
Abstract

Within recent years, mobile phones have become carriers of numerous
smart applications and the potential of these mobile devices is even
greater than it might look at first glance. Behind the combined pieces
of information that many mobile devices possess lies hidden meta in-
formation that accounts for more than the mere sum of its parts, e.g.
beginning and end of a traffic jam. Using our framework, researchers and
scientists can create versatile requests for information and send them to
mobile clients within a couple of minutes. For instance, environmental
data could be sensed periodically without any user intervention. Proto-
type models of several information requests have been created to demon-
strate the various aspects of possible public sensing scenarios, bearing in
mind the users’ concerns regarding data security and privacy. Our frame-
work does not only manage creating and sending of specifically designed
tasks, it also dispatches their executions on the client side, sends back the
response, and interprets it. Therefore developers can fully concentrate on
the content of sensing information.

2

Deutsche Kurzbeschreibung

In den letzten Jahren wurden mobile Telefone Träger verschiedenster
intelligenter Anwendungen und das Potential dieser mobilen Geräte ist
sogar größer als es auf den ersten Blick scheinen mag. Hinter den kom-
binierten Teilinformationen, die viele mobilen Geräte besitzen, liegen
versteckte Metainformation, die größer sind als die bloße Summe ihrer
Teile, z.B. Beginn und Ende eines Staus. Forscher und Wissenschaftler
können mit unserer Rahmenarchitektur verschiedenartige Informations-
anfragen erstellen und diese mobilen Clients innerhalb einiger Minuten
schicken. Umweltdaten könnten z.B. ohne Benutzereingriff regelmäßig
gesendet werden. Prototypmodelle verschiedener Informationsanfragen
wurden erstellt um die unterschiedlichen Aspekte möglicher gemeinnützi-
ger Messungsszenarien zu demonstrieren. Dabei hatten wir die Bedenken
der Benutzer im Bezug auf Datensicherheit und Privatsphäre im Blick.
Unsere Rahmenarchitektur koordiniert nicht nur das Erstellen und Ver-
senden speziell designter Anfragen sondern verwaltet auch deren Aus-
führung auf dem Client, sendet die Antwort zurück und interpretiert sie.
Deswegen können sich Entwickler völlig auf den Inhalt der aufgezeich-
neten Information konzentrieren.

3

Contents

Abstract 2

Deutsche Kurzbeschreibung 3

Contents 4

1 Introduction 7
1.1 Motivation . 7
1.2 Overview . 8

1.2.1 Related Work . 8
1.2.2 Contribution of this Thesis 9
1.2.3 Thesis Outline . 9

1.3 General Remarks about Writing Style and Layout 10

2 Examples of Applications 11
2.1 Meeting in Town . 11
2.2 Sensing Environmental Data . 11
2.3 Baby Phone . 13
2.4 Playing Games . 13
2.5 Live Traffic Information . 13
2.6 Picking Someone up Just on Time 14
2.7 Using a Mobile Device to Unlock Objects 14
2.8 Do these Roads Cross? . 15

3 Fundamentals 17
3.1 Converting Geographical Coordinates into Cartesian Ones 17
3.2 Storing the Tasks . 17

3.2.1 Hardcode in the Source Code of the Server Class. 18
3.2.2 Read the Tasks from an XML File 18
3.2.3 Write a Parser . 19
3.2.4 Outsource the Creation of Tasks to *.java File 20

4 Privacy and Security 21
4.1 Security Concerns . 21

4.1.1 Why? . 21

4

Contents 5

4.1.2 Data Collectors . 21
4.1.3 Specific Public Sensing Concerns 22
4.1.4 Data Security Aware Public Sensing 22
4.1.5 Implementation of Encryption 24

5 Architecture 26
5.1 General Precedent Thoughts . 27
5.2 Abstract Fundamental Architecture 27

5.2.1 Tasks . 27
5.2.2 Server . 29
5.2.3 Client . 29

6 Implementation 30
6.1 Why Android? . 30
6.2 Package Structure . 30
6.3 Shared Classes between Server and Client 31

6.3.1 Message and Its Subclasses 31
6.3.2 GUI Classes . 34
6.3.3 Input/Output . 37

6.4 Server’s Classes . 38
6.4.1 The Core Class: Server . 38
6.4.2 CreateTasks . 40
6.4.3 TransferTasks . 41

6.5 Client’s Classes . 41
6.5.1 The Core Class: Client . 41

6.6 Creating the Tasks . 43
6.7 The Life of a Task: An Exemplary Overview 44

6.7.1 Creation . 44
6.7.2 Sending . 44
6.7.3 Reception . 44
6.7.4 Delay Due to Location or Time 45
6.7.5 Execution . 45
6.7.6 Awaiting User Interaction . 45
6.7.7 Sending Back the Task . 46
6.7.8 Displaying the Sensed Data 46

6.8 Using the Menu . 46
6.9 Practical Remarks . 46

6.9.1 USB Debugging . 46
6.9.2 Means of Information Exchange 46

7 Usage 48
7.1 Starting the Server . 48

7.1.1 Bundling the Required Packages in a *.jar File 48
7.1.2 Adding Android and Google Maps to the Class Path 48
7.1.3 Start the Programs of the Server Package 48

Contents 6

7.1.4 Arguments Passed via Command Line 49

8 Tests 50
8.1 Connection Loss . 50
8.2 Field Test . 50

8.2.1 Introduction . 50
8.2.2 Setting up the Tasks . 51
8.2.3 Performing the Test . 53
8.2.4 Evaluation . 53

8.3 Usability . 54
8.3.1 Tests on People without Previous Android Knowledge 54

9 Peek into the Future 56
9.1 The Big Picture . 56
9.2 Extension Possibilities of Our Framework 57
9.3 How to Shape the Future . 58

Bibliography 60

Nomenclature 62

Chapter 1

Introduction

1.1 Motivation

‘Can you make phone calls with it as well?’—This sarcastic comment that an owner
of a smart phone might hear while showing off the fancy features of his new device re-
veals a lot about the speedy evolution of so-called smart phones within recent years.
Apps for all sorts of things can be downloaded so that the original functionality—
namely making phone calls and sending messages—is reduced to merely one of many
things that can be done.
Since an ordinary home computer is still able to calculate faster, has access to more
storage, is connected with more convenient input devices, a bigger screen and better
sound system—the question arises why smart phones are something that companies
earn a fortune selling whereas PCs, which are superior to these phones in virtually
all aspects, do not have sell growth rates nearly that high. Two key advantages of
mobile devices are crucial to their success:

� First of all their mobility. Being able to have access to somewhat limited
functionality right on demand wherever you are by just taking your phone out
of your pocket is in a practical sense superior to having to wait till you are at
home regardless of the advantages the home computer has.

� The second advantage is that these devices have inbuilt sensors, the most
important one is position detection with GPS. The device knows where it is
and therefore the work of acquiring that knowledge is shifted from the user
to the device. For instance, I do not have to tell the software where the train
station I want to travel from is, my phone knows where I am at.

Of particular interest to not only the end user but also to scientific research groups
and companies is the collected and combined information of numerous cell phones.
They form a net of local sensors spread out all over the place which can be used
to inexpensively gain e.g. current weather data which can be fed into forecast sys-
tems. Another application would be smooth traffic control which can be achieved
by combining the collected information of many devices. According to the principles
of distributed agent systems, behind a collection of many single bits of data there

7

Chapter 1. Introduction 8

lies hidden meta information that can be extracted with suitable algorithms whose
results account for more than the mere sum of the single information bits.
There exists a wide range of thinkable applications such as sensing all kinds of en-
vironmental data or querying the user to retrieve information that he has access
to right now. One especially promising application is live traffic surveillance and
control since knowing the more or less precise location of a traffic jam is more than
any single car driver can know; a combined effort of several mobile devices in cars
can achieve it, though. The ideas we will show are similar to a traffic jam reporting
system which gives the user the chance to report a traffic jam [1]. We go beyond
their ideas and envision a system without user interaction as will be demonstrated
later on.
This is just one of many possible applications for distributing sensing tasks to several
mobile device users where the public reaps the benefit of it which is called public
sensing. Looking at traffic sensing we see that public sensing has the potential to
benefit society with negligible efforts for the individual which is characteristic for
public sensing.
Even though the efforts of the phone users are small compared to the advantages,
one should nevertheless continue to strive toward highly efficient energy consump-
tion and automatization without the required interference of users since computers
ought to do their utmost to bridge the gap between machines and humans.
Programmers of public sensing apps should stick to the principle that public sens-
ing “may not interfere with normal operation of a mobile phone, i.e., the energy
consumption [. . .] needs to be restricted.” [2].

1.2 Overview

1.2.1 Related Work

In the following, some key papers of several fields of mobile sensing will be shown.
How they relate with our project will become obvious without further explanation
during the course of this thesis.
MobGeoSen [3] focuses on monitoring environmental data and provides the users
with cartographic displays and gives them the opportunity to annotate with text
and photos.
NoiseTube [4] allows users to share measured noise data with others.
Is a cell phone microphone only capable of detecting noise volume? The developers
of SoundSense [5] convince us that even a standard cell phone microphone is capable
of doing far more. This project uses the microphone input to distinguish between
several kinds of sound. Once it can detect the sound of a car from within, it could
automatically start sending its location to traffic surveillance systems on a regular
basis, just to mention one example.
Not only sound can be measured, however. With appropriate sensors, e.g. carbon
monoxide pollution can be sensed and drawn on a map [6].
How a mobile object could be tracked and traced automatically while minimizing
energy consumption of mobile nodes has been theoretically looked into already as

Chapter 1. Introduction 9

well [7].
The well-known OpenStreetMap [8] is one example of an already fairly developed
and established result of numerous sensings.
The MetroSense [9] architecture developers envision the future of public sensing and
ask themselves “how to propel sensor networks from their small-scale application-
specific network origins, into the commercial mainstream of people’s every day lives”.

1.2.2 Contribution of this Thesis

This thesis is part of the second version of the Spontaneous Virtual Networks project
(SpoVNet 2.0) which creates overlay networks on top of the traditional IP-based net-
work infrastructure to enable flexible and adaptive network communication.
The goal of this thesis is to build an Android-based system that manages and dis-
seminates context collection tasks to mobile phones which execute these tasks based
on spatiotemporal constraints and coverage requirements. The results of the task
execution are sent to an infrastructure-based central server.
Using our framework drastically simplifies the process of public sensing and there-
fore enable researchers to work very efficiently since they can totally focus on the
information of public sensing and do not have to bother about the means of trans-
mission. Figuratively spoken, our system provides developers and users with forms
and all they have to do is enter the parameters and return it to the postman who
will transport the messages, schedule their execution, and return and interpret the
answer.

1.2.3 Thesis Outline

After having presented the motivation for using mobile devices for public sensing
tasks, this thesis will show some diverse example applications in Chapter 2 on page
11. After having introduced some fundamental concepts in Chapter 3 on page 17,
we will go beyond the theoretical technical possibilities of what can be done and
will discuss the practical concerns of what should be done and what needs to be
regarded with special sensitivity to users’ security and privacy issues, see Chapter 4
on page 21. Then we will design an architecture in Chapter 5 on page 26 bearing in
mind the applications envisioned earlier. Next we will shown our implementation of
the system in Chapter 6 on page 30 and go into detail explaining the applications
that we wrote already. In Chapter 7 on page 48 we will demonstrate an exemplary
use case. To wrap up our project, we will carry out some tests in Chapter 8 on page
50 and show a real life scenario. Finally, in Chapter 9 on page 56, we will first try
to imagine the role of public sensing in the future and later on discuss ideas how we
can shape it.
For an explanation of abbreviations see the nomenclature on page 62.

