called 

objectives, and defined by objective functions.  In the terminology of genetic design 

methods, the goal criteria are called fitness functions.  The IGDT is similar to a search 

tool, but actually it is more.  It is a design exploration tool.  The difference between 

search and exploration is discussed in Section 1.2.2.3.  Further, it is conceptually 

different from most optimization methods in that beyond being purposeful and goal 

oriented it also stimulates the designer's own creative thinking. 

Creative.  Design is a creative activity in that it seeks new solutions.  If creativity is 

lacking, then either an existing solution, or else no solution, will be applied to a problem.  

If only existing solutions were used, the only source of progress would be happenstance.  

Even then, some creativity would be required to recognize a chance discovery as a better 

solution.  Methods or tools which supply the user with one 'best' solution can actually 

work against creativity.  By offering the designer only one solution, or even just one 

solution at a time, the implication is that the shown solution is the only one worth 

considering.  The designer need only agree to the offered solution and the task is 

complete.  As discussed in Section 1.2.2.2., design fixation, a common problem not just 

for novice designers, is aggravated by design tools which suggest only one solution for 

the problem.  Such tools do little to promote creative speculation.  An IGDT, on the other 

hand, by always supplying a palette of solutions, requires the designer to continually view 

different possibilities.  In the process of considering arrays of solutions, creative thinking 

is stimulated, and the likelihood of finding a new or unexpected solution increases. 



 10 

1.1.1.2 Definitions of Design 

In order to understand the requirements of a design tool, it is helpful to first examine 

what designers do, or what is understood as the design activity.  Between fields of 

endeavor as well as within the allied fields of architecture and engineering, design can 

apply to a wide range of activities.  Nonetheless, the aspects of purposeful, goal oriented 

and creative, as described above, are useful in formulating an understanding of what the 

design activity involves.  Everyone has had experience with design to one degree or 

another, in much the same way that everyone has had some experience with singing.  

But, just as with singing, there exist levels of ability and understanding, that distinguish 

the activity from the art.  In a general sense, the Oxford English Dictionary defines 

design, the verb as: 

I. To mark out; to indicate. 
II. To plan out. 
III. To sketch; to form or fashion a work of art. 
 

and as a noun design is defined as: 

I. A plan or a scheme contrived in the mind. 
II. The preliminary sketch of a work of art; the plan of a building 

or part of it. 
(Onions, OED, 1968) 

In order "to plan out", a problem solving process is implied.  As a process, the design 

activity is purposeful and goal oriented.  The goal is to solve the problem as defined.  

Also, as a problem solving process it is necessarily creative.  In designing an artifact, one 

must create new solutions to the problems presented as design criteria.  If old solutions 

are adequate to solve the problem criteria, then there is no need for design (or re-design) 

and the solution is seen as an application of the previous design. 

Although design itself may be "contrived in the mind", Christopher Alexander, Berkeley 

professor and founder of the Center for Environmental Structure, points out in his book 

Notes on the Synthesis of Form, that "the ultimate objective of design is form." 

(Alexander, 1967, p.15)  More specifically, Alexander sees design as the "fit" between 

form and context. 

The form is a part of the world over which we have control, and which 
we decide to shape while leaving the rest of the world as it is.  The 
context is that part of the world which puts demands on this form; 
anything in the world that makes demands of the form is context.  Fitness 
is a relation of mutual acceptability between these two. (Alexander, 
1967, pp. 18-19) 



 11 

For Alexander, good design is the "effortless contact or frictionless coexistence" of form 

and context.  Bad design occurs if there is a "misfit".  Interestingly, Alexander also points 

out that the "misfit" is much the more practical to describe than the "good fit". 

I should like to recommend that we should always expect to see the 
process of achieving good fit between two entities as a negative process 
of neutralizing the incongruities, or irritants, or forces, which cause misfit.  
(Alexander, 1967) 

In Section 1.3.3.3., it is shown how an IGDT can work in just this way, by negating the 

misfit individuals from the population of solutions. 

 

In order to achieve Alexander's "goodness of fit" for novel problems, requires new 

solutions that attain the desired goals.  And the discovery of these new solutions is what 

requires the third element of design, creativity.  Creativity is sometimes defined by 

researchers as a novel combination of old ideas.  This sort of definition makes 

measurement of creativity somewhat easier by regarding the improbability of the 

combination of ideas used.  But there is an obvious limitation to this definition in that no 

truly new ideas are ever used or expected.  Margaret A. Boden, Professor of Philosophy 

and Psychology at the University of Sussex, has written much about creativity in relation to 

artificial intelligence.  She describes creativity in terms of exploration. 

... examples show that exploration often leads to novel ideas.  Indeed, it 
often leads to ideas, such as new forms of harmonic modulation, that 
are normally called creative.  In that sense, then, conceptual exploration 
is a form of creativity.   
(Boden, 1994) 

This is a broader understanding of creativity.  To find something new, one explores.  One 

explores not just the realm of known ideas, but also untested, unexplored realms as well.  

It is this aspect of exploration, and hence creativity, that separates the IGDT developed in 

this dissertation from other 'design tools' currently available.  Although other tools exist 

which are purposeful and goal oriented, the third aspect of design, the creativity, has 

been missing.  By centralizing exploration in a way that is still purposeful and goal 

oriented, the IGDT offers the designer a true aid to the conceptual design process that 

has been lacking in computer aided tools. 



 12 

1.1.1.3 Examples of Design 

The balance of this first chapter discusses, through examples, different means that have 

been applied in the past to aid designers.  These are divided into two groups: 

• design mechanisms 
• design tools 
 

Design mechanisms are discussed in Section 1.2.  They are techniques that have been 

applied in the past to help designers overcome different hindrances to design, 

particularly in the area of creativity.  Margaret Boden refers to these mechanisms as 

being applied in "transforming conceptual spaces." (Boden, 1994, p. 82).  Her notion of 

"transforming" is similar to the idea of "paradigm shift" (Kuhn, 1962), developed by MIT 

Professor Emeritus for Linguistics and Philosophy, Thomas Kuhn.  Boden translates Kuhn's 

"paradigm shift", which he applied to developing scientific theories, down to the scale of 

individual design problems.  The mechanisms referred to here, are intended to help the 

designer see the relevance of the space being explored in solving the problem at hand.  

In this sense they have found application in a wide range of design problems.  Since the 

IGDT is a design exploration tool, some of these traditional mechanisms can be used in 

conjunction with the IGDT to give the designer a new perspective of the design problem. 

Design tools are discussed in Section 1.3.  They are physical (or in the case of 

programs, coded) aids that assist the designer in the exploration of a problem.  Many of 

these tools are the standard repertoire of the designer.  The IGDT is not seen as 

necessarily a replacement for other successful tools, but can offer advantages in 

exploring areas inaccessible to traditional tool.  As in the case of any new tool, the 

advantage lies in its ability to reach hitherto unexplored solutions in the possible design 

space.  Examples of the application of the IGDT are given in Chapter 4. 

1.1.2 Practice of Design 

The Intelligent Genetic Design Tool (IGDT) described in this dissertation, is intended for 

the field of architectural engineering.  In this context further detail can be added to the 

understanding of design. 

1.1.2.1 Design Meaning 

Design assumes further meaning when applied to a specific discipline.  In referring to 

engineering disciplines, Clive L. Dym, Professor and Director of the Center for Design 



 13 

Education at Harvey Mudd College and researcher in the area of engineering, artificial 

intelligence and design, writes regarding the design process: 

Engineering design is the systematic, intelligent generation and 
evaluation of specifications for artifacts whose form and function achieve 
stated objectives and satisfy specified constraints. 
(Dym, 1991) 

In common with the three part definition of design given in Section 1.1.1., are the 

concepts of purposeful:   "... intelligent generation and evaluation of specifications for 

artifacts...", and goal oriented:   "... achieve stated objectives and satisfy specified 

constraints...". 

In the opening session of the Conceptual Design of Structures, an international 

symposium of the International Association for Shell and Spatial Structures (IASS) in 1996 

in Stuttgart, Germany, Professor Jörg Schlaich, Director of the Institute for Structural 

Design at the University of Stuttgart, defined structural engineering in this way: 

Structural engineering is much more than providing scientific proof for 
an already existing phenomena. ...  Structural engineering expressed 
through conceptual design, means to combine knowledge with intuition, 
experience with fantasy and aims at inventing an efficient structure 
including a unique form.  (Schlaich, 1996, p.16) 

Here one can more clearly read the roll of creativity in design.  Although purposeful and 

goal oriented might apply just as well to analysis, "fantasy", "inventing" and "unique form" 

describe the creative aspects of the activity which qualifies it as design.  These are also the 

aspects of the IGDT that distinguish it from more traditional analysis tools. 

In the past, one problem with computational tools for the field of architectural 

engineering has been the lack of distinction between design tools and analysis tools.  As 

a result, it is common practice to use analysis tools for design.  For example, one might 

use a finite element program to supply stress level information about a given form being 

considered.  But generally such programs contribute little to the designer's "fantasy" and 

seldom suggest a "unique form".  Such analysis tools can greatly enhance the designer's 

understanding of a given structure, but they are severely limited in being able to inspire 

the designer in finding new or unexpected solutions.  Even programs that are able to 

manipulate form in terms of an optimization process, are typically analysis oriented.  

They analyze a set of criteria to find the best fitting form.  The limitation here is that 

although such programs may be able to find the optimal form for the given criteria, the 



 14 

given criteria may not describe the best solution for the problem.  Such programs can 

actually stifle creative design in that they only offer solutions for the problem as 

described.  Offered the 'optimal' solution, the tendency on the part of the designer is to 

accept it without questioning what limitations might be implied by the way the problem 

criteria are stated.  In submitting the criteria for analysis the designer may be able to 

formulate the "knowledge", but will the "intuition" be included?  The program may contain 

a data base of design "experience", but will it enhance the designer's "fantasy"?  If not it 

has some serious limitations as a design tool, and will provide little aid to the designer 

searching for Schlaich's "unique form". 

1.1.2.2 Design Phases 

As a process, design is usually divided into phases which describe a progression of 

activity which begins with a client's desire to build and continues through the life cycle of 

the completed structure to demanufacture.  The distinction of design phases, although 

somewhat artificial, is generally understood by designers to delineate the various 

activities which they perform in the process of designing.  The Architect's Handbook of 

Professional Practice divides design activity into the following phases (Cryer, 1994, p. 

526): 

• Schematic Design Phase 
• Design Development Phase 
• Construction Documents Phase 
 

In this context, the focus of an IGDT lies in the earlier, Schematic Design Phase, before a 

final solution is chosen.  Expanding the design phase headings somewhat helps to 

provide an understanding of where the IGDT is meant to aid the designer. 

Schematic Design PhaseSchematic Design PhaseSchematic Design PhaseSchematic Design Phase    
analysis of project requirements 
diagram studies 
assembly of data 
schematic design studies and recommended solution 
schematic design plans 
sketches and study models 
general project description 
engineering system concepts 

Design Development PhaseDesign Development PhaseDesign Development PhaseDesign Development Phase    
refinement of project requirements 
formulation of civil engineering systems 
formulation of structural systems 
formulation of mechanical and electrical systems 



 15 

selection of major building materials 
preparation of Design Development documents 

Construction Documents PhaseConstruction Documents PhaseConstruction Documents PhaseConstruction Documents Phase    
development of major detail conditions 
diagram study of major mechanical and electrical systems 
diagram study of major civil and structural systems 
architectural working drawings and specifications 
engineering working drawings and specifications 

 
As was earlier noted, most computer based design aids operate in the Design 

Development Phase, where a system has already been chosen and is refined through 

analysis.  The IGDT on the other hand, is intended as an exploration tool, appropriate to 

the Schematic Design Phase of gathering data and schematic studies of different 

possibilities. 

During the 1960's several researchers gave consideration to the programmatic 

description of the design process (Coyne, et al., 1990, p.4).  Most included some 

variation of the three step cycle proposed by Morris Asimow (Asimow, 1962): 

• analysis 
• synthesis 
• evaluation 
 

 

Figure 1.1.   Nested and Interlinking Cycles in the Design Process. 



 16 

Asimow's three step method is further discussed in Section 1.2.1.1. below.  Some form of 

this cycle occurs, in a nested fashion, within each of the design phases.  The process 

becomes a series of inter-linking cyclic shells in which the introduction of new knowledge 

or new events can cause regression to a previous point from any point in the process.  

Figure 1.1 depicts the interlinking of these three phases.  Note that because less is known 

about the problem in the early phases, there is a greater likelihood, as well as need, for 

iteration.  With each decision made in the process, both more knowledge is gained, and 

more constraints are imposed which limit the designer's freedom to consider multiple 

solutions.  Therefore, in the later, final design phases, there are generally fewer 

iterations, and fewer opportunities to regress to the earlier design phases.  It is important 

that tools which operate during the conceptual and design development phases, allow 

the designer the creative freedom to thoroughly explore the problem design space 

without being prematurely directed toward a conclusion.  It is possible that by suggesting 

a single 'optimal' solution to the designer in the early design phases, a design aid 

(computer assisted or traditional) can actually hinder the complete exploration of the 

problem by not promoting the consideration of sufficient options.  The concept of the 

IGDT is to aid the designer specifically in the early phases of a project by allowing the 

exploration of a multiplicity of solutions. 

 

Figure 1.2.  Four variations of design cycle patterns by Koberg and Bagnall (Koberg & Bagnall, 1972). 



 17 

Although different disciplines do display variation in the description of the cycling process 

as is shown in Section 1.2.2.1., they share, nonetheless, a similar pattern.  In their widely 

used design primer, The Universal Traveler - a Soft-Systems guide to: creativity, 

problem-solving, and the process of reaching goals, Don Koberg and Jim Bagnall 

propose seven basic steps to describe the cycle in the discipline of Architecture: 

• Accept 
• Analyse 
• Define 
• Ideate 
• Decide 
• Select 
• Evaluate (Koberg and Bagnall, 1972) 

Figure 1.2 shows that although the steps are progressive, the overall process remains 

cyclic with the possibility of regressive links at each step.  As shown in the diagrams the 

ordering is not necessarily sequential, and varies from project to project.  The variation in 

the four example flow diagrams in Figure 1.2, demonstrates the need for flexibility in an 

IGDT.  In order to fit the work patterns of different designers, a useful design tool needs 

to be able to adapt to personal and problem specific patterns. 

1.2 Study of Design 

1.2.1 Theory and Practice of Design 

According to Thomas Kuhn's definition, the field of design is not a mature science as it 

lacks a "coherent tradition of scientific research and practice, embodying law, theory, 

application, and instrumentation" (Kuhn, 1962).  There exists no comprehensive theory 

that can be called upon to predict the outcome of a given design problem.  For example, 

using the theories current in the science of astronomy, one can predict, within the limits of 

the theory, the position of a planet in the sky on a given day at a given time.  But there 

are no such theories that can be used to predict the outcome of a design problem with 

such success.  Kuhn describes through numerous historic examples the events which lead 

to the establishment of a new branch of science.  For example the following paragraph 

cited from Kuhn's book, The Structure of Scientific Revolutions, shows how a field of 

endeavor can move from a desperate collection of independent conjectures to a unified 

science whose body of knowledge is directed by an accepted theory and laws. 

At various times all these schools made significant contributions to the 
body of concepts, phenomena, and techniques from which Newton drew 



 18 

the first nearly uniformly accepted paradigm for physical optics.  Any 
definition of the scientist that excludes at least the more creative 
members of these various schools will exclude their modern successors 
as well.  Those men were scientists.  Yet anyone examining a survey of 
physical optics before Newton may well conclude that, though the field's 
practitioners were scientists, the net result of their activity was something 
less than science.  Being able to take no common body of belief for 
granted, each writer on physical optics felt forced to build his field anew 
from its foundations.  In doing so, his choice of supporting observation  
and experiment was relatively free, for there was no standard set of 
methods or of phenomena that every optical writer felt forced to employ 
and explain.  Under these circumstances, the dialogue of the resulting 
books was often directed as much to the members of other schools as it 
was to nature.  That pattern is not unfamiliar in a number of creative 
fields today, nor is it incompatible with significant discovery and 
invention.  It is not, however, the pattern of development that physical 
optics acquired after Newton and that other natural sciences make 
familiar today.  
(Kuhn, 1962, <1996 ed., p. 13.>) 

This Kuhnian view of development in the natural sciences is often overlaid on the design 

sciences, particularly in architecture and engineering.  The result is a tendency to expect 

design to fit the mold of the natural sciences, i.e., to develop a unifying theory and be 

governed by application of its laws.  Professor William Addis, historian and engineer in 

the Department of Construction Management at the University of Reading, has charted 

the development of this attitude in the field of engineering design, through numerous 

citations of engineers from the beginning of the 19th century to the present (Addis, 1990, 

pp. 3-13).  Addis labels the natural science element of engineering as "theory" and the 

design element as "practice".  This is certainly a popularly understood division of the field.  

Addis recognizes two camps in the field of engineering - those wishing to see theory as 

the dominant element, and those wishing to see design as dominant.  The following three 

quotations cited by Addis give a good representation of the position of the first camp. 

La théorie c'est le général; la pratique ce sont les soldats. (Conybeare, 
1858, p. 39) 

It is largely due to the efforts of ... the minority who devoted themselves 
to the theoretical aspects of the professional work ... in the past that the 
practical engineer has succeeded in gaining and , more important, 
maintaining the professional status which ... he values so highly.  The 
theory of today should be the practice of tomorrow and unless theoretical 
knowledge is ever in advance of current practical requirements the 
survival of the engineer as a professional man is in danger ... The 



 19 

practitioners [must be] educated to understand and translate into reality 
the work of the scientist.  (Pippard, 1956, p. 161) 

... while practice indicates a certain mode of action, theory points out the 
most correct way.  And, if this be correct, our next conclusion is , that 
practice, unaided by theory, has only a chance of being right; whereas 
theory can never be wrong; and that practice, which is not entirely in 
accordance with theory, must be erroneous. 
(Anonymous, Practical Mechanic and Engineer's Magazine, 1842) 

Addis goes on to portray a second camp in the field of engineering, which he describes 

as follows: 

There is, however, a second, entirely different view of the role of theory 
in design.  Its advocates consider theoretical calculations to be of 
secondary importance to a different type of knowledge.  This other type 
of knowledge is a qualitative on, based upon an understanding of how 
materials and structures behave, rather than upon the abstract 
principles, laws or theories which are supposed to govern their 
behaviour.  The names of Torroja, Nervi, Candela and Maillart are often 
associated with such views.  (Addis, 1990, p. 10) 

To support this view, Addis goes on to quote from the engineers he lists.  Some of his 

citations are worth reproducing here to make the point clear. 

The calculations of stresses can only serve to check and to correct the 
sizes of the structural members as conceived and proposed by the 
intuition of the designer.  (Torroja, 1967, p. 331) 

The most advanced chapters of theory of structures ... can only be used 
to check the stability of a structure.  They can be used only to analyze 
numerically a structure already designed, not only in its general outline , 
but in all its dimensional relations.  The formative stage of a design, 
during which its main characteristics are defined and its qualities and 
faults are determined once and for all (just as the characteristics of an 
organism are clearly defined in the embryo), cannot make use of 
structural theory and must resort to intuition and schematic 
simplifications.  (Nervi, 1956, p. 17) 

As our reward for inventing a Theory of Structures we are now obliged to 
calculate everything we build and to justify it with numbers.  This can be 
really discouraging to the adventurous mind.  If we wish to surpass the 
pedantic pace of the building codes we must defend our audacity with a 
formidable array of figures and equations. 
Although the extent to which we can assess numerically the real 
behaviour of a structure is rather hypothetical, mathematical calculations 
have a certain value.  They can give us a rough assurance that the 
structures will stand after we have called on our experience and 



 20 

common-sense to determine its form and dimensions. 
(Candela c. 1950) 

It is admittedly a fairly widespread opinion that the dimensions [of a 
structure] should be unequivocally and finally determined by calculation.  
However in view of the impossibility of taking into account all possible 
contingencies, any calculation can be nothing but a guidance to the 
designer.  (Maillart, cited in Straub, 1952, p. 240) 

Addis comes to the conclusion that practical design depends on knowledge other than 

that embodied by scientific theory and laws.  He lists some possible examples of design 

knowledge as: 

• rules of thumb 
• the numerous empirical data and rules associated with Codes 

of Practice 
• the properties of particular materials 
• factors of safety 
• intuitive knowledge of structural behaviour 
• experience 
• engineering judgment                         (Addis, 1990, p. 11) 
 

Nobel Laureate and Professor of Computer Science and Psychology at Carnegie Mellon 

University, Herbert Simon, makes the distinction clear between theory and practice in his 

book The Sciences of the Artificial.  Whereas what Addis refers to as engineering 

theory is derived from the natural sciences, the practice of design in engineering and 

architecture belongs to the sciences of the artificial. 

Historically and traditionally, it has been the task of the science 
disciplines to teach about natural things: how they are and how they 
work.  It has been the task of engineering schools to teach about 
artificial things: how to make artifacts that have desired properties and 
how to design.  (Simon, 1969, <1996 ed., p. 111>) 

The natural sciences are concerned with how things are. ... Design, on 
the other hand, is concerned with how things ought to be, with devising 
artifacts to attain goals. (Simon, 1969, <1996 ed., p. 114>) 

Simon comments further on the rift between theory and practice, elucidated above by 

engineers of both camps.  He describes the effect this factious spirit has had on colleges 

of engineering during the past century. 

In view of the key role of design in professional activity, it is ironic that in 
this century the natural sciences almost drove the sciences of the artificial 
from the professional school curricula ...  Engineering schools gradually 
became schools of physics and mathematics ...  The use of adjectives like 



 21 

"applied" concealed, but did not change, the fact.  It simply meant that in 
the professional schools those topics were selected from mathematics 
and the natural sciences for emphasis which were thought to be most 
nearly relevant to professional practice.  It did not mean that design 
continued to be taught, as distinguished from analysis. ... 
The stronger universities were more deeply affected than the weaker, 
and the graduate programs more than the undergraduate.  During that 
time few doctoral dissertations in first-rate professional schools dealt with 
genuine design problems, as distinguished from problems in solid state 
physics or stochastic processes. ... 
As professional schools, including the independent engineering schools, 
were more and more absorbed into the general culture of the university, 
they hankered after academic respectability.  In terms of the prevailing 
norms, academic respectability calls for subject matter that is 
intellectually tough, analytic, formalizable, and teachable.  In the past 
much, if not most, of what we knew about design and about the artificial 
sciences was intellectually soft, intuitive, informal, and cookbooky. ... 
The damage to professional competence caused by the loss of design 
from professional curricula gradually gained recognition ...  Some 
schools did not think it a problem (and a few still do not), because they 
regarded schools of applied science as a superior alternative to the trade 
schools of the past.  If that were the choice, we could agree.  But neither 
alternative is satisfactory. 
The professional schools can reassume their professional responsibilities 
just to the degree that they discover and teach a science of design, a 
body of intellectually tough, analytic, partly formalizable, partly 
empirical, teachable doctrine about the design process.   (Simon, 1969, 
<1996 ed., pp. 111-113>) 

Simon goes on to describe how the introduction of computers into the design process has 

forced design theoreticians to formally and explicitly describe aspects of the design 

process.  This in turn has given design a more academic acceptable image. 

The following sections outline some of the directions the study of design and design 

theory have recently taken.  As opposed to the study of natural science, where one can 

expect to see a unification of thought supporting a dominant theory, no such Kuhnian 

paradigm should be expected in the study of design.  As a science of the artificial, design 

is a very different animal.  Design is not constrained by attempts to describe the single 

reality "what is", but left totally open to describe the "what ought to be".  It brings with it 

the frustration of no single touchstone of verification, but offers instead the opportunity to 

express that which lies beyond the natural. 

This lack of a single touchstone also complicates the study of design in that no single set 

of goals guide the formation of procedures.  Where some practitioners can offer more 



 22 

compete theories of their work, others describe at best proven techniques.  The 

remainder of this section is divided into two sections.  Section 1.2.2., Design Models, 

attempts to delineate some of the more prominent theories current in design, and Section 

1.2.3., Design Mechanisms, catches other aspects of design which are recognized as 

truisms, independent of a specific theory. 

1.2.2 Design Models 

If one cannot expect a unified theory of design, it is certainly possible to have multiple 

working models that describe design in some useful ways.  Case studies are commonly 

studied as well in an attempt to recognize what it is that brings success to a working 

design methodology.  Since design describes "what ought to be" there are, in fact, as 

many models for design as there are views of what ought to be.  For example, design 

has been modeled as language (Semiotics), as a logic system (Archer, 1970), as a 

problem solving process (Newell, Simon, 1972), by procedural methods (Asimow, 1962), 

by reference to typologies (Moneo, 1978), or by simulation and optimization techniques.  

Each of these models is able to offer a particular view of design, and their study can be 

enriching.  In the sections that follow, a few of the design models more significant to the 

development of the IGDT are outlined.  They include: 

• Design as Process 
• Design as Simulation 
• Design as Optimization 
• Design as State Space Exploration 

 

1.2.2.1 Design as Process 

Much effort has been applied to develop a method which describes design as a 

prescriptive process.  By modeling design as a series of steps the designer is provided 

with a method which not only gives structure to the activity, but helps to sharpen the 

general understanding of what design is.  In his 1967 book, Creativity: The Magical 

Synthesis, Silvano Arieti discusses eight models of creative design published between 

1908 and 1964.  In reviewing several models it is interesting to observe the commonality 

present, as well as the aspects stressed by different authors.  Paul E. Plsek, founder of 

Directed Creativity, updates Arieti's list of procedures in his 1997 book Creativity, 

Innovation, and Quality.  Plsek charts the development of two schools of thought in 



 23 

creative methodology.  The first group holds that creative design is primarily a 

subconscious act, and therefore does not lend itself to description by prescriptive steps.  

The second group agrees that there may be a subconscious component in design, what 

might be called inspiration, but hold that the process as a whole is certainly a conscious, 

rational and describable act. 

It is important to note that some experts dismiss the notion that creativity 
can be described as a sequence of steps in a model.  For example, 
Vinacke (1953) is adamant that creative thinking in the arts does not 
follow a model.  In a similar vein, Gestalt philosophers like Wertheimer 
(1945) assert that the process of creative thinking is a integrated line of 
thought that does not lend itself to the segmentation implied by steps of 
a model.  But while such views are strongly held, they are in the minority. 

Business people, who have used models for quality improvement, 
strategic planning, reengineering, and so on, are well-positioned to deal 
with this apparent controversy.  We understand, by experience, that while 
models are helpful in guiding our efforts, they are not to be used too 
rigidly.  We understand that models are not rote prescriptions.  We may 
deviate substantially from a model in a given situation, but this does not 
render the model useless.  We also understand the concept of flow and 
realize that one should not be to dogmatic about when one step of the 
model ends and the next begins.  Models are useful, but only a fool 
follows them blindly.  (Plsek, 1997) 

One of the earliest models discussed by both Plsek and Arieti is that of Graham Wallas 

(1926).  Wallas, whose is often referenced in creative thinking programs, used a four 

step design model. 

• Preparation definition of issue, observation and study 
• Incubation laying the issue aside for a time 
• Illumination the moment when a new idea finally emerges 
• Verification checking it out 
 

Wallas would seem to combine the two schools described by Plsek, the intuitive and the 

analytic.  Although incubation and illumination seem to be primarily intuitive, and guided 

by the subconscious, Wallas begins and ends his model with decidedly analytic steps, 

observation, study and verification. 

Two proponents of the intuitive school are Dean Keith Simonton, Professor of Psychology 

at the University of California, Davis, and author of Origins of Genius: Darwinian 

Perspectives on Creativity (1999); and Donald T. Campbell, former Professor Emeritus 

of Sociology, Anthropology, Psychology and Education at Lehigh University, originator of 

the term "Blind Variation and Selective Retention" (BVSR), likewise in reference to 



 24 

Darwinian evolution.  In the field of creative design, both men advanced the "chance 

configuration theory", which has its origins in the writings of the psychologist William 

James in the 1880's.  The chance configuration theory holds that creativity in design 

comes about to a large extent though uncontrollable elements guided by random 

chance.  The configuration of experiences or knowledge that any person might bring to 

bear on a design problem is largely guided by chance, and successful solutions are 

selectively retained.  A selected solution is refined by the designer, and undergoes a 

process of adaptation in the manner of Darwinian evolution.  The final solution survives 

to be implemented by the designer.  Although the initial step is guided by chance and 

intuition, retention and development of a chance solution are certainly analytic in nature.  

A further discussion of the roll of chance in design is given in Section 1.2.3.1. 

An even greater emphasis is placed on the roll of subconscious and chance processes in 

the design model proposed by F. Barron (1988). 

• Conception in a prepared mind 
• Gestation time, intricately coordinated 
• Paturation suffering to be born, emergence to light 
• Bringing up the baby further period of development 
 

Called the "psychic creation model", Barron's four phase plan leaves the first three phases 

beyond direct access in the designer's subconscious. 

But in contrast to Barron-type "psychic" models, several models cited by Plsek give a more 

balanced view of the rolls of intuition and analysis (Plsek, 1997).  Rossman, for example, 

after compiling surveys of 710 inventors, refined Wallas's four step model as follows: 

• Observation of a need or difficulty 
• Analysis of the need 
• A survey of all available information 
• A formulation of all objective solutions 
• A critical analysis of these solutions for their advantages and 

disadvantages 
• The birth of the new idea  -  the invention 
• Experimentation to test out the most promising solution, and the 

selection and perfection of the final embodiment 
 

Although Rossman also contains an element of mystery in "the birth of the new idea", the 

preceding and following steps give a more analytical balance missing in Barron's model. 



 25 

The originator of the well known technique of "brainstorming", Dr. Alex F. Osborn, also 

published a seven step model for creative thinking in his book, Applied Imagination 

(1963). 

• Orientation pointing up the problem 
• Preparation    gathering pertinent data 
• Analysis breaking down the relevant material 
• Ideation piling up alternatives by way of ideas 
• Incubation letting up, to invite illumination 
• Synthesis    putting the pieces together 
• Evaluation judging the resulting ideas 
 
 
 

Osborn's model is even more pragmatic, but includes the need for illumination, which 

can be supported by ideation, but in the end occurs more intuitively during incubation.  

In 1954, Dr. Osborn founded the Creative Education Foundation at the University of 

Buffalo, which hosted the first Creative Problem Solving Institute (CPSI) that same year.  

CPSI has continued to provide workshops each year, teaching the CPS method to tens of 

thousands of professionals and educators in the United States.  Dr. Sidney J. Parnes, the 

first director of CPSI, along with other CPSI faculty including Dr. Donald Trefflinger and 

Dr. Scott Isaksen have published extensively on the CPS method (Parnes, 1992; Isaksen & 

Trefflinger, 1985).  The CPS method incorporates the following steps: 

• Objective finding 
• Fact finding 
• Problem finding 
• Idea finding 
• Solution finding 
• Acceptance finding 
 
 

Several other educators in the field of creative design methodology in the United States 

have philosophic ties with CPS, and have proposed variations of the CPS method.  Dr. 

Win Wegner, director of Project Renaissance, combines the first three steps defined by 

CPS in his "Gravel Gulch" four step method (Wegner, 1981) 

• The mess 
• Idea-finding 
• Solution-finding 
• Action-planning 
 
 



 26 

Another popular model is the seven step method by Don Koberg and Jim Bagnall (1972), 

discussed in Section 1.1.2.2. 

• Accept the situation 
• Analyze 
• Define 
• Ideate 
• Select 
• Implement 
• Evaluate 
 

Figure 1.2, which shows possible flow charts of the method, make it clear that the 

process is not seen as strictly linear, but can contain multiple layers of recursion.  In the 

tradition of CPS, the model of Koberg and Bagnall brackets the intuitive phase of 

ideation by the analytic phases at the beginning and the end of the process. 

In the area of architectural engineering, Dr. Morris Asimow is credited with advancing the 

basic design cycle: 

• analysis 
• synthesis 
• evaluation 
 

In his book, Introduction to Design (Asimow, 1962) Dr. Asimow describes how the three 

phases are interconnected. 

A philosophy of engineering design comprises three parts, namely, a set 
of consistent principles and their logical derivatives, an operational 
discipline which leads to action, and finally a critical feedback apparatus 
which measures the advantages, detects the shortcomings, and 
illuminates the directions of improvement.  (Asimow, 1962, pp. 4-5) 

The design process resembles the general process of problem solving in 
the main features, but it uses sharper, and for the most part, more 
analytical tools, which have been especially shaped and sharpened for 
the problems of engineering design.  It carries the process through 
analysis, synthesis, and evaluation and decision, and extends it into the 
realms of optimization, revision, and implementation.   
(Asimow, 1962, p. 44) 

Paul E. Plsek (1997) adds to Asimow's basic triad the CPS element of acceptance, which 

he labels "living with it".  Plsek suggests that this critical step forms the link that couples 

the end with the start of the process.  Figure 1.3 shows the Directed Creativity Cycle by 

Plsek. 



 27 

 

Figure 1.3.   The Directed Creativity Cycle developed by Paul E. Plsek. 

Plsek gives the following short description of the Directed Creativity Cycle. 

We live everyday in the same world as everyone else, but creative 
thinking begins with careful observation of that world coupled with 
thoughtful analysis of how things work and fail.  These mental 
processes create a store, we generate novel ideas to meet specific 
needs by actively searching for associations among concepts.  There are 
many specific techniques that we can use to make these associations; for 
example, analogies, branching out from a given concept, using a 
random word, classic brainstorming, and so on.  The choice of technique 
is not so important; making the effort to actively search for associations 
is what is key. 

Seeking the balance between satisficing and premature judgment, we 
harvest and further enhance our ideas before we subject them to a 
final, practical evaluation.  But, it is not enough just to have creative 
thoughts; ideas have no value until we put in the work to implement 
them.  Every new idea that is put into practice changes the world we 
live in, which re-starts the cycle of observation and analysis. 
(Plsek, 1997) 

Finally it is worth considering the procedure forwarded by Herbert Simon (1973) in 

discussing "ill structured problems" as compared to "well structured problems".  The 



 28 

distinction is that well structured problems can be solved by general problem solving 

procedures in a straight forward manner (i.e., analysis), whereas ill structured problems 

cannot be solved so directly.  Simon builds the argument that all design problems are ill 

structured because at the outset of the process the problem space is not fully specified, in 

fact some parameters of the problem may only "occur" to the designer after considerable 

work and search.  In specific regard to architectural design (with the proviso that 

"creative" design is intended), Simon writes: 

The design task (with this proviso) is ill structured in a number of 
respects.  There is initially no definite criterion to test a proposed 
solution, much less a mechanizeable process to apply the criterion.  The 
problem space is not defined in any meaningful way, for a definition 
would have to encompass all kinds of structures the architect might at 
some point consider (e.g, a geodesic dome, a truss roof, arches …), all 
considerable materials (wood, metal, plexiglass, ice …), all design 
processes and organizations of design processes (start with floor plans, 
start with list of functional needs, start with façade, …). 

Simon outlines a procedure for solving these ill structured problems (Simon, 1973).  

Simon also recognizes that the approach is cyclic and alternates between solving 

component parts of the problem and attaining and assimilating new information about 

the problem.  Unlike analysis, it is not necessary for the process to be completely defined 

by constraints.  In fact, Simon observes, "The more distinguished the architect, the less 

expectation that the client should provide the constraints."  (Simon, 1973) 

As will be seen in later sections, there are many aspects of Genetic Algorithms which 

parallel many of these procedures.  The design procedures discussed above are 

generally all seen as cyclic, with cycles occurring within each step.  This is the same 

structure which Simon terms "hierachtic" (Simon, 1969, <1996 ed., p.184>).  The cyclic 

nature of Genetic Algorithms can be seen as very similar (v. Bülow, 2007).  It is also seen 

that the cyclic steps converge on a solution.  This is also the expectation with Genetic 

Algorithms.  Design procedures usually allow for the possibility of return to earlier steps 

with additional information gained from later steps.  This is an important feature of an 

IGDT discussed in Section 1.3.3.  Flow charts similar to the ones described by Koberg 

and Bagnall in Figure 1.2, could very well apply to the flow of an IGDT. 

Finally, the positioning of the IGDT within the design models discussed above is 

important to note.  The IGDT is intended to aid the designer in the intuitive, ideation 



 29 

phases of design.  In Plsek's model, this is "Generation".  In the Koberg and Bagnall 

model it comes as "Ideate".  Although supported before and after with some form of 

analysis, the aid offered to the designer is in the area of intuition.  In this area the IGDT 

is fairly unique as a design tool. 

1.2.2.2 Design as Simulation 

In simulation the aspects of the design which are to be considered are in some way 

modeled.  This model may be a physical model, a mathematical model or even a rather 

abstract thought model.  In any case our limited understanding of systems usually 

prevents us from producing a simulation which accurately copies the original in every 

detail.  Simulation is not replication.  But it is assumed that if enough of the more 

important parameters are incorporated in the model, the simulation will react to testing 

in a way that exposes more information about the system than could easily be observed 

otherwise. 

Physical models have a long history of providing richly rewarding simulations.  They are 

used extensively in architecture and engineering to model aspects of form, space and 

structure.  Known laws of similitude provide a means of quantitative translation of 

physical behavior under various internal or external loadings.   

Simulation is probably the most commonly used approach to solving a design problem.  

In simulation, a trial design is described, and its performance is calculated or in some 

way predicted.  Actually, simulation may be applied to either a physical model which can 

be tested and observed, or to a mathematical model used in calculations.  Depending on 

how accurately the design is modeled, simulations can give very good results.  The final 

product of a design is, in a sense, the ultimate simulation at 1:1, from which much 

information may be learned for future designs. 

Simulation has, however, two significant draw backs.  First, it is not always clear, once 

the performance is found lacking, what parameters should be altered, and how they 

should be altered, to affect the performance.  For instance, once an element is modeled 

or produced it may be known very accurately how much it weighs, but that may not 

provide much direction in actually making it lighter.  The second draw back can be in the 

efficiency in terms of time.  With limited guidance the simulation method may result in 



 30 

much time consuming trial and error.  If physical models are employed, this will greatly 

limit the number of iterations of design trials which can reasonably be executed. 

1.2.2.3 Design as Optimization 

Because no designer deliberately chooses a solution that poorly fits the design criteria, all 

design can be seen as optimization in some form or other.  For this reason optimization 

methods have received much attention in many different fields that employ design.  

Mathematical methods of optimization include many techniques, the best known being 

Linear Programming.  Common to all such methods is the necessity to be able to 

describe the design parameters as mathematical variables.  The domain from which 

possible variable values are taken is constrained by initial design decisions.  These initial 

design decisions are themselves variable, the decision variables, and are usually chosen 

by the designer.  In his paper, "The Structure of Ill Structured Problems" (Simon, 1973), 

Herbert Simon points out that any problem in which the initial design decisions change 

due to the introduction of "new resources that 'occur' to (the designer) in the course of his 

solution efforts" is an ill structured problem.  As a result, design problems are usually 

converted to 'well structured' analysis problems for optimization, by fixing the decision 

variables. 

Performance variables point to a chosen design solution which can be found in the 

domain described by the decision variables.  The desired design is described through 

objectives, which for the optimization procedure must be defined as mathematical 

functions.  Applying a set of performance variables to the objective functions yields the 

design solution.  The range defined by all possible solutions which might be found by 

applying any possible combination of performance variable values to the objective 

functions is the solution space.  The optimization problem becomes a process of finding 

the combination of performance variable values, that when applied to the objective 

functions, points to some best (or worst) design solution. 

Although developments in optimization techniques can be traced as far back as Galileo 

de Galilei's investigations of the cantilever beam in 1638 (Seireg & Rodriguez, 1997, 

p.1), the development of the linear programming method by Dantzig in 1948, and 

variations to the simplex method developed during the 1950's, issued a renewed interest 

in optimization techniques (Venkayya, 1993, p.2).  Schmit's work with the structural 



 31 

synthesis technique in the late 1950's (Schmit, 1960), introduced many structural 

engineers to the field of optimization.  In the 40 years since then, both nonlinear 

extensions to linear programming methods as well as the development of nonlinear 

programming algorithms have advanced the application of optimization techniques.  The 

historic development of optimization techniques has been well documented by the 

authors cited above as well as numerous others.  Still, such methods are not commonly 

used in architectural engineering.  The formulation of problems is not simple and the 

results are not always immediately useful to designers. 

The formulation of most optimization methods can be described by the following terms: 

• decision variables 
• performance variables 
• objective functions 
 

Decision variables set the context for the design.  They are the initial parameters 

decided upon by the designer which qualify the design space.  That is, by defining the 

decision variables, the designer sets the limits or constraints which specify a family of 

possible solutions.  This family of solutions can be thought of as being contained in some 

(n dimensional) space.  This space has as many dimensions as there are decision 

variables.  In architectural engineering problems the number of variables can be quite a 

few.  Each of these multidimensional spaces can possibly contain an infinite number of 

possibilities.  Searching through such spaces with simple, unguided trial-and-error is not 

likely to find the best solution. 

Performance variables define particular solutions within a design space.  Together 

they form a code which allows each solution to be accessed.  Conceptually, they can be 

seen as providing the address of each individual in the design space.  Each combination 

of performance variables points to a specific solution in a similar way that addresses 

composed of country, state, city, street, and number, point to a specific individual on the 

planet Earth. 

Objective functions define the particular solution of interest in the design space.  The 

solution that best fits the objective criteria is the 'optimal' solution which is sought.  In the 

optimization process, the goal is to find the combination of performance variables which 

point to a solution in the design space which displays the optimal combination of 



 32 

objective criteria.  The performance variables provide the means to point to a solution, 

whereas the objective functions describe the solution that is desired. 

Of course, a designer usually considers more than one, single criterion.  Many criteria 

may overlap or even conflict.  In that sense there is often no solution which can optimize 

all design criteria.  So one roll of the designer becomes the arbitration of which criteria to 

consider at all, and which of those impart a greater importance.  But a major problem 

with the various mathematical methods of optimization when applied to architecture lies 

in the inability to formulate the objectives in quantifiable, mathematical terms.  In 

reviewing optimization methods in relation to knowledge based systems Coyne, et al.  

write: 

The main problem with most of the models used in design methods, 
especially in optimization, is that they can deal only with quantifiable 
parameters stated in mathematical terms.  (Coyne, et al., 1990, p.28) 

As a result, only objectives that can be written as functions are considered, and then 

those that are considered are usually simplified in writing the objective function.  Thus, 

the 'optimum' that is found, is not actually the optimum for the real problem, but only for 

the limited and simplified problem.  Nonetheless, an optimum found in this way can give 

satisfactory results if enough of the primary objectives are reasonably defined. 

Simon suggests, that rather than trying to find 'optimal' solutions to the simplified 

problem, one might better seek satisfactory solutions to the real problem (Simon, 1969, 

<1996 ed., p.26>).  This is the approach taken with heuristic techniques used in 

Artificial Intelligence (AI) methods.  However, although AI methods operate on a more 

realistic model of the problem, the heuristic objectives still have to be stated and coded 

into the programs.  An IGDT as described in this dissertation offers the designer a great 

deal more flexibility with respect to objective functions, in that they do not have to be 

quantifiable statements coded into the program.  Like Simon's description of AI, an IGDT 

seeks "satisficing" solutions.  As described in Section 1.3.3.2., an IGDT is steered by the 

designer interactively, using whatever quantitative or qualitative criteria available. 

1.2.2.4 Design as State Space Exploration 

Although, as noted above, design is goal oriented, and thus often modeled as problem 

solving, it differs from problem solving in that the goals are not fixed at the outset.  In 

fact, determining the goals is part of the process.  Section 1.2.3.2. discusses how goals 



 33 

can change as the level of knowledge brought to the process increases.  In taking this 

into account, Gero (1994, p. 315) and other authors (Newell & Simon, 1972, p. 76) 

somewhat shift the model of design as problem solving to that of design as a decision 

making activity.  Decision making implies making choices, and choices are framed by 

parameters that can be described as variables.  In ordering these variables, Gero (1994, 

p. 316) represents design as being comprised by three state spaces: 

• Function  (definition of objects purpose - teleology) 
• Behavior  (performance space) 
• Structure  (decision space) 
 

Search methods of different types can be used to find values of variables in a state space, 

but Gero suggests, that more critical to design is the determination of the state space 

within which to search.  This he terms exploration of the state space.  In the process of 

exploring, learning takes place as new knowledge is gained or old knowledge 

restructured. 

 

Figure 1.4. The three design subspaces of function = F, behavior = B, and structure = S. 
(Gero, 1994, p. 317). 

Structure is described by Rosenman & Gero (1997) as the "what is".  It represents the 

physical object itself as described by material, topology, geometry and physical 

characteristics.  Structure contains the variables for the parameters necessary to replicate 

the object.  These are the parameters that a designer varies to describe or "decide" a 

particular design solution. 

Behavior is the "how does".  It is the description of how the design behaves in a 

particular environment.  Deformation, resilience, ductility, creep, are typical behaviors for 

architectural engineering designs.  Behavior can usually be mapped to Structure.  This 

allows specific structures to be sought that link-to or produce certain behaviors.  Figure 

1.5 shows this behavior mapping used to search for a structure. 



 34 

 

Figure 1.5.   Search for a specific structure that maps to a certain behavior, (Gero, 1994, p. 318). 

Function is the "what does".  It is distinct from purpose (the "why does"), and can be seen 

as the result of behavior.  In this sense it is closely linked to behavior.  But it is often 

difficult, if not impossible, to link function and structure directly (see no-function-in-

structure principle (de Kleer & Brown, 1984)).  Despite Louis Sullivan's much popularized 

dictum of "form follows function", (in this case "form" being "structure"), the link between 

form and function usually depends on context. 

 

Figure 1.6.   An example of one "function" of a cardboard box, (Watterson, 1988, p. 229). 

Regarding these three divisions of variables as state spaces, it can be seen that structure 

can be mapped to behavior, and behavior can be mapped to function, but it is usually 

not possible to map structure directly to function or vise-versa (Gero, 1994, p. 316).  For 

example, a corrugated cardboard box has a certain structure.  This structure describes a 

specific, predictable behavior - e.g., burst strength of 10 pounds.  The behavior can be 

seen as allowing a function - e.g., packaging 10, 1 pound books.  But given the structure 

alone, there is no unique mapping to function.  In the hands of a five-year-old, the same 

structure could be split on the seam and used as a means of transportation down a 

snowy bank, or opened on both ends to provide a tunnel, or inverted with lettering to 

function as a transmogrifier (Watterson, 1988, p. 229).  Attempts to directly map 



 35 

structure to function are at best prone to failure and at worst would severely inhibit 

innovation that is so critical to good design. 

1.2.3 Design Mechanisms 

There are several mechanisms that are commonly recognized in one form or another as 

being able to help, or if neglected, hinder, the creative thinking necessary for conceptual 

design.  This section discusses the following as representative of the more import 

mechanisms. 

• Chance in Design 
• Knowledge in Design 
• Fixation in Design 
• Search and Exploration in Design 
• Emergence in Design 
• Lateral Thinking in Design 
 

These mechanisms are for the most part known to persons practicing design, but, 

nonetheless, usually not accounted for in the development of computer design tools.  

Mechanisms like these are no doubt described in every introductory design course.  

However, when one looks for evidence of there application in current computer based 

design aids, they are noticeably lacking.  This omission is certainly the source of 

apprehension many designers have toward using computer programs to aid conceptual 

design.  For a design tool to be successful in promoting creative thinking, careful 

consideration needs to be given to how the program will support such mechanisms.  This 

section describes some of the more important of these mechanisms and gives indications 

of how they are incorporated in an IGDT. 

1.2.3.1 Chance in Design 

Every designer can cite anecdotes of how seeming happenstance played a key role in the 

development of a design concept.  As a design tool, chance is often disregarded as 

being an uncontrollable element.  In his book Chase, Chance and Creativity, James 

Austin, Professor Emeritus at the University of Colorado Medical Center and former Chair 

of the Department of Neurology, defines four types of chance, and explains how they 

relate to creative problem solving (Austin, 1978).  Through numerous examples he shows 

how successful scientists and designers tend to increase the likelihood of chance 

occurrences or suggestions which have a positive influence on their work. 



