
Optimized Information Discovery

in Structured Peer-to-Peer

Overlay Networks

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Faraz Ahmed Memon

aus Karachi, Pakistan

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Mitberichter: Prof. Dr. rer. nat. Winfried Lamersdorf
Tag der mündlichen Prüfung: 8. Juli 2011

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2011

Acknowledgments

First and foremost, thanks to almighty God for giving me the strength, the courage, and
the patience for achieving this important milestone in my life. It has been a humbling
experience.

I would like to thank Prof. Dr. Kurt Rothermel for recognizing the potential in me and
selecting me for conducting research under his supervision. His guidance played an
essential role in recognition of research problems and development of their solutions
during my doctoral studies. Moreover, I would like to thank Prof. Dr. Winfied
Lamersdorf for taking the time to review my dissertation.

I dedicate this dissertation to: my parents, my wife, my son, and my siblings. Living
in a country with extreme poverty and high illiteracy, my father, Taj Mohammad
Memon, worked day and night to provide me food, shelter, and the best education
in the world. My mother, Naseem Taj Memon, taught me the moral and the social
values in life, making me the person I am today. She supported me through each step
of the earlier years of my education. I remember vividly, the times when she would stay
up all night just to see if I was hungry while studying for exams. She prayed for my
success more than I did, and she still does that today. My wife, Faryal Gul Memon, has
been my companion only since few years, but I feel that she knows me since a lifetime.
She bore with me through the years of my doctoral study and she is one of the most
understanding persons that I know. My son, Eyad Faraz Memon, has given a new
meaning to my life. Being a father has made me more responsible and caring person
than I ever was. My siblings, Faisal Taj Memon, Huda Taj Memon, and Talha Taj
Memon, have always been there to share the happy and the sad moments of my life.

Apart from my family, continual moral and technical support of several individuals
has made this dissertation possible. I am inclined to name some of these wonderful
individuals below.

Dr. Frank Dürr, my project supervisor, has been very supportive throughout my doctoral
studies. He has always been available for discussions and has given me time under busy
situations where anyone would have excused. Whether it was a research dialogue, a

3

programming tip, a documentation hint, or a resource allocation problem, Frank was
always there to facilitate the need.

Through the years of my doctoral studies, I have had the opportunity to work with
some wonderful people as colleagues. The support that I received from the following
people has made me think of them as friends rather than just co-workers. Steffen Maier,
guided me during the first year of my doctoral studies to facilitate my integration into
the research world. Brilliant programming skills of Daniel Tiebler were extremely handy
when it came to development of prototype solutions to the research problems. Gerhald
Koch, Stefan Föll, and Bilal Hameed, provided their valuable feedbacks on the research
papers that I submitted for review at the international conferences. Christian Hiesinger,
Lars Geiger, Manuel Gonzalo, and Adnan Tariq, always welcomed me whenever I felt the
need for discussing ideas and research problems. Stephan Schuhmann, Andreas Benzing,
Marco Völz, and Stamatia Rizou, helped me with non-technical and administrative
issues during my doctoral studies.

To all the people mentioned above, and to the unmentioned ones who helped me in any
way, I am thankful from the bottom of my heart.

4

Contents

Abstract 17

Zusammenfassung 19

1 Introduction 31
1.1 Motivation . 31
1.2 Problem Statement and Contribution 33

1.2.1 Problem Statement . 34
1.2.2 Contribution . 34

1.3 Structure . 35

2 Background 37
2.1 Peer-to-Peer Overlay Networks . 37
2.2 Peer-to-Peer Information Discovery Systems 39

2.2.1 Unstructured Peer-to-Peer Systems 39
2.2.1.1 Uninformed Search . 40
2.2.1.2 Informed Search . 43

2.2.2 Structured Peer-to-Peer Systems 48
2.2.2.1 Ring (Chord) . 49
2.2.2.2 Torus/Hypercube (CAN) 51
2.2.2.3 SkipList (SkipNet) . 54
2.2.2.4 Butterfly Networks (Viceroy) 56
2.2.2.5 Tree (Plaxton Tree) 58

2.3 Space-Filling Curves . 60

3 Optimized Information Discovery System 65
3.1 Introduction . 65
3.2 System Architecture . 66
3.3 Attribute Domain Sub-setting . 68
3.4 SFC-based Data Indexing . 69

5

Contents

3.5 Data Placement . 70
3.6 Query Resolution . 72
3.7 Query Optimization . 73

3.7.1 Routing Optimization . 73
3.7.2 Computation Load Distribution 75

3.8 System Evaluation . 77
3.8.1 Evaluating SFC-based Indices 77
3.8.2 Evaluating Query Optimizations 80

3.8.2.1 Basic Routing vs. Routing Optimization 80
3.8.2.2 Routing Optimization vs. Computation Load Distribution 81

3.9 Related Work . 82
3.9.1 Specialized Overlay Networks 82
3.9.2 DHT-based Overlay Networks 83

3.9.2.1 Individual Indices . 84
3.9.2.2 Combined Index . 84

3.10 Conclusion . 85

4 Index Recommendation for Optimized Information Discovery 87
4.1 Introduction . 87
4.2 OID System Architecture . 88
4.3 Query Cost Estimation . 89
4.4 Index Recommendation Algorithms . 90

4.4.1 Näıve Index Recommendation 91
4.4.2 Scalable Index Recommendation 92

4.4.2.1 Cost-based Merge Algorithm 93
4.4.2.2 Similarity-based Merge Algorithm 96
4.4.2.3 Selection Algorithm 98

4.5 System Evaluation . 99
4.5.1 Performance Evaluation . 100

4.5.1.1 Influence of Varying Attribute Combinations 101
4.5.1.2 Influence of Varying Number of Indices 102
4.5.1.3 Influence of Varying Popularity Distribution 103

4.5.2 Network Simulation . 104
4.5.3 Evaluation Summary . 106

4.6 Related Work . 107
4.7 Conclusion . 108

5 Self-adapting Optimized Information Discovery System 109
5.1 Introduction . 109
5.2 Evolution of the OID Architecture . 110
5.3 Index Adaptation . 111

5.3.1 Distributed Workload Collection 112

6

Contents

5.3.2 Index Recommendation . 113
5.3.3 Adaptation Decision . 114
5.3.4 Index Installation . 116

5.4 System Evaluation . 118
5.4.1 Varying Number of Attributes 119
5.4.2 Varying Number of Indices . 122
5.4.3 Varying Number of Data Objects 123
5.4.4 Efficiency of Distributed Workload Collection 124

5.5 Related Work . 126
5.5.1 Unstructured P2P Information Discovery Systems 126
5.5.2 Structured P2P Information Discovery Systems 126

5.6 Conclusion . 127

6 Application: Spatial Information Discovery 129
6.1 Introduction . 129
6.2 System Architecture . 130

6.2.1 Data and Query Model . 131
6.3 Data Indexing . 131
6.4 Data Placement . 133
6.5 Query Resolution . 134
6.6 System Evaluation . 136

6.6.1 Performance Evaluation . 137
6.6.2 Data Distribution . 139
6.6.3 Performance vs. Data Distribution 140
6.6.4 Query Optimization . 140

6.7 Related Work . 145
6.7.1 Non-DHT based Systems . 145
6.7.2 DHT-based Systems . 145

6.8 Conclusion . 146

7 Summary and Future Work 149
7.1 Summary . 149
7.2 Future Work . 151

Bibliography 153

7

List of Figures

1.1 Query Classification . 32
1.2 Two Dimensional Attribute Space . 33

2.1 Client/Server and P2P Architectures 38
2.2 Breadth-first Search . 40
2.3 Limited Flooding and Iterative Deepening 41
2.4 Depth-first Search . 42
2.5 Local Indices . 46
2.6 Chord Ring . 49
2.7 Chord Ring with Finger Table . 50
2.8 CAN Network Topology . 52
2.9 Skip List and SkipNet . 54
2.10 Detailed SkipNet Topology . 55
2.11 Viceroy Network Topology . 56
2.12 Plaxton Nodes and Data Objects . 58
2.13 Plaxton Node with a Primary Table . 60
2.14 Hilbert, Peano, and Gray Space-Filling Curves 61
2.15 Recursive Construction of Hilbert Space-Filling Curve 61
2.16 Query Resolution using Hilbert Space-Filling Curve 63

3.1 OID System Architecture . 67
3.2 Data and Query Mapping on SFC . 70
3.3 Chord Identifier Circle . 71
3.4 Routing Optimization . 74
3.5 Successive Refinement of a Query . 76
3.6 Performance of 2D Query . 78
3.7 Performance of 3D Query . 79
3.8 Basic Routing vs. Routing Optimization 80
3.9 Routing Optimization vs. Computation Load Distribution 81

9

List of Figures

4.1 OID System Architecture . 88
4.2 Cost-based Merge Algorithm . 95
4.3 Similarity-based Merge Algorithm . 98
4.4 Influence of Varying Attribute Combinations 101
4.5 Influence of Varying Number of Indices 102
4.6 Influence of Varying Popularity Distribution 104
4.7 Network Simulation . 105

5.1 Architecture of the Adaptive OID . 110
5.2 Adaptation Decision . 113
5.3 Data Re-Indexing . 117
5.4 Varying Number of Attributes . 120
5.5 Fixed Number of Attributes . 121
5.6 Varying Number of Indices . 122
5.7 Varying Number of Data Objects . 124
5.8 Efficiency of Distributed Workload Collection 125

6.1 Octahedral Map Projection . 132
6.2 Sierṕinski Space-Filling Curve . 133
6.3 Successive Query Refinement . 135
6.4 Chord Ring . 136
6.5 NASA Visible Earth Light Distribution 137
6.6 Performance of a Spatial Range Query 138
6.7 Data Distribution . 139
6.8 Basic Routing vs. Routing Optimization (Experiment 1) 141
6.9 Basic Routing vs. Routing Optimization (Experiment 2) 143
6.10 Basic Routing vs. Routing Optimization (Experiment 3) 144

10

List of Tables

3.1 Evaluation Parameters – SFC-based Indices 77
3.2 Evaluation Parameters – Basic Routing vs. Routing Optimization . . . 81
3.3 Evaluation Parameters – Routing Optimization vs. Computation Load

Distribution . 82

4.1 Definition of Symbols . 91
4.2 Parameters for a Generating Workload 99
4.3 Attribute List for Generating Data and Workload 100
4.4 Evaluation Parameters – Influence of Varying Attribute Combinations . 101
4.5 Evaluation Parameters – Influence of Varying Number of Indices 103
4.6 Evaluation Parameters – Influence of Varying Popularity Distribution . 104
4.7 Evaluation Parameters – Network Simulation 105
4.8 Total Workload Cost . 106

5.1 Attribute List for Generating Data and Query Workloads 118
5.2 Evaluation Parameters – Varying Number of Attributes 119
5.3 Evaluation Parameters – Varying Number of Indices 123
5.4 Evaluation Parameters – Varying Number of Data Objects 123
5.5 Evaluation Parameters – Efficiency of Distributed Workload Collection 124

6.1 Evaluation Parameters – Performance Evaluation 137
6.2 Evaluation Parameters – Data Distribution 139
6.3 Evaluation Parameters – Basic Routing vs. Routing Optimization (Ex-

periment 1) . 141
6.4 Evaluation Parameters – Basic Routing vs. Routing Optimization (Ex-

periment 2) . 142
6.5 Evaluation Parameters – Basic Routing vs. Routing Optimization (Ex-

periment 3) . 143

11

List of Algorithms

1 Näıve Index Recommendation Algorithm 92
2.1 Cost-based Merge Algorithm . 94
2.2 addMissingIndex(R,C, Ć) . 96
3 Similarity-based Merge Algorithm . 97
4 Selection Algorithm . 98

13

List of Abbreviations

P2P Peer-to-Peer
IP Internet Protocol

DHT Distributed Hash Table
DBMS Database Management Systems

SFC Space-filling Curve
OID Optimized Information Discovery
NFS Network File System
LAN Local Area Network
DSL Digital Subscriber Line
BFS Breadth-first Search
TTL Time to Live
DFS Depth-first Search
APS Adaptive Probabilistic Search

ARPS Adaptive Resource-based Probabilistic Search
HPF Hybrid Periodic Flooding

RIs Routing Indices
SHA Secure Hash Algorithm
CAN Content Addressable Network

15

Abstract

Peer-to-peer (P2P) overlay networks allow for efficient information discovery in large-
scale distributed systems. Although point queries are well supported by current P2P
systems – in particular systems based on distributed hash tables (DHTs) –, providing
efficient support for more complex queries remains a challenge. Therefore, the goal of
this research is to develop methodologies that enable efficient processing of complex
queries, in particular processing of multi-attribute range queries, over DHTs.

Generally, the support for multi-attribute range queries over DHTs has been provided
either by creating an individual index for each data attribute or by creating a single
index using the combination of all data attributes. In contrast to these approaches, we
propose to create and modify indices using the attribute combinations that dynamically
appear in multi-attribute range queries in the system.

In order to limit the overhead induced by index maintenance, the total number of
created indices has to be limited. Thus, one of the major problems is to create a
limited number of indices such that the overall system performance is optimal for
multi-attribute range queries. We propose several index recommendation algorithms
that implement heuristic solutions to this NP-hard problem. Our evaluations show that
these heuristics lead to a close-to-optimal system performance for multi-attribute range
queries.

The final outcome of this research is an adaptive DHT-based information discovery
system that adapts its set of indices according to the dynamic load of multi-attribute
range queries in the system. The index adaptation is carried out using a four-phase
index adaptation process. Our evaluations show that the adaptive information discovery
system continuously optimizes the overall system performance for multi-attribute range
queries. Moreover, compared to a non-adaptive system, our system achieves several
orders of a magnitude improved performance.

17

Zusammenfassung

Einleitung

Moderne Peer-to-Peer-Anwendungen – z.B. zum Auffinden von Speicher- und Rechenres-
sourcen (engl. Resource Discovery) im Grid-Computing [MRPM08], Peer-to-Peer-Video-
Streaming-Systeme [ND08] oder P2P-Systeme zur Verwaltung geographischer Infor-
mationen (Spatial Information Discovery) [MTD+09] – erfordern Unterstützung für
mehrdimensionale Bereichsanfragen.

Existierende unstrukturierte Peer-to-Peer-Netze unterstützen zwar eine große Anzahl an
Anfragetypen (einschließlich mehrdimensionaler Bereichsanfragen), bieten jedoch keine
Garantien bezüglich des erfolgreichen Auffindens von Informationen. Deshalb wurden
strukturierte Peer-to-Peer-Netze, insbesondere so genannte Verteilte Hash-Tabellen (engl.
Distributed Hash Table, kurz DHT), zur Unterstützung mehrdimensionaler Bereichsan-
fragen erweitert. Im Allgemeinen werden hierzu zusätzliche Indexierungsmechanismen
eingeführt, welche als zusätzliche Schicht oberhalb der DHT realisiert sind. In der
Literatur werden hierfür die beiden folgenden Indexierungsansätze diskutiert.

Beim ersten Ansatz wird eine Indexstruktur für jedes einzelne Attribut eines Daten-
objekts erstellt [AX02,CFCS03,SOTZ05,TP03]. Bei dieser Vorgehensweise wird eine
multidimensionale Bereichsanfrage auf eine der beiden folgenden Weisen abgearbeitet:
Entweder wird die gesamte Anfrage mit nur einem Attribut mit Hilfe einer DHT zu den
entsprechenden Peers weitergeleitet, die dann eine Filterung anhand der verbleibenden
Attribute durchführen. Oder die Anfrage wird in mehrere Bereichsanfragen aufgeteilt,
so dass jede Anfrage ein Attribut der ursprünglich mehrdimensionalen Anfrage enthält.
Diese Anfragen werden als eindimensionale Bereichsanfragen separat durchgeführt,
und die resultierden Ergebnisse werden beim anfragenden Peer zusammengeführt und
gefiltert. Das erste Virgehen hat dabei den Nachteil, dass sich zum einen die Latenz
durch die notwendige Filterung bei den Peers erhöht. Zum anderen führt dieser Ansatz
zu einer erhöhten Netzlast, da die Vermittlung der Anfrage nur anhand eines Attributs
der ursprünglichen Anfrage erfolgt und somit auch Peers die Anfrage erhalten, die nicht

19

Zusammenfassung

alle Bereiche der mehrdimensionalen Anfrage abdecken. Beim zweiten Vorgehen wird
eine große Anzahl von Datenobjekten an den anfragenden Peer übertragen, wobei nur
einige in den Bereichen aller ursprünglich angefragten Attribute liegen.

Beim zweiten Ansatz wird eine einzige Indexstruktur erstellt, die eine Kombination
aller Attribute darstellt [CRR+05,GYGM04,SP03]. Eine mehrdimensionale Anfrage
kann hierbei im Gegensatz zum ersten Ansatz direkt nur an diejenigen Peers gesendet
werden, die für die Abarbeitung tatsächlich zuständig sind. Für Attribute, die nicht
in der Anfrage vorkommen, müssen Platzhalter (engl. Wildcard) für alle möglichen
Attributwerte angenommen werden. Mit steigender Anzahl der Platzhalter sinkt dabei
die Leistung dieses Ansatzes bzw. steigt die Netzlast.

Zur Verbesserung dieser Nachteile wird in dieser Dissertation das so genannte Optimized-
Information-Discovery-System (kurz OID) vorgeschlagen, das eine dritte Art der Inde-
xierung von Datenobjekten verwendet. Bei einer vorgegebenen Menge von Attributen
erstellt das OID-System mehrere Indexstrukturen, bei der jede aus einer Kombination be-
stimmter (nicht notwendigerweise aller) Attribute besteht. Diese Attributkombinationen
können derart gewählt werden, dass die Leistung des Systems bei mehrdimensionalen
Bereichsanfragen für eine gewisse Anfragemenge optimal ist. Darüber hinaus stellen
wir ein Verfahren vor, das für hochskalierbare, verteilte Anwendungen die Indexmenge
im laufenden Betrieb adaptiert, um auch bei sich ändernden Anfragen eine optimale
Leistung zur ermöglichen. Die Effektivität und Effizienz des Systems wurde dabei
durch eine Implementierung des Systems für ein Simulationswerkzeug und verschiedene
Simulationen nachgewiesen.

Grundlagen

Zu Beginn der Computernetzära waren Client-Server-Architekturen verbreitet. Auf-
grund des technologischen Fortschritts, der zu immer leistungsfähigeren Rechnern und
breitbandigen Internetzugängen führte, die Privatanwendern zu günstigen Tarifen z.B.
als Flatrates angeboten werden, erfreuen sich allerdings Peer-to-Peer-basierte Netze
zunehmend einer großen Beliebtheit. Eine solches Peer-to-Peer-System besteht dabei
aus mehreren Computern (Peers), die miteinander verbunden sind und ein sogenanntes
Overlay-Netz auf Basis der IP-Netzinfrastruktur bilden. Im Gegensatz zu Client/Server-
Systemem nutzt ein Peer nutzt nicht nur einen Dienst, sondern bietet ebenfalls den
anderen Peers diesen Dienst an, das heißt, ein Peer agiert sowohl als Klient als auch als
Server. Peer-to-Peer-Systeme werden dabei in zwei Kategorien eingeteilt: unstrukturierte
und strukturierte Peer-to-Peer-Systeme.

In einem unstrukturierten Peer-to-Peer-System ist die Topologie des Netzes unabhängig
von den Daten, die ein Peer verwaltet, das heißt, das Netz bestimmt nicht den Speicherort
der Daten. Vielmehr werden Verbindungen zwischen Peers oft zufällig gewählt, woraus
sich meist ein sogenanntes Small-World-Netz [MN04] ergibt. Aufgrund einer fehlenden

20

Zusammenfassung

strikten Organisation des Netztes werden meist vergleichsweise einfache Vermittlungs-
algorithmen basierende z.B. auf der Breiten- oder Tiefensuche, Random-Walker, o.ä.
eingesetzt. Solche Netze unterstützen sowohl einfache als auch komplexe Suchanfragen.
Allerdings basiert die Suche in diesen Netzen auf einem Best-Effort-Ansatz, das heißt,
es gibt keine Garantien, dass die Suche erfolgreich ist, selbst wenn die Daten im Netz
existieren.

Im Unterschied zu unstrukturierten P2P-Systemen werden die Daten in strukturierten
Netzen von genau bestimmten, festgelegten Peers Netz verwaltet. Die Netztopologie
folgt strikten Regeln, so dass Suchanfragen für bestimmte Daten gezielt in die Richtung
der Peers weitergeleitet werden können, welcher diese Daten verwaltet.

Ein strukturiertes Peer-to-Peer-System wird oft als eine so genannte Verteilte Hash-
Tabelle (engl. Distributed Hash Table; DHT) implementiert. Das OID-System verwende-
te z.B. die Chord DHT [SMK+01]. Entsprechen der Funktionalität einer DHT ermöglicht
Chord das Auffinden eines mit einem Hash-Schlüssel indizierten Datenobjekts. Chord
erstellt hierzu ein Netz aus Peers, die in einem Ring angeordnet sind. Der Ring wird
dabei auf Grundlage von eindimensionalen numerischen Bezeichnern (modulo 2m) be-
stimmt. Jedem Peer wird dabei ein m Bit großer Bezeichner aus dem Bezeichnerbereich
[0, 2m) zugewiesen. Dieser wird erzeugt durch die Anwendung einer Hash-Funktion,
wie beispielsweise SHA-1, die z.B. auf die IP-Adresse des Peer angewandt wird. Das
Chord-Protokoll stellt die Funktionen lookup(key) und notify() bereit. Die Funktion
lookup(key) gibt die IP-Adresse des Peers zurück, dessen Bezeichner dem Bezeichner des
Schlüssels im Bezeichnerring gleich ist oder diesem folgt. Dieser Peer wird als Nachfolger
des Schlüssels bezeichnet. Die Funktion notify() benachrichtigt über eine Änderung in
der Schlüsselmenge eines Peers.

Für eine effiziente Vermittlungs von Suchanfragen verwaltet ein Chord-Peer m Ver-
bindungen zu anderen Peers in seiner Vermittlungstabelle, der sogenannten Fingerta-
belle. Ein Peer mit dem Bezeichner n besitzt als i-ten Eintrag in seiner Fingertabelle
den Bezeichner des Peers, welcher der Nachfolger des Bezeichners n + 2i−1 auf dem
Bezeichnerring ist. Die Fingertabelle garantiert, dass eine Suchanfrage in O(logN)
Vermittlungsschritten (engl. Hop) im Overlay-Netz bis zum Ziel-Peer weitergeleitet
wird, wobei N die Anzahl der Peers im Netzwerk ist.

DHTs wie Chord sind aufgrund des eindimensionalen Bezeichnerraums nur in der
Lage 1-dimensionale Daten, die aus einem Schlüssel-Wert-Paar bestehen, zu speichern
und zu suchen. Jedoch verwenden anspruchsvolle Anwendungen, wie beispielsweise
geographische Informationssysteme, Dokumentenverwaltungssysteme oder Ressourcen-
managementsysteme für gewöhnlich Datenobjekte mit mehreren Attributen (Schlüssel-
Wert-Paaren). Solche Anwendungen benötigen üblicherweise eine effiziente Umsetzung
von Suchanfragen über mehrere Attribute und Wertebereiche. Zum selben Zweck ver-
wenden Datenbankmanagementsysteme (DBMS) Indexstrukturen, die Daten in einem
Speicher derart organisieren, dass auf diese schnell und effizient zugegriffen werden
kann. Eine solche Indexstruktur ist eine sogenannten raumfüllende Kurve (space filling

21

Zusammenfassung

curve, SFC). Unser System bedient sich der SFC von Hilbert [Hil91], die sogenannte
Hilbert-Kurve, um Daten in einem DHT-basierten Peer-to-Peer-System zu indexieren.

Die Konstruktion einer Hilbert-Kurve in einem d-dimensionalen Raum erfolgt in zwei
Schritten. Im ersten Schritt wird der Raum in kleinere Unterräume unterteilt, welche
Zonen genannt werden. Diese Unterteilung kann als rekursiver Vorgang betrachtet
werden, wobei der Raum mit jedem Durchgang in 2d Zonen unterteilt wird. Dies
wird k-mal durchgeführt und ergibt 2k·d Zonen, wobei k als Annäherungsstufe (engl.
Approximation Level) bezeichnet wird. Im zweiten Schritt wird eine Linie definiert,
die einmal durch jede der 2k·d Zonen geht und die Zentren von zwei Zonen mit einem
Liniensegment verbindet. Das Zentrum einer Zone ist eine Näherung für alle Punkte
in der Zone, und die Verbindungslinie zwischen zwei benachbarten Zonen stellt eine
Ordnung zwischen diesen her. Die resultierende Kurve ist eine raumfüllende Kurve der
k-ten Ordnung in einem d-dimensionalen Raum.

Architektur des OID-Systems

Das OID-System besteht aus einer dreischichtigen Architektur (siehe Abbildung 1
unten). Die oberste Schicht ist die Anwendungsschicht, die aus einer Menge verteilter
Anwendungen besteht, welche die Funktionalität von mehrdimensionalen Bereichsan-
fragen benötigen. Die mittlere Schicht besteht aus dem OID-Rahmenwerk, das selbst
wiederum klassifiziert werden kann in Datenindexraum, Datenplatzierungs-Controller
und Anfragekomponente.

Die unterste Schicht ist die DHT-Schicht. OID nimmt eine DHT an, die unter Verwen-
dung der Funktion lookup(key) denjenigen Peer bestimmt, welcher für den Suchschlüssel
verantwortlich ist. Ferner werden alle Änderungen im Netz über die Rückruffunktion
notify() gemeldet.

Ein Datenobjekt wird im OID-System durch eine Liste von Attribut-Wert-Paaren
repräsentiert. Wird jedes Attribut eines Datenobjekts als eine Dimension und die
Kombination aus Attributwerten als Koordinaten betrachtet, so kann jedes Datenobjekt
als ein Punkt in einem mehrdimensionalen Raum gesehen werden. Die Abbildung eines
mehrdimensionalen Punkts auf einen eindimensionalen Bezeichner erfolgt mit Hilfe
raumfüllender Kurven.

Der Datenindexraum der OID-Rahmenwerksschicht beinhaltet dabei o benutzerdefinier-
te, SFC-basierte Indizes. Diese Indizes werden vom Designer der verteilten Anwendung
definiert, wobei diejenigen Attributkombinationen verwendet werden, welche in den
populärsten Suchanfragen vorkommen. Auf diese Weise werden immer die populärsten
Suchanfragen im System optimiert, was zu einer Optimierung der Leistung des Gesamt-
systems führt.

Die Datenplatzierungs-Controller benutzt die Indices des Datenindexraums, um den Da-
tenobjekten Bezeichner zuzuweisen. Daraufhin wird jedes Datenobjekt zu demjeningen

22

Zusammenfassung

Verteilte Anwendungen

Anfrageoptimierer

Verteilte Hash-Tabelle (Chord)

Anfragekomponente
Daten-

platzierungskontroller

multidimensionale

Bereichsanfrage

Ergebnisbenach-

richtigung

lookup(key) Peer IPnotify()

SFC1 …SFC2 SFC3 SFCo

Datenindexraum

Anwendungs-

entwickler

Abbildung 1: OID Systemmodell

Peer weitergeleitet, der für dessen Bezeichner verantwortlich ist. Da der Bezeichner-
raum einer SFC normalerweise kleiner ist als der Bezeichnerraum einer DHT, wird
der Bezeichner des Datenobjekts mittels Skalierung auf den Bezeichnerraum der DHT
abgebildet, bevor der verantwortliche Peer ermittelt wird, welcher das Datenobjekt
verwaltet.

In unserem System sind Suchanfragen als Konjunktion von Tupeln der Form (attribute
operator value) definiert, wobei folgende Operatoren unterstützt werden: =, 6=, <,>,≤
and ≥. Der Anfrageoptimierer ist für die Abarbeitung der Suchanfragen zuständig.
Erhält dieser eine mehrdimensionale Bereichsanfrage, so wird die Anfrage zuerst auf alle
SFC-basierten Indices des Datenindexraums abgebildet. Entweder stimmt die Anfrage
vollständig mit einem der Indices bezüglich der angefragten Attribute überein, oder es
handelt sich um eine teilweise Übereinstimmung mit mehr als einem Index. Falls es
eine vollständige Übereinstimmung der Anfrage mit einem Index gibt, dann wird dieser
Index für die weitere Abarbeitung der Suchanfrage verwendet. Anderenfalls wählt der
Anfrageoptimierer aus den Indices, die nur teilweise übereinstimmen, denjenigen aus,
der für die Abarbeitung der Anfrage der effizienteste ist. Die Effizienz eines teilweise
übereinstimmenden Indexes wird bestimmt, indem geschätzt wird, an wie viele Peers
die Anfrage gesendet werden müsste.

23

Zusammenfassung

Sobald der effizienteste SFC-basierte Index bestimmt wurde, verfeinert der Anfrage-
optimierer die Suchanfrage mittels dieses Indexes, um die entsprechenden Bezeichner
der DHT bzw. der zuständigen Peers zu erhalten, an die die Anfrage weiterzuleiten ist.
Eine naive Strategie würde nun für die ermittelten Bezeichner durch Aufruf der DHT-
Funktion lookup(key) die zuständigen Peers ermitteln. Jedoch würde diese Strategie
eine große Netzlast erzeugen und wäre somit nicht skalierbar. Aus diesem Grund wurde
in dieser Arbeit eine optimierte, baumbasierte Vermittlung vorgeschlagen, bei der eine
geringere Nachrichtenlast auf Kosten einen erhöhten Suchlatenz (Pfadlänge) erzielt
wird, um eine skalierbare Abarbeitung der Suchanfragen zu erreichen. Die Verfeinerung
einer mehrdimensionalen Bereichsanfrage mittels eines SFC-basierten Indexes kann
beträchtliche Zeit in Anspruch nehmen. Deshalb wurde des Weiteren eine Strategie zur
Verteilung der Berechnungslast vor, die es erlaubt, eine Suchanfrage parallel auf einer
großen Anzahl von Peers in der DHT verfeinern zu lassen.

Die Evaluierung des OID-Systems zeigte, dass die beste Performance für mehrdimen-
sionale Bereichsanfragen mit vollständig übereinstimmenden, SFC-basierten Indices
erreicht wird. Deshalb ist ein einzelner, SFC-basierter Index als Kombination aller
Attribute nicht ausreichend, falls häufig nur eine Teil der Attribute für Anfragen genutzt
werden. Darüber hinaus konnten wir zeigen, dass der Algorithmus zur Optimierung
der Vermittlung die Gesamtzahl der parallelen Nachrichten in Netz auf Kosten einer
leicht erhöhten Latenz reduziert. Es wurde ebenfalls gezeigt, dass der Algorithmus zur
Verteilung der Berechnungslast die Menge an Berechnungen, die ein einzelner Peer
aufbringen muss, effektiv verringert.

Empfehlung von Indexstrukturen für die optimierte Suche nach
Informationen

Wie oben beschrieben, basiert die Entscheidung für die initiale Indexmenge im OID-
Rahmenwerk auf einer Heuristik, die eine vom Nutzer definierte Anzahl von Indices
an Hand der populärsten Anfragen im System bestimmt. Dieses Vorgehen ist optimal
für Systeme, in denen wenige populäre Anfragen den größten Anteil an der gesamten
Anfragemenge ausmachen. Für Peer-to-Peer-Anwendungen mit wenigen populären
Anfragen und einer grossen Menge an selteneren Anfragen führt dieses Vorgehen jedoch
nur zu einer sub-optimal Indexmenge.

Deshalb stellen wir nachfolgend eine Reihe von Algorithmen vor, die Empfehlungen für
die Suche in DHT-basierten Informationsverwaltungssystemen liefern. Die Algorithmen
erhalten als Eingabe eine Schranke o für die maximale Anzahl an Indices sowie die
Menge W an mehrdimensionalen Bereichsanfragen (engl. Workload), die vorher im
laufenden System aufgezeichnet wurden. Basierend auf dieser Eingabe berechnet jeder
Algorithmus eine Menge von Indices, die eine nahezu optimale Leistung des Systems
für den Workload unter Berücksichtigung der Schranke für die maximale Anzahl an

24

Zusammenfassung

Indices erreicht. Dabei wird davon ausgegangen, dass eine anwendungsbezogene Menge
von Anfragen zur Verfügung steht.

Sei A der Bezeichner für die Menge der Attribute, die in den mehrdimensionalen
Bereichsanfragen vorkommen. Eine naive Art, die optimale Indexmenge für einen
Workload zu bestimmen, ist es, Kombinationen aus o Elementen der Potenzmenge
von A aufzuzählen. Anschließend wählt man die Kombination mit den geringsten
Kosten für die Anfragen in W aus. Wegen der verteilten Informationshaltung innerhalb
des Peer-to-Peer-Systems können die tatsächlichen Kosten der Anfragen in W nur
geschätzt werden. Zu diesem Zweck stellen wir eine Kostenfunktion vor, die auf der SFC-
Indexstruktur basiert und aus zwei unterschiedlichen Indexmengen für eine bestimmte
Anfrage diejenige Menge bestimmt, die die Anfrage effizienter verarbeitet.

Da durch die Potenzmenge die mögliche Anzahl von Lösungen exponentiell mit der
Größe von A wächst, ist der naive Ansatz jedoch nicht skalierbar. Daher schlagen
wir drei skalierbare Algorithmen zur Empfehlung von Indexstrukturen vor, die von
Heuristiken Gebrauch machen.

Jeder der skalierbaren Algorithmen bestimmt zunächst ein Menge C von möglichen
Indizes mit Hilfe der eindeutigen Attributkombinationen aus der Anfragemenge. Diese
Menge von Kandidaten ist normalerweise größer als die nutzergegebene Schranke o für
die maximale Anzahl der Indices. Deshalb wird diese Menge sukzessive weiter reduziert,
indem einer der folgenden Algorithmen ausgeführt wird:

• Kostenbasierte Vereinigung – Der kostenbasierte Vereinigungsalgorithmus
empfiehlt eine Menge von Indices, indem Paare von Attributkombinationen aus
der Menge C von Kandidaten miteinander vereinigt werden, bis die Menge C
eine Größe von o − 1 erreicht hat. Da die Vereinigung beliebiger Paare von
Kombinationen aus C die Gesamtkosten stark erhöhen würde, werden nur die
Paare miteinander vereinigt, die den geringsten Kostenzuwachs produzieren.

• Ähnlichkeitsbasierte Vereinigung – Der ähnlichkeitsbasierte Vereinigungsal-
gorithmus vereinigt ebenfalls Elemente aus C, um eine Indexmenge zu empfehlen.
Dazu werden Paare, die hinsichtlich der enthaltenen Attribute am ähnlichsten
zueinander sind, miteinander verschmolzen bis die Menge C auf die Größe o− 1
reduziert werden konnte. Im Vergleich zum kostenbasierten Vereinigungsalgo-
rithmus hat dieser Ansatz einen geringeren Aufwand, weil die Elemente aus C
vereinigt werden, ohne die direkten Kosten für den Workload zu betrachten. Der
ähnlichkeitsbasierte Vereinigungsalgorithmus baisert auf der Beobachtung, dass
durch die Vereinigung zweier fast identischer Indices die Performance des Systems
nicht erheblich verschlechtert wird.