Chapter 1. Introduction 10

1.3 General Remarks about Writing Style and Layout

For simplicity’s sake the user of a mobile device and the developer of applications
will sometimes be referred to as ‘he’ which is to be read gender neutral not meaning
to exclude females, of course.
Java code, especially class names, will be written in typewriter style. Source
code blocks, however, were deliberately not set with a monospace font for the sake
of better legibility.
References to literature are consecutively numbered and the number is displayed in
squared brackets.

Chapter 2

Examples of Applications

Even though we focus on ‘public’ sensing we now want to demonstrate sensing ap-
plications not only from this field. Figure 2.1 shows the difference between personal,
social, and public sensing. The adjectives denote who the collected data is for: an
individual, a social group, or the general public.

2.1 Meeting in Town

The most basic useful application thinkable would be the server’s request to a client
to reveal its current location. If a server knows the locations of several mobile devices,
it can calculate a place in town that is about the same distance away from both where
they can meet. Or the server can simply show both users’ locations on a map to
leave it up to them where to meet. If the city is unknown to at least one of them
so that they have no common knowledge to use to explain to the other one where
they are, a calculated meeting point to which the navigation system can guide is
especially helpful.

2.2 Sensing Environmental Data

One of the most promising applications for public sensing is collecting real time
information about noise volume, temperature, humidity, air pollution, atmospheric
pressure, and the like. For weather forecasts the principle ‘The more, the better’ is
valid. The more detailed information one can supply a simulation program with, the
more accurate results will come out of it. Therefore using mobile devices as numerous
little sensors spread all over the place could first improve weather prediction and
second reduce costs because the number of expensive weather measuring devices can
be reduced.
One has to bear in mind, though, that the collected data by mobile devices is less
accurate: a phone could be in a pocket or the temperature sensor could be covered
and the like which both influences the measured temperature significantly. The in-
pocket-case could be ruled out by making sure it takes the measurement only if the
measuring time is framed by two user actions within a short period of time. The

11

Chapter 2. Examples of Applications 12

Figure 2.1: People-centric sensing applications can be thought of as having a per-
sonal, social, or public focus [10].

Figure 2.2: A noise map of Manchester [11]. The highly frequented roads stick out
clearly.

Chapter 2. Examples of Applications 13

temperature sensor should furthermore be located in an area that is normally not
covered when holding the device. The measuring can also be done with calibrated
measuring devices and the collected data can be transmitted via RFID chips to
a mobile device and from there to the server using standard telecommunication
infrastructure [12]. The disadvantage of inaccurate measured data can so be omitted.
Concerning the usage of noise level maps, Weinschrott et al. [12] write:

“City administrations need statistics to develop a city according to the
behavior and the needs of its inhabitants. For example, a noise level map
of a city supports decisions on traffic-reducing measures to increase the
quality of living conditions.”

Figure 2.2 shows an example of a noise level map.

2.3 Baby Phone

Once loudness can be sensed, it will be easy to define a threshold and notify the
server or another phone if it is crossed. So the parents will know whether their baby
is asleep or crying and will be notified in the latter case. Instead of sending a message
that the threshold has been crossed, the system could also trigger livestreaming of
audio or even video to the phone that is with the parents. To rule out other noise
sources such as thunder or a train passing by one could only ring alarm if the high
frequencies that are distinct of baby cries are loud enough.

2.4 Playing Games

Somewhat similar to the board game Scotland Yard some people could play a game
in real life. Everyone has a cell phone that communicates with the server. One
person is chased by the others who play cops and every couple of minutes the
absquatulator’s1 position on the map is revealed to the others. Whenever he has
walked e.g. 100 meters this information is sent to the cops as well. The cops need
to work together, ideally via cell phone calls, to find the person. Playing in a city
taking the subway could be allowed as well, maybe for a limited number of stops.

2.5 Live Traffic Information

We see this as one of the most promising and useful applications. In general, the more
densely populated an area is, the more traffic jams occur and the more cell phones
there are per square kilometer. Therefore it seems ideal to make these thousands of
available cell phones in cars send their location and calculated speed to the server
on a regular basis. All the server needs to do then is the following:

1. Find out if the cell phone is on a road. It should take several location snapshots
for that to rule out people walking over a bridge and the like.

1The one being chased.

Chapter 2. Examples of Applications 14

2. Compare the reported speed with the speed limit or recommendation. The
lower the ratio between reported speed and speed limit is, the stronger the
advice to other drivers becomes to take another route. Give special attention
to traffic lights, though, do not count speed reports in front of them.

3. Extrapolate the whole road given this speed information linked to several
location points. Take into consideration that newer snapshots should play a
more important role than older ones.

4. Feed the gathered traffic information into navigation systems.

A light version of this traffic jam reporter [13] involves the user to tell the server
that he has just reached the end of a traffic jam; end defined as his car being the
last one in line. So this version has two disadvantages to the one we propose: First,
it requires user involvement, and second, that it is only boolean—either traffic jam
or no traffic jam.

2.6 Picking Someone up Just on Time

The problem is well-known to most of us: Often when someone picks up a number
of people living in different places with the car, someone has to wait for the other
one since in practice a precise pickup time can hardly be adhered to due to the
unpredictable traffic situation or other unexpected delays. So either the car driver
has to wait until the one to pick up is ready to go or this person is ready before and
has to wait for the car to finally arrive.
If both have a mobile device with appropriate software, though, the situation can
look entirely different. The driver’s location can be displayed on the other person’s
phone and he can either estimate for himself how long it will take the driver to arrive
or the phone of the one being at home can send its location to the driver’s phone
whose navigation system will respond with an estimated time of arrival. As soon as
this falls under a threshold, the person will be asked to get ready to be picked up.

2.7 Using a Mobile Device to Unlock Objects

There are many objects that we lock and unlock every day: Our houses, cars, com-
puters, bikes, and lockers. What if the cell phone could be turned into some sort
of general key for numerous devices? As soon as I approach the door of my house,
my cell phone will realizes that I have entered my property, sends a message to
the server which passes it on to the ‘house management computer’ that has 24/7
internet access and unlocks the door. Of course a number of questions arise: What
if. . .

� . . . the battery of my cell phone is empty?

� . . . I cannot get GPS or other location information?

� . . . my phone gets stolen?

Chapter 2. Examples of Applications 15

� . . . my house management computer looses internet connection or power or has
another hardware or software failure?

Even though the first two scenarios could be solved by supplying the password to
the management system via another internet connection and loosing the phone is
actually less of a tragedy with regards to unwanted intruders into the house than
loosing the physical key since one can easily take away the access rights from the
phone—the need for a back door in the figurative or literal sense is obvious. This
could be a fingerprint sensor or a number block where one has to enter a pass code
or an ordinary physical key stored in the house of a friend or relative.
One of the great advantages is that the phone has the potential to be the key for
everything that has a computer with an internet connection attached to it. Door
lock systems that already have permanent connection to a central server, using e.g.
magnetic card readers, can easily be modified to grant access using the phone’s lo-
cation information.
One issue arises, however, namely the unavailability of GPS information inside build-
ings. Several companies are constantly working towards eliminating this disadvan-
tage by supplying location information based on cell tower locations and wireless
LAN signal strength of geographically known senders. [14] [15].
Using GPS or other location providers might seem like an overkill if all we want
to find out is whether a mobile device is within a certain range of something else;
having a look at the big picture, however, convinces that using existing technology
infrastructure is superior to establishing new systems and having to carry around
only one device is more convenient than two.
A drawback, however, is that GPS or another location finding system has to be
switched on constantly which is fairly energy consuming.

2.8 Do these Roads Cross?

Putting our feet back on the ground of reality, now we do not want to think visionary
ideas any more but show an application that is actually already up and running,
namely the question to the cell phone user whether the two roads he is very close
to right now do actually cross or if one runs over the other. Especially for traffic
routing this is essential information because if they do not cross, the navigation
system better does not suggest users to drive from one to the other one. Google
Maps relies heavily on satellite images and it is very hard to determine if two roads
cross or do not cross looking down on them from a satellite.
So whenever it is not known yet if two roads intersect, a question can be sent to
the users in the area around. As soon as the cell phone is very close to the possible
crossing, the task becomes flagged as ‘executable’. After the user has confirmed
execution and after having clicked on Show Map he sees Figure 2.3. In Figure 2.4
he has just clicked to select the arrangement.
In the course of this thesis we will have a detailed look at the different aspects which
lie behind this application.

Chapter 2. Examples of Applications 16

Figure 2.3: Now remember which street
was ‘A’, hit back, and answer.

Figure 2.4: Hidden under the spinner is
a text field to enter a comment, bridge,
for instance.

Chapter 3

Fundamentals

In the following we will discuss some concepts that we will rely on later on.

3.1 Converting Geographical Coordinates into Carte-
sian Ones

If we want to show a map with overlaid text or graphics, e.g. distances, we have to
be able to translate a length unit into geographical latitude and longitude. We will
now look at calculating geographical points that are a given distance away from the
origin. All points that fulfill this constraint are located on a circle. The position of
a specific point on the circle is determined by an angle from the horizontal axis to
the right defined as zero going in the mathematically positive direction.
The distance between two degrees of latitude is always about 111 kilometers, but the
distance between two degrees of longitude depends on the latitude of the position:
On the equator it is also about 111 kilometers, on the poles it is 0. Using the formula
below we can compute an approximate value of the distance between two degrees of
longitude1:

dist = 1.11 ·105 · cos(π
currentLat

180
)

Then we divide the radius by this distance. The result is the distance in degrees. We
would add2 it to the value of the latitude to move this distance eastwards; since the
point is normally not directly eastwards, however, we multiply it with the cosine of
the angle and do respectively for the longitude distance using sine.

3.2 Storing the Tasks

Several possible ways of telling the server which tasks to send to the client come to
mind:

1The cosine is set to radiant and the distance is in the SI standard unit meter.
2Crossing the the prime meridian and the 180th meridian have to be calculated with special care

using modulus.

17

Chapter 3. Fundamentals 18

1. Hardcode in the source code of the server class.

2. Read the tasks from an XML file.

3. Write a parser.

4. Outsource the creation of tasks to a *.java file.

In the following we will give reasons why we opted for the last alternative. To com-
prehend this decision, one has to bear in mind that we are building a prototype and
not a huge project funded by a company. Therefore rewriting classes such as Calen-
dar was not an option since it might look easy at first glance, having a closer look
at it, however, reveals many complex functionalities such as leap year algorithms,
time zones and daylight saving times, just to mention a few.

3.2.1 Hardcode in the Source Code of the Server Class.

Due to lacking flexibility this would be only a good idea while testing since the
people who will send out tasks will not want to recompile the class whenever they
have made some changes to the tasks they want to send. And changes will be rather
frequent and be it only changing the time frame of execution a couple of minutes.

3.2.2 Read the Tasks from an XML File

There are four methods of doing this that we have looked into:

JDOM

The big disadvantage here is that we would have to reprogram our tasks to make
them ready for JDOM to put them into XML because it cannot just take objects
and convert them to XML, every single variable needs to be converted to XML
individually. On top of that, whenever a user creates a new task, he would have to
do the same thing. This is why we looked into something that takes entire objects
and puts them into XML files without our assistance.

JAXB

JAXB does have this functionality, it is not available for Android, however, since it
depends on classes that Android does not provide. Even if it were available, though,
we would still have to add an empty constructor to each class we have programmed
and set up an initialization method to pass on the parameters. This would be a
manageable effort but since we also use already existing classes such as Calendar

and do not want to recode their use3 to make it applicable for JAXB this is not the
solution either.

3We would need to use the standard constructor and pass the variables via set methods.

Chapter 3. Fundamentals 19

1 @Root
2 public class Example {
3

4 @Element
5 private String text;
6

7 @Attribute
8 private int index;
9

10 public Example() {
11 }
12

13 public Example(String text, int index) {
14 this.text = text;
15 this.index = index;
16 }
17 }
18 }

Listing 3.1: An annotated class for Simple

Simple XML Serialization

Simple XML Serialization [16] is available for Android and we can give it an object
and tell it to serializ0 ite; there is drawback, however: We have to annotate the
elements, that is add the words behind the ‘@’ as demonstrated in Listing 3.1. This
would be doable for our own classes yet not for the already existing classes we use
and would be a burden on developers of future classes.