V
a

ri
o

u
s 

A
sp

e
ct

s 
a

n
d

 K
in

d
s 

o
f 

G
o

o
d

 L
u

ck
V

a
ri

o
u

s 
A

sp
e
ct

s 
a

n
d

 K
in

d
s 

o
f 

G
o

o
d

 L
u

ck
V

a
ri

o
u

s 
A

sp
e
ct

s 
a

n
d

 K
in

d
s 

o
f 

G
o

o
d

 L
u

ck
V

a
ri

o
u

s 
A

sp
e
ct

s 
a

n
d

 K
in

d
s 

o
f 

G
o

o
d

 L
u

ck
    

T
e
rm

 U
se

d
 t

o
 D

e
sc

ri
b

e
 

T
e
rm

 U
se

d
 t

o
 D

e
sc

ri
b

e
 

T
e
rm

 U
se

d
 t

o
 D

e
sc

ri
b

e
 

T
e
rm

 U
se

d
 t

o
 D

e
sc

ri
b

e
 

th
e

 Q
u

a
lit

y 
In

vo
lv

e
d

th
e

 Q
u

a
lit

y 
In

vo
lv

e
d

th
e

 Q
u

a
lit

y 
In

vo
lv

e
d

th
e

 Q
u

a
lit

y 
In

vo
lv

e
d

    
G

o
o

d
 L

G
o

o
d

 L
G

o
o

d
 L

G
o

o
d

 L
u

ck
 i

s 
th

e
 

u
ck

 i
s 

th
e

 
u

ck
 i

s 
th

e
 

u
ck

 i
s 

th
e

 
R

e
su

lt 
o

f 
..

.
R

e
su

lt 
o

f 
..

.
R

e
su

lt 
o

f 
..

.
R

e
su

lt 
o

f 
..

.    
C

la
ss

if
ic

a
tio

n
 o

f 
C

la
ss

if
ic

a
tio

n
 o

f 
C

la
ss

if
ic

a
tio

n
 o

f 
C

la
ss

if
ic

a
tio

n
 o

f 
Lu

ck
Lu

ck
Lu

ck
Lu

ck
    

E
le

m
e
n

ts
 I

n
vo

lv
e
d

E
le

m
e
n

ts
 I

n
vo

lv
e
d

E
le

m
e
n

ts
 I

n
vo

lv
e
d

E
le

m
e
n

ts
 I

n
vo

lv
e
d

    
P
e
rs

o
n

a
lit

y 
T
ra

its
 

P
e
rs

o
n

a
lit

y 
T
ra

its
 

P
e
rs

o
n

a
lit

y 
T
ra

its
 

P
e
rs

o
n

a
lit

y 
T
ra

its
     

Y
o

u
 N

e
e
d

Y
o

u
 N

e
e
d

Y
o

u
 N

e
e
d

Y
o

u
 N

e
e
d

    

 
A

n
 A

cc
id

e
n

t 
C

h
a

n
ce

 I
C

h
a

n
ce

 I
C

h
a

n
ce

 I
C

h
a

n
ce

 I
    

"B
lin

d
" 

lu
ck

. 
 C

h
a

n
ce

 h
a

p
p

e
n

s,
 a

n
d

 
n

o
th

in
g

 a
b

o
u

t 
it 

is
 d

ir
e
ct

ly
 a

ttr
ib

u
ta

b
le

 
to

 y
o

u
, 

th
e

 r
e
ci

p
ie

n
t 

N
o

n
e
 

  
S
E

R
E

N
D

IP
IT

Y
 

G
e
n

e
ra

l 
E

xp
lo

ra
to

ry
 

B
e
h

a
vi

o
r 

C
h

a
n

ce
 I

I
C

h
a

n
ce

 I
I

C
h

a
n

ce
 I

I
C

h
a

n
ce

 I
I    

Th
e
 K

e
tte

ri
n

g
 P

ri
n

ci
p

le
. 

 C
h

a
n

ce
 

fa
vo

rs
 t

h
o

se
 i

n
 m

o
tio

n
. 

 E
ve

n
ts

 a
re

 
b

ro
u

g
h

t 
to

g
e
th

e
r 

to
 f

o
rm

 "
h

a
p

p
y 

a
cc

id
e
n

ts
" 

w
h

e
n

 y
o

u
 d

if
fu

se
ly

 a
p

p
ly

 
yo

u
r 

e
n

e
rg

ie
s 

in
 m

o
tio

n
s 

th
a

t 
a

re
 

ty
p

ic
a

lly
 n

o
n

sp
e

ci
fi

c.
 

C
u

ri
o

si
ty

 a
b

o
u

t 
m

a
n

y 
th

in
g

s,
 

p
e
rs

is
te

n
ce

, 
w

ill
in

g
n

e
ss

 t
o

 
e
xp

e
ri

m
e
n

t 
a

n
d

 t
o

 e
xp

lo
re

. 

 
S
a

g
a

ci
ty

 
C

h
a

n
ce

 I
II

C
h

a
n

ce
 I

II
C

h
a

n
ce

 I
II

C
h

a
n

ce
 I

II
    

Th
e
 P

a
st

u
re

 P
ri

n
ci

p
le

. 
 C

h
a

n
ce

 f
a

vo
rs

 
th

e
 p

re
p

a
re

d
 m

in
d

. 
 S

o
m

e
 s

p
e
ci

a
l 

re
ce

p
tiv

ity
 b

o
rn

 f
ro

m
 p

a
st

 e
xp

e
ri

e
n

ce
 

p
e
rm

its
 y

o
u

 t
o

 d
is

ce
rn

 a
 n

e
w

 f
a

ct
 o

r 
to

 p
e
rc

e
iv

e
 i

d
e

a
s 

in
 a

 n
e
w

 
re

la
tio

n
sh

ip
. 

A
 b

a
ck

g
ro

u
n

d
 o

f 
kn

o
w

le
d

g
e
, 

b
a

se
d

 
o

n
 y

o
u

r 
a

b
ili

tie
s 

to
 o

b
se

rv
e
, 

re
m

e
m

b
e
r,

 a
n

d
 q

u
ic

kl
y 

fo
rm

 
si

g
n

if
ic

a
n

t 
n

e
w

 a
ss

o
ci

a
tio

n
s.

 

A
LT

A
M

IR
A

G
E

 
Pe

rs
o

n
a

liz
e
d

 A
ct

io
n

 
C

h
a

n
ce

 I
V

C
h

a
n

ce
 I

V
C

h
a

n
ce

 I
V

C
h

a
n

ce
 I

V
    

Th
e
 D

is
ra

e
li 

P
ri

n
ci

p
le

. 
 C

h
a

n
ce

 f
a

vo
rs

 
th

e
 i

n
d

iv
id

u
a

liz
e
d

 a
ct

io
n

. 
 F

o
rt

u
ito

u
s 

e
ve

n
ts

 o
cc

u
r 

w
h

e
n

 y
o

u
 b

e
h

a
ve

 i
n

 
w

a
ys

 t
h

a
t 

a
re

 h
ig

h
ly

 d
is

tin
ct

iv
e
 o

f 
yo

u
 

a
s 

a
 p

e
rs

o
n

. 

D
is

tin
ct

iv
e

 h
o

b
b

ie
s,

 p
e
rs

o
n

a
l 

lif
e

 
st

yl
e
s,

 a
n

d
 a

ct
iv

iti
e
s 

p
e

cu
lia

r 
to

 y
o

u
 

a
s 

a
n

 i
n

d
iv

id
u

a
l,

 e
sp

e
ci

a
lly

 w
h

e
n

 
th

e
y 

o
p

e
ra

te
 i

n
 d

o
m

a
in

s 
se

e
m

in
g

ly
 

fa
r 

re
m

o
ve

d
 f

ro
m

 t
h

e
 a

re
a

 o
f 

th
e

 
d

is
co

ve
ry

. 

 
  

Ta
b

le
 1

.1
. 

  
A

u
st

in
's

 C
la

ss
if

ic
a

tio
n

 o
f 

th
e

 F
o

u
r 

Ty
p

e
s 

o
f 

C
h

a
n

ce
 (

A
u

st
in

, 
1

9
7

8
, 

p
.7

8
) 



37 

Chance I Austin defines as "blind luck" (Austin, 1978, p. 73).  Like winning a lottery, this 

is the type of chance that cannot be predicted or expected in any way, and has really 

nothing to do with the recipient.  Although a possibility, it is statistically so unlikely that a 

useful solution would be found to any complex problem in this way, that it would not be 

of any real use in a design tool.  A series of randomly generated solutions might at least 

be seen as stimulating, but lacking the control given by a GA in allowing directed 

development, such a tool would be of very limited value. 

Chance II occurs in situations where by dint of perseverance and diligent, directed 

activity, the likelihood of a "happy accident" is greatly increased.  As an example Austin 

offers the following words from the engineer and inventor, Charles Kettering (1876 - 

1958): 

Keep on going and the chances are you will stumble on something, 
perhaps when you are least expecting it.  I have never heard of anyone 
stumbling on something sitting down.  (Austin, 1978, p. 72) 

This is the type of chance discovery that one seeks though exploration of different design 

spaces, and it is this type of discovery that an IGDT supports as an exploration tool.  By 

the shear number of solutions that can be perused using an IGDT, the chances are 

increased that "you will stumble on something" in the process.  The difference between 

this type of luck and "blind luck" (Chance I) is that you find it rather than it finding you. 

Chance III Austin characterizes with a quote from Louis Pasteur: "Dans les champs de 

l’observation, le hazard ne favorise que les esprits préparés" (Chance favors only the 

prepared mind) (Austin, 1978, p. 74).  Although the same solution may be presented to 

different individuals, it is a specific designer's own skill and background that allows for 

the recognition of the worth of that solution.  This is also a key factor in the IGDT 

concept.  Unlike many analysis tools that seek to distill an optimum solution given only a 

set of initial parameters, an IGDT requires the continued interaction with a human 

designer to provide "les esprits préparés" (the prepared mind) that can recognize and 

select better solutions. 

Austin characterizes these first three forms of chance as having the quality of serendipity - 

a term originally coined by Horace Walpole indicating the kind of luck one has for 

unexpectedly encountering a solution either through sagacity or accident (Austin, 1978, 

p. 71).  To characterize Chance IV Austin coins his own term, "Altamirage", which he 



38 

derives from the lucky discovery by Don Marcelino of the cave paintings in Altamira 

dating to the Magdalenian era of the Old Stone Age (between 15,000 BC and 12,000 

BC). 

Chance IV is dependent on the specific qualities (hobbies, diverse interests, life style) of 

the person.  By "Altamirage" Austin indicates that this type of luck only happens through 

the chance coming together of the specific qualities of an individual (Austin, 1978, p. 

77).  In the case of Don Marcelino, the facts that he had interests in history, local 

geology, had seen an archeology exhibit at the International Exhibition of 1878, liked the 

out-of-doors, and had a small and inquisitive daughter, all combined to make for the 

chance discovery of the cave paintings.  Austin summarizes these four types of chance as 

shown in Table 1.1. 

1.2.3.2 Knowledge in Design 

W. J. Fabrycky has shown that there is a relationship between knowledge about a design 

and freedom to alter that design (Fabrycky, 1991).  As work on a problem progresses 

toward a solution, the degree of freedom to explore radically different options lessens. 

 

Figure 1.7.   Typical Design Freedom and Knowledge vs. Time from W. J. Fabrycky. 

Each decision made by the designer brings with it more definition to the problem, and 

thereby more knowledge (quantitative data) about the nature of the problem.  But at the 



39 

same time as each decision acts to narrow the scope of the problem, the degree of 

freedom to explore alternate directions and possibilities decreases.  W. J. Fabrycky 

graphs knowledge about a design versus design freedom as shown in Figure 1.7  

(Fabrycky, 1991).  From this graph one can see that design freedom is of major 

importance in the conceptual design phase and early preliminary design phase, whereas 

knowledge about the design gains importance, and is primarily dominant in the last 

detailed design phase. 

De Bono offers a similar graph relating amount of information present to creativity.  De 

Bono sees a certain amount of information as useful and necessary to stimulate creative 

thought.  But a point can be reached where the designer can be bogged down by too 

much information. 

Data does not by itself generate ideas.  It usually does not even suggest 
them. ...It is useless to believe that creative effort can be replaced by a 
careful accumulation of data.  If ideas are needed, more data is no 
substitute.  (de Bono, 1971, p. 183) 

 

Figure 1.8.   De Bono’s Graph Relating Creativity and Information (de Bono, 1971, p. 184). 

Because traditionally, computers have been applied to quantitative problems, design 

tools which utilize computers have focused on the later detailed design phase where 

quantitative knowledge is primarily dominant.  Efforts to utilize computers in earlier 

phases has often produced counter productive results by offering quantitative knowledge 

too early in the process.  By offering the designer a quantitatively detailed solution in 



40 

early design phases, there is the temptation for the designer to accept the computer 

generated solution (or at least that direction of consideration), without further exploration 

of design possibilities.  Figure 1.9 shows the affect of a premature infusion of quantitative 

knowledge from a traditional computer design tool. 

The immediate gain in knowledge results in the sudden jump in the graph during the 

early design phase.  At the same time, with the acceptance of this knowledge, design 

freedom drops.  Unfortunately, since knowledge is normally gained through the free 

exploration of the design space, with this freedom stifled, there is no base for a further 

increase in knowledge.  As a result, the final design, although more quickly found, will 

likely not reach the level of success that would be expected without the computer input.  

In practice, of course, good designers know not to be lured into accepting the first 

solution they find (even if it is completely detailed by a computer).  Good designers either 

use computer tools in the later design phases or have the discipline to ensure that the 

design space is adequately explored. 

 

Figure 1.9.   Design Freedom and Knowledge vs. Time with Premature Knowledge Infusion. 

1.2.3.3 Fixation in Design 

The phenomena of design fixation is well known, particularly to design educators, albeit 

usually under different names.  Beginning design students are perpetually warned about 

the dangers of becoming overly enamored or stuck on an idea, to the exclusion of 



41 

investigating or even being able to recognize other possibly better solutions.  Osborn's 

brainstorming techniques (Osborn, 1963), Gordon's Synectics (Gordon, 1961), Adams' 

blockbusting (Adams, 1974), de Bono's lateral thinking (de Bono, 1971), as well as a 

host of other techniques and methods, all aim at helping the designer avoid becoming 

fixated on a single solution.  Colbron, et al. (1993) and Purcell & Gero (1996) have 

pointed out how difficult it is for people to see new functions for common objects or new 

solutions to well known problems.  De Bono presents this phenomena in terms of the 

patterning system of the human brain.  In discussing patterning systems, de Bono uses 

the analogy of dripping a hot liquid (ideas or knowledge) onto a gelatin surface (the 

brain).  Before the liquid cools, it will dissolve some of the gelatin and after it is poured 

away, a slight depression remains in the gelatin.  The next time a drop of liquid falls on 

the gelatin surface, even though it may not fall at exactly the same spot, it will tend to 

flow toward the depression already present, thus enlarging it slightly.  Eventually, erosion 

like rivulets are formed and new droplets that fall tend to roll into these rivulets rather 

than forming new depressions.  Fixation effects ones thinking like these rivulets that steer 

the new droplets into pre-established patterns.  Once the rivulets are present, it is very 

difficult for a new droplet not to run down an established rivulet, even though another 

course might be in some way better (shorter or whatever).  The techniques mentioned 

above all try to overcome this phenomena in one way or another. 

Being presented with a computer derived 'optimal' solution, can form a deep rut in ones 

cerebral gelatin, which tends to hinder the designer from further exploration of the 

design space.  In addition, the over detailing of early design solutions, as commonly 

presented by computer based design aids, tends to have an effect similar to the excessive 

infusion of knowledge too early in the design process. 

An IGDT responds to this problem by not offering single, optimized solutions, but rather 

families of good solutions.  In addition to the advantage of robustness offered by a 

"satisficing solution model", as described in Section 1.2.2.3., the multiple solutions 

offered by an IGDT reduce the danger of design fixation.  When one can view several 

solutions simultaneously, there is less danger of falling too deeply into one single path.  

In this way fixation is minimized and exploration is encouraged. 



42 

1.2.3.4 Search and Exploration in Design 

John S. Gero describes exploration in design as follows: 

Exploration in design can be characterized as a process which creates 
new design state spaces or modifies existing design state spaces.  New 
state spaces are rarely created de novo in design, rather existing design 
state spaces are modified.  The result of exploring a design state space is 
an altered state space.  (Gero, 1994, p. 318) 

Search, on the other hand, refers to the computational process usually associated with 

optimization.  It requires that the state spaces of behavior and structure be well defined.  

This would require that the variables which define these states be known as well as the 

functions that map one to the other.  Specific values of structure variables are sought, 

which map to a certain set of behavior variables.  Hale (1996) points out that since 

behavior variables may change during the process of conceptual design, some optimal 

solutions may become invalid.  Figure 1.10 shows Hales graphic depiction of this 

situation.  Hale proposes the use of solution "mesas", as shown in Figure 1.10, which 

provide a ranged set of solutions rather than single optimal solutions.  The "satisficing 

solution model", originally proposed by Simon (1969) is described by Hale as capable of 

providing a more robust solution, but remains primarily a search, rather than 

exploration, method. 

 

Figure 1.10.   An optimal model (after Hale, 1996). 

 

 

Figure 1.11.   A satisficing model using solution mesas (after Hale, 1996). 



43 

Gero describes search as "routine design".  By routine he means non-creative or non-

innovative design.  For example, the structural space of A-36 Schedule 40 steel pipe is 

well defined, as is the behavior space for compression loads on elements made with 

these sections.  It can be considered "routine design" to search for a pipe size which 

results in a certain stress and stability behavior under a given condition.  Exploration, on 

the other hand, might entail the expansion or contraction of the structure space to include 

other materials or other cross-sections.  Gero describes exploration as "non-routine 

design" (Gero, 1994, p. 318).  From this discussion it can be seen that search, and 

design methods that employ search techniques, are more applicable to later design 

phases where more decisions have been made, and more variables are set.  Likewise, 

exploration is more appropriate to early design phases where the design state spaces are 

still under formation and likely to change.  An IGDT is targeted for use in early design 

phases, and, therefore, has been developed to take advantage of exploration techniques. 

1.2.3.5 Emergence in Design 

Emergence is generally used to describe the order which a system or group of individuals 

can posses even though no single component or individual possesses this order.  It has 

been referred to as order out of chaos (Holland, 1975).  Commonly cited examples 

include ant colonies and the swarming of birds or insects (Johnson, 2004). 

 

Figure 1.12.   An example of emergence of form:  (a) The four black 'L' shaped polygons are explicitly 
depicted.  A white square is seen to emerge in the center of the figure.  (b) Axes of symmetry can be seen 
as emergent - shown by dashed lines.  (c) Rotational symmetry, shown by arrows, can also be seen as an 
emergent property.  (from Gero & Jun, 1995) 

Emergence, with respect to the relation of form to design, refers to the process of making 

implicit forms or shapes explicit.  It is often seen as a way to expand the design space by 

suggesting new forms.  In this sense it can be regarded as the opposite of fixation.  

Where fixation can result in a mental block, emergence can be a source of new 

conceptual directions.  John S. Gero and his associates of the Key Centre of Design 

Computing at the University of Sydney have also contributed to the concept of emergent 



44 

solutions found with the aid of GA's  (Gero, 1997) (Gero & Ding, 1997) (Gero & Jun, 

1995) (Jun & Gero, 1997). 

The concept of emergence as applied to design of form plays an important roll in 

creativity.  Designers often praise the value of sketching in developing new formal 

relationships.  This is the traditional way in which forms can emerge in conceptual 

design. 

Gordon (1961) describes several mechanisms for "making the familiar strange" as a way 

of stimulating creativity in problem solving.  It is difficult for new ideas to emerge as long 

as one remains fixated on one solution. 

There are two points concerning the emergence of ideas in design, and the visualization 

of those ideas which should be made. 

• Old ideas are replaced only by new ideas. 
• New, undeveloped ideas seldom replace older, well developed 

ideas. 
 

The first point means simply that there is a natural reluctance to cast off a solution, even 

if it is not a very good solution, if there is no better possibility in the offing.  It is so 

uncomfortable for a designer to be totally without a solution, that a poor solution will 

more likely be modified to work, rather than to be cast off leaving no replacement at 

hand.  Kuhn makes this same observation with regards to science in general. 

Once it has achieved the status of paradigm, a scientific theory is 
declared invalid only if an alternative candidate is available to take its 
place.  No process yet disclosed by the historical study of scientific 
development at all resembles the methodological stereotype of 
falsification by direct comparison with nature.  That remark does not 
mean that scientists do not reject scientific theories, or that experience 
and experiment are not essential to the process in which they do so.  But 
it does mean - what will ultimately be a central point - that the act of 
judgment that leads scientists to reject a previously accepted theory is 
always based upon more than a comparison of that theory with the 
world. The decision to reject one paradigm is always simultaneously the 
decision to accept another, and the judgment leading to that decision 
involves the comparison of both paradigms with nature and with each 
other.  (Kuhn, 1962 <1996 ed., p. 77>) 

Kuhn's observations of the way scientists treat paradigms, or schools of thought, can be 

applied directly to the way in which designers will treat a design.  One does not normally 



45 

consider a design solution independent of other possible or previous solutions.  This is an 

important concept applied in IGDT's, and lacking in typical design analysis programs.  

Because an IGDT offers several different solutions for the designer to compare and 

consider at any one time, it better allows for movement away from one solution toward 

another.  On the other hand, analysis programs which may point out short comings in a 

particular solution or offer only one alternative, make it very difficult for the designer to 

choose another way or abandon the single solution offered by the program.  As Kuhn 

stated, straight forward comparison with the facts of nature are not enough to allow 

change, an alternative has to be offered as well. 

 

Figure 1.13.   A Detail Instance of a Wood Truss (Schmitt, 1962). 

 

 

Figure 1.14. A More Ambiguous and Creatively Suggestive Line Drawing of a Truss with the Same 
Geometry as Figure 1.13. 

The second point is, that a new solution is more likely to emerge from a less developed 

representation of a design.  This is similar to the point made in Section 1.2.3.2., about 

too much knowledge too early in the design process which can stifle creativity, and limit 

the end solution.  Although solutions are necessary to allow further speculation and new 

ideas, needlessly over detailing of the solutions (too much knowledge) detracts from the 

understanding of the basic idea and hampers the emergence of new solutions.  For 

example, the detailed drawing in Figure 1.13 directs the interpretation to one specific 

instance, where as, the less distinct, more ambiguous line drawing in Figure 1.14 allows 

for several interpretations to emerge.  The level of graphic detail in Figure 1.14 is at a 

more appropriate knowledge level for early conceptual design. 



46 

1.2.3.6 Lateral Thinking in Design 

The term "lateral thinking" was coined by Edward de Bono in his book Lateral Thinking 

for Management: a handbook for creativity (de Bono, 1971).  In this book de Bono 

explains the difference between lateral thinking and the more traditional vertical thinking, 

and builds an argument for the application of lateral thinking in conceptual design.  De 

Bono defines vertical thinking as the traditional, logical, step-by-step approach to 

problem solving, where each step logically follows and builds on the preceding step, 

while expressing in and of itself a truth.  Also known as the Socratic Method, vertical 

thinking was described by Plato, and has been the primary means of problem solving 

since that time. 

De Bono does not argue the value or correctness of vertical thinking, but suggests that it 

is not always adequate, particularly when new or creative solutions are sought.  De Bono 

is very pragmatic in his approach to problem solving.  He is interested in arriving at a 

better solution.  How this is achieved, through logic or illogical methods, is not important.  

If a solution is truly better, it will always be possible to show, after the fact, how one might 

have found the solution using logical, vertical thinking alone.  But de Bono points out that 

first the new, creative solutions must be found, and that is where the application of lateral 

thinking can offer an advantage.  The reason that lateral thinking is able to find creative 

solutions where vertical thinking fails, lies in the patterning nature of the human brain, 

and how it structures information.  This patterning nature is trained by us to follow logical 

patterns, and will do so even if they do not lead to the best solutions.  It can be very 

difficult to break out of a pattern of thinking and find new paths to a solution.  This same 

phenomena is termed "fixation" in Gestalt theory, and is discussed in Section 1.2.3.3.  

Once started in a pattern, the mind will always favor continuing in the same pattern 

rather than changing over to a new pattern.  De Bono proposes with lateral thinking 

several techniques which can aid the designer in finding and following new patterns. 

Lateral thinking is concerned with change - with the escape from old 
ideas and the generation of new ones.  Lateral thinking involves two 
basic processes: 
 1. Escape 
 2. Provocation 
(de Bono, 1971, p. 47-48). 

An IGDT is particularly well suited to fulfill both of these criteria.  By generating new 

solutions with minimal directional bias from the designer, it provides an escape from the 



47 

designer's own preconceptions of possible solutions.  Also by offering multiple solutions 

with a significant difference, the IGDT is more provocative than tools which offer a single 

best solution.  These two points, defined so succinctly by de Bono, provide the key reason 

why an IGDT can function as a design aid and why traditional analysis tools cannot. 

1.3 Tools for Design 

This Section gives a broad overview of the types of design tools that have been developed 

and how they are applied.  The scope has not been limited to either computational tools 

or computer based tools.  Therefore, in this more inclusive dichotomy, design tools have 

been first divided into two categories: 

• Non-computational tools 
• Computational tools 
 

In looking particularly at the non-computational tools, it is interesting to notice that the 

goal of the tool is not so much to provide the solution, as to provide the stimulus that 

leads the user to discover the solution.  The IGDT is of course basically computational, 

but by including user selection, it is able to incorporate many of the aspects of the non-

computational tools which strive to stimulate the creativity of the user. 

1.3.1 Non-computational Design Tools 

Non-computational design tools means those aids to design that are primarily not 

mathematically based.  With current computational technology this might be understood 

as non-computer based, but this is not precisely what is meant.  Computers can be used 

as a medium for displaying graphic images which offer no particular difference or 

advantage to the same graphic images published in a book.  Although images may 

appear on a screen with the aid of sophisticated computational programming, they may 

otherwise remain basically non-computational, and be viewed and utilized in a basically 

non-computational way.  The significance of this distinction in the context of an IGDT is 

that this same delineation of computational and non-computational seems to separate 

conceptual or early design tools from detailed or later design development tools.  That is, 

traditionally most conceptual design tools are non-computational, where as most design 

development tools are computational.  An IGDT is in this sense unique as a 

computational, conceptual design tool. 



48 

1.3.1.1 Text Based Tools 

The most obvious text based tool is a book.  Books are traditionally used to store 

knowledge specific to a field.  The difficulty is having the right level of knowledge on the 

right topics available when needed.  The level of knowledge recorded in books typically 

tends to be at too high a level, or too detailed, for conceptual design.  This can lead to a 

knowledge overdose as described in Section 1.2.3.2. 

There are several word games that can be employed as operational mechanisms to 

enhance creative thinking.  Herbert Crovitz describes in Galton's Walk (1970), a 

relational-algorithm that can be used as a tool for exploring solutions to a variety of 

problems.  Crovitz uses for his tool Ogden's Basic English, which is a subset of the 

essential 850 words needed to describe most common situations.  With the premise that 

"action solves problems" (Crovitz, 1970, p. 96) Crovitz chooses the 42 words from 

Ogden's vocabulary which are able to make an elementary statement of action in the 

form "Take one thing ___ another thing".  From Ogden's list the only words that can 

possibly fill in the blank are: 

about at for of round to 
across because from off still under 
after before if on so up 
against between in opposite then when 
among but near or though where 
and by not out through while 
as down now over till with 

As examples of the technique, Crovitz uses the relational-algorithm to solve a series of 

problems proposed by Karl Duncker. 

Given a human being with an inoperable stomach tumor, and rays 
which destroy organic tissue at sufficient intensity, by what procedure can 
one free him of the tumor by these rays and at the same time avoid 
destroying the healthy tissue which surrounds it?  (Duncker, 1945, p. 1) 

Crovitz's relational-algorithm can only compare two things at a time, therefore, he 

regards first the possibilities of two rays and then the body and a ray. 

Take a ray about a ray. 
Take a ray across a ray. 
Take a ray after a ray. 
Take a ray against a ray. 
Take a ray among a ray. 
&c. 



49 

and for the case of the body and the ray: 

Take the body about a ray. 
Take the body across a ray. 
Take the body after a ray. 
Take the body against a ray. 
Take the body among a ray. 
&c. 

Crovitz is able in this case to show solutions in both sets.  "Take a ray across a ray" would 

represent a solution where individual rays were not of sufficient strength to destroy tissue, 

but when added by crossing would destroy the tissue at the point of intersection.  In the 

second set, "Take the body round the ray" could be interpreted as rotating the body about 

the tumor so that the focus of the ray would be that center. 

Crovitz's relational-algorithm can be an effective problem solving tool, but it is limited as 

a conceptual design tool to what can be expressed as action.  Many design 

considerations do not fall into this set: aesthetics, meaning, expression, etc.  Also, except 

for the possible imagery conveyed by words, it can suggest no form or space. 

William J. J. Gordon, the creator of Synectics, also employed word based tools as 

"operational mechanisms" to "make the familiar strange" (Gordon, 1961).  Gordon 

suggests that through the use of metaphor and punning, designers can expand their field 

of consideration by finding new combinations of words and phrases which, though they 

may initially seem irrelevant, can lend a new and profitable perspective to a problem. 

Neither logic as a system nor computer oriented "science" is capable of 
the reaches of metaphoric and analogic relevance which the creative 
imagination can develop in its search for forms.  (Gordon, 1961, p. 130) 

A. F. Osborn's Brainstorming techniques (Osborn, 1963) offer another well known 

example of the use of words to generate new ideas.  In Brainstorming, words or short 

phrases are generated spontaneously, and with deferred judgment, by a group of 

individuals.  The idea fragments, thus generated, are recorded for the group, and 

provide a sampling of solution spaces that can be used to suggest further consideration. 

Although an IGDT is unable to draw associations between its autogenerated design 

forms and meaning, it can be seen to operate with a similar effect as Osborn's 

brainstorming, using images rather than words.  The design forms generated by an IGDT 

do defer judgment until selection is performed on the population of solutions.  In this way 



50 

an IGDT, like brainstorming, fosters sampling of a wider portion of the solution space, 

and thus promotes exploration. 

1.3.1.2 Graphic Based Tools 

Many authors and designers have discussed the importance of sketching as a means of 

exploring potential concepts - (Broadbent, 1973), (Crowe & Laseau, 1984), (Antoniades, 

1990).  In her book, Drawing on the Right Side of the Brain, Edwards (1979) suggests 

that since drawing and creative thinking are both right brain hemisphere centered 

activities, they enhance one another.  She relates her observations of how speaking (a left 

brain activity) is disruptive to students trying to draw, whereas music (a right brain activity) 

is not.  Her premise is that since image processing and creative thinking are both taken 

to be right brain centered activities, they tend to be complimentary in a way that analytic 

analysis is not.  The neurologist and researcher, James Austin, backs up much of 

Edwards observation about brain activity.  He describes the respective activity of the two 

halves of the brain as follows: 

They do not behave as identical twins, nor is one the mirror image of the 
other.  The inconstant wind of creativity fans different coals on the two 
sides of the brain. ...  Our left cerebral hemisphere "thinks" in verbal, 
auditory terms, is good at translating symbols, including those of 
mathematics as well as language, and works best when analyzing a 
sequence of details. ...  In contrast our right hemisphere "thinks" in visual, 
nonverbal terms, particularly in terms involving complex spatial 
relationships, and specializes in three dimensional depth perception.  It 
also recognizes structural similarities, and works best in Gestalt: that is 
drawing conclusions based on a grasp of the total (visual) picture.  It will 
instantly recognize a friend's face in a crowd, or perceive that a large 
skeleton key will fit a keyhole that has only a certain size and shape.  
Being adept at incidental memorization and the more musically gifted of 
the two, it may also prompt us to hum a long forgotten tune in an 
evocative surrounding.  (Austin, 1978, p.138) 

Certainly many examples can be cited in the writing and sketching of great designers, 

that would bear out the importance of graphic input to the design process:  Le Corbusier 

(Corbusier, 1958), (Sekler & Curtis, 1978); Frank Lloyd Wright (Wright, 1943), (Storrer, 

1993); Alvar Aalto (Schildt, 1989). 

Architectural designers often browse collections of images as they 
design, and the designing frequently involves drawing, copying, tracing, 
transforming and incorporating reference forms.  Architects and design 
instructors encourage students to use visual references in developing 
design form.  (Do & Gross, 1995) 



51 

Graphic based design tools are more common in practice than other forms of design 

tools.  They cover a wide spectra, from the abstract generality of form types, to the 

specific case study.  Graphic diagrams can be used to represent both structure and 

behavior, and as Alexander points out, truly constructive diagrams form a bridge 

between the two. 

The constructive diagram can describe the context, and it can describe 
the form.  It offers us a way of probing the context, and a way of 
searching for form. (Alexander, 1967, p. 92) 

In other words, they can represent a function which maps one to the other.  In his method 

of decomposition, Alexander uses graphic diagrams to represent the subsets of the 

behavior space.  Guided by linkages provided by decomposition he seeks an 

arrangement of the diagrams which indicates a structure (form). 

 

Figure 1.15. Alexander's tree diagram representing the hierarchy of subsets comprising the behavior 
space.  (Alexander, 1967, p.151) 

 

In his book, Notes on the Synthesis of Form, he develops an example of the method 

applied to the design of a village.  Figure 1.15 shows Alexander's village represented 

with a tree diagram to represent the hierarchy of the subsets in the behavior space.  

Figure 1.16 shows the same village represented using graphic diagrams devised by 

Alexander which demonstrate a linkage between form and behavior. 

Where as Alexander's use of graphics is fairly abstract, other graphic design aids can be 

more literal or form oriented.  One aspect of the many Architectural magazines and 



52 

journals which are published, is to stimulate the designer with images which 

communicate an established vocabulary of form. 

 

 

 

Figure 1.16. Alexander's graphic diagram representing simultaneously behavior and structure.  
(Alexander, 1967, p.153) 

 

Associative connections are often generated by pictorial analogies, by a 
combination of images that belong to the observer's repertoire formed 
from personal experience.  When stimulated by an actual or imaginary 
picture, they interact mutually and eventually lead to unexpected, but in a 
queer sense, related concepts.  (Moro, 1996, p.24) 

 

Illustrations showing the scope of forms which belong to a certain class of structures, aid 

the designer in visually understanding the attributes that belong to that class.  Figure 

1.17 shows an example of forms appropriate to the class of shell structures that can be 

constructed using pneumatic formwork.  While no specific instance is intended, the 

designer can begin to recognize the range, as well as general class attributes, through 

comparison of the images. 



53 

 

Figure 1.17. Examples of the Range of Structural Shells Which Can Be Pneumatically Formed.  
(Sobek, 1987, p. 37). 

 

By simplifying the depiction of graphics, as in Figure 1.18, specific attributes can be 

made more apparent - in this case the stressed membrane form.  To convey information 

about other characteristics, for instance behavior under light, more detailed graphics are 

required.  While Figures 1.18 through 1.20 are all examples of the exact same structure, 

they indicate the range of information that can be conveyed with different graphic 

techniques. 



54 

 

Figure 1.18.   Institute for Lightweight Structures:  Concept Sketch. 

 

 

 

Figure 1.19.   Institute for Lightweight Structures: Architectural Plan Drawing (from 1993 restoration). 

 



55 

 

Figure 1.20.   Institute for Lightweight Structures: Aerial Photograph (IL photo archive). 

The limitation inherent with each of these graphic aids (with the possible exception of 

Alexander's which are intended to be generated by the designer as working tools) is that 

they tend to be static and non-interactive.  A collection of pneumatic forms may help 

educate the designer to the vocabulary of the type, but as a static image it can not be 

used very effectively to explore new forms that belong to that same type.  An IGDT 

combines the ability to display for the designer families of a structural type with the ability 

to explore with the designer new design spaces. 

1.3.1.3 Model Based Tools 

Physical models have long proven to be valuable design aids in exploring structural 

forms which meet certain behavior criteria.  A well known example is Antoni Gaudí's use 

of  funicular models to explore the structure of his masonry architecture.  Figure 1.21 

shows one of these models as reconstructed at the Institute for Lightweight Structures at 

Stuttgart University (Tomlow, 1989).  With such models Gaudí was able to find a 

mapping for a specific behavior (compression stress under gravity load) to a specific 

structure in the form of the model. 

Models, like those of Gaudí, that map behavior to structure are often called form finding 

models.  Another example would be a three dimensional soap film model.  Soap films 

can be used to find a minimum surface defined by a set of boundaries.  This surface not 



56 

only exhibits the behavior of economizing material, but also is characterized by a 

homogeneous, membrane stress state.  Figure 1.23 shows a soap film model which 

approximates the structure described in Figures 1.18 though 1.20. 

 

Figure 1.21. Reconstruction of Gaudí's funicular model of the church for Colonia Güell. 
(IL photo archive). 

Another form of a soap film model has been applied to the solution of two dimensional 

Steiner problems, i.e., to find the shortest network of links between a set of points in a 

plane.  Minimal net (or network) models can be used to explore routing or connection 

problems.  In 1965, a device was constructed at the Institute for Lightweight Structures (IL) 

in Stuttgart based on work there of the preceding year, to generate and record minimal 

nets using soap films.  Figure 1.22 shows an example of a minimal net generated with 

this device. 

 

Figure 1.22.   An example of a minimal net model based on a square grid. (Burkhardt, IL1, 1969) 

Architectural models are often used to study a variety of physical parameters such as 

lighting, color and texture effects, climate control, etc.  Dr. Alton J. DeLong, behavioral 



57 

scientist at the University of Tennessee, has used large scale, transformable, architectural 

models to dynamically model space in response to human social behavior criteria 

(DeLong, 1981).  De Long has shown that the dimension of time is governed by a scale 

factor in a similar way that other dimensional variables are scaled.  This accounts for the 

faster assimilation of information that is experienced in a scaled space. 

Physical models, because they invite participation on multiple sensory levels - visual, 

tactile, spatial, responsive, etc. - can be extremely good design exploration tools.  

Unfortunately, they tend to demand some skill in their creation and use, and a 

considerable investment of time to produce.  The same physical nature that makes them 

so vivid as design aids, also limits their application by demanding that they be physically 

built.  A major attraction to the virtual modeling of computers, is the ease and rapidity 

with which digital models can be altered.  This rapidity allows computer design tools like 

an IGDT to explore a much wider design space than could be afforded timewise with 

physical models. 

 

Figure 1.23.   Soap film model of the Institute for Lightweight Structures. (IL photo archive) 



58 

1.3.2 Computational Analysis versus Design 

In recent decades computer based tools have been developed for a variety of fields.  

Although originally applied to areas of computationally intensive analysis, with the ever 

increasing size and speed of processors, attempts have been made to develop design 

oriented applications as well.  In the fields of architecture and engineering, the 

requirements of design tools are somewhat different from those of analysis tools.  The 

analysis process can usually be executed in a regular, predetermined sequence of steps.  

The sequence may be iterative or have various paths based on the particulars of the 

problem, but there remains one "correct" path, using a chosen method to solve a stated 

problem.  For example, for a given structural member, with a given load, a particular 

analysis will yield one solution for the stresses at some point.  The analysis is composed 

of a sequence of prescribed steps which lead to the solution.  Each time the analysis 

procedure is executed it leads to the same result.  To the degree that different individuals 

or different machines show a discrepancy in their results, it is assumed that some error is 

present.  In fact, an analysis is usually verified by showing consistency with the results 

obtained in another way.  This, of course, is not to say that various approximate methods 

will not yield solutions with differing degrees of accuracy.  But the fundamental premise 

remains, that for a specific load state, there will exist one specific stress state. 

In contrast, the design process is not expected to consistently yield the same result.  

Although a designer may follow a sequence of steps, the steps are not self contained, but 

influenced by factors outside the process itself (the unique background of the designer, 

stimuli of the environment, Zeitgeist, etc.).  For a given design problem with a given set of 

parameters, it is certainly not expected that any two designers will come to the same 

solution.  One need only look at the results of any design competition to see the variety 

of solutions that can be proposed.  If a competition for a bridge or building resulted in 

every entry being identical, the competition would be considered a failure.  Design 

implies creative thinking, and creative thinking does not fit a predetermined set of serial 

steps. 

Another way to see this is with reference to the distinction between search and 

exploration made earlier in Section 1.2.3.4.  In this sense, analysis is a search process, 

while design is exploration.  Traditional analysis tools can only search one behavior 

space for a set of variables that will result in a desired structure.  But choosing or defining 



59 

the behavior space is part of design, and requires special attention in the development of 

design tools. 

With the advent of parallel processing it was supposed by some, that computers would 

be more capable in the area of design as compared with the earlier serial processing 

machines.  After all, being able to hold two ideas simultaneously is a prerequisite to 

using metaphors, and metaphors are closely linked to creative thinking (Gordon, 1961; 

Prince, 1970).  But, although parallel processing can shorten computing time, it has not 

had much impact on enhancing the design capabilities of computer tools.  Parallel 

processing alone does not automatically ensure a shift from search techniques to 

exploration techniques.  Or as de Bono might term it, design involves not so much 

parallel, vertical thinking as "lateral thinking"  

Vertical thinking uses information for its meaning.  Lateral thinking uses 
information for its effect in setting off new ideas.  Vertical thinking is 
analytical.  Lateral thinking is provocative.  Vertical thinking is interested 
in where an idea comes from: this is the backward use of information.  
Lateral thinking is interested in where an idea leads to: this is the forward 
use of information.  (de Bono, 1971, p.9) 

Even work in the area of artificial intelligence has difficulty in showing capabilities of 

lateral thinking.  For this reason computerized tools have found more success in the area 

of analysis, which is more easily described in a vertical procedure, than they have in 

design. 

1.3.2.1 Computational Analysis Tools Used for Design 

More powerful optimization programs might be capable of searching optimal geometries 

or even optimal topologies and optimal geometries.  But the focus of such tools is still on 

the analysis phase of design.  These tools analyze a given set of criteria to find one, 

single solution.  As tools, they obscure to the user alternate directions, i.e., alternate 

behavior state spaces.  Such tools tend to imply, with a final solution, an end to the 

search process.  Therefore, they cannot function effectively as idea generators, or be 

used to aid in the formulation of the concepts that direct their own optimization.  In fact, 

by offering the user a single solution, such tools tend to limit creative thinking on the part 

of the designer. 

In terms of conventional mathematical methods (e.g., Linear Programming), a solution to 

a problem is described in terms of one or more variables which are limited by 



60 

constraints.  The solution is optimized with respect to an objective.  For example, if the 

problem is to optimize the profile of a simple beam, the objective might be to minimize 

weight.  Variables could be the sectional geometry – perhaps width and depth.  The 

constraints might be stress levels in the material or deflections. 

If there is only one variable in the problem, simple calculus methods can be used to find 

maxima and minima bounded by the constraints.  If more variables are needed to 

describe the solution, methods such as Linear Programming would be needed.  Or if 

there are several objectives (one might want to minimize weight and maximize modal 

frequency) multi-objective or multi-criterion methods are needed.  In the latter case, a set 

of solutions can be found (a Pareto set), but usually the goal is still to find a single best. 

Another mathematical approach used in the optimization of continuum structures is the 

homogeneous method.  In this approach the design field is subdivided into a mesh of 

cells which can be varied in density depending on relative stress levels caused by 

loadings.  In different variations this is called Topology or Shape Optimization (Bendsøe 

& Kikuchi, 1993). 

 

Figure 1.25.   Two examples of topology optimization using CARAT.  Both examples depict a bridge pier 
with the same material and loading conditions.  In case 'a' the design space is restricted to the shaded 
area, while case 'b' is allowed to utilize the full rectangular envelope.  (Ramm et al., 1997, p.211) 



61 

An example of a program which takes advantage of this type of shape optimization is 

CARAT, developed at Stuttgart University, Institute for Structural Mechanics (Ramm et al., 

1997).  Figure 1.25 shows two examples of topology optimization using CARAT. 

Any of the above optimization methods can be very effective as an analysis tool, either 

for skeletal or continuum structures.  But for use in design exploration, they would 

generally require intervention on the part of the user (e.g., repeatedly altering some 

parameters – constraints or variables) in order to generate different solutions. 

In concept this is very different from the design orientation of the IGDT.  In focusing on 

one single solution, analysis tools only made visible a minimum of the solution space to 

the designer.  In offering the designer only one solution (or even many solutions, one at a 

time) the tendency is to limit consideration of alternate paths.  Rather than being aided, 

creativity tends to be stifled. 

Also, traditional methods are limited in the types of objective functions they can work 

with.  Linear Programming tends to imply linear objective functions, and functions are 

more easily differentiable if they are continuous.  Although there are programming 

methods which can deal with non-linear functions, and make discrete functions more 

workable, many of the designer's criteria do not lend themselves to numeric functions 

well at all.  This is particularly true in cases where seeing possible solutions helps to 

formulate the design parameters. In early exploration phases of design, this is often the 

case. 

Evolutionary Algorithms are of course also mathematical methods.  Although the 

methods using Genetic Algorithms are well suited for user interaction, most 

implementations to date have imitated traditional analysis programs in their execution.  

With no designer interaction and a goal of one 'best' solution, the same limitations 

ultimately restrict the effectiveness of genetic methods as other numerical methods.  

Several authors have in used Genetic Algorithms to optimize structural systems (Adeli, 

1993; Bouzy, 1995; Cai, 1995; Cheng, 1992; Coello Coello, 1994; Galante, 1996; 

Grierson, 1993; Hajela, 1995; Höfler, 1976; Koumousis, 1994; Leite, 1995; Louis, 

1995; Powell, 1993; Rajan, 1995; Rajeev, 1992; Ramasamy, 1996; Sugimoto, 1992; 

Wu, 1995; Xu, 1994; Yang, 1995; Zarubin, 1995).  In most cases they duplicate efforts 

already achieved by other mathematical methods.  In some cases the authors offer one 



62 

advantage or the other.  For example, GA's may be more suitable for optimizing non-

linear functions (Powell, 1993), or optimization using discrete sizes of members (Galante, 

1996).  But in most cases, GA's are still being used in the same way that other 

mathematical methods are used.  They are being used as analysis tools rather than 

design tools.  A notable exception is provided by Emanuel Slaby (2003). 

Another approach to consider which uses stochastic computation is the Multi-Objective 

Evolutionary Algorithms (MOEA) (Coello Coello, 2004).  These belong to the field of 

Evolutionary Multi-Objective Optimization (EMOO).  In concept a MOEA is fairly similar 

to the IGDT in that it seeks to find a 'good' solution to a complex problem.  Also, the 

Pareto set found using a MOEA is similar to the multiple 'good' solutions found by the 

IGDT.  But a MOEA requires explicit definitions of each of the objectives.  The IGDT on 

the other hand, has the flexibility to use either a single objective or either explicit or 

implicit multi-objectives.  The number of 'good' solutions returned by the IGDT is not 

limited by the number of objectives. 

A Vector Evaluated Genetic Algorithm (VEGA) is another form of EMOO.  First published 

by J. David Schaffer in 1984 (Schaffer, 1985) VEGA uses different sets of populations to 

find 'good' solutions to the different objectives, and then combines these solutions into 

one overall population that is acted on by the GA operators of mutation and crossover.  

This differs from the MOEA in that it is not finding Pareto solutions (good solutions to 

combinations of objectives) but seeks a good solution from a set of good performers to 

the individual objectives.  Since the IGDT works on all objectives at once, it is more likely 

to find the good Pareto solutions. 

1.3.2.2 Computer Aided Design (CAD) 

Computer Aided Design (CAD) programs have evolved a great deal from early days of 

computer assisted drafting.  In the current use of the tool, a CAD application is used to 

develop a virtual model of the designed structure.  Once an digital model of the structure 

is in place, it can be subjected to various pertinent analyses, commonly including some 

form of finite element structural behavior analysis.  Fully developed CAD packages 

generally include rendered visualization routines and software that can depict light and 

shadow effects.  Modeling, analysis and visualization software combine to give an 

effective and efficient basis for design.  John Abel, Professor of Structural Engineering at 



63 

Cornell University, describes CAD as providing the designer with control over elements of 

model creation, analysis and design within a computer environment (Abel, 1997).  CAD 

can then be used as an iterative design cycle in which the designer develops the virtual 

model of the structure through successive trials and modifications.  Figure 1.24 shows the 

schematic implementation of this concept. 

MODEL

ENGINEER

DESIGN ANALYZE

C
O
M
P
U
T
A
T
IO

N
A
L

E
N
V
IR
O
N
M
E
N
T

 

Figure 1.24.   Schematic of the structural CAD process and its components. (after Abel, 1997, p. 190) 

The Model, in Abel's CAD implementation, is an digital data base which includes a 

description of geometry, topology, material, properties, geometric properties, loads and 

support conditions, as well as other special quantifiable design attributes.  This is 

basically implemented currently in several commercial packages (to one degree or 

another) in the form of Building Information Models or BIM's.  These elements usually 

come in the form of parametric solids.  Although differences do exist between 

architectural models and structural analysis models (Johnson, 2004), attempts are being 

made to include structural information for purposes of analysis in BIMs. 