• Auswahlalgorithmus – Der Auswahlalgorithmus berechnet die Kosten für jedes
Element der Menge C der Kandidaten und wählt die o − 1 Elemente mit den
geringsten Kosten aus. Die Idee bei diesem Vorgehen ist, dass die Wahrscheinlich-

25

Zusammenfassung

keit hoch ist, dass die Kosten für die gesamte Anfragemenge gering ist, wenn die
Elemente einzeln für sich die geringsten Kosten aufweisen.

Jeder der oben besprochenen Indexempfehlungsalgorithmen reduziert die Größe der
Menge von Kandidaten C auf o−1, damit noch ein weiterer Index aus der Kombination
aller Attribute aus A miteinbezogen werden kann. Dieser Index kann für Anfragen
eingesetzt werden, deren Ausführung durch die ausgewählten o−1 Indices unzureichend
optimiert wurde.

Die Evaluierung der Indexempfehlungsalgorithmen zeigte, dass ein Kompromiss zwischen
der Effizienz der ausgewählten Indices und der Ausführungszeit der Indexauswahl ge-
troffen werden muss. Diejenigen Algorithmen, welche die effizientesten Indexstrukturen
berechnen, brauchen im Allgemeinen länger als diejenigen, welche weniger effizien-
te Indices empfehlen. Unter den skalierbaren Ansätzen schneidet der kostenbasier-
te Vereinigungsalgorithmus am Besten ab (nur 1.5% schlechter als der naive (und
gleichzeitig optimale) Ansatz). Dem kostenbasierte Vereinigungsalgorithmus folgt der
ähnlichkeitsbasierte Vereinigungsalgorithmus und dann dann der Auswahlalgorithmus.
Hinsichtlich der Ausführungszeit zeigt der kostenbasierte Vereinigungsalgorithmus das
schlechteste Ergebnis, gefolgt vom ähnlichkeitsbasierte Vereinigungsalgorithmus sowie
dem Auswahlalgorithmus.

Selbstadaptierendes Informationsverwaltungssystem

Im vorherigen Abschnitt wurde eine Menge von Algorithmen zur Empfehlung von
Indexstrukturen diskutiert, die dem Designer einer verteilten Anwendung dabei assis-
tieren, eine effiziente Menge an Indices zu definieren, mithilfe derer mehrdimensionale
Bereichsanfragen auf Basis einer DHT abgearbeitet werden. Diese Algorithmen arbei-
ten offline, das heißt, es wird angenommen, der Workload, welcher den Algorithmen
als Eingabe bereitgestellt wird, wurde in einem bereits bestehenden DHT-basierten
Peer-to-Peer-System erfasst. Ferner wurde angenommen, dass die empfohlene Menge
an Indexstrukturen manuell vom Designer der verteilten Anwendung installiert wird.
Damit eine solche Installation durchgeführt wird, müsste das System allerdings ab-
geschaltet und neu gestartet werden, was – zumindest für kleine P2P-Anwendungen
– praktikabel erscheinen mag, jedoch im Allgemeinen nicht erwünscht ist. Deswegen
stellen wir im Folgenden Erweiterungen von OID zur Realisierung eines erweiterten und
selbstadaptiven Peer-to-Peer-System vor. Das adaptive OID-System führt die Aufgaben
der Empfehlung einer Indexstruktur sowie deren Installation online, sprich im laufenden
Betrieb, durch und eliminiert damit die Notwendigkeit, die Menge an Indices manuell
zu aktualisieren.

Am OID-System werden hierfür zwei grundlegende architektonische Änderungen vorge-
nommen. Die erste Änderung betrifft das Hinzufügen einer weiteren Komponente, welche
als Anpassungs-Controller bezeichnet wird. Dieser Anpassungs-Controller ist ein Teil der

26

Zusammenfassung

OID-Rahmenwerksschicht, der die oben diskutierten Algorithmen zur Empfehlung von
Indexstrukturen ausführt. Die zweite Änderung betrifft die DHT-Schicht und erweitert
die DHT einerseits um eine Funktion zum Senden von Rundsendenachrichten (engl.
Broadcast) und andererseits um eine Funktion zur Aggregation von Werten mittels
eines Broadcast-Aggregations-Baums [EAABH03,HZ10].

Das adaptive OID-System benutzt einen vierschrittigen Prozess zur Adaption der
Indexstrukturen, welcher periodisch im System ausgeführt wird, um eine Menge von
Indexstrukturen anzupassen. Für die Ausführung dieser Schritte werden drei Peer-
Rollentypen definiert:

• Adaptions-Peer – Der Adaptions-Peer führt periodisch den Prozess zur Adaption
der Indexstrukturen aus. Es darf nur einen Adaptions-Peer im Netz geben, der
im Fehlerfall von der DHT ersetzt wird.

• Monitoring-Peer – Jeder Peer unseres Systems ist ein Monitoring-Peer. Die
Menge des Monitoring-Peers ist zuständig für das lokale Sammeln von Suchanfra-
gen des Workloads. Das heißt, jeder Monitoring-Peer protokolliert alle Anfragen,
die er bearbeitet und stellt diese auf Anfrage zur Verfügung.

• Sampling-Peer – Sampling-Peers sind für das effziente verteilte Einsammeln des
von Monitoring-Peers gesammelten Workloads verantwortlich. Jeder Peer kann
die Rolle eines Sampling-Peers einnehmen.

Es folgen die vier Schritte im Prozess zur Adaption der Indexstrukturen:

1. Verteiltes Einsammeln des Workloads – Der Adaptions-Peer initiiert den
Prozess zum Einsammeln des Workloads der mehrdimensionalen Bereichsanfragen
von den Peers im Netz. Die Idee ist, beim Einsammeln eine ausreichend große
Untermenge der Peers in unterschiedlichen Teilen des Netzes zu erreichen, um eine
Annäherung und repräsentative Teilmenge der Gesamtmenge der Suchanfragen
zu erhalten. Im ersten Schritt werden vom Adaptions-Peer β zufällige Peers im
Netz kontaktiert. Die Peers werden daraufhin zu Sampling-Peers. Im zweiten
Schritt kontaktiert jeder Sampling-Peer zufällig γ Monitoring-Peers im Netz und
sammelt deren aufgezeichneten Workload von Suchanfragen ein. Diese Workloads
werden anschließend an den Adaptions-Peer gesendet. Duplikate von Suchanfragen
werden an den Sampling-Peers und an dem Adaptations-Peer mittels der global
eindeutigen Bezeichner (IDs) der Suchanfragen herausgefiltert.

2. Empfehlung einer Indexstruktur – Sobald der Workload der mehrdimensio-
nalen Bereichsanfragen vom Adaptions-Peer empfangen wurde, wird dieser an
einen der Algorithmen zur Empfehlung einer Indexstrutkur, wie sie im vorherigen
Kapitel diskutiert wurden, weitergereicht. Dieser Algorithmus empfiehlt daraufhin
eine Menge an Indexstrukturen, die für den übergebenen Workload effizient ist.

3. Adaptionsentscheidung – Die dritte Phase, die vom Adaption-Peer ausgeführt
wird, ist die Adaptionsentscheidungsphase. Das Ziel dieser Phase ist es zu bestim-

27

Zusammenfassung

men, ob die Installation der empfohlenen Indexstrukturmenge nutzbringend ist
oder nicht. Hierfür werden die geschätzten Kosten der aktuellen Indexstruktur-
menge für den Workload zusammen mit den geschätzten Kosten der empfohlenen
Indexstrukturmenge für den Workload verglichen. Die Kosten für die Installa-
tion der empfohlenen Indexstrukturmenge werden ebenfalls berücksichtigt. Der
Adaptions-Peer initiiert die Installationsphase der ausgewählten Indices, falls die
Kosten der aktuelle Indexsturkturmenge für den eingesammelten Workload größer
sind als die Kosten der empfohlene Indexstrukturmenge für denselben Workload
plus die Kosten für die Installation der empfohlenen Indexstrukturmenge. Die
Installationskosten beinhalten die Kosten für das Rundsenden der empfohlenen
Indexsturkturmenge und die Kosten für das erneute Indexieren der Datenobjekte.

4. Installation der Indexstrukturen – Damit das OID-System während der In-
stallation der neuen Indexstrukturmenge weiterhin funktionstüchtig bleibt, wird
die Indexstrukturinstallationsphase in drei Schritten vollzogen. In der ersten Pha-
se wird die empfohlene Indexstrukturmenge an alle Peers gesendet, wobei die
Rundsende-Funktion der DHT verwendet wird. Jeder Peer, der eine solche Nach-
richt erhält, beginnt damit, seine Daten erneut mithilfe der neuen Indexstruktur-
menge zu indexieren. Sobald das erneute Indexieren beendet ist, sendet der Peer ei-
ne Bestätigungsnachricht an seinen Elternknoten im Broadcast-Aggregationsbaum.
Im zweiten Schritt werden die Bestätigungsnachrichten aller Peers solange ag-
gregiert, bis der Adaptions-Peer die letzte aggregierte Bestätigungsnachricht
empfangen hat. Während dieser beiden Schritte werden die Suchanfragen weiter-
hin abgearbeitet, wobei die alte Menge von Indexstrukturen verwendet wird. Im
letzten Schritt versendet der Adaptions-Peer eine Rundsendenachricht Benutze
Indexstrutkur. Beim Empfang dieser Nachricht verwirft jeder Peer die alte
Indexstrukturmenge sowie die zugehörigen Daten und beginnt fortan die neue
Indexstrukturmenge für die Abarbeitung der Suchanfragen zu benutzen.

Die durchgeführten Evaluierungen zeigen, dass das adaptive OID-System fortlaufend
die Indexstrukturmenge im System bezüglich des dynamischen Workloads von mehrdi-
mensionalen Bereichsanfragen anpasst. Diese Adaptionen sind am nützlichsten, wenn es
eine Vielfalt an unterschiedlichen Suchanfragen im System gibt. In den durchgeführten
Evaluierungen zeigte das adaptive OID-System eine um mehrere Größenordnungen
bessere Leistung im Vergleich zum nicht adaptiven System.

Anwendung: Ortsbezogene Informationsverwaltung

Abschließend stellen wir ein Peer-to-Peer-basiertes Informationsverwaltungssystem
basierend auf den oben eingeführten OID-Konzepten vor. Als typische mehrdimen-
sionale Bereichsanfrage unterstützt dieses System ortsbezogene Bereichsanfragen. Die
wesentlichen Innovationen dieses Systems umfassen: (1) Die Benutzung einer Oktaeder-

28

Zusammenfassung

Projektion mit geringen geometrischen Verzerrungen zur Repräsentation der räumlichen
Daten, (2) die Verwendung der Sierṕinski SFC zur lokalitätsbewahrenden Zuordnung der
Daten zu Peers, (3) eine Strategie zur Datenplatzierung, welche die Wahrscheinlichkeit
einer Datenkonzentration an einzelnen Punkten des Netzes senkt.

Da das hier präsentierte räumliche Informationsverwaltungssystem auf dem oben ein-
geführten OID-System basiert, ist die Architektur des Systems die gleiche wie in
Abbildung 1 dargestellt.

Die räumlichen Datenobjekte in unseren System sind definiert als Punkte auf der
Erdoberfläche. Jedes Datenobjekt besteht aus zwei Primärattributen, Latitude und
Longitude. Neben diesen Primärattributen kann jedes Datenobjekt weitere Attribute
enthalten, die seine Eigenschaften beschreiben. Eine räumliche Bereichsanfrage in
unserem System ist definiert als ein Polygon auf der Erdoberfläche. Das Anfragepolygon
kann als Folge von Tupeln der Form (φ = value, λ = value) dargestellt werden, bei der
φ und λ jeweils Latitude und Longitude repräsentieren.

Wie zuvor diskutiert ist die Lokalitätsbewahrung der räumlichen Daten die wünschenswerte
Eigenschaft bei der Abbildung von Datenobjekten auf Peers. Wir erreichen diese Loka-
litätsbewahrung durch eine Indexierung der räumlichen Daten auf Basis der Sierṕinski
SFC. Da SFCs ein kartesisches Koordinatensystem benötigen, muss die Erdoberfläche
von geografischen Koordinaten auf kartesische Koordinaten abgebildet werden. Wir
verwenden zu diesem Zweck eine Oktaeder-Kartenprojektion (engl. Octahedral Projecti-
on) [Fur97], im Gegensatz zu einer Viereck-Projektion ((engl. Quadrilateral Projection)).

Die Oktaeder-Kartenprojektion erzielt eine gute Symmetrie hinsichtlich der Pole und die
wichtigen globalen Merkmale (Pole, Äquator, Meridiane) werden von der Prjektion auf
Seiten und Ecken von Dreiecken abgebildet [LT92]. Obwohl viereckige Karten einfacher
zu verwenden sind, weisen sie stärkere Verzerrungen auf, sobald man sich vom Äquator
in Richtung der Pole entfernt [IG01]. Eine Oktaeder-Kartenprojektion verzerrt dagegen
weniger stark.

Jede Seite der Oktaeder-Karte ist ein Dreieck. Die Konstruktion der Sierṕinski SFC auf
einem dreieckigen Teil der Oktaeder-Karte besteht aus zwei Schritten. Im ersten Schritt
wird das Dreieck in kleinere Dreiecke zerlegt. Diese Zerlegung kann als rekursiver Prozess
betrachtet werden, bei dem jeder Durchlauf des Prozesses das ursprüngliche Dreieck
in zwei kleinere, gleiche Unterdreiecke teilt. Dieser Prozess wird k Mal durchgeführt.
Im nächsten Schritt wird eine Linie gezeichnet, die den dreieckigen Ausschnitt der
Karte betritt und wieder verlässt und dabei durch jedes Unterdreieck verläuft. Die
Linie gibt eine Ordnung der Dreiecke vor, in der Reihenfolge ihres Durchlaufs. Der
Datenplatzierungs-Controller benutzt diesen SFC-basierten Index, um die räumlichen
Daten der Oktaeder-Karte mit Hilfe einer DHT auf Peers zu platzieren. Dieser Vorgang
läuft wie in Abschnitt ’Architektur des OID-Systems’ beschrieben ab.

Falls eine einzelne Sierṕinski SFC benutzt wird, um alle räumlichen Datenobjekte auf
der Oberfläche der Oktaeder-Karte zu indexieren, könnte dies zu einer ungleichförmigen

29

Zusammenfassung

Verteilung der Daten über die DHT und somit die Peers führen. Um den Grad der
ungleichmäßigen Verteilung der Daten zu reduzieren, nutzen wir eine eigene SFC für
jede Seite der Oktaeder-Karte. Allerdings bringt die Verwendung einer eigenen SFC für
jede Seite auch einen Nachteil: Die Lokalität der Daten entlang der Kante an der zwei
Seiten aufeinander treffen wird dadurch gestört. Bei der Verwendung einer einzigen
SFC würden zwei räumliche Datenobjekte, die entlang einer Kante liegen, an der zwei
Seiten zusammentreffen, Bezeichner erhalten, die numerisch nahe beieinander liegen.

Die Anfrageverarbeitung verfeinert die räumliche Bereichsanfrage mit Hilfe der Sierṕinski
SFC, um die Bezeichner zu ermitteln, die durch die DHT angefragt werden sollen. Die
Peers, die für diese Bezeichner zuständig sind, werden wie bereits im vorigen Abschnitt
beschrieben mittels eines baumbasierten Vermittlungsansatzes kontaktiert, der die
Anzahl paralleler Anfragenachrichten im Netz reduziert.

Das ortsbezogene Informationsverwaltungssystem wurde mit zwei unterschiedliche Ar-
ten von Systemkonfigurationen evaluiert. Die erste Konfiguration benutzt eine eigene
Sierṕinski-SFC für jede Seite der Oktaeder-Karte. Die zweite benutzt eine einzelne
durchgängige Sierṕinski-SFC für die gesamte Karte. Unsere Evaluationen zeigen, dass im
Vergleich die erste Konfiguration eine bessere Verteilung der Daten über die Peers erzielt.
Allerdings ist Leistung bei der Anfrageauflösung in der zweiten Konfiguration besser. Un-
sere Evaluierungen zeigen außerdem, dass der optimierte Anfrageauflösungsalgorithmus
eine Verringerung der parallelen Nachrichten um bis zu 96% erreicht, bei einer Anfrage
an eine Fläche der Größe Deutschlands mit einem Netz von 100.000 Peers.

30

Chapter 1
Introduction

1.1 Motivation

During the past decade, peer-to-peer (P2P)-based information exchange has emerged as
a new communication paradigm. Unlike the traditional server/client architecture that
includes a server offering services to clients, P2P architecture is based on the notion of
equality. Each device (peer) in a P2P system is involved in distributed implementation
of services such as data storage, information retrieval, distributed computing etc.

P2P systems have appealing characteristics such as high availability, anonymity, fault-
tolerance, self-organization, and scalability. A P2P infrastructure could be used to store
and share information efficiently. Vast user resources could be utilized in such a system.
P2P systems are cheap to set-up and they enable everyone to share information whether
it is as simple as contact information or as complex as location coordinates.

Information discovery in P2P systems takes place by propagating user queries in an
overlay network that is constructed on top of the IP network. We classify the queries
in the P2P overlay networks into two major classes (see Figure 1.1): simple queries and
complex queries. Simple queries are exact match queries, while complex queries could
be further classified into following major sub-classes: range queries, multi-attribute
queries, similarity queries and aggregation queries. A complex query could fall under
multiple sub-classes. Following are some examples of user queries in a P2P overlay
network:

• “Retrieve contact information of all people of age 25”. This is an exact match
query because, an exact value for the age attribute is specified.

• “Find all music albums released between year 1999 and 2001”. This is a range
query because, a range over the year attribute is specified.

• “Find all restaurants in the city of Stuttgart that serve Sushi”. This is an example
of a multi-attribute query comprised of attributes city and food type.

31

1 Introduction

Simple Queries Complex Queries

Exact Match
Queries

Range
Queries

Similarity
Queries

Queries

Sub-
string

Queries

Nearest
Neighbor
Queries

Max

Multi-attribute
Queries

Aggregation
Queries

Sum Min

Figure 1.1: Query Classification - The dashed line denotes that there are more type of
aggregation queries

• “Find all computers with CPU speed between 1.0 and 4.0 GHz & RAM between
2 and 6 GB”. This is a multi-attribute range query since a range of values is
specified for at least one attribute (e.g. RAM) and there are more than one
attributes in total.

User queries in P2P overlay networks have been generally supported by two main types
of network topologies: unstructured overlay networks and structured overlay networks.
Unstructured P2P overlay networks impose no restrictions on the overlay network
topology. New peers join the network by connecting to one or more existing peers in the
network. These type of P2P overlay networks provide anonymity to the user and have
proven to be a good choice for sharing popular information. Unstructured P2P overlay
networks support simple as well as complex queries. However, information discovery
in these networks is based on best-effort search i.e. there are no guarantees that the
searched information would be found if it exists in the network. Typical examples
of unstructured P2P overlay networks are Gnutella [CCR05], FreeHaven [fre10], and
Kazaa [kaz10].

Structured P2P overlay networks impose strong restrictions on the overlay network
topology. These type of overlay networks guarantee that a query would be routed to
any peer in the system in a pre-defined maximum number of overlay hops. Structured
P2P overlay networks provide efficient support for simple queries using Distributed
Hash Tables (DHT)s. However efficient support for more complex queries such as
multi-attribute range queries is an open research question.

32

1.2 Problem Statement and Contribution

Age

23 2524 26 27

125

126

127

128

129

H
ei

gh
t

(Height = 127cm, Age = 26)

Figure 1.2: An example of a 2-dimensional attribute space

1.2 Problem Statement and Contribution

Modern P2P applications such as resource discovery in grid computing [MRPM08],
P2P video streaming [ND08], and spatial information discovery [MTD+09], require
support for multi-attribute range queries. Since unstructured P2P overlay networks fail
to provide guaranteed information discovery, despite the fact that they support a rich
set of queries, structured P2P overlay networks, specifically DHTs, have been extended
to support multi-attribute range queries.

The support for multi-attribute range queries in DHTs has been realized by installing
data indices over them. These are the same data indices that have been traditionally
used by Database Management Systems (DBMS) for storing and searching the data
efficiently in a relational database [GMUW08]. The basic functionality of a data index
is to organize the data in a manner that, storing and searching the data does not require
traversal of the complete database.

Structured information discovery systems such as [CRR+05,GYGM04,SP03] make use
of Space Filling Curves (SFC)s [ARR+95] as data indices to support multi-attribute
range queries over DHTs. A SFC is a dimension reducing function that linearises
multi-dimensional data to a single dimension. Consider a data object as a list of
attribute/value pairs, e.g., “Height = 127cm, Age = 26, . . . ”. If each attribute in such
a data object is considered as a dimension and the attribute value is considered as a
coordinate, then each data object can be viewed as a point in a multi-dimensional space
(see Figure 1.2). A SFC is a line that passes through this space linearising each point in
it, while preserving data locality, i.e. points close to each other in the space are mapped
close on the SFC line with a high probability.

The dimension reducing property of SFCs allows mapping of multi-dimensional data
objects to a single dimension. The 1-dimensional data objects can then be placed in a
network of peers using a 1-dimensional DHT such as Chord [SMK+01]. Furthermore,

33

1 Introduction

the locality preserving property of SFCs maps data objects that are close in a multi-
dimensional space to a close neighbourhood of peers in a DHT. This enables efficient
processing of range queries because the queries could be resolved by a set neighbouring
peers in the network.

1.2.1 Problem Statement

Generally, there have been two types of approaches for indexing multi-dimensional
data using SFCs in DHTs. The first approach indexes the combination of all data
attributes [CRR+05, GYGM04, SP03]. Information discovery systems that use this
approach require that the multi-attribute range queries contain ranges over all attributes,
which is not a realistic assumption for all P2P applications. Attributes that do not
appear in queries are considered to be wild-cards, and the performance of these systems
deteriorates with increasing number of wild-cards in queries. The second approach
indexes each data attribute individually [AX02,CFCS03,SOTZ05,TP03]. Using this
approach, a multi-attribute range query is resolved in one of the following two ways:
either the query is performed on a single attribute and then the data is filtered at the
contacted peers, or the query is divided into multiple single-attribute range queries and
each query is performed individually; later, the data is filtered at the query initiator.
In the first case, the query incurs high latency due to filtering at each peer. Moreover,
a large number of peers are contacted that may or may not have the data objects that
match the queried ranges for all attributes. In the second case, a large number of data
objects are transferred to the query initiator, only some of which match the queried
ranges for all attributes.

Due to the shortcomings of the systems discussed above, a P2P information discovery
system that uses SFCs for supporting multi-attribute range queries in an efficient and
scalable manner is needed.

1.2.2 Contribution

We present the Optimized Information Discovery (OID) system that enables multi-
attribute range queries over DHTs in an efficient and scalable manner. The OID system
indexes the data objects in a P2P overlay network using several SFC-based indices
with each index using a certain attribute combination. A multi-attribute range query is
resolved in two steps. First, the query is mapped on each SFC-based index to determine
the index with the least network cost. Next, the search for matching data objects is
initiated in the network using the least expensive index.

In order to realize the OID system, following main contributions have been made by
our research:

34

1.3 Structure

• The basic OID system has been developed that optimizes the overall system
performance for popular multi-attribute range queries issued by the P2P applica-
tions [MTD+08].

• Two types of distributed query optimization algorithms have been developed
for scalable and efficient processing of multi-attribute range queries in DHTs
[MTD+08].

• Several index recommendation algorithms have been developed that help the
designer of a P2P application, in defining optimal SFC-based indices [MDR10].

• An index adaptation process has been designed to automatically update the
installed set of indices according to the changing set of multi-attribute range
queries in the system [MTDR10].

• An extension of the OID system, for supporting spatial range queries in DHTs,
has been developed [MTD+09].

1.3 Structure

The rest of the document is structured as follows:

• In Chapter 2, we present a detailed background of information discovery in P2P
overlay networks. Moreover, we discuss the concepts of distributed hash table
and space-filling curve in detail.

• In Chapter 3, we introduce the basic architecture of the OID system with the focus
on optimizing popular multi-attribute range queries issued by P2P applications.
The distributed query optimization algorithms for efficient and scalable query
resolution are also discussed in this chapter.

• In order to optimize the overall system performance for multi-attribute range
queries, three index recommendation algorithms are presented in Chapter 4. These
algorithms help the designer of a P2P application in defining optimal indices for
the application, without considering any specific query popularity distribution.

• An index adaptation process, for continuously optimizing the overall system
performance for multi-attribute range queries, is discussed in Chapter 5. This
adaptation process automatically optimizes the performance of the OID system
according to the dynamic set of multi-attribute range queries in the system.

• In Chapter 6, we present an spatial information discovery system that is based on
the OID system for performing spatial range queries using geographic coordinates.

• Finally, the summary of our work and an outlook on possible future work are
presented in Chapter 7.

35

Chapter 2
Background

In this chapter, we present the concepts that form the basis of our research. We start
by introducing the peer-to-peer (P2P) computing paradigm (Section 2.1), followed by a
detailed discussion on unstructured (Section 2.2.1) and structured (Section 2.2.2) P2P
information discovery systems. Finally, we present the concept of Space-Filling Curve
(SFC) and discuss the Hilbert SFC in detail (Section 2.3).

2.1 Peer-to-Peer Overlay Networks

The era of networked computing began with the client/server architecture. Originally,
the client/server architecture consisted of a single server providing services to multiple
clients (see Figure 2.1 (a)). A typical example of such a service is a network file system
(NFS). NFS allows clients to connect to a network storage device where they could
store and access data remotely.

With advancements in computer networks, the historical client/server architecture was
leveraged using distributed computing. Distributed computing allowed a set of servers
to collaborate in order to provide services to multiple clients. This made the system
more robust and fault tolerant. Typically, the servers in the client/server architecture
used to be resource-rich computers with a high network bandwidth. Clients on the other
hand, were resource-scarce computers with low bandwidth. However, this situation
changed with technological advances in computing hardware and high-speed internet
being available to the general public. The clients became increasingly resource-rich
computers which led to the era of peer-to-peer (P2P) computing and the P2P systems.
A P2P system could be defined as:

“A peer-to-peer system is a self-organizing system of equal, autonomous entities(peers)
which aims for the shared usage of distributed resources in a networked environment

avoiding centralized servers.” [SW05].

37

2 Background

Client Peer

(a) (b)

Server

Figure 2.1: (a) Client/Server Architecture, (b) Peer-to-Peer Architecture

The P2P architecture consists of several computers (peers) connected to each other to
form an overlay network (see Figure 2.1 (b)). A peer not only uses a service but also
participates in providing that service to the other peers, i.e., a peer acts as a client
and as a server. A typical example of a P2P service is a file-sharing service, such as
Gnutella [gnu10]. Using Gnutella, a peer can share its local files with other peers, thus
employing the role of a server. Moreover, a peer can download files shared by other
peers acting as a client.

The P2P architecture has several advantages over the traditional client/server archi-
tecture. P2P overlay networks are cheap to set up as there is no need for expensive
high-end machines, i.e., dedicated servers. Instead, P2P overlay networks rely on
resource aggregation of several cheap machines with moderate hardware capabilities
to provide the server functionality. Due to the lack of servers, the need for a system
administrator is also eliminated. Each peer is administered by its own user. Moreover,
since there is no central entity, no single machine or a small set of machines (servers)
can collect information about all the peers in the network which allows peers to stay
relatively anonymous.

Apart from the advantages mentioned above, P2P overlay networks also have some
disadvantages. Security is one of the major concerns in P2P overlay networks. Due to
the lack of central administration, malicious peers can join the network and disrupt the
whole system. Reachability of a high-end peer could be reduced by a set of surrounding
low-end peers. Moreover, simultaneously joining and leaving peers could cause the
network to become partitioned. Furthermore, due to versatility in the capabilities of
peers, no performance guarantees could be provided in a P2P overlay network.

38

2.2 Peer-to-Peer Information Discovery Systems

2.2 Peer-to-Peer Information Discovery Systems

P2P overlay networks have been extensively used for information storage and discovery
purposes. The first step towards P2P-based information exchange was taken by Napster
[SGG03] that implemented a file-sharing service. The Napster network consists of a
server that acts as a directory service. Each peer in the network connects to the server
and sends the list of its local files to the server. Each list and the IP address of the
corresponding peer is stored in a database on the server. Any peer in the network can
search for a file by sending a query to the server. The server performs a local database
lookup using the received query and responds with the IP address of the peer hosting
the queried file. The query initiator then directly connects to the peer hosting the file
using TCP and initiates the file transfer.

Due to the use of a central server as a directory service, Napster is not a pure P2P
system in a strict sense. If the central server crashes, the whole network is compromised.
However, the data exchange in Napster falls under the P2P communication paradigm.
Therefore, Napster has been termed as a hybrid P2P system. Pure P2P systems of the
unstructured and the structured forms are discussed in the following sections.

2.2.1 Unstructured Peer-to-Peer Systems

The popularity and success of Napster fuelled the research and development in the area
of P2P-based information exchange. Soon after Napster, the first pure P2P information
discovery system Gnutella 0.4 [Rip01] was released. Gnutella 0.4 is an unstructured
P2P system. In an unstructured P2P system, the topology of the network is decoupled
from the content of the peers, i.e., the network does not control the content placement.
The peers organize themselves to form a small-world network topology [MN04]. In a
small-world network, there exists a shortest path from each peer to any other peer in
the network. Therefore, the aim of the unstructured P2P systems is to utilize these
paths efficiently for searching the content in the overlay network.

There are two main categories of content search algorithms in unstructured P2P systems,
namely, blind search algorithms and informed search algorithms. When using a blind
search algorithm, peers have no knowledge about the location of the searched objects
in the network. The search is solely based on local connectivity information, i.e., the
neighbouring peers. However, informed search algorithms rely on the information
collected about the location of the objects in the overlay network. These algorithms are
heuristics that based on the object location information, choose a path in the network
that maximizes the probability of finding the searched data.

39

2 Background

P1

P4

P3

P5

P2 P8P6

P7

E

A K E

F

B

C

D
fin

d
C

find C

S

P4

P8

P9P2
continue?

(a) (b)

Figure 2.2: (a) Breadth-first Search, (b) Network Implosion Problem

2.2.1.1 Uninformed Search

The content search in Gnutella 0.4 was introduced as a modified version of the breadth-
first search (BFS). In a BFS scenario, a peer forwards an incoming query to all its
neighbours except the peer that it received the query from. A query that has been
previously seen by a peer is dropped as well. This prevents the scenario where a query
circles the network endlessly. Figure 2.2(a) shows routing of a query using BFS in an
unstructured P2P system. Only a single query message is send from peer P4 to peer P3

because the duplication query message is dropped at P4.

BFS has a high success rate, i.e., it finds all the matching objects in the network in
cases where there is no network failure. However, BFS may lead to complete network
being flooded by a query even if the matching objects are found in few steps because
there is no mechanism to stop the search at an early stage. If each peer asked the query
initiator whether to continue the search then the network will face an implosion problem
(see Figure 2.2(b)). Moreover, the number of searched peers grows often exponentially
and peers may receive unnecessary redundant copies of the same query message from
different neighbours.

To avoid the short-comings of the general BFS algorithm, Gnutella 0.4 modified the
BFS algorithm and introduced a Time to Live (TTL) with each query initiated at a
peer. This modified version of the BFS algorithm is known as limited flooding [TR06].
Each peer that receives a query first decrements the TTL value associated with the
query and then forwards the query to its neighbours. If the value of TTL reaches 0, the
query is dropped. Although introduction of TTL limits the flooding of the network, it
leads to a query horizon (see Figure 2.3(a)). Due to the presence of a query horizon,
a query reaches only certain parts of the network when initiated at a particular peer.
For example, in Figure 2.3(a) a query initiated at peer S only reaches until the peer
P9 with the maximum TTL. Therefore, peers P2, P4, and P8 lie outside the range of S.

40

2.2 Peer-to-Peer Information Discovery Systems

S

P4

P8

P9

P2

(a)

S’s Horizon

S

TTL=1

TTL=2

TTL=3

(b)

Figure 2.3: (a) Limited Flooding, (b) Iterative Deepening

Choosing an appropriate TTL value is not a trivial task as well because a small TTL
value leads to small network coverage, while a large TTL value induces a high network
load due to flooding.

A variation of limited flooding known as iterative deepening has been presented in
[YGM02]. Using iterative deepening a peer specifies multiple TTL values for propagating
a query through the network. Each TTL value is larger than the former one. A query
is initiated by a peer using the BFS with the minimum TTL. Once the TTL reaches 0,
the query gets frozen at the query horizon. If the query has been satisfied, the frozen
query gets dropped after a timeout. Otherwise, the query initiator propagates a Resend
message through the network until it reaches the peers at the query horizon. These
peers then unfreeze the query by adjusting the TTL to the next specified value. This
process continues as long as a query is not satisfied or until the maximum TTL value is
reached. Figure 2.3(b) shows the expanding query horizon in an iterative deepening
scenario with TTL values from 1 to 3.

Iterative deepening solves the problem of choosing an appropriate TTL. Popular objects
could be found very quickly with small TTL values, while unpopular objects may
be found if the maximum TTL value is sufficiently large. The main disadvantage of
iterative deepening is that it increases the delay of finding the objects because there are
x number of searches instead of just one, where x is usually larger than one. Moreover,
the load induced by iterative deepening is still high because the number of peers visited
still increases exponentially. Also, the problem of peers receiving redundant query
messages is not resolved.

41

2 Background

P1

P4

P3

P5

P2 P8P6

P7

E

A K E

F

B

C

D
fin

d
C

Figure 2.4: Depth-first Search

Another variation of BFS algorithm is the randomized BFS algorithm [KGZY02]. Using
the randomized BFS algorithm a peer forwards a query to a subset of its neighbours
instead of sending it to all of its neighbours. In order to choose this subset, a peer
first generates a random number pi between 0 and 1 for each of its neighbours. If the
generated number is less than a specified application-level threshold Pthreshold, the query
is forward to the neighbour, otherwise it is not. Pthreshold could be chosen such that
statistically duplicate queries are eliminated and the connectivity is preserved.

Compared to the previously discussed BFS algorithms, the randomized BFS algorithm
significantly reduces the network load because it avoids redundant queries. However,
the absolute network load is still high because the number of peers visited still increases
exponentially. Moreover, choosing an appropriate value for Pthreshold is not straight-
forward because a small value results in a low query success rate, while a large value
induces a high network load due to flooding.