Create XML Manually

Even worse in terms of effort would be creating the XML file by hand. On top of
that, one would have to implement workarounds for saving existing classes such as
Calendar, for instance.

Taking into consideration that so far we have been facing massive problems of ineffi-
cient effort when trying to create an XML file, we should try to find another method
also since we have not even looked at creating Java objects from the XML yet which
would make us face similar problems.

3.2.3 Write a Parser

Whether the file format we want to store our objects in is XML or some other text
based format, the problems mentioned above remain.

Chapter 3. Fundamentals 20

3.2.4 Outsource the Creation of Tasks to *.java File

This is how we solved the issue with the following advantages:

� No restrictions with regards to the use of existing classes.4

� No need to annotate the classes we created.

� No need to have an empty constructor and extra methods to set variables.

� A clear and straightforward way of modifying or creating a task. Something
that can be written in one line in Java might take ten lines in XML.

So despite of the disadvantage that the created files cannot be edited manually like
XML, we decided to save them as serialized objects. If developers want to store
them in a different kind of way they can do as they desire and set up a program
that converts them to serialized objects and sends them to server.

4One restriction is of course the requirement to be serializable, which is not a restriction after
all because all messages have to be serializable anyway. If they were not they could not be sent as
we will show in detail later on.

Chapter 4

Privacy and Security

From a programmer’s perspective it would be easiest if all phones would constantly
broadcast their location to the server and to other phones and whoever wants to
find out someone’s location can simply search him in a huge database on the inter-
net comparable with Google Maps. So why should this simple access be artificially
restricted?

4.1 Security Concerns

4.1.1 Why?

Throughout history and all over the globe, common people have been subdued, ob-
served, and controlled by authorities. Some leaders, kings, emperors, dictators, and
even democratically elected politicians have at all times abused their power and
misused their subjects for their own sakes. Some religious leaders and sect gurus
have been and are still exploiting their followers and control their lives. One key
aspect of successful control is information about the victim. Dictatorships like the
former German Democratic Republic and the Nazi regime spanned a tight control
net in order to find and isolate or eliminate enemies of the system. Gaining the same
information about individuals has been simplified a lot with modern communica-
tion systems. Therefore the concerns about data security deserve to be taken very
seriously, even in the democratic western world.

4.1.2 Data Collectors

There are many companies that earn money by collecting, interpreting, and selling
data. Even though this could be discussed in an abstract manner, we want to make
this issue more tangible by exemplarily looking at the one outstanding company
which also provides the OS for our applications: Google. Supplying mankind with
great software for free on the one hand and on the other hand storing humongous
amounts of information about every user mainly to show individually tailored ad-
vertisements on the internet. The more money they earn, the more and the better
software they can provide to increase their coverage on the users. When someone is

21

Chapter 4. Privacy and Security 22

using Google Groups or GMail and is logged in, this finetunes this person’s search
preferences and interests profile. Obviously also Android is geared towards this aim
with the inherent extra advantage of providing information about the user’s location
as discussed in the beginning.
How far this forced subjection under Google’s rules has gone already demonstrates
the first commercial Android end device, HTC’s G1 : Without creating a Google
account it cannot even be used [13]. Here we see the strings attached to the ‘free’
OS: The manufacturer does not pay with money, the user ‘pays’ with his personal
information, though.

4.1.3 Specific Public Sensing Concerns

Who is actually bothered with data security? It is mainly the people who deal with
it every day on a deeper level than the user level. We dare say that the majority of
cell phone users do not think about who has knowledge about their location. These
average phone users need to be told by the software providers which personal infor-
mation is revealed to whom in the same way that users without native knowledge
need to be made aware of e.g. how to create a safe password. Even though from a
legal perspective the users have accepted the Terms of Service, most likely most of
them still have no clue what they accepted. So exploiting users with below-average
IT knowledge should not happen, even if it is legal.
In the following paragraphs we will discuss how to reap the benefits of public sensing
technology without broadcasting personal information to everyone according to the
well-known principle ‘As much as necessary, as little as possible’.

4.1.4 Data Security Aware Public Sensing

General Idealistic Guidelines

One vital element of a privacy aware public sensing arrangement is a server whom
the client trusts that his information is neither sold to a third party nor misused
internally. For instance, location information that is sent for the purpose of traffic
jam prevention is to be used for traffic jam prevention only, unless the user explicitly
allows other usage. This also means that the user decides which personal information
the server is allowed to disclose to other clients. Applied to the scenario where
someone picks up someone else with the car, the default setting should be to only
disclose the car driver’s location within a small time frame around the estimated
time of arrival.

Google’s Approach

Latitude is Google’s user location management system. You can reveal and disclose
your location to friends on an individual basis. So are you on the safe side if you
hand pick the friends who are allowed to know where you are? No, a glance at the
Privacy Policy [17] shows you that big brother is still watching you. The privacy
policy states that:

Chapter 4. Privacy and Security 23

“If you use Google Latitude on a mobile device, in addition to other
information, we collect battery life information and tie it to your Google
Account.”

‘Why would I care about Google knowing about my battery life?’, one may think,
and continue reading. One should not read over ‘in addition to other information’,
however, which loosens all restrictions with regards to what kind of information
they collect. Thus everyone who uses Google Latitude allows Google to collect any
information imaginable.
It also does not come as a surprise that Google does not comply with the rules we
postulated for data security aware public sensing—which we made up before we read
the legal documents. The default setting is not least disclosure of information and
sometimes it is not even possible to restrict it:

“Certain of our products and services allow you to opt-out of certain
information gathering and sharing or to opt-out of certain products, ser-
vices, or features.”

Google’s Terms of Usage [18] is far from only using the information for explicitly
granted ends:

“By submitting, posting or displaying the content you give Google a per-
petual, irrevocable, worldwide, royalty-free, and non-exclusive license to
reproduce, adapt, modify, translate, publish, publicly perform, publicly
display and distribute any Content which you submit, post or display on
or through, the Services.”

In simple words, they can do with the collected data whatever they want, also selling
to whoever they want:

“You agree that this license includes a right for Google to make such
Content available to other companies, organizations or individuals with
whom Google has relationships for the provision of syndicated services,
and to use such Content in connection with the provision of those ser-
vices.”

What if someone paid a lot of money to get the location of someone in order to kill
him? Why should Google not disclose the information, assuming they are not told
that the person will be killed?
To put it in a nutshell, Google’s Privacy Policy and Terms of Service state that, with
regards to Google, the user has no privacy whatsoever. All kinds of information that
exists can be collected by Google, they can do with it whatever they wish, shout it
from the roof tops or sell it secretly to whosoever wants it.
One has to keep in mind that the majority of smart phone users—since that will
become the vast majority of all people in developed countries—are just users who
do not read privacy policies because they do not have time, do not want to be bored,
do not care, and want to start using their new phones. So legally it is clearly their
fault. Time will show if awareness of privacy and data security will grow, if people
will adapt to being comfortable with disclosing information about themselves, or if
many will still reveal more private data than they actually want to.

Chapter 4. Privacy and Security 24

The Need for Encryption

Personal information sent by a phone to a server, e.g. someone’s location, can also be
received by a third party. In order to prevent this, we need to encrypt all data sent
from both server and client. Are mobile telecommunication signals not encrypted
anyway? Normally they are, the GSM standard allows to switch off encryption at
times with heavy net usage, though [1]. In terms of serious security this is as good
as no encryption at all, so we have to implement our own encryption. On top of that
we need to make sure that both server and client can be uniquely identified and that
no one can fake being another client. If that were not the case, someone could send
a big number of messages to the server saying there is a traffic jam on that road.
The server would broadcast this information and the navigation systems would lead
people around this road so that the traffic jam faker could drive on an empty road.

4.1.5 Implementation of Encryption

To encrypt we should use the asymmetric RSA system that uses the fact that it
is an extremely costly operation to undo the multiplication of two very high prime
numbers if they are both unknown and can therefore be made extremely safe with
high prime numbers. Every user has a public key that is shared and can be known
by everyone. The sender encrypts the message with this public key and sends it. It
can be only decrypted with the receiver’s private key which he must keep secret.
This ensures that the client’s location information sent to server A can neither be
decrypted by server B nor by any other client.
Since the public key is known to everyone, though, the previously mentioned fake
traffic jam scenario is still not prevented. We suggest to take a user’s password or
make him create a new one and compute a cryptographic hash value of this password
using e.g. SHA-21. This SHA-2 value makes it impossible to get the password out of
it without major brute force attacks which means that the password is not known to
the server. Whenever a client or a server sends a message to someone, along with the
serial number of the phone his personal SHA-2 code is sent with it encrypted with
the counterpart’s public RSA key. Therefore every user can be identified uniquely
without any possibility to enable someone else to pretend to be him, assuming his
password is not disclosed.
A server and a client can either accept all incoming messages or they can require a
previous external registration to prevent spam messages from both servers to clients
and vice versa.
If large quantities of data are sent from server to client or the other way round, we can
apply a common trick. It might be reasonable to only encrypt the key of a symmetric
encryption algorithm such as Twofish or AES using asymmetric encryption since this
is way more costly to apply than its symmetric counterpart. The rest of the data is

1The popular MD5 has been broken and SHA-1 has the same theoretical problems. Therefore
the cryptographic hash algorithm of our choice would be SHA-2. It is crucial that the encryption is
one-way so that there exists no function to retrieve the password given the hash code of it. Second,
the probability that two passwords create the same hash code must be minimized to reduce the
chance of brute force attacks [19].

Chapter 4. Privacy and Security 25

encrypted using the relatively cheap symmetric algorithm which is nevertheless very
secure due to the unavailability of the asymmetrically encrypted symmetric key.
For an implementation of an anonymous public sensing system see AnonySense [20]
which preserves users’ anonymity yet provides the server with sensed data.

Chapter 5

Architecture

ServerClient

Libraries

Answer

Task

Answer

Task Task

Storage Screen Screen Storage

Hardware & Sensors

Task

Repository
Task

Elements

Sensing Plugins Answer

Interpreter

Task Sending

Management

OS

Packages
Security

Scheduler

Figure 5.1: The main components of our public sensing system.

Figure 5.1 shows the general structure of our public sensing system. Public sensing
is the process of distributing requests to gain information for the profit of the pub-
lic and receiving the returned results. We called the requests tasks and the results
answers. Obviously there has to be some kind of communication channel between
the devices that request information and the ones that return them. A device that
mainly sends out tasks is called a server and a device that mainly receives them
and answers them is a client which is often mobile. The ‘mainly’ indicates that even
though this will be the setup in most of the cases, there is no restriction that a

26

Chapter 5. Architecture 27

client cannot send tasks or that a server cannot give answers. For simplicity’s sake,
throughout this thesis we will stick to the standard model of a server sending tasks
and a client responding. Furthermore a client will be a mobile device, e.g. a cell
phone. There are situations where it would be good if the client was capable of
sending out tasks as well. The dashed line on the very left of Figure 5.1 means that
a client can also send tasks to itself.
A user refers to an end-user of a mobile device and a developer is someone who
manages sending out tasks from the server, changes parameters of tasks, or creates
new tasks.

5.1 General Precedent Thoughts

The aim was to provide an architecture consisting of a server program and a client
app that communicate with each other. The distinction between this foundational in-
frastructure and the actual public sensing task was deliberately drawn very sharply.
The reason for this is that once the abstract communication structure is up and run-
ning, a programmer of another app does not need to understand the details of data
transfer, he can simply use the provided classes and concentrate on the individual
sensing task according to the well-known principle of encapsulation.
On the other hand, the developer of the abstract infrastructure does not need to be
bothered with details of how the precise sensing task looks like.
This is why we want to provide a public sensing communications architecture that
is completely independent of the tasks it supports to run. If we do not want the
programmers of tasks to hit one wall after another and become frustrated because
they cannot do the things they want to do, we have to design the architecture to
cover the vast majority of possible requests.