The Analysis component of a CAD package models the design as a discretized solid or 

mesh which can be analyzed by finite element methods.  The type of analysis can actually 

vary depending on the level of design detail, e.g., static, linear analysis may be adequate 

in initial design phases that may later require dynamic or non-linear final analysis.  The 

necessary material and geometric properties can then be supplied by the BIM elements 

described above.  Depending on the level of sophistication, the analysis phase may 

simply deliver structural behavior of the elements, or may include a form optimization. 



64 

The Design component of the cycle suggests changes to the CAD data base.  This may 

be accomplished by a rule based system such as an expert system, or changes resulting 

from optimization methods applied at the level of material, member shape, geometry or 

topology.  The information is made available to the design engineer in a way that 

supports his understanding of the choice options and consequences in a clear and timely 

fashion.  The computing environment used to accomplish this interaction is some form of 

graphic user interface (GUI). 

Führer's development of ExTraCAD (Führer, 1991) can be cited as an early example of 

this class of analysis aid.  ExTraCAD provides a comfortably graphic shell for a more 

traditional finite element analysis (FEA) program.  The CAD shell makes the logistics of 

using the FEA program easier and the output more readily understandable.  The original 

CAD model can be readily modified based on the FEA results.  But, conceptually the 

program remains analysis oriented, and as such tends to lead the designer strongly in 

one direction. 

Although CAD has been a boon with regards to design development, the exploratory 

aspect of conceptual design can actually suffer in a CAD environment if not carefully 

considered.  In a study made by Goel comparing the behavior of designers using 

MacDraw (a simple CAD program) with designers using paper and pencils, those 

working on machines tended more to take an initial idea and develop it throughout a 

session, whereas students working on paper were more likely to explore a series of 

different directions (Goel, 1992).  This implies that using a CAD program for conceptual 

design can actually have a restrictive effect on a designer's creativity. 

1.3.3 Computational Design Tools 

In this dissertation, the term "intelligent design tools" refers to design aids which are able 

to anticipate the designer's own preferences in the exploration of the design space.  Mihai 

Nadin refers to this as "Computational Design". 

The strength of the human being, as a creative entity, is in anticipating, 
not in reacting to the outside world and its natural changes.  
Computational design is by its nature anticipatory, proactive.  (Nadin, 
1997, p. 53) 

The ability "to anticipate" belongs to design in the way that "to react" belongs to analysis.  

In the development of design tools, this anticipatory nature is key.  Traditional design 



65 

tools anticipate some pre-programmed definition of good design, whereas intelligent 

design tools anticipate the designer's own concept of a specific design instance. 

What qualifies a design tool as intelligent is the ability to respond to implicit directives of 

the user.  That is, without explicit programming, the tool "understands" what is desired by 

the user, and is able to respond.  This is accomplished in an IGDT by the use of Genetic 

Algorithms coupled with user selection as described in Section 1.3.4. 

1.3.3.1 Development of Artificial Intelligence 

The ability of machines to interact intelligently with humans and creatively solve problems 

has been dreamed of and debated since before the advent of the modern computer.  

Alan Turing, outlined arguments in support of and against thinking machines in his essay 

published in 1950 in Mind, "Computing Machinery and Intelligence".  In the article he 

describes the Turing Test for intelligent behavior in the form of an "imitation game" 

played between a human interrogator, a human contender and a machine contender.  In 

short, the interrogator has the task to determine which of the two contenders is the 

human, and which is the machine, by asking a series of questions.  Turing's contention 

was, that if the interrogator is unable to distinguish accurately between the behavior of 

the machine and the behavior of the human, then the machine must be behaving like the 

human, viz. intelligently. 

 

 

Figure 1.26. The Turing Test:  the interrogator is given the task of determining which contender is 
machine and which is human.  (after Luger & Stubblefield, 1989) 



66 

This simple test has several advantages that has made it very attractive as a means of 

assessing the success of an AI program. 

• It gives a pragmatic and testable definition to intelligence, 
without entering a debate of what comprises intelligence. 

• It avoids any reference to the inner processes used by either 
human or machine contender. 

• It avoids any bias of physical attributes such as appearance, 
speech or actions and focuses on content of answers. 

 
Turing believed that, "the problem is mainly one of programming" (Turing, 1950), and 

even estimated the amount of knowledge needed, and the amount time it would required 

to code that knowledge: "...about sixty workers, working steadily through the fifty years 

might accomplish the job" (Turing, 1950).  Interestingly enough, those fifty years have 

now past, with a good deal more than sixty people engaged in AI programming, yet, 

except perhaps in a very limited sense, no machine has passed Turing's test. 

Turing himself pointed to an alternative to direct programming that has also attracted 

much research effort over the decades, but has likewise failed to produce a winning 

candidate for the Turing Test. 

Instead of trying to produce a program to simulate the adult mind, why 
not rather try to produce one which simulates the child's?  If this were 
then subjected to an appropriate course of education one would obtain 
the adult brain.  Presumably the child brain is something like a notebook 
as one buys it from the stationer's.  Rather little mechanism, and lots of 
blank sheets.  (Mechanism and writing are from our point of view almost 
synonymous.)  Our hope is that there is so little mechanism in the child 
brain that something like it can be easily programmed.  The amount of 
work in the education we can assume, as a first approximation, to be 
much the same as for the human child.  (Turing, 1950) 

What one can conclude from the decades of work that have gone into Turing's second 

suggestion, is that the mechanisms of the organic brain - even a child's brain - are 

deceptively simple, and that far from being analogous to a blank notebook, the brain 

seems to come preprogrammed with a surprising amount of information and rules that 

have yet to be understood by the adult mind. (Pinker, 1995) 

For several decades AI researchers followed Turing's direction, and tried to beat the 

"imitation game".  Rather than to define intelligence in other ways, the attempt was made 

to simulate intelligence by mimicking human behavior.  Two areas of human behavior 

that seemed most to exemplify intelligence were problem solving and related strategies in 



67 

game playing.  To that end, many programs were written that could play some strategy 

game or solve some type of problem as well as a human.  Early success of such imitation 

programs lead many to believe that further degrees of intelligence could be 

accomplished by simply more of the same, viz. larger programs that defined more rules 

and supplied increasing amounts of knowledge that applied to those rules.  This strategy 

is perhaps best expressed in the quest through the years to develop a machine that could 

better any human at the quintessential game of strategy, chess.  In the 1968 screenplay 

2001: A Space Odyssey by Stanley Kubrick and Arthur C. Clarke, the superior 

intelligence of HAL, the ships computer is indicated by a scene in which it easily beats 

one of the ships officers in a game of chess.  Roger Schank, AI researcher and expert in 

the field of natural language understanding, comments on the scene: 

The writers of 2001 made the same mistake that artificial intelligence (AI) 
researchers made about intelligent machines - a mistake that dates from 
the very beginning of AI research.  They assumed that an entity that 
engages in intelligent actions is, therefore, intelligent. ...  Early AI work 
relied on chess-playing programs as a kind of "quick hit."  Success was 
relatively easy, and all of a sudden computers seemed pretty smart.  The 
problem is that what early AI researchers took as evidence of being 
smart was illusory. 
(Schank, 1997, p. 174-175) 

With the successful out matching of world champion chess player Garri Kasparow by 

IBM's Deep Blue in 1997, the AI objective of a machine chess player better than any 

human chess player was realized.  Nonetheless, the AI goal of a machine capable of 

matching human intelligence seems today less plausible than it must have seemed to 

Turing's listeners in the 1950's. 

Dr. John R. Searle, Berkeley professor and specialist in the philosophy of the mind and 

language, argued in his 1980 paper "Minds, Brains and Programs" against Turing's 

notion of "strong AI" (Searle, 1980).  Searle develops an interesting analogy to AI 

programs in which a man, isolated in a room, follows a set of instructions which make it 

possible for him to answer questions in Chinese about a story, also in Chinese, by 

treating the Chinese glyphs strictly as symbols, that is, without any understanding of 

Chinese.  This, Searle states, is analogous to the AI computer program which is all 

"syntax but no semantics" (Searle, 1980).  No matter how much syntactical knowledge 

may be coded into a program, the program itself remains like the elaborate instructions 

given to the man in the isolation room.  Because no meaning is attached to the 



68 

instructions, even if the man in the room were to memorize the instructions, and even if 

the instructions were so well conceived that the man's answers in Chinese, to questions in 

Chinese, about the story in Chinese, were so flawless that any observer outside of the 

isolation room would have to assume that the man in the room must understand 

Chinese, despite all appearances, the man in the room would, indeed, have no 

understanding of Chinese at all.  And so, any expectations that the man in the room 

would ever be able to go beyond the programmed instructions to, for example, start 

conversing freely in Chinese on topics other than those covered by the programmed 

instructions, would be totally impossible since the man has no understanding of Chinese.  

Therefore, by Searle's analogy, one can not expect any AI program to ever attain some 

threshold level of knowledge, which would enable the system to continue to learn and 

function with meaningful intelligence.  Searle makes the following observation based on 

his analogy. 

...could something think, understand, and so on solely in virtue of being 
a computer with the right sort of program?  Could instantiating a 
program, the right program of course, by itself be sufficient condition of 
understanding?  ... the answer ... is no.  ... Because the formal symbol-
manipulations by themselves don't have any intentionality; they are quite 
meaningless; they aren't even symbol manipulations, since the symbols 
don't symbolize anything.  In the linguistic jargon, they have only a 
syntax but no semantics.  Such intentionality as computers appear to 
have is solely in the minds of those who program them and those who 
use them, those who send in the input and those who interpret the 
output.  (Searle, 1980, p.83) 

Many AI researchers today no longer hold the expectation of Turing and other early AI 

researchers, that a machine could be developed with intelligence indistinguishable from 

human intelligence.  Schank expresses the more recent view of many AI researchers as 

follows: 

Such machines will be local experts; that is, they will know a great deal 
about what they are supposed to know about and miserably little about 
anything else.  They might, for example, know how to teach a given skill, 
but they will not be able to create a poem or play chess.  They might be 
able to converse about the day's news to keep a user informed, but they 
won't know how to fly a rocketship.  Or, they might be able to fly a 
rocket ship but not be able to identify George Washington. ... Current 
efforts in AI are focused on producing just such devices.  It is unlikely that 
we will ever see a HAL.  Although this realization may be evidence of a 
dream abandoned, it may foreshadow the development of "real" artificial 
intelligence.   
(Schank, 1997, p. 189) 



69 

The IGDT can be seen as belonging to Schank's description of "'real' artificial 

intelligence".  It is conceived of as a tool to be an aid to and used by the designer.  But in 

is not seen as a replacement for the designer.  In the sections which follow some of the 

current AI techniques which have been applied specifically to the area of architectural 

engineering design are described. 

1.3.3.2 Expert Systems 

Expert systems have had a long development in the area of AI.  During that development 

some of the initial expectations have changed over the years.  Basically, expert systems 

all involve a quantity of knowledge in a specific domain coupled with some heuristic 

methods of accessing or applying that knowledge.  In summary, the development of 

expert systems over the years has been concentrated in two general approaches (Stipp, 

1995), (Brooks, 1989): 

• Knowledge-Based Systems (Top-down) 
• Learning-Based Systems  (Bottom-up) 
 

In the Knowledge-Based Systems approach, the knowledge is based in a series of rules 

which constitute a centralized resource for all decision making.  Any decision made 

comes from this centralized top down.  By contrast, in a Learning-Based System there are 

hierarchical layers of complexity which build from the bottom upward toward more 

complex systems.  Each layer adds additional meaning or complexity to the more basic 

layer below it.  The bottom then provides the most fundamental, functional intelligence 

for the system.  Researchers in both groups postulate (at least originally) that there is 

some threshold of programmed information that will allow a system to learn further on its 

own, thus enabling it to bootstrap its way to higher levels of creative intelligence.  As yet 

no one has achieved this threshold level of intelligence in either group. 

A major proponent of the knowledge-based approach is Douglas Lenat.  Since 1985 he 

has been attempting to develop a knowledge base of all essential human knowledge.  

Lenat hoped that his program, Cyc, would be able to attain a basic level of intelligence 

that would allow it to teach itself more complex concepts, and eventually be capable of 

spontaneously developing new theories or solutions which could span different areas of 

knowledge.  But despite some $25 million in funding from the US Nation Security 

Agency, this basic level of intelligence was not achieved.  Although Cyc can be used to 

solve specific problems, Lenat has not been able to get it to a level that might be 



70 

considered creatively intelligent.  Lenat's experience has been shared by many who have 

worked for years programming knowledge into expert systems.  The initial promise of 

expert systems was, that by gaining enough basic knowledge, the system would 

eventually be able to creatively solve problems internally.  This hope has not been 

fulfilled as expert and knowledge based systems remain limited by the specific knowledge 

and logic patterns for which they have been trained.  The initially irrelevant or illogical 

information which forms a bridge to creative solutions, stands as a wall which prevents 

the system from making the creative leap. 

In the learning-based approach to AI, the emphasis is on developing a system which can 

learn through sensory detection.  The AI Lab at MIT under the direction of Rodney Brooks 

is a leader in this area.  In this approach the emphasis is placed on defining knowledge 

collection mechanisms rather than specific instances of knowledge.  Rather than 

attempting to encode the intelligence of an adult with the goal to learn, this group 

attempts to encode the sensory information gathering ability of a baby which teaches 

itself by interacting with an environment.  The group at MIT has demonstrated some 

success with this approach in the form of robots that can move about and perform simple 

tasks like collecting coke cans (Kelly, 1995) or blow up land mines (Stipp, 1995).  Brooks 

tries to build in intelligence from the bottom-up.  By close coupling of sensors and 

actuators, the attempt is to replicate the brainless nervous system responses found in 

lower life forms.  When a sufficient number of low level responses are established, it is 

postulated that an emergent intelligence will appear. 

Simon likens this to the activity of an ant (Simon, 1969, <1996 ed., p. 52>).  Although, 

for example, the path it takes in foraging for food may appear to be rather complex, on 

closer analysis, it can be seen as a series of simple responses to conditions it encounters.  

The apparent complexity arises due to the environment, not the "program" which steers 

the ant. 

1.3.3.3 Shape Grammars 

Shape grammars are sets of rules which govern the arranging of shapes in space.  

Shapes can be either two dimensional Euclidean type geometric figures or more complex 

three dimensional solids.  In addition shape labels can define non-geometric attributes, 

such as color or line weight, which are used to impart further meaning for the shape, 



71 

e.g., usage, adjacency requirements, value, etc.  Shapes can also be defined using 

parametric variables.  The rules which form the grammar, are based on Boolean 

operations of union, intersection and difference coupled with logical statements of the 

form α → β, which implies if the shape α is found then replace it with the shape β.  

Rules can also include transformation operations of translation, rotation, reflection, scale 

or combinations there of.  Transformations can be applied to a shape, denoted by τ(s) or 

applied to a shape label, denoted by τ(p). 

RULE 1:

RULE 2:

SHAPE RULESINITIAL SHAPE

When this shape
is encountered...

Remove the dot, and
inscribe the initial shape rotated 45°

Remove the dot
is encountered...
When this shape

 

Figure 1.27. An example of a simple shape grammar derived from two rules.  The • indicates a shape 
label.  (Stiny, 1980, p. 348) 

 

Figure 1.28. Generation of a shape using the shape grammar shown in Figure 1.27. 
(Stiny, 1980, p. 348) 

A detailed description of the mechanics of shape grammars can be found in a series of 

articles by George Stiny, a major pioneer of the field of shape grammars and currently a 

Professor of Architecture at MIT.  Stiny's article in Environment and Planning B, 

"Introduction to Shape and Shape Grammars", defines much of the ground work for 

basic shape grammars (Stiny, 1980).  Figures 1.27 and 1.28 show an example of the 

definition and application of a shape grammar by Stiny. 



72 

SHAPE RULE 1INITIAL SHAPE SHAPE RULE 2

SHAPE GRAMMAR

RULE 1

RULE 1

RULE 1

RULE 2

RULE 2

RULE 2

is encountered...
When this shape

is encountered...
When this shape

remove the dot and overlay
inital shape rotated -90°

inital shape rotated +90°
remove the dot and abutt

Apply

Apply

Apply

Apply

Apply

Apply

DERIVATION  D

DERIVATION  C

DERIVATION  B

DERIVATION  A

Initial Shape

Resulting Shape

FOUR POSSIBLE DERIVATIONS

 

Figure 1.29. A nondeterministic shape grammar that allows a selection between two different rules to 
apply to a particular part of a design.  (after Knight, 1999a) 

Terry W. Knight, also in the Department of Architecture at MIT, has more recently added 

further definition to Stiny's basic shape grammar (Knight, 1999a; 1999b).  Knight 

delineates six categories of shape grammars, based on restrictions applied to the rule 

orderings. 

• basic grammar 
• nondeterministic (ND) basic grammar 
• sequential grammar 
• deterministic grammar 
• unrestricted grammar 
 

Basic grammars, like Stiny's version discussed above, are linearly ordered set of addition 

type rules: r1, r2, ... rn.  Basic grammars are deterministic, meaning that there is only one 

possible outcome to the application of the grammar from a given start configuration.  In 



73 

the nondeterministic form, the set of rules is only partially ordered.  This means that in 

some circumstances a choice between rules or their application can exist.  This choice 

makes possible various outcomes.  Figure 1.29 through Figure 1.31 show three 

examples of possible nondeterministic shape grammars.  In each case different end 

results, or derivations, can be reached depending on choices made at each juncture. 

SHAPE RULE 1

INITIAL SHAPE

THE SHAPE GRAMMAR

INITIAL SHAPE

DERIVATION  A

AFTER RULE 1 AFTER RULE 1 IS APPLIED
TO THE SELECTED SHAPEIS APPLIED

THE NEW SHAPE AFTER THE
APPLICATION OF THE SHAPE RULE

TO THE SELECTED SHAPE
AFTER RULE 1 IS APPLIEDINITIAL SHAPE AFTER RULE 1

IS APPLIED

DERIVATION  B

Initial Shape

Resulting Shape

 

Figure 1.30. A nondeterministic shape grammar that allows a selection between different parts  
of a design to apply one rule.  (after Knight, 1999a) 

 

Several researchers have successfully applied shape grammars in the exploration of 

variety of pattern based design problems.  Knight's work includes decorative furniture 

patterns (Knight, 1980), De Stijl paintings (Knight, 1989), and Greek pottery motifs 

(Knight 1986).  Stiny has produced grammars for Chinese lattice designs (Stiny, 1977), 

and with Mitchell, Mughul gardens (Stiny & Mitchell, 1980) and grammars that 

reproduce Palladian villas (Stiny & Mitchell, 1978).  Downing and Flemming have coded 

grammars which reproduce Bungalow style houses, while Koning and Eizenberg have 

successfully generated an array of Frank Lloyd Wright, prairie style houses (Koning & 

Eizenberg, 1981).  Figure 1.32 shows examples of some of these applications.  

Figures1.33 and 1.34 show in more detail the results of the Frank Lloyd Wright grammar 

from Koning and Eizenberg. 



74 

SHAPE RULE

INITIAL SHAPE

THE SHAPE GRAMMAR

DERIVATION  A

ONE OF THE POSSIBLE

AFTER RULE 1

AFTER TRANSFORMATION

IS APPLIED

AFTER TRANSFORMATION AFTER TRANSFORMATION

AFTER TRANSFORMATION

TRANSFORMATIONS

TRANSFORMATIONS

RULE

DERIVATION  B

DERIVATION  C

DERIVATION  D

R-1

T-1 T- 2

T- 4T- 3

R-1  +  T- 3

R-1  +  T- 4

R-1  +  T- 3

R-1  +  T- 4

R-1  +  T- 1

R-1  +  T- 2

FOUR POSSIBLE DERIVATIONS

(ONE OF THE FOUR)

Initial Shape

Resulting Shape

 

 

Figure 1.31. A nondeterministic shape grammar that allows a selection between different transformations 
under which one rule may apply to a particular part of a design.  (after Knight, 1999a) 



75 

 

Figure 1.32. Examples or solutions derived by shape grammars.  (a) Palladian villa plan by Stiny & 

Mitchell; (b) Mughul garden plan by Stiny & Mitchell; (c) Chinese lattice design by Stiny; (d) 
Hepplewhite-style chair by Knight 

 

Figure 1.34.   Perspective rendering of the "Stiny House" from Figure 1.33. 

 



76 

 

Figure 1.33. Three original designs generated by Koning and Eizenberg's shape grammar:  (a) bedroom 
level, (b) main floor level, (c) external form.  Further developed detailed plans: (d) bedroom 
floor plan, (e) main floor plan. 



77 

In observing the examples of shape grammar applications it is apparent the class of 

problems that is best suited for this method.  Although potentially any conceivable form 

can be seen as being built up from constituent shapes, in practicality, shape grammars 

can only be written for patterns that are recognizable and can be defined by rules.  And 

here in lies the value and the limitations of shape grammars as design tools.  They 

facilitate the articulation and consistent application of the designer's own grammar of 

design.  Koning and Eizenberg quote Wright himself as follows: 

Consistency in grammar is therefore the property - solely - of a well-
developed artist-architect.  Without that property of the artist-architect not 
much can be done about your abode as a work of Art.  Grammar is no 
property for the usual owner or the occupant of the house.  But the man 
who designs the house must, inevitably speak a consistent thought-
language in his design.  It properly may be and should be a language of 
his own if appropriate.  If he has no language, so no grammar, of his 
own, he must adopt one; he will speak some language or other whether 
he so chooses or not.  (Wright, 1954, pp. 182-183) 

Although shape grammars can be excellent tools for the exploration of a given 

vocabulary, they cannot of themselves offer a new language. 

1.3.3.4 Case-Based Design Aids (CBDA's) 

Case-Based Design Aids (CBDA's) have been applied to several design fields including 

architecture.  They provide a means of accessing information derived from previous 

cases with similar requirements.  Archie, developed at Georgia Institute of Technology is 

an example of a CBDA used to aid in the conceptual design of buildings.  It gives the 

designer access to documentation and evaluations of an inventory of existing design 

examples relevant to some current work.  "The goal is to capture and disseminate lessons 

learned from design experience, especially when those lessons are not easily 

incorporated into a field's theoretical framework, and when those lessons bear on the 

early stages of design." (Kolodner, 1996).  The intent is that by making knowledge about 

previous efforts with similar requirements easily accessible to designers at the early stages 

of design, fewer mistakes will be repeated and innovative efforts of earlier designers will 

be brought forward.  While this intent may well be achieved, it is not clear that this type 

of tool really furthers creative, innovative solutions.  As discussed in Section 1.2.3.2., the 

danger of an early infusion of knowledge into the design process is that creativity drops. 



78 

 

Figure 1.35. An Example Screen from Archie Showing Problem, Story and Response Windows.   
(Gross, 1994) 

 

1.3.3.5 Intelligent Paper 

Mark Gross has coined the term "Intelligent Paper" to describe the use of glyph 

recognition of freehand sketches to access collections of similar sketches, and provide 

associative links to a variety of other form defined data bases.  In the application, 

Cocktail Napkin, Gross uses the freehand sketches made by the designer on a special 

digitizing tablet to access such data bases as: The Great Buildings Collection (a CD-ROM 

of famous architecture); Archie II (described above); data bases of botanical forms; and 

the designer's own library of sketches.  Cocktail Napkin uses a ranking system based on 

element types (recognized glyphs), their numbers and their spatial relation to each other.  

Using this ranking system the various form data bases can then be searched for similar 

forms.  The intent is that seeing other similar forms can lead to analogous associations 

which may provide richer meaning or new considerations to emerge on the part of the 

designer. 



79 

 

Figure 1.36.   An Example Screen from the Cocktail Napkin Program.  (Gross, 1994) 

Cocktail Napkin itself does not generate any new forms but provides a useful search 

engine and designer friendly interface to the various data bases.  Again there is the 

danger mentioned above of early infusion of knowledge, and no possibility of 

encountering truly new forms not contained in the collective data bases. 

1.3.3.6 Autogenerated Forms 

Autogenerated Forms have been shown to be useful in stimulating designers.  Antonio 

Serrato-Combe has used randomly generated architectonic forms to help his students 

speculate on possible formal arrangements (Serrato-Combe, 1995).  The forms 

generated, although architectonic in nature, are not specific buildings and do not carry 

the degree of knowledge with them that is otherwise embedded in a specific design 

solution.  His form generator, instead, is more like a daydream machine.  The forms 

which it generates are abstract enough that they invite the designer to bring further 

interpretation and meaning to them before they can be seen as solutions.  The designer 

has some control in defining the type of forms generated: lines, arcs, rectangles, 3D 

boxes; but the compositions remain random in nature and uncontrollable.  Serrato-

Combe defines three approaches for implementing his form generators in the design 

process: 

1. The creation of 2-D images generated through random shapes 
2. The generation of 3-D images with random geometric solids 
3. The simulation of the transformation of complex architectural 

environments (e.g., housing clusters or townscapes) 
 

Figure 1.37 gives examples of the 2-D and 3-D images.  Whereas the method avoids the 

problem of an over infusion of knowledge in conceptual stages, it remains random and 



80 

uncontrollable.  The program offers no assistance in developing an idea or form further.  

Each generated form is totally a new trial, and not related to earlier trials.  Serrato-

Combe's form generator is not intended to develop a specific solution.  With the 

inefficiency of random trial-and-error that could not be expected.  What Serrato-Combe 

hopes to do instead is to stimulate the thinking of a designer sufficiently that the mind will 

be ripe for a Eureka experience. 

 

 

Figure 1.37.   Serrato-Combe's 2-D (left) and 3-D (right) Randomly Generated Imagery. 

 

 

1.3.3.7 Intelligent Evolutionary Systems 

Carrying the random generation of form a step further, some researchers have 

attempted to use evolutionary systems in guiding the generation of form toward some 

goal.  Two examples of this can be found in the work of Celestino Soddu and John 

Frazer.  Another more recent effort is shown by Emanuel Slaby (2003). 

Soddu has coined the word Argenìa to describe morphogenetic, generative, evolutionary 

design (Soddu, 1999, p. 18).  In his technique, he makes use of evolutionary algorithms 

and chaos theory to generate architecturally suggestive forms on the level of individual 

elements to the level of entire cities.  Figure 1.38 shows an example of an environment 

based on the characteristics of an Italian medieval town, that was generated by Soddu's 

program. 



81 

 

Figure 1.38.   Scenarios of a medieval Italian town, generated by Soddu's evolutionary program.  (Soddu, 
1999, p.21) 

We have designed, as a natural species, the DNA of a typical Italian 
town, the medieval town.  We have referred , for this experimentation, to 
the drawings of Giotto; and we have interpreted these drawings as an 
evolving idea of a town environment.  To obtain an acceptable 
complexity of the urban image we have simulated and ran the linear and 
not-linear dynamics of the evolution of this type of urban image.  We 
have proceeded in identifying and discovering again the rules of the 
game, the models of the transition between one order to another, the 
role of randomness in increasing complexity and the power of the time in 
shaping the environmental image.  (Soddu, 1999, p. 20) 

In using the software, the designer can adjust a series of variables which then guide the 

generation of solutions.  In this way, the program aids in the exploration of a defined 

design space by generating and displaying a series of designs found in that space.  By 

changing the initial parameters the designer can alter the design space and shift 

exploration into other directions. 



82 

Soddu has produced a series of similar programs, each encoding the "DNA" of a specific 

design type, ranging from furniture to architectural buildings, complete with interior 

spaces.  Most interesting perhaps, are results of the actual application of Soddu's design 

aid.  Figure 1.39 shows Soddu's entry in the architectural competition for an enlargement 

to the Prado Museum in Madrid.  Using the form generative program, Soddu found a 

design solution which he himself claims could not have been realized in any other way.  

For Soddu, the programming of the tool becomes the artistic expression.  (Soddu, lecture 

at the Symposium on Creative Evolutionary Systems, Edinburgh, 1999) 

 

Figure 1.39.   Design solution for the enlargement of the Prado Museum, realized with the aid of Soddu's 
form generating program. 

The second example of evolutionary architectural form is found in the work of John 

Frazer.  Starting with a coded architectural genotype, Frazer attempts to evolve 

phenotypic structures under the influence of a specific contextual environment. 



83 

 

Figure 1.40.   "Emergent forms under solar influence: Guy Westbrook, 1993.  An initial circular form 
(which considers all possible sun angles) is allowed to 'grow' with different constraints on its response to the 
movements of the sun.   (Frazer, 1995, p. 64) 

In order to achieve the evolutionary model it is necessary to define the 
following:  a genetic code-script, rules for the development of the code, 
mapping of the code to a virtual model, the nature of the environment 
for the development of the model and, most importantly, the criteria for 
selection. 

It is further recommended that the concept is process-driven; that is, by 
for-generating rules which consist not of components, but of processes.  
It is suggested that the system is hierarchical, with one process driving 
the next.  Similarly, complex forms and technologies should be evolved 
hierarchically from simple forms and technologies.  (Frazer, 1995, p. 65) 

In this process the roll of the designer is to specify the original "DNA" of the structure, as 

described by the five points in the first paragraph above quote from Frazer.  Afterwards 

this "seed" is to be sown in a specific (virtual) environmental context, where it is to grow 



84 

into a specific instance of a building type.  In Frazer's vision, libraries of seed types would 

be collected and perfected over time, enabling instances of design work to be produced 

even long after the death of the designer. 

Although based on many of the same concepts of genetic design as the IGDT, Frazer's 

concept is fundamentally non-interactive.  Once the initial "seed" is designed, all specific 

solutions to building types would ideally be generated without further human input.  Any 

creativity required in solving specific instances of a building type would have to be seen 

as coming out of the program itself.  On the other hand, in the concept of an IGDT, 

human interaction is expected at all levels, and the roll of the program is seen as 

stimulating the human designer to discover creative solutions. 

1.3.4 The IGDT Design Tool 

1.3.4.1 Genetic Design Aids 

In assisting with conceptual design, genetic methods, and in particular Genetic 

Algorithms (GA's), do have some potentially useful characteristics that other numerical 

methods lack. 

• Use of Populations 
• Recombination and Mutation 
• Wide Search of Domain 
• No Knowledge of the Fitness Function 
• Imitation of Human Design Process 
• Adaptable in Nature 
 

Use of Populations.  Fundamental to a GA is the use of populations of solutions rather 

than a single best solution.  This is more compatible with the way ideas are often 

generated and regarded in early design phases.  Multiple, simultaneous ideas are 

necessary for the dynamic movement of thought associated with creative design.  Ideas 

play against each other leading to further new ideas.  A designer is more likely to 

recognize an emergent solution by regarding a group of solutions together.  As was 

stated earlier, creative design is typically not a single-path, linear process, but a more 

complex, multi-path exploration of many possible ideas. 

Recombination and Mutation.  A GA uses recombination and mutation to generate 

new solutions to a problem.  This is very similar to design tools developed by William J. J. 

Gordon (Gordon, 1961) referred to in Section 1.3.1.1. and others, which attempt to 



85 

combine diverse aspects of different solutions to achieve a more successful design.  In a 

GA, multiple ideas, groups of possible solutions, are collected, compared, cross bred, 

and combined.  One of Gordan's techniques is to fragment and recombine words and 

phrases.  In Synectics one of the "operational mechanisms" suggested to promote creative 

thinking is to play with words and phrases and their meanings - as a way of making the 

familiar strange.  Gordon quotes Albert Einstein as saying that, "combinatory play seems 

to be the essential feature in productive thought." (Gordon, 1961, p. 41)  This "play" is 

similar to the mechanisms of random mutation and recombination used in genetic 

techniques. 

Wide Search of Domain.  Because a GA contains a certain potential to self mutate, it 

is constantly searching for different solution directions.  It is never completely satisfied in 

converging on an apparent best solution, but instead is always, to some extent, randomly 

probing the design domain for other usable solutions.  In reference to creative design, 

George Prince stresses the importance of free speculation as a means of enhancing 

creative thought. 

We believe that as the expert accumulates the specific knowledge that 
makes him so valuable he also incorporates the accepted certainties that 
are not really certain.  This explains why, historically, so many innovative 
breakthroughs have come from outsiders rather than from those who are 
thought to be most expert in the particular field.  (Prince, 1970) 

Using mechanisms of random mutation, GA's are able to retain a determinable degree 

of speculation.  In this way they can help even Prince's "expert" to consider new 

possibilities in the design domain. 

No Knowledge of the Fitness Function.  Just as biological systems (e.g., plants and 

animals) are entities separate from their environment, so is a GA separate from its fitness 

function.  Being separate means that the GA is programmatically independent from the 

fitness function.  The GA receives a fitness value (stimulus) from the fitness function, but 

does not require any information about how the fitness function calculates that value.  

Analogously, a biological system receives stimulus from the sun, but may have no 

knowledge of the nuclear fusion in the sun which produces the stimulus.  This is a 

fundamental distinction between GA's and traditional optimization methods based on 

Linear Programming which require explicit equations describing an objective function.  It 

is this feature of GA's which allows them to be controlled, without pre-programming, by 



86 

the designer.  The GA is steered by means of a fitness function, but the source of the 

fitness is not necessarily a coded program.  The GA can be guided by any means of 

evaluation, either coded, non-coded or a combination of both.  This is very important 

when considering some hard-to-program, qualitative design criteria such as aesthetics. 

Imitation of Human Design Process.  A GA learns in a way that is analogous to 

human learning modes.  It seeks a solution by considering many options.  Like the near 

random flow of ideas that a designer will sift through at the start of each project in search 

of usable concepts, a GA manipulates thousands of solutions, comparing, crossing, 

recombining, altering, sorting, keeping the best and always scanning the design space 

for better solutions.  The process is not always direct but it is always goal oriented.  It is 

also thinkable that the criteria may evolve as the project matures.  As the orienting fitness 

function changes, the GA automatically adapts and searches in the new direction. 

Adaptable in Nature.  Like the response of biological systems (e.g., plants or animals) 

to changes in their environment, a GA will respond to the stimulus produced by the 

fitness function.  Also like biological systems which adapt to changes in their 

environment, a GA will adapt to changes in the fitness function. As stated above, the 

fitness function is separate from the GA, and not necessarily coded (see "no knowledge of 

fitness function" in this Section).  Thus, the GA can be guided with criteria that even the 

designer might find difficult to express.  In so far as the designer is consistent in ranking 

the fitness of solutions, the GA will adapt to  the designer's preferences.  By considering 

the solutions proposed by the GA, the designer's preferences may undergo a 

development of their own.  The GA is also able to adapt to these changes in the 

designer's understanding without direct reprogramming. 

1.3.4.2 Definition of the IGDT Concept 

An Intelligent Genetic Design Tool (IGDT) is a tool that is able to dynamically adapt to 

evolving design criteria, through interaction with the designer, to aid in the exploration of 

a range of good solutions.  It is intended to assist the designer in the early, conceptual 

design phases by anticipating the designer's preferences, and generating a multiplicity of 

solutions which aid the designer in exploring the design solution space.  Although an 

IGDT uses optimization, it is distinguished from traditional optimization methods in its 

ability to adapt to non-programmed fitness criteria learned from user interaction.  An 



87 

IGDT is able to adapt using genetic operations based on population, recombination, 

mutation and selection.  Because the objectives of an IGDT are not explicitly pre-

programmed, an IGDT can be employed in earlier design phases than is possible with 

more common analysis tools, without the danger of causing design fixation (see Section 

1.2.2.2.) or prematurely restricting the design process.  Also, because an IGDT learns 

from interaction with the user, it is more easily approached by non-computer oriented 

users.  The concept of an IGDT is applicable to many fields involving design.  In 

explaining the concept of an IGDT, this dissertation uses architectural engineering 

examples focusing specifically on architectural truss design. 

Architectural design problems require solutions which consider a wider spectrum of 

parameters than is ordinarily covered by base functionality and cost.  To consider 

qualitative parameters like aesthetics or meaning, a design tool must remain flexible, and 

have the ability to adapt to criteria learned from the user.  Although in recent years 

several computer aided design tools have been developed, these tools find application 

primarily in the later design phases.  By offering single "optimized" solutions to the initial 

parameters used in early conceptual design phases, this type of tool can actually hinder 

the designer's creative exploration of the design space.  The temptation to the designer is 

to accept the direction offered by the optimization analysis without sufficient exploration 

of alternatives.  Simply having a complete solution presented may lead to design fixation 

where the presence of one idea tends to block other ideas from being considered (de 

Bono, 1971; Purcell & Gero, 1996). 

The concept of an IGDT is significantly different from traditional analysis and design 

programs in three ways. 

• Not Pre-programmed 
• Intelligent 
• Exploitative 
 

Not Pre-programmed means that the objective function or fitness criteria are 

determined or altered as the tool is being used by the designer.  In traditional 

optimization programs, both genetic based and more traditional numerical methods, the 

fitness, or objective function, is determined in advance, and the solution converges to a 

solution which optimizes these pre-programmed criteria.  In an IGDT the final design 

criteria are supplied by the user while the program is being used in the form of selection 



88 

or ranking of individual proposed solutions.  These fitness criteria in the form of ranking 

by the designer, are not pre-programmed.  For example the designer may have several 

qualitative criteria based on concepts of aesthetics, practicality of construction, limits of 

time, space, skill, and so on.  In a real application the designer may have many such 

criteria that overlap or even conflict.  The designer may not even be able to completely 

verbalize such criteria in words let alone computer code.  Nevertheless, in so far as the 

designer is consistent with the selection or ranking of individual solutions based on this 

personal criteria, the IGDT will function as a useful tool. 

Intelligent means that an IGDT both learns from the designer, and anticipates the 

designer's direction in the exploration of design spaces.  This allows an IGDT to make 

intelligent, rather than simple random, proposals back to the designer.  The criteria used 

particularly in early design phases are dynamic.  An IGDT allows for the adaptation of 

the design criteria as well as the design results.  An IGDT is able to adapt by following 

implicit criteria learned from the selections made by the designer.  It adapts dynamically 

to the designer's direction, even as that direction may be evolving over the course of a 

session.  This ability to adapt to changing criteria within a session is absolutely necessary 

for a design tool.  It is one of the characteristics which distinguishes design from analysis.  

By providing the designer with a variety of different solutions, the IGDT stimulates the 

designer's creativity.  On the other hand an analysis tool can only answer questions put 

to it by the designer.  Analysis tools, with the possible exception of Pareto analysis, 

usually imply a single correct or 'best' solution. (see Section 1.3.2.1.).  Since the guiding 

criteria of an IGDT are learned through interaction with the designer, the IGDT can 

adapt to these evolving criteria without forcing the designer in a pre-determined 

direction. 

Exploitative means that an IGDT not only searches a single design space for an 

optimal solution, but by allowing the design criteria to be altered, an IGDT can be used 

to explore variations of the problem criteria (alternate design spaces) for solutions that 

better satisfy the goals.  Traditional methods with pre-defined objective functions have as 

a goal the discovery of the single 'optimal' solution.  An IGDT seeks populations of good 

solutions with a significant degree of difference.  The concept of an IGDT is not only to 

search for the best solutions defined in one design space, but to explore different possible 

design spaces in a way that is helpful and stimulating to the designer.  It offers both 



89 

solutions that tend in the direction of the designer's criteria, as well as solutions that 

explore new directions defined by alterations to the criteria.  In this way the IGDT is 

intelligent in that it is able to offer possibly good solutions in a direction that may not 

have been previously foreseen.  The designer interacting with the IGDT may recognize 

some such new directions as having potential, and through selection of these solutions 

allow the IGDT to explore the new design space further.  In this way a dialogue exists 

between the IGDT and the designer in which both share in the exploration of solutions. 

1.3.4.3 Relation of an IGDT to the Design Process 

The conceptual design process is iterative and usually contains a certain amount of 

wandering. (see Section 1.1.2.2.)  The path toward the final solution is not always direct 

nor constantly progressive.  Tools which are highly directive, which seek a single best 

solution, can actually hinder design by narrowing the scope of consideration too early in 

the process, before sufficient possibilities have been explored.  People who teach design 

are very familiar with the tendency students have to latch onto a solution to the extent of 

refusing to justly consider other possibilities.  In the field of psychology this it called 

fixation or being fixated on a solution.  A tool which offers a single 'best' solution runs the 

danger of causing fixation, and thus setting up a mental block which actually hinders the 

designer from considering other solutions.  For this reason, tools which may be excellent 

analysis aids, may be very poor design aids. 

An IGDT is intended to be compatible with the design process.  It allows a certain 

amount of wandering in exploring different design spaces.  It acts as a tool in the hand 

of the designer.  It follows the designer's direction, and responds to the designer's 

evolving criteria.  It is also an intelligent tool in that it is able to autogenerate populations 

of solutions which are adapted to the designer's own preferences.  In this process the 

designer enters into a dialog with the tool.  The IGDT generates reasonable proposals, 

and the designer critiques the proposals in the form of selections, alterations or further 

proposals.  Through this interaction the IGDT is able to adapt to the designer's 

preferences, and thus generates further new proposals in the direction of the designer's 

own interest.  In addition the IGDT searches for other reasonable solutions and includes 

them in the next round of proposals. 



90 

This pattern is similar to the way two designers interact in exploring options for a design.  

There is a certain amount of trading of ideas, as well as a certain amount of individual 

suggestion.  The suggestions from the one may trigger new ideas and suggestions from 

the other.  Well known techniques, such as Osborn's brainstorming (Osborn, 1963) and 

speech manipulation or Gordon's synectics (Gordon, 1961), are attempts to generate 

new and creative solutions to a problem.  An IGDT fulfills this same roll as an idea 

generator.  The genetic operators of recombination and mutation help to explore design 

spaces by generating new solutions that respond to the preferences of the designer.  

Because an IGDT always works with a population of solutions, there is less danger of 

fixation on a premature solution.  An IGDT tends to be expansive rather than constrictive 

in the design process. 

Genetic Algorithms (GA's) are used as the basis for the IGDT because they are 

conceptually very close in operation to the way many designers work.  GA's generate a 

population of individuals in the way that designers create a pool of ideas from which to 

draw.  GA's operate on this population by recombining parts of different individuals or 

altering existing individuals though mutation.  Designers, too, combine good aspects of 

various ideas and alter old ideas to fit new situations.  GA's explore a multiplicity of 

design spaces by random sampling, even as the scope narrows toward solutions best 

meeting the fitness criteria.  Designers behave similarly by exploring several options, and 

by being ever open to new directions for a solution.  Also, because a GA has no 

programmed knowledge of the fitness function, the fitness of the individual solutions can 

be determined by the designer using qualitative criteria.  By not requiring the design 

criteria to be numerically expressed or directly programmed, the IGDT remains flexible 

and responsive to changes dictated by the designer. 

For most Architectural applications an image of the design is essential to the decision 

making process (Serrato-Combe, 1995; Gross, 1994).  In this dissertation the IGDT is 

demonstrated using trussed structural systems as examples.  The concept presented, 

however, is not limited to trusses, or even structural systems as is discussed in Section 

4.2.1.  But, as in any design application, using graphic images in communicating with 

the designer is important.  Work by many authors has shown that activities which involve 

creative thinking take place primarily in the right hemisphere of the brain (see Section 

1.3.1.2.).  Processing visual images is also primarily right hemisphere centered.  On the 



91 

other hand, analytic activities, such as language or numeric thinking, are primarily left 

brain centered.  Since it is generally accepted that creative problem solving is more likely 

to be stimulated by right brain activities, using graphic images to communicate as much 

of the design information as possible enhances the effectiveness of the IGDT. 

In Section 3. examples are give of an IGDT applied to truss design.  In these examples 

the IGDT submits, for the designer's review, images of possible solutions that the user can 

view, compare, and alter to make new solutions.  Being able to view and manipulate the 

images is essential for the designer's understanding, and allows the designer to make 

reasonable comparisons and alternate proposals.  In addition the images are stored and 

can be recalled by the designer at any time as a reference, or to resubmit in some form 

to the IGDT. 

1.3.4.4 Outline of an IGDT 

Although a complete description of an IGDT is given in Section 2., a brief outline of the 

overall procedure is given here.  The operation of the IGDT is iterative and can continue 

as long as the designer finds it productive.  Like any dialog, it will reach a point of 

stability were so little new ground is being covered that continuing beyond that point is 

likely to be fruitless.  Because the IGDT interacts 'intelligently' with the designer, later 

sessions can offer different proposals since the designer's own understanding of the 

criteria will evolve over time.  Therefore, more complex problems may benefit from 

multiple sessions spaced a few days apart.  Inside of one session the activity can be 

outlined as follows: 

• Problem Definition 
• IGDT Proposals 
• Designer Interaction 
• IGDT Response 
• Iteration of Previous Two Steps... 
 

Illustrated examples of the entire process are given in Section 2. 

Problem Definition.  The user initially sets constant design parameters which are used 

by the IGDT at the start of a session.  This step is described in detail in Sections 3.1.1. 

and 3.1.2.  Constant criteria can include material constants and properties; topology 

constants such as symmetry; geometry constants such as support positions or required 

load points; required load cases and load combinations; and output specifications. 



92 

IGDT Proposals.  In the first iteration, the IGDT generates an initial trial set of solutions.  

These represent either different topologies and/or significantly different geometries.  In 

subsequent iterations, the IGDT develops and proposes new individuals based on the 

interaction with the designer.  The proposals reflect some optimization based on the 

constant criteria set by the user, but are ultimately guided by the direct interaction with 

the designer.  This step is further described in Section 2.1.3. 

Designer Interaction.  Presented with a pallet of proposals from the IGDT, the 

designer begins the iterative dialog which allows the IGDT to adapt the tendencies and 

preferences of the individual designer-user on the specific project being investigated.  The 

designer precedes by selecting best/worst proposals; modifying some proposals as 

desired; or creating entirely new proposals.  The designer may also alter the initial design 

criteria from the initial problem definition.  This step is further described in Section 2.1.3. 

IGDT Response.  Using the designer input, the IGDT searches for a new set of 

proposals using genetic operations of mutation and recombination.  Again the proposals 

represent either different topologies and/or significantly different geometries.  But unlike 

the initial proposals made by the IGDT, all subsequent iterations of proposals are derived 

from, or influenced by, the interaction with the designer.  This step is further described in 

Section 2.1.3. 

As the exchange between IGDT and designer continues, the IGDT adapts to the 

designer's preferences, whatever those preferences may be based on.  The designer is 

also learning as the range of possible solutions is explored.  As new sets of proposals are 

presented, the images will suggest new considerations and concepts to the designer.  In 

the course of a session, it is expected that the thinking and considerations made by the 

designer in responding to the IGDT will undergo a development of their own.  This is 

precisely why GA's work so well in the IGDT.  Since GA's do not require any knowledge 

as to how the selection decisions are made, they are free to follow whatever direction is 

indicated by the designer.  As a result the path toward the solution will not be direct.  Old 

solutions may from time to time resurface under changing criteria.  This is not important.  

What is important is that the design space be thoroughly explored and made apparent to 

the designer.  The success of the IGDT depends more on a thorough exploration than on 

an ultimate 'best' solution. 



 

 

93 

2 The Intelligent Genetic Design Tool 

2.1 Constructing Genetic Tools 

The Genetic Algorithms (GAs) used in the building of an Intelligent Genetic Design Tool 

(IGDT) belong to a class of stochastic numerical methods generally called Evolutionary 

Computation (EC) or sometimes also called Evolutionary Algorithms (EAs).  EC 

paradigms have been developed by different researchers starting in the late 1950's and 

early 1960's (Mitchell, 1996. p. 2).  With regards to the IGDT it is useful to recognize 

three categories of EC.  The IGDT draws from each of these three groups in its structure. 

• Genetic Algorithms (GAs) 
  Genetic Programming (GP) 
  Classifier Systems (CFSs) 
• Evolution Strategies (ESs) 
  Evolutionary Programming (EP) 
• Interactive Evolutionary Computation (IEC) 
 

Genetic Programming and Classifier Systems are actually subdivisions of GAs.  Also, 

Evolution Strategies and Evolutionary Programming are very similar.  All EC paradigms 

draw in some way upon an analogy to evolutionary genetics with distinctions between 

groups having in some instances more to do with the history of their isolated 

development than any major conceptual differences.  For an overview of methodology 

and techniques used in EC, as well as a survey of analogous processes in biological 

genetics, the reader is referred to a report prepared for the Institute for Lightweight 

Structures and Conceptual Design (ILEK) at the University of Stuttgart (v. Bülow, 2007). 