Another form of uninformed search in unstructured P2P systems is the depth-first
search (DFS) [D1̈0]. In a DFS scenario a peer forwards a query to all its neighbours
sequentially, i.e., there exists only a single query message per query in the network.
When the query reaches a peer with no unvisited neighbours, it is back-tracked until
a new unvisited path is found. The search ends when the query reaches the initiator
and there are no unvisited paths in the network. Figure 2.4 shows propagation of a
query using the DFS in an unstructured P2P system. For simplicity, the search has
been shown to stop when the searched object is found. Note that the query starts to
back-track when it hits a dead-end at peer P8.

DFS has a high success rate because the query reaches all the peers in the system.

42

2.2 Peer-to-Peer Information Discovery Systems

However, the latency of the search is also high because there is no parallel processing
of the query like in the BFS. Moreover, due to back-tracking, the problem of peers
receiving duplicate messages is also not resolved.

A popular variation of the DFS is the random walk [LCC+02]. In a random walk
scenario, a peer forwards a query to one of its randomly chosen neighbours. A peer
could initiate k random walks simultaneously. One query message in this case would be
a single random walker. Initiating k random walkers reduces the latency of the search
because k random walkers reach approximately the same number of peers in i steps as
a single random walker in ki steps. This reduces the query latency by a factor of 1/k
however, it increases the network load by a factor of k.

A random walk ends when a termination condition is met. A termination condition
could either be TTL-based or check-based. In a TTL-based termination condition, each
random walker is assigned a TTL and the walker terminates when the TTL reaches zero.
In a check-based termination, a walker periodically checks with the query initiator if the
query has been satisfied before going to the next hop. If a query has been satisfied, the
walker terminates otherwise, it continues. Note that, checking with the query initiator
does not lead to network implosion if the number of random walkers is small.

Compared to the standard flooding scheme, random walk reduces the network load
at least by an order of a magnitude [LCC+02, TR03]. Moreover, due to the random
selection of the neighbours, the load of query processing is fairly balanced among
the neighbours of a peer. The major disadvantage of the random walk is its variable
performance because the success rate depends on the structure of the network as well
as the random choices made during the walk.

In order to increase the efficiency of random walks and to reduce the number of
redundant query messages received by a peer, a simple optimization that maintains the
state of the random walks could be implemented. Using this optimization, each peer
maintains the query ID and the ID of the neighbour which the query was previously
forwarded to. If the same query arrives at the same peer again, it is forwarded to a
different neighbour.

Most of the uninformed search techniques discussed above could be combined in several
ways to form hybrid blind search strategies. For example, a combination of random
walk and limited flooding could be developed such that, each peer that is visited by a
random walker does a shallow flooding with TTL = 1. The advantage of this approach
is that the search latency of traditional random walk is reduced at the expense of higher
network load because high-degree peers can search many neighbours in a single step.

2.2.1.2 Informed Search

In order to improve the efficiency of content search in unstructured P2P systems, several
informed search algorithms have been proposed. The distinguishing characteristic of

43

2 Background

the informed search algorithms is that they utilize meta-information, maintained at
each peer, to direct the queries towards paths that would yield best results. The
meta-information could be based on: the number of previously returned results, degree
of the neighbouring peers, type of queries answered by neighbouring peers, etc.

Using directed BFS [YGM02], which is an informed version of the BFS algorithm, each
peer maintains meta-information about the number of results previously returned by
each neighbour. Alternatively, a peer could store the latency to all its neighbours.
In order to perform content search, the query initiator sends a query only to those
neighbours that could yield the best performance based on the number of previously
returned results or latency. These neighbours in turn send the query to all of their
neighbours just like in a BFS.

Directed BFS reduces the search latency because the queries are directed towards peers
that are most likely to respond with positive results. Moreover, since queries are not
sent in all directions by the query initiator, directed BFS induces less network load
compared to the general BFS algorithm. However, the storage cost increases because
each peer has to store some meta-information about all its neighbours. Another major
disadvantage of directed BFS is that the search load is not uniformly distributed among
the peers in the network. Peers that perform well have to do even more which could
cause them to become overloaded and result in a network bottleneck.

Intelligent search mechanism [KGZY02], also known as the intelligent BFS, enables
each peer to maintain a profile for each of its neighbours. The profiles are based on
previously answered queries by the neighbours. Upon receiving a query, a peer compares
it against the profiles of all its neighbours. The query is then forwarded to m number of
peers that are most likely to respond with positive results. Intelligent search mechanism
induces less network overhead compared to the directed BFS because each peer sends
the query only to a subset of its neighbours. However, like the directed BFS, the storage
cost increases due to profiling of the neighbours and the query load is also not uniformly
distributed through the network.

Using adaptive probabilistic search (APS) [TR03], each peer maintains a probability
value for routing a request for an object o to each of its neighbours. Search for an
object is initiated by the query initiator in form of k independent random walkers.
For each hop of a random walker, if a peer cannot answer the query, it forwards the
query to a neighbour with the highest probability value. Once the requested object
is located by a random walker or the walker terminates unsuccessfully, a response is
sent through the reverse path so that the intermediate peers can update the probability
values accordingly. If the search is successful, the relative probability for the searched
object is increased at each peer on the reverse path. Otherwise, the probability is
decreased.

Compared to the uninformed random walk, APS significantly improves the latency
for finding an object. However, the network load is higher because a response is sent

44

2.2 Peer-to-Peer Information Discovery Systems

through reverse path to the query initiator. Nonetheless, APS achieves high success
rate with low bandwidth consumption and is highly adaptive to the network topology
changes. The major disadvantage of APS is high storage consumption due to profiling.

Adaptive resource-based probabilistic search (ARPS) [ZZSL07] uses weighted probabil-
ities to route a query for an object o through the network. For each of the previously
requested objects, a peer maintains a popularity estimate for the object. The popularity
is based on the previously received responses. Upon receiving a query for an object, a
peer uses its own degree and the popularity of the object to calculate an appropriate
forwarding probability for the query. The higher the popularity of the searched object,
the lower the forwarding probability that is calculated for the query, and vice versa.
Additionally, if the forwarding node is a high degree node, the weighted forwarding
probability is smaller compared to a low degree node. If the popularity of the searched
object is unknown to the peer, the peer forwards the query to all its neighbours with a
forwarding probability of 1, otherwise, the query is forwarded to some neighbours with
an appropriate forwarding probability.

ARPS efficiently searches popular data objects in the network without inducing a high
network load. However, for unpopular items, the network load could be much higher
compared to APS, because most of the peers forward the query to all their neighbours,
in effect, partially flooding the network. ARPS replaces random selection of neighbours
with a probabilistic selection which is more efficient for searching popular items through
the network. However, probabilistic selection also leads to non-uniform query load
distribution.

Percolation search [SBR04] is a distributed informed search algorithm that allows
processing of complex queries in unstructured P2P systems with a power-law graph
topology. The search consists of following three major steps: (I) Content Cashing – A
peer performs a short one-time-only random walk and replicates its content list on each
of the visited peers, (II) Query Implantation – Search for content is prepared through
query implantation when the query initiating peer performs a short random walk and
implants the query at each of the visited peers, (III) Bond Percolation – The actual
search for content begins when the peers with the query implant broadcast the query
to each of their neighbours with a probability q, where q is based upon a percolation
threshold and the exponent of the power-law graph distribution.

The developers of the percolation search show that any content in the network could be
found with probability one in O(log N) time, where N is the network size. However, it
is not clear, how the search reacts to the changes in the content list of peers since the
content list replication is performed only once. Moreover, percolation search is suitable
only for networks with an exponent of 2 or 3 of power-law distribution.

Hybrid periodic flooding (HPF) [ZLXN03] is a modified version of iterative deepening
that eliminates the partial coverage problem while avoiding the unnecessary traffic
associated with flooding at the same time. Each peer in HPF uses a periodical function

45

2 Background

University of Stuttgart

IPVS

Research Group

“Distributed Systems” 36

Local Index

• Each peer keeps a local index of the objects provided by peers within network
radius r

◦ Peer can answer queries on behalf of the indexed peers

◦ Peer announces its content by flooding with TTL = r

• Search: Breadth-first

◦ Radius of search is increased in steps of 2r+1 hops

◦ Only peers at distance (2r+1)i to requestor process query

r = 2

Figure 2.5: Local Indices

to determine the number of neighbours a message should be forwarded to. The periodical
function could be based upon several factors such as bandwidth, communication cost,
number of previously returned results, etc. The TTL-based search termination condition
of HPF is the same as the termination condition for iterative deepening (see Section
2.2.1.1).

Due to the iterative nature of HPF, the partial coverage problem is significantly reduced.
However, the search latency increases when compared to non-iterative search algorithms.
Query load-balancing seems to be an issue with HPF as well.

The GIA protocol [CRB+03] mainly focuses on balancing the query load among peers
so that the probability of query hot-spots in the network remains low. GIA uses biased
random walk to resolve queries. In order to avoid query hot-spots, a peer sends a query
to a neighbour only if the neighbour allows it to do so. The neighbour provides this
permission in form of flow-control tokens. Each peer in a GIA network has a number of
flow-control tokens associated with it. The flow-control tokens represent the capacity
of the peer. When forwarding a query, a peer selects the neighbour with the highest
number of flow-control tokens as the next hop of the random walk. If there are no
flow-control tokens available, the peer queues the query locally until a flow-control token
is received from a neighbour. GIA also implements following two search optimizations:
(I) Bookkeeping – Each peer logs the information about each query that has been
previously sent to each neighbour. Using this information, a query is not sent to the
same neighbour again, (II) 1-hop Replication – The list of the data objects at a peer is
replicated at each of its neighbours. Using this information a random walk could be
terminated a hop earlier.

Unlike most of the informed search algorithms, GIA successfully achieves query load-
balancing among peers and avoids query hot-spots in the network. However, query
load-balancing comes at the cost increased network load due to exchange of flow-control
tokens. Moreover, since the random walk is biased, the low capacity nodes might be
eliminated from search making the unpopular items shared by them unsearchable.

46

2.2 Peer-to-Peer Information Discovery Systems

A popular approach for content search in unstructured P2P systems is using local
indices [YGM02]. Each peer in this approach keeps a local index over the data of all
peers within r hops from itself, where r stands for radius. This way, a peer can answer
a query on behalf of several peers in the neighbourhood reducing the query processing
time, and therefore the query latency. A peer announces its content through flooding
with a TTL equal to r. Search for content is performed using the BFS. However, in
contrast to the BFS, the query is processed only at peers that are 2(r + 1)i hops away
from the query initiator. In an example scenario shown in Figure 2.5, where r = 2,
peers that process the query are marked using a darker colour.

Local indices provide the same query results as the BFS but with a reduced query
latency because every peer in the network does not process the query. However, the
reduced query latency comes at the cost of increased network load due to flooding of
content announcements. Therefore, this approach becomes exceedingly unscalable with
highly dynamic systems.

At the same time when local indices were introduced, a similar but more efficient
approach for content search in unstructured P2P systems called routing indices (RIs)
[CGM02] was also suggested. Using RIs each peer builds an index structure containing
aggregated meta-information about the number and the type of documents available
on each path through its neighbours. This information is later used to direct a query
towards selected paths that would yield best results. Following three types of RIs were
introduced: (I) Compound RIs (CRIs) – Using a compound RI, each peer maintains the
aggregated number of documents available on each topic through each of its neighbours,
(II) Hop-count RIs (HRIs) – Using hop-count RIs, a peer maintains the aggregated
number of documents on each topic for each hop through its neighbours up to a
maximum number of hops, (III) Exponential RIs (ERIs) – In order to reduce the size
of HRIs, ERIs could be built by aggregating the information in HRIs at the cost of loss
of accuracy.

All three RI approaches have some advantages and drawbacks. CRIs are smaller
compared to HRIs but their major disadvantage is that the latency of query resolution
cannot be estimated. HRIs have large storage overhead but allow a peer to estimate the
latency of query resolution. ERIs are basically compact HRIs that lose the accuracy
that HRIs provide.

There are several other informed search approaches that are similar to the ones described
above and are therefore not discussed here. Some of these approaches are: activity
based search [YLY07], preferential walk [ZCS05], equation based adaptive search [BA07],
distributed resource location protocol [MK02], Gnutella with efficient search [ZH06],
high degree random walk search [YS07], reinforcement learning based search [LW06],
and distributed search technique [TS10].

47

2 Background

2.2.2 Structured Peer-to-Peer Systems

Unstructured P2P systems in general, have been shown to be efficient for sharing
popular content. However, there are some major drawbacks of these systems. For
example, for most of the approaches discussed above, discovery of an data object cannot
be guaranteed even if it exists in the network and there are no network faults. This
problem gets even worse for unpopular data objects. Moreover, approaches such as
flooding, BFS and DFS, that guarantee the discovery of all searchable objects, are
either inefficient or unscalable.

In order to avoid these drawbacks, and to provide concrete guarantees regarding object
discovery, structured P2P systems have been developed. Unlike unstructured P2P
systems, content in structured P2P systems is precisely placed at specific peers in the
network. The search for specified content is therefore directed towards the peers that
store that content. Moreover, the network topology, i.e., the neighbourhood of a peers,
is also tightly controlled in structured P2P systems.

A structured P2P system is typically implemented as a distributed hash table (DHT).
In a DHT, each data object and each peer is assigned a unique identifier. A data object
is typically represented as a key/value pair. The key of the data object is hashed to
generate an identifier for the data object, e.g. Hash(key = “john”) = 80. The value of
the data object is either the data itself (direct storage) or a pointer to the location of
the data (indirect storage).

Each peer in a DHT is a bucket of hash values, i.e., each peer is responsible for certain
range of hash values. For example, in a network of three peers, peer ‘A’ could be
responsible for hash values in range (0, 100), peer ‘B’ could be responsible for hash
values in range (101, 195), and peer ‘C’ could be responsible for hash values in range
(196, 255). A peer stores the data objects that fall under its range. Therefore, a data
object with Hash(key = “john”) = 80, would be stored at peer ‘A’.

Peers in a DHT have a limited view on the distributed index structure, i.e., a peer only
knows the ranges of few other peers in the network. Moreover, each peer has some links
to other peers in the DHT. Using these links, search for a data object is forwarded to a
peer that is responsible for the hash value of the data object’s key.

DHTs make use of consistent hashing functions opposed to standard hashing functions.
Since each peer in a DHT is a hash bucket, if standard hashing were employed, any
changes in the total number of peers would require rehashing of all the data objects in
the network. This would make DHTs unscalable because a certain churn rate is always
associated with a P2P network. Consistent hashing avoids this problem and requires
rehashing of only O(K/N) data objects when a peers joins/leaves the DHT, where K
is the total number of keys and N is the total number of peers in the DHT.

Several types of DHT routing geometries have been proposed in the past. Here, we
discuss some of them in detail.

48

2.2 Peer-to-Peer Information Discovery Systems

3

15

26

31
37

41

62

58

1
5

8

13

18

21

31
40

46

49

54

= Peer
= Data

Figure 2.6: Chord Ring. This figure has been developed during the diploma thesis [Tie08]

2.2.2.1 Ring (Chord)

There exist several ring based DHT geometries such as Chord [SMK+01], Symphony
[MBR03], and Cycloid [SXC06]. In this section, we shall discuss only the chord DHT in
detail.

One of the most used DHT geometries is the ring geometry in form of the chord DHT.
Chord uses SHA-1 [oSN] hash function for assigning identifiers in range (0, 2m] to the
data objects and the peers in the DHT, where m denotes the number of identifier
bits. An identifier for a data object is generated by hashing the key of the data object,
whereas an identifier for a peer is generated by hashing the combination of the peer’s
IP address and the port number.

Chord orders peers in a “modulo 2m” identifier ring. Position of a peers in the ring is
determined by the identifier of the peer. Peers are distributed almost uniformly over
the ring due to the randomness of the SHA-1 hash function. A data object with an
identifier i is managed by a peer that is the clockwise successor of i on the identifier
ring, denoted by successor(i). Figure 2.6 shows an example of a chord ring with m = 6.
In this example, successor(1) = 3, successor(5, 8, 13) = 15, and so on.

49

2 Background

3

15

26

31
37

41

58

62

Finger Table

i n + 2i−1 ID
1 16 26
2 17 26
3 19 26
4 23 26
5 31 31
6 47 58

Figure 2.7: Chord Ring with Finger Table. This figure has been developed during the
diploma thesis [Tie08]

In a basic chord network topology, each peer has a link to the peer that follows it’s
identifier on the identifier ring. A link here means a mapping from peer’s identifier to
its IP address and port number, e.g., the link between peer 15 and peer 26 in Figure
2.6 could be stored at peer 15 in the form 26 7→ (ip = 192.168.3.5, port = 5000).

Given an identifier q, chord provides the functionality for looking up the peer that is
responsible for q. Using the basic network topology, a lookup request for q is routed
clockwise through the ring until successor(q) is found. The basic routing strategy
requires maintenance of O(1) local state at each peer. However, the worst-case lookup
latency is as high as O(N), where N is the total number of peers in the network.

In order to reduce the lookup latency in chord, each peer maintains m number of links
to other peers in the network. Out of these m links, one link connects the peer to the
succeeding peer, whereas other links are typically long range links. Each link is known
as a finger and the table maintaining these fingers is known as the finger table of the
peer. If n is the identifier of a peer in the chord ring, then the ith entry in its finger
table points to successor(n + 2i−1). Figure 2.7 shows a Chord ring with the finger
table for peer 15. For simplicity, the IP addresses and the port numbers of peers have
been omitted from the finger table. Since m in this example is 6, the finger table has 6

50

2.2 Peer-to-Peer Information Discovery Systems

entries.

When a peer receives a lookup request for an identifier q, it forwards the request to the
farthest finger that is smaller than q. This process continues through the ring until a
peer p is found such that q lies between the identifier of p and the identifier of the node
succeeding p. In that case, the succeeding node is responsible for q. In the example
shown in Figure 2.7, if a lookup is performed for identifier 38 starting from peer 15, the
request would be forwarded using the 5th finger to successor(31) because forwarding it
to successor(47) would be overshooting.

Due to the finger table, the size of the local state for each chord peer is O(m). However,
the worst-case lookup latency is reduced to O(log2N) because the distance to the
destination node is halved in each step during the lookup.

A new peer joins the chord ring by contacting a peer that is already a part of the ring,
this process is known as bootstrapping. The joining peer finds its location in the ring
by performing a lookup for its own identifier. After joining the ring, the finger table of
the new peer is initialized. A peer leaves the network by informing the succeeding and
the preceding peers in the ring. When a peer leaves the network, the data that it was
responsible for is redistributed to the new responsible peers. Peer failures may result
in loss of data which could be avoided by using a data replication strategy. For more
detail on data replication in chord, see [SMK+01].

The chord ring has been designed to be efficient, scalable, and robust in order to handle
the dynamic nature of a P2P system. Peers can join and leave the network at any time.
For correctness of routing, the only requirement is that each peer maintains its correct
successor in the identifier ring. Concurrent peer joins, departures and failures may leave
the chord ring in an inconsistent state where some peers have incorrect successor and
long range links. During this inconsistent state, applications may be required to retry
a lookup request certain number of times before it is successfully resolved. In order
to remove these inconsistencies from the chord ring, the chord protocol periodically
executes a distributed self-stabilization algorithm. The details of this algorithm are
beyond the scope of this discussion.

2.2.2.2 Torus/Hypercube (CAN)

The torus DHT geometry has been opted by the content addressable network (CAN)
[RFH+01]. CAN is based upon a d-dimensional Cartesian coordinate space, where
d = 2 : [0, 1] x [1, 0]. The coordinate space is wrapped around the edges, hence forming
a torus shape. Given an identifier q, CAN provides the functionality for looking up
the peer that is responsible for managing q, where q is a point in the d-dimensional
coordinate space.

Using a deterministic hash function, CAN maps each data object to a point in the
d-dimensional coordinate space by hashing the key of the data object. Each data

51

2 Background

P1 P2

P3 P4 P5

(0.5 - 0.75,
0.5 - 1.0)

0.0
0.0

1.0

1.0

(0.85, 0.62)

Figure 2.8: CAN Network Topology

object is managed by a peer that is responsible for a certain range of coordinates in the
coordinate space. CAN partitions the d-dimensional coordinate space into zones. In
the simplest form of CAN, each zone is managed by a single peer. Figure 2.8 shows a
2-dimensional CAN coordinate space with 5 peers. For better readability, the wrapping
of the coordinate space around the edges is not shown in the figure. In this example,
peer P4 is responsible for data objects with coordinates in range ([0.5, 0.75] x [0.5, 1.0]).
Consequently, a data object with coordinates (0.85, 0.62) would be mapped to peer P5

as shown in the figure.

Search for an object q is carried out in an intuitively straight-forward manner, i.e., by
forwarding q to the neighbour that is closest to the destination coordinates until it
arrives at the peer that is responsible for managing q. Each peer in a CAN network
maintains a link to its immediate neighbour. A link here is the pair of peer’s IP address
and zone coordinates. Two peers are neighbours if their coordinates overlap in d− 1
dimensions and differ in 1 of the dimensions. For example, the neighbourhood of peer
P1 in Figure 2.8 includes peers P2 and P3 but not peer P4 because P4 differs P1 in 2
dimensions. Figure 2.8 also shows how a query for an object with coordinates (0.85, 0.62)
is carried out if it is initiated at peer P1.

On average, each peer in a CAN network with d dimensions and n equal zones maintains
2d number of neighbour links. Unlike, the chord DHT, the size of a peer’s neighbourhood

52

2.2 Peer-to-Peer Information Discovery Systems

is independent of the total number of peers in the DHT. The average routing cost for a
message in CAN is (d/4)(n1/d) because each dimension has n1/d peers and the average
distance to the destination along each dimension is (1/4)(n1/d). The path length scales
as O(n1/d) with increasing number of peers, which is longer than the chord DHT.

A new peer joins a CAN network by contacting a peer that is already a part of the
network. The joining peer randomly generates a point in the d-dimensional space and
sends a join message to the peer that is responsible for managing that point. The
contacted peer splits its zone in two halves; one half is kept by the peer itself, whereas
the other half is assigned to the joining peer. A zone is split according to a pre-defined
ordering of dimensions, e.g., in case of 2 dimensions, a zone is first split along x-axis,
then along y-axis, and then again along x-axis and so on. The data objects that fall
under the zone of the new peer are migrated to it and the neighbourhood table of each
affected peer is also adjusted accordingly.

A peer can also gracefully leave a CAN network at any time. The leaving peer hands
over its zone to a neighbouring peer, known as the takeover peer. The data objects
belonging to the leaving peer are migrated to the takeover peer and the neighbourhood
tables of the affected peers are adjusted accordingly. The takeover peer merges the two
zones if a valid merge operation is possible, otherwise, it temporarily handles two zones.
Furthermore, in a CAN network, each peer periodically exchanges a heartbeat message
with all its neighbours. A peer is considered to be faulty by a neighbour if there is
no exchange of a heartbeat message among them for a prolonged period of time. In
that case, the peer that detected the faulty neighbour, removes the faulty peer from its
neighbourhood table and sends a recovery message to a takeover peer. More details
regarding the recovery protocol could be found in [RFH+01].

Several optimizations have also been suggested for the CAN DHT. The first optimization
suggests that a high dimensional CAN should be used in contrast to a CAN with small
dimensionality. Increased number of dimensions reduces the path length for routing
messages at the expense of a small increase in the number of neighbours for each peer.
Additionally, the increased number of neighbours improves the fault tolerance of the
system because the number of alternate paths to route a message also increases. Second
optimization suggest the use of multiple coordinate spaces with a peer being part of each
coordinate space. Each coordinate space is then termed as a reality. Use of multiple
realities improves the fault tolerance of the system because peers can route messages
using alternate paths in different realities. Moreover, a data object is replicated by each
reality which increases the robustness of the system. Peers can route a query to the
closest replica of a searched data objects. Other CAN optimizations include construction
of the CAN overlay network to reflect the underlay network, and zone overloading where
multiple peers are responsible for managing a single zone increasing the robustness of
the system. Several other optimizations have been discussed in [RFH+01].

53

2 Background

A M

H

R

E I

U O

H
E
A
D

2
23

T
A
I
L7

8

9

11
15

16

19

21

(a)

(b)

R-Table

Level ← →
2 H H
1 A M
0 U O

R-Table

Level ← →
2 A A
1 R H
0 O I

Figure 2.9: (a)A Perfect Skip List, (b) Basic SkipNet Topology with Routing Tables

2.2.2.3 SkipList (SkipNet)

DHTs such as Chord (see Section 2.2.2.1) and CAN (see Section 2.2.2.2) distribute the
data objects uniformly over a network of peers. This means that an application does
not have any control over placement of its data. The data could be stored far away from
the user, or even spread across several administrative domains in case of large-scale
shared DHTs. These issues have been addressed by the SkipNet DHT. In addition to
the general DHT functionality of efficient routing, robustness, and self-organization,
SkipNet also ensures content and path locality. Content locality means that the data
could be explicitly placed on certain peers in the network, e.g., on peers within a single
company, whereas path locality means that the path to the local data objects stays
within the local domain.

SkipNet DHT is inspired from an in-memory data structure known as the Skip List
[Pug90]. A skip list is a sorted linked list of nodes where each node has several pointers
pointing in the forward direction. Some of these pointers skip over some nodes in the
list, hence the name skip list. The total number of pointers that a node has defines the
height of the node and a pointer at level l as a length of 2l. In a perfect skip list, the
height of the ith node is the exponent of the largest power of 2 that divides i. Figure
2.9(a) shows an example of a perfect skip list. Search in skip list starts at the head
node. At each node, the link that arrives at a node that is closest to the searched node

54

2.2 Peer-to-Peer Information Discovery Systems

A Level: L0M

H

R

E I

U O

Root Ring

A M

H

R

E

O

I

U

Level: L1

A M

Ring 0 Ring 1

Ring 00

H

R

Ring 01

E

O

Ring 10

I

U

Ring 11 Level: L2

Figure 2.10: Detailed SkipNet Topology

is taken, until either the searched node is found or the search reaches the tail node.
The worst-case path length for a search is O(logN).

In SkipNet, the nodes from the skip list are the peers that form an overlay network.
These peers are organized in a sorted ring. The position of a peer in the ring is
determined by name string of the peer. Peers are sorted according to the lexicographical
order of the name string. The peer name strings are not hashed values, therefore they
are not uniformly distributed over the ring. The ring is doubly linked where each peer
stores 2 · log N links to other peers in the network. Pointers on level l of a peer point
to nodes roughly 21 to the left and right of the peer. Figure 2.9(b) shows an example of
a SkipNet where pointers of peers M and R are shown. These pointers are shown as
the routing tables of the peers, also known as the “R-Table”. Note that this SkipNet is
a perfect one because each pointer at level l traverses exactly 2l peers.

Pointers on each level of a SkipNet could be seen as individual rings. Figure 2.10 shows
the detailed topology of the SkipNet shown in Figure 2.9(b). The ring for level l + 1 is
obtained by splitting the ring at level l in two rings with each ring containing every
second peer from the ring at level l. Since the maintenance of a perfect SkipNet is
costly, a probabilistic approach is taken when splitting the ring at level l. Using this
approach, a peer randomly and uniformly decides its membership to a ring at level l+ 1.
This random choice of a peer could be encoded in a binary number which becomes a
peer’s numeric identifier. As shown in Figure 2.10, the first l bits of a peer’s numeric
identifier determine its membership at level l. Note that in this probabilistic SkipNet
each peer still skips over 2l nodes with high probability, whereas joining and leaving
node only affects two peers in each ring.

Search in SkipNet could be carried out either using a name string or a numeric identifier.

55

2 Background

0 0.25 0.5 0.75 1

P1 P3 P6 P9

P2 P4 P7 P8P5 P10

Level l1

Level l2

Figure 2.11: Viceroy Network Topology

If a query is performed using a name string then each peer simply follows the pointer
on the highest level that does not overshoot the searched name string. Search proceeds
either clockwise or anti-clockwise through the ring depending upon the proximity to
the searched name string. The search terminates at a peer whose name string is closest
to the searched name string. The latency of the name string based search is O(logN)
with high probability.

Search using a numeric identifier starts at level zero of a peer. The query is forwarded
through the level zero ring until a peer is found whose numeric identifier matches the
searched identifier in the first digit. The search jumps to next level ring at this peer.
The search continues on this level until a peer is found whose numeric identifier matches
the searched identifier in the second digit. By repeating this process, the search reaches
a level l such that none of the peers at this level have l + 1 digits common with the
searched identifier. In this case, the search ends at a peer whose identifier is numerically
closest to the searched identifier. The latency of the numeric identifier based search is
O(logN) with high probability.

In order to place data objects at specific peers in a SkipNet, each data object’s identifier
is prefixed with the peer’s name string that should be responsible for hosting it. Peers
within the same organization should have same prefix to their name strings for the
routing to stay within the same organization.

2.2.2.4 Butterfly Networks (Viceroy)

DHTs such as Chord (see Section 2.2.2.1), CAN (see Section 2.2.2.2), and SkipNet
(see Section 2.2.2.3) provide logarithmic search performances. However, they require
maintenance of a routing table whose size increases with increasing number of peers in
the network. For a large network size, the maintenance of these links could generate a
large amount of control traffic. Butterfly networks try to avoid this traffic by keeping
the size of the routing table constant. Viceroy [MNR02] is one of such networks.

56

2.2 Peer-to-Peer Information Discovery Systems

The basic topology of a viceroy network is a ring structure similar to that of a chord
ring but without long distance links. Each peer has an identifier in range [0, 1) chosen
uniformly at random. Peers are arranged in an identifier ring where they have links to
their respective predecessors and successors in the ring. Each peer is responsible for
data objects with identifiers between its predecessor’s identifier and its own identifier.
The identifiers for the peers and the data objects are generated in the same manner as
in chord.

In addition to the basic ring topology, each viceroy peer has specifically five more long
distance links to other peers in the network. These links are added as follows. Each
peer uniformly generates a random number in range [1, logN], where N is the total
number of peers in the network. This number denotes the level of the peer. Each peer
at level l has two links to the level l + 1. The first link, known as the down-left link,
connects the peer to a peer on level l + 1 that has an identifier that is clockwise closest
to the peer’s identifier. The second link, known as the down-right link, connects the
peer to a peer on level l + 1 that has an identifier that is clockwise closest to the peer’s
identifier plus 1/2l. Additionally, each peer has a link, known as the up link, to a peer
on level l − 1 (for l > 1). The up link connects the peer to a peer on level l − 1 that is
clockwise closest to the peer’s identifier. Furthermore, each peer also has two level links
which connect it to the preceding and succeeding peers on the same level. Figure 2.11
shows an example of a viceroy network. For better readability, only two levels of the
topology without the basic ring links are shown in this figure. At level l1, the down
and the level links of each peer are shown. At level l2, the up-link of only peer P8 is
shown in the figure. Other up-links have been omitted to avoid clutter.

Ideally, each level in a viceroy network should have almost equal number of peers due to
uniform selection of a level between 1 and logN by a peer. However, the total number
of peers in the network, i.e. N , is not known to each peer. Moreover, counting all peers
is too expensive in a highly dynamic environment of a P2P system. Therefore, each
peer estimates the value of N by measuring the distance between its own identifier and
the identifier of the succeeding peer. Using this estimated N , a level is chosen by a peer
between 1 and logN . If logN changes, the peer also changes its level and updates its
links accordingly.

A peer joins a viceroy network as follows. First, the peer joins the general ring in
the same manner as a chord peer joins the identifier ring (see Section 2.2.2.1). After
this step, the peer has its predecessor and successor links set. Next, the peer selects
a level for itself using the procedure discussed above. After that, the peer finds its
neighbours on the level ring by single stepping on the general ring. The peer then
finds the down-left neighbour by clockwise single stepping on the general ring. The
down-right neighbour is found by performing a lookup and then single stepping on the
general ring. Finally, the peer finds its up neighbour also by single stepping on the
general ring. Hence, all seven links are set after this procedure.

A lookup for a data object (using its key) is performed using a 3-phase query routing

57

2 Background

e: 1320

g: 2133f: 0123

c(
e,

f)
=

5

c(f,g) = 3

b: 2331

a: 1215

c: 1202

β(e) = 5

β(f) = 8

a: 1215

Pointer List of e : 1320

Object Node Cost
a : 1215 f : 0123 5
b : 2331 f : 0123 5
c : 1202 g : 2133 8

Figure 2.12: Plaxton Nodes and Data Objects

process in viceroy. During the first phase, the query is forwarded using the up links
starting from the query initiator until the query reaches at a peer on level 1. In the
second phase, the query is sent downwards through the levels using the down links.
During this phase, if the query is at a peer on level i then the distance to the target
is almost 1/2i−1. The down-right link is chosen at this peer if the distance to the
target is 1/2i, otherwise the down-left link is chosen. This phase terminates when the
query arrives at a peer that does not have any down links or if it overshoots the target.
During the third phase, the general ring is traversed in either clockwise or anti-clockwise
manner until the target peer is found. This lookup procedure is a simple one that does
not lead to a logarithmic search performance. An improved lookup procedure uses the
level links in the third phase to achieve O(logN) path lengths with a high probability.

2.2.2.5 Tree (Plaxton Tree)

The Plaxton tree [PRR97] network architecture was originally presented as a method
of accessing nearby copies of replicated data objects in a distributed systems. However,
DHTs such as Pastry [RD01] and Tapestery [ZHS+04] are based upon the concepts of
plaxton trees. Therefore, in this section we give a brief overview of plaxton trees.

A plaxton tree network consists of nodes and data objects with identifiers in form of
m-bit strings. Each identifier is interpreted as a string of b-bit digits, where a digit
has a value in range [0, 2b). For example, if m = 10 and b = 2, a node could have an
identifier x = 01 11 10 10 00 where, x[0] = 1, x[1] = 3, x[2] = 2, x[3] = 2, and x[4] = 0.
Each node and each data object has a unique identifier. Nodes in a plaxton network
are totally ordered by a bijective function β : V 7→ N, where V is the set of nodes and
N is the set of natural numbers. The cost of transmitting a byte from a node x to a
node y is given by the cost function c(x, y) 7→ N. Each node x maintains a pointer

58

2.2 Peer-to-Peer Information Discovery Systems

list with each pointer pointing to a known copy of a data object. A pointer is of the
form (o, y, k) where, o is the identifier of the data object, y is the identifier of the node
hosting the data object, and k is the upper bound on the cost of reaching the data
object starting from x. Figure 2.12 shows an example of a plaxton network, where the
nodes are shown as ellipses and the data objects are shown as squares. The pointer list
of the node e : 1320, is also shown in this figure.