5.2 Abstract Fundamental Architecture

5.2.1 Tasks

What Is a Task?

On an abstract level, a task is one participant’s attempt to gain knowledge the other
one possesses or can acquire. We explicitly do not restrict it to a server requesting
information from a client since we want to design the architecture to fulfill the needs
of as many task developers as realistically possible. In public sensing most of the
time the server will send out the task to the client to get the information, but it
could also be the other way round, that a client requests information from the server
about another client’s position or about an RFID sensor’s location, cf. [12].

Chapter 5. Architecture 28

Tasks with and without User Interaction

Public sensing tasks can be divided into two groups: One case involves the user to
provide the data, e.g. ‘Do these two roads that you see in front of you and that
look on the map like an intersection do actually cross or does one run on top of the
other?’. In the other case, the device answers without user interaction (e.g. ‘How
loud is it where you are now?’). In this case the question is not supplied as text but
in code which the device can ‘understand’.

Common Execution Constraints

What both have in common is that every task has an expiration date and an indi-
cation of whether it should be run once or periodically. To enable later extension,
every task also sends the minimum number of required devices1 in the area around
needed for public sensing and a specification of how big and where this area is. On
top of that, execution is restricted to a time frame in which it is allowed.

Executing Tasks

If we wanted to minimize transmission data regardless of the costs, we would only
send a very small ID to the server which would then execute the code that belongs
to this ID. Since the advantages of a different method outweigh the little additional
data traffic, though, we opted for supplying a task with all the ‘tools’ necessary for
its execution. With ‘tools’ we mean the code that carries the information of what
to do when the task is executed. The huge advantage of having tasks that do not
depend on a client that knows their ID and what is hidden behind it is that tasks
unknown to the client can be run as well. If this was not the case, for each new and
yet unknown task not only a new task class but also a new client class would have
to be programmed and deployed to the mobile device.
Not all theoretically acquirable information can be gained without changing the
software on the client side, however. Tasks that need to access hardware like sensors
may require an imported package or some method on the client side that they can
attach to. This hardware could be present in the device or could be plugged into it.
This concept is similar to the operator concept of smart homes, cf. [21], where an
operator “can be represented as a black box where some processing is effectuated on
a set of inputs, giving as a result a set of outputs.”. A sound operator, for instance,
supplies raw sound data. A sound volume operator would then build on the sound
operator’s return values and calculate an average sound volume.
Nevertheless many tasks, especially a theoretically infinite range of user interaction
GUIs, can be executed by the client without prior knowledge. For implementation
details see Chapter 6 on page 30.

1For sending environmental data with imprecise sensors a minimum number of devices might be
necessary to compute a fairly accurate average value, for example.

Chapter 5. Architecture 29

5.2.2 Server

Characteristic of public sensing is the fact that one server collects information from
several attached mobile devices. Therefore we need to implement a multithreading
system. The server should also be able to send several different tasks to the same
client. Since the server does not know in what order the tasks were executed on the
client or if some were lost due to bad connectivity, every answer or response to a
task contains the ID of the task that was answered to tell the server which question
was answered. So e.g. it is sufficient to send the index of a selected item, using the
ID the server will find out the question. Attaching only an ID and not the whole
task object to the answer reduces its size.

5.2.3 Client

As mentioned before we want to enable several tasks to be executed on the same
client and thus need multithreading here as well, also because we want to send and
receive messages all the time in the background. Incoming tasks are put into a wait-
ing list that is checked frequently for tasks to execute. Several parameters determine
whether a task is executable or not. For details see Section 6.5.1 on page 43. The
final decision is up to the user, though. He can choose to run this type of task always
or never or decide for each incoming task of this type individually. For a discussion
of security aspects see Chapter 4 on page 21.

Chapter 6

Implementation

6.1 Why Android?

Our reasons to choose Android are similar to the ones of end user device manufac-
turers [13]:

� Comprehensive software platform: Many key applications exist already and
can be used.

� Free: No license fees have to be paid.

� Open source: Big parts of the Android platform are published under open
source license so that programmers can dig deep into the source code and
Android can tap the innovation power of the open source community.

� Equal rights for all apps: Third party apps and pre-installed programs are
treated equally which enables new innovative apps to enter the market easily.

� Approved technologies: Programming is made easy with the provided plugin
for the popular development environment Eclipse.

� Supported programming language: With Java a modern, wide-spread, and
portable language has been chosen with all its advantages.

6.2 Package Structure

Bearing in mind the wide range of applications, we are now about to implement
a prototype with Java that supports the majority of thinkable distributed sensing
scenarios. Everything is organized as follows:

� Java project LiteViewCollection

– Package answerLayouts

Library: Several GUI elements that can be changed by the user to answer
a task, e.g. text edit.

30

Chapter 6. Implementation 31

– Package liteGraphics

Library: Geographical location and area elements.

� Java project PublicSensingServer

– Package publicSensingServer

Application: This contains the applications that runs on the server.

� Android project PublicSensingClient

– Package android.publicSensingClient

Application: Here we store the program that runs on the client and several
classes needed by both server and client.

– Package android.publicSensingFinalTasks

Library: All non-abstract tasks that can be sent are to be stored here.

The two packages in italics contain the two classes Server and Client whose meth-
ods start the programs on server and client. The library packages are imported and
PublicSensingServer imports android.publicSensingClient as well since some
classes that are needed by both server and client are stored there.
The source code is saved in Unicode (UTF-8).

6.3 Shared Classes between Server and Client

6.3.1 Message and Its Subclasses

Msg

The abstract super class Msg is spelt in its abbreviated form to prevent confusion
with other classes called Message and avoid the dragging along of the package names.
Two likewise abstract classes are derived from Msg: Task and Answer.

Task

The following constrains are needed to create a new Task:

� Expiry date. ‘null’ means it will never expire1.

� How many seconds shall we wait until we execute it again? ‘−1’ signifies that
it is not periodic and shall be executed only once.

� A TimeFrame that restricts the execution time. A TimeFrame takes start and
end date and time. At the present stage, the period is set fix to ‘daily’ which
means that only the hours, minutes, and seconds will be looked at to determine
executability. Still we give TimeFrame a full Calendar object to ease future
extension to dynamically change it to e.g. hourly, weekly, or monthly.
null means no time frame restriction2.

1There could still be a TimeFrame set that restricts execution, however.
2That does not necessarily mean no timewise restriction, however. There could still be an expiry

date set.

Chapter 6. Implementation 32

� An array of geographical areas (AreaLite[]) in which execution is possible.3

� How many devices need to be in the area so that execution makes sense?4

Task implements TaskRunnable and therefore every object derived from it has to
have a method called run() which will be called for execution of the Task.

TaskUserInteraction

This class is derived from Task and takes an array of ViewLite elements5 which
are responsible for the interface displayed when the TaskUserInteraction is run.
TaskUserInteraction has an empty method run() already so that its subclasses
do not have to implement it since they are dealt with separately because we have to
control the execution of tasks with user interaction to prevent unorganized popping
up of new GUIs.
A simple example of run that returns a new Answer object with only the location
is shown in Listing 6.1. First it requests the current instance of Client, the private
Client myClient, and then it gets the location of it.
In Listing 6.2 we see the constructor of a subclass of TaskUserInteraction, Train-
Lateness, which asks the user how late the train is. Several objects of subclasses
of ViewLite are set up (lines 5-11). They will be shown in this order from top to
bottom to the user.

Duplicate Detection

If the connection between server and client dies and comes alive again later on, at
the present state the server does not know that the tasks it is about to send to
the client are there already6. For the server every new connection is the same and
it starts sending tasks. In order to not litter the display of the client with dupli-
cates and even worse have them execute more often than desired—since each task
manages its execution times on its own and therefore n tasks would be executed
n times—we allow only tasks that have not been received yet to be enlisted. This
check is performed on the client side at the reception of each new Task. The server
also uses the same kind of duplicate detection before sending tasks, cf. Section 6.4.1
on page 38.
This leads us to an equality check algorithm and therewith to the question: When are
two tasks equal? Using the standard method firstObject.equals(secondObject)

is not possible because as shown in Section 6.6 on page 43 two objects with precisely
the same initial parameters do not have to be the same object using this operator

3Some developers“assume that the context server stores the positions of the corresponding [RFID]
sensors.” [12], so an array of areas is required.

4Not used yet but necessary if mobile devices are to decide autonomously without recheck with
the server if execution shall take place or if a minimum number of sensors is required to get a
reliable average value.

5View elements such as text edit, time picker, etc. Cf. Section 6.3.2 on page 34
6For large quantities of tasks or big task objects a query from the server to the client about

which tasks are there already would increase efficiency.

Chapter 6. Implementation 33

since they could have be created during two different calls of the creation class.
Therefore we have to actually compare all relevant parameters on our own by over-
riding the equals methods.
First we had to make sure that all initial parameters—that is all non-abstract classes,
pre-existing or self-written, that we use in constructors of any subclass of Task—can
be properly checked for equality with their counterparts, assuming both objects are
instances of the same class. If this is not the case, we can return ‘not equal’ without
further checks.
We allow the objects in the constructors to be null to indicate something special
(e.g. no expiry date) and therefore have to check if they are null before we perform
any other checks. We must not return ‘not equal’ if one element is null, however,
since obviously both being null means they are equal. Equality check for arrays like
AreaLite[] is done with Arrays.deepEquals(firstArray,secondArray).
Task overrides the equals method and returns true if all variables are equal to their
equivalents in the other Task. At the present stage, TaskUserInteraction overrides
equal as well and returns the value of its super class (Task). The final tasks—that
is the classes derived from Task or TaskUserInteraction—also pass the request
for equality check down the line. If desired, an extra parameter check can easily be
added, though. Future developers should note that they have to override the equals
method to ensure proper comparison when creating a new final task.

Our Prototype Tasks

� GetLoc: This simple task returns the location of the mobile device. The server
can interpret it in several ways, open the door, for instance.

� SenseLoudness: Our application of loudness sensing takes the raw data from
the microphone and calculates an average value which is then sent back7.

� GetBluetooth: This senses for visible bluetooth devices and returns an ar-
ray with the devices’ names, MAC addresses, and the signal strengths. The
retrieved information can be used to communicate with other mobile devices.

� TrainLateness: Using this task, the user can report a belated train and supply
additional information such as estimated time of arrival.

� RoadsCrossing: The user is asked about the arrangement of two specific roads
that might cross.

Answer

In general, if a Task is sent out, an Answer is expected as response. These parameters
are passed to an Answer object:

7Since converting this value into decibel would require massive calibrating and is very different
for different phones we leave this task for future developers that specify in this direction.

Chapter 6. Implementation 34

1 @Override
2 public Answer run() {
3 LocationLite locLite = Client.getCurrInstance().getCurrLocation();
4 return new Answer(−1, locLite, null, getId());
5 }

Listing 6.1: The run method of the task that only gets the location.

1 public TrainLateness(Calendar expiry, int periodicSecs, TimeFrame timeFrame,
AreaLite[] area, int requiredDevicesAround) {

2 super(expiry, periodicSecs, timeFrame, area, requiredDevicesAround, null);
3

4 ViewLite[] views = {
5 new TextViewLite(”What is your destination?”),
6 new EditTextLite(”Please enter destination.”, true),
7 new TextViewLite(”When was the train scheduled to arrive?”),
8 new TimePickerLite(),
9 new TextViewLite(”What is the estimated arrival time?”),

10 new TimePickerLite(),
11 new SpinnerLite(new String[] {”Rough personal guess”, ”Official

estimation.”, ”No clue” })
12 };
13 setViewsLite(views);
14 }

Listing 6.2: The constructor of TrainLateness

� The current location of the mobile device. This information is the very essence
of public sensing and will be utilized for almost all sensing projects.