2.1.1 Design Objectives 

In the survey of design tools presented in Section 1.3, a variety of objectives, as well as 

tools developed for those objectives, were presented.  In the following sections, the 

objectives specific to the Intelligent Genetic Design Tool (IGDT) are outlined. 

2.1.1.1 Quantitative Objectives 

For the IGDT to be useful as a means of exploring structural form, it must be able to 

assess and rank, quantitative parameters of any form it might evolve.  These parameters 

define the fitness function for the GA.  In the examples presented in this dissertation, 



 

 

94 

parameters of weight (material efficiency) and complexity of form (geometric efficiency) 

have been used.  Although it is possible to include singularly or collectively any number 

of parameters, care is recommended, as the consideration of too many parameters tends 

to obscure the meaning of the resulting solution. 

It is, of course, possible for the IGDT to run using solely predetermined parameters to 

guide it in exploring the design space.  Even in this mode, the IGDT is more exploratory 

as a design tool than traditional optimization methods, because it continually presents 

populations which represent a range of good solutions rather than one instance of an 

'optimal' solution.  In addition, the 'auto-pilot' mode makes it possible to sometimes reach 

deeper into the solution space in a shorter amount of time.  For example, the program 

can be set to run unattended through a few hundred topology generations allowing the 

designer to view a larger variety of solutions.  In the graphic output from the automatic 

mode can be filtered to remove any duplicate solutions and show only solutions that pass 

a given fitness level (the better solutions).  In this way it is possible to control the amount 

of output and make it easier to see the dominant patterns.  It is then possible to proceed 

from any point reached in the automatic mode by continuing in the interactive mode. 

The goal in the automatic mode is to discover as many good solutions to the 

predetermined quantitative parameters as possible.  In this way the user's creative 

understanding of the solution space is expanded. 

2.1.1.2 Qualitative Objectives 

It is a unique feature of the IGDT, that it is able to accommodate qualitative objectives as 

well as traditional quantitative objectives.  Qualitative objectives are parameters that are 

recognizable by the designer, but do not lend themselves readily to quantifiable 

definition.  These include parameters such as aesthetic value, meaning, analogous form, 

etc.  It is characteristic of qualitative values, that they are readily ranked by comparison 

within a group of examples, but present difficulties for most people to describe 

independently.  For example, given a set of images, it is not necessarily a difficult task to 

choose the most aesthetically pleasing one.  But, to describe precisely why the choice was 

made, in a way that defines a consistent rule that can be applied to all future choices, is 

quite a different task. 



 

 

95 

Guided by qualitative objectives the user makes interactive choices which provide the 

ranking of the structures found by the IGDT.  In this way the IGDT can be guided by the 

user's own creative curiosity and instinct in exploring the solution space. 

Considering the qualitative objectives together with the quantitative objectives, the IGDT 

can be considered a multi-objective search tool.  Multi-Objective Evolutionary Algorithms 

(MOEA) have been used in a variety of applications including engineering optimization 

(Coello Coello, 2004).  In recent years several approaches to MOEA architecture have 

been put forward (Mehr & Azarm, 2003) which are generally distinguished in the 

treatment of the fitness function or the population composition and selection algorithms.  

The IGDT can be considered an implicit multi-objective search tool when guided by the 

designer's non-coded selection criteria, but it is not explicitly coded to find Pareto non-

dominated solutions (a Pareto set). 

2.1.2 Encoding Techniques 

The search and exploration engine used in the IGDT has been patterned after the CHC 

Genetic Algorithm, developed by Larry J. Eshelman and J. D. Schaffer of Philips 

Laboratories (Eshelman, 1991).  CHC represents one of the more recent directions in GA 

development.  It combines a highly disruptive recombination operator, which allows for 

thorough exploration, with an elitist selection operator for good convergence velocity.  

CHC is successful with small populations (ca. 50).  In addition, it makes use of a 

breeding filter that allows only the fraction of the parent population which promises more 

productive pairings to produce children.  This makes the process of breeding more 

efficient.  These operators combine to give the CHC good exploration qualities, and a 

high rate of convergence.  In the IGDT, good exploration qualities are desirable to 

provide the designer with a broad view of the solution space.  Also, for the process to 

function interactively, speed is needed in finding good solutions.  Since the CHC offers 

advantages in thorough exploration and rapid convergence, it was chosen as the basis 

for the IGDT. 

The CHC-GA can be seen as running in two, nested cycles.  The inner cycle uses an 

elitist GA with half uniform crossover.  The outer cycle begins with a population of 

mutated individuals based on the best result of the previous cycle.  Figure 2.1. shows a 



 

 

96 

diagram of the CHC outer cycle (labeled cycle).  The inner cycle is contained in the "run 

GA" circle. 

 

Figure 2.1.   The nested cycles of the CHC-GA. 

The outer cycle runs a GA a series of times.  The very first cycle generally begins with a 

randomly generated population of parents.  The GA is run until the population 

converges.  At the end of each GA run, the best individual is selected, and mutated 

repeatedly to form a new restart population.  In contrast to traditional GAs, the CHC 

does not make use of mutation during the breeding cycle.  Instead, mutation is applied 

only during the restart phase.  During restart, the best individual from the converged GA 

is mutated by randomly flipping a percentage (ca. 35%) of the binary bits in the string.  

The mutation process is repeated until the new population is filled.  One copy of the 

unmutated source individual is retained in the next cycle as well.  The CHC cycle is 

terminated after a chosen number of restarts are made without improvement to the best 

individual. 

There are advantages in both thoroughness of search as well as computational efficiency 

which are realized by the cyclic CHC structure.  Because the GA used by the CHC 

incorporates highly disruptive recombination, mutation is ineffective (actually unneeded) 

in providing diversity to the breeding population.  By positioning mutation as a 

concentrated event at the start of the CHC cycle, new areas of the search space are more 

likely to be encountered, and exploited by the ensuing GA portion of the cycle. 

Also the cyclic CHC structure provides a mechanism for tailoring the search to the degree 

of difficulty present in a particular problem.  In easy problems where the optimum 



 

 

97 

solution is rapidly found in the first few cycles, the CHC will terminate after a few cycles 

without improvement.  In more difficult problems, the cycles will continue to show 

improvement, and the CHC will continue to explore new areas of the search space by 

repeated restarts, until a good solution is found.  In this way the CHC adjusts the run time 

to the degree of difficulty of a given problem. 

The GA used in the CHC is nontraditional in several aspects.  Most significant is the 

highly disruptive recombination operator, half uniform crossover (HUX), which is used.  

Uniform crossover, as developed by Syswerda (1989).  CHC amplifies the disruptiveness 

further by providing a filter which allows only parents whose Hamming distance is above 

a certain threshold to breed.  The Hamming distance is a direct 

 

Figure 2.2.   Graphic depiction of the CHC-GA. 

measurement of the number of differing bit positions of two binary strings.  The 

difference threshold is set so that only the more different (larger Hamming distance) 

fraction of the parent population is bred.  By promoting the recombination of more 

different individuals, better exploration is insured.  By discouraging the recombination of 



 

 

98 

more similar individuals, convergence is retarded by slowing the takeover rate of a group 

of similar, better performing individuals.  At the same time, because only some fraction of 

the entire parent population is actually breeding, the amount of calculation needed for 

the generation, analysis and sorting of the resulting smaller child population, is less.  

Eshelman refers to this filtering mechanism as "avoiding incest" (Eshelman, 1991, p. 

273).  The difference threshold is initially set at one forth of the binary string length (L/4), 

which is half the expected Hamming distance of two randomly generated strings.  As the 

population begins to converge the difference threshold is decremented each time a 

generation occurs which produces no children.  In this way breeding is maintained only 

amongst the most differing individuals in the population at any given time. 

The recombination operator HUX is a form of uniform crossover in which one half of the 

differing bits are exchanged between two parents.  This insures a high level of disruption.  

The resulting two children are both added to the new population along with the two 

parents, and all subsequently undergo an elitist 'survival' selection (Eshelman, 1991, p. 

266).  This type of selection, although not typical for GAs, is actually the same as that 

used by (µ+λ)-ES (Bäck et al., 1992).  During selection, the parent and child generations 

are combined, and the best individuals are selected to fill the next generation.  The 

process is strictly elitist.  In addition one copy of the best individual is always maintained 

in the restart population. 

2.1.2.1 Describing Topology 

Topology is typically described in Finite Element Analysis methods by an incidence matrix 

which records the connectivity of the elements to the nodes.  This matrix can be binary in 

nature: 1's representing a connectivity between nodes and 0's representing no 

connectivity.  As shown in Figure 2.3., the upper triangle is sufficient to completely 

describe the topology. 

The IGDT converts the upper triangle of the square incidence matrix to a vector array.  

Although, it is in fact not a true binary string, as in contains integers used to tag the 

elements, it can be treated in the same manner as a binary string where all of the 

integers are regarded as 1's.  In this way, GA style crossover methods can then be used.  

A more detailed description of topology encoding and breeding in the IGDT is given in 

Section 2.2.2. 



 

 

99 

a.  

0 0 1 0 0 1

0 0 1 0 1

0 0 1 1

0 1 1

0 1

0

























  b.  

0 0 1 0 0 2

0 0 3 0 4

0 0 5 6

0 7 8

0 9

0

























 

c.  [ ]0 1 0 0 1 0 1 0 1 0 1 1 1 1 1  

Figure 2.3. The incidence matrix from the example truss of Figure 2.4.   a. illustrates the on/off binary 
nature of the incidence.   b. shows how the IGDT uses the same matrix to record a tag to the 
member.   c. shows the vectorized version of the upper triangle for use in GA breeding. 

Since different topologies can have different numbers of joints, the size of the incidence 

matrix, and so the chromosome length, will vary.  This is a different situation from the 

geometry chromosomes which are all the same length.  Goldberg proposed an approach 

to breeding chromosomes with variable length in his "messy Genetic Algorithm", the mGA 

(Goldberg, 1989b; 1990).  The IGDT is similar to the mGA, but does not use over and 

under specification.  One-point cut and splice crossover is used as described in Section 

2.1.2.3. 

2.1.2.2 Describing the Geometry 

Whereas topology describes the pattern of connectivity between nodes, the geometry of a 

structure includes additional spatial information which describes specific locations of each 

node.  A geometry is thus an instantiation of a topology.  Or in genetic terms, geometry 

is the phenotype of the genotype topology.  In the case of trusses, the topology 

information recorded in the incidence matrix, is supplemented by the vertex matrix, giving 

node coordinates, to describe a geometry.  Further descriptions of member geometries 

(cross sections or other properties) are contained in additional matrices referenced to the 

members.  In some problems of a more restricted nature, it may be necessary to limit the 

range of solutions to geometries based on a single topology.  This is with the IGDT of 

course possible, although the more creatively stimulating explorations usually allow 

different topologies to be regarded as well. 

In order to make use of Evolutionary Computing it is necessary to be able to encode the 

geometry in the form of a 'genetic chromosome'.  For a Genetic Algorithm (GA) this 

record generally takes the form of a binary string.  The crossover methods employed by 

GAs usually rely on this binary coding of the chromosomes.  However, due to the spatial 



 

 

100 

nature of the geometry, the breeding methods used typically by Evolutionary Strategies 

(ESs) seem to offer a more appropriate method.  ES also makes use of real numbers 

directly, rather than binary strings, which also works well with the real numbers which 

describe the coordinate geometry of the structures being explored.  For these reasons the 

IGDT encodes the geometry in a real number matrix, which is bred using ES techniques. 

Specifically in the case of truss structures, the IGDT describes the geometry by means of 

the vertex matrix, which contains real number pairs (x and y) for each node.  Figure 2.4. 

gives an example of a truss with corresponding vertex matrix. 

 

Truss A

1

3
4

2

6

5

 

Figure 2.4.   An example truss structure with the vertex matrix used to describe the geometry. 

 

 

2.1.2.3 Crossover for Geometry Breeding 

Because the joint coordinates are real numbers with a meaningful spatial location, it is 

reasonable to incorporate these qualities into the breeding mechanism.  During 

breeding, the joint coordinates of a child are selected from points in a normal distribution 

about the parent points.  The crossover method used in the geometry breeding, is similar 

to an ES-(µ+λ) Evolutionary Strategy (Bäck, Hoffmeister & Schwefel, 1992).  Figure 2.6. 

shows how each node is treated as an allele on the chromosome, and half uniform 

crossover is used for node selection in keeping with Eshelman's suggestions for CHC. 

0 0

360 0

90 90

270 90

180 180

180 0

. .

. .

. .

. .

. .

. .

























 



 

 

101 

 

Figure 2.6.   The breeding of two parent geometries, and the calculation of a difference threshold. 

 

2.1.2.4 Crossover for Topology Breeding 

In the topology breeding mechanism, one-point crossover is used as it is the least 

disruptive.  Less disruption is preferred, because combining the often unequal topology 



 

 

102 

chromosome lengths results in additional disruption itself.  In traditional GAs, as in 

nature, breeding unequal length chromosomes is a problem.  In the IGDT the crossing of 

the unequal length chromosomes is achieved by ensuring that the crossover point is 

always chosen within the length of the shorter chromosome.  Figure 2.5. shows the one-

point crossover applied to the vectorized incidence matrix. 

1111110110

10110 11111

Fitness = 333
Joints 6  Members 9 Joints 5  Members 8

Fitness = 361

Joints 5  Members 7
Fitness = 285

Joints 6  Members 10
Fitness = 285

 

Figure 2.5.   The breeding of two parent topologies with different length defining chromosomes. 

2.1.3 Search and Exploration 

2.1.3.1 Finding Low and High Peaks 

Section 1.2.3 describes the stifling effect that viewing a single solution can have on 

problem exploration, and how this in turn inhibits creative thinking.  The IGDT avoids this 

problem by always presenting a pallet of solutions to the user.  These solutions are, 

however, not merely random geometries, which would at best offer a search guided only 

by chance, but are instead, a pallet of solutions found by the IGDT, which represent a 



 

 

103 

series of sub-optimal peaks in the solution space.  This is particularly the case in the 

exploration of topology, where each individual in the population has been optimized, and 

represents a geometry which reflects the quantitative objectives.  In the topology IGDT, 

each generation offers the designer a set of solutions which can vary greatly.  To further 

enhance variation presented to the user, the topology IGDT can be set to prevent 

duplicate solutions occurring in the same generation.  Duplicate solutions normally occur 

as the population converges on an optimum.  The result of preventing duplication, is that 

even more variation is presented to the designer.  This may provide enhanced exploration 

qualities, but it also prevents convergence. 

2.1.3.2 Repairing Defective Topologies 

Nature provides mechanisms for the repair of biological genetic material.  If these repair 

mechanisms were not in place, the instances of mutation detrimental to the organism 

would be very high (Russell, p. 564, 1992).  As a result of initial random generation as 

well as subsequent breeding of individuals, topologies can be formed which are 

structurally unstable.  It would be possible to simply allow these misfits to be assigned a 

low rank in the population, and thus be eliminated in the next generation.  In fact, this is 

the procedure followed with unstable geometries which are produced.  But, in the case of 

structurally defective topologies, the IGDT, like nature, has a few repair mechanisms that 

allow certain defects to be detected and repaired. 

 

Figure 2.7. Two trusses each with the same topology.  Truss A shows a stable geometry while Truss B 
shows a geometry that is not stable. 

For any given topology, geometries can be found that under load produce deformations 

of such large magnitude that the system becomes unstable.  Figure 2.7. shows an 

instance of a topology first with a stable geometry, and second with a geometry that is 

not stable.  In these cases the unstable geometries simply die out in the selection of the 



 

 

104 

next generation, and the exploration of the topology continues with the remaining stable 

solutions. 

However, in the case of topologies that contain an inherent flaw, all of the geometries in 

the population will be unstable.  Figures 2.8. and 2.9. show two examples of defective 

topologies.  There are three reasons why it is better to repair these defective topologies if 

possible.  Firstly, a population of geometries based on a defective topology will not 

converge.  This can lead to the waste of a large amount of computing time and 

needlessly slow the IGDT's progress.  Secondly, because the topology populations tend to 

be smaller in size, particularly if the interactive mode is being used, dead individuals are 

more critical, because they remove a larger percentage of the population from useful 

exploration.  Thirdly, through the repair mechanism, a new topology can be introduced 

into the population that might not be attainable through breeding alone.  This action is 

comparable to a beneficial mutation that allows new genetic material to enter a 

population. 

1

3
4

2

6

5

Defective Truss

1

3

5

6

2

4

7

Repaired Truss  

Figure 2.8. An example of a truss with defective topology. Node 7 is not stable and is deleted from the 
truss. 

 

1

3

5

6

2

4 4

2

6

5

3

1

Defective Truss Repaired Truss
 

Figure 2.9.   An example of a truss with defective topology. Element 5-4 is added for stability. 



 

 

105 

The two repair routines used in the IGDT entail the deletion of ill-connected joints and the 

addition of members which are lacking.  Figures 2.8. and 2.9. show respectively the 

results of the application of these two routines to the defective topologies. 

2.1.3.3 Adapting New Topologies 

Adaptation describes change in response to the environment.  For the IGDT the 

environment is described by both the qualitative and quantitative objectives which guide 

the search.  In response to the objectives, a structure may evolve one topology so that it 

begins to resemble another topology.  In the truss exploration problems, the IGDT uses 

two forms of adaptation, one that fuses nodes , and a second that fuses elements.  Figure 

2.10. shows an example of node fusing.  Nodes 3 and 7 in Truss A are so close that the 

topology of Truss A looks like the topology of Truss B.  In the figure the distance between 

the nodes 3 and 7 is somewhat exaggerated to make the duplicity clear.  Node fusing is 

performed by combining the two nodes into one node, which is shown as node 3 in Truss 

B.  Also note that the four elements in Truss A, which connect nodes 1, 3, 5, and 7, are 

reduced to two elements in Truss B, as node 7 is removed, leaving no two members with 

the same incidence. 

Adaptation provides an important enhancement to exploration.  By deleting nodes, it 

allows new length chromosomes to enter the population that would not occur through 

breeding alone.  In this way much grater areas of the solution space can be reached and 

explored. 

Truss A

1

3

5

6

2

4 4

2

6

5

3

1

Truss B

7

 

Figure 2.10.   A truss shown before and after adaptation by node fusing. 

The second type of adaptation used is that of element fusing.  Like node fusing the goal is 

to remove redundancies in the topology.  Elements which overlap and are situated on top 

of nodes, but without connecting to the nodes, are broken at these existing nodes to form 



 

 

106 

new shorter elements.  The resulting elements which have identical incidences are fused 

to form one element.  Figure 2.11. shows an example of this process. 

 

Truss A

1

5

6

2

4 4

2

6

5

3

1

Truss B

3

 

Figure 2.11.   A truss shown before and after adaptation by fusing a node into an element. 

2.1.3.4 Mutating Topologies 

In the CHC-GA, each outer shell cycle begins by repeatedly mutating the best individual 

from the end of the previous cycle, to produce the initial population for the new cycle.  

Mutations are simply random changes to the genetic description of the individual, in this 

case the incidence matrix which defines the topology.  There are eleven different mutation 

operations used in the IGDT.  Each operation is applied to the topology incidence matrix.  

Several also use information from the specific geometry of the individual being mutated.  

Distinguishing the mutations by whether they make use of geometry information or solely 

topology information, they can be listed as follows: 

Geometry Based MutationGeometry Based MutationGeometry Based MutationGeometry Based Mutation        Direct Topology MutationDirect Topology MutationDirect Topology MutationDirect Topology Mutation    
 mirror left side    add joint 
 mirror right side    delete joint 
 fuse nearest joints    add member 
 fuse nearest members   delete member 
       move member 
       flip row 
       flip column 
 

The geometry based mutations do not make use of random selections and are therefore 

only performed once in generating a population.  The direct topology mutations are 

based on random selections and are repeated in random order until the population is 

filled.  In addition to these 11 basic mutations, many more are actually available by 

combining operators.  For example, a combination operator might be: add joint + 

mirror left side. 



 

 

107 

 

The mirror left side operator uses a vertical center-line to cut the selected individual 

into two sides, left and right.  The right side is then deleted and replaced with the mirror 

image of the left side.  If a joint is within some tolerance to the center-line, it is 

repositioned directly on the center-line and not mirrored.  Members that cross the 

centerline and thereby loose the right end joint, are redirected to the mirror of the left end 

joint.  Figure 2.12. shows the results of the mirror left side operator. 

jnt 10   mbr 17

before

jnt 10   mbr 17

after

 

Figure 2.12.   Example showing the application of the mirror left operator. 

The mirror right side operator is the reverse of the mirror left side operator.  It also 

uses a vertical center-line to cut the selected individual into two sides.  In this case, the left 

side is deleted, and replaced with the mirror image of the right side.  Joints and members 

near the center-line are treated as with the mirror left side operator.  Figure 2.13. shows 

the results of the mirror right side operator.  

before
jnt 12   mbr 21

after
jnt 11   mbr 19

 

Figure 2.13.   Example showing the application of the mirror right operator. 

The fuse nearest joints operator sorts though the joint coordinates and finds the two 

joints with the closest proximity to each other.  It then merges these two joints into one 

and reconnects all members that connected to the original two joints to the new single 

joint.  Figure 2.14. shows the results of the fuse nearest joints operator. 



 

 

108 

jnt 10   mbr 17

before

jnt 9   mbr 17

after
 

Figure 2.14.   Example showing the application of the fuse nearest joints operator. 

The fuse nearest members operator sorts though the joint coordinates and finds 

one with the closest perpendicular distance to some member.  It then divides the found 

member in two and fuses the new joint and the original joint.  All coincident members are 

reduced to single members so that there are no duplicate members.  Figure 2.15. shows 

the results of the fuse nearest members operator. 

jnt 8   mbr 14

before

jnt 8   mbr 13

after
 

Figure 2.15.   Example showing the application of the fuse nearest members operator. 

The add joint operator randomly selects a member and adds a joint at the mid-point.  

It then finds the closest joint to the newly added joint that is not on the same line, and 

connects these two joints with a new member.  This is necessary to preserve stability.  

Figure 2.16. shows the results of the add joint operator. 

jnt 13   mbr 23

before

jnt 14   mbr 25

after

 

Figure 2.16.   Example showing the application of the add joint operator. 

 



 

 

109 

The delete joint operator chooses a joint at random and removes it.  The free end of 

the members which had been attached to the now missing joint, are connected to the 

next nearest joint.  Members which thereby have both ends located at the same joint (zero 

length) are removed.  The resulting truss is checked for stability and repaired if necessary 

(see Section 2.1.3.2).  If the repair results in a return to the original topology, the 

operation is taken as failed and the results discarded.  Figure 2.17. shows the results of 

the delete joint operator. 

jnt 13   mbr 23

before

jnt 12   mbr 21

after

 

Figure 2.17.   Example showing the application of the delete joint operator. 

The add member operator selects two joints at random and tests to see fit a member 

already connects the two joints.  If no member is found between the joints, a new 

member is added, otherwise two new random joints are selected.  If no new member can 

be found after a number of attempts equal to twice the number of joints, then the 

operation is taken as failed and the results discarded.  Figure 2.18. shows the results of 

the add member operator. 

jnt 13   mbr 23

before

jnt 13   mbr 24

after

 

Figure 2.18.   Example showing the application of the add member operator. 

The delete member operator selects a member at random and removes it.  The 

resulting topology is checked for stability and repaired if necessary (see Section 2.1.3.2).  

If the repair results in a return to the original topology, the operation is taken as failed 

and the results discarded.  Figure 2.19. shows the results of the delete member operator. 



 

 

110 

before
jnt 10   mbr 17 jnt 9   mbr 15

after
 

Figure 2.19.   Example showing the application of the delete member operator. 

The move member operator selects a member at random and moves one end to 

another randomly selected joint.  The resulting topology is checked for stability and 

repaired if necessary (see Section 2.1.3.2).  If the repair results in a return to the original 

topology, the operation is taken as failed and the results discarded.  Figure 2.20. shows 

the results of the move member operator. 

jnt 13   mbr 23

before

jnt 13   mbr 23

after

 

Figure 2.20.   Example showing the application of the move member operator. 

The flip row operator reverses the order of one row in the incidence matrix which 

describes the topology of the truss.  The resulting topology is checked for stability and 

repaired if necessary (see Section 2.1.3.2).  If the repair results in a return to the original 

topology, the operation is taken as failed and the results discarded.  Figure 2.21. shows 

the results of the flip row operator. 

jnt 10   mbr 17
before

jnt 10   mbr 17
after

 

Figure 2.21.   Example showing the application of the flip row operator. 

 



 

 

111 

The flip column operator reverses one column in the incidence matrix.  The resulting 

topology is checked for stability and repaired if necessary (see Section 2.1.3.2).  If the 

repair results in a return to the original topology, the operation is taken as failed and the 

results discarded.  Figure 2.22. shows the results of the flip column operator. 

jnt 10   mbr 17
before

jnt 10   mbr 17
after

 

Figure 2.22.  Example showing the application of the flip column operator. 

2.1.3.5 Storing Results 

Because it is expected that the IGDT would be used over a longer period to explore 

families of structural geometries, a history of significant geometries is maintained in the 

form of an output file which contains all pertinent geometric and structural data. The data 

may be viewed in different ways by the designer as a form of review, either as a graphic 

CAD file or detailed text listing.  Also, stored solutions may be retrieved, and inserted into 

a running population during the interactive mode. 

2.1.3.6 Communicating with the Designer 

Key to the success of the IGDT is the way in which the program interfaces with the 

designer.  The IGDT is intended to provide the designer with a window into a landscape 

of structural forms.  As discussed in Section 1.2, in order for this window to foster the 

designers own creativity, certain considerations need to be observed in the formulation of 

the user interface.  Primary considerations include: 

• represent a pallet of solutions 
• allow alterations by designer 
• render with simple depictions 
 

Pallets of Solutions.   As discussed in Section 1.2.3.3, design fixation is a common and 

serious impediment to creative design.  Particularly in dealing with computer generated 

images, the tendency is to show the user only one solution at a time.  It might be argued 

that this stems from the analysis technique itself, which strives to find the best solution to 

the objectives which have been chosen.  But this does not wholly account for the situation.  



 

 

112 

Certainly, it would be possible to show solutions within a range of the objectives.  But the 

true problem seems to stem form the fact that most programs which designers attempt to 

use, have been conceived as analysis tools rather than design tools.  Simply by always 

presenting the designer with a pallet of solutions, rather than one single solution, the 

tendency for design fixation is greatly lessened.  By allowing the designer to observe an 

array of solutions, the eye naturally looks for similar patterns among the individuals, 

rather than concentrating on one single image alone.  In this way the user is invited into 

further exploration of alternatives rather than becoming fixated with a single solution. 

Alterations by Designer   It is also important to provide a mechanism for the designer 

to be able to directly alter the forms which the tool generates.  The designer should not 

remain simply a passive observer, but should interact directly with the form generation by 

altering given forms or inserting new solutions into the breeding population.  The IGDT 

accommodates this interaction in several ways: 

• select favorite solutions for breeding 
• explore a single solutions through mutation 
• alter a current solution 
• enter a new solution 
• recall and old solution 
 

User selection, either for breeding or mutation, is the primary way for the IGDT to be 

guided in the interactive mode.  The user can select any of the individuals presented from 

the combined parent and child populations, for breeding in the next generation.  Parents 

can be duplicated or even paired with new user-inserted individuals.  If further variations 

in the direction of one single individual are desired, the mutation option will fill the 

combined parent and child populations with mutations of the chosen solution. 

Being stimulated by the solutions generated by the IGDT, the user will often want to 

explore specific alteration to a current solution.  The IGDT gives the user immediate 

feedback by evaluating the altered solution based on the same quantifiable objectives 

defined for the problem.  It is also possible to run the geometric optimization on the 

altered topology.  In the same way that alterations to a solution are interactively 

submitted, an entirely new solution can be injected into the breeding population by the 

user.  Finally, since a history of each topology solution is written to a file, an old solution 

may be recalled from this file at any time.  This includes possible collections of solutions 

from earlier runs. 



 

 

113 

User intervention of this sort may seem foreign to many seasoned optimization 

programmers, but one must realize that it is the allowance of this more playful treatment 

of the design procedure that gives the IGDT an advantage in attaining more creative 

solutions through encouraging a more thorough exploration of the design space.  Once 

the designer has gained a sense of the possible solutions using the IGDT, it may well be 

appropriate to continue the design process by exploring some of the discovered solution 

further with more traditional optimization techniques. 

Simple Depictions   Finally, it is intentional that the depiction of the solutions remain as 

simple as possible.  In the truss examples color coding is used to indicate whether an 

element has been designed for tension or compression, and the material expended is 

indicated by the line weight.  However, excessive detail that would only distract from the 

intent, is omitted. 

2.2 Implementation of the IGDT 

The following section gives a more systematic and detailed description of the actual 

programmed implementation of the IGDT.  Conceptually, it can be applied to a wide 

range of structural types, materials and loadings.  However, to illustrate the concept, this 

implementation focuses on two dimensional (flat plane) truss structures. 

2.2.1 Defining Problem Parameters 

Parameters specific to a particular problem are entered in an open format text file typical 

of traditional finite element program input data files.  Examples of input data files are 

included in Appendix A. 

2.2.1.1 Structural Type 

The structural type used in all examples in this dissertation is a two dimensional flat truss.  

As such, all elements are simple, straight, axial force members, acting either in tension or 

compression.  All nodes are considered pinned.  The finite element used for the stiffness 

analysis has two degrees of freedom and is commonly found in most introductory text 

books to finite element analysis, FEA (Martin, pp. 28-54, 1966).  Structures to be 

analyzed may be either determinate or indeterminate.  Checks are made during the 

analysis of each structure to ensure a non-singular (stable) stiffness matrix. 



 

 

114 

2.2.1.2 Material 

For the truss analysis, four material properties are needed: 

• Young's Modulus of Elasticity 
• Cross Sectional Area (initial estimate) 
• Elastic Limit 
• Density 
 

Young's modulus and the cross sectional area are needed for the stiffness analysis.  If 

member self weight is not to be included, then the estimate area supplied is used in the 

FEA.  The area of each member is updated after an initial calculation of member forces.  

If member self load is being considered, the FEA is iterated, and member area is updated 

until the area stabilizes within 2%. 

The elastic limit is used in calculating the member cross section when buckling analysis is 

to be included as explained in Section 2.2.1.5 below.  Density is used to calculate the 

weight for self load and assessment purposes. 

 

2.2.1.3 Supports 

There are two types of node restraint.  The first is a support in the traditional sense of an 

FEA.  For a truss type structure this means fixity in either the x or the y direction.  In 

addition, nodes can be prevented from being relocate during various genetic 

manipulations which can take place.  In other words, nodes can be held stationary in 

either x or y or both directions.  This is essential when only one component of a node is 

supported, but it is expected that the node will remain at a specified location.  Another 

instance which requires a stationary node is the location of point loads.  It must be 

remembered that in the IGDT the structural geometry and even topology will change, and 

therefore, if some locations need to be maintained, they will have to be specified.  Figure 

2.23. shows instances of supported nodes and stationary nodes which make the use and 

distinction clear. 



 

 

115 

S = Stationary

1

3
4

2

6

5

F = Fixed

Fx

Fy Fy

SxSx

Sy

Sx

 

Figure 2.23.   Example showing the use of traditional structural supports and geometric restraints. 

2.2.1.4 Loads 

Loads are of only two types, point and self load.  However, loads  can be grouped in 

'Loadings' (e.g., snow load, dead load, live load) and then applied as combinations of 

loadings (e.g., DL+SL, DL+LL, etc.).  In this way it is possible to design the system 

regarding the worst load case for each member.  For example, a bridge design can be 

regarded under a series of point loads that move across the structure (rolling truck load).  

Each member in the structure will be designed for the loading that produces the most 

severe conditions for that member. 

2.2.1.5 Analysis 

The analysis proceeds in two steps.  To obtain member forces and displacements, a finite 

element stiffness analysis (FEA) is performed.  The element type would be set as described 

in Section 2.2.1.1 above.  The second step of the analysis determines the member cross 

section given the force in the member and the member length.  There are several routines 

that can be chosen for the member design, based on material, whether the member is in 

tension or compression and whether buckling of compression members is to be 

considered.  Cross sections can be selected from a table (which is somewhat slower) or 

estimated by an equation.  At present routines are written for steel and wood design by 

US codes: The Manual of Steel Construction - ASD (1989) and The National Design 

Specification for Wood Construction (1992).  There is also a simple area=force/stress 

routine for comparison with some published optimization results. 

2.2.2 Topology Search 

As described in Section 2.1, the IGDT is comprised of two components, an outer cycle 

that explores topology, and inner cycles that explore geometry.  The program allows a 



 

 

116 

useful degree of control at each level in order to balance the thoroughness of the 

exploration against necessary time constraints (the duration of a run). 

The topology parameters are applicable to all geometries generated in the course of a 

run.  These parameters include the problem parameters discussed in Section 2.2.1, which 

are contained in the input data file, as well as #define statements set in the header file, 

truss.h.  The topology parameters defined in the truss.h file are discussed in this section. 

2.2.2.1 Program Mode 

The IGDT can run in several modes.  The run modes include: 

• interactive with user 
• automatic with preset number of cycles 
• automatic with convergence goal 
 

Interactive with user mode is described in Section 2.1.3.5.  This mode will continue to 

cycle through topology generations until the user chooses to terminate.  At the end of 

each cycle the user can choose to: 

• select pairs of parent topologies to breed 
• select one parent topology to mutate 
• insert a new or altered topology into the population 
• quit the program 
 

Automatic with preset number of cycles mode allows the user to set the IGDT to 

explore several generations of topology unattended.  This may be useful as an initial way 

to view a larger sampling of the solution space.  A file is maintained of each different 

topology and significantly different geometry found.  As the run proceeds the file is 

updated with the best instances of each solution type.  This grouping can be viewed 

graphically as well as in a more detailed text output for each solution in the group.  In 

this way a large quantity of solutions, which are mostly repetitive, can be distilled into a 

digestible number of unique solutions to consider. 

Automatic with convergence goal mode is used for an even longer search of the 

design space.  A convergence criteria is set by specifying a percent of the population that 

must converge before the next cycle begins.  After a set number of cycles converge on the 

same solution, the run is stopped.  This is similar to the way the geometry CHC-GA runs.  

The same output file described above are also generated. 



 

 

117 

2.2.2.2 Population Size 

The required size of the topology population varies with the complexity of the problem 

and the mode chosen.  For a typical GA, recommendations vary from 50 to 500 

(Mitchell, 1996, p. 11).  But populations of this size would be difficult for a user to 

reasonably handle in making visual selections when using the interactive mode.  Also, 

since each topology is in turn explored by a GA, even a small topology population will 

require a large amount of computing time.  Therefore, it is necessary to be able to set the 

population size to fit the available computing resources.  This is possible with the #define 

TOPO_NR in the header file. 

2.2.2.3 Topology Limiting Parameters 

In order to insure reasonable limits to the size of the topologies generated, some limits 

need to be set.  These too have been placed in the header file.  There are currently two 

parameters.  JOINTS_MAX defines the maximum dimensions of the incidence matrix.  

This must of course be larger than the minimum number of joints required for the nodes 

defined as either fixed or static in the input data file.  The maximum and minimum 

number of members are calculated based on the joint limits. 

The second limit defined by HUB_NR, sets the lower limit for the number of elements that 

attach at a node.  For trussed systems this is normally set to 2.  The value is used in 

checking the nodes for stable attachment to the system, discussed in Section 2.1.3.2, and 

illustrated in Figure 2.8.  If the value is set to 1, then only joints completely disconnected 

form the system will be deleted during the chromosome repair procedure. 

2.2.3 Geometry Search 

The program parameters are the controls used to vary the performance or output of the 

program.  The program can be used in several different ways, either to explore structural 

topology or geometry in either an interactive or an automatic mode.  Because of this 

varied use, and because of the developmental nature of the program, it is necessary to 

have different output possibilities both to the screen and to various files.  These output 

options have been placed in the code using #ifdef statements, so that they can be 

selected at compilation. 



 

 

118 

Other parameters which can be used to tune the IGDT by setting certain variables or 

choosing between optional subprograms, are grouped together in the header file truss.h.  

These parameters are used to configure the IGDT, and do not need to be changed with 

every problem.  These configuration options are categorized below depending on 

whether they pertain mainly to the geometry or the topology search. 

The geometry GA searches for solutions that perform well when assessed by the 

predefined fitness function.  This GA is based on the CHC-GA developed by Larry 

Eshelman (Eshelman, 1991).  The CHC repeats the cycle of Restart → Run GA → Select 

as shown in Figure 2.1. 

The #define section of the truss.h file is given in Appendix A and lists all of the 

parameters that can be set with brief definitions of their use. 

 

2.2.3.1 Restart 

A restart is made by mutating the nodes of the last best individual to fill a new 

population.  To form each newly mutated individual each movable component of each 

node is mutated at a probability of 50%.  This is similar to joint selection in Half Uniform 

Crossover, meaning about half of the node components are altered, while the other half 

are not altered.  The mutation is accomplished by moving the node coordinate some 

random distance.  The possible spread of this mutation is lessened with each restart.  

There are two choices for the random number distribution, either uniform or normal 

distribution from the original node.  Figure 2.24. shows the two distribution patterns for 

200 selections.  It is also convenient in some problems to restrict the generated 

coordinates to only positive numbers.  This also is shown in Figure 2.24.  There are then 

a total of four ways in which the node mutations can be configured. 

 

 Uniform distribution: 
 • + and - values 
 • + values only 

 Normal Distribution: 
 • + and - values 
 • + values only 

 



 

 

119 

1 2

3
4

5

6

Normal Dist.

Uniform Dist.

Normal Dist.

Uniform Dist.
+ and - + only

+ only+ and -

1

3
4

26

5

1

3
4

2

6

5

1

3
4

2

6

5

 

Figure 2.24.   The four options for node mutation at restart. 

 

Finally, only node coordinates which are neither marked as being neither supported nor 

held stationary, are allowed to mutate.  In the example shown in Figure 2.24., the x and y 

coordinates node 1 and the y coordinate of node 2 are marked as supports, while the x 

coordinate of node 2 and 3, and the y coordinate of node 4 are marked as stationary.  

The x-y origin was taken at node 1. 

Figure 2.25. shows the effect that increasing the level of choke has on the distribution of 

new random nodes around the original node.  The choke level begins as a sixth of the 

span, and is choked down to one sixtieth in ten steps.  The distribution of random nodes 

is thus determined by the scale of the structure independent of specific units of length. 



 

 

120 

Choke Level 1

1

3
4

2

6

5

1

3
4

2

6

5

1

3
4

2

6

5

Choke Level 5

Choke Level 10

1

3
4

2

6

5

1

3
4

2

6

5

1

3
4

2

6

5

 
Figure 2.25. The effect of the progressive increase of choke level on normal sampling (left) and uniform 

sampling (right) as seen in three of the ten levels. 

2.2.3.2 Run GA 

The GA is the major portion of the cycle, and is where the geometry converges on the 

fitness function.  It makes use of Eshelman's CHC-GA.  Although the GA used is 

patterned after the CHC-GA, several modifications have been made to better 

accommodate the particular aspects of searching structural geometry and the use of real 

numbers.  The modifications include: 

• parent difference determination 
• convergence recognition 
• breeding with real numbers 
• mutation throttle 
• restart options 
• cycle termination 



 

 

121 

Parent difference determination is the first step in the GA after a restart, or initial 

random start, as described above.  Rather than a difference based on the Hamming 

distance as used with binary strings, a difference based on real geometric node variance 

of the two parents is used.  As shown in Figure 2.6., the sum of the distance between 

corresponding nodes of two parents is used as a measurement of the difference.  The 

higher the number, the more difference is exhibited by the pair.  In order for breeding to 

take place the difference must be above a threshold.  The threshold is initially set at an 

average value taken from the randomly paired population.  As the population converges 

so that there is less difference in randomly paired parents, fewer children will be bred, 

which allows the generations to run faster.  When fewer than 20% of the parents are 

producing children the threshold is decremented, which allows more parents to breed.  A 

lower limit is needed on the threshold to prevent it from dropping to zero, and thus 

forcing all parents to breed. 

Convergence recognition is based on the dropping number of children, and signals 

the convergence of the population.  It is used to determine a restart.  The two conditions 

which together signal convergence are: less than 10% of the population breeding, and 

the threshold already decremented to its lower limit.  The plot of one cycle of breeding 

shown in Appendix B makes clear how the threshold insures parents with more difference 

are bred.  This both enhances the thoroughness of the search as well as the speed of 

convergence. 

Breeding with real numbers is also depicted in Figure 2.6.  The technique developed 

is a blend of Half Uniform Crossover as used in the CHC-GA (Eshelman, 1991), and the 

mutational ellipsoids used in the ES-(µ+λ) Evolutionary Strategy (Bäck, Hoffmeister & 

Schwefel, 1992).  The array of node coordinates (see Figure 2.4.) of each parent is used 

as the chromosome for breeding.  First half of the node coordinates are randomly 

selected for crossover (as with CHC).  The selected nodes are "crossed" by finding a new 

node within an area (similar to the ES mutational ellipsoids) surrounding the two joints.  

There is a choice of two routines to select the new, child node.  The first uses a normal 

distribution for selection, and the second uses a uniform distribution.  The routine with 

uniform distribution is more exploratory, while the normal distribution routine will usually 

converge more quickly.  The two children are bred, using the randomly selected half set 

of the nodes. 



 

 

122 

Mutation throttle allows the amount of mutation produced at restart to be 

decremented with progressive cycles.  In this way the early restarts result in the most 

disruption, and enhance exploration, while the later restarts are more refined and 

concentrate on a smaller area of the search space.  The distribution of mutations is 

progressively choked as shown in Figure 2.25. 

Restart options allow for additional flexibility in describing the range of the solution 

space or by focusing the mutation more narrowly by using lower σ values with normal 

distribution.  These options are described in Section 2.2.3.1 above and shown in Figure 

2.25. 

Cycle termination is normally brought about by the population convergence as 

described above.  There are however some instances when convergence may become 

stagnated in an area where geometric differences do not sufficiently affect the fitness.  

For this reason a limit is placed on the maximum number of generations allowed.  Since 

topologies with more nodes can have more geometric difference than topologies with 

fewer nodes, the number of nodes is a factor of the generation limit. 

 

2.2.3.3 Select 

Selection of geometry, unlike topology, runs only in an automatic mode guided by the 

predefined fitness function.  If this were not the case, the user would have to sift though 

many generations of forms that are truly unfit.  This would serve little purpose, and would 

probably prevent the discovery of most good solutions.  The selection employed, in 

keeping with CHC-GA is elitist.  After breeding, the combined parent/child population is 

sorted by fitness, and the best are kept to become the parent population of the next 

generation.  This strategy is also common in ES.  The selection is further elitist in that the 

best individual is always maintained.  In a restart, the best individual is used to generate 

the new population.  In a re-initialization, although the population is randomly generated 

(as in an initialization) the best individual is maintained in one copy.  This prevents loss of 

the best solution but at the same time allows adequate opportunity for other better 

solutions will be found. 

 



 

 

123 

2.2.4 Running the IGDT 

Complete examples of runs and results are given in Section 3.  This section describes 

some of the procedure used to setup and run those examples. 

2.2.4.1 Initial Startup 

Only two files need to be altered in order to describe a new problem: the input data file 

described in Section 2.2.1, and the header file, truss.h, described in Sections 2.2.2 and 

2.2.3.  An example input file, as well as the #define statements from the header file 

(truss.h) are given in Appendix A.  If the header file is altered, the program will have to be 

recompiled.  A make file is used to compile the five executables.  The executables and 

input files are then distributed to the slave machines for access by PVM (Parallel Virtual 

Machine) the parallel message passing software (Geist et al. 1994).  Various builds 

containing different output and debug messages are also controlled by #ifdef statements 

in the make file. 

2.2.4.2 Output and User Interface 

As described in Section 2.2.2.1, the user interacts with the program differently depending 

on the mode used.  For an effective selection to be made it is necessary to be able to view 

the solutions together.  When using the interactive mode with topology populations of a 

size that can be comfortably viewed on one screen (about 20 total, 10 parents and 10 

children) a window is created in which the populations can be viewed.  But with larger 

populations this may be a problem.  If multiple monitors are not a possibility, simply 

plotting the entire population to paper output for viewing is a simple solution.  The 

program can write AutoCAD files for each population produced, which can then be fully 

manipulated for viewing or plotting by the user.  With the solutions in a CAD format, the 

designer has complete freedom to manipulate the geometries in a more convenient 

setting.  The designer can alter solutions, plot them to paper, pin them to the wall, or 

carry them about.  As described in Section 1.3.1.2, being able to manipulate graphic 

images in this way, can offer the designer effective creative stimulation. 

When using the automatic program mode, several graphic output files are produced as 

well as more detailed text files.  First plot files are made of each generation grouped by 

cycles.  These are actually the same plots recorded in the interactive mode, only in the 

automatic mode they will be larger.  In a long run these plots may contain 10's of 1000's 



 

 

124 

of images which are not easily sorted through.  Plots of this type are primarily useful in 

debugging and insuring the proper range of search is being made with out some 

unintended bias. 

To make the results of the automatic mode more accessible there is a second level of 

output.  This is a set of two files.  The first is a file containing all new topologies 

generated.  In this file reoccurring parents are removed.  The second file is based on the 

aforementioned file, but has all duplicate topologies with similar geometries removed.  In 

this file a lower limit of performance can also be set to restrict size still further.  This file 

generally contains 100 to 200 solutions.  Through use this was found to be a 

manageable number.  The simple line images fit at about 100 on a 11x17 (DIN A3) 

sheet of paper.  Visually scanning a couple of these sheets will give the designer a good 

insight into possible topology and geometry patters appropriate to the problem.  Each 

solution is labeled with a few critical characteristics (weight, joint and member number) 

and has an ID number which referenced more detail statistics about the solution found in 

the accompanying text output.  An example plot of this output is given in Appendix C. 

 

2.2.4.3 Final Selection 

As in any challenging design problem, the exploration of the solution space can continue 

over a wide range, and is usually only limited by constraints of time and available 

resources.  The IGDT is intended to find many good solutions in a limited time.  It is not, 

however, an exhaustive search, and can sometimes discover new areas of interest in the 

solution space, particularly when led in a different direction by the designer's selections 

during the interactive mode.  It is a common technique in design methodology to allow a 

fallow period for idea incubation after an intense period of exploration.  The IGDT 

accommodates this approach very well by allowing the designer to continue a previous 

session, by either starting with a new 'progenitor' solution, or  inserting any stored 

solution into the current breeding population.  In this way, the exploration of a problem 

may continue indefinitely. 



 

 

125 

3 Examples and Results 

The following examples are chosen to demonstrate some of the potential of the IGDT, 

and by comparison with other published work show a verification of the results as well as 

the unique advantages that the IGDT offers the designer. 

All of the examples are based on two-dimensional, flat truss configurations.  That is, all 

joints are considered pinned with no bending moments present.  This is not an inherent 

limitation of the IGDT, but rather a measure of initial expediency in programming this 

prototype version.  The analysis component of the program was coded specifically for the 

IGDT to give greater control during development and testing.  This FEA component can 

of course be expanded to include other elements with more degrees of freedom, or 

replaced entirely by and existing, more complete analysis package. 

Nonetheless, there are already a great many analysis options present in this version of 

the program.  The analysis has been incorporated as a set of modular subroutines that 

can easily be added to, or altered, to expand the functionality of the IGDT.  Current 

analysis options include: 

Member Design: 
• solid rods - without buckling - simple P/A 
• hollow pipe - with buckling - continuous sizes – following ASD 

US steel code analysis criteria (AISC, 1989) 
• solid rods - with buckling - continuous sizes  - following ASD US 

steel code analysis criteria (AISC, 1989) 
• optional slenderness limits 
• optional deflection limits 
 
Loading Options: 
• self weight 
• nodal point loads (any number or orientation) 
• moving point loads 
• multiple load cases 
 
Support Options: 
• independent x or y axis support at any specified nodes 
• independent x or y axis geometric fixing without support 
 (i.e., nodes that are not relocated by the GA) 
Geometric Limits: 
• optional x or y limits on geometry space 
• optional limits on number of members or joints generated 



 

 

126 

In addition to these options, there are other options which control the performance of the 

GA selection and breeding.  These were discussed in Section 2. 

From this list it is apparent that it is not practical to give examples of all permutations of 

options, but hopefully the examples that are presented will show the capabilities of the 

IGDT to an extent sufficient to demonstrate the concept. 