Each node in a plaxton network maintains a primary neighbour table and a secondary
neighbour table. Using the primary table, each node sustains links to other nodes with
matching ID prefixes for each prefix length. The primary table of a node has, m/b rows
i.e. one row for each prefix length, and 2b columns i.e. one column for each possible
digit. A table entry of a node with identifier x is of the form primaryTablex(i, j) = y,
where i denotes a table row and is in range (0,m/b], j denotes a table column and is in
range (0, 2b], and y is the node with minimum c(x, y) that satisfies following conditions:

∀k < i : x[k] = y[k], and
y[i] = j

If no such node exists then the node y with largest β(y) is chosen that has the most
matching left-most bits with j. Figure 2.13 shows a plaxton network in which the
primary table of node u : 1201 is shown. Details regarding the secondary neighbour
table could be found in [PRR97].

In a plaxton tree, every object o has a unique root node ro defined by its identifier.
No other node has a longer matching prefix with the object identifier than the node
ro. If nodes with a same matching prefix exist, then the one with the most matching
left-most bits with o becomes ro. In case of a tie, the node with the largest β value of
all nodes with equally long matching prefix becomes ro. Node ro knows that it is the
root of o if the routing does not make any progress after m/b hops.

A node y that physically stores an object o initiates the insertion of o by forwarding an
insertion message using primary neighbour path from y towards object root ro. Each
node on the primary neighbour path between y and ro (including ro) creates a pointer
to y. A pointer is only created by a node if it does not know about any closer copy of o.
If a node knows about a closer copy of o, then the message forwarding stops.

A node y searches for an object o by forwarding a search message using primary
neighbour path from y towards object root ro. The primary neighbour path is of the
form p = y, x1, x2, . . . , ro. At each xi, if xi has a pointer to the requested object, it
notifies the owner of the object to send a copy of o to y, otherwise it forwards the search
request to xi+1. At least, ro would have a pointer to the requested object if it exists in
the network. Using an optimization, each xi might also request its secondary neighbour
to return the closest copy of the object to the requester.

59

2 Background

u: 1201

β(u) = 2

v: 0123

w: 2202

s: 1213 z: 1210

y: 0313

c(u
,y)

 = 5

c(u,z) = 3

c(u,v) = 3

c(u,w) =2

c(u
,s)

= 3
β(z) = 3β(s) = 5

Primary Table of u : 1201

0 1 2 3
x*** v : 0123 u : 1201 w : 2202 w : 2202
1x** s : 1213 s : 1213 u : 1201 s : 1213
12x* u : 1201 s : 1213 s : 1213 s : 1213
120x u : 1201 u : 1201 u : 1201 u : 1201

Figure 2.13: Plaxton Node with a Primary Table

2.3 Space-Filling Curves

Typically, DHTs are capable of storing and searching 1-dimensional data based upon a
single key-value pair (see Section 2.2.2). However, sophisticated application such as,
an inventory keeping system, a library management system, or a file-sharing system,
usually have data objects with multiple attributes (key/value pairs). These applications
typically require efficient support for queries that use multiple attributes and ranges
of values for searching the data. For this purpose, database management systems
(DBMS) use index structures that organize the data on a storage medium in a manner
that it could be accessed quickly and efficiently. One such index structure that could
also be used for indexing multi-dimensional data in DHTs is the space-filling curve
(SFC). A SFC has the ability to map multi-dimensional data to a line. This allows the
data to be placed on a sequential storage medium, e.g., continuous blocks of a disk,
or a DHT. There exist several different types of SFCs such as, Hilbert curve [Hil91],
Peano curve [Pea90], Sierpiński curve [Sag94], gray curve [MAK03] etc. Figure 2.14
shows an example of a Hilber, Peano, and a Gray curve respectively. Our research
mainly focuses on the use of Hilbert SFC because it exhibits best locality preserving
qualities [KW06,MJFS01].

SFCs were introduced as a solution to the problem of mapping points of a line onto

60

2.3 Space-Filling Curves

Hilbert Curve Peano Curve Gray Curve

Figure 2.14: Hilbert, Peano, and Gray Space-Filling Curves. This figure has been
developed during the diploma thesis [Tie08]

2 3

1 4

1 2 3 4

(a) k = 1

1 2

3

1615

14

1 2 3

(b) k = 2

1

2 3

64

6362

(c) k = 3

Figure 2.15: Recursive Construction of Hilbert Space-Filling Curve. This figure has
been developed during the diploma thesis [Tie08]

points in a multi-dimensional space [Hil91]. Although Guiseppe Peano was the first
one to solve this mathematical problem in 1890, David Hilbert was the one who a year
later illustrated the solution geometrically. He showed that by dividing a 2-dimensional
space into smaller sub-spaces and then allowing a curve to walk through those sub-
spaces, maps the points on the curve onto the points in the 2-dimensional space, i.e.,
[0, 1] 7→ [0, 1]2. He also showed that the process could be inverted allowing mapping
of a 2-dimensional space onto a line, i.e., [0, 1]2 7→ [0, 1], which is more significant for
indexing multi-dimensional data.

Figure 2.15 shows the recursive construction of a two-dimensional Hilbert SFC. During
the first step, the two-dimensional space is equally partitioned along each dimension,
and a line passes through each of the four resulting sub-spaces only once (see Figure
2.15(a)). The points in each of the sub-spaces are mapped onto a point on the line

61

2 Background

which is at the centre of each sub-space. Moreover, the points on the line are numbered
in the order in which the curve moves through the two-dimensional space. As seen
in Figure 2.15(a), a large number of points in a sub-space are mapped onto a single
point on the line which is not a good approximation of that sub-space. Therefore, in
the next step, each sub-space is further divided into four new sub-spaces (see Figure
2.15(b)). Since the new curve must pass through each of these new sub-spaces only
once and it must be continuous, it is constructed using the previous curve. The upper
two parts of the new curve are directly copies of the previous curve, whereas the lower
two parts of the new curve are the copies of the previous curve rotated by 90◦ clockwise
and anti-clockwise. The same process continues during the third step in which the
curve is further refined to get an even better approximation of the two-dimensional
space (see Figure 2.15(c)). If this process is allowed to run for an infinite number of
times, the entire area of the two-dimensional space would be mapped point-by-point
to the curve. The recursive construction of the curve could be extended to work on a
multi-dimensional space.

The numbers used in Figure 2.15 are known as the Hilbert identifiers and they show
that the process of curve construction is not confined to interval [0, 1], but it can also
work with integers, i.e. Nd 7→ N. The total number of Hilbert identifiers at each
approximation level k can be calculated. Consider a d-dimensional space. At the first
approximation level, i.e. for k = 1, the space is divided into two equal halves along each
dimension. For each higher approximation level until the kth approximation, the total
number of Hilbert identifiers is given by:

21 · 22 · . . . · 2d−1 · 2d = 2d

22
1 · 22

2 · . . . · 22
d−1 · 22

d = 22·d

...
2k−1
1 · 2k−1

2 · . . . · 2k−1
d−1 · 2k−1

d = 2(k−1)·d

2k
1 · 2k

2 · . . . · 2k
d−1 · 2k

d = 2k·d

Since each sub-space is divided into two halves along each dimension with increasing
approximation level, the number of sub-spaces increases as a multiple of 2 along each
dimension. The total number of sub-spaces (and therefore the number of Hilbert
identifiers) is obtained by multiplying the number of sub-spaces on each dimension.
This could be also written as a mapping [2k]d 7→ [2k·d], where k and d are the given
approximation level and the number of dimensions respectively. It is important to
note that the total number Hilbert identifiers 2k·d increases exponentially with a linear
increase in the approximation level or the number of dimensions.

For using a SFC as an index over multi-dimensional data, each attribute of a data
object is considered as a dimension of a multi-dimensional space. The Hilbert SFC
then linearises these dimensions effectively mapping multi-dimensional data to a line.
The approximation level for an SFC-based index is determined by the resolution of the
attributes. If the largest range among all attributes has 100 discrete values, then the

62

2.3 Space-Filling Curves

1 2

3

1615

14

4

5

6 7

8 9

10 11

12

13

1 2 3 4

4

3

2

1

(a) Range Query in a
two-dimensional Space

16 15 14

5 6 7 8

9

10

11

12

13

4

3

2

1

(b) Mapping on the Hilbert
curve

16
15

14

5

6

7
89

10

11

12

13 4

3

2
1

(c) Mapping on a DHT

Figure 2.16: Query Resolution using Hilbert Space-Filling Curve. This figure has been
developed during the diploma thesis [Tie08]

approximation level for the SFC is given by: dlog2100e = 7. It should be noted that
the approximation level should be the same for all dimensions. Overall, a value for the
maximum approximation level depends on the application that utilizes the SFC-based
index. Mostly, this number is pre-determined and fixed.

Each sub-space on a Hilbert SFC is known as a zone. A query for a specific value along
each dimension of a multi-dimensional space is known as a point query. A point query
maps only to a single zone on a SFC and therefore only a single Hilbert identifier is
calculated by the mapping. This Hilbert identifier indicates the location of the data
on the storage medium. If a query includes ranges of values along each dimension of
a space, it is known as a range query. A range query usually maps to more than a
single zone on a SFC and therefore multiple Hilbert identifiers are calculated for such a
query. Figure 2.16(a) shows an example of a range query in a two-dimensional space.
On the vertical dimension only a single section of the space is affected, whereas on the
horizontal dimension all the sections of the space are affected by the query. This leads
to the query being mapped to multiple zones on the SFC. These zones are 5, 8, 9, and
12. Continuous zones of a query are known as a cluster, and in this case the query
maps to three clusters with two clusters containing only a single zone. Figure 2.16(b)
shows the same query only on the Hilbert curve. Note that the curve is shown in a
square form for a better readability. This figure indicates that the distance between
the three clusters is large on the curve which means that the three different portions of
the storage medium need to be accessed. The distance between zone 8 and 9 is most
optimal because it allows sequential access of the storage medium which is efficient. In
case the storage medium is a DHT, as shown in Figure 2.16(c), zones 8 and 9 could
map to the same peer with a high probability.

SFCs are highly efficient when it comes to providing support for multi-attribute point
queries. As discussed above, a multi-attribute point query results only in a single zone

63

2 Background

which is a single location on the storage medium for accessing the data. Multi-attribute
range queries however map to multiple zones on a SFC which typically refer to multi
locations on the storage medium. In that case, it is highly desirable that these locations
are as close to each other as possible, so that the queried data could be accesses either
sequentially or in a chunk. This property is known as the locality property and the
SFCs try to preserve the locality of the data. It has been shown that the Hilbert SFC
has the best locality preserving qualities [KW06,MJFS01].

Besides the good locality preserving quality, the Hilbert curve walks through a multi-
dimensional space in a consistent manner [MAK03]. This means that it creates exactly
the same number of zones in each region of the space, regardless of the dimension, i.e.,
no dimension is preferred by the curve. For indexing of the data, this feature is ideal
because it makes the assignment of a particular attribute to a particular dimension
irrelevant. Moreover, a range query in one dimension is not more cost-effective than
in another dimension, because the behaviour of the curve is the same through each
dimension.

64

Chapter 3
Optimized Information Discovery System

3.1 Introduction

Information discovery in massively distributed peer-to-peer (P2P) networks has been a
widely studied topic in the last decade. The research in this area has paved the way for
scalable, efficient, and fault-tolerant P2P overlay networks. One such class of scalable
P2P overlay networks is the Distributed Hash Tables or DHTs (see Section 2.2.2).
Conventional DHT-based overlay networks used to support data lookup using exact
match queries only. However, sophisticated P2P applications require data lookup that
supports more than just exact match queries, e.g., resource discovery in grid computing
relies on multi-attribute range queries. Therefore, recently DHT-based systems have
been extended to support a wider range of complex queries.

A fundamental class of complex queries is multi-attribute range queries. Information
discovery systems such as [AX02,GYGM04,SP03,SOTZ05] make use of Space Filling
Curves (SFC) [ARR+95] to support multi-attribute and range queries over DHT-
based P2P overlay networks. These systems have been shown to perform well for
applications that have data objects with a small number of attributes. However, the
performance of such systems declines significantly with increasing number of data
attributes [GYGM04, SP03, MJFS01]. In this chapter, we introduce the optimized
information discovery (OID) system that does not suffer from performance deterioration
with applications that have a large number of data attributes. Our system supports
multi-attribute range queries by extensively optimizing the use of SFCs over DHT-based
P2P networks.

If each attribute in a data object is considered as a dimension and the combination of
attribute values is considered as coordinates, then each data object can be viewed as
a point in a multi-dimensional space. A SFC is a line that passes through this space
linearising each point in it, while preserving data locality, i.e. points close to each other

65

3 Optimized Information Discovery System

in the space are mapped close on the SFC line with a high probability (see Section
2.3). The SFC line can then be mapped onto a 1-dimensional P2P overlay network
such as Chord [SMK+01]. Due to locality preservation, data objects that are close in
the multi-dimensional space are usually mapped to sets of neighbouring peers in the
P2P overlay network which allows for efficient query processing.

Currently, information discovery systems use a single SFC over all the attributes in
data objects. However, in typical applications, not all attributes are used at the same
time to perform a query. The attributes that are not present in the query are assumed
to be wild-cards. A large number of wild-cards in a query results in a large number
of segments on the SFC line. Hence, a large number of peers have to be evaluated
for the query resolution. Therefore, it becomes prohibitively expensive to use SFCs in
such manner for applications that a have large number of data attributes. Another
concern with SFCs is that the locality preservation starts to deteriorate as the number
of dimensions increases. This is due to the fact that the distance between two points
in a Euclidean space usually increases with increasing number of dimensions. This
property also renders SFCs unusable for applications with very large number of data
attributes.

Our system design enables the efficient use of SFCs for a large number of data attributes
to perform information discovery over DHTs. The basic idea is to use multiple SFC-based
indices, with each index over a small number of attributes. The best SFC-based index
is then selected for query processing. We also introduce two query optimizations that
effectively reduce the total number of parallel messages in the network, and distribute
the computation load of query resolution over the network. Our simulation results show
that our query optimization strategies are more scalable than the previously suggested
ones.

The rest of the chapter is organized as follows: in Section 3.2 we introduce the archi-
tecture of the OID system. Section 3.3 describes the process creating subsets of the
attribute domain for the use of multiple SFC-based indices. In Section 3.4, we discuss
the indexing of the data using Hilbert SFC. Section 3.5 presents the process of data
placement in a DHT. Query resolution and query optimization are discussed in Sections
3.6 and 3.7 respectively. Results from the system evaluations are presented in Section
3.8. In Section 3.9 we present an overview of the related work in the area. Finally, in
Section 3.10, we wind up the chapter with a conclusion and a brief overview of the work
discussed in the next chapter.

3.2 System Architecture

The architecture of the OID system is a layered architecture. Figure 3.1 shows the three
layers of the architecture as boxes with thick borders. The top layer is the application
layer, consisting of internet-scale distributed applications such as resource discovery

66

3.2 System Architecture

Distributed Applications

Query Optimizer

DHT (Chord)

Query Engine

Data Placement
Controller

Multi-attribute
Range Query Query Results

lookup(key) Node IPnotify()

SFC1 …SFC2 SFC3 SFCo

Data Index Space

Application
Designer

Figure 3.1: OID System Architecture

in grid computing, and location-based services. These applications query for the data
using multi-attribute range queries and receive results from the layer below. The middle
layer is the OID framework layer that can be further classified into three components:
data index space, data placement controller and the query engine. The bottom layer is
the DHT layer that given a key, returns the IP address of the peer that is responsible
for hosting the data object associated with that key.

A data object in our system is represented as a list of attribute-value pairs. For
example, a data object can be defined as (CPU Speed = 1.2 GHz, Mem Size = 1024
MB, HDD Size = 50 GB, . . .). Queries are defined as conjunction of tuples of the
form (attribute operator value), where supported operators are =, 6=, <,>,≤ and ≥.
An example of a multi-attribute range query could be (CPU Speed > 1.0 GHz) ∧
(CPU Speed < 3.0 GHz) ∧ (Mem Size > 512 MB).

The data index space in the OID framework layer consists of multiple SFC-based
indices. In order to establish the data index space, the designer of the distributed
application identifies the necessary attribute combinations based on the criterion for
optimizing the overall system performance. These attribute combinations are then used
to define multiple SFC-based indices. Using the indices in the data index space, the
data placement controller places the data objects onto the peers participating in the
DHT network.

67

3 Optimized Information Discovery System

A multi-attribute range query is submitted by an application to the query engine of the
OID framework layer. The query engine then uses one of the SFC-based indices in the
data index space and the DHT to route the query to the peers responsible for the query
resolution. The query optimizer, which is a part of the query engine achieves efficient
and scalable query performance by executing two different optimization techniques.

3.3 Attribute Domain Sub-setting

As discussed in Section 3.1, information discovery systems such as [AX02,GYGM04,
SP03,SOTZ05], use a single SFC-based index over the combination of all data attributes.
The performance of such an index declines drastically when a query is performed only
using a few attributes. Therefore, we suggest that subsets of attributes are defined such
that multiple SFC-based indices could be utilized for efficient lookup.

Definition 1 Let an attribute domain A = {a1, a2, a3, . . ., an} be the set of attributes
used to define data objects. Attribute domain sub-setting is defined as the creation of o
sub-domains A1, A2, . . . , Ao such that ∀ i, j ∈ [1, o]: Ai ⊆ A, Ai 6= Aj for i 6= j, |Ai| > 1
and

⋃o
i=1Ai = A.

Instead of defining a single SFC-based index for the complete attribute domain A,
we define an index for each Ai ⊆ A. Since each SFC-based index indexes each data
object, defining an index for each possible attribute sub-domain would lead to a large
space requirement as well as a high index maintenance cost. Therefore, the number of
attribute sub-domains is limited by the value of a parameter o < 2n.

The challenge is to determine a criterion for attribute domain sub-setting such that
efficient query processing is possible without defining a large number of indices. We
assume a P2P information discovery system in which certain queries are much more
popular than the others. This assumption is realistic, since typical P2P systems have
been shown to exhibit skewed query popularity distribution [GST07,KLVW04,Sri01].
Based on this assumption, we present the following heuristic-based solution.

Let Q = {q1, q2, . . . , qo−1, qo, . . . , qn} be the set of queries in the system with unique
attribute combinations, such that P (q1) ≥ P (qo) ≥ P (qn) for 1 ≤ o ≤ n. P (qi) denotes
the probability of occurrence of the query qi. Let Aqi be the set of attributes used in
query qi. We define o sub-domains from domain A such that Ai = Aqi ∀i ∈ [1, o− 1]
and Ao =

⋃n
j=oAqj. This heuristic creates o − 1 attribute sub-domains for the most

popular queries and one attribute sub-domain for the rest of the less popular queries.

Although a typical P2P application uses a significant number of attributes to define
data objects, it is reasonable to expect that the number of highly popular queries would
still be small. Therefore, for a typical P2P application with 10 to 15 data attributes,

68

3.4 SFC-based Data Indexing

e.g., Edutella [QNS02] that uses about 15 attributes to describe an e-learning resource,
we expect o not to be larger than 15.

If the queries exhibit different popularities, then it is essential to define attribute sub-
domains for the most popular queries because, if a popular query does not completely
match an attribute sub-domain (hence, an SFC-based index), the accumulated overhead
for such a query over a period of time, would be large. This is due to the fact that the
popular queries have a higher queried frequency than the non-popular ones. Therefore,
even a small overhead resulting from a popular query over a partially matching index
accumulates to a large overhead over a period of time.

The attribute domain sub-setting criterion discussed above is most useful for applications
where the popular queries in the system are limited and attribute combinations used in
these queries could be anticipated. For applications where the query popularity could
not be known in advance, more sophisticated approaches are discussed in the next
chapter.

3.4 SFC-based Data Indexing

The construction of a Hilbert SFC in a d-dimensional space is a two step process (see
Section 2.3). The first step divides the space into smaller sub-spaces which we call
zones. The division of the space can be viewed as a recursive process where each run of
the process divides the space into 2d zones. This process continues k times resulting in
2k·d zones, where k is the approximation level. The second step involves drawing a line
that passes through each of the 2k·d zones once, joining the centers of any two zones
with a line segment. The centre of a zone is an approximation for all the points in that
zone, and the line connecting two adjacent zones imposes an order between them. The
resulting SFC is a kth order SFC in a d-dimensional space. Figure 2.15 shows the 1st,
the 2nd and the 3rd order Hilbert SFCs in a 2-dimensional space.

We define an SFC-based index for each attribute sub-domain Ai ∈ A, and each SFC-
based index indexes each data object in the system. As an example of resource discovery
in grid computing, let A = {CPU Speed, Mem Size, Busy CPU, Mem Used} be the
attribute domain. If two 2nd order SFC-based indices are defined for attribute sub-
domains A1 = {CPU Speed, Mem Size} and A2 = {Busy CPU, Mem Used}, then a data
object defined as (CPU Speed = 2.7 GHz, Mem Size = 1792 MB, Busy CPU = 63.3%,
Mem Used = 42%) would be indexed by the two SFC-based indices as shown with a dot
in Figure 3.2. As a result, this data object is approximated by the 12th and the 8th

zone on SFC1 and SFC2, respectively.

Queries with ranges over multiple attributes are mapped to blocks of zones, known as
clusters. A cluster is a group of continuous zones on a SFC. The number of zones that a
query would be mapped to, can be easily calculated by comparing the queried range on
each query axis with the corresponding axis of the SFC. For example, a multi-attribute

69

3 Optimized Information Discovery System

CPU Speed

M
em

 S
iz

e

1.0 1.5 2.0 2.5 3.0
512

1024

1536

2048

2560

M
em

 U
se

d

Busy CPU

0 25 50 75 100
SFC1 SFC2

0 1

23

4

5 6

7 8

9 10

11

1213

14 15 0 1

23

4

5 6

7 8

9 10

11

1213

14 15

25

50

75

100

0

Figure 3.2: Data and Query Mapping on SFC

range query defined as “(CPU Speed >= 1.3) ∧ (CPU Speed <= 2.3) ∧ (Mem Size

>= 640) ∧ (Mem Size <= 2304)”, would be mapped to 12 zones on SFC1 in Figure
3.2. These zones in turn represent 2 clusters, where the first cluster contains zones with
identifiers from 0 to 9, and the second cluster contains zones with identifiers 13 and 14.

3.5 Data Placement

The SFC-based indices effectively map the multi-dimensional data to 1-dimensional
identifiers while preserving locality. The next step involves the use of the 1-dimensional
identifiers to assign the data objects to a set of peers in a DHT. We use the Chord
[SMK+01] protocol as a DHT.

The Chord protocol provides the functionality for the lookup of keys in the network.
Chord assigns an m bit identifier to the peers and the data objects from an identifier
space in range [0, 2m). Peer identifiers are generated by hashing the IP addresses of the
peers using a hash function such as SHA-1. Identifiers for data objects are generated by
hashing the keys of the data objects. Chord orders the identifier space in an identifier
circle modulo 2m. A data objects is mapped to the peer whose identifier is equal to or
follows the identifier of the data object in the ring (see Section 2.2.2.1).

Instead of using a hash function, an identifier for a data object in our system is generated
using an SFC-based index. The peer identifiers are generated by the Chord protocol as
discussed above. As an effect of the attribute domain sub-setting, the identifier space of
a SFC is typically smaller than the identifier space [0, 2m) of the Chord ring. Therefore,
mapping the data objects directly to the Chord ring would result in a non-uniform

70

3.5 Data Placement

0

13 10

7
6

2

14

2 x 0

2 x 2

2 x 62 x 7

2 x 10

2 x 13

2 x 14

0

28 4

24 8

16

3
1 2

1220
11

9

10

19
1718

27

25

26

29
31

30

13
15 14

5

7

6

21

23

22

Scaling
factor

Original
identifier

Figure 3.3: Chord Identifier Circle

distribution of the data to the Chord identifier circle. To avoid this, the identifier space
of the SFC is scaled up to the identifier space of the Chord ring by a factor of 2m−(k·d).

As an example, consider a Chord ring with m = 5 and N = 7, i.e. the identifier space
of the Chord ring is [0, 32) with seven peers as shown in Figure 3.3. Physical nodes
are shown as circles with bolder caption. Suppose an SFC-based index that assigns
identifiers to the objects from an identifier space of [0, 16) (d = 2 and k = 2). Without
up-scaling, the data objects with identifiers 0, 2, 6, 7, 10, 13, and 14 would be mapped to
the peers as shown with the boxes outside of the Chord ring in Figure 3.3. The scaling
factor is calculated as 25−4 = 2 and the same data objects with scaled up identifiers are
mapped to the peers as shown with the boxes inside of the Chord ring.

Since the data index space consists of o SFC-based indices, each data object is mapped
o times (possibility) to a different peer in the DHT in the similar manner as discussed
above.

Up-scaling of the SFC identifier space to the Chord identifier space could result in a
situation where some peers in the network are not responsible for any data objects.

71

3 Optimized Information Discovery System

This situation occurs when the number of peers is greater than the number of identifiers
in the SFC identifier space. Such a situation could be avoided by setting a relatively
high approximation level for the SFC-based indices.

Since the identifiers for the data objects in our system are generated using SFC-based
indices, the uniform distribution of the data typically achieved by the chord hashing
function is compromised. This issue is partially resolved by the use of multiple SFC-based
indices; in case of our system, o number of indices. However, an explicit load-balancing
algorithm might still be needed to achieve close to uniform distribution of the data.
The load-balancing strategies described in [SX07] and [RLS+03] could be used for this
purpose.

3.6 Query Resolution

A query for data objects can be initiated by any peer in the network through the
application layer. Once a query has been initiated, the resolution is performed in four
steps. In the first step, the query initiator locally selects the best matching SFC-based
index that has the expected lowest overhead for the query. The second step involves
calculation of the zone identifiers that match the query on the selected SFC-based index.
In the third step, the identity of the peers that are responsible for the queried zones
is determined and the query is forwarded to these peers. Finally, the queried peers
perform a local database lookup and send the matching data objects directly to the
query initiator.

When the query arrives at the OID framework layer of the query initiator, the query
engine compares the attributes used in the query with the attributes used in each
SFC-based index defined in the data index space. A query can either completely match
a single SFC-based index or partially match more than one indices, in terms of queried
attributes. If a query completely matches an index, then that index is chosen for further
processing.

For partially matching queries, the goal is to select the index that uses minimum number
of peers to perform a lookup. To achieve this goal, global knowledge about the mapping
of zones to peers would be required. However, a peer can estimate the number of peers
involved in the query resolution without this global knowledge. Let N be the total
number of peers in the network. Since, the SFC identifier space is uniformly distributed
over these peers, the number of zones per peer for each SFC-based index is given by
2k·d/N . Let z be the number of zones that match the queried ranges on an SFC-based
index. Then, the number of peers involved in the query is approximated by (z/2k·d) ∗N .
Since the total number of peers is the same for each SFC-based index, the partially
matching index with the smallest value for the fraction z/2k·d (zone fraction) is chosen
for further processing. If the zone fraction is equal, one of the indices is chosen at
random.

72

3.7 Query Optimization

This heuristic might underestimate the number of peers involved in a query for an SFC-
based index because it assumes that all the zones on the queried peer are matching with
the query. For most of the cases, the estimate is good enough because a queried peer
usually stores large number of matching zones. Development of a more sophisticated
heuristic that performs good estimation for all cases is discussed in Chapter 5.

The next step involves calculation of zone identifiers that match the query. If the
submitted query completely matches an SFC-based index and is a multi-attribute point
query, the calculation results in a single zone identifier. Querying the peer that is
responsible for this zone identifier would resolve the query. For queries involving ranges
of values or wild-cards, the zone identifier calculation usually results in more than one
cluster with each cluster containing one or more zones.

The basic approach to resolve a query that results in more than one cluster is as follows.
First, a DHT lookup is performed at the query initiator for the first zone in each cluster.
The DHT lookup determines the identity of the peer responsible for this zone. The
query along with the cluster is forwarded to the responsible peer. If all the zones in the
cluster are resolved at this peer, the cluster is completely resolved. Otherwise, this peer
forwards the query to the peer responsible for the first zone in the remaining unresolved
part of the cluster. This process continues until all the clusters are completely resolved.
Note that the query engine has to perform the up-scaling of the queried zone identifiers
before the DHT lookup could be initiated.

3.7 Query Optimization

Typically, a multi-attribute range query results in a large number of zones (and therefore
clusters), whose identifiers have to be calculated. Performing this calculation at the
query initiator takes a significant amount of time. Even if the zone identifiers are
calculated quickly, a DHT lookup for each cluster would result in high message load at
the query initiator. A peer is usually responsible for a large number of query clusters.
Therefore, if the basic query resolution approach is used, the same peer could receive
the same query multiple times. To avoid these drawbacks, we introduce the following
two query optimizations.

3.7.1 Routing Optimization

The first optimization reduces the parallel number of messages in the network and the
outgoing message load at the query initiator. The basic idea is to embed a distribution
tree in the network to limit the number of messages a peer has to send, i.e., fanout of a
peer. The total number of parallel messages in the network can be limited by limiting
the depth-level of the distribution tree.

73

3 Optimized Information Discovery System

4

8

17

23
33

42

58

62

64
1

(a) Chord Ring with an Embedded
Query Tree

4

833

1723

33

8 - 10, 23 - 27,
31 - 34

8 - 10,
23 - 25

9, 10

24, 25

23 - 25

26, 27,
31 - 34

34

l = 2

l = 1

l = 042

(b) Routing Tree

Figure 3.4: Routing Optimization

Let parameters f and l be the fanout and the depth-level, respectively. After the zone
identifiers are calculated at the query initiator, they are ordered in an ascending order
and divided equally into f buckets. A DHT lookup is initiated for the first zone of each
bucket. Once the peer responsible for this zone is identified, the bucket along with the
query, the identity of the initiator node and the values of f and l, are forwarded to
this peer. Note that, if the query initiator is responsible for some zone identifiers, it
performs a local database lookup and does not include these identifiers in the buckets.

When a peer receives a bucket from some other peer in the network, it decreases the
value of l by 1 and removes the zone identifiers that it is responsible for from the
received bucket. The peer then performs a local database lookup. The matching data
objects are directly transferred to the query initiator. If the value of l is greater than
zero, the remaining zones in the bucket are further divided into f smaller buckets and
each bucket is forwarded to its responsible peer. If l is zero, the remaining bucket is
not divided any further and is forwarded to the peer responsible for the first zone in
the bucket. In this case, the query forwarding process continues sequentially without
increasing the parallel number of messages until all buckets are empty.

Consider the Chord ring with m = 6 and N = 10, shown with an embedded query
tree in Figure 3.4(a). The routing tree could be separately seen in Figure 3.4(b). In
this figure, peer 4 initiates a query for clusters ‘8 – 10’, ‘23 – 27’, and ‘31 – 34’, with
parameters f = l = 2. The peer divides the list of zones into two buckets. The bucket
containing zone identifiers ‘8 – 10, 23 – 25’ is sent to peer 8, because it is responsible
for the first zone (8) in the bucket. The responsible peer is determined by performing
a DHT lookup which has been omitted from the figure for simplicity. Similarly, the
bucket containing identifiers ‘26, 27, 31 – 34’ is sent to peer 33.

74

3.7 Query Optimization

Peer 8 performs a local database lookup, removes zone 8 from the received bucket,
divides the bucket further into two buckets, and sends them to peers 17 and 23. Equal
division of the bucket at peer 8 is not possible, therefore the bucket sent to peer 23 has
one more item than the one sent to peer 17, as the algorithm tries to assign continuous
zones to the same buckets. The algorithm continues in a similar manner at each peer
until the value of parameter l becomes zero, and there are still some unresolved zones
in a bucket. This situation arises at peer 23. Therefore, the bucket at peer 23 remains
undivided and is forwarded to peer 33.

The query optimization discussed above allows an application to control the message
load in the network at each query level. Compared to the basic query resolution
approach, the routing optimization increases the query resolution latency because fewer
messages are processed in parallel. But due to the reduction in the network load,
scalability is increased.

3.7.2 Computation Load Distribution

The second query optimization reduces the computation effort of calculating the zone
identifiers at the query initiator. In the worst case, the query initiator calculates O(2k·d)
zone identifiers, i.e., the number of zone identifier increases exponentially with d and k.
The value of k is not expected to be smaller than 8 to achieve fine grained division of
the SFC. The basic idea of this optimization is to distribute the computation effort of
calculating the zone identifiers over several peers in the network. Once the calculation
is finished, the peers that hold the calculated zone identifiers initiate the distributed
query resolution using the routing optimization discussed above.

A similar query optimization has been implemented by the Squid [SP03] system.
Although their optimization reduces the number of peers that are involved in the query
resolution, it does not scale for popular queries in the system. In the Squid system,
if a query has a high queried frequency, then the peers that perform the identifier
calculations would become heavily loaded with computation tasks.

In order to distribute the computation load, we assume that each peer in the network
defines a parameter kp ≥ 1 for each SFC-based index. kp denotes that the maximum
number of zone identifiers a peer is willing to calculate is 2kp·d. A peer first refines
a query for at least one approximation level to produce zone identifiers. The peer
then checks whether performing the refinement for the next approximation level would
exceed the threshold of 2kp·d. If the threshold is not exceeded the peer refines the query
for the next approximation level. If the threshold would be exceeded, the peer divides
the identifiers into f buckets, selects f random peers in the network, and transfers the
buckets to these peers. The parameter l works in the similar manner as discussed in
the previous section. The process continues until the zone identifiers for the maximum
approximation level k are obtained. After that, the peers that hold the final zone
identifiers initiate the lookup for data objects using the routing optimization.

75

3 Optimized Information Discovery System

CPU Speed
M

em
 S

iz
e

1.0 2.0 3.0
512

1536

2560
M

em
 Size

2.0 2.5 3.0
512

1024

1536

2048

2560
CPU Speed

3

2 11

12

(a) (b)

1536

Figure 3.5: Successive Refinement of a Query

Each peer uses SHA-1 to select f random identifiers from the Chord identifier space of
[0, 2m). A DHT lookup is performed for these identifiers to determine the identity of
nodes responsible for them. The buckets are then transferred to these nodes for further
computation. Since, SHA-1 achieves uniform distribution of identifiers in the space
[0, 2m), the computation load is also uniformly distributed by each peer in the network.

For a query defined as “(CPU Speed >= 2.7) ∧ (CPU Speed <= 3.0) ∧ (Mem Size

>= 1024) ∧ (Mem Size <= 1891)” and with parameters k = 2, kp = 1 and f = 2, the
query initiator calculates zone identifiers 2 and 3 on the 2-dimensional SFC shown in
Figure 3.5(a). The identifiers for only these two zones are calculated because others
do not match the queried range. The initiator then divides these identifier into two
buckets and transfers them to two random peers in the network. One of the random
peer then refines zone 2 to produce zone identifier 11 and the other peer refines zone 3
to produce zone identifier 12 (see Figure 3.5(b)) for next approximation level.

For computation load distribution, each peer involved in calculating the zone identifiers
has a load of O(2kp·d). Computation load distribution also reduces the average size
of the messages in the network, compared to the routing optimization. Since a peer
computes only a limited amount of zone identifiers for a query, the number of clusters
transmitted in a single message is therefore low.