� An Object that may contain any additional information imaginable.

� A unique ID that tells the receiver to which question this is the answer.

� A time stamp of when it was executed.

An overview of Msg and its subclasses is shown in Figure 6.1.

6.3.2 GUI Classes

Views Shown to the User

If a user is involved in supplying the server with information, a user interface is
needed. It would have been best to be able to put together any GUI element imag-
inable on the server and send it to the client where it is displayed. However, since
even the most basic bricks such as TextView are not serializable, the whole building
made up of these bricks cannot possibly be. Furthermore it is not (yet) supported

Chapter 6. Implementation 35

Task

GetBluetooth

RoadsCrossing

TrainLateness

SenseLoudness

GetLoc

Answer

Msg

Figure 6.1: Msg and its subclasses.
Abstract classes are in italics.

ViewLite

ViewLiteAnswerable

TimePickerLite

EditTextLite

SpinnerLite

MapViewLite

TextViewLite

Figure 6.2: The ViewLite classes.
Abstract classes are in italics.

to read external non-preprocessed XML files and display them. If it was, we could
create an XML file on the server or an attached emulated client and send it to the
mobile device. Due to these two restrictions, however, we thought it best to rewrite
the relevant parts for our purposes in so-called light classes which are serializable.
We called them like the Android original class with the suffix Lite. Customizability
is currently restricted to necessities such as the text of possible items to select in a
Spinner8. For our needs it boiled down to five bare bone rewrites of GUI elements
divided into two categories. Figure 6.2 shows a visual representation and below there
are details for each class:

� Information to the user

– TextViewLite displays text. You can specify if you want the text to be
a hint so that it disappears if clicked on it.

– MapLite creates a button that shows a full screen map when clicked on.

� Ways of answering.
The following classes are not direct subclasses of ViewLite but of ViewLiteAn-

8A way of selecting one element out of many, similar to radio buttons.

Chapter 6. Implementation 36

swerable which is a subclass of ViewLite. This means they implement the
interface Answerable and therewith getAnswer()

– SpinnerLite: The user can choose one from many text items.

– EditTextLite: Takes user-created String.

– TimePickerLite: Lets the user pick a time.

These bricks can be combined in any order and number of occurances in a vertically
scrollable LinearLayout. MapViewLite can only be used once due to complicated
location object management if one wanted to display several locations9. Showing
only one map in one task should suffice all practical demands, however, since one
task ought to be one straightforward question. At the very bottom there are always
two buttons labeled quit and submit. Hitting submit the entered information is sent
to the server together with the Task that has been answered and quit exits the
program.
public String[] getAnswer(String index) returns a one-dimensional String

array to avoid parsing in a possible future extension if several items can be cho-
sen.
In the tasks that show a GUI, additional methods should be written to make it eas-
ier to retrieve the needed information. Listing 6.3 shows an example. It uses a two-
dimensional String array because each ViewLite element returns a one-dimensional
array already.10

1 public static String getRoadsArrangement(String[][] answ) {
2 return answ[2][0];
3 }

Listing 6.3: The answer of the third ViewLite element (index 2) is requested and
the second index is 0 since all other ones are null.

MapViewLite is different from all the other classes since it does not show a map but
only a button that will show a full screen map if clicked at. This is better than a
small map squeezed in between the other GUI elements since the user never has to
see both the map and the rest at the same time. That is why MapViewLite creates
only a button.
MapViewLite is given several parameters at creation which are used for pointing the
user to the streets the server is interested in. Most important is the center of the
possible intersection. The position of the two labels ‘A’ and ‘B’ is determined by

9When the ViewLite elements are inflated and the View elements are created, for MapViewLite

a button is created and listener is added. If clicked it starts an Activity (A module of the whole
program connected with one or many displays, called Views.) and passes e.g. the LocationLite of
where the crossing is. This LocationLite has to be a global variable so that the listener can access
it. Managing different locations with arrays would be possible but not necessary for our needs.

10The one-dimensional array of ViewLite elements of which each returns a one-dimensional array
results in a two-dimensional array.

Chapter 6. Implementation 37

three variables: The distance in meters how far from the center the labels are to be
placed and two angles that determine in which direction from the center the two
labels ‘A’ and ‘B’ shall be drawn.
When the button is clicked, a new Activity will be started and these variables are
passed along to ShowMap.

Geographical Location

For the same reason, namely lack of serializability, a new location class Location-

Lite has been created. An object of it can be constructed with either two doubles
as latitude and longitude or the original android.location.Location.

Geographical Area

One determining factor whether a Task is executable or not is whether the mobile de-
vice is in a specified geographical area. Following the same convention that we intro-
duced before, we added the suffix Lite. Both CircleLite and PolygonLite extend
AreaLite. Both also have the method public boolean contains(LocationLite

l) that returns whether a geographical location is inside the area or not. The code
for the polygon was taken from [22]. For the circle—that is actually an ellipse if the
latitude and longitude values are regarded as two orthogonal axes—point (x,y) is
within the ellipse if the following holds:

x2

a2 +
y2

b2 ≤ 1

a is the absolute value of the distance from the center to the point on the ellipse
that is farthest east and b respectively north. These distances need to be in degrees
of latitude and longitude, however, not in meters. Converting them is done using
the formula shown in Section 3.1.

6.3.3 Input/Output

The class IO is the foundation stone of our architecture. All the communication
between server and client is dispatched by it. When the server is started, it creates
two instances of ServerSocket with port numbers. When the client accepted both
requests, both the server and the client create an object of IO. If the client could
not automatically establish a connection with the preset IP and port numbers, the
user will be asked to enter or change the IP address and port number and then hit
connect. To keep it simple, the port number of client-to-server communication is one
higher than the number of server-to-client communication and only the latter can
be modified by the user.

In order to get a better understanding of the underlying structure, the construc-
tor and some of the public classes will now be looked at in detail.

Chapter 6. Implementation 38

The Constructor

IO’s constructor takes two Sockets (for ingoing and outgoing data) and sets up the
ObjectOutputStream and its input equivalent. After that it starts a thread that
regularly checks a queue for outgoing messages and sends them.

public synchronized void toSendQ(Msg msg)

Since send is a private method of IO, everything that shall be sent needs to be
passed to toSendQ. The internal SendThread of IO will then send it. All subclasses
of Msg are serializable and can therefore be sent.

public Msg receive()

In contrast to its counterpart send, receive is public so that server and client can
have a thread to directly fetch a received message without an extra thread and the
resulting additional delays. If send could be called directly, it would stall the system
if large amounts of data were sent since it is a blocking method.

public synchronized boolean removeFromRecQ(Msg msg)

If a user explicitly chooses to never execute a task, it will removed from the list as
if it was never received so that it does not litter the GUI any more.

public synchronized Task getXTask()

Whenever the client is connected to the server and is not busy with another task, it
checks for auto-executable tasks in the background, that is, it calls this method and
receives a Task to execute. For a precise definition of auto-executable in contrast to
user-executable see Section 6.5.1 on page 43.

public synchronized LinkedList<Msg> getAllMsg()

This method returns all received messages. The client calls this method and filters
out the Tasks to display them to the user who can then specifically pick one to run.

6.4 Server’s Classes

6.4.1 The Core Class: Server

To avoid circular references in the build path, we store only the classes that only
the server needs here and import all the rest.

The main Method

When this method is called, Server performs the following steps:

1. Set up the ServerSockets.

Chapter 6. Implementation 39

2. Read in a text file which tasks to send to each client. Remove duplicates, cf.
Section 6.3.1 on page 32.

3. Create the Tasks using the information acquired in the previous step.

4. In an infinite loop do the following until interrupted:

(a) Accept the Sockets. If there is no client or if it has not responded, wait
until receiving a response.

(b) Create an instance of IO called myIO. So if the server serves multiple
clients, it will create a new IO for communication with each client.

(c) Start a new thread that continually checks for messages in the inbox.

(d) Add the tasks to send to the send queue using e.g. myIO.toSendQ(roads)
where roads is an instance of RoadsCrossing.

5. Close ServerSockets.

The Receive Thread

Every thread, that is, every connection with a client, has its own instance of IO,
therefore it has to be given to the constructor of the ReceiveThread.
If something is received that is not null, react2msg(msg) is called and the received
message is passed along. If the received message is null, this is a signal that the
connection has been lost. The receive thread breaks the loop then, kills the other
socket as well, and dies.
Since the method that returns the received messages is a blocking method we do
not need any delay here. After one message has been received it will wait for the
next one.

React to Received Message

Having received a message, this object Msg is given to private static Msg re-

act2msg(Msg msg). Here we first check if it is an instance of Answer since so far
we have only sent Tasks from the server and received Answers from clients, not vice
versa. If it is an Answer, we want to find out to which Task it is the Answer. This is
done by checking if the ID String that belongs to the answer matches with known
IDs of subclasses of Task.
Let us assume we received an Answer to the task TrainLateness and have a closer
look at what is done. Now as the next step a new ‘dummy object’11 is created like
this:
TrainLateness train = new TrainLateness(-1, null, null, null, 0);

Using this ‘dummy object’ we can get the ViewLite array of our received Task be-
cause at creation of TrainLateness the GUI elements such as TimePickerLite or
TextViewLite are set up. For instance, if the answer to the third ViewLite element

11It is not possible to use a static method to retrieve the ViewLites since we want to access the
different ViewLite elements which are unique for each TaskUserInteraction

Chapter 6. Implementation 40

1 System.out.println(”The train from ”+ a.getLocationLite() + ”to
2 + TrainLateness.getDestination(answ) + ”is ”
3 + TrainLateness.howLate(answ)
4 + ”mins late and will probably arrive around ”
5 + TrainLateness.getRealTime(answ) + ”.”);

Listing 6.4: Displaying the received information to the user.

is ‘A below B’ then this third element could be theoretically a comment if the third
element was EditTextLite. That is why we have to find out what kind of ViewLite
element the third one actually is and that is what we need the ‘dummy object’ for.
The retrieved ViewLite array is then given to public static String[][] inter-

pretAnswer(Answer answ, ViewLite[] views) together with the Answer. This
method calls the methods getAnswer() of each of the the ViewLite elements. Their
return values are then saved in a two-dimensional String array and returned. Now
we have a two-dimensional String array which contains the answer. Somewhere.
We do not have to fiddle around with the indices, however, but can simply give this
array to static methods of the class that filter out the bits and pieces of information
we need. For TrainLateness the code listed in Listing 6.4 produces an output like
this:

The train from (lat=48.783781, lon=9.181682) to Berlin main station
is 5 mins late and will probably arrive around 12:05.

Appropriate software would then be able to find out that this information is about
the train from Stuttgart to Berlin that was scheduled to depart at noon and would
feed it into the real time traffic surveillance system.
But why this detour of first passing the Strings of the Answer to another method
just to receive yet another String array? Can we not just read the Strings di-
rectly? For some ViewLite elements this is true. For others like the SpinnerLite,
however, what is sent from client to server is ‘6’, for instance, which means the sev-
enth element has been chosen. The SpinnerLite’s method getAnswer() interprets
it correctly though and returns the String of the seventh element. For the sake of
simplicity and generality all Answers have to ‘go through’ the method interpre-

tAnswer(...) even though some return unaltered.

6.4.2 CreateTasks

As shown in detail in Section 6.6 on page 43, this class can be edited by the user,
creates new tasks, and stores them on the harddrive in a serialized form. Since this
class can be called independently from the core class Server, tasks can be supplied
at runtime.

Chapter 6. Implementation 41

Figure 6.3: The background thread found
a task to execute.

Figure 6.4: We are not connected yet.