Over the course of development and testing of the IGDT, several platforms and hardware 

configurations were used.  Initial development at ILEK was possible on a single HP 9000 

workstation, but with increased complexity and the addition of topology optimization, it 

was decided to employ parallel processing techniques.  At that time a small cluster of 10 

HP workstations was used.  The following examples were finally run using a cluster of 30 

Intel workstations – a mix of Pentium II's and III's ranging between 200 – 733 MHz.  All 

run times cited below are for this last configuration. 

3.1.1 Flat Deck Bridge 

The source of this example is a small, two lane vehicular bridge.  It is conceived as 

representing a flat deck roadway supported on either side by trusses.  The scale of the 

bridge (span, load levels) has an impact on what forms are appropriate.  Here the IGDT 

offers the designer the advantage of being able to tailor the exploration to a specific set 

of requirements. 

3.1.2 Problem Description and Setup 

3.1.2.1 Problem Parameters and Geometry 

The panel segmentation was set to four panels to match a simple example by Noboru 

Kikuchi (et al. 1995).  A panel spacing of 15 ft [4.53 m] results in a total length of 60 ft 

[18.3 m].  A 10.5 ft [3.20 m] lane width was used, which for two lanes results in a total 

width of 21 ft [6.4 m].  The three geometry constraints explored were: 

1. truss above deck (pony or through truss) 
2. truss below deck (deck truss) 
3. truss both above and below deck (lenticular truss) 
 

No limits were placed on the maximum height or depth of the trusses.  All trials were 

made with members conforming to the design requirements of the AISC-ASD steel code 



 

 

127 

(AISC, 1989) using continuous sizes of steel pipe.  Figure 3.1. shows the three geometric 

configurations explored. 

[200 kN]

45000 lbs

[200 kN]

45000 lbs

[200 kN]

45000 lbs

15 ft

[4.53 m]

15 ft

[4.57 m]

15 ft

[4.57 m]

15 ft

[4.54 m]

Deck Truss
Design Space

[200 kN]

45000 lbs

[200 kN]

45000 lbs

[200 kN]

45000 lbs

15 ft

[4.53 m]

15 ft

[4.57 m]

15 ft

[4.57 m]

15 ft

[4.54 m]

Design Space

[200 kN]

45000 lbs

[200 kN]

45000 lbs

[200 kN]

45000 lbs

15 ft

[4.53 m]

15 ft

[4.57 m]

15 ft

[4.57 m]

15 ft

[4.54 m]

Lenticular TrussPony Truss
Design Space

 

Figure 3.1.   The Three Bridge Configurations Investigated. 

3.1.2.2 Loading Cases 

The loading in all three geometric configurations was the same.  The load cases 

considered were as follows: 

• DL - actual self weight of steel trusswork (variable) 
• DL - concrete deck at 225 psf (10.8 kN/m2) (constant) 
• LL - traffic at 640 plf [9.34 kN/m] HS20 lane load (constant) 
 

Figure 3.1. shows the loading conditions.  The self weight of the steel was calculated for 

the designed sections, and distributed to member end nodes.  The design of the members 

was iterated, updating the self weight until 1% convergence was obtained for the sections.  

The deck dead load and lane load were applied as point loads on the deck nodes.  A 

moving load was not included in this example to give better parity in comparisons with 

results from other researchers. 

3.1.3 Use of the IGDT 

Although the basic geometry and single load case used in this problem are simple, the 

inclusion of the dead load does require additional iterations of the solution.  Different 



 

 

128 

startup methods were tried; random starts, progenitor individual and initial population.  

These are described in Section 2.2.2.  The random start requires no initial geometry to be 

supplied by the user.  In that sense it is an "unbiased" approach.  Although it eventually 

reaches similar solutions that the other methods find, it generally takes more cycles to get 

there.  The progenitor method, where one initial solution is supplied, is an expedient 

approach.  The outcome is affected by the progenitor, but much exploration is still 

performed.  In fact, as more cycles are run, the solutions often find various topologies 

regardless of the progenitor.  Initial populations are similar to the progenitor approach, 

but require the user to supply more individual solutions.  Many of these can be the same 

because the order in which they are listed in the input file determines which are bred with 

which.  For example, with the four individuals, A, B, C and D, a population of 12 can be 

established with 6 unique pairs. 

 AB  CD  BC  DA  BD  AC 

The population size of 50 for a geometry generation was found to work well.  This is a 

size recommended by Larry Eshelman (Eshelman, p. 303, 1995) and it was found to give 

good results without excessive computation.  I occasionally use smaller geometry 

populations to get faster runs, but it does degrade the quality of the optimization.  The 

size of the topology generation depends on the complexity of the structure.  The 

complexity depends on the number of free joints being used.  For this example and ones 

of a similar size, a population size of 20 was found to give good results.  Higher numbers 

were tried, but did not seem to offer much improvement for the increase in run time.  The 

selection criterion was primarily weight, but if deflection exceeded span/120, an 

additional sliding penalty was applied.  As discussed in Section 2.2. there are several 

options in running the IGDT, either interactively or in automatic mode.  The automatic 

mode makes selections based on pre-established criteria (in this case least weight).  The 

interactive mode supplies the user with information like weight on each individual 

topology, but the user actually makes the selections for breeding at each generation.  

Since most of the examples, including this one, were to be compared with other 

optimized solutions, there was no advantage to run the IGDT interactively.  Also, it is 

easier to use the automatic mode because problems can be set up and run unattended.  

Section 2.2 also describes the various termination options.  A GA can run forever if you 

let it, but at some point there ceases to be any significant development.  Termination 



 

 

129 

methods include: set number of topology generations (with just one cycle), set number of 

topology cycles, automatic cycle termination after a set number of repeated final results.  

Of these three options the pre-set number of cycles was almost always used.  Although as 

many as 30 to 40 topology cycles were sometimes run, more typically run lengths of 10 

to 20 cycles were used.  During the topology cycles, each time a new topology was 

generated, it was saved in a separate group which in the end was sorted by topology 

types (many are redundant) and the fittest from each type was copied into a new group 

which became the final output.  This list could then be truncated using some limit of the 

fitness values.  The final output then, was a list of trusses in an AutoCAD file that showed 

the user both variation of solution as well as good fitness to the criteria.  In this way the 

IGDT successfully achieves the goal of disclosing a variety of good solutions to the user. 

3.1.3.1 Results of Pony Truss 

Figure 3.2. shows an example of a progenitor used to start the pony truss exploration.  

The initial cycles tended to have more variation, but less complex topologies with fewer 

members.  In later cycles, the topologies increased in complexity, having more members.  

The greater number of members shorted the length between nodes.  Since the nodes 

were taken to be braced, this gave the shorter compression members an advantage in 

buckling analysis.   

10 joints   17 members

Topo ID: 0     weight = 2821 lb [1280 kg]

 

Figure 3.2.   The progenitor pony truss used to start topology cycles. 

Figure 3.3. shows selected topologies returned by the IGDT.  As a means to understand 

the results, the topologies have been grouped based on some common feature.  For 

example, 1, 2 and 3 all have a center upward peak /\ with a vertical member | at the 

center line.  In the next set of three, 4, 5 and 6, the center peak is inverted \/ and there is 

no central member.  Further the patterns have been arranged from left to right by  



 

 

130 

 

Figure 3.3. Selected results from the pony truss bridge.  The results are reorganized here into topological 
families (rows) which gain in complexity from left to right. 



 

 

131 

increasing complexity.  For example in sets 4 through 12 the condition at the center node 

remains constant for the set of three, while the condition at the side nodes increases from 

1 (in topo 4) to 2 (in topo 5) to 3 (in topo 6).  This is of course just my interpretation of 

the results and other users may see other groupings in exploring the output. 

Finally, as pointed out by Boden (1994, p.76), Koza, et al. (1999, p.544), and others, 

one test for intelligence is the ability to discover solutions that are well known or patented.  

In looking through the list in Figure 3.3. names could be given to several.  Topology 7 is 

a Waddell truss; topo 8 is a Parker; topo 5 is the Warren; topo 3 is a Bowstring Arch.  

That these topologies are successful enough to have names, indicates that the IGDT is 

finding good solutions. 

A knowledgeable designer will often be able to detect critical parameters by observing 

the topology patterns.  In the set shown in Figure 3.4. for example, Topo 18 has the least 

weight, even though Topo 20 has the same number of members.  Apparently, the critical 

parameter is not just the number of members, but the relative lengths of the members in 

the compression arch.  In Topo 18 the lengths are fairly even, shortening a bit near the 

reaction.  In Topo 20 the arch lengths go from shortest in the center span, to longer, and 

then shorter again.  The advantage achieved in Topo 18 is certainly due to the effect of 

buckling, and the fact that node points are considered braced.  Of course it remains for 

the designer to judge whether or not the short lengths of the top chord are actually 

braced.  This is a limitation of the current FEA routine.  Since the analysis only considers 

flat plane trusses, out of plane bracing is not modeled, and simply assumed present at 

the nodes.  This could be corrected by adding three dimensional elements and second 

order deflection iterations to the FEA routines.  This is discussed further in the concluding 

chapter 5. 

weight 1840 [835 kg]

jnt 15   mbr 27

Topo ID: 19 Topo ID: 18

jnt 18   mbr 33

weight 1804 lb [818 kg]

Topo ID: 20

jnt 18   mbr 33

weight 1878 lb [852 kg]
 

Figure 3.4. Three selected topologies from the pony bridge showing a pattern progression that indicates 
topology 18 as the most fit of that type.  Both 19 and 20 have higher weights. 



 

 

132 

3.1.3.2 Results of Deck Truss 

The procedure followed in exploring the deck truss bridge was similar to that used in the 

pony bridge described above in Section 3.1.2.1.  The results have been sorted into 

pattern groups and are shown in Figure 3.5.  Although the problem is basically the 

horizontal mirror situation to the pony truss, the results are very different due to the 

consideration of buckling in the compression members.  The solutions found are 

generally less efficient, and a designer might consider allowing end supports and a 

compression arch below the deck level.  But to maintain consistency in the set of pony, 

deck and lenticular trusses being investigated other support options were not explored. 

In looking at the solutions a new strategy can be observed.  Some of the fitter solutions 

are adding a second tensile arch as in topologies 12 through 15.  Also, topologies 16 

through 18 use a tensile member to subdivide otherwise longer compression members.  

Again, although this is in part an artifact of the assumed nodal bracing, the strategy is 

apparent and rational. 

Figure 3.6. shows another topology progression of adding members that brackets a 20 

member solution as being most effective in the set.  Topology 18 also happens to be the 

fittest solution discovered in this run.  But reviewing the other solutions one quickly sees 

that the advantage over others like topology 12 is not significant.  In fact the true 

usefulness of the IGDT concept is seen not in the discovery of the 'best' topologies like 12 

or 18, but in the finding of 'good' topologies like 8 through 10 or even 5 that are much 

simpler while only increasing in weight between 5% to 10%.  As a designer looking for a 

practical solution, the discovery of 5 with only 8 joints and 13 members may be more 

useful than some more optimal solutions.  Even if, through the use of some multi-

objective optimization technique, you were able to find a solution like 5, with only that 

single solution, you would not have much of a sense of what else might be hidden in the 

solution space.  At least with the IGDT you can see a selection like in Figure 3.5., and 

thus gain a better understanding of what other solutions are contained in that space. 

 



 

 

133 

weight 2320 [1052 kg]

jnt 11   mbr 20

Topo ID: 17

weight 2316 [1050 kg]

jnt 11   mbr 20

Topo ID: 18

weight 2547 [1155 kg]

jnt 8   mbr 13

Topo ID: 5

weight 2341 [1062 kg]

jnt 11   mbr 20

Topo ID: 15

weight 2373 [1077 kg]

jnt 11   mbr 20

Topo ID: 11

weight 2318 [1052 kg]

jnt 11   mbr 20

Topo ID: 12

weight 2481 [1125 kg]

jnt 9   mbr 16

Topo ID: 8

weight 2377 [1078 kg]

jnt 11   mbr 20

Topo ID: 14

weight 2516 [1141 kg]

jnt 9   mbr 16

Topo ID: 7

weight 3992 [1811 kg]

jnt 6   mbr 9

Topo ID: 1

weight 2469 [1120 kg]

jnt 9   mbr 16

Topo ID: 9

weight 3355 [1522 kg]

jnt 10   mbr 17

Topo ID: 2

weight 2654 [1204 kg]

jnt 8   mbr 13

Topo ID: 4

weight 2415 [1096 kg]

jnt 11   mbr 22

Topo ID: 16

weight 2382 [1080 kg]

jnt 11   mbr 20

Topo ID: 13

weight 2455 [1114 kg]

jnt 9   mbr 16

Topo ID: 10

weight 2520 [1143 kg]

jnt 8   mbr 13

Topo ID: 6

weight 2472 [1121 kg]

jnt 10   mbr 17

Topo ID: 3

 

Figure 3.5. Selected results from the deck truss bridge.  The results are reorganized here into topological 
families (rows) which gain in complexity from left to right. 



 

 

134 

Topo ID: 19

jnt 11   mbr 22

weight 2533 [1149 kg]

Topo ID: 8

jnt 9   mbr 16

weight 2480 [1125 kg]

Topo ID: 18

jnt 11   mbr 20

weight 2316 [1050 kg]
 

Figure 3.6. Three selected topologies from the deck bridge showing a pattern progression that indicates 
topology 18 as the most fit of that type.  Both 8 and 19 have higher weights. 

3.1.3.3 Results of Lenticular Truss 

The last of the three variations of the truss bridge problem is the lenticular truss.  This was 

analyzed in a similar manner to the other two described in Sections 3.1.2.1 and 3.1.2.2.  

The results are shown in Figure 3.7. below.  Of the three variations, the lenticular 

configuration offered the greatest economy of weight.  In this set several topologies were 

found between 1800 and 1700 lbs [820 – 770 kg.].  This compares to the lowest deck 

truss of 2316 lbs [1050 kg] and the lowest pony truss of 1823 lbs [827 kg].  Like the 

pony truss, the lenticular used tensile ties to subdivide the compression arch, and used far 

fewer compression struts below the deck.  It is interesting too, to notice the relative height 

of the top compression arch as compared to the bottom tensile tie.  Because of buckling, 

there is more advantage to be gained in reducing the force in the top arch members by 

moving them further from the deck.  On the other hand, increasing the radius of the 

tensile tie below the deck requires longer compression struts which are more susceptible 

to buckling.  Again, being allowed to see a selection of solutions is perhaps the greatest 

benefit offered by the IGDT.  And again, the most practical solutions are not necessarily 

the solutions meeting the least weight criteria.  For example topologies of 8 through 10 

offer a good combination of economy of weight and simplicity of form.  Topology 8 at 

1809 lbs [821 kg] is only 5.5% heavier than the best performer 14 which weighs 1714 

lbs [777 kg], and yet 8 uses only 26 members as compared to 30 members in topology 

14.  Or the even rhythm of three members above and one below at each deck node in 

topology 13 at 1746 lbs [792 kg] with 28 members, might be considered by the designer 

as more visually attractive, and a compromise of the aforementioned pair.  Figure 3.8. 

shows topology 13 placed for comparison between 8 and 14. 



 

 

135 

weight 1852 [840 kg]

jnt 12   mbr 22

Topo ID: 4

weight 2202 [999 kg]

jnt 11   mbr 22

Topo ID: 2

weight 2137 [969 kg]

jnt 11   mbr 20

Topo ID: 1

weight 1896 lb [860 kg]

jnt 13   mbr 24

Topo ID: 9

weight 1809 lb [821 kg]

jnt 14   mbr 26

Topo ID: 8

weight 1778 lb [806 kg]

jnt 14   mbr 26

Topo ID: 5 Topo ID: 6

jnt 16   mbr 30

weight 1709 lb [775 kg]

Topo ID: 12

jnt 15   mbr 28

weight 1755 lb [796 kg]

Topo ID: 11

jnt 14   mbr 26

weight 1783 lb [809 kg]

Topo ID: 10

jnt 13   mbr 24

weight 1828 lb [829 kg]

Topo ID: 15

jnt 17   mbr 32

weight 1743 lb [790 kg]

Topo ID: 7

jnt 12   mbr 22

weight 1937 lb [879 kg]

weight 2165 [982 kg]

jnt 11   mbr 22

Topo ID: 3

weight 1746 lb [792 kg]

jnt 15   mbr 28

Topo ID: 13

weight 1782 lb [808 kg]

jnt 19   mbr 36

Topo ID: 18

weight 1793 lb [813 kg]

jnt 17   mbr 32

Topo ID: 17

weight 1892 lb [858 kg]

jnt 15   mbr 28

Topo ID: 16

weight 1714 lb [777 kg]

jnt 16   mbr 30

Topo ID: 14

 

Figure 3.7. Selected results from the lenticular truss bridge.  The results are reorganized here into 
topological families (rows) which gain in complexity from left to right. 



 

 

136 

Topo ID: 8

jnt 14   mbr 26

weight 1809 lb [821 kg]

Topo ID: 13

jnt 15   mbr 28

weight 1746 lb [792 kg]

Topo ID: 14

jnt 16   mbr 30

weight 1714 lb [777 kg]

 

Figure 3.8. Three selected topologies from the lenticular bridge showing a range in the number of 
members and associated weights. 

3.1.4 Comparison of Results 

This section compares the results of the IGDT with other published results which have 

used either Evolutionary Algorithms or different optimization methods applied to similar 

small bridge problems as explored in this section.  The first example shown in Figure 3.9. 

form Klarbring, Petersson & Rönnqvist (1995) is based on a ground structure.  In a 

ground structure, a field of nodal points is defined in advanced and the members are 

only allowed to connect to these nodes.  Klarbring et al. uses a multi-objective variation 

of Linear Programming.  The results thus obtained are very similar to what the IGDT 

offered in Figure 3.3. by the more fit solutions, e.g., topologies 12, 15 or 18.  Because of 

the three node support, the Klarbring et al. solution shows a second and partial third 

compression arch.  But as a helpful design tool, the Linear Programming approach used 

by Klarbring et al. seems to fall short of what the IGDT produce in Figure 3.3.  Although 

the Klarbring et al. solution points to one of the same topology patterns as found by the 

IDGT, the LP method lacks the capability to reveal other near optimum ('pretty good') 

solutions.  As a result the upper half of Figure 3.3., which contains most of the 'named' 

solutions, remains obscured to Klarbring et al. 

 

Figure 3.9. Left:  Ground structure from Klarbring (1995) 
Right:  Ground structure nodes and optimized topology from Klarbring (1995) 



 

 

137 

Kocvara & Zowe (1995) provide a further comparison using Linear Programming both 

with and without a ground structure (Figures 3.10. and 3.11.).  Figure 3.10. shows the 

solution derived using a ground structure with 264 nodes.  Figure 3.11. shows a second 

solution from Kocvara & Zowe using the same design parameters, but this time no 

ground structure.  The ground structure version can be seen as very similar to the 

example by Klarbring et al. in Figure 3.9.  In Figure 3.11. the deck was held in place at 

set nodes and the arch was allowed vertical change of position.  In the IGDT example 

both x and y axis position change was allowed, but either constraint is available to the 

designer.  The arch in the Kocvara & Zowe example is a smoother parabolic form due to 

the increased number of load providing deck nodes. 

 

 

Figure 3.10.   Ground structure and optimized topology from Kocvara & Zowe (1995) 

 

Figure 3.11.   Optimized topology without ground structure from Kocvara & Zowe (1995) 

 

A third comparison is made with a pair of solutions published by Kikuchi, Cheng & Ma, 

(1995) based on the homogenization design method using a sensitivity analysis.  In this 

example the topologies of the bridge trusses were optimized for given eigenfrequencies 

and weight.  The results are a little hard to compare since I did not use the 

eigenfrequencies in my calculations.  Also, the load distribution is different with the center 

load set at twice the level of the end loads.  But Figure 3.12. is nonetheless interesting as 



 

 

138 

an example of the output from the homogenization design method.  This solution is a first 

order analysis.  The gray scale indicates the level of stress in the members, with blacker 

being higher stress. 

 

 

Figure 3.12. Two bridge topologies optimized for eigenfrequencies using homogeneous design methods 
and sensitivity analysis, from Kikuchi et al. (1995).  Design I is optimized for 80, 170 and 
200 Hz.  Design II is optimized for 110, 130 and 170 Hz. 

 

The last two examples were performed using stochastic methods.  Figure 3.13. by  

Orta-Rial (2000) is an example of a lenticular bridge configuration.  The method used 

was simulated annealing.  This example, like the IGDT, is intended as a tool for the 

beginning phases of design.  In that sense it searches for general forms.  The truss 

topologies were optimized for weight using both permanent and variable loads at the 

deck nodes.  The results are perhaps not so immediately applicable to a specific truss 

design, but do at least give some indication to the designer of load paths in the structure. 



 

 

139 

 

Figure 3.13. The topology of a lenticular seven panel truss, found using simulated annealing  
(Orta-Rial, 2000). 

The last comparative example is by Deb & Gulati (1999) and uses a Genetic Algorithm to 

produce optimal geometry and topology for a bridge trusses based on a ground 

structure.  Deb comments that most examples of truss topology optimization which use 

GA's find first a topology while holding all member cross sections constant, then once a 

topology is chosen the members are sized.  Of course, in using a ground structure, the 

selection of topology and geometry are linked.  That is, when a topology is chosen from 

the ground structure, the geometry is not altered from that ground structure.  These two 

points certainly limit the quality of the results obtainable.  Deb corrects the short coming 

of first point by optimizing each stable topology found to base the fitness on actual 

member sizes.  But like all methods based on ground structures, he is limited by the 

second problem of linked topology and geometry. 

The effect of linking topology with geometry is made apparent in Figure 3.15.  On the left 

of Figure 3.15. is shown the topology/geometry found by Deb, based on the ground 

structure shown in Figure 3.14.  Using the same loading and topology I employed the 

IGDT to search for a better geometry.  The result is shown in comparison to Deb's 

solution, on the right of Figure 3.15.  This comparison highlights the limitation of the use 

of ground structures.  The IGDT avoids the problem Deb describes by optimizing member 

sizes for each topology, but in addition, the IGDT also goes beyond Deb's solution by 

avoiding the use of ground structures altogether.  This demonstrates one of the unique 

features of the IGDT in the field of topology optimization of trusses, viz. no limiting use of 

ground structures. 



 

 

140 

 

Figure 3.14.   The ground structure used by Deb & Gulati (1999) for the truss shown in Figure 3.15. 

 

0

8

6

4
2 14

12

16

10

9

7

5315

13

11

1

20000 lb. 20000 lb. 20000 lb.

 

    using ground structureusing ground structureusing ground structureusing ground structure    NOT using ground structureNOT using ground structureNOT using ground structureNOT using ground structure    

Figure 3.15. Two solutions based on the same topology.  On the left is the solution found by  
Deb & Gulati (1999) using the ground structure from Figure 3.14.  On the right is the IGDT 
solution found without using a ground structure. 

Another aspect of ground structures is the effect the resolution has on the solution.  

Compare Deb's results using low resolution (12 nodes) with those of Klarbring in Figure 

3.9., which use the much higher resolution of 210 nodes.  Compare this with the results 

of the IGDT in Figure 3.4.  As the resolution of the ground structure increases, the 

solutions become more similar to those of the IGDT.  Of course the reason Deb chose 

such a low resolution has to do with the GA coding.  The length of the chromosome is 

based on the total number of possible members in the ground structure.  In Deb's ground 

structure this number is 39 as seen in Figure 3.14.  The chromosome coding of the IGDT 

is based on the upper triangular portion of the incidence matrix.  That number equals 

(joints2-joints)/2 or in this case (102-10)/2=45 .  If Deb were to increase the resolution of 

the ground structure to something on the order of Klarbring's 210, the number of 

possible members in his ground structure would go way up to (2102-210)/2 = 21945 .  



 

 

141 

Since the population size in a GA is linked to the chromosome length an increase from 

45 to 21945 would require a significant increase in the population size as well.  Both the 

longer chromosome and the larger population sizes would slow the convergence of the 

GA to an unacceptable level and the size of the problem quickly becomes 

unmanageable.  However, since the IGDT chromosome length is determined by the 

actual incidence matrix size and not the ground structure size, the chromosome remains 

45 even when using real numbers (actually doubles) for joint locations.  In other words, 

the IGDT gets much higher resolution than Klarbring, at about the same cost 

computationally as Deb's unsatisfactorily low resolution GA. 

3.1.5 Conclusions 

The flat deck bridge example was chosen because it is both commonly used as an 

example in literature, and because it is a very familiar application for a truss structure 

which is well known to everyone.  A broad range of solutions is presented in various 

relationships with the deck (above, below, and both above and below). 

With regards to historical, build examples, the IGDT finds several designs which are so 

well known as to have names.  Section 3.1.2.1 lists some of these trusses.  Had the 

number of bays not been limited to 4, it is fairly certain that other more complex trusses 

would have been found as well.  The discovery of these known truss cases by the IGDT is 

referred to as "historical creativity" by Margaret Boden (Boden, 1994, p.77).  Boden 

argues that when a machine or program discovers an already known solution to a 

problem, it is exhibiting the same creativity as the original discoverer, only at a different 

time.  In any case, it shows that the IGDT does find good solutions. 

When compared with other published results, the IGDT again demonstrates its ability to 

find good results.  However, more importantly, the results provided by the IGDT offer a 

choice of good solutions, rather than the single ‘take it of leave it’ solutions provided by 

other published methods.  In each comparison with published results, the IGDT not just 

one, but several, as good or better solutions. 

3.2 Arch Truss 

This problem is taken from a thesis completed at the Institute for Lightweight Structures 

(IL) by Boris Peter (Peter, 2000).  It has been chosen because it represents a solution 



 

 

142 

found by traditional (for the most part trial-and-error) design procedure.  It is also a case 

in which a capable engineering designer put more than the average amount of 

consideration into finding a solution that was both structurally efficient and geometrically 

elegant.  In Peter's original solution, the geometry of the top cord of the arch was an 

initial given.  This top chord served the dual function of cladding and structure, and was 

to be of glass.  The truss elements beneath the arch provided the necessary stiffening 

which allow the shallow arch to carry half and full load patterns.  Although the original 

thesis dealt in more detail with connections between glass and the steel rods, this 

example will concentrate solely on the design of the geometry for the supporting truss 

elements. 

3.2.1 Problem Description and Setup 

Mr. Peter's solution made use of solid steel rods in the design.  The solid sections were 

chosen to achieve the most slender members, rendering a more filigree appearance.  The 

choice of cross sectional type has, of course, an effect on the appropriate topology and 

geometry.  Solid cross sections will require geometries which favor shorter length 

members as opposed to designs using hollow sections.  Solid steel rods were used by the 

IGDT as well for consistency of comparison. 

49'-3"  [15m]

Topo ID: 0

jnt 15   mbr 27

weight 609 lbs  [276 kg]
 

Figure 3.16.   Geometry used in Peter's truss "1c"  (Peter, 2000). 

Mr. Peter used, RSTAB by Dlubal, a commercial program incorporating a finite element 

analysis module and member design based on the DIN 18800, German steel code.  

Since the steel design routine currently used in the IGDT only designs sections based on 

the US steel code (AISC, 1989) the elements of Peter's structure were re-sized using the 

same AISC requirements.  Both codes take member buckling into account.  Member sizes 

ranged slightly higher in the AISC (allowable stress design) results, as compared to the 



 

 

143 

DIN 18800 (strength design) results.  Peter used 30 mm diameter sections for all 

members, and the AISC code gave a range of 20 mm to 40 mm.  The AISC designed 

sizes were used in determining all of the weights used in comparing the different 

topologies. 

3.2.1.1 Problem Parameters and Geometry 

Figure 3.16. shows the geometry chosen by Mr. Peter.  It is based on a familiar truss 

topology, commonly referred to as a Warren Truss.  Complete geometric derivation can 

be found in Peter's thesis (Peter, 2000).  The top cord was designed to have eight 

identical segments, each 6 ft. - 2 in. [187 cm] long.  Therefore, the geometry of the top 

chord has been taken as a given for this example. 

3.2.1.2 Loading Cases 

Mr. Peter analyzed his truss using both symmetric and asymmetric loading patterns as 

well as out-of-plane loadings.  Because the finite element routines in the IGDT currently 

contain only planar elements, the out-of-plane loadings were not considered.  The 

loadings and load combinations that were considered are as follows: 

Loading Cases: 
• DL - self weight of steel truss plus glazing (constant) 
 7.28 psf [0.348 kN/m2] = 703 lbs [3.125 kN] per node 
• SL - snow load on full span 
 15.7 psf [0.75 kN/m2] = 1515 lbs [6.74 kN] per node 
• SL½ - snow load on half span 
 15.7 psf [0.75 kN/m2] = 1515 lbs [6.74 kN] per node 
• WL - negative pressure load (suction) 
 -10.0 psf [-0.48 kN/m2] = 967 lbs [-4.30 kN] per node 
• PL - single point load 
 2250 lbs [10 kN] per node 
 
Load Combinations: 
• DL + SL  (Maximum downward load) 
• DL + WL  (Minimum downward load) 
• DL + SL½  (Eccentric half load) 
• DL + PL  (Extreme point load) 
 

Figure 3.17. shows the six loading patterns applied to Peter's truss.  The trusses were 

designed at a spacing of 15 ft - 9 in [4.80 m].  A detailed description of the applied 

loadings can be found in Peter's thesis (Peter, 2000).  For purposes of comparison, the 

same load levels have been applied to this example.  Although in the original design the 



 

 

144 

top chord was a plate of glass and the bottom chord a cable, for purposes of exploring 

the possible topology of the supporting truss work, the entire system was modeled using 

steel rods.  The geometry of the top chord (the glass arch) was taken as a given, and the 

topology of the supporting truss work was explored. 

703 2980 703 703 703 703 703

DL + PL left

218

DL + SL½ left

2218 2218 2218 703 703 703

2218

DL + SL

2218 2218 2218 2218 2218 2218

703

DL + PL right

703 703 703 703 2980 703

2218

DL + SL½ right

703 703 703 2218 2218 2218

DL + WL

264 264 264 264 264 264 264

 

Figure 3.17.   The six load combinations used for Peter's arch truss design.  Nodal loads shown in lbs. 

3.2.2 Use of the IGDT 

As with the other examples, runs were made in the automatic mode to expose a group of 

plausible solutions.  A selection of 18 solutions was made and grouped by topology type.  

In keeping with the original design intent, topologies having fewer members and 

shallower depth were sought.  Figure 3.18. shows the selection of IGDT solutions.  

Finally, three topologies were chosen and forced to the same aspect ratio as the Peter 

truss for more direct comparison.  Using the reversing load combinations shown in Figure 

3.17., the top chord arch was always in compression and the bottom chord nearly always 

in tension.  Topology 1 is an interesting exception being controlled entirely by 

compression.  Web members tend to be either tension or compression, although 

compression dominated the member selection due to buckling with reverse loading.  In 

general the simpler, statically determinate topologies without 'X' bracing were more 

weight efficient.  The lightest solution found is topology 21 shown in Figure 3.19. 

3.2.2.1 Results of Runs 

The results of the IGDT runs showed several possible topology patterns.  In the first row of 

Figure 3.18., forms with two or three nodes on the bottom chord with web members 



 

 

145 

radiating from them are shown.  The logical first pattern in this sequence, one lower 

node, was also discovered, but was not chosen for display due to the inefficient weight of 

760 lbs.  In the next row, topologies 5 and 6 use a bifurcating, tree-like support to the 

upper compression arch.   

weight 404 lbs  [183 kg]

jnt 16   mbr 29

Topo ID: 16

weight 403 lbs  [183 kg]

jnt 14   mbr 25

Topo ID:17

weight 416 lbs  [189 kg]

jnt 14   mbr 27

Topo ID: 12

weight 383 lbs  [174 kg]

jnt 14   mbr 25

Topo ID: 14

weight 409 lbs  [186 kg]

jnt 16   mbr 29

Topo ID: 13

weight 509 lbs  [231 kg]

jnt 16   mbr 35

Topo ID: 7

weight 472 lbs  [214 kg]

jnt 16   mbr 33

Topo ID: 8

weight 470 lbs  [213 kg]

jnt 16   mbr 33

Topo ID: 10

weight 425 lbs  [193 kg]

jnt 14   mbr 27

Topo ID: 9

weight 380 lbs  [173 kg]

jnt 14   mbr 25

Topo ID: 15

weight 428 lbs  [194 kg]

jnt 14   mbr 27

Topo ID: 11

weight 396 lbs  [180 kg]

jnt 15   mbr 27

Topo ID: 5

weight 387 lbs  [176 kg]

jnt 15   mbr 27

Topo ID: 18

Topo ID: 1

jnt 11   mbr 19

weight 450 lbs  [204 kg]

Topo ID: 2

jnt 12   mbr 21

weight 409 lbs  [185 kg]

Topo ID: 3

jnt 12   mbr 21

weight 390 lbs  [177 kg]

Topo ID: 4

jnt 14   mbr 29

weight 463 lbs  [210 kg] weight 416 lbs  [189 kg]

jnt 14   mbr 25

Topo ID: 6

 

Figure 3.18. Selected results from the arch truss problem.  The results are reorganized into topological 
families (rows) which gain in complexity from left to right. 



 

 

146 

3.2.3 Comparison of Results 

All of the solutions found by the IGDT were deeper than the geometry chosen by Mr. 

Peter.  The solutions shown in Figure 3.18. range in the number of joints from 11 to 16 

and in number of members from 19 to 35.  This range brackets the actual topology of 

the Peter truss with 15 joints and 27 members, shown in Figure 3.20.  The weights of the 

IGDT solutions shown, which range from 470 lbs to 379 lbs, are all less than that of the 

Peter truss with 609 lbs.  The large difference is primarily the result of the difference in 

aspect ratio, the Peter truss being considerably shallower.  Figure 3.19. shows three 

topologies that were chosen for further comparison with the Peter truss.  In the first row 

topologies 19 – 21 are shown with the optimal aspect ratio as selected by the IGDT.  In 

the second row the same three topologies are shown using the same aspect ratio as the 

Peter truss.  Even with the less optimal slenderness, all three topologies offer lower 

weights.  The topology shown in 22 is actually the same topology used by Mr. Peter.  In 

this case the IGDT was able to find a slightly altered geometry which offers a 5% weight 

reduction.  The geometry in topo 22 is slightly thicker at the reactions, which presumably 

responds to the two peak point load cases shown in Figure 3.17. (DL+PL left and DL+PL 

right).  The last geometry shown in Figure 3.19. (topo 24) is 6.5% lighter than the Peter 

truss.  This was the lightest solution found by the IGDT. 

weight 569 lbs  [258 kg]

jnt 13   mbr 23

Topo ID: 24Topo ID: 23

jnt 15   mbr 27

weight 573 lbs  [260 kg]weight 579 lbs  [263 kg]

jnt 15   mbr 27

Topo ID: 22

weight 389 lbs  [177 kg]

jnt 15   mbr 27

Topo ID: 20

weight 392 lbs  [178 kg]

jnt 15   mbr 27

Topo ID: 19 Topo ID: 21

jnt 13   mbr 23

weight 379 lbs  [172 kg]

 

Figure 3.19. A selection of three topologies which best match the original selection criteria used by Mr. 
Peter.  The first row shows the lightest geometries found by the IGDT and the second row 
shows the same three topologies reanalyzed with the same aspect ratio as used by the Peter 
truss. 

Naturally the small advantage of lightness in these alternative solutions might be lost if a 

single cross-section were used for all members (as is commonly done).  Nonetheless, it is 

apparent that the 1/2 span snow load and eccentric point load would be better 

accommodated by a less dramatically tapered geometry as Mr. Peter selected.  In Peter's 



 

 

147 

geometry, both top and bottom chords have a constant radius (the upper chord having 

about double the radius of the lower) which provides additional advantages in joint 

detailing.   

Topo ID: 0

jnt 15   mbr 27

weight 609 lbs  [276 kg]  

Figure 3.20. The original Peter truss geometry analyzed with the same member selection routine as used 
by the IGDT, in order to provide a valid comparison. 

3.2.4 Conclusions 

In the end, it must be admitted that the solution found by Mr. Peter with its regular 

geometry and smoothly tapered profile is more elegant than the slightly plumper IGDT 

solutions, and at very near the same weight.  In this regard one can only compliment Mr. 

Peter on his refined sensitivity for structural form.  At the same time, it must be admitted 

that the IGDT found not only the topology ultimately used by Mr. Peter, but several others 

that might have served as alternatives.  Perhaps had Mr. Peter been presented with the 

IGDT solutions in Figures 3.18. and 3.19., he might have more quickly formulated his 

own design.  Thus, this example illustrates that the suggestions made by the IGDT are in 

the same direction as those found by a capable engineering designer.  In this way, it can 

be seen that the IGDT can function as a true aid in finding forms which lead to good 

engineering solutions. 

3.3 Cantilever Truss 

The cantilever truss with a single point load is a commonly chosen example in literature 

dealing with structural topology optimization (Bendsøe & Kikuchi, 1993; Galante, 1996; 

Hajela & Lee, 1995; Michell, 1904; Rajan, 1995; Rozvany, et al., 1992 

Sankaranarayanan, et al., 1994).  With stability is ignored, the problem was solved by 

Mitchell in 1904 using the method put forth by James Clerk Maxwell in the Royal Society 

of Edinburgh in 1870 (Maxwell, 1890).  Mitchell's solution, as well as other solutions 

based on similar parameters, are shown in Section 3.3.3. in Figures 3.24. through 3.26. 



 

 

148 

3.3.1 Problem Description and Setup 

Different researchers have used various aspect ratios and loadings in describing this 

problem.  Often stability will be neglected in order to make a direct comparison with 

Mitchell's figure.  In this example, two options were explored. 

1. without buckling analysis (Mitchell case) 
2. with buckling analysis using steel tubular sections 
 

Both cases were otherwise run for the same load and geometric configuration.  Figure 

3.21. shows the problem setup and loading condition. 

10000 LB
[44.5 kN]

15 ft.

[4.57 m]

30 ft.

[9.15 m]

Design
SpaceSpace

Design

30 ft.

[9.15 m]

15 ft.

[4.57 m]

[44.5 kN]
10000 LB

7.5 ft.

[2.29 m]

7.5 ft.

[2.29 m]

Option 2 - with bucklingOption 1 - no buckling
 

Figure 3.21. Description of Loading and Geometric Constraints for Options 1 and 2 of the Cantilever 
Truss Problem.  Note the difference in end reactions. 

3.3.1.1 Problem Parameters and Geometry 

The geometries in each of the two options of this example were kept the same.  Only the 

analysis parameter of buckling distinguishes the two trials.  The dimensions are given in 

Figure 3.21.  Steel was used in both cases and the AISC-ASD design specifications, 

including buckling, were followed for Option 2.  Member area in Option 1 was 

determined based on a simple axial stress analysis (area = force / fyield), i.e., buckling was 

not considered.  The support conditions were pinned at both the upper and lower 

support.  An overall aspect ratio of 1:2 was used.  For option 1 without buckling, no limit 

was placed on size or slenderness of the members.  Also, no penalty was made for 

amount of deflection.  These parameters are similar to several published examples using 

other optimization methods (Duysinx, et al., 1995) (Kirsch, 1995). 



 

 

149 

3.3.1.2 Loading Cases 

The loading for both options was also held constant.  A point load of 10000 lbs  

[44.5 kN] was applied at mid height between the supports at the free end of the 

cantilever.  Self-weight was not considered in either option. 

 

weight 121 lb  [55 kg]

jnt 3   mbr 3

Topo ID: 1

weight 101 lb  [46 kg]

jnt 8   mbr 12

Topo ID: 8

weight 102 lb  [46 kg]

jnt 9   mbr 14

Topo ID: 5

weight 102 lb  [46 kg]

jnt 8   mbr 12

Topo ID: 3

weight 102 lb  [46 kg]

jnt 6   mbr 8

Topo ID: 2

weight 102 lb  [46 kg]

jnt 8   mbr 12

Topo ID: 7

weight 101 lb  [46 kg]

jnt 10   mbr 16

Topo ID: 9

weight 103 lb  [47 kg]

jnt 8   mbr 12

Topo ID: 4

weight 102 lb  [46 kg]

Topo ID: 6

Topo ID: 11

jnt 11   mbr 18

weight 101 lb  [46 kg]weight 102 lb  [46 kg]

jnt 9   mbr 14

Topo ID: 10 Topo ID: 12

weight 101 lb  [46 kg]

jnt 11   mbr 18

jnt 11   mbr 18

 

Figure 3.22.   Solutions found by the IGDT for the non buckling case. 



 

 

150 

3.3.2 Use of the IGDT 

Both parts of this example were run in the automatic mode for a preset number of 

generations and cycles.  Solutions were selected and arranged by topology and 

increasing complexity as in the other examples. 

3.3.2.1 Cantilever without Buckling Analysis (Option 1) 

Figure 3.22. shows a selection of 12 topologies found for the case without buckling.  

There are a few different patterns shown in the first two rows, but the well known Mitchell 

topologies fill the lower half of the figure.  The process time for these runs was very short 

compared to the other examples.  A 30 cycle run required approximately an hour for 

completion. 

The actual difference in weight among  the solutions shown in Figure 3.22. is not very 

much.  This is an example of a solution plateau, where several solutions give 

approximately the same result.  The advantage of the IGDT is that one is not only made 

aware of this fact, but also shown some of the other near optimal solutions as well.  

Using the IGDT in this way can help the designer obtain a feel for the sensitivity of the 

topology to variation. 

3.3.2.2 Cantilever with Buckling Analysis (Option 2) 

The same cantilever problem was repeated with the members sized using the buckling 

criteria of the ACSA-ASD steel code (AISC, 1989).  Members were chosen from 

continuous pipe sizes that approximate schedule 40 steel pipe.  Figure 3.23. shows a 

selection of solutions found by the IGDT.  As in each example the solutions are arranged 

with similar topologies three to a row, increasing in complexity from left to right as well as 

top to bottom.  Here there was considerably more variation than in the non-buckling 

analysis.  The familiar Warren topology is shown with increasing numbers of panels in 

the first two rows.  Of this set, Topo 4 has the least weight.  Atypically, the weight actually 

increases as more members are added from Topo 4 to 7.  The topologies in the last row 

show some similarity with the Mitchell patterns, but in general the solutions were 

markedly different from those discovered in the non-buckling analysis.  The symmetry of 

the non-buckling solutions is missing in these solutions. 



 

 

151 

Topo ID: 5

jnt 9   mbr 15

weight 352 lb  [160 kg]

jnt 10   mbr 17

weight 357 lb  [162 kg]

Topo ID: 6

Topo ID: 16

jnt 8   mbr 13

weight 359 lb  [163 kg]

Topo ID: 13

jnt 7   mbr 11

weight 420 lb  [190 kg]

Topo ID: 12

jnt 8   mbr 13

weight 344 lb  [156 kg]

Topo ID: 18

jnt 9   mbr 15

weight 318 lb  [144 kg]

Topo ID: 14

jnt 6   mbr 9

weight 427 lb  [194 kg]

Topo ID: 17

jnt 8   mbr 13

weight 341 lb  [155 kg]

Topo ID: 3

jnt 7   mbr 11

weight 359 lb  [163 kg]

Topo ID: 15

jnt 7   mbr 11

weight 343 lb  [156 kg]

Topo ID: 1

jnt 5   mbr 7

weight 417 lb  [189 kg]

Topo ID: 11

jnt 7   mbr 11

weight 345 lb  [157 kg]

Topo ID: 10

jnt 7   mbr 13

weight 471 lb  [214 kg]

Topo ID: 7

jnt 7   mbr 11

weight 375 lb  [170 kg]

Topo ID: 8

jnt 8   mbr 13

weight 356 lb  [162 kg]

Topo ID: 2

jnt 6   mbr 9

weight 360 lb  [163 kg]

Topo ID: 4

jnt 8   mbr 13

weight 346 lb  [157 kg]

Topo ID: 9

jnt 9   mbr 15

weight 350 lb  [159 kg]

 

Figure 3.23.   Solutions found by the IGDT for the buckling case. 



 

 

152 

3.3.3 Comparison of Results 

This example was chosen mainly because it is used as a test case by may authors and 

therefore the results are readily comparable.  The following two subsections show 

comparisons with different optimization techniques. 

3.3.3.1 Cantilever Results without Buckling 

The cantilever problem was run first without taking buckling into account, in order to be 

able to better compare the results with Mitchell's figure and other published solutions.  

Figure 3.24. shows the comparison of the IGDT solution to Mitchell's original cantilever 

example.  The similarity to Mitchell's solution can be readily recognized.  The IGDT 

topology is also comparable to the Klarbring solution shown in Figure 3.26. which makes 

use of a reduction strategy to find an optimal solution (Klarbring, et al., 1995). 

           

   Mitchell      IGDT 

Figure 3.24.   A comparison of Mitchell's classic 1904 solution and the solution found by the IGDT. 

 

Likewise, Figure 3.25. shows a comparison of a topology found using a homogeneous 

design method and sensitivity analysis (Duysinx, et al., 1995) with an IGDT produced 

solution.  The topologies found by Kirsch (Kirsch, 1995) are very similar.  Figure 3.26. 

shows the results found by Kirsch with comparable IGDT solutions.  In all of these cases 

the IGDT succeeds in finding the same or very similar topologies.  This can be taken as 

evidence that the algorithm is at least capable of discovering good solutions.  But the real 

significance is not that the IGDT finds the 'best', but that it finds many 'good' solutions, 

and thus affords the designer a choice. 



 

 

153 

           

  Duysinx, et al.      IGDT 

Figure 3.25. On the left, optimization using homogeneous design methods and sensitivity analysis by 
Duysinx, et al. (1995).  On the right, a topology found by the IGDT, Topo 3, Figure 3.22. 

 

 

     

Topo ID: 2

jnt 6   mbr 8

weight 102 lb  [46 kg] weight 106 lb  [48 kg]

jnt 5   mbr 7

Topo ID: 13

jnt 11   mbr 18

weight 101 lb  [46 kg]

Topo ID: 12

 

   Kirsch      IGDT 

Figure 3.26. On the left, Cantilever topology optimization using a reduction strategy.  (Kirsch, 1995) 
On the right, three similar solutions found by the IGDT. 

 

 

 

Figure 3.27.   Use of a ground structure to find optimal topologies.  (Klarbring, et al., 1995) 



 

 

154 

3.3.3.2 Cantilever Results with Buckling 

Although I could not find published examples which included buckling, it is interesting to 

compare these solutions with those where buckling was not considered.  In the runs made 

with the buckling analysis included, one can see the change in topology driven by the 

advantage of using shorter compression members and of placing a greater percent of 

the structure in tension.  The current member sizing routine makes the rather simplified 

assumption that the members are always braced against buckling at nodes.  This leads to 

many, short compression members as opposed to a few longer ones.  Finally, the simple 

downward point load removes the chance of stress reversals and allows advantage to be 

taken by topologies that make use of slender tension ties.  The top chord being in tension 

was usually less segmented than the bottom compression chord.  For example in Topo 4 

the top tensile chord is segmented into 3 members while the bottom compression chord is 

segmented into 4.  The lighter solutions follow this pattern.  Topo 8 is divided 3 top and 4 

bottom, and Topo 9 is divided 3 top and 5 bottom.  Topo 17 is the only solution under 

359 lbs that does not have more top chord divisions than bottom chord.  It is evenly 

divided 3 and 3.  Another common attribute in the set is that the bottom chord is concave 

upward and the top chord is convex. 

3.3.4 Conclusions 

Again, this is an example which is commonly found in the literature.  Starting with 

Mitchell’s 1904 exact solution, many researchers have sought to verify their methods by 

reproducing the truss topology found by Mitchell.  The IGDT is successful in finding this 

same pattern.  The IGDT is also successful in finding patterns of other methods such as 

the homogeneous solution found by Duysinx, et al.  The IGDT also has the flexibility to 

include buckling parameters and member cross section.  The results found demonstrate 

the effects of including these additional variables. 

3.4 High Speed Gantry 

This is an actual design problem that was solved by an engineer using the finite element 

analysis and optimization capability of the commercial software package, ANSYS.  It was 

chosen as a good example of how design problems are typically solved vs. results that 

can be achieved using the IGDT approach. 



 

 

155 

3.4.1 Problem Description and Setup 

Of the examples presented in this dissertation, is the most complex in terms of usage and 

loading.  Rather than a typical slowly moving gantry used to lift and move heavy objects, 

this gantry is intended to accelerate and decelerate a trolley at high speeds.  It would be 

used to investigate the effects of different combinations of x and y axis acceleration and 

deceleration on the contents of the trolley.  The trolley with its payload weighs 22 kips 

and the forces produced by its acceleration or deceleration are the primary loads on the 

structure. 