76

3.8 System Evaluation

Param Value(s) Description
N 102, 102.5, 103 . . . 105 # of peers
O 10 ∗N # of data objects
f 10 fanout
l blog(N)c − 1 depth-level
k 8 k for SFC1,2,3

kp1 8 kp for SFC1

kp2 5 kp for SFC2

kp3 4 kp for SFC3

Table 3.1: Evaluation Parameters – SFC-based Indices

3.8 System Evaluation

In this section, we present experimental evaluation of several aspects of our system, using
simulations. We implemented Hilbert SFC-based indices as described in [LK00,Law00]
over the Chord DHT to perform these simulations.

We consider the use case of resource discovery in grid computing. An attribute domain
A = {CPU Speed, Mem Size, Busy CPU, HDD Free} is used to describe resources as
data objects in our system. We assume that the following three attribute sub-domains
have been defined by the application designer using the attribute domain sub-setting
discussed in Section 3.3: A1 = {CPU Speed, HDD Free}, A2 = {CPU Speed, Busy CPU,
Mem Size} and A3 = {CPU Speed, Mem Size, Busy CPU, HDD Free}. Note that the
attribute sub-domain A3 is equal to the complete attribute domain A. We define the
following three SFC-based indices: SFC1, SFC2, and SFC3 corresponding to A1, A2,
and A3 respectively.

3.8.1 Evaluating SFC-based Indices

In this section, we show that the best performance for multi-attribute range queries is
achieved over corresponding completely matching SFC-based indices. Therefore, having
a single large SFC is not sufficient. We also show that our system chooses the optimal
SFC for query processing in case the query partially matches more than one SFCs.

For evaluating the performance of the SFC-based indices defined above, we perform 2D
and 3D queries over them using the simulation parameters shown in Table 3.1. The
values for f and l are chosen such that the number of parallel messages are restricted
to 10% of the network size in the worst case. We increase the number of data objects
with the increasing network size, just like in a typical P2P system. Also note that the
value of kpi is equal for the same SFC-based index at each peer in the network. The
following performance metrics are measured during the simulation:

77

3 Optimized Information Discovery System

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

10
5

T
o
ta

l
H

o
p
s

Network Size

SFC1
SFC2
SFC3

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

P
ro

c
e

s
s
in

g
 P

e
e

rs

Network Size

SFC1
SFC2
SFC3

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10
2

10
3

10
4

10
5

D
a

ta
 P

e
e

rs

Network Size

SFC1

SFC2

SFC3

Figure 3.6: Performance of a 2D query on 2, 3 and 4 dimensional SFC-based indices

• Total Hops – Total number of hops of all messages needed to resolve a query.

• Processing Peers – Number of peers that perform a local database lookup to
evaluate the query.

• Data Peers – Number of peers containing the data objects that match the query
(subset of processing peers).

We perform a 2D range query that has the same attributes as SFC1 and a 3D range
query that has the same attributes as SFC2, over all three SFCs. For each network
size, the query is performed 10 times starting at a random peer in the network. The
metrics total hops, processing peers, and data peers are then averaged over the 10 runs.
The performance of the 2D query can be seen in Figure 3.6. Figure 3.7 shows the
performance of the 3D query.

The 2D range query performs best on SFC1 and the 3D range query shows best
performance on SFC2 in terms of all three performance metrics. This is due to the
fact that the 2D query has the same attributes as SFC1, and the same query has to
be performed with two wild-card attributes on SFC2 and one wild-card attribute on

78

3.8 System Evaluation

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

10
5

T
o

ta
l
H

o
p

s

Network Size

SFC1
SFC2
SFC3

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

P
ro

c
e

s
s
in

g
 P

e
e

rs

Network Size

SFC1
SFC2
SFC3

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

10
2

10
3

10
4

10
5

D
a

ta
 P

e
e

rs

Network Size

SFC1

SFC2

SFC3

Figure 3.7: Performance of a 3D query on 2, 3 and 4 dimensional SFC-based indices

SFC3. Similarly, the 3D query matches SFC2 completely and has to be performed
with wild-cards on the other two SFCs.

Figure 3.6 also shows that with the large network size, the 2D query becomes pro-
hibitively expensive on SFC2 because of the wild-cards. Similar is the case for 3D
query on SFC1 (see Figure 3.7). Therefore, it is important to perform a query using
an SFC-based index that involves a minimum number of wild-cards.

If SFC1 was not defined, then the 2D query would partially match SFC2 as well as
SFC3. The OID system would choose SFC3 for processing the query because the zone
fraction is 0.0152 for SFC3, compared to 0.1055 for SFC2. Similarly, if SFC2 was not
defined, SFC3 would be chosen for processing the 3D query because the zone fraction
is 0.00042 for SFC3, compared to 0.1055 for SFC1. In both cases, the best matching
SFCs would be chosen for the query resolution.

79

3 Optimized Information Discovery System

 0

 10

 20

 30

 40

 50

 60

 70

10
2

10
3

10
4

10
5

L
a
te

n
c
y

Network Size

Basic Routing

Routing Optimization

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

10
5

A
v
g

.
P

a
ra

lle
l
M

e
s
s
a

g
e

s

Network Size

Basic Routing

Routing Optimization

(b)

Figure 3.8: Basic Routing vs. Routing Optimization

3.8.2 Evaluating Query Optimizations

In this section, we compare the performance of the query optimization strategies
discussed earlier.

3.8.2.1 Basic Routing vs. Routing Optimization

In this section, we show that the routing optimization algorithm reduces the total
number of parallel messages in the network (network load) with a cost of little increased
latency.

For comparison of the basic query routing strategy (see Section 3.6) with the rout-
ing optimization (see Section 3.7.1), we perform a 2D range query using attributes
“CPU Speed” and “Mem Size” over SFC2. The simulation parameters used for this
experiment are shown in Table 3.2. Following performance metrics are measured:

• Latency – Number of hops in the longest message path.

• Average Number of parallel messages – Total number of forwarded messages
divided by the number of levels of the search tree.

The performance of the two routing algorithms can be seen in Figure 3.8. The query
resolution latency increases with the network size in case of both routing algorithms,
because the number of data peers increases (see Figure 3.8(a)). As expected, the routing
optimization has a higher latency than the basic approach but the difference is not
major. The number of parallel messages also increase with the network size for both
approaches (see Figure 3.8(b)). Even though the increase is significant for the routing
optimization, the algorithm still produces fewer parallel messages per level compared to
the basic approach, even with the network size of 105.

80

3.8 System Evaluation

Param Value(s) Description
N 102, 102.5, 103 . . . 105 # of peers
O 10 ∗N # of data objects
f 10 fanout
l blog(N)c − 1 depth-level
k 8 k for SFC1,2,3

Table 3.2: Evaluation Parameters – Basic Routing vs. Routing Optimization

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 3 4 5 6 7 8 9

A
v
g
.
C

o
m

p
u
ta

ti
o
n
 L

o
a
d

Approximation Level (K)

Routing Optimization

Com. Load Distribution

(a)

 0

 50

 100

 150

 200

 250

 3 4 5 6 7 8 9

A
v
g
.
M

e
s
s
a
g
e
 S

iz
e

Approximation Level (K)

Routing Optimization

Com. Load Distribution

(b)

Figure 3.9: Routing Optimization vs. Computation Load Distribution

3.8.2.2 Routing Optimization vs. Computation Load Distribution

In this section, we show that the computation load of calculating zone identifiers
increases exponentially with increasing approximation level k. We also show that the
computation load distribution algorithm reduces the amount of computation performed
by a single peer. Due to the computation load distribution, the average message size is
also reduced.

For comparison of the routing optimization (see Section 3.7.1) with the computation
load distribution (see Section 3.7.2), we perform a 2D range query using attributes
“CPU Speed” and “Mem Size” over SFC2. The simulation parameters used for this
experiment are shown in Table 3.3. The following performance metrics are calculated:

• Average Computation Load per Peer – Total number of computed zones
divided by the total number of peers performing the computation.

• Average Message Size – Total number of forwarded clusters divided by the
total number of forwarded messages.

The performance comparison of the routing optimization with the computation load

81

3 Optimized Information Discovery System

Param Value(s) Description

N 103 # of peers

O 10 ∗N # of data objects

f 10 fanout

l blog(N)c − 1 depth-level

k 3, 4, 5, . . . 9 k for the SFC

kp 3 kp for the SFC

Table 3.3: Evaluation Parameters – Routing Optimization vs. Computation Load
Distribution

distribution can be seen in Figure 3.8. Note that the y-axis of Figure 3.8(a) is on a log
scale.

The average computation load of peers increases with the approximation level (see Figure
3.8(a)) with or without computation load distribution, because more zone identifiers
have to be calculated. However, the computation load distribution strategy reduces
this load significantly, in particular for larger values of k. For example, for k = 9, the
average computation load of a peer is reduced by 99%.

In case of computation load distribution, the same number of peers are able to calculate
all zone identifiers for k = 3 – 5. For k = 6, more peers are involved in calculation,
therefore the average load goes down. Similar is the case for k = 6 – 8.

The average message size also increases with the approximation level (see Figure 3.8(b))
in case of both optimizations, because more clusters are forwarded per message. But
the computation load distribution achieves reduced message size for large values of k
compared to the routing optimization. For example, for k = 9, the average message
size of a peer is reduced by 51%.

3.9 Related Work

P2P information discovery systems that support multi-attribute range queries can be
divided into two major categories. The first category includes systems that enable
such queries using specialized overlay structures. Systems that stack layers on top of
a DHT-based P2P overlay network fall into the second category. In this section, we
briefly discuss these systems.

3.9.1 Specialized Overlay Networks

The first category of P2P information discovery systems including systems such as,
distributed pattern matching system (DPMS) [AB07], Mercury [BAS04], and P-

82

3.9 Related Work

Grid [DHJ+05], enable multi-attribute and range queries with routing guarantees
by organizing peers in a specific overlay structure.

In DPMS [AB07], peers connect to form a lattice structure. Each peer can be a leaf
peer or an indexing peer or both. Leaf peers advertise their content using Bloom
filters [Blo70]. Indexing peers store the advertisements from the leaf peers as well as
from other indexing peers. The advertisements are disseminated to a large number
of indexing peers using replication which generates a large amount of advertisement
traffic. This traffic is controlled by aggregating closely matching advertisements. A
query is first performed using the local indices at a peer. If no matches are found, the
peer sends the query to its parent. This process continues until a peer with a matching
index is found. If the query reaches the highest level in the lattice without any matches,
it is flooded on that level. Finally, the query descends down the lattice until a matching
index is found.

In Mercury [BAS04], peers are organized into logical collections known as routing
hubs. For each attribute used by the data objects, a routing hub is created. A peer
can be a part of multiple routing hubs. Each hub organizes peers in a ring structure
where each peer is responsible for a range of corresponding attribute values. A data
object with multiple attribute/value pairs is stored at multiple corresponding hubs. A
multi-attribute range query however, is carried out in a single hub using the queried
range of a single attribute. The filtration of the data according to the rest of the queried
attributes happens within that hub.

The P-Grid [DHJ+05] system creates a network of peers that is based on the trie
structure. A trie is an ordered tree, typically used by database management systems,
that allows storage and search of string based keys. Unlike a binary search tree, the
strings are only stored at the leaf nodes in a trie structure. All keys that have a common
prefix are stored at the same leaf node which allows efficient processing of range queries.

Due to complex structural requirements, the systems discussed above incur a high
maintenance overhead. Furthermore, DHT-based overlay networks have evolved over a
period of time. As a result, scalable implementations of DHTs (e.g. OpenHash [KRRS04])
are widely available which makes it easier to extend them for information discovery.

3.9.2 DHT-based Overlay Networks

Systems that enable multi-attribute range queries by stacking layers on top of a DHT-
based P2P overlay network can be further divided into two classes. The first class
includes systems that create an individual index for each data attribute. The second
class creates a single index using the combination of all data attributes.

83

3 Optimized Information Discovery System

3.9.2.1 Individual Indices

PHT [RHRS04] uses a trie structure to enable range queries over a single attribute.
Unlike the P-Grid system discussed above the trie structure is not used itself as an overlay
network. Instead, a trie is constructed on top of the DHT overlay network. Multiple
PHTs could be used to support multi-attribute range queries. MAAN [CFCS03] and
Triantafillou et al. [TP03] use locality-preserving hashing to map the value range of an
attribute on continuous nodes over the Chord ring (see Section 2.2.2.1). Multiple locality-
preserving mappings are needed to support multi-attribute range queries. Andrzejak et
al. [AX02] use Hilbert SFC (see Section 2.3) to map the value range of an attribute
on neighbouring nodes in a CAN (see Section 2.2.2.2) network. Similarly, Shu et
al. [SOTZ05] use the z-curve (aka Morton-order or z-order) [OM84] as a locality
preserving mapping over Skip Graphs (see Section 2.2.2.3) to support range queries
over an attribute.

All these systems resolve multi-attribute range queries in one of the following two ways:
either the query is performed on a single attribute and then the data is filtered at the
contacted peers, or the query is divided into multiple single-attribute range queries and
each query is performed individually; later, the data is filtered at the query initiator.
In the first case, the query incurs high latency due to filtering at each peer. Moreover,
a large number of peers are contacted that may or may not have the data objects that
match the queried ranges for all attributes. In the second case, a large number of data
objects are transferred to the query initiator, only some of which match the queried
ranges for all attributes.

3.9.2.2 Combined Index

SCRAP [GYGM04] uses the z-curve over Skip Graphs (see Section 2.2.2.3) to perform
multi-attribute range queries. The z-curve is constructed in a multi-dimensional attribute
space that represents the combination of all data attributes. The authors of SCRAP
explicitly mention the problem of declining performance of SFCs with high dimensional
data.

The Squid system [SP03,SP04] uses Hilbert SFC over a Chord ring to support wild-card
based string queries and multi-attribute range queries. Similar to the SCRAP system,
the Hilbert SFC-based mapping is defined using the combination of all attributes. Their
simulations also display a similar pattern of declining performance with increasing
number of wild-card attributes in multi-attribute range queries.

The ProBe [SAAA05] system extends CAN by considering the multi-dimensional data
objects as points in a multi-dimensional attribute space. This logical space is then
partitioned into non-overlapping rectangles with each peer being responsible for a
rectangle in the overlay network. A muti-attribute range query is forwarded to the
peers that are responsible for the logical rectangles that overlap with the query.

84

3.10 Conclusion

With respect to the categorization discussed above, our system is a hybrid approach to
the layered DHT-based P2P systems. Similar to the first class, our system maintains
multiple indices for query resolution. However, instead of having only single attribute
indices, our system retains multi-attribute indices using SFCs. Each index in our
system is limited in dimensionality to avoid the problems discussed in Section 3.1 with
large dimensional SFCs. Similar to the second class of layered DHT-based system, our
system uses a single index to resolve a multi-attribute range query. The resulting main
challenge is to select the appropriate index from several multi-dimensional indices to
perform the query resolution.

3.10 Conclusion

In this chapter, we presented the system design and experimental evaluation of the
optimized information discovery system (OID), based on SFCs. Our system significantly
improves the performance of multi-attribute range queries, particularly for applications
with large number of data attributes where a single big SFC is inefficient. The optimized
performance for such queries is achieved by defining multiple SFC-based indices and
later selecting the best one for query processing. OID chooses the best SFC-based index
for query processing by estimating the number of peers the query would be evaluated
at, for each SFC-based index. We also introduced two types of query optimizations that
improve the system scalability. The routing optimization limits the message forwarding
load of a peer and the number of parallel messages at a time in the system. The
computation load distribution algorithm distributes the computation load for the query
resolution over several peers in order to avoid bottleneck at particular peers.

For the first prototype of our system, we presented a criterion for defining multiple
SFC-based indices based on query popularity distribution where some queries are more
popular than others. More sophisticated algorithms that work for any kind of popularity
distribution are discussed in the next chapter. Furthermore, the estimation technique for
selecting the optimal SFC-based index for query processing is accurate for comparison
between most of the indices. However, the accuracy decreases when the difference
between the compared SFC-based indices is small. Improving the accuracy of this
algorithm is also discussed in the next chapter.

85

Chapter 4
Index Recommendation for Optimized
Information Discovery

4.1 Introduction

In the previous chapter, we presented the optimized information discovery (OID) system
[MTD+08], which introduces a unique indexing approach for extending distributed hash
tables (DHTs) to efficiently support multi-attribute range queries. The OID system
creates a layer of multiple multi-attribute indices over a DHT. A multi-attribute range
query is resolved by estimating the performance of the query over each index, and
then selecting the one with the best estimate (see Chapter 3). Although our approach
outperforms the previously proposed approaches for extending DHTs [MTD+08] in
terms of query overhead, the criterion for defining the initial set of indices is based on a
simple heuristic (see Section 3.3). The OID system installs a user-defined number of
indices for the most popular queries in the system. This criterion achieves system-wide
optimal performance for applications where few popular queries make up for the largest
portion of the total queries. However, for P2P applications with few popular queries and
a large number of unpopular queries, this criterion would produce a set of sub-optimal
indices.

Finding an optimal set of indices, irrespective of a particular type of query popularity
distribution, is an NP-hard [CDN04] problem, as the number of index possibilities grows
exponentially with the number of data attributes. Therefore, a heuristic-based solution
that produces a close-to-optimal set of indices, is highly desirable. In this chapter,
we present a set of algorithms that provides index recommendations for DHT-based
information discovery systems. Given a limit for the maximum number of indices and a
set of multi-attribute range queries that have been previously monitored in the system
(workload), each algorithm recommends a set of indices that produces close-to-optimal
performance for the workload within the given limit.

87

4 Index Recommendation for Optimized Information Discovery

Distributed Applications

Query Optimizer

DHT (Chord)

Query Engine

Data Placement
Controller

Multi-attribute
Range Query Query Results

lookup(key) Node IPnotify()

SFC1 …SFC2 SFC3 SFCo

Data Index Space

Workload

Index
Recommendation

Algorithms

Application
Designer

Figure 4.1: OID System Architecture

Each index recommendation algorithm, presented in this chapter, works by creating
a set of candidate indices using the unique attribute combinations in the workload
queries. The set of candidate indices is usually larger than the user-defined limit for the
maximum number of indices. Therefore, the size of this set is successively reduced either
by merging some elements or by selecting some while discarding others. Our evaluations
show that in the best case, a set of indices recommended by an index recommendation
algorithm is only 1.5% worse than the optimal set of indices in terms of the overhead.

The rest of the chapter is organized as follows: system architecture along with the role
of the index recommendation algorithms is discussed in Section 4.2. In Section 4.3 we
describe the cost estimation technique for multi-attribute range queries. The index
recommendation algorithms are introduced in Section 4.4. In Section 4.5 we present
the evaluation results. In Section 4.6 we give an overview of the related work. Finally,
in Section 4.7 we conclude this chapter with a brief overview of the next chapter.

4.2 OID System Architecture

The index recommendation algorithms presented in this chapter provide recommenda-
tions for DHT-based information discovery systems with a 3-layer architecture discussed

88

4.3 Query Cost Estimation

in the previous chapter. Figure 4.1 shows the evolution of that architecture from the
one shown in Figure 3.1.

The index recommendation algorithms discussed below provide assistance to the designer
of the distributed application in order to define useful multi-attribute indices for indexing
the data. Each algorithm takes a limit for the maximum number of indices and a
workload of multi-attribute range queries as input. It then recommends a set of
indices (SFC-based indices in case of the OID system) that provides close-to-optimal
performance for the workload within the given limit. This limit represents a trade-off
between increased performance and index maintenance overhead.

We assume that an application-specific workload is available to the designer of the
distributed application. Such a workload could be obtained either by analysing the
querying trends of the application domain, or by monitoring queries in an already
existing information discovery system. A discussion regarding the collection of the
query workload is a part of the next chapter.

4.3 Query Cost Estimation

One of the main objectives of an index recommendation algorithm is to minimize the
cost of the workload queries in a DHT network. In particular, we want to minimize the
number of peers that are evaluated in order to resolve a query using an index. Given
the distributed nature of P2P systems, it is extremely difficult to anticipate the exact
number of peers responsible for the resolution of a query. However, a cost function can
be defined that allows an index recommendation algorithm to compare different indices
in order to determine the one that, with a high probability, results in the least number
of peers being evaluated. In this section, we present such a cost function for the OID
system based on the properties of the Hilbert SFC [Hil91].

The OID system uses Hilbert SFCs for indexing the data objects. In the context of
the OID system, Hilbert SFC is defined as a continuous function h : (a1, a2, . . . , ad)
7→ x ∈ N, where (a1, a2, . . . , ad) is a point in a d-dimensional euclidean space and
N is the set of natural numbers. The process of Hilbert SFC construction divides a
d-dimensional euclidean space into 2k·d sub-cubes, called zones. A line then passes
through each of the zones imposing an order on them. The result is a kth order SFC,
where k, known as the approximation level, determines the granularity of the space
sub-division (see Section 2.3).

The OID system uniformly distributes the identifier space of a SFC, [0, 2k·d), over
the DHT (see Section 3.5). Therefore, with a high probability, the number of peers
responsible for query resolution increases with the number of queried zones and clusters.
Hence, an index recommendation algorithm can determine an index that results in the
least number of peers being evaluated by calculating the number of zones and clusters

89

4 Index Recommendation for Optimized Information Discovery

for a given query over each SFC-based index. We propose the following cost function
for the cost evaluation of each index:

cost(q) =
z

2k·d · c (4.1)

where z is the total number of queried zones, d is the number of index dimensions, k
is the index approximation level and c is the total number of queried clusters. This
cost function is more accurate than the one presented in Section 3.6, because it also
takes the number of queried clusters into account. The higher the number of queried
clusters, the more the spread of the queried data objects across the DHT, and therefore
the higher the cost of retrieving them.

The fraction z/2k·d, known as the zone fraction, denotes the queried proportion of
the SFC-based index. Note that the total number of queried zones can be obtained
without calculating the identifier for each queried zone. However, calculating the total
number of clusters requires calculation of each zone identifier for each SFC-based index.
Performing such a calculation could take a significant amount of time. Therefore, the
actual number of clusters in Equation (4.1) is replaced by the estimated number of
clusters, given by d/dqm:

cost(q) =
z

2k·d ·
d

dqm
(4.2)

where d is the number of dimensions of the index and dqm is number of matching
dimensions of the query with the dimensions of the index.

The total number of queried clusters is estimated based on the observation that the
number of queried clusters increases with increasing index dimensions and decreases with
each matching dimension of the query with the index. Although the exact quantitative
increase or decrease in the number of clusters is not known, our simulations show that
a proportional relationship is sufficient for a qualitative comparison of different indices
(see Section 4.5.2).

4.4 Index Recommendation Algorithms

In this section, we discuss each index recommendation algorithm in detail. Given a
workload W and a user-defined limit o for the maximum number of indices, each index
recommendation algorithm searches for the o most efficient indices for the workload.

The index recommendation algorithms discussed below are independent of a particular
type of cost function or indexing technique. Any type of DHT-based indexing scheme
and a cost function that estimates the cost of a query, could be used in these algorithms.
However, we utilize the SFC-based indices and the cost function discussed in Section
4.3 for evaluating these algorithms. Table 4.1 defines the symbols used in the discussion
below.

90

4.4 Index Recommendation Algorithms

Symbols Definition
A = {a1, a2, a3, . . . , an} Set of attributes used in queries
o User-defined limit for maximum

number of recommended indices
W = {q1, q2, q3, . . . , qm} Set of representative queries. Also

known as the workload
minCost(q, I) Returns the minimum cost of a

query q on a set of indices I
attributeCombination(q) Returns the combination of

attributes used in a query q
createSFCIndex(x) Returns an SFC-based index created

using the attribute combination x

Table 4.1: Definition of Symbols

4.4.1 Näıve Index Recommendation

The most straight-forward (and therefore the näıve) way of determining the optimal set
of indices for a workload W is to enumerate all o-sized combinations of the power-set of
A, and then choose the combination with the least total cost for the queries in W . We
call this algorithm the näıve index recommendation algorithm.

Although the näıve index recommendation algorithm shows an exponential growth in
the complexity, it serves as a reference for the scalable index recommendation algorithms
discussed in the next section. Algorithm 1 shows the pseudo-code for the näıve index
recommendation algorithm.

The first step of the näıve index recommendation algorithm creates a power-set P of
the attribute set A, by invoking the method Pow(A) (Algorithm 1: line 1). In the next
step, a set C of all o-sized combinations of P is created (Algorithm 1: line 2). Each
element of this set represents a possibility for the final solution. Lines 4 to 11 of the
algorithm create a set of multi-attribute indices I using each element of C and select
the I that produces the least cost for the queries in W . The final step of the algorithm
returns this set as the final set of recommendations (Algorithm 1: line 12).

If na is the size of the attribute set A, then the size of the power-set of A is 2na . Since
C is the set of all o-sized combinations of the power-set of A, the complexity of line 2
of the näıve algorithm is:

O

((
2na

o

))
, i.e., O

(
2na !

o!(2na − o)!

)
Moreover, the complexity of line 6 of the algorithm is calculated as:

O

((
2na

o

)
· |W | · o

)

91

4 Index Recommendation for Optimized Information Discovery

Algorithm 1 Näıve Index Recommendation Algorithm

1: P = Pow(A)− {};
2: C = {c1, c2, c3, . . . , cl} : ci ⊆ P , |ci| = o, ci 6= cj ∀i 6= j;
3: minTotalCost = +∞; totalCost = 0; R = I = ∅;
4: for all ci in C do
5: I =

⋃
p∈ci

createSFCIndex(p);

6: totalCost =

|W |∑
k=1

minCost(qk, I);

7: if totalCost < minTotalCost then
8: minTotalCost = totalCost;
9: R = I;
10: end if
11: end for
12: return R;

because the loop statement (Algorithm 1: line 4) executes
(
2na

o

)
times and calculates

the cost of all queries in W over a set of o indices in the worst case.

The overall worst-case complexity of the näıve index recommendation algorithm is:

O

((
2na

o

))
+O

((
2na

o

)
· |W | · o

)
Since the algorithm has an exponential growth in complexity, it does not scale for large
attribute sets. However, it serves as a reference for the scalable index recommendation
algorithms discussed in the next section.

4.4.2 Scalable Index Recommendation

The näıve index recommendation algorithm discussed above does not scale due to
combinatorial explosion. The combinatorial explosion occurs mainly because of two
reasons: first, the calculation of the power-set of A grows exponentially with the number
of attributes (Algorithm 1: line 1) and second, the initial search space of the algorithm
includes all o-sized combinations of the power-set of A (Algorithm 1: line 2).

In this section, we present three scalable index recommendation algorithms that deal
with the complexity of the problem in two steps. The first step of each algorithm
considers a limited set of attribute combinations as the initial search space. We call
this set as the candidate set. The second step of each algorithm uses a certain heuristic
to reduce the size of the candidate set to the user-defined limit o.

92

4.4 Index Recommendation Algorithms

Given a workload W , the candidate set C is defined as:

C =

|W |⋃
i=1

attributeCombination(qi)−
|A|⋃
i=1

{ai}

Unlike the näıve recommendation algorithm, the size of the initial search space is now
limited by the size of the workload. The set containing the combination of all attributes
is removed from C because the final solution of each scalable index recommendation
algorithm always includes an index created from the combination of all attributes in A.
This index acts as a fall-back index for queries that could not be optimized.

The assumption behind the creation of the candidate set is that the workload does not
contain queries using all possible combinations of the attributes in A. This assumption is
realistic for typical P2P applications, where queries with certain attribute combinations
are frequently issued while queries with other attribute combinations are almost never
used [GST07,KLVW04,Sri01].

Since C includes all the unique attribute combinations in W , it also represents the
optimal set of indices for the queries in W . However, typically the size of C is greater
than the user-defined limit o. Any reduction in the size of C would worsen the
performance of W over the set of indices created using the attribute combinations in C.
Therefore, the aim of the following index recommendation algorithms is to keep the
performance deterioration of W minimal, while reducing the size of C to o. In contrast
to the näıve index recommendation algorithm, these algorithms are heuristic solutions
that trade-off runtime for optimality.

4.4.2.1 Cost-based Merge Algorithm

The cost-based merge algorithm recommends a set of multi-attribute indices by merging
pairs of attribute combinations in the candidate set C until the size of C is reduced
to o − 1. Since merging any pair of combinations in C would increase the total cost
of the workload on C, the idea is to merge the pairs that result in the least cost
increase. Algorithm 2.1 and Algorithm 2.2 show the pseudo-code for the cost-based
merge algorithm.

The first few steps of the algorithm select a pair of elements in C, remove the selected
pair from a copy of C (tempC), and add the union of the pair to it (Algorithm 2.1: line
5–7). Next, a set of SFC-based indices is created using the modified copy of C and the
cost of the workload is calculated over it (Algorithm 2.1: line 8–9). These steps are
repeated until a pair of elements in C that results in the least workload cost is located
(Algorithm 2.1: line 10–13). The pair is then removed from C and the union of the
pair is added to it, making the changes to C permanent (Algorithm 2.1: line 15). The
merging process repeats itself as long as the size of C is greater than o− 1. Once the
size of C is less than or equal to o− 1, the algorithm creates a set of indices R from C

93

4 Index Recommendation for Optimized Information Discovery

Algorithm 2.1 Cost-based Merge Algorithm

1: R = ∅; Ć = C;
2: while |C| > o− 1 do
3: minTotalCost = +∞; totalCost = 0;
4: x = y = −1; I = ∅;
5: for all ci, cj ∈ C : i 6= j do
6: tempC = C;
7: tempC = tempC − {ci} − {cj} ∪ {ci ∪ cj};
8: I =

⋃
ck∈tempC

createSFCIndex(ck);

9: totalCost =

|W |∑
l=1

minCost(ql, I);

10: if totalCost < minTotalCost then
11: minTotalCost = totalCost;
12: x = i; y = j;
13: end if
14: end for
15: C = C − {cx} − {cy} ∪ {cx ∪ cy};
16: end while
17: R =

⋃
ci∈C

createSFCIndex(ci);

18: R = R ∪ createSFCIndex(A);
19: if |R| == o− 1 then
20: R = addMissingIndex(R,C, Ć);
21: end if
22: return R;

and adds an index created from the combination of all attributes to R (Algorithm 2.1:
line 17–18).

Typically, R at this point in the algorithm, represents the final set of recommended
indices, but it is possible that the size of C had been reduced to o− 2 by the previous
steps of the algorithm and therefore the size of R is o− 1. This can happen in the case
where merging a pair of elements in an o-sized C reduces C by two elements. Consider
an example scenario where A = {a1, a2, a3, a4}, o = 5 and C consists of 5 elements
shown in Figure 4.2(a). Now suppose that elements e1 and e3 are selected from C
for the merge operation by the algorithm. After merging the selected elements, C is
reduced to 3 elements shown in Figure 4.2(b). Therefore, the set of indices R, shown in
Figure 4.2(b), contains 4 elements which is less than the user-defined limit of 5 indices.

After merging pairs of elements in C, if the size of R is o− 1 (Algorithm 2.1: line 19),
the algorithm invokes the procedure shown in Algorithm 2.2. This procedure adds an

94

4.4 Index Recommendation Algorithms

C = {a2 ^ a4}, {a1 ^ a2 ^ a3}, {a2 ^ a3 ^ a4} | Algo. 2.1: line 2 – 16

R = {a2 ^ a4}
I, {a1 ^ a2 ^ a3}

I, {a2 ^ a3 ^ a4}
I, {a1 ^ a2 ^ a3 ^ a4}

I |
Algo. 2.1: line 17 – 18

C = {a1 ^ a2}, {a2 ^ a4}, {a1 ^ a3}, {a1 ^ a2 ^ a3}, {a2 ^ a3 ^ a4}

(b)

(a)

e1 e5e4e3e2

Figure 4.2: Execution of Cost-based Merge Algorithm

index created using an element from the original candidate set to R. A copy of the
original candidate set denoted by Ć is provided as a parameter to the procedure. An
index created using an element of Ć is added to R and the cost of the workload is
calculated over the modified R (Algorithm 2.2: line 4–6). This step is repeated for
all the elements of Ć and the index that results in the least workload cost over R is
marked (Algorithm 2.2: line 7–10). Finally, the marked index is permanently added to
R (Algorithm 2.2: line 13) and R is returned as the final set of recommended indices
(Algorithm 2.2: line 14).

The worst-case complexity of the cost-based merge algorithm can be determined as
follows. If nc is the size of the candidate set C, then the first loop of the cost-based merge
algorithm performs nc−o executions at most (Algorithm 2.1: line 2). The second loop of
the algorithm (Algorithm 2.1: line 5) is realized as a nested loop. Therefore, it executes
(nc

2−nc)
2

times, in the worst case. The third loop of the algorithm is executed while
calculating the total cost of the workload over nc indices in the worst case (Algorithm
2.1: line 8). Hence, the complexity of line 8 of Algorithm 2.1 is calculated as:

O

(
(nc − o)(

(nc
2 − nc)

2
)(|W | · nc)

)
, i.e., O

(
nc

4
)

Moreover, the complexity of line 6 of Algorithm 2.2 is calculated as O (nc · |W | · o).
Therefore, the overall worst-case complexity of the cost-based merge algorithm is:

O
(
nc

4
)

+O (nc · |W | · o)

95

4 Index Recommendation for Optimized Information Discovery

Algorithm 2.2 addMissingIndex(R,C, Ć)

1: minTotalCost = +∞; totalCost = 0;
2: A = B = ∅;
3: for all ci ∈ (Ć − C) do
4: A = createSFCIndex(ci);
5: R = R ∪ A

6: totalCost =

|W |∑
j=1

minCost(qj, R);

7: if totalCost < minTotalCost then
8: minTotalCost = totalCost;
9: B = A;
10: end if
11: R = R− A;
12: end for
13: R = R ∪B;
14: return R;

4.4.2.2 Similarity-based Merge Algorithm

The similarity-based merge algorithm also uses merging of elements in C to recommend
a set of multi-attribute indices. Pairs of attribute combinations that are most similar
to each other, in terms of attributes, are merged until the size of C is reduced to o− 1.
Compared to the cost-based merge algorithm, the similarity-based merge algorithm has
reduced complexity because the elements in C are merged without actually checking
them against the workload. The similarity-based merge algorithm is based on the
observation that typically merging two almost identical indices will not decrease the
performance of the workload significantly. Algorithm 3 shows the pseudo-code for the
similarity-based merge algorithm.

The similarity-based merge algorithm starts by selecting a pair of attribute combinations
in C and calculating the difference in the attributes of the pair (Algorithm 3: line 5–6).
These steps of the algorithm are repeated for all pairs in C and the pair with the least
difference in attributes is marked (Algorithm 3: line 7–10). The marked pair is then
removed from C and the union of the pair is added to it (Algorithm 3: line 12). The
algorithm keeps repeating as long as the size of C is greater than o − 1. Once the
size of C is less than or equal to o− 1, the algorithm creates a set of indices R from
the modified C and adds an index created from the combination of all attributes to R
(Algorithm 3: line 14–15).