6.4.3 TransferTasks

This class transfers serialized Tasks from a file system location via a socket connec-
tion to the Server. The parameters folder path, IP address, and port number are
given in this order. The big advantage this class brings is that someone who wants
to supply a task does not have to have access to the server but can simply establish
a socket connection. Additional security measures can be set up on demand.

6.5 Client’s Classes

6.5.1 The Core Class: Client

Initialization

The method onCreate(Bundle savedInstanceState) starts the LocationManager.
We use the same LocationListener to check for both GPS and network provider
location information. After that, it checks if the server with the preset IP and port
number is available. If yes, it will show a list of received tasks but as soon as it finds
an executable task, the user will be asked if he wants to execute it (see Figure 6.3).
If no connection can be established with the given socket parameters, the user will
be faced with a configuration screen where he can alter IP and port number (see
Figure 6.4).

Establishing the Connection

Using the IP address and port number, the client now tries to establish the con-
nection in connect(). It creates an instance of IO which other activities can access
using public static IO getCurrIOInstance() since it is crucial that all input
and output is dispatched by the same instance of IO.
Furthermore a thread that frequently checks for incoming messages is started. It
also calls startNewTask() to make it ready for executing a new task. Whenever

Chapter 6. Implementation 42

this method is called, it means that the previous GUI is finished and a new one can
start.
Switching to the View that shows the received tasks concludes the initial setup of a
client that has just been created.

One GUI Task at a Time

There are two ways a task can be executed: First, the program looks for an executable
task in its queue and grabs the first one. Second, the user clicks on a task to explicitly
execute this one.
We want to have strictly non-parallel executions of tasks so that no task that is asked
to be executed can push aside another task. This concept is important for tasks that
require user interaction but right now we treat all tasks the same12. The goal of this
synchronous approach is to prevent the popping up of tasks whenever they become
executable. The user might be busy answering one TaskUserInteraction and we
have to give him the time he needs for that and prevent by all means that the task
is gone all of a sudden.
Neither an automatically called task can supersede a manually clicked one nor the
other way round. We also want to forbid the thread that periodically executes tasks
to do so if another task is running already.
To clarify our non-parallel approach we have to say that it does not mean that the
user has to wait until the data has been sent to the server until the next task can be
executed. As soon as a task calls startNewTask() it tells the scheduler: ‘I am off, the
stage is free for another task!’ Note that this can be right after starting a thread that
may continue sending data for a long time. This means that even though the task
is not finished from the device’s perspective—it still needs to send the answer—as
soon as the user hits submit, a new task can be shown since the screen is ready to
show a new GUI.
Given this principle of giving each task the full attention until it is done, we thought
the most elegant way of achieving this would be that whenever a task is about to
finish (and only then!) it calls startNewTask() which starts a thread that checks
for new executable tasks. It cannot just call the next task in the line since there
might be none which can change all the time, however, with the reception of new
tasks, with moving into an execution area, or with progression of time. Doing it this
way, we do not need to set a flag whether tasks can be executed and have threads
continually check this flag which would result in artificial and unnecessary delays.

12If desired, the principle of non-parallel execution can be interpreted in a less strict way: All
tasks that do not require user interaction and that have been given permission by the user to always
execute, could be moved to another thread that runs in the background and frequently executes
the appropriate tasks in parallel to the thread that deals with the other tasks that require user
interaction.

Chapter 6. Implementation 43

Reacting to Received Message

The method react2msg(Msg msg, boolean allowX)13 decides what to do with a
received message. For now, only if the Msg is a Task we react to it. If the user set
the execution permission for this task to ‘always’ or if the task was explicitly clicked
by the user, it will be directly executed. For tasks that require user interaction a
new Activity is started which creates the GUI. For tasks without user interaction
the run() method is called which takes care of all the rest and returns an Answer

which is sent back to the server. If a task is set to be executed periodically it calls
the run() method every time it executes and creates a new Answer.
If the task that has been asked to execute does not have the permission to do so
yet, showNewXTask is called which prompts the user to decide whether to execute it
or not. If the task is then given the permission it will enter react2msg(...) again,
this time with the permission required for execution.

Auto-executable vs. User-executable

We defined two kinds of executability because even when a task is flagged as ‘not
executable’ for the automatic periodic execution check, the user can still invoke it by
clicking on it since it does make sense not to forbid the user to override his previous
decision but also not to bother him by asking again to early. Therefore:

set of auto-executable tasks ⊆ set of user-executable tasks.

In contrast to parameters like time and location which determine both executabil-
ities, auto-executability is only granted if the user has not clicked ‘no’ when asked
to execute or his ‘no’ is longer back than a specified period of time.
If it is not a periodic task, that is, it is to be executed only once, it is only auto-
executable if it has never been executed.
If it is a periodic task it may be run automatically if it has never been executed yet
or if the last execution time dates back longer than the task’s period of execution.

6.6 Creating the Tasks

As mentioned before in Section 3.2, we simply serialize the objects that have been
created and write them into a file. The file name is the class name followed by a dot,
a time stamp, another dot, an index14, and the extension .ser. We chose the dot to
separate the class name from the time stamp because a dot is a legal character in a
file system name but does not appear in class names. We could have also used the
space character but spaces in file names should be avoided, especially when working
with command terminals. Unambiguously separating the class name from the time
stamp enables us to easily extract both of it for possible future usage.

13allowX is true if execution is definitely allowed either because it was clicked by the user or
because this task has been given the right to be always executed without further questioning.
Note that there are two different methods called react2msg—one in Server and one in Client.

14The index ensures that two tasks will not have the same file name which could happen without
the index if they were received in the same second.

Chapter 6. Implementation 44

This file is then read from the main program. Doing it this way, the main program
can remain unaltered and whenever one needs to modify or create a task, all changes
can either be written into the existing file CreateTasks.java or this file can be
copied into another folder, modified, compiled, and executed.
The server is given one folder which it frequently checks for new tasks. The server
remembers which tasks were sent to each client15 and checks this folder for new
tasks and sends them to the client. Neither server nor client have to be restarted to
supply the client with a new task which makes it very convenient for both users and
developers.
When a class is changed and there are still serialized objects of the old class there,
the computer will realize it and throw an error. We catch it and print out a separate
error message to the user and tell him the most probable reason for this error.
The solution is to delete the old files and create the tasks anew. The source code
of our class that creates the tasks is shown in Listing 8.1. If there is a parameter
supplied when executed, this is interpreted as the folder path where to put the
created serialized objects.

Supplying Tasks via Another Socket

On the server side, a third socket is opened through which serialized Tasks can
be sent. This has the advantage that people who want to send out tasks do not
need access to the server but can simply create the tasks on their device and send
them to the server. Security and identity check measures can be applied if needed.
Furthermore the server could be easily set up to receive tasks from multiple senders.

6.7 The Life of a Task: An Exemplary Overview

6.7.1 Creation

A new task is born when the required parameters have been entered into Create-

Tasks, the *.java file has been compiled to the *.class file which is executed then.
It creates a separate *.ser file with the serialized task.

6.7.2 Sending

The Server class reads all *.ser files in the folder (either supplied via args[] or the
the current directory) and sends them serialized to mobile devices if the connection
has been established. The steps of deserialization and consequent serialization could
be omitted, doing it this way ensures that the objects we have read are valid, though.

6.7.3 Reception

The receive thread of the client checks for incoming tasks all the time, reads our
task, and puts it into the queue.

15Note that if the connection died and is revived again the server does not remember that it is
now connected with the same client as before and treats it as if no tasks had been sent.

Chapter 6. Implementation 45

6.7.4 Delay Due to Location or Time

The task is not executable yet because the cell phone is not in the right location or
we are not within the time frame of execution. This is shown by a grayed out task
name next to the check box which does not react to clicks as well.

6.7.5 Execution

The automatic check for executable tasks picks our task and proposes its execution
to the user who agrees. The user could have also clicked on the task.

6.7.6 Awaiting User Interaction

See Figures 6.5 and 6.6 for the screens shown to the user.

Figure 6.5: The user entered the location
and is about to change the estimated ar-
rival time.

Figure 6.6: The time entered in the pre-
vious screen is an official estimation.

Chapter 6. Implementation 46

6.7.7 Sending Back the Task

Hitting submit, the answer is extracted and sent back to the server and the user either
sees a request to execute another task or a list of received tasks like in Figure 6.8.

6.7.8 Displaying the Sensed Data

On the server side the task is examined and we can read the response:

The train from (lat=48.783781, lon=9.181682) to Berlin main station
is 8 mins late and will probably arrive around 12:05.

6.8 Using the Menu

Every Android phone has a physical button labeled Menu which is very useful for
buttons that should be present somewhere but are used fairly seldom and therefore
should not fill up the screen all the time. The subsequent images will show all
available menus of our application and how they could be used.
The apparently endless stream of proposed tasks for execution wears the user out.
So he clicks on the menu to end automatic execution proposal (see Figure 6.7). In
Figure 6.8 we see that there are executable tasks but the user will not be asked any
more. If he wants to receive proposals again, however, he can simply click on the
menu and hit Configure to switch it on again. This leads him to Figure 6.9. As soon
as he marks the check box ticked, a new suggestion pops up (Figure 6.10) if there
are any tasks auto-executable right now.

6.9 Practical Remarks

6.9.1 USB Debugging

Using USB debugging with Eclipse is very convenient especially when testing func-
tionalities such as microphone and bluetooth that are not supported by the emulator.
After plugging the USB cord into the PC and the phone, Android will ask you to set
the USB connection type. Normally one has to select USB debugging but on Debian
squeeze 6.0.2, Kernel Linux 2.6.32-5-amd64 it worked only when ‘harddrive’ was
selected. The phone we used is an HTC Desire. With this model, sensing of blue-
tooth devices often resulted in loss of wireless connection. Since it worked perfectly
with HTC Hero we assume some hardware issue beyond our control.

6.9.2 Means of Information Exchange

While testing, server and client communicated via wireless LAN since it was conve-
niently available with no extra costs. For practical use later on we assume a constant
internet connection via UMTS of the mobile device.

Chapter 6. Implementation 47

Figure 6.7: The user wants to decide on
his own which tasks to execute.

Figure 6.8: After having changed his
mind he hits Menu again.

Figure 6.9: The user changed his previous
automatic execution setting.

Figure 6.10: Without intermediate click
an executable task is shown.

Chapter 7

Usage

7.1 Starting the Server

7.1.1 Bundling the Required Packages in a *.jar File

In Eclipse we created pub-sen-server.jar of the server package and included all
imported packages. We put this file in the folder where the server package is:

� publicSensingServer

– CreateTasks.class

– Server$ReceiveThread.class

– Server$ReceiveThreadTasks2Send.class

– Server.class

– TransferTasks.class

� pub-sen-server.jar

� GetBluetooth.Fri_Jul_08_12-04-26_CEST_2011.0.ser

� GetLoc.Fri_Jul_08_12-04-26_CEST_2011.1.ser

7.1.2 Adding Android and Google Maps to the Class Path

The *.jar files of Android and Google Maps are not contained in pub-sen-server.jar

and therefore have to be added to the class path. Depending on the OS and type of
terminal there are several ways to do that [23].

7.1.3 Start the Programs of the Server Package

Assuming that required Android and Google Maps files have been added and that
we are in the folder of the server package, the Server is started like this from the
terminal1:

1Adding this *.jar to the class path as well is rather difficult since an ‘application entry point’
(a class of the package) needs to be set [24]. We have three classes that can be started, however, so
would probably need to have three *.jar files.

48

Chapter 7. Usage 49

$ java -cp pub-sen-server.jar publicSensingServer.Server

We can also specify another folder from where to read the serialized tasks2:

$ java -cp pub-sen-server.jar publicSensingServer.Server ./tasks

Passing a second argument3 we set the number of the outgoing port4:

$ java -cp pub-sen-server.jar publicSensingServer.Server . 1489

The classes CreateTasks and TransferTasks are run in the same manner. Only
the number and order or passed arguments vary, see below for details.