3.4.1.1 Problem Parameters and Geometry 

The arrangement of the gantry and trolley is shown in Figure 3.28.  In the actual 

problem, gravity acts normal to the plane of the drawing, but since the dominant loads 

come from the acceleration and deceleration of the trolley and gantry, the gravity load of 

the system is neglected.  The weight of the loaded trolley is 22 kips [10000 kg] with a 

center of gravity shown in Figure 3.28.  The trolley is prevented from coming any closer 

than 23 ft [7.0 m] to the ends of the gantry.  In the orientation of the drawing, the gantry 

moves vertically, and the trolley moves horizontally.  The gantry rail remains straight, and 

is supported by the gantry truss.  Two basic arrangements for the truss were explored: six 

panel and seven panel. 

 

131.2 ft

[40.0 m]

23.0 ft

[7.0 m]

23.0 ft

[7.0 m]

18.0 ft

[5.5 m] 26.2 ft

[8.0 m]

c.g.

Gantry Rail

Design
Space

 

Figure 3.28. The gantry problem showing the location of the moving trolley.  The trolley moves in this 
illustration in the horizontal direction across the 131.2 ft [40 m] span, while the gantry beam 
moves in the vertical direction of the illustration. 



 

 

156 

3.4.1.2 Loading Cases 

The problem has a complex loading caused by the acceleration and emergency braking 

of a trolley which moves on a track below a gantry. The load cases considered are taken 

from combinations of maximum accelerations and decelerations of the gantry and trolley.  

Because the trolley has a set width, the actual nodal loading depends on the panel 

spacing.  The bottom chord (the track) was assumed to be a continuous member when 

determining the placement of the trolley to produce the worst case nodal loadings.  The 

load cases were attained by using the highest pair of nodal reactions caused by the 

simultaneous braking of the trolley and gantry, while locating the trolley at each possible 

position and direction with respect to the panel nodes.  Two panel configurations were 

explored – 6 panel and 7 panel.  The load cases for each of these are shown in Figures 

3.29. and 3.30. 

 

1. 2.

4.

6.

8.

10.9.

7.

5.

3.

 

Figure 3.29.   The 10 Load cases used in the six panel configuration of the gantry problem. 



 

 

157 

1. 2.

4.

6.

8.

10.

12.11.

9.

7.

5.

3.

 

Figure 3.30.   The 12 Load cases used in the 7 panel configuration of the gantry problem. 

3.4.2 Use of the IGDT 

Because of the complex loading and greater number of nodes, this problem took longer 

to run that any of the others presented in this dissertation.  Using a cluster of 30 Pentium 

II & III class machines the run time averaged between 3 to 4 hours per topology cycle 

while using 50 individuals in the geometry generations and 20 individuals in the topology 

generations.  Therefore, a complete run of 10 cycles took about a day and a half.  A few 

different runs were made of each panel configuration using different startups (different 

progenitors or different start generations).  After inspecting the results, it was seen that 

lower weight solutions were being found with more members.  Because of the reversing 

load cases, almost all members are placed in compression under some loading, and 

therefore the shorter members have an advantage in buckling.  In response to this, an 

additional run of 10 cycles was made setting the maximum joint count up to 32 and 36 

for 6 and 7 panel trusses respectively, while the topology population was increased to 50.  

The larger topology population with more joints, caused the run time to increase to about 



 

 

158 

1 week.  The solutions chosen from these longer runs are generally the lower half of the 

Figures 3.31. and 3.32. 

weight 12496 lb  [5668 kg]

jnt 22   mbr 42

Topo ID: 14

weight 12499 lb  [5669 kg]

jnt 20   mbr 37

Topo ID: 7

weight 11909 lb  [5402 kg]

jnt 24   mbr 45

Topo ID: 8

weight 12261 lb  [5562 kg]

jnt 24   mbr 49

Topo ID: 9

weight 11384 lb  [5164 kg]

jnt 28   mbr 53

Topo ID: 12

weight 11876 lb  [5387 kg]

jnt 24   mbr 45

Topo ID: 10

weight 11393 lb  [5168 kg]

jnt 28   mbr 53

Topo ID: 11

weight 13921 lb  [6315 kg]

jnt 15   mbr 27

Topo ID: 3Topo ID: 1

jnt 13   mbr 23

weight 14463 lb  [6560 kg]

Topo ID: 2

jnt 14   mbr 25

weight 13876 lb  [6294 kg]

weight 12749 lb  [5783 kg]

jnt 21   mbr 39

Topo ID: 13

weight 11451 lb  [5194 kg]

jnt 26   mbr 51

Topo ID: 16

weight 11291 lb  [5121 kg]

jnt 29   mbr 55

Topo ID: 15

weight 11272 lb  [5113 kg]

jnt 28   mbr 54

Topo ID: 17

weight 11377 lb  [5161 kg]

jnt 28   mbr 56

Topo ID: 18

weight 12915 lb  [5858 kg]

jnt 18   mbr 33

Topo ID: 4

weight 12937 lb  [5868 kg]

jnt 19   mbr 35

Topo ID: 5

weight 12569 lb  [5701 kg]

jnt 20   mbr 37

Topo ID: 6

 

Figure 3.31.   Selected solutions to the 6 panel configuration of the gantry problem. 

3.4.2.1 Results of 6 Panel Truss 

Selected solutions to the 6 panel truss are shown in Figure 3.31.  Using 6 panels results 

in a panel width which is a bit wider than the trolley width (29.5 ft panel and 26.2 ft 

trolley).  The results from the runs are arranged in topologically similar groups of 3 to a 



 

 

159 

row with increasing complexity from left to right, as well as increasing complexity from 

top to bottom.  Due to the reversing load cases, almost all member sizes are controlled 

by compression buckling.  Therefore, there was an advantage in reducing member length 

of the inner members as well as the upper arch.  The lower track member was preset, 

and therefore remains unchanged.  This is certainly a drawback in the way the IGDT is 

coded.  Because loading can only occur at nodes, the loaded nodes (and connecting 

members) have to be geometrically fixed.  Therefore, the panel spacing on the loaded 

nodes is set.  However, in most practical applications this may not be too severe a 

limitation.  Solutions near the base of Figure 3.31. are about 20% lighter, but contain 

over double the number of members.  So beyond a point, discovering new topologies 

with increasing numbers of members is not practical. 

The simplest topology discovered (Topo 1) is the well known Warren truss.  This had the 

least number of members of those shown in Figure 3.31.  In this topology, the top chord 

is divided into 5 segments (regarding left and right members as 'sides').  In the ensuing 

variations, the top chord is increasingly subdivided – 6 segments in Topo ID 2, 7 

segments in Topo 3, etc.  In the last row the top chord has between 10 and 12 segments.  

What emerges is a subdivided Warren truss with the top half having twice the number of 

divisions as the bottom half.  In all of the solutions, the aspect ration remains fairly 

constant at about 1:8. 

 

3.4.2.2 Results of 7 Panel Truss 

Selected solutions to the 7 panel truss are shown in Figure 3.32.  Using 7 panels results 

in a panel width which is a bit narrower than the trolley width (25.3 ft panel and 26.2 ft 

trolley).  The results are similar to the 6 panel solutions discussed above (3.4.2.1).  Again 

the simplest solution in terms of joints and members is the Warren truss (Topo 1).  As in 

Figure 3.31., the solutions in Figure 3.32. are arranged in by topology with complexity 

increasing from left to right and from top to bottom.  The range in weight from heaviest 

to lightest is about 20%.  In general the solutions of the 7 panel trusses where 2%-4% 

lighter than the 6 panel solutions.  As with the 6 panel trusses, there was a noticeable 

strategy to subdivide the upper chord by adding a second row of smaller triangles. 



 

 

160 

weight 13199 lb  [5987 kg]

jnt 16   mbr 29

Topo ID: 7

weight 12854 lb  [5830 kg]

jnt 17   mbr 31

Topo ID: 2

weight 13955 lb  [6330 kg]

jnt 15   mbr 27

Topo ID: 4

weight 12560 lb  [5697 kg]

jnt 21   mbr 41

Topo ID: 5

weight 12054 lb  [5468 kg]

jnt 21   mbr 39

Topo ID: 8

weight 11441 lb  [5190 kg]

jnt 28   mbr 56

Topo ID: 14

weight 11567 lb  [5247 kg]

jnt 29   mbr 59

Topo ID: 12

weight 11873 lb  [5386 kg]

jnt 26   mbr 50

Topo ID: 13

weight 11871 lb  [5384 kg]

jnt 25   mbr 50

Topo ID: 16

weight 13889 lb  [6300 kg]

jnt 14   mbr 25

Topo ID: 1

weight 11051 lb  [5013 kg]

jnt 29   mbr 57

Topo ID: 6

weight 11190 lb  [5076 kg]

jnt 30   mbr 58

Topo ID: 18

weight 11047 lb  [5011 kg]

jnt 29   mbr 55

Topo ID: 17

weight 12689 lb  [5756 kg]

jnt 21   mbr 39

Topo ID: 10

weight 11528 lb  [5229 kg]

jnt 27   mbr 51

Topo ID: 9

weight 11544 lb  [5236 kg]

jnt 27   mbr 51

Topo ID: 11

weight 12120 lb  [5497 kg]

jnt 23   mbr 43

Topo ID: 3

weight 11252 lb  [5104 kg]

jnt 30   mbr 58

Topo ID: 15

 

Figure 3.32.   Selected solutions to the 7 panel configuration of the gantry problem. 

As one might expect, as the complexity increases, the number satisficing, or sub-optimal, 

solutions also increase, and the sensitivity of the structure to minor topological variations 

decreases.  Although most of the selected topologies exhibit bilateral symmetry, there 

were just as many, with similar or better fitnesses, that had at best imperfect symmetry or 

in some cases no visible symmetry.  Figure 3.33. shows 3 of this category.  With the 

larger number of interstices, the exact ordering of the topology seems less critical.  The 

structures begin to take on a more organic appearance. 



 

 

161 

weight 11716 lb  [5314 kg]

jnt 30   mbr 58

Topo ID: 20

weight 11668 lb  [5292 kg]

jnt 28   mbr 53

Topo ID: 19

weight 10731 lb  [4867 kg]

jnt 33   mbr 63

Topo ID: 21

 

Figure 3.33. Three examples of asymmetric solutions from the 7 panel run.  Topo 21 was actually the 
most fit from the runs made, however, topo's 19 and 20 both have relatively good fitness 
values (low weight). 

3.4.3 Comparison of Results 

The IGDT results in Figures 3.31. and 3.32. can be compared with the design chosen 

based on the ANSYS analysis and shown in Figure 3.34.  In order to make a useful 

comparison, the weight given for Figure 3.34. is based on the same pipe sizing algorithm 

used by the IGDT.  Because ANSYS can only perform shape optimization on one load 

case at a time, separate solutions are obtained for each individual load case.  Figure 

3.35. shows two of these.  It is then up to the designer to somehow combine the results or 

choose the worst case.  One can see here the influence ANSYS had on the outcome of 

the original design. 

weight 20472 lb  [9286 kg]

jnt 13   mbr 23

Topo ID: 0

 

Figure 3.34.   The final design chosen aided by a commercial optimization analysis (ANSYS) 

 

 



 

 

162 

Figure 3.35.   Optimization results using commercial software and single load cases. 

On the other hand, the solutions offered by the IGDT represent the combined effects of 

all load cases.  The IGDT solutions also consider buckling lengths of compression 

members.  All of the IGDT solutions pointed to a flatter, less arched, form, with an aspect 

ratio of about 1:8 rather than 1:3.5 as used by the designer.  The same topology found 

by the original designer for the six panel truss was also found by the IGDT.  In addition 

several others, including lighter topologies, were also found with the same or similar 

complexity (the first rows of Figures 3.31. and 3.32.).  Figure 3.36. shows the IGDT 

geometry for the same topology as used by the designer in Figure 3.34.  The IGDT 

chosen geometry is 28% lighter. 

weight 14603 lb  [6624 kg]

jnt 13   mbr 23

Topo ID: 0

 

Figure 3.36.   The IGDT geometry for the same topology as shown in Figure 3.34. 

3.4.4 Conclusions 

This example provides the opportunity to compare the results obtained using the IGDT 

with those found using commercial software.  The IGDT provides advantages in two 

ways.  First, as pointed out with respect to the other examples, by offering a choice of 

solutions, the IGDT goes much further toward intelligent interaction with the designer.  

Issues of complexity vs. weight reduction can be better explored when viewing a range of 

solutions such as that shown in Figures 3.31. or 3.32.  In addition, the IGDT was able to 

give a more complete analysis in this case, by including the multiple variables of moving 

loads and the non-linear parameter of buckling.  Thus, it is not surprising that the IGDT 

was able to offer a substantial improvement over the design found using commercial 

software. 

3.5 Interactive Design 

The preceding examples were all run using the automatic mode of the IGDT.  This was 

primarily because they were all run by the author, and in order to avoid the impression of 

a 'rigged game' the selection was left to the program.  In addition it is difficult to record 



 

 

163 

and describe the design process that takes place when using the interactive mode.  One 

sees the results, but the decisions made in selection remain in the designer's head, and 

may not even be conscious or expressible. 

What is shown in this example are the results of a class assignment made to a group of 

architecture students.  The class had visited a local wrought iron bridge and subsequently 

used it as a subject in learning finite element analysis techniques.  The students were then 

asked to redesign the bridge for a standard moving truck and lane loading (HS 20).  The 

desire was first to find a more weight efficient solution, but also to find a form that the 

designer felt was aesthetically pleasing and suited to the environment. 

3.5.1 Problem Description and Setup 

The Foster wrought iron bridge is shown in Figure 3.37.  The design was patented in 

1876 by the Wrought Iron Bridge Co. of Canton Ohio.  It is a simple one lane Pratt 

through bridge design with all truss work above the deck.  The 120 ft [36 m] span is 

divided into 8 panels. 

 

Figure 3.37. The Foster Bridge in Ann Arbor, Michigan which was used as a case study and pattern for the 
student design exercise. 

3.5.1.1 Problem Parameters and Geometry 

Dimensions of the Foster Bridge truss are given in Figure 3.38.  This was used as a 

progenitor truss for all above deck trials.  The students were given the freedom to either 

limit the truss to above the deck or to allow members below the deck as well.  Due to time 

constraints, the use to the IGDT was limited to one session of about 30 minutes.  From 



 

 

164 

that session each student group selected a truss which was then developed in 3D and 

finished by sizing all members using a commercial FEA package, STAAD.Pro 2004.  

STAAD used tubular steel sections and the requirements of the ASD-ASCI steel code to 

size all members and determine the total weights shown for each design. 

 

 

Figure 3.38.   Dimensions of the original Foster Bridge. 

3.5.1.2 Loading Cases 

The loading was based on a standard AASHTO HS 20 moving truck and lane load.  The 

axle load on the two axle truck was 32 kips [14.2 kN]  and the lane load was 640 lb/ft 

[9.4 kN/m].  Since axle spacing for HS 20 can be between 14 ft. and 30 ft. [4.3 – 9.1 m], 

14.8 ft [4.5 m] was chosen to match the panel spacing.  Figure 3.39. shows the 

combinations of lane and moving load as they were applied to the truss.  Self weight was 

left out of the IGDT analysis in order to allow faster run times.  The self weight was, 

however, included in the STAAD analysis. 

 

 



 

 

165 

Figure 3.39.  The combination of the six moving truck loads with the lane load.  All values in kN. 

3.5.2 Use of the IGDT 

Due to time constraints the students were only able to use the IGDT in one session to 

generate forms.  The sessions ran about 30 minutes which allowed for between 4 and 6 

interactive cycles.  Each group made the run independently and without knowledge of the 

work of the other groups. 

 

3.5.2.1 Results of Student Designs 

Figures 3.40. through 3.43. show the results of four of the groups.  There were seven 

groups altogether and none of them chose the same design topology.  Most designs 

selected tended to be in the same weight range as the original design, with some heavier 

and some lighter.  Finding a lighter solution was an obvious objective, but some students 

treated weight more as a secondary objective compared to some formal requirement.  

For example the bridge shown in Figure 3.41. was a deliberate attempt to find a solution 

that included trusswork above and below the deck. 

Although this design exercise was not configured to measure user reaction to the software 

interface, the students seemed to have no trouble with viewing the images on the screen 

or following the logic of making selections.  The short one time session was not really 

adequate for the users to offer suggestions on the interface.  It was likely the first time 

many of them had run a program in a Unix environment, and so they were 

understandably reluctant comment much on the interface.  In addition, with the author of 

the program, who was at the same time their instructor for the class, watching the 

procedure, any comments they may have made were certainly less than completely 

candid.  None the less, the general sense of the trial was that the program preformed as 

intended and the users were able to gain a definite insight and better understanding of 

the possible solutions. 



 

 

166 

 

 

Figure 3.40.   Design by Yujin Kim, Jaewon Song and Jaewong Lee. 

 

 

Figure 3.41.   Design by Robert Walsh. 

 

 

Figure 3.42.   Design by Xuezhen Chen and Jin Jeon. 

 

 

Figure 3.43.   Design by Lauren Bostic, William Marquez, Jennifer Siegel, and Faye Whittemore. 

NODES: 28 
MEMBERS: 84 
WEIGHT: 13.2 tons [11.9 Tonnen] 

NODES: 32 
MEMBERS: 84 
WEIGHT: 9.2 tons [8.3 Tonnen] 

NODES: 32 
MEMBERS: 82 
WEIGHT: 8.6 tons [7.8 Tonnen] 

NODES: 32 
MEMBERS: 84 
WEIGHT: 8.7 tons [7.8 Tonnen] 



 

 

167 

3.5.3 Comparison of Results 

Figure 3.44. shows the original Foster Bridge geometry redesigned using the STAAD 

member selection as was done with the student models so that the weight could be 

reasonably compared.  The Foster design was much more detailed with almost double 

the number of members (actually elements from the FEA) as compared with the student 

designs.  It also contains several tension-only member types that allow reduced size since 

the neither resist buckling or meet compression slenderness ratio requirements. 

 
Figure 3.44. The original Foster Bridge from 1876. 

 

The most obvious difference in the Foster design as compared with any of the other 

designs is the flat top which resulted in highly repetitive member lengths.  The Wrought 

Iron Bridge Company originally sold these bridges through a catalog and mass produced 

them at the factory in Canton, Ohio.  Not surprisingly, the architecture students were not 

particularly interested in issues of mass production and economy of repetition.  It might 

also be considered that these are students, not experienced designers.  Nevertheless, 

some of the designs did have merit.  Both 4.42. and 4.43. are more weight efficient with 

far fewer members and fewer connections.  In both cases the chosen form is also visually 

successful.  The designer of the bridge shown in Figure 3.42. was specifically interested in 

marking the center axis of symmetry.  The design group in Figure 3.43. took almost the 

opposite tact by dipping the center and creating a wave form. 

What is perhaps most interesting is that no two groups followed the same path.  In that 

respect the IGDT was very successful.  Had the groups tried the same exercise but using a 

traditional optimization program which would yield one solution, it is rather certain that 

their designs would have been much more similar if not identical.  Also, special features 

such as the peak at the center or the wave form would have been difficult to find.  

NODES: 59 
MEMBERS: 155 
WEIGHT: 8.9 tons [8.1 Tonnen] 



 

 

168 

3.5.4 Conclusions 

Although this example is perhaps the least defined of the set presented, it is the only 

example which involved users other than the author.  It is included primarily for that 

reason; to demonstrate that the IGDT can in fact be used by designers in exploring form.  

In this regard, the IGDT did just what it was intended to do.  It exposed a variety of 

reasonable solutions to the designers, and allowed them to find the expression they were 

seeking in the context of structural efficiency. 

 

 

Figure 3.45. Rendering of the bridge designed by student group: Lauren Bostic, William Marquez, Jennifer 
Siegel, and Faye Whittemore. 



 

 

169 

4 Conclusion 

4.1 Summary 

4.1.1 Aspects of Design 

4.1.1.1 Producing Design 

The term "design" has meaning that is context dependent, and discipline relative.  Both 

architects and engineers see design as a complex, multi-phased process.  The IGDT 

centers on the early phases of design development.  As such, it is primarily concerned 

with issues of creativity and form exploration, rather than detail optimization and 

refinement.  Creativity and form exploration is an area which has traditionally been hard 

to effectively support with computer aided tools.  Nonetheless, decisions made in the 

early design phases have great impact on the relative success of a project.  In projects 

where architectural form is closely tied to an understanding of the appropriate structural 

form, there has always been a need for tools which can be effectively used to explore the 

possible design space. 

4.1.1.2 Aiding Design 

Design tools are distinguished in this work from analysis tools in their ability to discover 

new forms or solutions, rather than being limited to the analysis of an existing design.  

Design tools are necessarily exploratory in nature.  Whether model based, graphic or 

computer driven, good design tools stimulate the designer's own creativity in exploring 

the solution space.  This means offering multiple solutions for the designer's 

consideration, rather than a single 'optimized' solution, which can be, in its own way, a 

detriment to creativity by causing fixation on that single, offered solution.  The tool 

described in this work, the IGDT, is a form exploration tool that is able to reveal to the 

designer, arrays of 'pretty good' solutions.  As a tool for exploration, it allows the user to 

direct its path through the design space in a way that conforms to the user's often less 

than articulate concept of the appropriate form vocabulary of a given project.  The use of 

the tool is intended to be both stimulating to the designer's own creative instinct as well as 

supportive in revealing forms which are structurally suitable to the specific design 



 

 

170 

conditions.  In this way, the IGDT defines a new class of design tool that is particularly 

appropriate to the early phases of design development. 

4.1.2 Aspects of GAs and the IGDT 

4.1.2.1 GAs as Search Algorithms 

Genetic Algorithms (GAs) are a class of evolutionary computation that are used as search 

engines in problems which are either ill structured or contain multiple or often conflicting 

objective parameters.  In the last three decades much effort has been expended in the 

development of mechanisms and applications of GAs.  It has been documented that 

although they will almost always be less efficient and less apt to find the very peak 

optimal solution as defined by the fitness function, they are much more robust and 

flexible in application.  This work has found that to be true.  In addition GAs have the 

capability of allowing user-interactive definition of the fitness function.  User supplied 

fitness functions have been a fascination of artists for many years.  Examples of work by 

Latham (Latham, et al., 1990), or Dawkins' classic "Biomorphs" (Dawkins, 1986) are clear 

examples.  More recently there has been a realization of the possibilities offered by user-

interactive GAs in solving engineering design problems (Boschetti, 2001). 

4.1.2.2 Interactive Exploration 

This work illustrates the use of GAs as aids in the exploration of possible alternate 

solutions within a design space.  It was found that the use of the populations of solutions 

inherent to GAs, combined with the potential for user interaction, makes GAs ideal as 

tools for aiding design, particularly in the early stages.  Section 1.2 discusses the nature 

of design, and what activities or methods can be employed to successfully aid design.  

Section 1.3.4 shows specifically how the IGDT contains many of these features. 

It was determined that two features are key to the success of a design tool: 

• exploration 
• interaction 
 

Exploration is the search of the design space for a pool of solutions from which 

selection can take place.   It is important that the tool not limit the selection to one 

solution.  It is not possible to select from a set of one.  Only acceptance or rejection is 

possible in such an instance.  This is not aid, but coercion.  Although with traditional 

(non-computer based) design aids, it was more common to explore several different 



 

 

171 

directions, it has been shown that the use of computers tends to promote the continued 

development of a single design direction (Goel, 1992).  This is stifling to creativity, and 

rapidly leads to design fixation.  By always presenting the user with a selection set of 

alternative solutions, the IGDT overcomes the danger of fixation in early phases of 

design, and is able to function as a true exploration tool. 

Interaction is the other critical ingredient for a design development tool.  Design is an 

engaging activity.  It is more than the simple selection of a solution.  It involves the 

definition of the problem itself, and therefore, suffers under rigidly defined and limiting 

objective functions.  The IGDT is successful in engaging the designer by allowing user-

interactive definition of the fitness function.  In this way the designer's own expertise and 

experience are brought into play.  The tool still requires the craftsman, which is both 

satisfying for the designer as well as enriching for the designed product. 

4.2 Results and Recommendations 

The discussion of results and the conclusions drawn from each example are presented at 

the end of each example in Section 3.  What is discussed in this section is the overall 

characteristics of the tool rather than specific instances of its performance. 

4.2.1 Applications 

As is the case with most optimization procedures, the time investment usually makes the 

application uneconomical for routine use.  The time schedule constraints placed on 

typical architectural projects, simply can not allow a detailed exploration of multiple 

directions.  This is why architectural researchers commonly pursue first their research 

topic, and then find an opportunity to apply the results.  Nonetheless, some projects 

make better candidates for detailed structural consideration than others.  One example 

would be a project in which some structural element plays a particularly significant roll.  

Another example would be a project in which the repetition of some element makes it 

worthwhile to give that element particularly detailed consideration. 

It is to the advantage of the IGDT concept that the problem input is no more complex 

than low end FEA program (e.g., STAAD) which is routinely used in offices.  There are 

numerous examples on the market where FEA programs have been coupled with CAD 

programs and a rather intuitive input interface, allowing even the beginning student 



 

 

172 

ready access.  As it now stands, the major limitation to the IGDT concept is the 

computational intensity inherent to GAs.  Although this translates into long run times with 

today's technology, the time may soon arrive when computing speeds increase sufficiently 

to make GA applications more accessible. 

 

4.2.2 Current Limitations 

4.2.2.1 Hardware - Software 

The coding for the IGDT was executed in ANSI standard C.  The coding in ANSI C should 

greatly facilitate porting to other platforms.  However, as mentioned above, the 

computational demand is fairly high.  The examples in Section 3. were all run in parallel 

on a distributed network with 30 hosts using the Parallel Virtual Machine (PVM) message-

passing software (Geist, et al., 1994).  Even with this capacity, problems with multiple 

load cases like the arch truss example, Section 3.2., or where self weight is considered, 

take several hours or overnight to run.  Although run time is hardware dependent, since 

one of the major drawbacks of GAs and the IGDT is long run times, it is useful to chart 

final run times for the examples used in Section 3.  Table 4.2. shows run times (median 

of 3 runs) for each example problem.  In forming this chart all examples were re-run with 

the same hardware configuration and, as far as possible, the same parameter 

configuration to aid in making an assessment.  The parameters shown in Table 4.1. were 

used consistently in all examples.  The complete list of parameters are listed in Appendix 

A in the #define section of truss.h. 

Some of the other #define parameters were set differently on different examples.  The 

analysis routine on one example (option 1 of example 4.3.) was set not to include 

buckling.  Otherwise the same steel pipe design routine (AISC-ASD) including buckling 

was used for all compression members.  All tension members were designed as steel 

rods, likewise based on the criteria of AISC-ASD. 

For university settings with large pools of machines that can readily be networked, 

distributed computing is possible.  In fact, in such settings, substantially more hosts can 

often be found without too much trouble.  But for a medium to small design firm this 

would certainly represent a limitation. 



 

 

173 

Value #define Definition 

2 START_UP Use progenitor to initiate first topo generation 

run_x_cyc RUN_GA Run geometry GA for a set (x=3) number of cycles 

100 GENERATIONS Maximum number of generation in the geometry GA 

4 CYCLES Number of cycles run in the geometry GA 

50 POP Size of the parent population in the geometry GA 

select_elite SELECT_TOP Topology selection method (elitist=choose best) 

2 TOPO_OP Run a set number of cycles in automatic mode 

40 TP_GEN_NR Maximum generation in one topology cycle 

7 TP_CYC_NR Set number of cycles run in the topology GA 

15 CYC_SAME No. of topos in a population defining convergence  

20 TOPO_NR Number of parents in a topology generation 

SPAN/30 MELD_LIMIT Joints found closer that this are joined to one joint 

SPAN/30 CUT_LIMIT Joints closer to members are joined to member 

SPAN/120 DEFLECT_LIM Solutions beyond this limit are penalized 

 
Table 4.1.   The more important #define parameters that were held constant for the timed trials. 

 

 

ExampleExampleExampleExample    
Joints Joints Joints Joints 
StartStartStartStart    

Joints Joints Joints Joints 
EndEndEndEnd    

Fixed Fixed Fixed Fixed 
JointsJointsJointsJoints    

Max. Max. Max. Max. 
Joints Joints Joints Joints 
AllowedAllowedAllowedAllowed    

Load Load Load Load 
CasesCasesCasesCases    

Self Self Self Self 
WeightWeightWeightWeight    

BucklingBucklingBucklingBuckling    
Time Time Time Time 
(hours)(hours)(hours)(hours)    

Pony Bridge 17 18 5 27 1 Yes Yes 1.5 

Deck Bridge 17 11 5 27 1 Yes Yes 0.44 

Lenticular Bridge 30 16 5 36 1 Yes Yes 1.8 

Arch Truss 15 15 9 27 6 No Yes 3.8 

Cantilever 1 11 11 3 27 1 No No 1.0 

Cantilever 2 11 9 3 27 1 No Yes 1.8 

6 Panel Gantry 20 28 7 30 10 No Yes 12.6 

7 Panel Gantry 24 33 8 35 12 No Yes 39.7 

Interactive 16 ~16 9 30 6 No Yes ~0.6* 

 
Table 4.2.   Comparison of run times (median of 3 runs) for the examples from Section 3. 

* on the interactive trial, each group ran about 4 topology cycles at 10 min. each. 



 

 

174 

4.2.2.2 Personnel Requirements 

The average architectural engineering personnel should be able to use the IGDT with out 

too much trouble.  In its present form, documentation is lacking, and the reliance on the 

direct manipulation of #define parameters in the header file is not very user friendly.  But 

the actual input for the IGDT is no more complex than the average FEA program.  In fact 

the one input file that is required was patterned after the data files used by SAP IV (Bathe, 

1974), which had a fairly typical FEA input format.  What is lacking for general usage is a 

modern graphic input interface.  I am currently working on a web based graphic 

interface.  Since the actual parallel cluster is usually accessed remotely anyway, having 

the interface readable over the internet would allow easy access via any web browser 

worldwide. 

The final example in Section 3.5, makes use of students at the University of Michigan to 

operate the program.  The trial was made in the context of a structural framing class that 

had used the FEA software, STAAD-Pro, earlier in the semester.  With less than an hour of 

instruction the students had no trouble in using the IGDT to explore alternative topologies 

for a local truss bridge.  What they were not required to do themselves was to set the 

#define parameters before execution.  That would have to be made more accessible 

before general users could define parameters themselves. 

However, the IGDT itself functioned as expected and provided the users with useful input 

to the design process.  Nonetheless, it remains in principle a search tool that requires an 

experienced researcher.  Without a craftsman to guide its use, the results can not be any 

better than what is reached in the automatic mode, and a true exploration of the design 

space would not be achieved. 

4.2.2.3 Time 

As mentioned above, the biggest limitation is certainly the time required for a run.  The 

current parallelization was coded with the premise that the number of hosts available 

would be on the order of the topology population size.  For the examples run in Section 3 

this was usually taken at 20.  As of 2006, the Hydra Linux cluster build for the IGDT 

contains 100 nodes.  Since the size of the topology population is tied to the number of 

members in a single individual solution, this larger cluster will allow the practical 

exploration of larger 3D type systems.  Unfortunately, there would not continue to be the 



 

 

175 

same scalable speedup as the cluster size exceeded the population size.  To see further 

gains from the parallel network at that level would require some additional coding to 

parallelize the geometry GA.  On the other hand, if CPU speeds continue to increase, as 

seems likely, then eventually these long run times will become less of a problem. 

4.2.3 Further Development 

4.2.3.1 Team Design 

Although the popular image of a designer is the single genius working alone, the much 

more common scenario is a team of professionals working together.  There is certainly 

much to be gained in the cross fertilization of ideas.  With the IGDT already running in a 

distributed environment, it would be easy to make the results accessible to a project team.  

In this way several designers could participate in the interactive exchange with the IGDT.  

In exploring more complex geometries this may offer the advantage of pooling the ideas 

of several designers.  Some architects have already suggested genetically encoding the 

style of great designers so as to be able to continue to clone their work after their death 

(Section 1.3.3.7).  I would rather propose to build libraries of good solutions, and give 

future architects a means of accessing and further developing these designs.  The 

fundamental premise of the IGDT concept is after all, to aid and support the human 

designer, not to clone and replace him. 

4.2.3.2 Code Development 

The IGDT developed for this dissertation was coded as an entirely independent 

application.  That is, with the exception of PVM which manages the parallel message 

passing and AutoCAD which is used to plot the output, no use is made of other 

commercial modules.  This was done deliberately to maintain sufficient control over the 

design of the process, as well as to increase the computational speed of the program. 

After having worked through the examples in Section 3, a few additional routines could 

be suggested that would enhance the performance of the IGDT.  These can be 

categorized according to the level of search: 

• geometry 
• topology 
 

Geometry level improvements center on the development of additional element 

capabilities.  Currently there is only one element - the truss element with two degrees of 



 

 

176 

freedom.  A frame element with three degrees of freedom, would considerably expand 

the range of possible geometries.  Ideally, a six degree of freedom 3D beam element 

would expand the range of explorable geometries to include most architectural framed 

structures.  However, the computational cost would be considerable particularly as the 

overall size of the systems would also increase.  Remaining with reticulated structures 

(trusses and frames), other element enhancements would include: tension only elements 

(cables), or compression only elements, or pre-stressed elements.  Further enhancements 

could be developed in the area of loadings.  Linear or surface type loadings would be 

useful when beam elements are added.  The difficulty with area type loadings is that since 

not only the geometry but also the topology is always changing, the loading conditions 

become a little difficult to define.  It can likely be done, but also requires more 

computational capacity. 

As mentioned above, one strategy to increase computational capacity is to simply add 

more machines to the parallel cluster.  But since jobs are currently partitioned based on 

the topology population, and since the cluster is already currently about that size, this 

would not produced a scaled increase in performance.  In addition, the job partitioning 

would have to be shifted to the geometry GA as the basic unit.  This could allow the 

efficient usage of clusters as large as the simultaneous number of geometry optimizations 

occurring in one topology cycle.  For the examples of the scale run in Section 3 this would 

be 50 geometry GAs x 20 topology GAs = 1000 possible parallel operations.  So 

partitioning the parallel problem based on the geometry GA rather than the topology GA 

would make the code scaleable up to about 1000 nodes rather than 20 as is currently 

the case.  Although 1000 is quite a few nodes, numbers like 200 are currently not so 

uncommon (the IGDT currently runs on a 100 node Linux cluster), and lager clusters 

currently exist such as the 2000 node Linux cluster at SUNY Buffalo. 

Topology level improvements are not so obviously needed as geometry.  The inclusion 

of 3D is the most interesting thing that could be enhanced.  It is also conceivable that 

continuous surface structures could be investigated using the IGDT.  This would of course 

require the inclusion of the appropriate finite elements, and more importantly specific 

routines to handle breeding and mutation. 



 

 

177 

As it currently is coded, the FEA is integral with the GA coding.  Although they involve 

separate routines, they access common code structures without translation or even 

copying of data.  All structure manipulation is through c pointers.  This allows the code to 

run very quickly.  Although it is tempting to harness an existing FEA package in order to 

gain the added capability, there would be a rather high price to pay in decreased run 

time efficiency.  For a geometry population of 50 run through 4 cycles, each with an 

average generation number of 100 (the configuration used in the examples), during one 

optimization process the GA calls the analysis routines on the order of 10,000 times 

(50/2 x 100 x 4).  With a topology population of 20, averaging 7 generations to 

convergence, and run through 7 cycles, the number of geometries that would have to be 

optimized would be about 1000 (20 x 7 x 7).  So the total number of geometries 

analyzed for one topology optimization is the product of the two, i.e., about 10 million 

(10,000 x 1,000).  If each analysis takes only 0.1 of a second, this yields 278 hours or 

11.5 days.  This is assuming a small truss like the one used in the first example of Section 

3.  The necessity of parallel computation as well as efficient code is obvious. 

Because the actual number of computations depends on how quickly both geometry and 

topology populations converge, the number of computations per run will vary.  The times 

shown in Table 4.2. reflect the parameter dimensions described above.  The times are 

further effected by including self weight (2-4 further iterations), additional load cases, and 

buckling calculations.  The overhead of passing data, loading and unloading a 

commercial FEA module on the order of 10 million times would certainly be prohibitively 

large.  For example, on a 1.3 GHz P-IV, running STAAD.Pro under Windows 2000, with 

the program already opened, it takes about 2 seconds to load a small data file for the 

bridge truss in the first example in Section 3.  It takes another 5 seconds to run it and 

another 5 seconds if members are sized.  Assuming 10 seconds for the whole operation, 

at 10,000,000 times that would take the P-IV  1150 days or 3.2 years.  This may be a 

good argument not to use MS-Windows as a platform, but the point is that a lot of 

computational overhead exists in any commercial package. 

In the current IGDT application the FEA data is all contained in four global structures, 

which only need to be referenced by pointers.  The data structures can thus be shared 

and accessed by both the FEA and GA routines.  This is of course much faster than 

actually moving data.  Perhaps a compromise solution would be to integrate an existing 



 

 

178 

FEA package, such as SAP IV (Bathe, 1974) which has public domain code, into the 

IGDT.  This would save some time in re-coding, but in the end might be less flexible, and 

still include unneeded code. 

4.2.3.3 Library Development 

In the coding of the IGDT, use was made of only the standard C libraries, plus the special 

PVM library.  There are 177 sub-routines.  It would make future development somewhat 

simpler to extract common code, and form an IGDT library.  A second library could 

perhaps gather code used in graphics manipulation for input and output files. 

4.2.3.4 Platform 

Although all development to this point has been in UNIX (or Linux), the ANSI C coding as 

well as PVM message passing is open to all major platforms.  An advantage of using 

PVM is that is has the ability to combine different host platforms into a parallel distributed 

network.  It is only necessary to be able to compile the codes (both PVM and IGDT) on 

each platform. 

4.2.3.5 Parallelization 

Because GAs deal with populations, and each individual in the population must be 

assigned a fitness through some type of analysis, it is quite easy to partition the problem 

for parallel processing based on the individuals in the population.  In the case of the 

IGDT, the population of the higher level topology GA was used as a basis in partitioning 

the code for parallel processing.  In this form the IGDT operated very satisfactorily for the 

scale of the test problems and cluster size.  The topology population was usually taken at 

20 parents with 20 children, and the size of the cluster used was similar (starting at 10 

and later at 30 nodes). 

But in addition to the obvious benefit of increased speed, it was found that the program 

was much more robust when  run in parallel than when run entirely as one executable on 

one host.  With the heavy use of random input, unanticipated combinations of data and 

operation do occur, and can cause the system to fault.  If this happens to one of many 

hosts, there is no great problem.  The non-responding host can be detected and 

reinitialized without hindering the overall operation of the IGDT.  This capability is, in 



 

 

179 

fact, coded into the IGDT.  Naturally, if the program is running on only one host, a crash 

is more critical. 

From the discussion of computational demand described above, it is also obvious that 

any future expansion of the capabilities of the IGDT would have to rely heavily on parallel 

processing.  On the level of single workstations, one could expect to generate solutions, 

either based on a single topology (geometry optimization), or limited topology mutation 

and breeding (small populations).  But for larger topology explorations with more 

complex structures, a cluster is more suited. 

4.3 Closing Remarks 

The significance of the IGDT as a structural design tool can be summarized as follows: 

DESIGN 
 • Aids exploration by exposing a set of 'pretty good' solutions 
  • choice requires more than one solution 
  • 'good' solutions are sub-optimal (local optima) peaks 
 • Allows user interaction to steer the results 
  • allows user selection 
  • allows non-coded criteria (e.g., aesthetics) 
IMPLEMENTATION 
 • GAs are inherently design oriented 
  • offer selection 
  • contain some surprises 
 • Visual assessment is critical 
  • interactive on screen 
  • workable output in CAD format 
 • Computational speed is critical 
  • Avoid ground structures 
  • Use parallel clusters 
 

None of these points individually are anything new.  Numerous examples and support 

material have been provided in this work which supports these points individually.  GAs 

have been used in structural optimization, but only in ways which mimic traditional 

optimization techniques which produce single solutions.  Design methods offer numerous 

ways to enhance exploration, but they are never coupled with structural design tools. 

The novel aspect of the IGDT concept lies more in the realization and collection of these 

attributes into one design tool.  It can thereby be rightly termed a new class of design aid, 

an "Intelligent Genetic Design Tool." 



  

 

180 

5 Reference List 

Abel, John F.  "Computer-Aided Design and Numerical Methods",  in: Abel, J., Astudillo, 
R., and Srivastava (eds.) Current and Emerging Technologies of Shell and Spatial 
Structures - Proceedings, IASS/CEDEX, Madrid, 1997.  pp. 189-200. 

Adams, James L.  Conceptual blockbusting: a guide to better ideas.  Freeman, San 
Francisco, 1974. 

Addis, William.  Structural Engineering: the nature of theory and design.  Ellis Horwood, 
London, 1990. 

Adeli, H. and Cheng, N.  "Concurrent Genetic Algorithms for Optimization of Large 
Structures",  in: Journal of Aerospace Engineering.  Volume 6, Number 4.  p. 315.  
October, 1993. 

Alexander, Christopher.  Notes on the synthesis of form.  Harvard University Press, 
Cambridge, Mass, 1967. 

Anonymous  "Theory and Practice",  in: The Practical Mechanic and Engineer's Magazine, 
Oct. 1842. p. 1. 

Antoniades, A. C.  Poetics of Architecture: Theory of Design.  Van Nostrand Reinhold, 
New York, 1990. 

Archer, B. L.  "An overview of the structure of the design process",  in: Moore, G. T. (ed.) 
Emerging Methods in Environmental Design and Planning. MIT Press, Cambridge, 
Massachusetts, 1970. 

Asimow, Morris.  Introduction to Design.  Prentice-Hall, Englewood Cliffs, New Jersey, 
1962. 

Austin, James H.  Chase, change and creativity: the lucky art of novelty.  Columbia Univ. 
Press, New York, 1978. 

Bäck; Hoffmeister and Schwefel. "A Survey of Evolution Strategies",  in: Proceedings of the 
Fourth International Conference on Genetic Algorithms.  Morgan Kaufmann Publ., 
San Mateo, California, 1992. 

Barron, F.  "Putting creativity to work",  in: Sternberg, R. J. (ed.) The Nature of Creativity. 
Cambridge University Press, Cambridge, England, 1988. 

Bathe, Klaus-Jürgen; Wilson, Edward; Peterson, Fred.  SAP IV  A Structural Analysis 
Program for Static and Dynamic Response of Linear Systems.  A Report to the 
National Science Foundation: EERC 73-11, Univ. of California, Berkeley, 1973 
(rev. 1974). 

Bendsøe, M. and Kikuchi, N. "Topology and Layout Optimization of Discrete and 
Continuum Structures",  in: Kamat, Manohar P. (ed.) Structural Optimization: 
Status and Promise.  Volume 150 Progress in Astronautics and Aeronautics.  
American Inst. of Aeronautics and Astronautics, 1993. pp. 517-547. 

Boden, Margaret A.  What is Creativity?,  in: Boden, M. A. (ed.), Dimensions of Creativity.  
The MIT Press.  Cambridge, Massachusetts. pb. ed. 1996 (1st ed. 1994). 

Boschetti, F. and Moresi, Louis.  "Interactive Inversion in Geosciences",  in: Geophysics.  
Volume 64.  pp. 1226-1235, 2001. 



  

 

181 

Bouzy, C. and Abel, J. F.  "A Two Step Procedure for Discrete Minimization of Truss 
Weight",  in: Structural Optimization 9.  pp. 128-131, 1995. 

Broadbent, G.  Design in Architecture. John Wiley & Sons, 1973 

Brooks, R. A.  "Fast, Cheap and out of Control: A Robot Invasion of the Solar System",  in: 
Journal of The British Interplanetary Society, Vol. 42, 1989. 

Burkhardt, Berthold.  IL1: Minimal Nets.  Karl Krämer Verlag, Stuttgart, 1969. 

Cai, Jianbo.  Diskrete Optimierung dynamisch belasteter Tragwerke mit sequentiellen und 
parallelen Evolutionsstrategien.  Essen Univ., Diss., 1995.  

Candela, F.  Autographed quotation from a lecture at Ove Arup & Partners. c.1950. 

Cheng, Nai-Tsang.  Integrated genetic algorithms for optimization of structures.  Thesis 
(M. S.)--Ohio State University, 1992. 

Coello Coello, C.A. "An Introduction to MOEAs and Their Applications",  in: Coello 
Coello & Lamont (eds) Applications of Multi-Objective Evolutionary Algorithms.  
Advances in Natural Computation, Vol.1. pp. 1-28.  World Scientific, 2004. 

Coello Coello, C.A. "Discrete Optimization of Trusses Using Genetic Algorithms",  in: 
Expert Systems Application & Artificial Intelligence - EXPERSYS - 94.  p. 331.  IITT 
International, 1994. 

Coello Coello, C.A.; Rudnick, M. and Christiansen, A. D.  "Using Genetic Algorithms for 
Optimal Design of Trusses",  in: Proceedings. Sixth International Conference on 
Tools with Artificial Intelligence (Cat. No. 95CH35727).  p. xxiii+842, 88-94.  
IEEE Comput. Soc. Press, Los Alamitos, CA, USA, 1994. 

Colbron, B., Gero, J. S., Purcell, T. and Williams, P.  "The role of design discipline and 
pictorial information in fixation effects in design problem solving",  in: CogSci '93, 
1993. pp. 76-78. 

Conybeare, H.  "On the Principles and Practice of Civil Engineering",  in: Civil Engineer & 
Architect's Journal, Vol. 21, 1858. 

Corbusier, L.  The Chapel at Ronchamp.  Frederick A. Praeger, New York, 1958. 

Coyne, R. D.; Roseman, M. A.; Radford, A. D.; Balachandran, M. and Gero, J. S.  
Knowledge-Based Design Systems.  Addison-Wesley, Reading, Mass, 1990. 

Crovitz, Herbert F.  Galton's Walk: Methods for the Analysis of Thinking, Intelligence, and 
Creativity.  Harper & Row, New York, 1970. 

Crowe, N. and Lasweau, P.  Visual Notes for Architects and Designers.  John Wiley & 
Sons, 1984. 

Cryer, John N.  "Design Team Agreements 3.43",  in: Haviland, David (ed.) The 
Architect's Handbook of Professional Practice, Vol. 2 The Project. AIA Press, 
Washington, D.C.  1994. 

Dawkins, Richard.  The Blind Watchmaker.  Norton, W.W. & Co., London, 1986. 

de Bono, Edward.  Lateral Thinking for Management: A Handbook for Creativity.  
American Management Association, New York, 1971. 

De Jong, K. A.  An Analysis of the Behavior of a Class of Genetic Adaptive Systems. 
University of Michigan, Diss, 1975. 



  

 

182 

de Kleer, J. and Brown, J. S.  "Qualitative physics based on confluences",  in: Artificial 
Intelligence Vol. 24,1984. 

Deb, K. and Gulati, S.  Design of truss-structures for minimum weight using genetic 
algorithms. KanGAL Report No. 99001. Kanpur: Kanpur Genetic Algorithms 
Laboratory, Department of Mechanical Engineering, Indian Institute of Technology 
Kanpur, Kanpur 208016, India. 1999. 

Do, E. and Gross, M. D.  "Supporting Creative Architectural Design with Visual 
References",  in: J. Gero et al. (ed.), 3rd International Conference on 
Computational Model of Creative Design (HI '95).  Australia, 1995. 

Dunker, K.  "On problem solving",  in: Psychological Monographs, 1945. 

Duysinx, P.; Zhang, W.; Fleury, C.; Nguyen, V.; and Haubruge, S.  "A New Seperable 
Approximation Scheme for Topological Problems and Optimization Problems 
Characterized by a Large Number of Design Variables",  in: Olhoff, N. and 
Rozvany, G. (ed.) WCSMO-1: Proceedings of the First World Congress of Structural 
and Multidisciplinary Optimization.  28 May - 2 June 1995, Goslar, Germany.  
Pergamon, 1995. pp. 1-8. 

Dym, Clive L. and Levitt, Raymond E.  Knowledge-Based Systems in Engineering.  
McGraw-Hill, New York, 1991.   

Edwards, Betty.  Drawing on the right side of the brain: a course in enhancing creativity 
and artistic confidence.  Tarcher, Los Angeles, CA, 1979. 

Eshelman, Larry. "Productive Recombination and Propagating and Preserving Schemata",  
in: Foundations of Genetic Algorithms 3.  Morgan Kaufmann Publ., Inc.  San 
Francisco, 1995. 