Consider an example scenario where A = {a1, a2, a3, a4}, o = 4 and the initial candidate
set C consists of 5 elements shown in Figure 4.3(a). The similarity-based merge
algorithm starts by merging elements e1 and e2 in C because the difference between

96

4.4 Index Recommendation Algorithms

the two elements is minimum (single attribute). By merging e1 and e2, the size of C is
reduced by a single element and the modified C is shown in Figure 4.3(b). Since the
size of C is still greater than o − 1 , elements e1 and e3 in Figure 4.3(b) are merged
to get the o− 1-sized C shown in Figure 4.3(c). Finally, the set of indices R shown in
Figure 4.3(c) is created using the attribute combinations in C and a combination with
all the attributes in A.

Algorithm 3 Similarity-based Merge Algorithm

1: R = ∅; Ć = C;
2: while |C| > o− 1 do
3: minMergeDiff = +∞; mergeDiff = 0;
4: x = y = −1;
5: for all ci, cj ∈ C : i 6= j do
6: mergeDiff = |(ci ∪ cj)− (ci ∩ cj)|;
7: if mergeDiff < minMergeDiff then
8: minMergeDiff = mergeDiff ;
9: x = i; y = j;
10: end if
11: end for
12: C = C − {cx} − {cy} ∪ {cx ∪ cy};
13: end while
14: R =

⋃
ci∈C

createSFCIndex(ci);

15: R = R ∪ createSFCIndex(A);
16: if |R| == o− 1 then
17: R = addMissingIndex(R,C, Ć);
18: end if
19: return R;

Analogous to the cost-based merge algorithm, the size of the set of indices R produced
by the similarity-based merge algorithm could be o− 1. The missing index is added to
R in the similar manner, as in the cost-based merge algorithm, i.e., by invoking the
procedure shown in Algorithm 2.2 (Algorithm 3: line 16–17).

If nc is the size of the candidate set C, then the first loop of the similarity-based merge

algorithm performs nc − o executions and the second loop performs (nc
2−nc)
2

executions
in the worst case (Algorithm 3: line 2 & 5). Therefore, the worst-case complexity of
line 6 of the algorithm is O (nc

3). Moreover, as established earlier, the complexity of
Algorithm 2.2 is O (nc · |W | · o). Therefore, the overall worst-case complexity of the
similarity-based merge algorithm is:

O
(
nc

3
)

+O (nc · |W | · o)

97

4 Index Recommendation for Optimized Information Discovery

C = {a1 ∧ a2 ∧ a3}, {a1 ∧ a4}, {a2 ∧ a4}

R = {a1 ∧ a2 ∧ a3}
I, {a1 ∧ a4}

I, {a1 ∧ a4}
I, {a1 ∧ a2 ∧ a3 ∧ a4}

I

C = {a1 ∧ a2}, {a1 ∧ a2 ∧ a3}, {a1 ∧ a4}, {a2 ∧ a3}, {a2 ∧ a4}

(b)

(a)

e1 e5e3 e4e2

C = {a1 ∧ a2 ∧ a3}, {a1 ∧ a4}, {a2 ∧ a3}, {a2 ∧ a4}

e4e3e1

(c)

e2

Figure 4.3: Execution of Similarity-based Merge Algorithm

4.4.2.3 Selection Algorithm

The selection algorithm for multi-attribute index recommendation calculates the cost of
the workload for each element of the candidate set C and chooses o− 1 elements with
the least cost. The idea behind the algorithm is that if the selected elements have the
least cost for the workload individually, then the probability that they have least cost
for the workload altogether is also high. Algorithm 4 shows the pseudo-code for the
selection algorithm.

Algorithm 4 Selection Algorithm

1: R = ∅; indexList[] = {}; totalCost = 0;
2: for all ci ∈ C do
3: I = createSFCIndex(ci);

4: totalCost =

|W |∑
k=1

minCost(qk, I);

5: indexList[i] = (I, totalCost);
6: end for
7: sortAscending(indexList)

8: R =
o−1⋃
j=0

IndexList[i].getIndex();

9: return R ∪ createSFCIndex(A);

The selection algorithm begins by creating an SFC-based index for each attribute
combination in C and calculating the cost of the workload over the created indices
(Algorithm 4: line 2–4). The indices along with their costs are stored in a list (Algorithm
4: line 5). The list is later sorted in an ascending order of the workload cost and the

98

4.5 System Evaluation

top o− 1 indices are selected into R (Algorithm 4: line 7–8). Finally, an index created
from the combination of all attributes is added to R, and R is returned as the set of
recommended indices (Algorithm 4: line 9).

The core loop of the selection algorithm performs nc executions, where nc is the size
of the candidate set C (Algorithm 4: line 2). Therefore, the complexity of the first
complex statement of the algorithm (Algorithm 4: line 4) is calculated as O (nc · |W |).
The second complex statement of the algorithm is the call to the sortAscending()
method (Algorithm 4: line 7). A good sorting algorithm, e.g., mergesort or heapsort,
has a runtime complexity of O (nc log nc) [CLRS03]. Hence, the overall worst-case
complexity of the selection algorithm is given as:

O (nc · |W |) +O (nc log nc)

4.5 System Evaluation

In this section, we present results from the experimental evaluations of the index
recommendation algorithms. The algorithms discussed above have been implemented in
Java. An AMD Opteron machine with 4 GB of RAM, running Linux operating system
has been used to perform these evaluations. The workloads for evaluating the index
recommendation algorithms have been generated using the parameters defined in Table
4.2.

Parameter Definition
m Number of queries in the workload
n Size of the attribute set A
r Percentage of distinct attribute

combinations in the workload
α Zipfian distribution parameter

Table 4.2: Parameters for a Generating Workload

Since the index recommendation algorithms presented in this chapter are the first for
P2P information discovery systems, evaluations using a variety of workload scenarios is
required. Hence, a fine grained control over parameters such as total number of queries,
query popularity distribution etc., is needed. Therefore, we use synthetic workloads for
evaluating our algorithms. Moreover, unlike DBMS where benchmark workloads are
made available by the TPC [tpc], no such workload of multi-attribute range queries is
universally available for P2P systems. Workloads from P2P file sharing mostly contain
multi-attribute point queries and are therefore not applicable here.

Using resource discovery in grid computing as a use-case, n number of attributes from
the list shown in Table 4.3 are provided as an input to the workload generator. The

99

4 Index Recommendation for Optimized Information Discovery

workload generator creates a randomly ordered list of all attribute combinations from
the provided attribute set. The list is then reduced by keeping only r% of the items
and discarding the rest of them.

Attribute Value Domain Definition
CPU Speed 1.0 – 4.0 CPU clock speed in GHz
Busy CPU 0 – 100 Percentage of CPU(s) in use
Mem Size 1.0 – 8.0 Total Memory size in GB
Mem Used 0 – 100 Percentage of Memory in use
HDD Size 100.0 – 3000.0 Total HDD size in GB

Table 4.3: Attribute List for Generating Data and Workload

Next, each combination in the reduced list is assigned a popularity p using the Zipfian
distribution with the parameter α. α is a decimal value between 0 and 1, where 0
represents uniform distribution (all combinations have the same popularity) and 1
represents highly skewed distribution (20% combinations make up 80% of all queries).
The popularity of a combination indicates the number of times a combination is repeated
in the workload queries. The sum of all popularities is equal to m (see Table 4.2).

A multi-attribute range query is created by selecting an attribute combination from the
list and randomly assigning a value range to each attribute of the selected combination.
The assigned range for each attribute is chosen from the domain of the attribute shown
in Table 4.3. Finally, a workload of queries is created by selecting each attribute
combination p times for value range assignment, where p is the popularity of the
attribute combination.

We use an attribute set of only 5 attributes as shown in Table 4.3. This is done in order
to enable the comparison of the näıve index recommendation algorithm with the other
algorithms, because the execution time of the näıve index recommendation algorithm
becomes prohibitively high for a larger attribute set. At the same time, the näıve
algorithm serves as a reference, since it leads to the optimal set of recommendations.

4.5.1 Performance Evaluation

In this section, we present results from the performance evaluation of all index re-
commendation algorithms. For the sake of comparison, the performance of a system
where an index recommendation algorithm is not used, i.e., a system with only a single
index created from the combination of all attributes, is also evaluated. For each of
the evaluation scenarios discussed below, the following two performance metrics are
measured:

• Total Workload Cost – Cost of all queries in the workload. The cost here refers
to the estimated query cost discussed in Section 4.3, i.e., we do not consider the

100

4.5 System Evaluation

 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 20 30 40 50 60

W
o
rk

lo
a
d
 C

o
s
t

Distinct Attribute Combinations [%]

Naïve
S−Merge
C−Merge

Selection
Single

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 20 30 40 50 60

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
e
c
]

Distinct Attribute Combinations [%]

Naïve
S−Merge

C−Merge
Selection

(b)

Figure 4.4: Influence of Varying Attribute Combinations

real cost of the workload in a DHT, e.g. the actual number of queried peers. An
evaluation with a simulated DHT network follows later.

• Execution Time – Execution time of an algorithm in seconds.

For each point on the graphs displayed in this section, the corresponding experiment is
repeated 10 times with different workloads, and an average value is plotted.

4.5.1.1 Influence of Varying Attribute Combinations

In this section, we study the effect of varying the number of attribute combinations
in the workload. Table 4.4 shows the parameters used for performing this evaluation.
The first four parameters of Table 4.4 are used by the workload generator to produce
5 different query workloads. Each new workload has a larger variety of attribute
combinations then the previous one. The last parameter of Table 4.4 used by the index
recommendation algorithms represents the user-defined limit for the maximum number
of recommendations. Figure 4.4 shows the performance of each index recommendation
algorithm.

Parameter Value(s)
m 10, 000
n 5
c 20, 30, . . . , 60
α 0.8
o 3

Table 4.4: Evaluation Parameters – Influence of Varying Attribute Combinations

101

4 Index Recommendation for Optimized Information Discovery

 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 2 3 4 5 6

W
o

rk
lo

a
d

 C
o

s
t

Maximum # of Indices [o]

Naïve
S−Merge
C−Merge

Selection
Single

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 2 3 4 5 6

E
x
e
c
u
ti
o
n
 T

im
e
 [
s
e
c
]

Maximum # of Indices [o]

Naïve
S−Merge

C−Merge
Selection

(b)

Figure 4.5: Influence of Varying Number of Indices

With respect to the total workload cost, the näıve algorithm performs best in all
cases because the algorithm recommends a set of optimal indices for the workload
(see Figure 4.4(a)). The scalable algorithm that comes closest to the optimal solution
is the cost-based merge algorithm. The similarity-based merge algorithm performs
slightly worse than the selection algorithm for the cases where Algorithm 2.2 (procedure
for adding a missing index to the final set of indices) is mostly not executed (for,
r = 20 & 30). In other cases, the selection algorithm shows worse performance than
the similarity-based merge algorithm. Note that the total workload cost of all index
recommendation algorithms is lower than the case where only a single index with the
combination of all attributes is used.

Although the execution time of the näıve algorithm is highest compared to the execution
times of the other algorithms (see Figure 4.4(b)), it remains almost constant because the
search space of the näıve algorithm always includes all possible attribute combinations
(see Section 4.4.1). Since the initial search space of the scalable algorithms only includes
the attribute combinations from the workload (see Section 4.4.2), the execution time of
the scalable algorithms grows with increasing number of unique attribute combinations
in the workload.

Figure 4.4(b) also shows the limitations of the cost-based merge algorithm. If the number
of attribute combinations is higher than 60%, the execution time of the cost-based
merge algorithm exceeds the execution time of the näıve algorithm.

4.5.1.2 Influence of Varying Number of Indices

In this section, we demonstrate the effect of a varying user-defined limit for the maximum
number of indices on each index recommendation algorithm. The parameters used for
performing the evaluation are shown in Table 4.5.

102

4.5 System Evaluation

Parameter Value(s)
m 10, 000
n 5
c 50
α 0.8
o 2, 3, . . . , 6

Table 4.5: Evaluation Parameters – Influence of Varying Number of Indices

Generally, the total workload cost for each index recommendation algorithm decreases
as the user-defined limit for the maximum number of indices increases (see Figure
4.5(a)). This happens because with increasing number of indices more queries are able
to find less expensive indices for resolution.

The similarity-based merge algorithm produces higher workload cost than the selection
algorithm for cases where Algorithm 2.2 is mostly not executed (Figure 4.5(a), for
o = 4, 5 & 6). This indicates that the quality of indices produced by the similarity-based
merge algorithm is better in cases where Algorithm 2.2 is executed, because Algorithm
2.2 selects the final index from the candidate set based on the total workload cost.

The total execution time of the näıve algorithm increases with increasing number
of indices (see Figure 4.5(b)), because the complexity of the algorithm grows with
increasing number of indices (see Section 4.4.1). However, the total execution time of
the cost-based merge algorithm and the selection algorithm remains almost constant,
because for these algorithms, the execution time is mostly dependent on the size of the
candidate set which remains constant throughout the evaluation.

The total execution time of the similarity-based merge algorithm suddenly decreases
between values 3 and 5 for the maximum number of indices (see Figure 4.5(b)). This
happens because in these case Algorithm 2.2 is mostly not executed.

4.5.1.3 Influence of Varying Popularity Distribution

In this section, we illustrate the effect of varying query popularity distribution on each
index recommendation algorithm. The parameters used for performing the evaluation
are shown in Table 4.6.

We vary the query popularity distribution of the workload from uniform distribution
(α = 0) to highly skewed distribution (α = 1). Figure 4.6 shows the performance of each
index recommendation algorithm with respect to the total workload cost. The execution
time of the algorithms is not shown because it remains almost constant throughout the
evaluation, showing the same order as in the previous evaluation.

As expected, the näıve algorithm yields the least workload cost in all cases. The scalable
algorithm that comes closest to the näıve approach is the cost-based merge algorithms.

103

4 Index Recommendation for Optimized Information Discovery

 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
o

rk
lo

a
d

 C
o

s
t

Popularity Distribution [α]

Naïve
S−Merge
C−Merge

Selection
Single

Figure 4.6: Influence of Varying Popularity Distribution

Parameter Value(s)
m 10, 000
n 5
c 50
α 0.0, 0.1, . . . , 1.0
o 3

Table 4.6: Evaluation Parameters – Influence of Varying Popularity Distribution

The selection algorithm produces the highest workload cost which slightly decreases as
the popularity distribution varies from uniform to skewed distribution. As with the
previous evaluation, the total workload cost of all index recommendation algorithms is
lower than the case where only a single index with the combination of all attributes is
used.

Since all index recommendation algorithms generally try to include the most popular
indices in the final set of recommendations, the total workload cost produced by each
index recommendation algorithm decreases as the query popularity distribution varies
from uniform to skewed distribution.

4.5.2 Network Simulation

In this section, we show that the SFC-based cost estimation formula presented in
Section 4.3 is accurate enough for a qualitative comparison between different index
recommendation algorithms discussed in Section 4.4. In order to do so, we first evaluate
each index recommendation algorithm using the parameter values shown in Table 4.7.
Each evaluation experiment is repeated 5 times with a different workload. The estimated

104

4.5 System Evaluation

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

10
2

10
3

10
4

10
5

R
e

la
ti
v
e

 #
 o

f
Q

u
e

ri
e

d
 P

e
e

rs
 [

%
]

Network Size

S−Merge
C−Merge
Selection

Single

Figure 4.7: Network Simulation

total workload cost, averaged over 5 runs, calculated by each index recommendation
algorithm, is shown in the following Table 4.8. This cost is the estimated cost of the
workload calculated using Equation 4.2 discussed in Section 4.3.

Parameter Value(s)
m 50
n 4
c 50
α 0.6
o 3

Table 4.7: Evaluation Parameters – Network Simulation

The OID System [MTD+08] is then set up in a P2P network simulation environment.
Multiple SFC-based indices, corresponding to the recommendation given by an index
recommendation algorithm, are defined in the OID Index Space (see Section 4.2). Each
query from the same workload used above is then issued from a random peer in the
network. This experiment is repeated 5 times for each index recommendation algorithm
using the 5 corresponding workloads utilized during the evaluation above. The following
metric is then measured and averaged over 5 runs for each recommendation algorithm:

• Number of Queried Peers – Total number of peers queried in order to resolve
all the queries in the workload.

Table 4.8 shows that the näıve index recommendation algorithm performs best with
respect to the total workload cost, followed by the cost-based merge, similarity-based
merge and the selection algorithm respectively. The total workload cost is highest for a
single index created using the combination of all attributes.

105

4 Index Recommendation for Optimized Information Discovery

Algorithm Total Workload Cost
Näıve 1.739
S-Merge 2.038
C-Merge 1.776
Selection 2.084
Single 2.852

Table 4.8: Total Workload Cost

Figure 4.7 shows the number of queried peers for each scalable index recommendation
algorithm (in percentage) relative to the number of queried peers for the näıve index
recommendation algorithm. The relative number of queried peers are also shown for a
single index created using the combination of all attributes. Figure 4.7 asserts the same
order of the algorithms as seen in Table 4.8, but now with respect to the actual number
of queried peers. This shows that the cost estimation formula shown in Equation 4.2 is
accurate enough for a qualitative comparison between different index recommendation
algorithms.

Figure 4.7 also shows that in the best case, the cost-based merge algorithm queries only
1.5% more peers compared to the näıve index recommendation algorithm during the
evaluation.

4.5.3 Evaluation Summary

The evaluation results discussed in Section 4.5.1 and Section 4.5.2 show that there is a
trade-off between the performance and the execution time of the index recommendation
algorithms. The algorithms that produce efficient index recommendations generally
take longer time to do so compared to the algorithms that produce less efficient
recommendations.

Among the scalable index recommendation algorithms, the cost-based merge algorithm
performs the best with respect to the total workload cost (see Section 4.5.1) and
the number of queried peers (see Section 4.5.2). The cost-based merge algorithm is
generally followed by the similarity-based merge algorithm and the selection algorithm
respectively.

With respect to the execution time, the cost-based merge algorithm shows the worst
performance, generally followed by the similarity-based merge algorithm and the selec-
tion algorithm respectively. Although during some evaluations the execution time of the
selection algorithm exceeds the execution time of the similarity-based merge algorithm
(Figure 4.4(b) & Figure 4.5(b)), the worst-case analysis of the two algorithms (see
Section 4.4.2.2 & Section 4.4.2.3) suggests that for a large variety of queried attribute
combinations, the execution time of the similarity-based merge algorithm would be
higher than the execution time of the selection algorithm.

106

4.6 Related Work

4.6 Related Work

To the best of our knowledge, there are no index recommendation algorithms available
for DHT-based information discovery systems. Nonetheless, index tuning/recommend-
ation techniques have been widely studied in the area of database management systems
(DBMS).

There is a fundamental difference between the index recommendation algorithms for
databases and the algorithms presented in this chapter. The index recommendation
algorithms for databases rely on the SQL Query Optimizer for evaluating the cost
of a query over an index [BC05,CN97,CN99,VZZ+00,ZRL+04]. The estimated cost
of a query given by the SQL Query Optimizer is highly accurate, because the query
optimizer uses a central repository known as the Data Dictionary, containing statistical
information about the data. Gathering such statistical information in a large, distributed
and dynamic P2P network would result in a high overhead. Therefore, our approach
only uses the local structural information of the indices to estimate the query cost (see
Section 4.3).

The index recommendation algorithms designed by Bruno et al. [BC05], Chaudhuri et
al. [CN97,CN99], and Valentin et al. [VZZ+00] carry out the recommendation process in
two steps. In the first step, the execution of the workload queries is simulated. During
the simulation process, the indices that appear in the Query Execution Plans of the
query optimizer are collected. This collection represents the initial set of useful indices.
The scalable index recommendation algorithms discussed in this chapter also provide
the recommendations in two steps. However, our algorithms obtain the initial set of
indices using the unique attribute combinations that appear in the workload queries
(see Section 4.4.2).

During the second step of the index recommendation process, the recommendation
algorithms for databases refine the initial set of indices using certain heuristics. The
goal in general is to obtain a set of indices that produces the least cost for the queries
in the workload.

Given a user-defined limit o for the maximum number of indices, the heuristic presented
in [CN97] generates all possible m-sized (m < o) subsets of the initial set of indices. The
subset with the least cost for the workload is then chosen as a seed for further processing.
Next, an index from the initial set is continuously added to the seed until the size of
seed is equal to o. It is unclear, how the value for m is chosen, since the algorithm has
prohibitively high execution time if m is large, and sub-optimal recommendations if m
is small.

In [CN99], the heuristic introduced by Chaudhuri et al. reduces the size of the initial set
of indices by merging pairs of indices as long as a cost constraint is not violated. Unlike
the cost-based merge algorithm (see Section 4.4.2.1) presented in this chapter that tries
to minimize the workload cost given a limit o for the maximum number of indices, the

107

4 Index Recommendation for Optimized Information Discovery

algorithm in [CN99] minimizes the storage, given a cost constraint. Therefore, it is
possible that the final set of recommendations is larger than o.

The algorithm introduced by Bruno et al. in [BC05] produces a set of recommendations
by applying different transformations (merging, prefixing, deletion) on pairs of indices
in the initial set. The algorithm continues as long as a certain time constraint is not
violated. It is not clear, how long the algorithm should be executed so that it produces
an o-sized set of recommendations.

Valentine et al. introduced a heuristic in [VZZ+00] based on a variation of the solution
to the Knapsack problem. Their algorithm assigns a cost-to-benefit ratio to each index
in the initial set of indices and then selects the indices with the highest ratio as long
as a storage constraint is not violated. The algorithm then randomly swaps some
indices from the set of selected indices with some indices in the initial set to try another
variation of the solution. The swap and selection process continues as long as a time
constraint is not violated. Although, the swap and selection technique could lead to a
better solution than the initial one, it could also lead to a worse solution.

4.7 Conclusion

In this chapter we presented several index recommendation algorithms for DHT-based
information discovery systems. Given a limit for the maximum number of indices
and a workload of queries, each algorithm recommends a set of indices that produces
close-to-optimal performance for the workload queries within the given limit. The set
of index recommendation algorithms includes three scalable index recommendation
algorithms: cost-based merge, similarity-based merge and selection algorithm.

Our evaluations show that there is a trade-off between the performance and the execution
time of the scalable index recommendation algorithms. With respect to the performance,
the cost-based merge algorithm is the best (only 1.5% worse than the näıve algorithm),
generally followed by the similarity-based merge and the selection algorithms. With
respect to the execution time of the algorithms, the order is reversed.

The index recommendation algorithms discussed in this chapter provide an aid to
the designer of a distributed application in order to define useful indices for the
expected queries in the system. The next chapter discusses the automation of index
recommendation and installation in DHT-based information discovery systems. For
that, we need to consider the overhead of installing an index compared to the benefit
of installing it. Moreover, development of a distributed query monitoring service for
gathering the workload of queries in DHTs is also discussed in the next chapter.

108

Chapter 5
Self-adapting Optimized Information
Discovery System

5.1 Introduction

In the previous chapter, we presented a set of index recommendation algorithms that
assists the designer of a distributed application to define a useful set of indices for
efficiently supporting multi-attribute range queries over distributed hash tables (DHTs).
Given a limit for the maximum number of indices and a representative set of multi-
attribute range queries (workload), each index recommendation algorithm recommends
a set of indices that produces close-to-optimal system performance for the workload
within the given limit. The index recommendation algorithms work on the assumption
that a workload of queries in a DHT-based information discovery system remains stable
for a certain period of time, i.e., newly issued queries in the system are not significantly
different from the previously issued ones. Based on this assumption, if an optimal set
of indices is defined for the previously issued queries, then this set of indices should
also remain close to optimal for the future queries issued over the same period of time.

The index recommendation algorithms work offline, i.e., it is assumed that the workload
provided to an algorithm is somehow collected from an already existing DHT-based
information discovery system. Further, it is assumed that the recommended set of
indices is manually installed over the DHT by the designer of the distributed application.
In order to carry out such an installation, the information discovery system would have
to be taken offline, which might be feasible for small peer-to-peer (P2P) applications
but highly undesirable for large-scale applications. In this chapter, we relax these
assumptions to present an adaptive OID system. The adaptive OID system performs
the task of index recommendation and index installation online, effectively eliminating
the need for manually updating the indices.

109

5 Self-adapting Optimized Information Discovery System

Distributed Applications

Distributed Hash Table

Query EngineData Placement
Controller

MAR Query Query Results

lookup(key)
Broadcast(m)

Node IP
Aggregate(v)

SFC1 …SFC2 SFC3 SFCo

Data Index Space

Index
Recommendation

Algorithms

Adaptation Engine

Workload

Figure 5.1: Architecture of the Adaptive OID

The main discussion in this chapter is regarding an index adaptation process. This
index adaptation process, including online index recommendation and index installation,
is carried out in four phases in a DHT. During the first phase, a workload of multi-
attribute range queries is collected from several peers in the network using uniform
random sampling. The second phase involves execution of an index recommendation
algorithm to determine an optimal set of indices for the collected workload. During the
third phase, the cost and the benefit of installing the recommended set of indices is
calculated. If it is beneficial to install the recommended set of indices, the installation
is carried out during the fourth phase.

The rest of the chapter is organized as follows: the architecture of the adaptive OID
system is discussed in Section 5.2. In Section 5.3 we describe the index adaptation
process and its phases in detail. Evaluation results are presented in Section 5.4. In
Section 5.5 we give an overview of the related work. Finally, we conclude this chapter
in Section 5.6.

5.2 Evolution of the OID Architecture

The basic OID architecture presented in Section 3.2 has evolved into the architecture
of the adaptive OID system shown in Figure 5.1. There have been two fundamental

110

5.3 Index Adaptation

advances. First, the OID framework layer (middle layer) has a new component known as
the adaptation engine. The adaptation engine is responsible for online recommendation
and installation of indices in the data index space of the OID framework layer. Second,
in addition to the basic lookup functionality, we assume a DHT layer (bottom layer)
that also provides the services for broadcasting a message and aggregating a value. The
top layer (distributed application layer) of the architecture and other components of
the OID framework layer stay the same as presented earlier.

5.3 Index Adaptation

The goal of the index adaptation process is to update the set of indices in the OID
framework layer of each peer according to the dynamic workload of multi-attribute range
queries in the system. In order to achieve this goal, we introduce a four-phase index
adaptation process that is periodically executed in the system. The four phases of the
index adaptation process are: distributed workload collection, index recommendation,
adaptation decision, and index installation. During the first phase, a workload of
multi-attribute range queries is collected from random peers in the network. This
workload is used in the second phase to obtain a new set of indices. During the third
phase, the cost and the benefit of installing the new set of indices is calculated. Finally,
if it is beneficial to install the new set of indices, the installation is carried out during
the fourth phase.

We define following three types of peer roles to carry out the index adaptation process:

• Adaptation Peer – An adaptation peer is a peer that periodically initiates the
index adaptation process. The length of a period is set by the designer of the
distributed application. In order to avoid conflicting index updates, there can
only be a single adaptation peer at a time in the network. We assume that the
location of the adaptation peer is pre-selected by the designer of the distributed
application. This could be done by deciding that the peer that is the successors
of a certain key in the DHT would be the adaptation peer in the network.

If a new peer joins at the location of the adaptation peer, the state of the
adaptation peer is transferred to it and this peer becomes the new adaptation
peer. Moreover, if the adaptation peer fails during the first three phases of the
index adaptation process, the process is restarted by the new adaptation peer.
We assume a correctly functioning DHT where any peer that fails or leaves the
network is automatically replaced.

• Monitoring Peer – Each peer in our system is a monitoring peer. Monitoring
peers are involved in the local collection of the query workload, i.e., each monitoring
peer logs each query that it resolves. This log is emptied when a new set of indices
is installed in the data index space of the peer.

111

5 Self-adapting Optimized Information Discovery System

• Sampling Peer – A sampling peer in our system is a peer that is involved in
distributed workload collection discussed in the next section. Any peer can take
the role of a sampling peer.

5.3.1 Distributed Workload Collection

Ideally, if the complete set of past queries were collected from all peers in the network,
the optimal set of indices could be obtained during the second phase of index adaptation.
However, collecting queries from all peers is neither efficient nor scalable. Therefore, the
goal of the distributed workload collection phase is to collect a subset of the complete
set of queries by sampling some random peers. The idea is to sample a sufficiently large
subset of peers at different locations in the network to get an approximation of the
complete set of queries.

The adaptation peer could directly collect a workload of multi-attribute range queries
by randomly sampling some monitoring peers in the network. However, in that case,
the adaptation peer will have to issue a large number of sampling requests and handle a
large number of sampling responses, making the sampling process unscalable. Therefore,
in order to limit the fanout of the adaptation peer and to make the sampling process
scalable, we use a two-level sampling process. The two-level sampling algorithm
presented below could be easily extended to n levels. However, the larger the number
of levels, the higher the network load for the sampling process will be.

The adaptation peer initiates the first level of the sampling process by generating β
random keys from the identifier space of the DHT, i.e., [0, 2m), where m is the number
of identifier bits. A DHT lookup is then performed for each random key in order to
identify the peer responsible for it. Here, we assume a basic DHT lookup functionality
that, given a key, returns the identity of the peer responsible for the key. Once the
identity of a random peers is learned, a sampling request with parameter γ is sent to it,
where γ indicates the number of peers to be sampled at the second level of the sampling
process.

Upon receiving a sampling request from the adaptation peer, a peer assumes the role of
a sampling peer. The sampling peer then forwards the sampling request to γ random
monitoring peers in the same manner as the adaptation peer. After receiving a sampling
request from a sampling peer, a monitoring peer sends the local query workload to the
sampling peer.

A sampling peer accumulates all the workloads received from γ random monitoring
peers into a single workload. Since the same query could have been resolved by
several monitoring peers, it could appear multiple times in the accumulated workload.
Therefore, duplicates are eliminated during the accumulation process. Note that the
same query issued twice is not considered as a duplicate query since each query has
a globally unique identifier. A globally unique identifier for a query is generated by

112

5.3 Index Adaptation

titi-1ti-2ti-3ti-j ti+3ti+2ti+1 ti+j

Wi-j

Ti, i-j Ti, i+j

Figure 5.2: Adaptation Decision

concatenating the unique identifier of the querying peer with a numeric counter. Finally,
the accumulated workload including the workload of the sampling peer is sent to the
adaptation peer where the accumulation process is repeated.

In order to detect the failures of the monitoring or the sampling peers, the process
of distributed workload collection includes timeouts at each level. At the level of a
sampling peer, if a response is not received from a monitoring peer before the timeout,
the sampling request is re-issued assuming that the faulty monitoring peer has been
replaced by the DHT. Similarly, at the level of the adaptation peer, if a response is not
received from a sampling peer before the timeout, the sampling request is re-issued.

In case of the Chord DHT (see Section 2.2.2.1), the distributed workload collection
phase requires O ((β · γ) · (log2N + 2)) messages in the worst-case to collect a workload
of multi-attribute range queries. N is the total number of peers in the network and
log2N is the maximum number of messages required for a lookup. Two additional
messages are needed to send a sampling request to a peer and receive a sampling
response from it.

5.3.2 Index Recommendation

Once a workload of multi-attribute range queries has been collected at the adaptation
peer, the next step in the adaptation process is to search for an optimal set of indices
for the collected workload. For this purpose, we utilized the index recommendation
algorithms introduced in the previous chapter.

Given a workload of multi-attribute range queries and a limit o for the maximum number
of indices, an index recommendation algorithm recommends a close-to-optimal set of
indices Ir for the given workload. For a detailed description of the index recommendation
algorithms, see Chapter 4.

113

5 Self-adapting Optimized Information Discovery System

5.3.3 Adaptation Decision

After obtaining a recommended set of indices from an index recommendation algorithm,
a näıve approach would be to directly install this set of indices in the network. However,
it is possible that the cost of installing the recommended set of indices outweighs
the benefit of installing it. Therefore, the goal of the adaptation decision phase is to
determine whether the installation of the recommended set of indices is beneficial or
not. This is done by comparing the estimated cost of the workload over the current set
of indices with the estimated cost of the workload over the recommended set of indices.
The installation cost of the recommended set of indices is also taken into account.

Let ti mark the current periodic execution of the index adaptation process, Ic be the
current set of indices, and Ir be the recommended set of indices. Then, we define the
following quantities in our system (see Figure 5.2):

• Ti,i−j – Time interval between ti and ti−j ∀j ∈ N+ where, ti−j marks the index
adaptation process where Ic was installed. Note that this time interval is dynamic
since a new set of indices is not installed during each periodic execution of the
index adaptation process.

• Wi−j – Complete set of multi-attribute range queries during the time interval
Ti,i−j.

• SWi−j – Sampled workload, from the complete set of multi-attribute range queries
during the time interval Ti,i−j.

• costin – Estimated cost of installing the recommended set of indices Ir.

The adaptation peer considers the installation of the recommended set Ir beneficial, if
the following condition holds:

cost(SWi−j, Ic) > cost(SWi−j, Ir) + costin (5.1)

i.e., if the cost of the sampled workload SWi−j over the current set of indices Ic is
greater than the cost of the same workload over the recommended set of indices Ir
plus the installation cost of the recommended set of indices. The assumption behind
Condition 5.1 is that the complete set of multi-attribute range queries Wi−j would be
repeated for a similar interval of time in the future, i.e., for Ti,i+j. This is the most
general assumption for predicting the cost of future queries. If Condition 5.1 is satisfied,
the next phase of index adaptation is carried out. Otherwise, the index adaptation
process is halted until the next periodic execution.

The cost functions cost(SWi−j, Ic) and cost(SWi−j, Ir) in Condition 5.1 can be gener-
alized as a cost function cost(Q, I). If Q = {q1, q2, q3, . . . , ql} is a set of queries and
I = {SFC1, SFC2, SFC3, . . . , SFCo} is a set of indices, then cost(Q, I) is calculated

114

5.3 Index Adaptation

as:

cost(Q, I) =

|Q|∑
i=1

cost(qi, SFCj), such that

cost(qi, SFCj) < cost(qi, SFCk), where
∀j, k : 1 ≤ (j, k) ≤ |I| and j 6= k

(5.2)

i.e., the cost of a set of queries Q over a set of indices I is a sum of the cost of each
query in Q over the least expensive index in I.

In order to determine the least expensive index for a query, the network cost of the
query over each index needs to be calculated. Due to highly dynamic nature of P2P
systems, this cost cannot be accurately anticipated. However, if the cost of routing
a message in the network is known, the maximum cost for resolving a query can be
calculated.