7.1.4 Arguments Passed via Command Line

first second third
Server source folder of tasks port number —
CreateTasks target folder of tasks — —
TransferTasks source folder of tasks IP address port number

2Note that ./ is the Unix way of specifying a relative path. On Windows consoles one would use
\.

3The . indicates to use the current folder. On Windows use here \ as well.
4In the Server class, the incoming port is this number plus one, the port where serialized tasks

are received plus two.

Chapter 8

Tests

While programming one function, we thoroughly tested this one with different sce-
narios before we moved on with implementing the next function. In the end we
artificially created test scenarios that did not appear in the normal process of pro-
gramming but will most certainly happen in real life. The most important one is the
following, namely the loss of connectivity in different stages of the app.

8.1 Connection Loss

The goal is obviously that the app must not crash whatever happens. Therefore
scenarios like e.g. the loss of connection to the server have been tested extensively.
Now to the best of our knowledge loss of connection to the server at whatever stage
the app is in will not result in a crash but the user will be notified with a Toast1.
In spite of not being connected, the tasks can still be executed. The Answers are
saved and will be sent as soon as the user reconnects. When a reconnect has been
requested, the client checks if this is the first time it will connect to the server. If
the client has been connected before, it will not create a new instance of IO but will
use the old one and connect this one with the server again. Using the same object
as before has the advantage that the send queue and receive queue do not have to
be transferred from the old object to the new. Since reconnecting from the server’s
perspective is the same as establishing a brand new connection, it will send the same
tasks to the client again unless told otherwise. On client side duplicates are filtered
out, however (cf. Section 6.3.1 on page 32).

8.2 Field Test

8.2.1 Introduction

In order to combine three different tasks to a relatively realistic field test scenario,
we decided to take the phone with us on a bike ride and make it sense the loudness
every 30 seconds within a time frame of 4 p.m. to quarter past 4. As soon as we

1Notification to the user that pops up and stays for a short while.

50

Chapter 8. Tests 51

are less than 20 meters away from the possible intersection, we want to be asked
whether these roads cross. Entering the imaginary circle of 15 meters around the
house door, we want our location to be sent to the server who would then open
the door. Since our mobile device is connected via wireless LAN, it will receive the
tasks at home and later on loose connection again. Right after reconnecting it will
automatically send the gathered information to the server. Depending on the signal
strength of the wireless router located inside the house, the last task (request to
open the door) might or might not be sent from outside the door. On a real system
this issue would not occur because we would not connect directly via wireless from
server to client but over the internet using UMTS.

8.2.2 Setting up the Tasks

An Example: Sensing Loudness

We pass the parameters to the task SenseLoudness in the following order:

� An instance of Calendar when it shall expire. In our case we pass null for ‘no
expiration’.

� The period of execution in seconds, 30.

� An instance of TimeFrame within which execution is allowed. This takes the
following objects:

– An instance of Calendar that indicates the beginning. We chose 16:00 as
hours and minutes and an arbitrary year, month, and day since right now
the frequency is constantly set to ‘daily’ and therefore these variables are
disregarded.

– Another Calendar that marks the end of the time frame, 16:15 in our
case.

� An array of AreaLite objects. We give no restriction locationwise and there-
fore enter null.

� The minimal number of devices around before execution can start. 0 in our
case.

� How long shall a noise sample be? We give it 1.5, the value is interpreted as
seconds.

How this task and the other ones look like in source code can be seen in Listing 8.1.2

After having written the tasks in the source code, the file needs to be compiled e.g.
from the terminal using the Java compiler:

$ javac CreateTasks.java

2The latitude and longitude values for a location can easily be found e.g. on Google Maps by
first navigating to the desired location, then right-click on it and click on ‘What’s here?’

Chapter 8. Tests 52

1 public static void main(String[] args) {
2 // [...]
3 Calendar cal = Calendar.getInstance();
4 long millis = (cal.getTimeInMillis() / 1000) * 1000; // get rid of millis since

they can't be set. Not doing so might result in unequal if millis are unequal
when comparing equality of tasks.

5 cal.setTimeInMillis(millis);
6

7 // ===== YOU MAY MODIFY FROM HERE ON =====
8 // set up execution areas
9 PolygonLite p;

10 double[] xpoints = new double[] { 48, 50.1, 49 };
11 double[] ypoints = new double[] { 8.5, 8.5, 10 };
12 p = new PolygonLite(xpoints, ypoints, xpoints.length);
13 PolygonLite[] polygons = { p };
14 LocationLite center = new LocationLite(48.991587, 8.938981);
15 LocationLite house = new LocationLite(48.994784, 8.940993);
16 CircleLite[] circleCrossing = { new CircleLite(center, 20) };
17 CircleLite[] circleHouse = { new CircleLite(house, 15) };
18

19 // set up execution times
20 Calendar endC = (Calendar) cal.clone(); // cloned and overwritten later
21 Calendar startC = (Calendar) cal.clone();
22 Calendar expiryC = (Calendar) cal.clone();
23 startC.set(2010, 0, 0, 16, 0, 0); // year, month, ...
24 endC.set(2011, 0, 0, 16, 15, 0);
25 TimeFrame tf = new TimeFrame(startC, endC);
26

27 // final tasks
28 LocationLite center = new LocationLite(48.991587, 8.938981);
29 double angleA = Math.PI * .2;
30 double angleB = −Math.PI * .35;
31 Task[] tasks = {
32 new RoadsCrossing(null, −1, null, circleCrossing, 0, center, 18, angleA

, angleB),
33 new GetLoc(null, −1, null, circleHouse, 0),
34 new SenseLoudness(null, 30, tf, null, 0, 1.5)
35 };
36 // ===== DO NOT CHANGE CODE AFTER THIS LINE! =====
37 // [...]
38 }

Listing 8.1: CreateTasks which can be modified by the user

Chapter 8. Tests 53

Then we start the program with the following command:

$ java CreateTasks

Since we supplied no folder it stores the *.ser files in the current folder (cf. Sec-
tion 7.1.4 on page 49).

8.2.3 Performing the Test

We started the Java class Server on the server and clicked on the PublicSensing-
Client app on the phone. After a couple of seconds the tasks were received.

8.2.4 Evaluation

A first glance at the user-executability showed us what we expected:
GetLoc was executable because we were in the same house to which we would
return—and a couple of meters in front of our house door we expect this task to
become executable to send a request to the server to unlock the door.
SenseLoudness was executable as well. When prompted with the question when to
execute, we hit ‘always’. It immediately took a sample of the loudness3 and sent it
to the server:

<-received Answer to SenseLoudness

It is an answer. Received at: Sat Jul 09 16:07:20 CEST 2011

Location: loc (lat=48.9949474 lon=8.9415535)

>> Loudness=272

RoadsCrossing was not executable yet since we had not come close to the possible
intersection.
Then we disconnected the USB cord and made our way towards the crossing. Instead
of seeing RoadsCrossing become active we saw the whole application crash, however.
Back home we found out that it almost always crashed when the display was rotated
and the view changed from portrait to landscape or vice versa because the current
View became destroyed and asynchronous threads still referred to it. One line in the
Manifest4 fixed this issue. We wonder why it is not the default setting.
Our next attempt was more successful, the task RoadsCrossing became executable
as planned a couple of meters away from the center of the crossing. We answered
the question and hit ‘submit’. Later after having reconnected this is what we saw:

<-received Answer to RoadsCrossing

It is an answer. Received at: Sat Jul 09 16:53:20 CEST 2011

Location: loc (lat=48.99158682701874 lon=8.938920462783813)

>> Crossing

3The loudness value of 272 in this case has only qualitative worth, the higher the value, the
louder it was. Range and value heavily depend on the type of cell phone used.

4We added the line in italics to the activity section:
<activity android:name=".Client"

android:label=@string/app_name"

android:configChanges="orientation|keyboardHidden" >

Chapter 8. Tests 54

After a while SenseLoudness stopped its periodic execution because it was outside
of the given time frame. When entering our property the task GetLoc became active
and asked us whether to send our location to the server in order to open the door
for us. In a real scenario where tasks can also be stored on the mobile device,5 the
user would set the execution permission to ‘always’ so that the door would open
automatically without asking.
To sum it up, our field test fulfilled all requirements:

� Executability changed properly with moving to another location.

� The task restricted by a time frame stopped being executable.

� Storing the tasks in the queue and sending them once the connection was
available again worked.

� The loudness was sensed periodically without user intervention.

8.3 Usability

8.3.1 Tests on People without Previous Android Knowledge

If our app is self-explaining and easy to use for people who have never used Android
before, it should fulfill the requirements with regards to usability of all other users
as well. Therefore we gave the mobile device to three people who had no previous
experience. In general, without further advice they understood what to do. Some
things were confusing, however:

The Keyboard Pops up

If there is a text edit on the screen, the keyboard pops up automatically and fills up
half of the screen and leaves the users overwhelmed and puzzled about what to do.
So we decided to switch the automatic keyboard pop up off.6 Still, as soon as the
user touches the text field, a keyboard will appear.

The User Notification Stays Too Short

The relatively long text to inform the user about lost connectivity and how to
reconnect disappeared too soon so that the user could not read the whole message.
We did not see a way to shorten the text so we made the Toast appear twice as
long.7

5This would be fairly easy to implement since the algorithms that save and read serialized tasks
are there already. We would only move them from the server package to the client package since
there we store the classes needed in both or outsource to an extra package.

6This line added in the onCreate(...) method of the Activity did the job:
this.getWindow().setSoftInputMode

(WindowManager.LayoutParams.SOFT_INPUT_STATE_ALWAYS_HIDDEN);
7For the display length there are only two options to choose from: short and long. We simply

put the text in a loop so that it gets called twice

Chapter 8. Tests 55

Do I Have to Comment?

The previous hint text8 of a text field was ‘Enter comment here.’. A user was puzzled
what to enter so we changed the text to ‘Enter optional comment here.’.

8The text that disappears if the field is clicked.

Chapter 9

Peek into the Future

9.1 The Big Picture

The rapid evolution of mobile devices can be compared with the upcoming of per-
sonal computers in terms of coverage of the holders. A couple of years from now, the
vast majority of people will probably possess a cell phone that is capable of doing far
more than just text messaging and making phone calls and therefore the percentage
of cell phones that have the potential of being public sensing clients will approach
100%. Given that a fairly high percentage of people have a cell phone and carry it
around with them almost wherever they go, the potential and sensing power to be
unleashed is enormous.
So how can we tap this source best? Some technology enthusiasts or altruists with
spare time might download the app even if they have no immediate gain, but in
order to reach the masses we have to think about ways to compensate or reward a
user for sensing data like temperature or a traffic jam. We suggest coupling collect-
ing the information with reaping the benefit, thus everyone who agrees to send his
anonymized location information will in return receive traffic jam warnings. To kick
off a sensing project until we reach a minimum number of required sensing contrib-
utors we need other incentives, however. So we should make the app as easy and
fun to use as possible in order to reach also people with below-average IT interest
and knowledge. The GUI has to be visually appealing; icons are to be preferred
over text. Another marketing strategy would be supplying personal or social sensing
applications for free and later on suggest the installation of public sensing apps once
users have built trust in the software provider. A financial compensation of the user
for his efforts is also thinkable but might sum up to a significant amount of money
since often many sensings need to be taken.
Our strategy would also be emphasizing the security and privacy issue by guaran-
teeing the user not to misuse or disclose their personal information. If possible, we
would not even collect personal information but depersonalize as early as possible
and use encryption for all potentially insecure communication channels.
The main challenge we see for the future will be to ensure that all mobile devices will
not only be able to communicate with each other on a few standardized channels for
text messaging, phone calls, and video calls, but will instead be capable of receiving

56

Chapter 9. Peek into the Future 57

tasks, displaying them, and responding to them regardless of the operating system.
Right now there are several rather separated nets of mobile devices that exchange
information only within their group but not to mobile devices that run another OS.
So the ideal solution would be a universal mobile device OS. An important require-
ment would be that it is open and can be used free of charge so that if there are no
major drawbacks on the software side, it will be superior to other possible operating
systems concerning the financial aspect as well.
Maybe the issue of multiple OSs will be resolved or become irrelevant if some mobile
device operating systems are left behind because manufacturers move over to the
‘big ones’. Perhaps de-facto standardization like jpg, png or pdf will also be estab-
lished in the mobile computing sector, e.g. Java and XML. Reverse engineering of
iPhone apps could happen as it happened with Microsoft’s file formats. Another
possibility would be e.g. running an Android virtual system in the background on
one of Nokia’s Symbian based phones. The last and definitely least preferable option
of choice would be rewriting the client side for another OS. Still that would be a
manageable effort compared with the gain of millions of potential users. If inter-
preting serialized Java tasks is not doable on the client, one could reassess possible
conversion to XML.
Regardless of how soon and how well inter-OS-communication will work, the huge
potential of literally millions of smart phones with sensors in the hands of people
who can assist in supplying information is astonishing and might revolutionize areas
like live traffic surveillance and possibly locking systems as mentioned throughout
this thesis. On the other hand, one has to respect the privacy of users and should
not misuse their data. The first step is to raise awareness of what happens with their
private information. If people feel deceived by cell phone providers they might be-
come very skeptic toward new technology and therefore will not be willing to install
public sensing apps.