Eshelman, Larry. "The CHC Adaptive Search Algorithm: How to Have Safe Search When 
Engaging in Nontraditional Genetic Recombination",  in: Foundations of Genetic 
Algorithms.  Morgan Kaufmann Publ., San Mateo, California. 1991. 

Fabrycky, W. J. and Blanchard, B. S.  Life-Cycle Cost and Economic Analysis. Prentice-
Hall, Englewood Cliffs, New Jersey, 1991. 

Frazer, J.  An Evolutionary Architecture.  Architectural Association, London, 1995.  

Führer, W. "Rechnerunterstützter Tragwerksentwurf von Stab- und Flächentragwerken",  
in: CAAD - Fortschritte bei uns und unseren Nachbarn: Rechnerunterstützte 
Informationsverarbeitung in der Architektur.  Technische Universität Berlin, Berlin, 
1991.  pp. 105-117. 

Galante, M.  "Genetic Algorithms as an Approach to Optimize Real-world Trusses",  in: 
International Journal for Numerical Methods in Engineering.  Volume 39, Number 
3.  p.361, 1996.  

Geist, ; Beguelin; Dongarra; Jiang; Manchek; Sunderam.  PVM: Parallel Virtual Machine.  
A Users' Guide and Tutorial for Networked Parallel Computing.  The MIT Press, 
Cambridge, Massachusetts, 1994. 

Gero, J. S.  "Creativity, Emergence and Evolution in Design: Concepts and Framework",  
in: Knowledge-Based Systems. 1997. 



  

 

183 

Gero, J. S.  "Towards a model of exploration in computer-aided design",  in J. S. Gero 
and E. Tyugu (eds.), Formal Design Methods for CAD.  North-Holland, 
Amsterdam, 1994.  pp. 315-336. 

Gero, J. S. and Ding, L.  Exploring style emergence in architectural designs, in Y-T. Liu, J-
H. Tsou and J-H. Hou (eds.), CAADRIA'97, Hu's Publisher, Taipei, Taiwan, 1997.  
pp. 287-296. 

Gero, J. S. and Jun, H.  Visual semantic emergence to support creative design: A 
computational view, in J. S. Gero, M. L. Maher and F. Sudweeks (eds.), Preprints 
Computational Models of Creative Design , University of Sydney, 1995.  pp. 87-
117. 

Goel, V.  "'Ill-structured representations' for ill-structured problems",  in: Fourteenth 
Annual Conference of the Cognitive Science Society- Proceedings, Bloomington, 
Ind., 1992.  pp. 844-849. 

Goldberg, David E.  Genetic algorithms in search, optimization, and machine learning.  
Addison-Wesley, Reading, Mass, 1989a.  

Goldberg, David E; Korb, Bradley; Deb, Kalyanmoy.  Messy Genetic Algorithms: 
Motivation, Analysis, and First Results".  In: Complex Systems, Vol 3, No 5 Oct 
1989b.  

Gordon, William J. J.  Synectics: the Development of Creative Capacity.  Harper & Row, 
New York, 1961. 

Grierson, D. and Pak, W. "Discrete Optimal Design Using a Genetic Algorithm",  in: 
Topology Design of Structures - NATO Advanced Research Workshop.  Kluwer 
Academic Publ., 1993.  

Gross, M. D.  "Recognizing and Interpreting Diagrams in Design",  in: Catarci, T.; 
Costabile, M.; Levialdi, S.; Santucci, G. (eds.)  Advanced Visual Interfaces '94 (AVI 
'94).  ACM Press, 1994. 

Hajela, P and Lee, E.  "Genetic Algorithms in Truss Topological Optimization",  in: 
International Journal of Solids and Structures.  Volume 32, Number 22.  pp. 3341, 
1995. 

Hale, M. A.  "An Open Computing Infrastructure that Facilitates Integrated Product and 
Process Development form a Decision-Based Perspective", Doctoral Dissertation, 
Georgia Institute of Technology, School of Aerospace Engineering, July, 1996. 

Höfler, A.  Form Optimierung von Leichtbaufachwerken durch Einsatz einer 
Evolutionsstrategei.  Dr. Ing. Diss.,  Technische Universität Berlin, 1976. 

Holland, John H.  Adaptation in Natural and Artificial Systems. The Univ. of Mich. Press, 
1975. 

Isaken, S. and Trefflinger, D. J. Creative Problem Solving: The basic course. Bearly 
Limited, Buffalo, New York, 1985. 

Johnson, S.; von Buelow, P. and Tripeny, P.  "Linking Analyses and Architectural Data: 
Why It’s Harder than We Thought" in Beesley, Cheng and Willismson (eds) 
Fabrication: a conference examining the digital practice of architecture, 
Proceedings of The Association for Computer-Aided Design in Architecture. 
Toronto, Canada, 2004. 



  

 

184 

Jun, H. and Gero, J. S.  "Representation, Re-representation and Emergence in 
Collaborative Computer-aided Design",  in: Maher, M. L., Gero, J. S. and 
Sudweeks, F. (eds.), Preprints Formal Aspects of Collaborative Computer-Aided 
Design, Key Centre of Design Computing, University of Sydney, Sydney, 1997.  
pp. 303-320 

Kelly, Kevin.  Out of Control: The New Biology of Machines, Social Systems and the 
Economic World.  Addison-Wesley, Reading, Mass, 1995.  

Kikuchi, N., Cheng, H.-C., and Ma, Z.-D. "Topological Design for Vibrating Structures",  
In: Computer Methods in Applied Mechanics and Engineering. Vol.121, 1995. 
pp.259-280. 

Kirsch, Uri;  "Layout Optimization Using Reduction and Expansion Processes",  in: Olhoff, 
N. and Rozvany, G. (ed.) WCSMO-1: Proceedings of the First World Congress of 
Structural and Multidisciplinary Optimization.  28 May - 2 June 1995, Goslar, 
Germany.  Pergamon, 1995. pp. 95 - 102. 

Klarbring, A.; Petersson, J. and Rönnqvist, M  "Truss Topology Optimization Involving 
Unilateral Contact - Numerical Results",  in: Olhoff, N. and Rozvany, G. (eds.) 
WCSMO-1: Proceedings of the First World Congress of Structural and 
Multidisciplinary Optimization.  28 May - 2 June 1995, Goslar, Germany.  
Pergamon, 1995. pp. 129-134. 

Knight, T. W.  "Shape grammars: five questions",  in: Environment and Planning B: 
Planning and Design, Vol. 26, 1999b. 

Knight, T. W.  "Shape grammars: six types",  in: Environment and Planning B: Planning 
and Design, Vol. 26, 1999a. 

Knight, T. W.  "The generation of Hepplewhite-style chair-back designs",  in: Environment 
and Planning B: Planning and Design, Vol. 7, 1980. 

Knight, T. W.  "Transformations of De Stijl art: the paintings of Georges Van Tongerloo 
and Fritz Glarner",  in: Environment and Planning B: Planning and Design, Vol. 16, 
1989. 

Knight, T. W.  "Transformations of the meander motif on Greek Geometric pottery",  in: 
Design and Computing, Vol. 1, 1986.Kocvara, M. and Zowe, J.. "How to optimize 
mechanical structures simultaneously with respect to topology and geometry". In: 
N. Olhoff and G.I.N. Rozvany (eds.), Structural and Multidisciplinary Optimization. 
Elsevier Science, Oxford, 1995. pp. 135--140. 

Koberg, Don and Bagnall, Jim.  The Universal Traveler - a Soft-Systems guide to: 
creativity, problem-solving, and the process of reaching goals.  William Kaufman, 
Los Altos, California. 1972. 

Kolodner, The Archie Project.  Georgia Institute of Technology. 1996.  

Koning, H. and Eizenberg, J.  "The language of the prairie: Frank Lloyd Wright's prairie 
houses",  in: Environment and Planning B: Planning and Design, Vol. 8, 1981. 

Koumousis, V. K. and Georgiou, P. G.  "Genetic Algorithms in Discrete Optimization of 
Steel Truss Roofs",  in: Journal of Computing in Civil Engineering.  Volume 8, 
Number 3.  p. 309, 1994. 



  

 

185 

Koza, John; Bennett, Forest; Andre, David; Keane, Martin.  Genetic Programming III: 
Darwinian Invention and Problem Solving, Morgan Kaufmann Publishers, San 
Francisco. 1999.  

Kuhn, Thomas S.  The structure of scientific revolutions.  Univ. of Chicago Press, Chicago, 
1962. 

Latham, William; Todd, Stephen and Owen, Mark.  "Animating Abstract Forms",  in: 
Computer Graphics 90.  (Proceedings of the conference held in London, 
November 1990).  Blenheim Online, London, 1990. 

Leite and Topping. "Improved Genetic Operators for Structural Engineering 
Optimization".  in: Topping, B.H.V. (ed.).  Developments in Neural Networks and 
Evolutionary Computing for Civil and Structural Engineering.  Civil-Comp Press, 
Edinburgh, UK, 1995. 

Louis, S. J. and Fang Zhao.  "Domain knowledge for genetic algorithms",  in: 
International Journal of Expert Systems Research and Applications.  Vol. 8, No. 3, 
p. 195-211.  JAI Press, USA, 1995. 

Luger, George F.; Stubblefield, William A.  Artificial intelligence and the design of expert 
systems. Benjamin/Cummings Publ., Redwood City, Calif., 1989.  

Manual of Steel Construction, Allowable Stress Design.  ninth ed.  American Institute of 
Steel Construction, Inc., Chicago, Illinois, 1989. 

Martin, Harold C.  Introduction to Matrix Methods of Structural Analysis.  McGraw-Hill, 
New York, 1966.  

Maxwell, J. C.  The Scientific Papers of James Clerk Maxwell.  Volume II.  ed. by Niven.  
Librairie Scientifique J. Hermann.  Paris.  orig. 1890. 

Mehr, A.F.; Azarm, S. " An Information-Theoretic Performance Metric for Quality 
Assessment of Multi-Objective Optimization Solution Sets".  in: ASME Journal of 
Mechanical Design, Vol. 125(4). 2003. pp. 655-663. 

Mitchell, A. G. M.  "The Limits of Economy of Material in Frame-structures",  in: 
Philosophical Magazine and Journal of Science.  Volume VIII, Sixth Series, July - 
December 1904.  Taylor and Francis, London, 1904. 

Mitchell, M.  An introduction to genetic algorithms.  The MIT Press, Cambridge, Mass., 
1996 

Moneo, R.  "On typology",  in: Oppositions. Vol. 13, 1978. 

Moro, Jose Luis.  "About Showing Pictures and Being Unspecific"  in: Journal of the 
International Association for Shell and Spatial Structures.  Volume 37, Number 1.  
IASS, Madrid, Spain, 1996. 

Nadin, Mihai.  "Computational Design",  in: Formdiskurs: Zeitschrift für Design und 
Theorie.  Volume 2,1.  1/1997.  

Nervi, P. L.  Structures.  F. W. Dodge Corporation, New York, 1956. 

Newell, A. and Simon, H.  Human Problem Solving.  Prentice Hall, Englewood Cliffs, New 
Jersey, 1972. 

Onions, C. T.  The Shorter Oxford English Dictionary on Historical Principles, Oxford 
University Press, Oxford, 1968. 



  

 

186 

Orta-Rial, Belén. "Trusses Optimisation Under Multiple Variable Load"  In: Computing in 
Civil and Building Engineering: Proceedings of the Eighth International Conference. 
Vol. 2, ASCE, Stanford, California, August 2000. pp. 1450-1457. 

Osborn, A. F. Applied Imagination: Principles and Procedures of Creative Thinking.  
Scribner's, New York, 1963. 

Parnes, S.  Sourcebook for Creative Problem Solving. Creative Education Foundation 
Press, Buffalo, New York, 1992. 

Peter, Boris.  Druckbeanspruchte Glasdachkonstruktionen.  Diplomarbeit (Thesis), Institut 
für Leichte Flächentragwerke, Universität Stuttgart, May 2000. 

Pinker, S.  The Language Instinct, Harper Collins Publishers, 1995. 

Pippard, A. J. S.  "Education and Theory",  in: The Engineer, Centenary Number, 1956. 

Plsek, Paul E.  Creativity, Innovation, and Quality.  Quality Press, Milwaukee, 1997. 

Powell, D., Skolnick, M.  "Using Genetic Algorithms in Engineering Design Optimization 
with Non-linear Constraints",  in: Proceedings on the Fifth International Conference 
on Genetic Algorithms.  Morgan Kaufmann Publ., San Mateo, California. 1993. 

Prince, George M.  The Practice of Creativity: a Manual for Dynamic Group Problem 
Solving.  Harper & Row, New York, 1970. 

Purcell, T. A. and Gero, J. S.  "Design and other types of fixation",  in: Design Studies 
17(4): 1996.  pp. 363-383.  

Rajan, S D.  "Sizing, Shape, and Topology Design Optimization of Trusses Using Genetic 
Algorithm",  in: Journal of Structural Engineering. Volume 121, Number 10.  pp. 
1480. 1995 

Rajeev, S. and Krishnamoorthy, C. S.  "Discrete Optimization of Structures Using Genetic 
Algorithms",  in: Journal of Structural Engineering. Volume 118, Number 5.  p. 
1233-1250. 1992. 

Ramasamy, J. V. and Rajasekaran, S.  "Artificial Neural Network and Genetic Algorithm 
for the Design Optimization of Industrial Roofs - a Comparison",  in: Computers 
and Structures.  Vol. 58, No. 4, pp. 747-55.  UK.  17 Feb. 1996 

Ramm, E., Bletzinger, K. U. and Maute, K.  "Structural Optimization",  in: Abel, J., 
Astudillo, R., and Srivastava (eds.) Current and Emerging Technologies of Shell and 
Spatial Structures - Proceedings, IASS/CEDEX, Madrid, 1997.  pp. 201-216. 

Research Engineers International.  STAAD.Pro2004.  Finite Element Analysis and Design 
Software.  netGuru, Inc., 2004. 

Rosenman, M. A. and Gero, J. S.  "The Role of Functional Reasoning in Design".  Key 
Center of Design Computing, Univ. of Australia, 1997 

Russell, Peter J.  Genetics.  Harper Collins, New York, 1992. 

Schank, Roger C.  "I'm sorry, Dave, I'm afraid I can't do that",  in: Hal's Legacy, The MIT 
Press, Cambridge, Mass., 1997.  pp. 171-190. 

Schildt, G.  Alvar Alto, the mature years.  Rizzoli, New York, 1989. 



  

 

187 

Schlaich, J.  "On the Conceptual Design of Structures-an Introduction",  in: Conceptual 
Design of Structures; Proceedings of the IASS International Symposium 1996, 
Stuttgart, Germany.  Volume 1.  pp. 15-25.  Institut für Konstruktion und Entwurf 
II.  Stuttgart, Germany, 1996. 

Schmit, L. A.  "Structural Design by Systematic Synthesis",  in: Proceedings, Second 
Conference on Electronic Computation.  ASCE, New York, 1960.  pp. 105-122. 

Schmitt, Heinrich.  Hochbaukonstruktion: die Bauteile und das Baugefüge Grundlagen des 
heutigen Bauens, Otto Maier Verlag, Ravensburg, 1962. 

Searle, J. R.  "Minds, Brains, and Programs",  in: The Behavioral and Brain Sciences 3, 
Cambridge University Press, 1980. 

Seireg, A. A. and Rodriguez, J.  Optimizing the Shape of Mechanical Elements and 
Structures.  Marcel Dekker, Inc., New York, 1997. 

Sekler, E. F. and Curtis W.  Le Corbusier at Work.  Harvard University Press, Cambridge, 
1978. 

Serrato-Combe, A.  "The Wheel of Fortune and Pixel Farming",  in: Annual Meeting of the 
Association of Collegiate Schools of Architecture - Proceedings, 1995. 

Simon, Herbert A.  The Sciences of the Artificial.  3rd ed.  The MIT Press, Cambridge, 
Massachusetts.  1996. (1st ed. 1969) 

Simon, Herbert A.  "The Structure of Ill Structured Problems".  Artificial Intelligence.  Vol 4, 
Issue 3-4.  North-Holland Publ. Co.  1973. 

Simonton, Keith.  Origins of Genius: Darwinian Perspectives on Creativity.  Oxford 
University Press, 1999. 

Slaby, Emanuel.  Einsatz Evolutionärer Algorithmen zur Optimierung im frühen 
Konstruktionsprozess.  Fortschritt-Berichte, Reihe 20. Nr. 361.  VDI-Verlag, 2003. 

Sobek, Werner.  Auf Pneumatisch Gestützten Schalungen Hergestellte Betonschalen. 
Stuttgart Univ., Diss, 1987. 

Soddu, Celestino.  "Recoginability of the Idea: the evolutionary process of Argenia",  in: 
The AISB'99 Symposium on Creative Evolutionary Systems - Proceedings, The 
Society for the Study of Artificial Intelligence and Simulation of Behavior, University 
of Edinburgh, 1999.  

Stiny, G.  "Ice-ray: a note on the generation of Chinese lattice designs",  in: Environment 
and Planning B: Planning and Design, Vol. 4, 1977. 

Stiny, G. and Mitchell W. J.  "The grammar of paradise: on the generation of Mughul 
gardens",  in: Environment and Planning B.  Vol. 7. Pion Ltd., London. 1980. pp. 
209-226. 

Stiny, G. and Mitchell, W. J.  "The Palladian grammar",  in: Environment and Planning B: 
Planning and Design, Vol. 5, 1978. 

Stipp, David.  "2001 is just around the corner.  Where's Hal?",  in Fortune., November 
13., 1995. 

Storrer, W. A.  The Frank Lloyd Wright Companion.  University of Chicago Press, 
Chicago, 1993. 

Straub, H.  A History of Civil Engineering.  Leonard Hill, London, 1952. 



  

 

188 

Sugimoto, H. "Discrete Optimization of Truss Structures and Genetic Algorithms",  in: 
Structural Optimization. Proceedings Korea-Japan Joint Seminar.  Seoul Korea.  
pp. 1-10, 1992. 

Syswerda, G. "Uniform crossover in genetic algorithms",  in: Proceedings of the Third 
International Conference on Genetic Algorithms.  Morgan Kaufmann Publ., 1989.  

Tomlow, Jos.  The Model.  Karl Kraemer Verlag, Stuttgart, 1989. 

Torroja, E.  The Philosophy of Structures.  University of California Press, Berkeley, 1967. 

Turing, A. M.  "Computing Machinery and Intelligence",  in: Mind LIX, no. 2236, Oxford 
University Press, Oxford, 1950.  pp. 433-460. 

Venkayya, V. B. "Introduction: Historical Perspective and Future Directions",  in: Kamat, 
Manohar P. (ed.) Structural Optimization: Status and Promise.  Volume 150 
Progress in Astronautics and Aeronautics.  American Inst. of Aeronautics and 
Astronautics, 1993. pp. 1-10. 

Vinacke, W. E.  The Philosophy of Thinking.  McGraw Hill, New York, 1953. 

Wallas, G.  The Art of Thought.  Harcourt Brace, New York, 1926. 

Watterson, Bill.  The Essential Calvin and Hobbes: A Calvin and Hobbes Treasury.  
Andrews and McMeel (Universal Press Syndicate), New York, 1988. 

Wenger, Win.  Discovering the Obvious.  Psychegenics Press, 1981. 

Wertheimer, M.  Productive Thinking.  Harper, New York, 1945. 

Wright, F. L.  An Autobiography.  Duell, Sloan and Pearce, New York, 1943. 

Wright, F. L.  The Natural House.  Horizen Press, New York, 1954. pp. 182-183 

Wu, Shyue-Jian and Chow, Pei-Tse.  "Integrated discrete and configuration optimization 
of trusses using genetic algorithms",  in: Computers & structures.  Volume 55, 
Number 4.  pp. 695, 1995. 

Wu, Shyue-Jian and Chow, Pei-Tse.  "Steady-state genetic algorithms for discrete 
optimization of trusses",  in: Computers & structures.  Volume 56, Number 6.  pp. 
979, 1995. 

Xu, S. and Xia, R. "Topology Optimization of Truss Structures via the Genetic Algorithm",  
in: Aerospace Technology and Science - First Asian-Pacific Conference.  
International Academic Publishers, 1994. 

Yang, J. and Soh, C.: "An Integrated Shape Optimization Approach Using Genetic 
Algorithms and Fuzzy Rule-based System".  in: Topping, B.H.V. (ed.).  
Developments in Neural Networks and Evolutionary Computing for Civil and 
Structural Engineering.  Civil-Comp Press, Edinburgh, UK, 1995. 

Zarubin, V. A.  "Genetic Algorithm in the Roll of a Shell for Structural Evolution Simulation 
at the Conceptual Design Stage",  in: 1st Online Workshop on Soft Computing, 
Aug.19-30, 1996. 



 

 

189 

Appendix A: Example Input/Output Files for the IGDT 

#includes and #defines from the Header truss.h 
#include <float.h> 
#include <math.h> 
#include <time.h> 
#include <errno.h> 
#include "mon.h" 
#include </usr/X11R6/include/X11/Xlib.h> 
#include </opt/pvm3/include/pvm3.h>  
 
#define TOPO_OP     2      /*  options for the outer topo GA             */ 
                           /*    1   tp_genx(TP_GEN_NR)                  */ 
                           /*    2   tp_cycx(TP_CYC_NR)                  */ 
                           /*    3   tp_rstx(TP_RSTRT_NR)                */ 
                           /*    4   tp_usr()                            */ 
                           /*    default (any other number) quit         */ 
#define TP_GEN_NR   100    /* TP_GEN_NR is also used as cap for TP_CYC   */ 
#define TP_CYC_NR   5      /* Cycles run with topo pop                   */ 
#define TP_RSTRT_NR 2      /* used to restart after convergence          */ 
#define CYC_SAME    15     /* This is some part of TOPO_NR.  It defines  */ 
                           /* population convergence.                    */ 
#define START_UP    2      /* Choose what start-up method will be used   */ 
                           /* This works a switch in mptruss             */ 
                           /*   1 = random generation                    */ 
                           /*   2 = 1 progenitor (requires file)         */ 
                           /*   3 = start-up generation (requires file)  */ 
                           /*   4 = run just one topo for opti geometry  */ 
#define SELECT_TOP select_elite /* sets selection method for outer shell */ 
                           /*   select_elite chooses the best fitnesses  */ 
                           /*                pairwise though topo-pop    */ 
                           /*   select_usr   requires the user to choose */ 
                           /*                paired parents              */ 
#define RUN_GA  run_x_cyc  /* sets general run pattern to be followed    */ 
                           /*   run_xs_xi x restarts with x reintits     */ 
                           /*   run_1test one pre-set truss analysis     */ 
                           /*   run_x_gen run x generations and stop.    */ 
                           /*             x is taken from the value of   */ 
                           /*             #define GENERATIONS            */ 
                           /*   run_x_cyc run x cycles and stop.         */ 
                           /*             x is taken from the value of   */ 
                           /*             #define CYCLES                 */ 
#define CYCLES      3      /* the number of cycles in run_x_cyc          */ 
#define GENERATIONS 150    /* the number of gens. in run_x_gen           */ 
                           /* this is also used as a cap in chc_ga()     */ 
#define RESTARTS    3      /* the number of restarts used in RUN_GA      */ 
                           /* after this number of unimproved restarts   */ 
                           /* a reinitiate is run                        */ 
#define REINITS     2      /* the number of reinitiates used in RUN_GA   */ 
                           /* after this number of unimproved reinits    */ 
                           /* the run is terminated                      */ 
#define POP         50     /* sets the size of the parent population     */ 
                           /* !!!!! POP MUST BE EVEN NUMBER !!!!!        */ 
#define TOPO_NR     20     /* sets the size of the parent population     */ 
                           /* TOPO_NR must be even for breeding or 1 if  */ 
#define ACAD_COLS   20     /* this is to control AutoCAD output          */ 
                           /* the number given MUST divide evenly into   */ 
                           /* the TOPO_NR!  remainders are not plotted   */ 
                           /* The number of rows is POP/ACAD_COLS        */ 
#define SEL_ROWS    4      /* the number of rows used to plot TOPO_NR*2  */ 
                           /* to the screen for user selection.          */ 



 

 

190 

#define JOINTS_MAX  20     /* the max no. joints used in rand_topo()     */ 
                           /* is calculated in read_dat() and stored in  */ 
                           /* dat->min_joint                             */ 
                           /* min which is calculated or determined by   */ 
                           /* the number of supports or load/fix joints  */ 
                           /* that is calculated in read_dat() and       */ 
                           /* recorded in the CONTROL structure.  It     */ 
                           /* will override this value.                  */ 
#define MIN_AC   (.5)      /* for member design.  A limit on how small   */ 
                           /* the area of a compression member can be.   */ 
                           /* Given in in^2  e.g. .25 is 1/2" pipe       */ 
#define MIN_AT   (.5)      /* for member design.  A limit on how small   */ 
                           /* the area of a tensile member can be.       */ 
                           /* Given in in^2  e.g. .049 is 1/4" rod       */ 
#define LD_CMB    6        /* the number of load combinations used in    */ 
                           /* data input file.  Needed in advance to     */ 
                           /* dimension dat->ld_comb[LD_CMB]             */ 
#define LDS_MAX   7        /* the maximum number of loadings in any load */ 
                           /* combination. to dimension ld_case[LDS_MAX] */ 
#define TPOUT_MAX  5000    /* the maximum number of tp's in the output   */ 
                           /* 20 cyc at 20 gen gives about 3000          */ 
#define FOUT_MAX   2000    /* the maximum number of files needed for     */ 
                           /* script output                              */ 
                           /* these two hit memory size on hydra-10      */ 
                           /* but if too small, the final output fails   */ 
#define HUB_NR     2       /* the minimum number of joints required at   */ 
                           /* a joint:   2   triangulated (truss)        */ 
                           /*            1   tree structure              */ 
#define XORY       0       /* controls the ordering of vert sort.        */ 
                           /*            0   x ordered sort              */ 
                           /*            1   y ordered sort              */ 
                           /* choose x or y to avoid likely confusion    */ 
                           /* where there are verts with same x choose y */ 
#define WIN_RES_X   900    /* number of pixels horizontal in X window    */ 
#define WIN_RES_Y   550    /* number of pixels vertical in X window      */ 
#define OFFSET_X    25     /* x offset in pixels of origin in X window   */ 
#define OFFSET_Y    1      /* y offset in pixels of origin in X window   */ 
                           /* Used in ACAD and Xwindow routines.         */ 
                           /* The origin is located at the lower left    */ 
                           /* of drawing when offset is 0,0.             */ 
#define X_SCALE    0.1     /* scale for X-windows. some suggestions:     */ 
                           /*    for bp runs     dat->span/3400          */ 
                           /*    for br runs     1.8                     */ 
                           /*    for cant runs   dat->span/1300          */ 
#define ROW_SCALE  0.9     /* scale for row spacing in X-windows.        */ 
#define DUP_CTRL   0       /* gives the option in topology generations   */ 
                           /* to either replace the duplicate members or */ 
                           /* or not:    1   replace_dup (will replace)  */ 
                           /*            0   off (will NOT replace)      */ 
#define MELD_LIMIT (dat->span/30) /* closeness at which vertex joints are*/ 
                           /* melded together in meld_vert()             */ 
#define CUT_LIMIT (dat->span/30) /* closeness at which vertex joints are */ 
                           /* fused into members - making 2 members      */ 
#define FIT_LIMIT  3000    /* lower limit of fitness that will be sent   */ 
                           /* to output.  make initial run to find this  */ 
#define EPSILON (1e-9)     /* used to check min value of Cholesky diag.  */ 
                           /* EPSILON is the minimum pos num such that   */ 
                           /* 1.0+EPSILON != 1.0 is true.  the ANSI/IEEE */ 
                           /* value is 1e-9. GNU is e-16. Vose used e-14 */ 
#define DBL_BIG (1e300)    /* big double.  this value is smaller than    */ 
                           /* the ANSI std DBL_MAX 1.7...e308            */ 
#define COMP     pipe_c    /* COMP sets sizing of compression members    */ 
#define TENS     rod_t     /* TENS sets sizing of tension members        */ 
                           /*   pipe_c   using a continuous range of     */ 
                           /*            pipe sizes based on shed. 40    */ 
                           /*            follows AISC ASD w/ Fy=fy ksi   */ 
                           /*   rod_c    using a continuous range of     */ 



 

 

191 

                           /*            solid rod sizes.                */ 
                           /*            follows AISC ASD w/ Fy=fy ksi   */ 
                           /*   rod_t    using a continuous range of     */ 
                           /*            rod sizes.  follows AISC ASD    */ 
                           /*            w/ Fy=fy and NO kl/r limit      */ 
                           /*   rod_no_buck is a simple P/A design       */ 
                           /*            for comparison or tension       */ 
                           /*   pipe_t_klr  uses kl/r=300 as a minimum   */ 
                           /*            slenderness ratio               */ 
                           /* COMP or TENS.  It is a simple P/A design   */ 
#define DEFLECT_LIM (120.0)/* denominator of ANSI deflection limit:      */ 
                           /*   L/360  materials likely to be damaged    */ 
                           /*   L/240  bounce in floors                  */ 
                           /*   L/120  deflections not critical          */ 
#define D_PENALTY (1)      /* factor multiplied to fitness to penalize   */ 
                           /* large deflections. Used in ANALIZE.        */ 
                           /* D_PENALTY only applied if rel_delf > 1.0   */ 
                           /*   where rel_defl = dmax/(DEFLECT_LIM/span) */ 
                           /* fitness = volume * D_PENALTY * J_PENALTY   */ 
                           /* by setting D_PENALTY = rel_defl a sliding  */ 
                           /* penalty scale is provided.  By increasing  */ 
                           /* the value of D_PENALTY, fitness is worse.  */ 
                           /* CAUTION: if D_PENALTY drops below 0 then   */ 
                           /* it would begin to better the fitness! In   */ 
                           /* that case it is simply ignored.            */ 
#define J_PENALTY (1)      /* factor multiplied to fitness to penalize   */ 
                           /* for the number of joints, e.g.:            */ 
                           /*   1        no penalty                      */ 
                           /*   jnt      linear penalty                  */ 
                           /*   jnt*jnt  square penalty  (severe!)       */ 
                           /* fitness = volume * D_PENALTY * J_PENALTY   */ 
                           /* so as with D_PENALTY if it were to be <1   */ 
                           /* it would better the fitness.  In that case */ 
                           /* it is simply ignored.                      */ 
#define POS_NEG_X  2       /* this can be used to control the sign +_-   */ 
                           /* of nodes generated during crossover. If:   */ 
                           /*   1   + and - values are generated         */ 
                           /*   2   + values only                        */ 
                           /*   3   - values only                        */ 
#define POS_NEG_Y  1       /* this can be used to control the sign +_-   */ 
                           /* of nodes generated during crossover. If:   */ 
                           /*   1   + and - values are generated         */ 
                           /*   2   + values only                        */ 
                           /*   3   - values only                        */ 
#define MIRROR     1       /* a flag to determine if you want to include */ 
                           /* symmetric mirror right and left routines   */ 
                           /*   1   yes, include mirror                  */ 
                           /*   0   no mirroring                         */ 
                           /* FOR MIRROR USE ONLY INTEGER COORDINATES    */ 
#define MIRROR_X   295     /* the x position of vertical mirror line     */ 
                           /* used in the topo mut routines              */ 
#define MIRR_RATE  2       /* this will determine how often new tp's     */ 
                           /* get mirrored.  the integer gets used in:   */ 
                           /*    if(!rand()%MIRR_RATE)                   */ 
#define XOVER1 unif_line   /* 1 dimensional crossover patterns.          */ 
                           /* used in crossover where changing is        */ 
                           /* allowed in only direction                  */ 
                           /* one direction - x or y)                    */ 
                           /*   unif_line   uniform distribution         */ 
                           /*   norm_line   normal distribution          */ 
                           /*                   affected by SIGMA_X      */ 
#define XOVER2 unif_circle /* 1 dimensional crossover patterns.          */ 
                           /* patterns used in crossover of x AND y      */ 
                           /* coords (where changing is allowed in both  */ 
                           /* directions)                                */ 
                           /*   unif_circle   circle pattern w/ unif.    */ 
                           /*   norm_circle   circle pattern w/ normal   */ 



 

 

192 

                           /*   unif_lozen    lozenge pattern  w/ unif.  */ 
#define DIFF find_diff2    /* two choices to calculate the difference    */ 
                           /* between individuals used in CHC to         */ 
                           /* determine if breeding will take place.     */ 
                           /*   find_diff1    Euclidian norm distance    */ 
                           /*   find_diff2    summed x&y distances       */ 
#define UNIF_SIGMA_X (.50) /* scale factor used with uniform Xover       */ 
#define NORMAL_SIGMA_X (.60)/* scale factor used with normal Xover       */ 
#define PI (3.14159265359)  /* constant for pi                           */ 
#define RAND_TRUSS rnd_truss/* limits set on the generation of a random  */ 
                            /* population of trusses:                    */ 
                            /* sign is controlled by POS_NEG_X &Y above  */ 
#define RESTART  restart_tr /* restart of a population.  accomplished by */ 
                            /* mutating the best_individual POP-1 times. */ 
                            /* sign is controlled by POS_NEG_X &Y above  */ 
                            /*   restart_pn     + and - numbers used     */ 
                            /*   restart_non    no - numbers used        */ 
                            /*   restart_pn_gas pn with gaussian distrib */ 
                            /*   restart_non_gas non w/ gaussian distrib */ 
                            /*   mendel_non     breed all with best      */ 
#define HOST_OUT  "hydra-10"/* the host to run optruss for output        */ 
                            /* needs to be in quotes. e.g.  "hydra-10"   */ 
 

 

Example Input Data File 
Pony Truss Bridge -  4 panel - 3 Point Loads  June 2004 
TYPE plane truss 
UNIT  in  lb           >> only as labels 
SUPPORTS 3             >> support components 
  1 fx     0.0    0.0  >> NOTE: NO 0 vertex to be given here 
  1 fy     0.0    0.0  >> they are all reassigned one number lower 
  2 fy   720.0    0.0  >> so 1 becomes Vertices[0] 
STATIC_JOINTS 7        >> static components: 
  2 fx   720.0    0.0  >> these are not moved by GS 
  3 fx   180.0    0.0 
  4 fx   540.0    0.0 
  5 fx   360.0    0.0 
  3 fy   180.0    0.0 
  4 fy   540.0    0.0 
  5 fy   360.0    0.0 
FIXED_JOINTS    5     >> this is the number of joints supported or stat. 
MINIMUM_JOINTS  7     >> this is the minimum number of joints needed for  
INCIDENCES      4     >> this is the number of fixed members. 
  1  1  3             >> this is still a bit tricky 
  2  3  5             >> you have to enter lower number first 
  3  4  5             >> eg. 3 4  not  4 3 
  4  2  4 
SPAN  720.0           >> used to scale output graphics 
CONSTANTS   3   
  E 29000000.         >> UNITS are PSI 
  FY   36000.         >> UNITS are PSI 
  DENSITY  .28356     >> UNITS are LB/IN^2 
PROPERTIES 1 
  AREA   10           >> UNITS are IN^2, this is simply an initial estimate 
COMBINATIONS_OF_LOADINGS  1 3  >> number of combs. and max number of loads   
SELF_LOAD  fy  -1     >> self load for all combinations: downward 
LOAD_COMB  1                 >>  the load comb id  
  POINT   3  fy   -45000.0   >>  LBS downward on joint  
  POINT   4  fy   -45000.0   >>  LBS downward on joint  
  POINT   5  fy   -45000.0   >>  LBS downward on joint  
FINISH 
 



 

 

193 

Example Geometry File for Progenitor 
START OF TOPO DATA for Progenitor 'Pony' 
JOINTS   10 
MEMBERS   19 
INCIDENCE: 
1 1 3 
2 1 6 
3 2 4 
4 2 10 
5 3 5 
6 3 6 
7 3 7 
8 3 8 
9 4 5 
10 4 8 
11 4 9 
12 4 10 
13 5 7 
14 5 8 
15 5 9 
16 6 7 
17 7 8 
18 8 9 
19 9 10 
COORDINANTS: 
1 0.000000 0.000000 
2 720.000000 0.000000 
3 180.000000 0.000000 
4 540.000000 0.000000 
5 360.000000 0.000000 
6 62.383455 128.996252 
7 178.299621 203.824300 
8 332.697695 247.000103 
9 503.206900 222.903619 
10 668.057358 125.033045 
 

Example Output Text File for one Geometry 
START OF TOPO DATA 
NUMBER   55 
JOINTS   10 
MEMBERS  17 
INCIDENCE: 
1 1 3 
2 1 6 
3 2 4 
4 2 10 
5 3 5 
6 3 6 
7 3 7 
8 4 5 
9 4 9 
10 4 10 
11 5 7 
12 5 8 
13 5 9 
14 6 7 
15 7 8 
16 8 9 
17 9 10 
COORDINATES: 
1 0.000000 0.000000 
2 720.000000 0.000000 
3 180.000000 0.000000 
4 540.000000 0.000000 



 

 

194 

5 360.000000 0.000000 
6 53.000000 144.000000 
7 206.707112 234.855042 
8 358.006893 266.380434 
9 529.710342 234.573769 
10 678.538089 142.782330 
 
Member Forces: 
1 25183.261214 
2 -72909.722960 
3 19874.216846 
4 -71268.013094 
5 54902.755957 
6 46677.972531 
7 10227.705798 
8 53367.046653 
9 10197.155344 
10 48738.763409 
11 11863.203203 
12 23951.729019 
13 13987.864502 
14 -65119.223850 
15 -62705.411437 
16 -62613.601796 
17 -63226.122288 
fitness   7455.487732 
volume   7455.487732 
weight   2114.078101 
 
 
 
 
 
 
 

weight 2114 lb  [959 kg]

jnt 10   mbr 17

Topo ID: 55

 
 

Figure A1.   Plot of truss geometry matching the output text. 



 

 

195 

Appendix B: Graphic Depiction of the Geometry CHC 

 
Figure A2.   One cycle from the CHC geometry GA from example 3.1. (generations1-6 + 28).  For the 

purpose of illustration the parent population size is limited to 10 (normally 50). 



 

 

196 

Appendix C: Graphic Depiction of the Topology ES 

 
 

Figure A3.   Six topology generations beginning with the progenitor used in example 3.1.  



 

 

197 

Appendix D: List of Program Routines 

This is a list of all the routines grouped by the .c program files in which they occur. 

/***  pvm_mp.c  main program on main host ***/  

/* int main (int, char *) */ /* the main main program */ 

int strt_rand (char **); /* use random start-up */ 

int strt_tp_gen (char **); /* use an initial start-up generation */ 

int strt_progenit (char **); /* use single progenitor as start-up */ 

int strt_1tp (char **); /* do optimization of single topo */ 

    

/***  pvm_sp.c  main program on spawned host for bred child ***/ 

/* int main (int, char *) */ /* the main sp program */ 

    

/***  pvm_sr.c  main program on spawned host for random child ***/ 

/* int main (int, char *) */ /* the main sr program */ 

    

/***  pvm_sm.c  main program on spawned host for mutant child ***/ 

/* int main (int, char *) */ /* the main sm program */ 

    

/***  pvm_out.c  main program that collects and ranks better topos ***/ 

/* int main (int, char *) */ /* the main out program */ 

    

/***  read_dat.c  to read in data from file and build dat structure ***/ 

void read_all (char *); /* read in data from file for ctrl and dat structures */ 

int degfred (char *); /* converts char to int */ 

void eatm_char (FILE *); /* read input data from file skipping blanks */ 

void eatm_blank (FILE *); /* read and delete extra white characters in input file */ 

    

/***  ga.c  the CHC GA for geometry opti  ***/  

double chc_ga (void); /* the main chc_ga routine */ 

void run_xs_xi (void); /* run chc_ga with reinit after xs, stop at xi reinits */ 

void run_x_cyc (void); /* run chc_ga with x cycles */ 

void run_x_gen (void); /* run chc_ga with x generations */ 

    

/***  breed.c  routines for geometry breeding ***/  

int breed_pop (void); /* breeding for entire geometry pop */ 

void breed_2 (int, int); /* breed a pair using HUX */ 

void breed_best (int, int); /* breed each with best */ 

void rnd_truss (int); /* generate pop of rand trusses */ 

void restart_tr (int); /* GA restart for pos or neg or both */ 

void sort_all (int); /* bubble sort by fittness */ 

void scram50 (void); /* random scramble of pop order */ 



 

 

198 

    

/*** x_over.c  geometry GA cross over routines ***/  

double find_diff1 (TRUSS * , TRUSS * ); /* difference between 2 trusses sqrt of sum sq */ 

double find_diff2 (TRUSS * , TRUSS * ); /* difference between 2 trusses by sum difference */ 

double init_thres (void); /* finds number for initial CHC-GA threshold */ 

NODE unif_line (double, double, double, double); /* uniform rand point between/beyond 2 nodes */ 

NODE norm_line (double, double, double, double); /* normal rand point between/beyond 2 nodes */ 

NODE unif_circle (double,double, double, double); /* uniform rand point in circle around 2 nodes */ 

NODE norm_circle (double,double, double, double); /* normal rand point in circle around 2 nodes */ 

NODE unif_lozen (double, double, double, double); /* uniform rand point in lozenge around 2 nodes */ 

    

/***  pvm_com.c   routines shared by different spawned processes  ***/ 

void reg_gen_top (void); /* regulates the generation of a full topo generation */ 

void breed2tp (int); /* breeds 2 topos to get 2 children */ 

int spawn_1topo (TOPO * , int); /* spawn topo for GA opti as sptruss */ 

int spawn_rtopo (void); /* spawn topo for GA opti as srtruss */ 

int respawn (void); /* check for free host and recall breed2tp() */ 

int send_out (TOPO * ); /* send a topo to tid_o to record */ 

void rand_recv (void); /* receive topos from srtruss */ 

void tp_mut_pop (void); /* fill a topo pop with mutants */ 

int spawn_mtopo (int, int); /* spawn one topo to smtruss (or srtruss) */ 

void rand_dup (void); /* spawn rand topo to replace duplicate */ 

void await_rcv (int); /* receives and processes generation of topos */ 

int recv_1tpot (int, TOP_OUT *); /* receives topo for output ranking */ 

int recv_1tp (int); /* actually receives 1 topo */ 

int recv_1mtp (int); /* actually receives 1 mut topo */ 

int chk_on_tasks (void); /* checks hosts and reinitialize failures */ 

    

/*** bred_top.c  topology level breeding routines ***/ 

int rand_topo_pop (int, int); /* generate random topo population */ 

void rand_trus_topo (TOPO * ); /* generates one random truss topology */ 

void select_elite (void); /* select fittest topos in population */ 

void select_usr (void); /* allows user to select topos interactively to breed */ 

int usr_menu (void); /* user screen menu for topo selection */ 

int topo_inst_usr (int, int, FILE * ); /* allows user to enter a topo/geom from file */ 

int topo_inst_init (int, FILE * ); /* user defined initial topo/geom */ 

void scram_top (void); /* random scramble of topo pop */ 

void sort_top (int); /* bubble sort of topos by fittness */ 

void sort_vert (void); /* sort verts by x or y in topo pop*/ 

void sort1tp_vert (TOPO * ); /* sort verts by x or y for one topo*/ 

void tp_out_ctrl (void); /* create output files *.scr and *.out */ 

void get_fnams (int, char * , char * ); /* used with tp_out_ctrl */ 

void tp_genx (int); /* run x gen in one cycle */ 

void tp_cycx (void); /* run x cycles */ 

int cyc_restart (void); /* topo cycle restart - with muts */ 



 

 

199 

int mut_tp (int, int); /* pick the mutation case */ 

void tp_rstx (int); /* to run cycles for x restarts - incomplete */  

int tp_dup_nr (void); /* counts consecutive duplicate pairs */ 

int tp_ck_same (TOPO * , TOPO * ); /* check sameness of 2 topos */ 

void tp_usr (void); /* user select for topo */ 

    

/*** top_chrm.c  topo chromosome manipulation/mutation ***/ 

int chk_jnt (TOPO * ); /* check number of joints for stability */ 

int chk_mbr (TOPO * , int); /* check members for stability */ 

int chk_0_mbr (TOPO * , int); /* check for zero force members */ 

void renm_mbr (TOPO * ); /* renumber the members */ 

int fuse_jnt (TOPO * , double); /* fuse close joints */ 

int fuse_jnt_sm (TOPO * , int); /* fuse close joints in the mutation program */ 

int fuse_mbr (TOPO * , double); /* fuse members */ 

int fuse_mbr_sm (TOPO * , int); /* fuse members in the mutation program */ 

int chk_dist (TOPO * , int, int, double); /* check perpendicular distance of point to member */ 

int chk_geom (TOPO * , double, double); /* complete check on stability of geometry */ 

void reset_tp (TOPO * ,TOPO * ); /* reset a topo from backup ttp */ 

void replace_dup (int); /* replace duplicate topo */ 

int add_mbr (TOPO * , int); /* add a member to topo */ 

int add_jnt (TOPO * , int); /* add a joint to topo */ 

int del_mbr (TOPO * , int); /* delete a member from topo */ 

int del_jnt (TOPO * , int); /* delete a joint from topo */ 

int mov_mbr (TOPO * , int); /* move a member in a topo */ 

int flp_row (TOPO *, int); /* flip a row in the incidence matrix */ 

int flp_col (TOPO *, int); /* flip a column in the incidence matrix */ 

int mirr_topo_r (TOPO * , int); /* mirror the right side of the topo */ 

int mirr_topo_l (TOPO * , int); /* mirror the left side of the topo */ 

int find_mir_x (double **, int, int); /* find the mirror line */ 

    

/***  bar2_fea.c  the FEA engine and solver ***/  
TRUSS 
* alloc_truss (int, int); /* setup the truss structure *t */ 

void topo_install (int); /* install a truss to fea from topo */ 

int assemble (TRUSS * ); /* assemble the k+ matrix */ 

double cholesky (int, TRUSS * ); /* compute modified cholesky on lower tri */ 

double solve (TRUSS * ); /* solve for displacements */ 

double force (TRUSS * ); /* back-solve for forces */ 

void anal_1 (TRUSS * ); /* analyze one truss single pass */ 

void anal_s (TRUSS * ); /* analyze one truss with self weight */ 

void anal_p (/*char ,*/ int); /* analyze truss choose _1 or _s */ 

    

/*** loads.c  routines that find and set loads ***/  

int find_load (TRUSS * ); /* sets load columns in k matrix */ 

void unif_load (TRUSS * , int, int); /* original load routine - not working */ 



 

 

200 

void p_load (TRUSS * , int, int); /* point load on node */ 

void self_load (TRUSS * , int); /* self weight */ 

    

/***  pipe_rod.c  routines that design pipes and rods ***/ 

double pipe_c (double, double); /* design continuous pipe by AISC */ 

double rod_c (double, double); /* design solid compression rod by AISC */ 

double rod_t (double, double); /* design solid tension rod by AISC */ 

double rod_no_buck (double, double); /* design solid rod by P/A, no buckling */ 

    

/***  writ_dat.c  output text data to files  ***/  

void w_topo (FILE * , TOPO * ); /* write the output file for history */ 

void sto_tp_fini (TOPO * ); /* finish storing topo data to structure tp */ 

void sto_fea (TOPO * ); /* record fea dat to structure */ 

void sto_tptt_fini (int); /* finish storing topo data to structure topp->tp[tt] */ 

    

/***  Xvisual.c  routines for drawing in X windows ***/ 

void draw (TRUSS * ); /* draw one truss */ 

void draw_topo (int, int); /* draw one topo */ 

void visual_setup (int, int); /* setup X window */ 

void clear_Xwin (void); /* clear an X window */ 

    

/***  autocad.c  routines that write AutoCAD scripts  ***/ 

void acad_50 (char * ); /* plot geom. Pop of 50 */ 

void acad_1 (char * , int, FILE * , char * ); /* plot a file of topo's to file 1 */ 

void acad_1topo (FILE * ,int,int,int,float,float,char * ); /* plot one topo to file 1 */ 

void acad_2 (char * , TOPO * , FILE * , char * ); /* plot a file of topo's to file 2 */ 

void acad_2topo (FILE * ,TOPO * ,int,int,float,float,char * ); /* plot one topo to file 2 */ 

void acad_3 (int, TOPO * , FILE * , char * ); /* plot a file of topo's to file 3 */ 

void acad_1truss (FILE * ,int,int,int,int,float,float,int); /* plot 1 truss with all load and force labels */ 

void acad_1tp_plt (FILE * ,int,int,int,int,float,float,int); /* plot 1 topo with all load and force labels */ 

void acad_breed (int, int, int); /* plot breeding by generation of CHC-GA */ 

void acad_br_top (int, int, int); /* plot breeding by generation of topo cycle */ 

void acad_tpop (char * ); /* plot one topo generation */ 

    

/***  util.c  miscellaneous utilities general to the program   ***/ 

double gasdev (void); /* Gaussian deviation from random number */ 

double ran1 (void); /* returns a uniform deviate between 0 and 1 - alt */ 

double ran0 (void); /* returns a uniform deviate between 0 and 1 */ 

void pause_n (double); /* pause n seconds */ 

int tp_id (int); /* find tt given topo_id */ 

void topo_copy (TOPO * ,TOPO * ); /* copy t1 to t2 with t2 free */ 

void itoa (int, char * ); /* Griffith convert int to char string */ 

void reverse (char * ); /* for itoa() */ 

void itoa_1 (int, char * ); /* convert int to form 001 */ 

char itoa_2 (int); /* for itoa_1() */ 



 

 

201 

void showm_int (char * , int **, int, int); /* printf a 2d int matrix */ 

void showm_dbl (char * , double **, int, int); /* printf a 2d double matrix */ 

void showv_dbl (char * , double *, int); /* printf a 1d double (vector) matrix */ 

void showv_int (char * , int *, int); /* printf a 1d int (vector) matrix */ 

double avg_fitness (void); /* average fitness of a geometry population */ 

void dump_vert (TRUSS * ); /* printf contents of one TRUSS t->Vertices */ 

void dump_topo (char * , TOPO * ); /* printf contents of one TOPO *tp */ 

void dump_truss (char * , TRUSS * ); /* printf contents of one TRUSS *p */ 

void dump_fea (char * ); /* printf contents of the fea structure */ 

void dump_pdat (char * ); /* printf contents of the pdat structure */ 

void set_Fixed (char * , TOPO * , int, int); /* set up tp->Fixed by free and calloc and fill */ 

void set_Vert (char * , TOPO * , int, int); /* set up tp->Vert by free and calloc and fill */ 

void set_Incid (char * , TOPO * , int, int); /* set up tp->Incid by free and calloc and fill */ 

void set_aE (char * , TOPO * , int, int); /* set up tp->aE by free and calloc and fill */ 

void set_mbr_dt (char * , TOPO * , int, int); /* set up tp->mbr_dt by free and calloc and fill */ 

void copy_tp_ttp (char * , TOPO * , int); /* make a backup copy of tp in case mut fails */ 

void set_tp_ppop (int); /* set tp parent pop from 0 to TOPO_NR */ 

void set_tp_cpop (int); /* set tp child pop from TOPO_NR to TOPO_NR<<1 */ 

void set_tp_brd2 (int); /* set 2 temp tp's for breeding */ 

void set_tp_temp (int); /* set temp tp for repairs */ 

void dummy1 (char * ); /* printf used in debug */ 

void clean_fea (void); /* clean and free fea */ 

void clean_ctrl_dat (void); /* clean and free ctrl and dat */ 

void clean_pdat (void); /* clean and free pdat */ 

void clean_topp (void); /* clean and free topp */ 

void clean_tp_child (int); /* clean and free one tp[tc] */ 

void kill_slv (void); /* kill any active pvm slaves */ 

void kill_prog (void); /* kill a program that is a slave sm */ 

void kill_prog_sm (void); /* kill the main mp program */ 
 



 

 

202 

Appendix E: Analysis Assessment 

This Appendix shows a comparison of the analysis results from the FEA code used in the 

IGDT with a commercial FEA code, STAAD.Pro 2005.  The data from Topo 1, shown in 

Figure 3.3. of the pony truss example, is used in the comparison of results.  Both 

programs use the 1989 edition of the AISC - ASD steel code for member analysis. 