Let z be the total number of zones a query maps to, on an SFC-based index. In order
to resolve this query, the peer responsible for each zone has to be queried. If a basic
query routing strategy is considered, where first a lookup is performed to determine the
peer responsible for each zone, then the maximum cost of a query q on an index SFC
is calculated as:

cost(q, SFC) = z · (log2N + 2) [messages] (5.3)

where N is the total number of peers in the network and log2N is the maximum number
of messages needed for looking up a peer responsible for a zone. Two additional messages
are needed to send a query request to a peer and receive a query response from it.

This formula for estimating the cost of a query on an SFC-based index is more accurate
than the cost estimation formulas presented in Section 3.6 and Section 4.3. The reason
is that this formula relies on actual number of peers (N) in the network to estimate the
message load produced by a query. Although this formula is dependent on the type of
used DHT (Chord is assumed here) and the used query routing algorithm (the most
basic one is assumed here), the index adaptation process remains independent of the
formula. Any other formula that allows qualitative comparison of SFC-based indices
could be used here.

In order to check if Condition 5.1 holds, the cost of installing the recommended set
of indices costin has to be calculated. Similar to the cost calculation above, only the
maximum cost of installation can be calculated. Let λ be the total number of unique
data objects in the system, then the maximum cost for installing the recommended set
of indices Ir is calculated as:

costin = 3 · (N − 1) + (|Ir| − |Ic ∩ Ir|)·
λ · (log2N + 2) [messages]

(5.4)

where 3·(N−1) is the cost of broadcasting the recommended set of indices, (|Ir|−|Ic∩Ir|)
is the total number of new indices, and λ · (log2N + 2) is the cost of re-indexing the

115

5 Self-adapting Optimized Information Discovery System

data. The reason for the broadcast cost being almost three-times the network size is
discussed in the next section.

This formula for estimating the cost of re-indexing the data objects is also DHT
dependent (Chord is assumed here). However, it could be replaced by any other formula
that accurately estimates the cost of re-indexing the data objects in any DHT.

Note that Equations 5.3 and 5.4 require the knowledge of global parameters like N and
λ, which are generally not known to a peer in a DHT network. However, an estimate for
these parameters could be obtained by installing a reliable broadcast/aggregation tree
in the network. The root of this tree will be the adaptation peer in our system. Such
a broadcast/aggregation tree could be installed and maintained using the approaches
discussed in [EAABH03] and [HZ10].

5.3.4 Index Installation

Once it is determined that installing a recommended set of indices is beneficial, the
adaptation peer initiates the index installation phase. The goal of the index installation
phase is to broadcast the new set of indices Ir, and to re-index the data on each peer
accordingly. A data object is re-indexed by removing the identifier assigned to it using
an old index (an index in Ic but not in {Ic ∩ Ir}) and then assigning it a new identifier
using a new index (an index in Ir). When the new identifier is assigned to the data
object, it is possible that this identifier does not fall under the identifier space of
the current peer. In that case, the data object is relocated to the peer that is now
responsible for hosting it.

A näıve way of carrying out the index installation phase is to broadcast the recommended
set of indices using the DHT broadcast/aggregation tree, and let each peer re-index
the data according to the new set of indices. However, this way the queries issued in
the system during the re-indexing process may not be able to find all the matching
data objects. This could happen in cases where, e.g., a query issued using a new index,
searches for matching data objects at a peer where the data has not been placed using
this index yet. In order to avoid such situation, we introduce a 3-step index installation
phase.

During the first step, a broadcast message containing the new set of indices Ir is
sent by the adaptation peer to each peer in the system. For this purpose, the DHT
broadcast/aggregation tree is used. Upon receiving the broadcast message, each peer
begins the data re-indexing process discussed below. Note that the queries that are
issued during this step continue to be resolved using Ic.

As discussed earlier, the data index space of the OID system consists of o number of
indices, i.e., |Ic| = o. A data object is indexed using each of these indices. This means
that there are o copies (references) of the same data object with different identifier in
the system (possibly residing at o different peers). Now if each copy of the data object

116

5.3 Index Adaptation

SFC1

SFC1

SFC4

SFC7

SFC9

SFC7

SFC6

SFC8

Ic Ir

Figure 5.3: Data Re-Indexing

is re-indexed using each new index in Ir, the copies of the data object would increase
by o− 1 times |Ir|. For example, if Ic and Ir are as shown in Figure 5.3, a data object
indexed using Ic would be located at four locations in the system since |Ic| = 4. Now
if each of those four locations re-indexes the data object using each index in Ir, there
would be 16 copies it in the system as (o x |Ir|) = (4 x 4) = 16. To avoid this situation,
it has to be made sure that each copy of the data object is not re-indexed using each
new index. This is achieved as follows.

Data re-indexing at a peer starts with the comparison of the installed set of indices Ic
with the new set of indices Ir (see Figure 5.3). First, the common elements in both
sets are ignored because no re-indexing is needed using indices that already exist and
are also a part of Ir. Next, a mapping is defined from each element in Ic to each
corresponding element in Ir. A data object that had been previously indexed using
an element of Ic is now re-indexed only using the corresponding element in Ir. The
re-indexing process involves a lookup for the peer responsible for the new identifier of
the data object and the relocation of the data to that peer.

Consider the set of indices shown in Figure 5.3. Using the re-indexing technique
discussed above, the peer that held the copy of a data object with an identifier assigned
using SFC4 in Ic, will re-index this copy using SFC6 in Ir. Similarly the peer that held
the copy of the data object with an identifier assigned using SFC9 in Ic, will re-index
this copy using SFC8 in Ir. Since each copy of a data object is re-indexed only once,
the number of copies of the data object remains constant in the system. Note that for
this process to work, each copy of the data object must keep track of the index used for
assigning an identifier to it.

Once the re-indexing of the data is finished at a peer, it sends an acknowledgement
message to the parent node in the DHT broadcast/aggregation tree. During the second
step of the index installation process, the acknowledgements from all peers in the network
are aggregated until the adaptation peer receives the aggregated acknowledgement.
Queries still continue to be resolved using the old set of indices Ic.

Upon receiving an aggregated acknowledgement from the child nodes in the DHT

117

5 Self-adapting Optimized Information Discovery System

broadcast/aggregation tree, the adaptation peer starts the third step of index installation
by broadcasting a use index message. When this message is received at a peer, the
peer removes Ic, discards the corresponding data, empties the monitored query log,
and starts using Ir for query resolution. Note that the data common between Ic and
Ir is not discarded. During this step of index installation, if a query is issued from a
peer that has not received the use index message yet, then there are two possibilities.
First, the query will be resolved using Ic, if all peers involved in query resolution have
not discarded the data corresponding to Ic. Second, even if a single peer involved in
query resolution has discarded Ic, then the peer that issued the query will be asked to
re-issue it using Ir.

If the adaptation peer fails before the first step of the index installation phase, then the
process of index adaptation is repeated by the new adaptation peer. However, if the
adaptation peer fails after the first step of index installation, the new adaptation peer
is already aware of the state of index installation due to the broadcast of new indices in
the network. Therefore, the new adaptation peer executes the next steps of the index
installation phase.

5.4 System Evaluation

In this section, we present the results from the performance evaluation of the adaptive
OID system. We simulated our system using the PeerSim [pee] P2P overlay simulator.
The simulations were performed on an AMD Opteron machine with 4 GB of RAM.

Attribute Value Domain Definition
CPU Speed 1.0 – 4.0 CPU clock speed in gigahertz
Busy CPU 0 – 100 Percentage of CPU(s) in use
Mem Size 1.0 – 8.0 Total Memory size in gigabytes
Mem Used 0 – 100 Percentage of Memory in use
HDD Size 100.0 – 3000.0 Total HDD size in gigabytes
DL Bandwidth 0.5 – 100 Bandwidth of down link in mbits/sec

Table 5.1: Attribute List for Generating Data and Query Workloads

Considering resource discovery in grid computing as an example scenario, we represent
the data objects in our simulations as resource specifications. Each resource specification
consists of attributes shown in Table 5.1. The value for each attribute in a resource
specification is randomly generated from the value domain of the attribute. A typical
generated resource specification looks like: (CPU Speed = 1.2 GHz, Busy CPU = 60%,
Mem Size = 1024 MB, Mem Used = 289 MB, HDD Size = 50 GB, DL Bandwidth =
16 mbits/sec). Note that the generated resource specifications do not influence the
evaluation results, as they are based on the performance of multi-attribute range queries.

118

5.4 System Evaluation

The performance of multi-attribute range queries depends upon the indices used for
indexing the data and not on the values used for attributes in data objects.

Unlike the database management systems where benchmark workloads are made avail-
able by the TPC [tpc], no such workload of multi-attribute range queries is universally
available for P2P systems. Therefore, we generate the workloads using the attributes in
Table 5.1 for simulating different scenarios of our system. A typical example of a gener-
ated query looks like: (CPU Speed > 1.0 GHz)∧(CPU Speed < 3.0 GHz)∧(Mem Size >
512 MB).

For each point on the graphs displayed in this section, the corresponding experiment is
repeated 10 times with different workloads, and an average value is plotted. Moreover,
the index recommendation algorithm used throughout the evaluations is the cost-based
merge algorithm (see Section 4.4.2.1).

5.4.1 Varying Number of Attributes

In this section, we present the results from the performance evaluation of our system
using a workload of queries with varying number of attributes. We show that an adaptive
OID system is essential for continuous optimization of overall system performance for
multi-attribute range queries. Table 5.2 shows the parameter values used for this
simulation.

Parameter Value Definition
N 1000 Total number of peers in the DHT
n 1600 Total number of queries in the workload
o 3 Maximum number of indices
λ 5000 Total number of data objects
β 33 First level sampling parameter
γ 2 Second level sampling parameter

Table 5.2: Evaluation Parameters – Varying Number of Attributes

The queries in the workload are generated so that the start of the workload contains
queries with 4 attributes followed by queries with 3, 2, and 4 attributes again. To
simulate a slow change in the workload over time, the attributes in the queries are
varied slowly. First, only the queries with 4 attributes are included in the workload
followed by a mixture of queries with 4 and 3 attributes. As the generation process
continues, the frequency of queries with 4 attributes keeps reducing until only queries
with 3 attributes are in the workload. Then, a mixture of queries with 3 and 2 attributes
is included in the workload, and so on. It is important to simulate a slowly changing
workload to analyse the system’s adaptation capabilities to a slow change. If the system
reacts to a slowly changing trend, it is imminent that a faster changing workload would
also trigger a reaction.

119

5 Self-adapting Optimized Information Discovery System

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0 250 500 750 1000 1250 1500

A
v
g

.
N

u
m

.
o

f
M

e
s
s
a

g
e

s

Simulation Time

Non-Adaptive
Partially Adaptive (-99.2% msgs)

Adaptive (-83.6% msgs)

Figure 5.4: Varying Number of Attributes

Each attribute in a query is randomly selected from the list shown in Table 5.1. Similarly,
the range for an attribute in a query is randomly selected from the domain of the
attribute. The values for parameters β and γ are set so that almost 10% of peers in the
network are sampled.

We simulate the adaptive OID system, the non-adaptive system, and a system with only
a single adaptation (partially adaptive system), by executing the generated workload
from random peers in the DHT over a period of time. The non-adaptive system is a
system with only a single data index over all 6 attributes shown in Table 5.1. For the
partially adaptive system, the adaptation takes place after 10 simulation time units.
Moreover, for the adaptive OID system, the index adaptation process is scheduled to
run after every 10 simulation time units. A single simulation time unit is long enough
to allow execution of a single query.

For every 5 simulation time units, we plot the average number of messages in the system
during that 5-time-unit-window (see Figure 5.4). The number of messages represents
all the messages in the system including messages for the index adaptation process.
This metric is plotted for all three systems. For the adaptive OID system, the peaks in
Figure 5.4 mark the points where index installation takes place. The higher the peak,
the larger the number of indices that are exchanged. Some small peaks are levelled out
due to averaging over 10 simulation runs.

Similar to the non-adaptive system, the adaptive OID system and the partially adaptive
system start with one index over all attributes. However, the first adaptation happens

120

5.4 System Evaluation

10
3

10
4

10
5

10
6

10
7

10
8

 0 250 500 750 1000 1250 1500

A
v
g
.
N

u
m

.
o
f
M

e
s
s
a
g
e
s

Simulation Time

Non-Adaptive
Partially Adaptive (-99.2% msgs)

Adaptive (-3.1% msgs)

Figure 5.5: Fixed Number of Attributes

very soon in both the systems and 2 additional indices are installed (see Figure 5.4). This
improves the performance of multi-attribute range queries in both systems because the
queries are able to find less expensive indices for resolution. Since the first adaptation
is based on a very small workload, the second adaptation follows soon in the adaptive
OID system. The system continues to adapt itself over time according to the workload
of queries. After each adaptation, the performance of multi-attribute range queries
improves as the average number of messages in the system are reduced.

Figure 5.4 shows that the partially adaptive system has 99.2% less messages compared to
the non-adaptive system. Moreover, the adaptive OID system has 83.6% less messages
compared to the partially adaptive system. Therefore, the adaptive OID system is
several orders of magnitude better than the non-adaptive system. Figure 5.4 also shows
that, in order to optimize the overall system performance for multi-attribute range
queries, a system with continuous adaptations is essential.

The performance of the non-adaptive system worsens with decreasing number of attrib-
utes in queries (see Figure 5.4). This happens because with decreasing number of query
attributes, more attributes have to be considered as wild-cards on a single large index.
The performance of the system gets better towards the end of the simulation because
the number of attributes in queries increases from 2 to 4 attributes.

In order to further analyse the impact of the number of attributes in queries, we perform
another simulation where the number of attributes in the workload is kept constant to
3 attributes. Other simulation parameters have the same values as in Table 5.2. Figure

121

5 Self-adapting Optimized Information Discovery System

10
2

10
3

10
4

10
5

 0 250 500 750 1000 1250 1500

A
v
g
.
N

u
m

.
o
f
M

e
s
s
a
g
e
s

Simulation Time

3 Indices
4 Indices (-2.3% msgs)

5 Indices (-1% msgs)

Figure 5.6: Varying Number of Indices

5.5 shows the performance of all three systems with respect to the average number of
message in a 5-time-unit-window.

Figure 5.5 shows that the adaptive OID system quickly adapts its indices to the changing
workload of queries. Major adaptations come close to the start of the simulation. After
that, even though some small adaptations happen in the system, the performance of the
system remains roughly constant. This happens because the indices adapted during the
start of the simulation remain beneficial for the complete simulation. The performance
of the non-adaptive system remains almost constant, and several orders of magnitude
worse than the adaptive system, throughout the simulation.

With a constant number of attributes in queries, the performance of the partially
adaptive system comes quite close to the performance of the adaptive system (see
Figure 5.5). However, the adaptive system still produces 3.1% less messages compared
to the partially adaptive system. This difference in the number of messages grows larger
over time. Therefore, in a long running system, the adaptive system would perform
significantly better than a partially adaptive system.

5.4.2 Varying Number of Indices

In this section, we present the performance evaluation of the adaptive OID system by
showing the impact of varying number of indices on the system. We perform 3 different
simulations using the same workload as in the first simulation discussed in Section 5.4.1.
The parameters used for performing these simulations are shown in Table 5.3. For each
simulation we plot the average number of messages in a 10-time-unit-window.

122

5.4 System Evaluation

Parameter Value
N 1000
n 1600
o 3, 4, 5
λ 5000
β 33
γ 2

Table 5.3: Evaluation Parameters – Varying Number of Indices

Figure 5.6 shows the performance of the adaptive OID system during all 3 simulations.
Generally, the larger the set of indices, the better the performance of the system after
an adaptation, because with increasing number of indices, more queries are able to find
an optimal index for resolution. Since more queries are optimized, the overall system
performance also improves slightly with increasing number of indices, e.g., the system
with 4 indices has 2.3% less messages compared to the system with 3 indices. Similarly,
the system with 5 indices has 1% less messages compared to the system with 4 indices.

5.4.3 Varying Number of Data Objects

In this section, we present the performance evaluation of the adaptive OID system by
showing the impact of varying number of data objects on the system. We perform 6
different simulations using the same workload as in the first simulation discussed in
Section 5.4.1. The parameters used for performing these simulations are shown in Table
5.4. Note that the total number of data objects in the system λ is doubled across the
simulations. For each simulation we plot the defined as: average number of simulation
time units needed for an adaptation to happen in the system.

Parameter Value
N 1000
n 1600
o 3
λ 5k, 10k, 20k, 40k, . . . , 160k
β 33
γ 2

Table 5.4: Evaluation Parameters – Varying Number of Data Objects

Figure 5.7 shows the performance of the adaptive OID system with respect to the
average adaptation window size. The larger the number of data objects in the system,
the longer it takes for an adaptation to be triggered. This happens because with
increasing number of data objects in the system, the index installation cost costin also

123

5 Self-adapting Optimized Information Discovery System

 200

 300

 400

 500

 600

 700

 800

5k 10k 20k 40k 80k 160k

A
v
g

.
A

d
a

p
ta

ti
o
n

 W
in

d
o
w

 S
iz

e

Num. of Data Objects

Figure 5.7: Varying Number of Data Objects

increases. Therefore, a larger and more diverse workload of queries is needed for the
installation of a new set of indices to be beneficial.

5.4.4 Efficiency of Distributed Workload Collection

In this section, we discuss the results from the performance evaluation of the distributed
workload collection (see Section 5.3.1) phase of the index adaptation process. We
perform 16 different simulations using the same workload as in the first simulation
discussed in Section 5.4.1. For a fixed DHT network size, we vary the values of β and
γ across 4 simulations, such that the total number of peers sampled in the network
vary between 6% and 12% (in steps of 2%) of the total network size. This simulation
scenario is repeated for varying DHT network sizes of N = (102, 103, 104, 105). Other
simulation are shown in Table 5.5.

Parameter Value
n 1600
o 3
λ 5000

Table 5.5: Evaluation Parameters – Efficiency of Distributed Workload Collection

During each simulation, after a distributed workload collection phase ends, we measure
the cost deviation metric defined as:(

|cost(W, ISWr)− cost(W, IWr)|
cost(W, IWr)

)
∗ 100

124

5.4 System Evaluation

10
2

10
3

10
4

10
5 6 7 8 9 10 11 12 13

2
4
6
8

10
12
14
16

A
v
g

.
C

o
s
t

D
e

v
ia

ti
o

n
 [

%
]

Network Size Sampled Peers [%
]

A
v
g

.
C

o
s
t

D
e

v
ia

ti
o

n
 [

%
]

Figure 5.8: Efficiency of Distributed Workload Collection

where W is the complete set of multi-attribute range queries from all peers in the
system, ISWr is the recommended set of indices obtained using the sampled workload
SW , and IWr is the recommended set of indices obtained using the complete set of
queries W .

The cost deviation metric indicates how good the recommended set of indices is (in
percentage) if it is obtained using the sampled workload, compared to the recommended
set of indices obtained using the global workload. The lower the value of cost deviation,
the better the performance of the system because the indices are more optimized for
future queries in the system.

For each simulation, the average cost deviation is plotted in Figure 5.8. For the network
size of 102, the calculation for the number of peers to sample using β and γ, was
rounded-off to the same value (7% of the network size) in case of 6% and 8% sampled
peers.

Figure 5.8 shows that for a fixed network size, the larger the number of sampled peers,
the smaller is the cost deviation. This happens because with increasing number of
sampled peers, a better approximation of the complete set of queries is acquired. Hence,
the recommended set of indices obtained using the sampled workload is more similar to
the recommended set of indices obtained using the complete set of queries. Figure 5.8
also portrays that with increasing network size, sampling a smaller percentage of peers
in the network is sufficient for having a low cost deviation.

125

5 Self-adapting Optimized Information Discovery System

5.5 Related Work

A number of adaptive P2P information discovery systems have been proposed in the
past. In this section, we discuss some of them in relation to our system.

5.5.1 Unstructured P2P Information Discovery Systems

Several unstructured P2P information discovery systems have been suggested that
improve the efficiency of future queries based on the past query workload in the
system [AC08,KGZY02,KPPT05,NYF08]. The major difference between these systems
and the structured P2P systems such as ours is that, each peer in these systems tries to
optimize the performance of queries individually by modifying local data index. This
does not necessarily lead to the optimization of overall system performance. Moreover,
given a query, these systems perform only a best-effort search in the network, i.e., not
all matching data objects are always retrieved.

Acosta et al. [AC08] create a synopsis of neighboring peer content at each peer according
to the popular terms in queries as well as the content. They show that the search
efficiency of such synopsis is better than the synopsis created only using the popular
terms in content. Kalogeraki et al. [KGZY02] introduce an intelligent search mechanism
where each peer maintains a profile of all its neighbors based on previously answered
queries. Later, these profiles are used to determine the peer that is most likely to
answer a query. Koloniari et al. [KPPT05] cluster peers in an overlay network based
on the type of query workload that the peers are able to process efficiently. They
show that given a query, such clustering of peers is able to retrieve more results than
simple content-based clustering. Nguyen et al. [NYF08] improve the keyword-based
grouping of documents at a peer using popular keywords in queries. They show that
using their grouping technique, queries are able to retrieve more documents than simple
content-based grouping.

5.5.2 Structured P2P Information Discovery Systems

In order to improve the search efficiency of queries in structured P2P information
discovery systems, several DHT extensions have been proposed [DFZ+09,DTK08,SA06].

Deng et al. [DFZ+09] introduce learning-aware blind search for range queries in DHTs.
Each peer in their system stores information about previously retrieved results from
each link of the DHT using a local index structure. Queries are forward to regions
of the DHT that had previously returned the highest number of results. Unlike our
system, their system performs only best-effort search since each peer tries to optimize
the query performance individually.

126

5.6 Conclusion

Skobeltsyn et al. [SA06] present a system that stores the results of frequently issued
queries at certain peers in the DHT. The choice of queries whose results are cached is
based on the dynamic workload of queries in the system. A query is resolved first by
looking up the results in the local cache. If no results are found, the peer tries to find a
neighboring cache with results. If still no results are found, the query is sent to all peer
using broadcast. In our system, queries are never resolved using broadcast since it is
highly unscalable to resolve queries in such manner. Instead, we optimize indices for
efficient query processing.

The HiPPIS system [DTK08] indexes the data in a DHT using hierarchical indices.
Each peer in the system logs each query that it issues. If the granularity of a queried
attribute changes locally at a peer, e.g., more queries contain “city” attribute instead
of the “state” attribute, the peer checks if the index has to be adapted accordingly.
The peer performs the adaptation check by asking every peer in the system for the
query statistics on the attribute using flooding. If adaptation is needed, the peer locks
all the peers in the system by flooding a lock message. During this period, queries are
answered also using flooding. Finally, the adaptation message is sent to all peers in the
system using flooding as well. Unlike the HiPPIS system, our system has a flooding-free
scalable index adaptation process.

5.6 Conclusion

In this chapter, we presented the design and evaluation of the adaptive OID system.
The adaptive OID system optimizes the overall system performance for multi-attribute
range queries by dynamically adapting the set of indices in the system. The set of
indices is adapted using a four-phase index adaptation process. During the first phase,
a workload of multi-attribute range queries is collected from the DHT network using
uniform random sampling of peers. This workload is then used in the second phase for
obtaining a new set of indices using an index recommendation algorithm (see Chapter
4). During the third phase the cost and the benefit of installing a new set of indices is
estimated. If it is beneficial to install the new set of indices, the installation is carried
out during the fourth phase of index adaptation process.

Our evaluations show that the adaptive OID system continuously adapts the set of
indices in the system according to the dynamic workload of multi-attribute range
queries. The adaptations are most useful when there is a variety of different queries in
the system. Nonetheless, the adaptive OID system shows several orders of magnitude
improved performance compared to a non-adaptive system.

127

Chapter 6
Application: Spatial Information Discovery

6.1 Introduction

Peer-to-peer (P2P)-based spatial information discovery systems require support for
location-based range queries. The support for these queries can be provided either by
constructing a specialized P2P overlay network or by utilizing a Distributed Hash Table
(DHT)-based P2P overlay network.

P2P spatial information discovery systems, such as Globase.KOM [KLS07], GeoPeer
[AR04], and [KLL04] construct a specialized network topology by organizing peers in
a tree or a lattice structure to support location-based range queries. Due to complex
structural requirements, the network construction and maintenance overhead for these
systems is in general higher than that of a DHT with a simple basic structure such as
Chord or CAN (see Section 2.2.2).

Conventional DHT-based P2P overlay networks, such as Chord (see Section 2.2.2.1),
CAN (see Section 2.2.2.2), and Pastry (see Section 2.2.2.5) used to support only
exact-match queries. However, recently they have been extended to support multi-
attribute and range queries [MTD+08,AX02,CFCS03,GYGM04,SP03,SOTZ05]. P2P
spatial information discovery systems, such as [CRR+05,HT03,KW06,THS+04,WZK05]
leverage the DHT-based systems by implementing a layer on top of them to support
location-based range queries. This layer consists of either a tree-based data index or
a locality-preserving mapping of the data to the peers. Such a layered architecture is
attractive because it allows any 3rd party DHT implementation to be used without
modifications. However, these systems have some shortcomings that are discussed
below.

One of the most desirable property of the P2P spatial information discovery systems
is the locality preservation of the data, i.e., data objects that lie close on the surface
of the earth, should be placed on the same peer or a group of neighbouring peers

129

6 Application: Spatial Information Discovery

in the network. This allows for the efficient retrieval of the data objects, without
flooding the whole network with a query. P2P spatial information discovery systems
that use only a tree-based data index on top a DHT, do not preserve the locality
of the data well. Moreover, P2P spatial information discovery systems that utilize
a locality-preserving mapping, do not scale because of the large number of messages
generated by location-based range queries.

In this chapter, we present a P2P spatial information discovery system based on the
architecture of the OID system (see Chapter 3). Our spatial information discovery system
performs a scalable resolution of location-based range queries in spite of using a locality-
preserving mapping of the data to the peers. Our system has a layered architecture
to allow any DHT to be used as a network structure. The only requirement is that
the DHT provides the standard lookup(key) and notify() methods for communication.
The key innovations of our system include: (1) use of a less-distorting octahedral map
projection to represent the spatial data, (2) utilization of the Sierṕinski Space-Filling
Curve (SFC) for locality-preserving mapping of the data to the peers, and (3) a data
placement strategy that reduces the probability of the data hot-spots in the network.

The rest of the chapter is organized as follows: in Section 6.2, we discuss the architecture
of our system along with its components. Spatial data indexing is described in Section
6.3. In Section 6.4, the placement of the spatial data in a DHT network is discussed.
Query resolution and query optimization are described in Section 6.5. Results from
the system evaluations are presented in Section 6.6. In Section 6.7, we discuss the
related spatial information discovery systems. Finally, we wind up the chapter with a
conclusion Section 6.8.

6.2 System Architecture

Since the spatial information discovery system presented in this chapter is based upon
the basic OID system, the architecture of our system is the same layered architecture
as the one shown in Figure 3.1.

The top layer of the architecture is the application layer that consists of large-scale
distributed applications that rely on spatial range queries, e.g., location-based services
or other context-aware applications.

The middle layer is the framework layer. The framework layer consists of four compon-
ents: data index space, data placement controller, query engine, and query optimizer.
The data index space consists of several SFC-based indices used for generating identifiers
for the spatial data objects. These data objects are then placed in the network by the
data placement controller. The query engine of the framework layer is responsible for
the query resolution. In order to achieve scalable resolution of spatial range queries,
the query optimizer performs the routing optimization.

130

6.3 Data Indexing

The bottom layer is the DHT layer. The DHT layer provides the methods lookup(key)
and notify(). Given a key, the lookup(key) method returns the IP address of the node
responsible for it, while notify() is a call-back method that indicates a change in the
key set of a node.

6.2.1 Data and Query Model

The spatial data objects in our system are defined as points on the surface of the earth.
Each data object consists of two primary attributes, namely Latitude and Longitude.
Apart from these primary attributes, a data object can accommodate several other
attributes that describe its properties. For example, a data object can be defined as
(Latitude = 48.745◦, Longitude = 9.106◦, Building = University, Department =
CS, . . .). However, it would be indexed only using the primary attributes Latitude

and Longitude.

A spatial range query in our system is defined as a polygon on the surface of the
earth. The query polygon can be described as a conjunction of tuples of the form
(φ = value, λ = value) where φ and λ represent Latitude and Longitude, respectively.
For example, a spatial range query could be defined as {(φ = 48.747◦, λ = 9.106◦) ∧
(φ = 48.743◦, λ = 9.101◦) ∧ (φ = 48.744◦, λ = 9.111◦)}. All the spatial data objects
held by the peers that are responsible for the areas corresponding to the query polygon,
are returned. A spatial range query can also include other attributes to allow local
filtering of data on the queried peers.

6.3 Data Indexing

As discussed earlier, the locality preservation of the spatial data is the most desirable
property of spatial information discovery systems. Locality preservation could be
achieved by utilizing SFC-based data indexing. Since SFCs work with Cartesian
coordinate system, the surface of the earth has to be projected from geographical
coordinate system to the Cartesian coordinate system. We utilize the octahedral
map projection [Fur97], in contrast to the quadrilateral projections, for this purpose.
Figure 6.1 shows the octahedral map projection of the surface of the earth. The
Octahedral map projection achieves good polar symmetry and the important global
features (poles, equator and meridians) are mapped to triangular faces and vertices of
the projection [LT92]. To the best of our knowledge, such a map projection has not
been used by any P2P spatial information discovery system.

Although quadrilateral maps are easier to work with, they tend to have greater distortion
as we start to move away from the equator towards the poles of the earth [IG01].
Octahedral map projection, however, is less distorting. This means that if the surface
of an octahedral globe is sub-divided into smaller regions, each region would be of

131

6 Application: Spatial Information Discovery

North Pole

South Pole

Figure 6.1: Octahedral Map Projection

approximately equal areal shape and size. If these regions are uniformly distributed
over a network of peers, each peer would hold information about almost an equal area
of the earth, which would not be the case if a quadrilateral map projection is used.

We utilize Sierṕinski SFC [IG01] to map the spatial data objects on the surface of the
octahedral map to the DHT while preserving data locality. Sierṕinski SFC is chosen
over Hilbert [Hil91], Peano [Pea90], Z [OM84], and other SFCs because it achieves
regular sub-divisions of the triangular faces of the octahedral map.

A Space-Filling curve (SFC) is essentially a mapping from a multi-dimensional space to
a 1-dimensional line (see Section 2.3). We create eight SFC-based data indices using
Sierṕinski SFCs, one for each face of the octahedral map.

Each face of the octahedral map is a triangle. The construction of the Sierṕinski SFC on
a triangular face of the octahedral map is a two step process. The first step divides the
triangle into smaller triangles (which we call zones). This division step can be viewed as
a recursive process, where each run of the process divides each triangle into two equal
triangles. The process continues k times yielding 2k zones. In the next step, a line is
drawn that enters and leaves the triangular face of the map, passing through each of
the 2k zones once. The line imposes an order among the zones as it walks through them.
As a result, a kth order SFC is defined for the triangular face of the earth. Figure 6.2

132

6.4 Data Placement

22

23

0 1
2

3 4

5
6 7

8

9
1011

12 13

14

15 16

17

18 19

2021

24 25

26

27 28

29

30 31

Figure 6.2: Sierṕinski Space-Filling Curve

shows a 5th order Sierṕinski SFC on a triangular face of the octahedral map that covers
parts of Asia, Africa, and Europe.

The part of the SFC line that passes through a zone is an approximation of all the
points in that zone. Consider the example of the spatial data objects shown as dots in
Figure 6.2. Although the data objects belong to separate locations on the map, both
are indexed by the 10th zone on the Sierṕinski SFC, i.e., both the data objects have an
identifier of 10.

Even though a single continuous Sierṕinski SFC could be constructed on the octahedral
map that indexes all the spatial objects, we utilize a separate SFC-based data index for
each face of the map. This is done to achieve better distribution of data over the DHT,
which we discuss in the next section.

6.4 Data Placement

The data placement controller in the framework layer of our system is responsible for
placing the spatial data objects over a DHT. Without loss of generality, we utilize the
Chord DHT (see Section 2.2.2.1) to place spatial data objects in the network.

When the OID framework layer of a peer receives a new data object from an application,
the data placement controller generates an identifier for it using the Sierṕinski SFC

133

6 Application: Spatial Information Discovery

(see Section 6.3). Once the identifier for the data object is known, the data placement
controller performs a DHT lookup using this identifier in order to determine the peer
that is responsible for the data object. Finally, the spatial data object is directly
transferred to the peer responsible for hosting it.

The DHT layer of a peer reports any changes in the data set of the peer to the data
placement controller using the notify() method call. These changes occur when the DHT
performs a repair operation after a peer joins or leaves the network. After reception of a
notification, the data placement controller redistributes the data among the neighbours
accordingly.

If a single Sierṕinski SFC is used to index all the spatial data objects on the surface of
the octahedral map, the result could be a non-uniform distribution of the data over
the Chord ring. For example, if a system indexes all the restaurants in the world, then
the peers responsible for holding information about the oceans would contain no data.
Since oceans are the largest parts of our planet, the majority of the peers would not be
utilized for storage. To reduce the degree of non-uniform distribution of data, we use a
separate SFC for each face of the octahedral map. This way, a peer is responsible for
eight different regions on the map and the probability that each of these region contains
no data, is reduced.

Using a separate SFC for each face of the octahedral map comes with a trade-off, i.e.,
the locality of the data along the edges where two faces meet, is disturbed. For example,
if a single SFC is used, two spatial data objects that lie along the edge where two faces
meet, would receive data identifiers that are numerically close to each other. On the
contrary, the same data objects would receive very different identifiers if two separate
SFCs are used to index the two faces. Therefore, it is not straight-forward to extend
this approach for map projections with larger number of faces, e.g., dodecahedral and
icosahedral map projections.

Typically, the identifier space of the Sierṕinski SFC, [0, 2k), is smaller than the identifier
space of the Chord ring, [0, 2m). Therefore, if the spatial data objects from a face of the
octahedral map are directly placed on the Chord ring, the peers with identifier values
greater than 2k, would contain no data. To avoid this, we scale up the identifier space
of the SFC by a factor of 2m−k. Details and an example of up-scaling could be found in
Section 3.5.

6.5 Query Resolution

Once the spatial data objects are placed in the network, they could be retrieved by any
peer using a location-based range query. As described earlier, a location-based range
query is defined as a polygon on the surface of the earth and all the spatial data objects
covered by the area of this polygon are retrieved. The query engine that is a part of
the framework layer is responsible for performing the query resolution.

134

6.5 Query Resolution

k = 1 k = 2

k = 3 k = 4

3 4

5

6

7 8

9

10

1 2
0 1

Figure 6.3: Successive Query Refinement

After a location-based range query is received by the query engine from an application,
the following sequence of operations are performed by the query engine. First, the
queried area is mapped onto the octahedral map in order to determine the triangular
faces of the map that are covered by the query. These triangular faces are then further
refined using the Sierṕinski SFC up till the highest approximation level k. During the
refinement process, the SFC zones that do not match the query polygon are pruned
away, resulting in a set of matching zone identifiers. The matching zone identifiers,
form clusters of zones where a single cluster contains a sequence of continuous zone
identifiers. Once the identifiers of the zones matching the query are determined, the
peer can perform either the basic query resolution discussed in Section 3.6 or it can use
the query optimization discussed in Section 3.7.