9.2 Extension Possibilities of Our Framework

So far, we have one server that disseminates tasks to many clients. But why should
there be only one server that sends out tasks? One client could also connect with
multiple servers and the received tasks would be merged into one GUI.
At the present stage, the server can receive tasks to send out via a socket connection
with another device. It would be fairly easy to implement the reception of tasks from
several sockets. Furthermore, as proposed in the outline of the architecture, a client
could be enabled to send out tasks as well.
There is one GUI element that we initially wanted to create until we could not think
of a realistic application for it. This would be a way of selecting n out of m items
from a given list. If the need is there to add this one to the ViewLite elements,
it can easily be added. If further customizability of these GUI elements is desired,
extra parameters can be supplied on demand.
If changes to the software have been applied that result in its incompatibility with
the old version, the user should be prompted to update. The server could also query

Chapter 9. Peek into the Future 58

the client at the very beginning to determine the platform version installed and then
send the applicable versions of tasks.

9.3 How to Shape the Future

Most certainly the future will bring ideas of how to use public sensing into devel-
opers’ minds that are unheard of now. Therefore we deemed it crucial to establish
a framework that can be extended to suit the vast majority of developers’ needs.
The sample applications that we provided—retrieve location, sense loudness, report
train lateness, report roads crossing, sense bluetooth devices—are useful indeed, but
that was not the main objective to write them. They ought to be regarded as pro-
totype models of what can be done with the architecture we wrote and therefore
cover many of its functionalities. We have representatives of autonomous tasks and
some that require user interaction; some need access to special hardware like the
microphone or bluetooth sensor; some are designed for periodic execution like sens-
ing the volume, others are only to be executed within a closely defined area, like the
question if these two roads cross.
All of these tasks are mainly there to demonstrate what can be done and we made
sure to use every GUI element that we introduced at least once. Once the framework
of server, client, and optionally another device that sends tasks to the server side is
up and running, changing the parameters of a new task is very easy and straightfor-
ward: Just add the required variables to the constructor of the task in the correct
order, run the program and the server will pick them up at runtime and send it to
the clients connected with it without restart of server or client.
Having boiled down the creation of a task to a simple one-line procedure should
enable future developers to fully concentrate on the content of the task without
having to bother about transferring, scheduling, serializing, and all the rest.
Creating a new class of tasks could be done in a couple of minutes if it is a question
to the user that consists only of the already existing light versions of View—which
should be the case for almost all imaginable questions. If hardware needs to be
accessed, the creation of a new class might require deeper digging into the source
code. Nevertheless the main architecture is present already and we hope that it will
enhance the development of numerous public sensing apps now that researchers and
other developers can pour all their creativity into the content and function of new
public sensing systems. May this framework ease the transition to the era when
smart phones linked with each other are capable of doing things unthought of nowa-
days, possibly even greater than today’s desktop computers.
But users will still be able make to phone calls.

Chapter 9. Peek into the Future 59

Declaration of Independence

I hold these truths to be self-evident, that I wrote this thesis independently and that
I listed all relevant references below. The help of numerous internet tutorials, blogs,
forums, and the like is greatly appreciated and cannot be listed individually due to
its sheer enormity. This thesis or parts of it have not been published yet.

Patrick Leucht
Vaihingen/Enz, Germany

July 22, 2011

Bibliography

[1] A. Becker and M. Pant. Android—Grundlagen und Programmierung.
dpunkt.verlag, 2009.

[2] H. Weinschrott et al. StreamShaper: Coordination Algorithm for Participatory
Mobile Urban Sensing. Seventh IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (MASS’10), 2010.

[3] E. Kanja et al. MobGeoSen: facilitating personal geosensor data collection and
visualization using mobile phones. Springer-Verlag London Limited, 2007.

[4] N. Maisonneuve et al. Citizen Noise Pollution Monitoring. Proceedings of the
10th International Digital Government Research Conference, 2009.

[5] H. Lu et al. SoundSense: Scalable Sound Sensing for People-Centric Applica-
tions on Mobile Phones. MobiSys ’09, 2009.

[6] A. Steed et al. Using tracked mobile sensors to make maps of environmental
effects. Springer-Verlag London Limited 2006, 2005.

[7] H. Weinschrott et al. Participatory Sensing Algorithms for Mobile Object Dis-
covery in Urban Areas. IEEE International Conference on Pervasive Computing
and Communications (PerCom), 2011.

[8] M. Haklay et al. OpenStreetMap: User-Generated Street Maps. Pervasive com-
puting, published by the IEEE CS, 2008.

[9] A. Campbell et al. People-Centric Urban Sensing. Proceedings of the 2nd
annual international workshop on Wireless internet WICON 06 (2006), 2006.

[10] A. Campbell et al. The Rise of People-Centric Sensing. IEEE Computer Soci-
ety, 2008.

[11] http://services.defra.gov.uk/wps/portal/noise, July 22, 2011.

[12] H. Weinschrott et al. Efficient Capturing of Environmental Data with Mobile
RFID Readers. Tenth International Conference on Mobile Data Management
Systems, Services and Middleware, 2009.

[13] H. Mosemann and M. Kose. Android—Anwendungen für das Handybetriebssys-
tem erfolgreich programmieren. Carl Hanser Verlag, 2009.

60

http://services.defra.gov.uk/wps/portal/noise

Bibliography 61

[14] http://googlepolicyeurope.blogspot.com/2010/04/

data-collected-by-google-cars.html, July 22, 2011.

[15] http://arstechnica.com/old/content/2008/10/

google-gears-enhances-geolocation-with-wifi-positioning.ars,
July 22, 2011.

[16] http://simple.sourceforge.net, July 22, 2011.

[17] http://www.google.com/mobile/privacy.html, July 22, 2011.

[18] http://www.google.com/accounts/TOS, July 22, 2011.

[19] E. Sanfèlix.
http://www.limited-entropy.com/crypto-series-hash-functions-sha2,
July 22, 2011.

[20] D. Kotz D. Peebles M. Shin C. Cornelius, A. Kapadia and N. Triandopoulos.
AnonySense: Privacyaware people-centric sensing. In Proc. ACM 6th Intl Conf.
on Mobile Systems, Applications and Services (MOBISYS 08), 2008.

[21] M. Daoud. Modeling Distributed Applications in a Smarter Home Infrastruc-
ture. University of Stuttgart, IPVS, 2011.

[22] D. Finley. http://alienryderflex.com/polygon/.

[23] http://download.oracle.com/javase/1.5.0/docs/tooldocs/#general,
July 22, 2011.

[24] http://download.oracle.com/javase/tutorial/deployment/jar/appman.

html, July 22, 2011.

http://googlepolicyeurope.blogspot.com/2010/04/data-collected-by-google-cars.html
http://googlepolicyeurope.blogspot.com/2010/04/data-collected-by-google-cars.html
http://arstechnica.com/old/content/2008/10/google-gears-enhances-geolocation-with-wifi-positioning.ars
http://arstechnica.com/old/content/2008/10/google-gears-enhances-geolocation-with-wifi-positioning.ars
http://simple.sourceforge.net
http://www.google.com/mobile/privacy.html
http://www.google.com/accounts/TOS
http://www.limited-entropy.com/crypto-series-hash-functions-sha2
http://alienryderflex.com/polygon/
http://download.oracle.com/javase/1.5.0/docs/tooldocs/#general
http://download.oracle.com/javase/tutorial/deployment/jar/appman.html
http://download.oracle.com/javase/tutorial/deployment/jar/appman.html

Nomenclature

AES Advanced Encryption Standard

GPS Global Positioning System

GSM Global System for Mobile Communications

GUI Graphical User Interface

ID Identification

IP Internet Protocol

IT Information Technology

JAXB Java Architecture for XML Binding

JDOM Java-based document object model for XML that integrates with Doc-
ument Object Model (DOM)

LAN Local Area Network

MAC Media Access Control

MD5 Message Digest algorithm

OS Operating System

PC Personal Computer

RFID Radio Frequency Identification

RSA Asymmetric encryption algorithm developed and named after Rivest,
Shamir, and Adleman

SHA Secure Hash Algorithm

SI International System of Units

UMTS Universal Mobile Telecommunications System

USB Universal Serial Bus

XML Extended Markup Language.

62

	Abstract
	Deutsche Kurzbeschreibung
	Contents
	Introduction
	Motivation
	Overview
	Related Work
	Contribution of this Thesis
	Thesis Outline

	General Remarks about Writing Style and Layout

	Examples of Applications
	Meeting in Town
	Sensing Environmental Data
	Baby Phone
	Playing Games
	Live Traffic Information
	Picking Someone up Just on Time
	Using a Mobile Device to Unlock Objects
	Do these Roads Cross?

	Fundamentals
	Converting Geographical Coordinates into Cartesian Ones
	Storing the Tasks
	Hardcode in the Source Code of the Server Class.
	Read the Tasks from an XML File
	Write a Parser
	Outsource the Creation of Tasks to *.java File

	Privacy and Security
	Security Concerns
	Why?
	Data Collectors
	Specific Public Sensing Concerns
	Data Security Aware Public Sensing
	Implementation of Encryption

	Architecture
	General Precedent Thoughts
	Abstract Fundamental Architecture
	Tasks
	Server
	Client

	Implementation
	Why Android?
	Package Structure
	Shared Classes between Server and Client
	Message and Its Subclasses
	GUI Classes
	Input/Output

	Server's Classes
	The Core Class: Server
	CreateTasks
	TransferTasks

	Client's Classes
	The Core Class: Client

	Creating the Tasks
	The Life of a Task: An Exemplary Overview
	Creation
	Sending
	Reception
	Delay Due to Location or Time
	Execution
	Awaiting User Interaction
	Sending Back the Task
	Displaying the Sensed Data

	Using the Menu
	Practical Remarks
	USB Debugging
	Means of Information Exchange

	Usage
	Starting the Server
	Bundling the Required Packages in a *.jar File
	Adding Android and Google Maps to the Class Path
	Start the Programs of the Server Package
	Arguments Passed via Command Line

	Tests
	Connection Loss
	Field Test
	Introduction
	Setting up the Tasks
	Performing the Test
	Evaluation

	Usability
	Tests on People without Previous Android Knowledge

	Peek into the Future
	The Big Picture
	Extension Possibilities of Our Framework
	How to Shape the Future

	Bibliography
	Nomenclature