Two STAAD.Pro runs were made.  The first run uses the same sizes chosen by the IGDT.  

The second run uses tabular sizes chosen by STAAD.  There is a small discrepancy 

between the IGDT and STAAD in the member sectional properties since STAAD sections 

are 36 face polygons, while the IGDT calculated properties are based on circular 

sections.  Also in rounding the steel density there is 0.2% difference between STAAD and 

the IGDT. This also has a small effect on the dead load and therefore member forces. 

Finally, as the geometry was taken from a truss generated by the IGDT, it is not perfectly 

symmetric and therefore there a small differences in left and right sides. 

 

Figure A4.  STAAD plot showing numbered members scaled to axial force. 

Comparison of Member Forces 

Table A2. shows a comparison of member forces found using STAAD and the IGDT.  All 

results are within 2% (most much closer).  As mentioned above there is some variation in 

the dead load which affects the member forces. 



 

 

203 

MEMBER IGDT STAAD.Pro 

1 -87333 -87500 

2 -74527 -74600 

3 -75585 -75600 

4 -87511 -87600 

5 54086 54100 

6 70239 70200 

7 70946 70900 

8 54366 54400 

9 47593 47600 

10 786 803 

11 45242 45300 

12 1242 1260 

13 47525 47600 

 

Table A1. A comparison of the analysis results of the IGDT and STAAD.Pro 2004 showing member 
force in pounds. 

Comparison of Section Areas 

Members in both STAAD and the IGDT were sized to the criteria of the 1989 AISC – ADS 

Steel Code.  In the IGDT member sizes are chosen form an algorithm which relates a 

continuous range of sizes to wall thicknesses.  The IGDT analysis does not use a 

slenderness (L/r) limit, but does limit minimum sectional area to 0.5 square inches. 

STAAD.Pro uses a table of standard sizes.  The smallest tabular size is ½ inch schedule 

40 pipe with an area of 0.25 square inches.  STAAD also uses the AISC slenderness limits 

of 200 for compression and 300 for tension. 

Table A2. shows a comparison of the section areas.  In the case of the IGDT the sizes are  



 

 

204 

MEMBER IGDT x ratio STAAD x ratio 

1 6.09 x 1.00 = 6.096.096.096.09 8.4 x 0.737 = 6.196.196.196.19 

2 6.28 x 1.00 = 6.286.286.286.28 8.4 x 0.787 = 6.616.616.616.61 

3 6.55 x 1.00 = 6.556.556.556.55 8.4 x 0.843 = 7.087.087.087.08 

4 6.04 x 1.00 = 6.046.046.046.04 8.4 x 0.729 = 6.126.126.126.12 

5 2.50 x 1.00 = 2.502.502.502.50 2.66 x 0.947 = 2.522.522.522.52 

6 3.25 x 1.00 = 3.253.253.253.25 3.68 x 0.888 = 3.273.273.273.27 

7 3.28 x 1.00 = 3.283.283.283.28 3.68 x 0.897 = 3.303.303.303.30 

8 2.52 x 1.00 = 2.522.522.522.52 2.66 x 0.951 = 2.532.532.532.53 

9 2.20 x 1.00 = 2.202.202.202.20 2.23 x 0.992 = 2.212.212.212.21 

10 0.50 x 1.00 = 0.500.500.500.50 2.23 x 0.017 = 0.040.040.040.04 

11 2.09 x 1.00 = 2.092.092.092.09 2.23 x 0.941 = 2.102.102.102.10 

12 0.05 x 1.00 = 0.050.050.050.05 2.23 x 0.026 = .058.058.058.058 

13 2.20 x 1.00 = 2.202.202.202.20 2.23 x 0.990 = 2.212.212.212.21 

 

Table A2. A comparison of the analysis results from the IGDT and STAAD.Pro 2004 showing member 
area in square inches. 

chosen using a continuous equation to be at 100% capacity.  Therefore the ratio of actual 

stress / allowable stress = 1.00.  Since STAAD picks standard sizes from a table the ratio 

is something less than 1.0.  Factoring the areas by the capacity ratios gives results that 

compare closely. 

Members 10 and 12 are long tensile members with very low load levels.  In the IGDT 

they are sized by the minimum area criterion (0.50 sq. in.), and in STAAD they are sized 

by maximum slenderness ratios (300). 

The total weight of the IGDT truss is 2586 LBS, and the STAAD.Pro truss totals 3498 LBS.  

When the IGDT member sizes were analyzed with STAAD they came within 0.05% of 

capacity. 



  
 

205 

Deutsche Kurzfassung 

 

1 Der Entwurfsprozess in der Architektur und im 

Bauingenieurwesen 

Der Begriff Entwerfen ist sehr umfangreich gefasst und hat in verschiedenen 

Zusammenhängen unterschiedliche Bedeutungen.  In den hier vorgestellten 

Arbeitsergebnissen bedeutet Entwerfen die Entscheidungsfindung oder Entdeckung von 

Form (Topologie und Geometrie) innerhalb eines strukturellen Systems.  In der Regel 

wird diese Tätigkeit als Vorentwurf definiert.  Obwohl Rechenprogramme in den 

späteren Phasen des Entwurfsprozesses häufig angewendet werden, gibt es doch sehr 

wenige Programme, die in den frühen Phasen des Entwurfsvorganges effektiv genutzt 

werden können. 

Der Grund dafür liegt in einem Spannungsfeld zwischen der menschlichen Psychologie 

und dem typischen Prozess einer numerischen Berechnung.  Während bei den typischen 

rechnerischen Methoden das Ziel darin besteht, eine einzige Lösung zu finden, ist es in 

den frühen Entwurfsphasen wichtig, eine Vielzahl von verschiedenen Möglichkeiten zu 

erdenken.  Dieser Zwiespalt zwischen der einen Lösung und den vielen Lösungen ist 

letztlich der Unterschied zwischen Analyse und Entwerfen.  Diese vorliegende Arbeit stellt 

einen "Intelligent Genetic Design Tool" (IGDT) als ein Beispiel eines Programms vor, das 

für das Entwerfen geeignet ist.  Das IGDT unternimmt den Versuch, eine Auswahl von 

'guten' Lösungen anstatt nur eine einzige 'beste' Lösung aufzuzeigen. 

Um ein wertvolles Entwurfswerkzeug zu sein, muss ein IGDT gewisse Eigenschaften 

haben, die dem Entwurfsprozess angemessen sind.  In der Regel sind solche 

Eigenschaften nicht in numerischer Berechnung zu finden, sondern eher bei Methoden 

die mit Modellen, Analogien oder irgendeiner Art von menschlicher Interaktion zu tun 

haben.  In der Tat empfinden die meisten Entwerfer den Einsatz von momentan 

existierenden computergestützten Werkzeugen in den frühen Entwurfsphasen als nicht 

hilfreich. 



  
 

206 

Bei der Untersuchung von traditionellen Entwurfshilfsmitteln stellt man fest, dass sie 

wesentliche Unterschiede zu Analysemethoden und zu den meisten numerischen 

Berechnungen haben.  Entwurfshilfsmittel zeigen fast immer eine Vielfalt von 

Möglichkeiten auf – nicht nur eine einzige 'Beste'.  Sie versuchen Varianten zu finden, die 

möglichst anders sind.  Gute Entwurfshilfsmittel versuchen die Bandbreite des 

Lösungsbereiches darzustellen.  Analysewerkzeuge hingegen arbeiten konvergierend 

und wirken dadurch einschränkend auf die Kreativität.  Bei einer Analyse muss man das 

Problem in alle Einzelheiten beschreiben können, jedoch besteht ein Hauptbestandteil 

des Entwerfens darin, das Problem selbst zu bestimmen. 

Aus alle Arten von numerischen Berechnungen haben die Evolutionären Algorithmen 

Eigenschaften, die am besten mit den Kriterien von frühen Entwurfsphasen 

übereinstimmen.  Diese Eigenschaften sind: 

• Benutzung von Populationen (Gruppen) von Lösungen 
• Rekombination und Mutation 
• Auskundschaftung 
• Kein Bedarf auf Zugriff einer Tauglichkeitsfunktion 
• Ähnlichkeit mit dem menschlichen Entwurfsprozess 
• Anpassungsfähigkeit 
 

In der Zusammensetzung des IGDT wurde ein Genetischer Algorithmus (GA) 

angewendet.  Mit dem GA als Basis der Berechnung ist es möglich, ein echtes 

Entwurfswerkzeug zu entwickeln, das kreativ, auskundschaftend und nicht deterministisch 

ist.  Das IGDT, das dieser Arbeit zugrunde liegt, funktioniert auf zwei Arten.  Die eine 

Art ist interaktiv und die andere ist automatisch.   

Im Interaktivmodus zeigt das IGDT dem Entwerfer eine Population von guten Lösungen 

auf, woraus er eine Auswahl treffen kann.  Die 'guten' Lösungen sind suboptimale 

Lösungen oder 'niedrige Spitzen' innerhalb des Suchbereichs.  Sobald der Entwerfer die 

eine oder die andere Lösung aus der Population aussucht, werden diese die Eltern der 

nächsten Generation.  In den GA-Verfahren erzeugt jedes Elternpaar zwei Kinder.  Die 

Eltern und die Kinder bilden zusammen die nächste Population, aus der der Entwerfer 

wieder eine Auswahl trifft.  Dieser Zyklus setzt sich immer weiter fort. 

Da die Kinder die Eigenschaften der Eltern tragen und da die Eltern vom Entwerfer 

ausgesucht worden sind, folgt die Richtung der Untersuchung den Kriterien des 

Entwerfers sobald er die Population festgelegt hat.  Es ist offensichtlich, dass diese 



  
 

207 

Kriterien nicht unbedingt vom Entwerfer festgeschrieben sind – auf jedem Fall sind sie im 

Programm selbst nicht kodiert.  Die Kriterien des Entwerfers mögen sehr subjektiv sein, 

sie können sich sogar mit der Zeit oder den Erfahrungen ändern.  In jeden Fall das Ziel 

des IGDT dahingehend festgelegt wird, gute Lösungen für den Entwerfer aufzuzeigen. 

Hierzu hat das IGDT noch einen weiteren Mechanismus – die Mutation.  Durch eine 

zufällige Mutation springt die Suchrichtung auf ein neues Gebiet.  Solche ungeplanten 

Sprünge sind manchmal nützlich, um neue Lösungsansätze zu entwickeln.  Der 

Entwerfer kann auch selbst Lösungen in die Population hineingeben, die noch eine 

weitere Möglichkeit des interaktiven Suchens anbietet. 

Der zweite Modus des IGDT ist das Automatikverfahren.  Hier wird die Bandbreite eines 

Suchgebietes nach bestimmten, vorgegebenen Kriterien untersucht.  Anstatt Eltern 

interaktiv auszuwählen, werden sie nach vorgegebenen Kriterien (eine "fitness function") 

selektiert.  Die Mutation spielt auch hier immer noch eine Rolle und gewährleistet daher, 

dass ein möglichst breites Gebiet untersucht wird.  Natürlich ist es nicht effektiv, alle 

Lösungen, die gefunden wurden, näher zu betrachten.  Interessant ist es nur die Spitzen 

aus der Vielfalt von Lösungen näher zu beleuchten.  Das IGDT versucht genau dies zu 

machen, indem es nur die Besseren von jeder Topologie oder von wesentlich 

verschiedenen Geometrien aufzeigt.  Man kann auf diese Weise einen Überblick der 

möglichen Lösungen erhalten und anschließend einige für weitere Untersuchung 

auswählen. 

2 Das „Intelligent Genetic Design Tool” (IGDT) 

Genetische Algorithmen (GA) sind eine Untergruppe) der evolutionären Algorithmen (EA 

oder auch Evolutionary Computation – EC genannt).  Diese Art stochastischer 

Berechnungsmethode ist aus der Arbeit von verschiedenen Forschern während der 60er 

Jahre hervorgegangen.  Obwohl die frühe Entwicklung in den verschiedenen Bereichen 

unabhängig voneinander fortgeschritten ist, ist heutzutage der Unterschied zwischen den 

Bereichen nicht streng definiert.  In Bezug auf ein IGDT sind drei Bereiche beteiligt: 

• Genetische Algorithmen (GA) 
• Evolutionsstrategien (ES) 
• Interaktiv evolutionäre Berechnung (IEC) 
 



  
 

208 

In der Optimierung von Geometrie benutzt das IGDT ein CHC-GA.  Die CHC-GA ist 

eine Variante von einem traditionellen GA, das reelle Zahlen anstatt binären, ganzen 

Zahlen und Mutation getrennt von Rekombination verwendet.  Der CHC-GA ist 

eigentlich einem ES-(µ+λ) sehr ähnlich.  In der Optimierung von Topologien benutzt das 

IGDT die Inzidenzmatrix für Rekombination in Form eines Binärstring, der wiederum 

selbst auch eine ES-(µ+λ) ähnliche Struktur hat.  Im interaktiven Modus funktioniert das 

IGDT als eine IEC. 

Obwohl das Verhältnis zwischen EC (beide GA und ES) und der natürlichen Genetik nicht 

direkt übertragbar ist, erscheint es sinnvoll, diese biologische Analogie zu untersuchen.  

Einige der Mutationsroutinen, die speziell für Stabwerke geschrieben wurden, sind auf 

diese Weise entstanden.  Auch sind viele Begriffe und Operationen in EC aus der 

natürlichen Genetik übernommen. 

Wesentliche Kriterien für die Untersuchung der Form sind oft qualitativer Natur. Für ein 

IGDT ist es wichtig, nicht nur mit quantitativen Kriterien sondern auch mit der Ästhetik 

zusammenwirken zu können.  Im Interaktivmodus funktioniert das IGDT sowohl mit 

vorgegebenen, quantitativen Kriterien wie Gewicht, als auch mit qualitativen Kriterien, die 

sich auf die Wahl des Entwerfers beziehen.  Damit dieses möglich ist, wird das IGDT in 

zwei Schalen konzipiert.  Die innere Schale errechnet für eine vorgegebene Topologie 

quantitative Lösungen, die gleichzeitig auch 'gute' Lösungen sein sollen.  Die äußere 

Schale kann entweder mit vorgegebenen quantitativen Kriterien (Automatikmodus) oder 

mit der qualitativen Wahl des Entwerfers (Interaktivmodus) arbeiten.  Beide Schalen sind 

in der Form eines ECs kodiert und beide haben die dazugehörigen Eigenschaften und 

die dafür notwendige Programmroutine.  Diese Eigenschaften sind: 

• Chromosomenstruktur 
• Zucht 
• Mutationen 
• Anpassung 
• Selektion 
 

Innerhalb der zwei Programmschalen werden diese Eigenschaften unterschiedlich 

behandelt, je nach dem, ob sie Bestandteil der inneren Schale (Geometrie) oder der 

äußeren Schale (Topologie) sind. 



  
 

209 

2.1 Die Kodierung der Geometrie 

Chromosom 

Das Chromosom stellt von der Geometrie her das Gleiche dar wie eine Knotenmatrix.  

Die Knoten sind als reelle Zahlen in den x- und y- Richtungen angegeben.  Figur D1. 

zeigt das x- und y- Knotenpaar als ein Beispiel für Fachwerkträger, das als Chromosom 

benutzt wird. 

 

Truss A

1

3
4

2

6

5

 
Figur D1.  Beispiel eines Fachwerkträgers mit zugehöriger Knotenmatrix. 

 

Zucht (Fortpflanzung) 

In Figur D2. ist die Zucht von zwei Geometrien. abgebildet.  Zwei durch Zufall gewählte 

Elternteile wurden miteinander gepaart.  Wenn das Paar eine gewisse Unähnlichkeit hat, 

wird es zur Züchtung herangezogen.  In CHC-GA wird die Hälfte der Stellen auf einem 

Chromosom (Alleles) bearbeitet.  Das heißt, dass mit einer Zufallswahrscheinlichkeit von 

50% jeder Knoten mit den entsprechend gepaarten Knoten gezüchtet wird, um einen 

Nachkommen bzw. Abkömmling zu erschaffen.  Der zweite Nachkomme entstammt den 

Knoten, die beim ersten Nachkommen eben nicht ausgewählt wurden.  In jedem Fall 

der Knoten des Nachkommens entstammt ein Punkt, der auf einer normalen (gaußschen) 

Wahrscheinlichkeitsverteilung aus dem Mittelpunkt der zwei Elternknoten entnommen ist. 

Mutation 

Bei der Geometrie ist die Mutation eine zufällige Änderung auf einem oder auf mehreren 

Knoten.  Ähnlich wie bei der Züchtung fällt der neue Knoten in einer normalen 

Wahrscheinlichkeitsverteilung um den Ursprungsknoten ab.  Die Stärke der Mutation ist 

durch die Sigmawerte der gaußschen Normalverteilung geregelt. 

 

0 0

360 0

90 90

270 90

180 180

180 0

. .

. .

. .

. .

. .

. .



























  
 

210 

 

Figur D2.  Zucht von zwei Eltern und Berechnung einer Ähnlichkeitsgrenze. 

Selektion 

Typisch für die CHC-GA Selektion ist, dass sich nur das beste Individuum bei der 

nächsten Generation fortpflanzt (Elitist).  Das beschleunigt die Konvergenz innerhalb 

eines Zyklus.  Am Ende eines Zyklus folgen viele Mutationen, die für Variationsvielfalt 

sorgen. 

2.2 Kodierung von Topologie 

Chromosomenstruktur 

Die Chromosomenstruktur, die beim IGDT für die Topologie benutzt wird, ist eine 

Innovation, die einen möglichst großen Suchbereich zusammen mit einem möglichst 

kurzen Binärstring beschreibt.  Dabei ist die Chromosomlänge entscheidend, denn sie 

übt einen direkten Einfluss auf die Berechnungszeit aus.  Üblicherweise wird die 

Topologie durch das Ein- oder Ausschalten von Gliedern zwischen vorbestimmten Knoten 

innerhalb einer Grundstruktur beschrieben.  In diesem Fall ist die Länge des 

Chromosoms durch die Zahl der Knoten in der Grundstruktur bedingt.  Für eine 

Grundstruktur, die nur eine bestimmte Zahl von Knoten hat, ist die Länge des Binärstrings 

meistens zu groß um praktisch angewendet werden zu können. 



  
 

211 

a.  

0 0 1 0 0 1

0 0 1 0 1

0 0 1 1

0 1 1

0 1

0

























   

 

b.  [ ]0 1 0 0 1 0 1 0 1 0 1 1 1 1 1  

Figur D3. a. Inzidenzmatrix vom Beispieltragwerk in Figur D2. 
b. Das Chromosom als Binärstring 

Beim IGDT basiert das Chromosom auf der Inzidenzmatrix des eigentlichen Tragwerks.  

Das heißt, dass die Länge des Binärstring viel kürzer und die Berechnung von größeren 

Tragwerken möglich ist.  Figur D3. zeigt die Erzeugung des Chromosoms aus der 

Inzidenzmatrix eines Tragwerks. 

1111110110

10110 11111

Fitness = 333
Joints 6  Members 9 Joints 5  Members 8

Fitness = 361

Joints 5  Members 7
Fitness = 285

Joints 6  Members 10
Fitness = 285

 

Figur D4.  Zucht von zwei Topologien mit unterschiedlichen Chromosomlängen. 



  
 

212 

Zucht 

Die Zucht von zwei verschiedenen Topologien ist in Figur D4. abgebildet.  Da die 

Chromosomen oft unterschiedliche Längen haben, ist der Schnittpunkt immer aus der 

Länge des kürzeren Chromosoms genommen. 

 

Mutation 

Die Mutation wird im Interaktivmodus anders behandelt wie im Automatikmodus.  Im 

Automatikmodus erfolgt die Mutation bei jedem Zyklusbeginn.  In dem Fall wird das 

beste Individuum aus der letzten Generation des vorherigen Zyklus durch verschiedene 

Mutationsvorgänge verändert, um eine neue Population zu bilden.  Die Mutationen 

können einzeln oder in Kombinationen angewendet werden und wirken sowohl direkt auf 

die Form als auch auf die Inzidenzmatrix.  Eine Liste von Mutationsvorgängen schließt 

die folgenden ein. 

 

    MutationsvorgängeMutationsvorgängeMutationsvorgängeMutationsvorgänge    
Linke Seite spiegeln Ein Glied hinzufügen 
Rechte Seite spiegeln Ein Glied wegnehmen 
Benachbarte Knoten vereinigen Ein Glied verschieben 
Benachbarte Glieder vereinigen Eine Matrixspalte umdrehen 
Einen Knoten hinzufügen Eine Matrixreihe umdrehen 
Einen Knoten wegnehmen  
 

Im Interaktivmodus sind die Mutationsvorgänge die gleichen.  Jedoch werden sie nach 

Belieben des Benutzers eingesetzt.  Im Interaktivmodus gibt es nicht den gleichen Zyklus 

wie im Automatikmodus. 

 

Anpassung 

Anpassung erfolgt, wenn eine Topologie sich in eine andere umwandelt.  Entweder 

kommen zwei Knoten zusammen oder zwei Glieder überlappen sich und werden 

vereinigt.  Ein Beispiel wird anhand der Figur D5. aufgezeigt. 



  
 

213 

Truss A

1

3

5

6

2

4 4

2

6

5

3

1

Truss B

7

 

Figur D5.  'A' ist der vorherige Zustand und 'B' ist die Anpassung von Knoten 7 auf Knoten 3. 

 

Selektion 

Wie bereits erklärt, hat die Topologieschale zwei Modi, Automatikmodus und 

Interaktivmodus.  Im Automatikmodus ist die Selektion immer für die besten Lösungen 

(Elitist) nach den vorgegebenen Fitnesskriterien gewählt.  Im Interaktivmodus ist die 

Selektion durch den Benutzer festgelegt.  Auf diese Weise kann das IGDT die Kriterien 

des Entwerfers anpassen, obwohl diejenigen Kriterien nicht formal beschrieben sind.  So 

ist es möglich, Kriterien wie Ästhetik in die Lösung miteinzubeziehen und dem Entwerfer 

ein Werkzug für das weitere Auskundschaften der denkbaren Formen anzubieten. 



  
 

214 

3 Beispiele und Ergebnisse 

Um die Fähigkeit des IGDT zu demonstrieren, sind fünf Beispiele, die mit anderen 

veröffentlichten Forschungsergebnissen vergleichbar sind, durchgeführt worden.  Vier 

von diesen Beispielen verwenden den Automatikmodus und eines den Interaktivmodus.  

Wie unten dargestellt, unterstützt das Programm das Entwerfen von zweidimensionalen 

Fachwerksystemen unter verschiedenen Lasten und Stützpunkten für Stahlrohre und 

Vollprofilstäben mit Berücksichtigung von Zug- oder Druckkräften und Knicken.  Obwohl 

nur als Prototyp gedacht, berücksichtigt das Programm genügend Kriterien und 

Variablen, so dass die Formen, die gefunden werden, auch realisierbar wären. 

3.13.13.13.1 StraßenbrückeStraßenbrückeStraßenbrückeStraßenbrücke    

In der Literatur wird oft der 4-Feld-Fachwerkträger mit Knotenbelastung als Beispiel 

angeführt.  Dabei werden drei Konfigurationen untersucht, jede mit der gleichen 

Knotenbelastung von Fahrbahn plus Verkehr und mit unterschiedlicher Selbstbelastung 

durch Eigengewicht.  Figuren D7. durch D9. zeigen eine Auswahl der gefundenen 

Lösungen.  Interessant ist ein Vergleich mit einem anderen auf GA basierenden 

Programm, das die Topologie optimiert (Figur D6.).  Hier bemerkt man sofort den 

starken Einfluss einer Grundstruktur, die das IDGT vermeidet. 

 

0

8

6

4
2 14

12

16

10

9

7

5315

13

11

1

20000 lb. 20000 lb. 20000 lb.

 

    Mit GrundstrukturMit GrundstrukturMit GrundstrukturMit Grundstruktur    Ohne GrundstrukturOhne GrundstrukturOhne GrundstrukturOhne Grundstruktur    

Figur D6. Zwei Lösungen mit der gleichen Topologie.  Links ein Ergebnis das mit der Grundstruktur 
gefunden worden ist Deb & Gulati (1999). Rechts die IGDT Lösung.  Beiden sollen nach 
gewicht optimiert sein. 



  
 

215 

weight 2107 lb [956 kg]

jnt 10   mbr 17

Topo ID: 8

weight 2219 lb [1007 kg]

jnt 10   mbr 17

Topo ID: 2

weight 1861 lb [844 kg]

jnt 14   mbr 25

Topo ID: 15

weight 2016 lb [914 kg]

jnt 11   mbr 19

Topo ID: 11

weight 2575 lb [1168 kg]

jnt 8   mbr 13

Topo ID: 1

weight 1953 lb [886 kg]

jnt 12   mbr 21

Topo ID: 9

weight 2190 lb [993 kg]

jnt 10   mbr 19

Topo ID:3

weight 2534 lb [1149 kg]

jnt 8   mbr 13

Topo ID: 7

weight 1972 lb [894 kg]

jnt 12   mbr 21

Topo ID: 14

weight 2064 lb [936 kg]

jnt 11   mbr 21

Topo ID: 16

weight 2284 lb [1036 kg]

jnt 9   mbr 15

Topo ID: 5

weight 2066 lb [937 kg]

jnt 11   mbr 19

Topo ID: 6

weight 1834 lb [832 kg]

jnt 15   mbr 27

Topo ID: 12

weight 1929 lb [875 kg]

jnt 16   mbr 31

Topo ID: 17

weight 2225 [1009 kg]

jnt 10   mbr 17

Topo ID: 13

weight 3133 lb [1421]

jnt 7   mbr 11

Topo ID: 4

weight 2317 [1051 kg]

jnt 9   mbr 15

Topo ID: 119

Topo ID: 18

jnt 18   mbr 33

weight 1804 lb [818 kg]

 

Figur D7. Auswahl der Ergebnisse des Fachwerks mit untenliegender Fahrbahn.  Nach Gewicht und 
Aufwand geordnet. 



  
 

216 

weight 2320 [1052 kg]

jnt 11   mbr 20

Topo ID: 17

weight 2316 [1050 kg]

jnt 11   mbr 20

Topo ID: 18

weight 2547 [1155 kg]

jnt 8   mbr 13

Topo ID: 5

weight 2341 [1062 kg]

jnt 11   mbr 20

Topo ID: 15

weight 2373 [1077 kg]

jnt 11   mbr 20

Topo ID: 11

weight 2318 [1052 kg]

jnt 11   mbr 20

Topo ID: 12

weight 2481 [1125 kg]

jnt 9   mbr 16

Topo ID: 8

weight 2377 [1078 kg]

jnt 11   mbr 20

Topo ID: 14

weight 2516 [1141 kg]

jnt 9   mbr 16

Topo ID: 7

weight 3992 [1811 kg]

jnt 6   mbr 9

Topo ID: 1

weight 2469 [1120 kg]

jnt 9   mbr 16

Topo ID: 9

weight 3355 [1522 kg]

jnt 10   mbr 17

Topo ID: 2

weight 2654 [1204 kg]

jnt 8   mbr 13

Topo ID: 4

weight 2415 [1096 kg]

jnt 11   mbr 22

Topo ID: 16

weight 2382 [1080 kg]

jnt 11   mbr 20

Topo ID: 13

weight 2455 [1114 kg]

jnt 9   mbr 16

Topo ID: 10

weight 2520 [1143 kg]

jnt 8   mbr 13

Topo ID: 6

weight 2472 [1121 kg]

jnt 10   mbr 17

Topo ID: 3

 

Figur D8. Auswahl der Ergebnisse des Fachwerks mit obenliegender Fahrbahn.  Nach Gewicht und 
Aufwand geordnet. 



  
 

217 

weight 1852 [840 kg]

jnt 12   mbr 22

Topo ID: 4

weight 2202 [999 kg]

jnt 11   mbr 22

Topo ID: 2

weight 2137 [969 kg]

jnt 11   mbr 20

Topo ID: 1

weight 1896 lb [860 kg]

jnt 13   mbr 24

Topo ID: 9

weight 1809 lb [821 kg]

jnt 14   mbr 26

Topo ID: 8

weight 1778 lb [806 kg]

jnt 14   mbr 26

Topo ID: 5 Topo ID: 6

jnt 16   mbr 30

weight 1709 lb [775 kg]

Topo ID: 12

jnt 15   mbr 28

weight 1755 lb [796 kg]

Topo ID: 11

jnt 14   mbr 26

weight 1783 lb [809 kg]

Topo ID: 10

jnt 13   mbr 24

weight 1828 lb [829 kg]

Topo ID: 15

jnt 17   mbr 32

weight 1743 lb [790 kg]

Topo ID: 7

jnt 12   mbr 22

weight 1937 lb [879 kg]

weight 2165 [982 kg]

jnt 11   mbr 22

Topo ID: 3

weight 1746 lb [792 kg]

jnt 15   mbr 28

Topo ID: 13

weight 1782 lb [808 kg]

jnt 19   mbr 36

Topo ID: 18

weight 1793 lb [813 kg]

jnt 17   mbr 32

Topo ID: 17

weight 1892 lb [858 kg]

jnt 15   mbr 28

Topo ID: 16

weight 1714 lb [777 kg]

jnt 16   mbr 30

Topo ID: 14

 

Figur D9.  Auswahl der Ergebnisse des Fischbauchfachwerks.  Nach Gewicht und Aufwand geordnet  



  
 

218 

3.23.23.23.2 Bogen DachträgerBogen DachträgerBogen DachträgerBogen Dachträger    

Das nächste Beispiel entstammt einer Aufgabenstellung die bereits von kompetenter 

Ingenieurseite gelöst wurde.  Es handelt sich um einen Dachträger mit Wind-, Schnee- 

und Punktbelastung (sechs Lastfälle).  Figur D10. zeigt die ursprüngliche Lösung und die 

Figuren D11. u. D12. zeigen Lösungen, die von dem IGDT gefunden worden sind. Da 

keine Beschränkung auf Tiefe angesetzt war, sind viele Lösungen tiefer und dabei leichter 

als die ursprüngliche Lösung. 

Topo ID 22 bis 24 (Figur D12.) wurden unter den gleichen Bedingungen wie die 

ursprüngliche Tragwerkslösung entwickelt.  Dabei kann man erkennen, dass das IGDT 

nicht nur die gleiche Lösung wie der Ingenieur gefunden hat, sondern auch andere 

Möglichkeiten, die leichter und mindestens ebenbürtig sind. 

 

 

49'-3"  [15m]

Topo ID: 0

jnt 15   mbr 27

weight 609 lbs  [276 kg]
 

Figur D10.  Ursprünglicher Dachträger von Dipl. -Ing. B. Peter entworfen. 

 



  
 

219 

weight 404 lbs  [183 kg]

jnt 16   mbr 29

Topo ID: 16

weight 403 lbs  [183 kg]

jnt 14   mbr 25

Topo ID:17

weight 416 lbs  [189 kg]

jnt 14   mbr 27

Topo ID: 12

weight 383 lbs  [174 kg]

jnt 14   mbr 25

Topo ID: 14

weight 409 lbs  [186 kg]

jnt 16   mbr 29

Topo ID: 13

weight 509 lbs  [231 kg]

jnt 16   mbr 35

Topo ID: 7

weight 472 lbs  [214 kg]

jnt 16   mbr 33

Topo ID: 8

weight 470 lbs  [213 kg]

jnt 16   mbr 33

Topo ID: 10

weight 425 lbs  [193 kg]

jnt 14   mbr 27

Topo ID: 9

weight 380 lbs  [173 kg]

jnt 14   mbr 25

Topo ID: 15

weight 428 lbs  [194 kg]

jnt 14   mbr 27

Topo ID: 11

weight 396 lbs  [180 kg]

jnt 15   mbr 27

Topo ID: 5

weight 387 lbs  [176 kg]

jnt 15   mbr 27

Topo ID: 18

Topo ID: 1

jnt 11   mbr 19

weight 450 lbs  [204 kg]

Topo ID: 2

jnt 12   mbr 21

weight 409 lbs  [185 kg]

Topo ID: 3

jnt 12   mbr 21

weight 390 lbs  [177 kg]

Topo ID: 4

jnt 14   mbr 29

weight 463 lbs  [210 kg] weight 416 lbs  [189 kg]

jnt 14   mbr 25

Topo ID: 6

 

Figur D11.  Auswahl der Ergebnisse.  Nach Gewicht und Aufwand geordnet. 

 



  
 

220 

weight 569 lbs  [258 kg]

jnt 13   mbr 23

Topo ID: 24Topo ID: 23

jnt 15   mbr 27

weight 573 lbs  [260 kg]weight 579 lbs  [263 kg]

jnt 15   mbr 27

Topo ID: 22

weight 389 lbs  [177 kg]

jnt 15   mbr 27

Topo ID: 20

weight 392 lbs  [178 kg]

jnt 15   mbr 27

Topo ID: 19 Topo ID: 21

jnt 13   mbr 23

weight 379 lbs  [172 kg]

 

Figur D12. Drei Lösungen die näher an die Ursprungslösung kommen.  Nr. 19 bis 12 sind ohne 
Beschränkung der Tiefe.  Nr. 22 bis 24 sind mit beschränkter Tiefe.  Nr. 22 hat die gleiche 
Topologie wie die Ursprungslösung. 

 

 

3.33.33.33.3 KragarmfachwerkKragarmfachwerkKragarmfachwerkKragarmfachwerk    

Seit der Veröffentlichung von Mitchell im Jahre 1904, die auf der Arbeit von James Clerk 

Maxwell basiert, ist dieses Beispiel in der Literatur oft als Prüfstein benutzt worden.  Weil 

in der Lösung von Mitchell das Knicken nicht beachtet wurde, ist es hier auch ohne 

Knicken und nur mit einem Belastungspunkt gezeigt.  In Figur D14. sind verschiedene 

Topologien abgebildet, die vom IDGT gefunden worden sind.  Die Verwandtschaft der 

Formen mit der Mitchell- Lösung ist sofort erkennbar. 

 

Figur D13.  1904 Lösung von A.G.M. Mitchell. 



  
 

221 

weight 121 lb  [55 kg]

jnt 3   mbr 3

Topo ID: 1

weight 101 lb  [46 kg]

jnt 8   mbr 12

Topo ID: 8

weight 102 lb  [46 kg]

jnt 9   mbr 14

Topo ID: 5

weight 102 lb  [46 kg]

jnt 8   mbr 12

Topo ID: 3

weight 102 lb  [46 kg]

jnt 6   mbr 8

Topo ID: 2

weight 102 lb  [46 kg]

jnt 8   mbr 12

Topo ID: 7

weight 101 lb  [46 kg]

jnt 10   mbr 16

Topo ID: 9

weight 103 lb  [47 kg]

jnt 8   mbr 12

Topo ID: 4

weight 102 lb  [46 kg]

Topo ID: 6

Topo ID: 11

jnt 11   mbr 18

weight 101 lb  [46 kg]weight 102 lb  [46 kg]

jnt 9   mbr 14

Topo ID: 10 Topo ID: 12

weight 101 lb  [46 kg]

jnt 11   mbr 18

jnt 11   mbr 18

 

Figur D14.  Auswahl der Ergebnisse.  Nach Gewicht und Aufwand geordnet. 

 

3.43.43.43.4 SchienenkranSchienenkranSchienenkranSchienenkran    

Der Schienenkranträger ist das komplexeste Beispiel aller Untersuchungsvarianten.  

Dieses Beispiel ist gleichzeitig auch eine vergleichbare Lösungsvariante, die von einem 

erfahrenen und kompetenten Ingenieur mit Hilfe eines sehr leistungsfähigen 

kommerziellen Programms erstellt werden könnte (Figur D16.).  Die Belastung kommt 

von der Beschleunigung oder Bremsen eines Katze, der auf einem Kran gelagert ist. 



  
 

222 

1. 2.

4.

6.

8.

10.9.

7.

5.

3.

 

Figur D15.  Fachwerkträger eines Krans mit 10 Lastfällen, die auf sechs Felder verteilt sind 

 

Die Katze fahren auf der Kranlänge hin und her, während der Kran selbst sich in der 

Ebene des Fachwerks auf den Schienen bewegt.  Die zehn Lastfälle die daraus entstehen 

sind in Figur D15. abgebildet. 

 

 

Figur D16.  Von ANSYS optimierte Lösungen für zwei einzelne Lastfälle. 



  
 

223 

 

 

weight 20472 lb  [9286 kg]

jnt 13   mbr 23

Topo ID: 0

 

Figur D17.  Ursprungsform, die mit Hilfe von ANSYS entworfen wurde. 

 

Figur D17. zeigt den Fachwerkträger, der ohne IGDT entworfen worden ist.   

Um ein vergleichbares Gewicht zu erhalten, wurde die Rohrgröße den Stäbe durch das 

IGDT bestimmt.  Obwohl der Ursprungsform nicht direkt von ANSYS entnommen 

worden ist, kann man trotzdem den Einfluss des Formfindungsprogramms bemerken.  

Figur D19. zeigt eine Reihe von Formen, die durch das IGDT gefunden wurden.  Alle 

sind leichter, aber die Vielfalt von Topologien ist noch interessanter.  Figur D18. zeigt 

die gegebene Topologie (von Figur D17.), die vom IGDT geometrisch weiter optimiert 

worden ist. 

 

weight 14603 lb  [6624 kg]

jnt 13   mbr 23

Topo ID: 0

 

Figur D18.  Ursprungstopologie 0, die vom IGDT geometrisch weiter optimiert wurde. 



  
 

224 

weight 12496 lb  [5668 kg]

jnt 22   mbr 42

Topo ID: 14

weight 12499 lb  [5669 kg]

jnt 20   mbr 37

Topo ID: 7

weight 11909 lb  [5402 kg]

jnt 24   mbr 45

Topo ID: 8

weight 12261 lb  [5562 kg]

jnt 24   mbr 49

Topo ID: 9

weight 11384 lb  [5164 kg]

jnt 28   mbr 53

Topo ID: 12

weight 11876 lb  [5387 kg]

jnt 24   mbr 45

Topo ID: 10

weight 11393 lb  [5168 kg]

jnt 28   mbr 53

Topo ID: 11

weight 13921 lb  [6315 kg]

jnt 15   mbr 27

Topo ID: 3Topo ID: 1

jnt 13   mbr 23

weight 14463 lb  [6560 kg]

Topo ID: 2

jnt 14   mbr 25

weight 13876 lb  [6294 kg]

weight 12749 lb  [5783 kg]

jnt 21   mbr 39

Topo ID: 13

weight 11451 lb  [5194 kg]

jnt 26   mbr 51

Topo ID: 16

weight 11291 lb  [5121 kg]

jnt 29   mbr 55

Topo ID: 15

weight 11272 lb  [5113 kg]

jnt 28   mbr 54

Topo ID: 17

weight 11377 lb  [5161 kg]

jnt 28   mbr 56

Topo ID: 18

weight 12915 lb  [5858 kg]

jnt 18   mbr 33

Topo ID: 4

weight 12937 lb  [5868 kg]

jnt 19   mbr 35

Topo ID: 5

weight 12569 lb  [5701 kg]

jnt 20   mbr 37

Topo ID: 6

 

Figur D19.  Auswahl von Ergebnissen der Schienenkranträger.  Nach Gewicht und Aufwand geordnet. 

3.53.53.53.5 Beispiel mit dem InteraktivmodusBeispiel mit dem InteraktivmodusBeispiel mit dem InteraktivmodusBeispiel mit dem Interaktivmodus    

Alle oben aufgeführten Beispiele sind mit dem Automatikmodus entstanden.  Zum Teil 

wurde dies gemacht, um deutlicher zu zeigen, was das Programm ohne menschlichen 

Einfluss leisten kann.  In diesem Beispiel haben Architekturstudenten das IGDT 

eingesetzt, um eine Fachwerkbrücke zu entwerfen.  Die Aufgabe bestand darin, eine alte 

bestehende Brücke zu ersetzen.  Die Spannweite war 36,17 m und die Verkehrslast 

(fahrende Lastwagen und Fahrbahn) wurde in sechs Fälle unterteilt.  Die Studenten 



  
 

225 

haben in kleinen Gruppen gearbeitet und in einem Zeitraum zwischen 30 und 45 

Minuten mit dem IGDT Formen die Fragestellung untersucht.  Die Gruppen haben 

getrennt voneinander gearbeitet und jede entdeckte für sich eine zufriedenstellende 

Form, die einen individuellen Charakter hat.  Figuren D20. bis D22. zeigen drei dieser 

Brückenergebnisse. 

 

 

 

Figur D20.  Der Entwurf von Robert Walsh. 

 

 

Figur D21.  Der Entwurf von Xuezhen Chen and Jin Jeon. 

 

 

Figur D22.  Der Entwurf von Lauren Bostic, William Marquez, Jennifer Siegel, and Faye Whittemore. 

Knoten: 28 
Gliedern: 84 
Gewicht: 13.2 tons [11.9 Tonnen] 

Knoten: 32 
Gliedern: 82 
Gewicht: 8.6 tons [7.8 Tonnen] 

Knoten: 32 
Gliedern: 84 
Gewicht: 8.7 tons [7.8 Tonnen] 



  
 

226 

4 Schlussbetrachtung 

Zu Beginn eines Entwurfs bietet das IGDT im Bereich der Formfindung einen Vorteil 

gegenüber den traditionellen Optimierungsprogrammen an.  Durch die Beispiele, die 

im Teil 4 gezeigt wurden, werden drei Eigenschaften anschaulich demonstriert. 

• Das IGDT findet 'gute' Lösungen 
• Das IGDT findet unterschiedliche Lösungen 
• Die Vielfalt von Lösungen fördert Kreativität 
 

Mit diesen drei Eigenschaften funktioniert das IGDT als ein echtes Hilfsmittel in den 

frühen Entwurfsphasen.  Viele Methoden können gute Lösungen finden, aber um ein 

echtes Hilfsmittel in den frühen Entwurfsphasen zu sein, muss auch eine Vielfalt von 

unterschiedlichen Lösungen gefunden werden.  Auf diese Weise ist das IGDT- Konzept 

eine wesentliche Neuentwicklung und unterscheidet sich darin von traditionellen 

Optimierungsprogrammen. 

 

Figur D23.  Perspektiv des Entwurf von den Architekturstudenten Lauren Bostic, William Marquez, Jennifer 
Siegel, and Faye Whittemore. 



227 

Vitae 

Contact 

Name  Peter von Buelow  

Address  University of Michigan, Taubman College of Architecture and Urban Planning. 
2000 Bonisteel Blvd., Ann Arbor, MI 48109, USA 
Tel. +1 734 763 4931   Fax. +1 734 763 2322   e-mail  pvbuelow@umich.edu 
URL  http://www.umich.edu/~pvbuelow 

Education 

1996-2007 Doctor of Engineering  (Dr.–Ing.) 
University of Stuttgart 
Institute for Lightweight Structures and Conceptual Design  (ILEK) 
Chair: Werner Sobek 

1982-1991 Master of Science in Civil Engineering 
The University of Tennessee, Department of Civil Engineering 

1980-1981 Fulbright Scholar 
University of Stuttgart, Institute for Lightweight Structures. 

1973-1979 Bachelor of Architecture 
The University of Tennessee, School of Architecture, with Honors 

Registration and Professional Societies 

Registration Registered Engineer.  Baden-Württemberg, Germany 
Registered Architect.  Baden-Württemberg, Germany 

Memberships Ingenieurkammer Baden-Württemberg  
American Institute for Steel Construction (AISC) 
The International Association of Shell and Spatial Structures (IASS) 
The Fulbright Association 

Academic 

2001-pres.  Assistant Professor in Architecture.  University of Michigan, Taubman College of 
Architecture and Urban Planning.  Teaching Graduate and Undergraduate courses in 
Structures. 

1994-1996  Associate Professor in Architecture.  University of Tennessee, School of Architecture.  
Teaching courses in: structures, programming, CAD; architectural design and graphic 
communication. 

1982-1994  Assistant Professor in Architecture.  University of Tennessee. 

Professional 

2001  RFR Stuttgart, Germany.  Architectural Engineer. 

1998-2000  Office of Switbert Greiner.  Oberaichen, Germany.  Architectural Engineer. 

1997-1998  Sonderkonstruktionen und Leichtbau GmbH (SL).  Oberaichen, Germany. 
Architectural Engineer. 

1980  Office of Robert Kennedy.  Knoxville, Tennessee.  Architect.   

1978  Office of Jörg Anders .  Bonn, Germany.  Architect. 

1977  Freie und Hansestadt Hamburg Baubehörde, Schulbau (City Building Bureau for 
School Buildings.  Hamburg, Germany.  Architect Practicant. 


	IGDT_cov.pdf
	IGDT_toc.pdf
	IGDT_abst.pdf
	IGDT1.pdf
	IGDT3.pdf
	IGDT4.pdf
	IGDT5.pdf
	IGDT_refs.pdf
	IGDT_apd.pdf
	IGDT_kurz.pdf
	IGDT_vita.pdf