Figure 6.3 shows an example of successive refinement of a query by the Sierṕinski SFC
with the maximum approximation level of 4. The query is shown as a shaded triangle
(3-sided polygon) and the grayed out areas represent the zones that are pruned away by
the refinement process. For the 1st approximation level, the query matches the zones 0
and 1. Therefore, both of these zones are further refined to get four zones in the next
approximation level. Note that for k = 2, the identifiers for the non-matching zones are

135

6 Application: Spatial Information Discovery

0

4

3

1

2

11

9

10

15

5

6

8 7

13

12

14

Queried Peers

Figure 6.4: Chord Ring with m = 4 and N = 5

not generated by the refinement process, which indicates that these zones are pruned
away. For k = 3, only zones 1 and 2 from the previous step are further refined, since
only these zones match the query. Finally for the last approximation level, zones 3 to 5
from the previous step are refined further to get zones 6 to 10 as a single cluster.

Now consider a Chord identifier ring shown in Figure 6.4 (long distance links have been
removed for clarity). Physical peers are shown as circles with darker borders. The
query in the example above would be resolved by the peers 6, 7 and 12.

6.6 System Evaluation

In this section, we present evaluations of our system. We simulated the use of Sierṕinski
SFC over the Chord DHT. The simulations were performed over a cluster of 32 nodes
with each node having a 2.7 GHz dual-core AMD Opteron processor and 8 GB of RAM.

The data set for our simulations is generated using the NASA Visible Earth [Ear08]
image of the city light distribution over the globe (see Figure 6.5), where the probability
of bright pixels is higher than the probability of the dark pixels. This image, for example,
represents the distribution of developed areas around the world.

For performance comparison, we simulated the following two configurations of our
system:

• Configuration A (Multiple SFCs): A separate Sierṕinski SFC is used for
each face of the octahedral map to index the spatial data.

136

6.6 System Evaluation

Figure 6.5: NASA Visible Earth Light Distribution

• Configuration B (Single SFC): A single continuous SFC is used to index the
spatial data on the octahedral map.

Param Value(s) Description
N 102, 102.5, 103 . . . 105 # of peers
m 128 # of Chord identifier bits
O 10 ∗N # of spatial data objects
k 32 SFC approximation level
f 10 fanout
l blog(N)c − 1 depth-level

Table 6.1: Evaluation Parameters – Performance Evaluation

6.6.1 Performance Evaluation

For evaluating the performance of our spatial information discovery system, we perform
a location-based range query over Germany with the parameters shown in Table 6.1.
The peer identifiers are uniformly distributed over the identifier space of (0, 2m). Like
a typical P2P system, the total number of data objects is increased with the network
size. The approximation level k is chosen such that a zone of the SFC represents an
area that is approximately equal to the size of a FIFA football field (approx. 8000
m2). The values for the query parameters f and l are chosen such that the number
of parallel messages is restricted to 10% of the network size in the worst case. The

137

6 Application: Spatial Information Discovery

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

T
o
ta

l
H

o
p
s

Network Size

Configuration A

Configuration B

(a)

 0

 50

 100

 150

 200

 250

 300

 350

10
2

10
3

10
4

10
5

P
ro

c
e
s
s
in

g
 P

e
e
rs

Network Size

Configuration A

Configuration B

(b)

 0

 50

 100

 150

 200

 250

 300

 350

10
2

10
3

10
4

10
5

D
a

ta
 P

e
e

rs

Network Size

Configuration A

Configuration B

(c)

Figure 6.6: Performance of a Spatial Range Query

following performance metrics are measured for the two types of system configurations
described above:

• Total Hops - Total number of hops of all messages needed to resolve a query.
This includes the hops of the DHT lookup messages as well.

• Processing Peers - Number of peers that perform a local repository lookup to
evaluate the query.

• Data Peers - Number of peers containing the data objects that match the query
(subset of processing peers).

Figure 6.6 shows the performance of both system configurations with respect to the
performance metrics defined above. For each of the network sizes shown in the graphs,
the location-based range query is performed 10 times starting from a random peer in
the network. The values are then averaged to produce a point on a graph. Note that
the x-axis of Figure 6.6(a)–(c), and the y-axis of Figure 6.6(c) are on a log scale.

138

6.6 System Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000

D
a
ta

 O
b
je

c
ts

Peer

(a) Configuration A (Multiple SFCs)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 200 400 600 800 1000

D
a
ta

 O
b
je

c
ts

Peer

(b) Configuration B (Single SFC)

Figure 6.7: Data Distribution

The total number of hops, the number of processing peers, and the number of data
peers increase with the network size in the case of both system configurations (Figure
6.6(a)–(c)). With the increasing network size, each peer is responsible for smaller range
of identifiers. Hence, in order to resolve a location-based range query, the query has to
be evaluated at a larger number of peers.

For each performance metric, system Configuration B (Single SFC) performs better
than Configuration A (Multiple SFCs), because the spatial data is better distributed
over the network in the case of system Configuration A. Therefore, the query has
to be evaluated at a larger number of peers compared to the system Configuration
B. However, as discussed earlier (see Section 6.4), there is a trade-off between the
performance and the degree of data distribution. The degree of data distribution for
both system configurations is analysed in the next section.

6.6.2 Data Distribution

In this section, we analyse the data distribution properties of the two different configur-
ations of our spatial information discovery system defined above. The simulations are
performed using the parameters shown in Table 6.2. For each peer in the network, the
following metric is measured in the case of both system configurations:

Param Value(s) Description
N 103 # of peers
O 104 # of spatial data objects
k 32 SFC approximation level

Table 6.2: Evaluation Parameters – Data Distribution

139

6 Application: Spatial Information Discovery

• Data Objects - Number of data objects that a peer stores in its local repository.

Figure 6.7 shows the degree of data distributions achieved by the two system configur-
ations. Clearly, there are several data hot-spots in the case of system Configuration
B (Single SFC) (Figure 6.7(b)). However, Figure 6.7(a) shows that the spatial data
is better distributed in the case of system Configuration A (Multiple SFCs). For
example, the number of peers responsible for 1000 or more data objects is 7 for system
configuration A, compared to 24 for system configuration B.

The difference in the data distribution of the two system configurations is due to the
fact that the peers responsible for holding information about the oceans contain no
data in the case of system Configuration B (as there is hardly any light in oceans, see
Figure 6.5). However, in the case of system Configuration A, a peer is responsible for
holding information about 8 different regions of the world. Therefore, the probability
of a peer containing no spatial data is reduced drastically.

6.6.3 Performance vs. Data Distribution

As shown by the simulation results in Section 6.6.1 and Section 6.6.2, there is a trade-off
between performance and the degree of the data distribution over the network. If the
spatial data is non-uniformly distributed over the ranges of latitude and longitude (like
with our data set), the system configuration with a separate SFC for each face of the
octahedral map achieves better distribution of the data over the network, compared
to the system configuration with a single continuous SFC. However, the performance
deteriorates.

The query used for the performance evaluation is over the area of Germany. However,
location-based range queries are typically over smaller areas, e.g., a single city. Since
the performance of the system configuration with a separate SFC for each face of the
octahedral map in not extremely inefficient, it is still feasible to utilize such a system
configuration. For example, a query over the city of Stuttgart in Germany is resolved
in 230 overlay hops over a network of 105 peers by the same system configuration.

6.6.4 Query Optimization

In this section, we discuss the results of several experiments performed to analyse the
performance of the system using the basic and optimization query routing algorithms
(see Section 6.5). Each experiment is performed on both types of system configurations
defined above. The following performance metrics are monitored during the experiments:

• Latency - Number of hops of the longest message path.

• Average Number of parallel messages - Total number of forwarded messages
divided by the number of levels of the search tree.

140

6.6 System Evaluation

 0

 10

 20

 30

 40

 50

10
2

10
3

10
4

10
5

L
a

te
n

c
y

Network Size

Basic

Optimized

(a) Configuration A (Multiple SFCs)

 0

 10

 20

 30

 40

 50

10
2

10
3

10
4

10
5

L
a

te
n

c
y

Network Size

Basic

Optimized

(b) Configuration B (Single SFC)

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

P
a
ra

lle
l
M

e
s
s
a
g
e
s

Network Size

Basic

Optimized

(c) Configuration A (Multiple SFCs)

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

P
a

ra
lle

l
M

e
s
s
a

g
e

s

Network Size

Basic

Optimized

(d) Configuration B (Single SFC)

Figure 6.8: Basic Routing vs. Routing Optimization (Experiment 1)

The first experiment portrays the effects of varying network size on the performance
of the two query resolution algorithms with respect to the metrics defines above. The
simulation parameters are shown in Table 6.3.

Param Value(s) Description
N 102, 102.5, 103 . . . 105 # of peers
O 10 ∗N # of spatial data objects
k 32 SFC approximation level
f 10 fanout
l 3 depth-level

Table 6.3: Evaluation Parameters – Basic Routing vs. Routing Optimization (Experi-
ment 1)

Figure 6.8(a)–(b) show that for each of the system configurations, the latency of the
query resolution increases with the network size, in the case of both query resolution

141

6 Application: Spatial Information Discovery

algorithms. Since with the increasing number of peers in the network, the range of
identifiers that a single peer is responsible for decreases, the same query has to be
evaluated at a larger number of peers.

The difference between the latencies of the two query resolution algorithms is very small
for both types of system configurations (see Figure 6.8(a)–(b)). However, there is a
significant difference between the average number of parallel messages produced by the
two query resolution algoritms (see Figure 6.8(c)–(d)). The optimized query resolution
algorithm produces fewer parallel number of messages than the basic query resolution
algorithm, even with the network size as high as 105.

The performance of system Configuration B (Single SFC) is in general better than the
performance of system Configuration A (Multiple SFCs) because the spatial data is
better distributed over the network in the case of system Configuration A. Therefore,
the query has to be evaluated at a larger number of peers compared to the system
Configuration B.

Param Value(s) Description
N 104 # of peers
O 105 # of spatial data objects
k 32 SFC approximation level
f 3, 6, 9 . . . , 15 fanout
l 3 depth-level

Table 6.4: Evaluation Parameters – Basic Routing vs. Routing Optimization (Experi-
ment 2)

The second experiment shows the effects of varying values of parameter f on the query
optimization algorithm, with respect to the performance metrics defined above. For
comparison, the performance of the basic query resolution algorithm is also plotted.
The second experiment is performed using the simulation parameters show in Table 6.4
for both types of system configurations.

The latency for the query resolution remains constant for the basic query resolution
(Figure 6.9(a)–(b)) throughout Experiment 2, because all the query clusters are im-
mediately forwarded by the query initiator to the responsible peers. Due to the same
reason, the basic query resolution has slightly lower latency compared to the optimized
query resolution.

Although the number of parallel messages for the optimized query resolution algorithm
increases with increasing fanout values (Figure 6.9(c)–(d)), it still remains below the
number of parallel messages transmitted by the basic query resolution algorithm, even
for the fanout value as high as 14. The number of parallel messages increases with the
increasing fanout because the query clusters are divided more at each level of the query
tree.

142

6.6 System Evaluation

 15

 20

 25

 30

 35

 40

 45

 4 6 8 10 12 14

L
a

te
n

c
y

Fanout

Basic

Optimized

(a) Configuration A (Multiple SFCs)

 15

 20

 25

 30

 35

 40

 45

 4 6 8 10 12 14

L
a

te
n

c
y

Fanout

Basic

Optimized

(b) Configuration B (Single SFC)

10
0

10
1

10
2

10
3

10
4

10
5

 4 6 8 10 12 14

P
a
ra

lle
l
M

e
s
s
a
g
e
s

Fanout

Basic

Optimized

(c) Configuration A (Multiple SFCs)

10
0

10
1

10
2

10
3

10
4

10
5

 4 6 8 10 12 14

P
a

ra
lle

l
M

e
s
s
a

g
e

s

Fanout

Basic

Optimized

(d) Configuration B (Single SFC)

Figure 6.9: Basic Routing vs. Routing Optimization (Experiment 2)

The third and the final experiment shows the effects of varying depth-level parameter l
on the query resolution latency and the parallel number of messages in the network.
The third experiment is performed using the parameters shown in Table 6.5 for both
types of system configurations.

Param Value(s) Description
N 104 # of peers
O 105 # of spatial data objects
k 32 SFC approximation level
f 10 fanout
l 1, 2, . . . , 5 depth-level

Table 6.5: Evaluation Parameters – Basic Routing vs. Routing Optimization (Experi-
ment 3)

143

6 Application: Spatial Information Discovery

 15

 20

 25

 30

 35

 40

 45

 50

 1 1.5 2 2.5 3 3.5 4 4.5 5

L
a
te

n
c
y

Depth-Level

Basic

Optimized

(a) Configuration A (Multiple SFCs)

 15

 20

 25

 30

 35

 40

 45

 50

 1 1.5 2 2.5 3 3.5 4 4.5 5

L
a
te

n
c
y

Depth-Level

Basic

Optimized

(b) Configuration B (Single SFC)

10
1

10
2

10
3

10
4

10
5

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
a

ra
lle

l
M

e
s
s
a

g
e

s

Depth-Level

Basic

Optimized

(c) Configuration A (Multiple SFCs)

10
1

10
2

10
3

10
4

10
5

 1 1.5 2 2.5 3 3.5 4 4.5 5

P
a

ra
lle

l
M

e
s
s
a

g
e

s

Depth-Level

Basic

Optimized

(d) Configuration B (Single SFC)

Figure 6.10: Basic Routing vs. Routing Optimization (Experiment 3)

For the system Configuration A (Multiple SFCs), the query resolution latency first
decreases, and then it remains almost constant for the optimized query resolution
algorithm (Figure 6.10(a)). In the beginning the latency decreases as more parallel
messages are used to resolve the query. Therefore, each message has to travel less
through the network. Later, it seems that the whole query is resolved within two
levels of the search tree. Therefore, starting from the depth-level 3 onwards, the query
resolution latency remains almost constant.

Similarly, for the system Configuration B (Single SFC), the latency remains constant
throughout the experiment for the optimized query resolution (Figure 6.10(b)). For
l = 1, the value for the latency is an outlier because the query initiator was itself
responsible for resolution of some query clusters and therefore, did not transmit them
through the network.

The latency of the basic resolution algorithm is better than the latency of the optimized
algorithm for the same reasons discussed in the second experiment.

144

6.7 Related Work

The parallel number of messages first increases then remains constant with increasing
values of parameter l for the optimized query resolution algorithm (Figure 6.10(c)–(d)).
As the value of parameter l increases, more number of messages are generated in order
to resolve the query, until a certain point is reached. After this point, more messages
cannot be generated because the query gets resolved with fewer messages already.

The parallel number of messages generated by the optimized resolution algorithm
is significantly lower than the messages generated by the basic resolution algorithm,
because of the same reasons discussed in the first experiment.

6.7 Related Work

Generally, P2P spatial information discovery systems could be divided into two major
categories: ones that built a specialized network topology (Non-DHT based Systems)
and others that use a DHT-based P2P overlay network to support location-based range
queries (DHT based Systems). In this section, we briefly discuss these systems in
relation to our spatial information discovery system.

6.7.1 Non-DHT based Systems

The Globase.KOM system [KLS07] enables location-based range queries by organizing
peers in a tree-based overlay network. The system utilizes the Plate Carrée map
projection to index spatial data on the surface of the earth. Such a map projection
introduces more distortion compared to the octahedral map projection utilized by our
system. Moreover, the search efficiency of the Globase.KOM system is influenced by
the amount of stored cache information which is not the case for our system.

The GeoPeer system [AR04] organizes peers to form a Delaunay triangulation, with
each peer being responsible for holding information about a certain area on the globe.
Unlike a DHT, the search algorithm opted by the GeoPeer is not as efficient, because
each peer maintains a list of only few neighbouring nodes.

The spatial information discovery system introduced by Kang et al. [KLL04] also uses
Delaunay triangulation to construct a network of peers. Similar to the GeoPeer system,
the network coverage of a spatial query is not limited, i.e., a query could get flooded
throughout the network before arriving at the destination peer. In contrast to that, our
system uses DHT for routing queries. DHT has a known bound of O(logN) steps to
route a message from a source node to a destination node.

6.7.2 DHT-based Systems

DHT-based P2P overlay networks have evolved over a period of time. As a result,
scalable implementations of DHTs, such as Open Chord [LK06], are widely available,

145

6 Application: Spatial Information Discovery

which raises the desire to utilize them for spatial information discovery.

Harwood et al. [HT03] and Tanin et al. [THS+04] extend the Chord (see Section 2.2.2.1)
protocol for spatial information discovery using a quadtree and an octree, respectively.
Their systems recursively sub-divide the virtual world into regions and assign these
regions to a network of Chord peers. A location-based range query is first translated
into a set of identifiers, then a lookup operation is performed for each of these identifiers
to resolve the query. The shortcoming of these systems is that the assignment of the
regions to the peers is not locality-preserving, leading to longer path lengths in the
DHT for the location-based range queries.

P2P spatial information discovery systems proposed by Chawathe et al. [CRR+05],
Wang et al. [WZK05] and Knoll et al. [KW06] are the ones that come closest to our
system.

Chawathe et al. [CRR+05] use the Z-curve (aka Morton-order or z-order) [OM84] to
reduce the multi-dimensional location data to a single dimension. This 1-dimensional
data is then distributed over the Chord ring using a Prefix Hash Tree (PHT) [RHRS04].
The use of PHT introduces extra maintenance overhead for the system because the
information about the PHT nodes has to be maintained at each peer in the network.
In contrast to their system, the only information maintained by our system is the one
maintained by the routing tables of the DHT nodes.

Wang et al. [WZK05] sub-divide the space of a CAN (see Section 2.2.2.2) DHT into
scatter regions. A scatter region is further partitioned into zones. A spatial data object
is then mapped to a single scatter region and hashed to a random zone within the
scatter region. The hashing is done to achieve better load balancing, but the locality of
the data is lost, particularly if the scatter region is large.

Knoll et al. [KW06] compare the performance of the Peano [Pea90], Z-Curve, and the
Hilbert [Hil91] SFC-based indices over a Pastry (see Section 2.2.2.5) network. They
analyse the locality preservation properties of each SFC, but do not focus on location-
based range queries. Moreover, they utilize a quadrilateral map projection in contrast
to the less-distorting octahedral projection used by our system.

Although general DHT-based P2P information discovery systems, such as [GYGM04]
and [SP03] could be extended to support location-based range queries, such an extension
would require a map projection with only small distortion, like the octahedral projection
utilized by our system. Moreover, related systems based on DHTs and SFCs could
benefit from the optimized query processing mechanisms discussed in this chapter.

6.8 Conclusion

In this chapter, we presented the system design and evaluation of a DHT-based spatial
information discovery system. Our system is the first one to utilize the less-distorting

146

6.8 Conclusion

octahedral map projection compared to the quadrilateral projections utilized by the
majority of the previously proposed spatial information discovery systems. Our system
uses Sierṕinski SFC in order to map the spatial data on the surface of the octahedral
map to a network of Chord peers, while preserving the data locality. We proposed
and evaluated two different types of system configurations for utilizing the Sierṕinski
SFC. The first configuration uses a separate SFC for each face of the octahedral map
and therefore achieves a better distribution of the data over the peers. The second
configuration uses a single continuous SFC for the complete octahedral map and
therefore achieves better query resolution performance.

We increased the scalability of our system by utilizing an optimized query resolution
algorithm. According to our simulations, the optimized query resolution algorithm
achieves up to 96% reduction in the average number of parallel messages used to resolve
a query, equal to the area of Germany, over a network of 100, 000 peers.

147

Chapter 7
Summary and Future Work

In this chapter, we present the summary of the contributions made during our research.
Moreover, a discussion on potential future work is also a part of this chapter.

7.1 Summary

In this book, we introduced the optimized information discovery (OID) system that
significantly optimizes the performance of multi-attribute range queries in distributed
hash table (DHT)-based peer-to-peer (P2P) overlay networks. Following are the main
contributions and results of our research:

• We introduce a novel data indexing approach that uses multiple space-filling curve
(SFC)-based indices to index each data object in the system (see Chapter 3).
Using this approach, the OID system resolves a multi-attribute range query by
selecting the index that yields the best performance for the given query. The
best performing index is chosen by estimating the number of peers the query
would be evaluated at, using each index. We also introduced two types of query
optimizations that improve the scalability of the OID system. The routing
optimization limits the message forwarding load of a peer and the number of
parallel messages at a time in the system. The computation load distribution
algorithm distributes the computation load for the query resolution over several
peers in order to avoid bottleneck at particular peers.

The evaluations of the OID system show that the best performance for multi-
attribute range queries is achieved over corresponding completely matching SFC-
based indices. Moreover, we show that the routing optimization algorithm reduces
the total number of parallel messages in the network with a cost of little increased
latency. It is also shown that the computation load distribution algorithm reduces
the amount of computation performed by a single peer up to 99%.

149

7 Summary and Future Work

• We present several index recommendation algorithms that assist the designer of a
distributed application in order to define useful indices for efficient query resolution
(see Chapter 4). Given a limit for the maximum number of indices and a workload
of queries, each algorithm recommends a set of indices that produces close-to-
optimal performance for the workload queries within the given limit. The set of
index recommendation algorithms includes three scalable index recommendation
algorithms: cost-based merge, similarity-based merge and selection algorithm.

Our evaluations show that there is a trade-off between the performance and the
execution time of the scalable index recommendation algorithms. With respect to
the performance, the cost-based merge algorithm is the best (only 1.5% worse
than the optimal näıve algorithm), generally followed by the similarity-based
merge and the selection algorithms. With respect to the execution time of the
algorithms, the order is reversed.

• We introduce an approach for continuously optimizing the overall system perform-
ance for multi-attribute range queries by dynamically adapting the set of indices
in the system (see Chapter 5). The set of indices is adapted using a four-phase
index adaptation process. During the first phase, a workload of multi-attribute
range queries is collected from the DHT network using uniform random sampling
of peers. This workload is then used in the second phase for obtaining a new
set of indices using an index recommendation algorithm. During the third phase
the cost and the benefit of installing a new set of indices is estimated. If it is
beneficial to install the new set of indices, the installation is carried out during
the fourth phase of index adaptation process.

Our evaluations show that the adaptive OID system continuously adapts the set
of indices in the system according to the dynamic workload of multi-attribute
range queries. The adaptations are most useful when there is a variety of different
queries in the system. Nonetheless, the adaptive OID system shows several orders
of magnitude improved performance compared to a non-adaptive system.

• Finally, we show the usability of the OID system by designing and evaluating a
spatial information discovery system based on the OID architecture (see Chapter
6). Our spatial information discovery system is the first one to utilize the less-
distorting octahedral map projection compared to the quadrilateral projections
utilized by the majority of the previously proposed spatial information discovery
systems. Our system uses Sierṕinski SFC in order to map the spatial data on
the surface of the octahedral map to a network of Chord peers, while preserving
the data locality. We proposed and evaluated two different types of system
configurations for utilizing the Sierṕinski SFC. The first configuration uses a
separate SFC for each face of the octahedral map and therefore achieves a better
distribution of the data over the peers. The second configuration uses a single
continuous SFC for the complete octahedral map and therefore achieves better
query resolution performance.

150

7.2 Future Work

We increased the scalability of our system by utilizing an optimized query resol-
ution algorithm. According to our simulations, the optimized query resolution
algorithm achieves up to 96% reduction in the average number of parallel messages
used to resolve a query that covers the area of Germany, in a network of 100, 000
peers.

7.2 Future Work

Currently, for the adaptive OID system, the complete log of multi-attribute range
queries is retrieved from a peer during distributed workload collection phase (see Section
5.3.1). In future, this phase could be changed so that it is possible to retrieve the query
log until a specified point in time in the past. This would limit the amount of network
information flow during the sampling process, making distributed workload collection
phase more scalable. Moreover, this would allow applications to make the adaptive OID
system more sensitive to the latest workload changes, specially when the adaptation
does not happen for a longer period of time because of the effect of the old queries in
the history.

The estimation of the index adaptation cost in the adaptation decision phase of the
adaptive OID system is based upon a basic query routing strategy (see Section 5.3.3).
Using this basic routing strategy, a lookup is first performed for each zone identifier
that a query maps to, on an SFC-based index. Next, the query is directly sent to the
peers responsible for those identifiers. Development of an adaptation cost estimation
formula for the optimized routing strategy utilized by the basic OID system (see Section
3.7.1), is also a part of the future work.

151

Bibliography

[AB07] Reaz Ahmed and Raouf Boutaba. Distributed Pattern Matching: A Key
to Flexible and Efficient P2P Search. IEEE Journal on Selected Areas in
Communications, 25:73–83, 2007.

[AC08] William Acosta and Surendar Chandra. Exploiting the Properties of Query
Workload and File Name Distributions to Improve P2P Synopsis-based
Searches. In Proceedings of the 27th International Conference on Computer
Communications (INFOCOM’08), pages 2467–2475. IEEE, 2008.

[AR04] Filipe Araújo and Lúıs Rodrigues. GeoPeer: A Location-Aware Peer-
to-Peer System. In Proceedings of the 3rd International Symposium on
Network Computing and Applications (NCA’04), pages 39–46. IEEE, 2004.

[ARR+95] Tetsuo Asano, Desh Ranjan, Thomas Roos, Emo Welzl, and Peter Wid-
mayer. Space Filling Curves and Their Use in the Design of Geometric
Data Structures. In Proceedings of the 2nd Latin American Symposium on
Theoretical Informatics (LATIN’95), pages 36–48. Springer, 1995.

[AX02] Artur Andrzejak and Zhichen Xu. Scalable, Efficient Range Queries
for Grid Information Services. In Proceedings of the 2nd International
Conference on Peer-to-Peer Computing (P2P’02), pages 33–40. IEEE,
2002.

[BA07] Nabhendra Bisnik and Alhussein A. Abouzeid. Optimizing Random Walk
Search Algorithms in P2P Networks. Computer Networks, 51:1499–1514,
2007.

[BAS04] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting Scalable
Multi-Attribute Range Queries. In Proceedings of the Symposium on
Communications Architectures and Protocols (SIGCOMM’04), pages 353–
366. ACM, 2004.

[BC05] Nicolas Bruno and Surajit Chaudhuri. Automatic physical database tuning:

153

Bibliography

a relaxation-based approach. In Proceedings of the International Conference
on Management of Data (SIGMOD’05), pages 227–238. ACM, 2005.

[Blo70] Burton H. Bloom. Space/time Trade-offs in Hash Coding with Allowable
Errors. Communications, 13:422–426, 1970.

[CCR05] Miguel Castro, Manuel Costa, and Antony Rowstron. Debunking Some
Myths About Structured and Unstructured Overlays. In Proceedings
of the 2nd International Symposium on Networked Systems Design &
Implementation (NSDI’05), pages 85–98. USENIX Association, 2005.

[CDN04] Surajit Chaudhuri, Mayur Datar, and Vivek Narasayya. Index Selection
for Databases: A Hardness Study and a Principled Heuristic Solution.
IEEE Transactions on Knowledge and Data Engineering, 16:1313–1323,
2004.

[CFCS03] Min Cai, Martin Frank, Jinbo Chen, and Pedro Szekely. MAAN: A Multi-
Attribute Addressable Network for Grid Information Services. In Proceed-
ings of the 4th International Workshop on Grid Computing (GRID’03),
pages 184–191. IEEE, 2003.

[CGM02] Arturo Crespo and Hector Garcia-Molina. Routing Indices for Peer-to-
Peer Systems. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS’02), pages 23–32. IEEE, 2002.

[CLRS03] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 2003.

[CN97] Surajit Chaudhuri and Vivek R. Narasayya. An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server. In Proceedings of the
23rd International Conference on Very Large Databases (VLDB’97), pages
146–155. Morgan Kaufmann Publishers Inc., 1997.

[CN99] Surajit Chaudhuri and Vivek R. Narasayya. Index Merging. In Proceedings
of the 15th International Conference on Data Engineering (ICDE’99), page
296. IEEE, 1999.

[CRB+03] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott
Shenker. Making gnutella-like p2p systems scalable. In Proceedings of the
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM’03), pages 407–418. ACM, 2003.

[CRR+05] Yatin Chawathe, Sriram Ramabhadran, Sylvia Ratnasamy, Anthony
LaMarca, Scott Shenker, and Joseph Hellerstein. A Case Study in Build-
ing Layered DHT Applications. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM’05), pages 97–108. ACM, 2005.

[D1̈0] Frank Dürr. Concepts of Peer-to-Peer Systems. In Lecture Notes on
Concepts of Peer-to-Peer Systems. Universität Stuttgart, 2010.

154

Bibliography

[DFZ+09] Ze Deng, Dan Feng, Ke Zhou, Zhan Shi, and Chao Luo. Range Query
Using Learning-Aware RPS in DHT-Based Peer-to-Peer Networks. In
Proceedings of the 9th International Symposium on Cluster Computing and
the Grid (CCGRID’09), pages 180–187. IEEE, 2009.

[DHJ+05] Anwitaman Datta, Manfred Hauswirth, Renault John, Roman Schmidt,
and Karl Aberer. Range Queries in Trie-Structured Overlays. In Proceeding
of the 5th International Conference on P2P Computing (P2P’05), pages
57–66. IEEE, 2005.

[DTK08] Katerina Doka, Dimitrios Tsoumakos, and Nectarios Koziris. HiPPIS:
An Online P2P System for Efficient Lookups on d-dimensional Hierarch-
ies. In Proceeding of the 10th Workshop on Web information and Data
Management (WIDM’08), pages 63–70. ACM, 2008.

[EAABH03] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi. Efficient
Broadcast in Structured P2P Networks. In Peer-to-Peer Systems II, volume
2735/2003, pages 304 – 314. Springer, 2003.

[Ear08] NASA Visible Earth. Earth’s City Lights. http://visibleearth.nasa.

gov/, 2008.

[fre10] The Free Haven Project. http://www.freehaven.net/, 2010.

[Fur97] Carlos A. Furuti. Polyhedral Map Projections. http://www.progonos.

com/furuti/MapProj/Normal/ProjPoly/projPoly.html, 1996-97.

[GMUW08] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
Systems: The Complete Book. Prentice Hall Press, 2008.

[gnu10] The Gnutella Protocol. http://rfc-gnutella.sourceforge.net/, 2010.

[GST07] Adam Shaked Gish, Yuval Shavitt, and Tomer Tankel. Geographical
Statistics and Characteristics of P2P query strings. In Proceedings of 6rd
International Workshop on P2P Systems (IPTPS’07), 2007.

[GYGM04] Prasanna Ganesan, Beverly Yang, and Hector Garcia-Molina. One Torus to
Rule Them All: Multi-dimensional Queries in P2P Systems. In Proceedings
of the 7th International Workshop on the Web and Databases (WebDB’04),
pages 19–24. ACM, 2004.

[Hil91] David Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück.
In Mathematische Annalen, 1891.

[HT03] Aaron Harwood and Egemen Tanin. Hashing Spatial Content over Peer-to-
Peer Networks. In Proceeding of the Australian Telecommunications, Net-
works and Applications Conference (ATNAC’03), pages 1–5. ATNAC’03,
2003.

155

http://visibleearth.nasa.gov/
http://visibleearth.nasa.gov/
http://www.freehaven.net/
http://www.progonos.com/furuti/MapProj/Normal/ProjPoly/projPoly.html
http://www.progonos.com/furuti/MapProj/Normal/ProjPoly/projPoly.html
http://rfc-gnutella.sourceforge.net/

Bibliography

[HZ10] Kun Huang and Dafang Zhang. DHT-based Lightweight Broadcast Al-
gorithms in Large-scale Computing Infrastructures. Future Generation
Computer Systems, 26(3):291–303, 2010.

[IG01] John J. Bartholdi III and Paul Goldsman. Continuous indexing of hier-
archical subdivisions of the globe. International Journal of Geographical
Information Science, 15(6):489–522, 2001.

[kaz10] Kazaa. http://www.kazaa.com/, 2010.

[KGZY02] Vana Kalogeraki, Dimitrios Gunopulos, and D. Zeinalipour-Yazti. A Local
Search Mechanism for Peer-to-Peer Networks. In Proceedings of the 11th
International Conference on Information and Knowledge Management
(CIKMss’02), pages 300–307. ACM, 2002.

[KLL04] Hye-Young Kang, Bog-Ja Lim, and Ki-Joune Li. P2P Spatial Query
Processing by Delaunay Triangulation. In Proceedings of the 4th Interna-
tional Workshop on Web and Wireless Geographical Information Systems
(W2GIS’04), volume 3428/2005, pages 136–150. Springer, 2004.

[KLS07] Aleksandra Kovacevic, Nicolas Liebau, and Ralf Steinmetz. Globase.KOM -
A P2P Overlay for Fully Retrievable Location-based Search. In Proceedings
of the 7th International Conference on Peer-to-Peer Computing (P2P’07),
pages 87–96. IEEE, 2007.

[KLVW04] Alexander Klemm, Christoph Lindemann, Mary K. Vernon, and Oliver P.
Waldhorst. Characterizing the Query Behavior in Peer-to-Peer File Sharing
Systems. In Proceeding of the 4th Internation Conference on Internet
Measurement (IMC’04), pages 55–67. ACM, 2004.

[KPPT05] Georgia Koloniari, Yannis Petrakis, Evaggelia Pitoura, and Thodoris
Tsotsos. Query Workload-Aware Overlay Construction Using Histograms.
In Proceedings of the 14th International Conference on Information and
Knowledge Management (CIKM’05), pages 640–647. ACM, 2005.

[KRRS04] Brad Karp, Sylvia Ratnasamy, Sean Rhea, and Scott Shenker. Spurring
Adoption of DHTs with OpenHash, a Public DHT Service. In Proceedings
of the 3rd International Workshop on P2P Systems (IPTPS’04). Springer,
2004.

[KW06] Mirko Knoll and Torben Weis. Optimizing Locality for Self-organizing
Context-Based Systems. In Proceedings of the 1st International Workshop
on Self-Organizing Systems (IWSOS’06), volume 4124/2006, pages 62–73.
Springer, 2006.

[Law00] Jonathan K. Lawder. Calculation of Mappings between One and n-
dimensional Values Using the Hilbert Space-Filling Curve. Technical
Report JL1/00, Birkbeck College, University of London, 2000.

156

http://www.kazaa.com/

Bibliography

[LCC+02] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
Replication in Unstructured Peer-to-Peer Networks. In Proceedings of 16th
International Conference on Supercomputing (ICS’02), pages 84–95. ACM,
2002.

[LK00] Jonathan K. Lawder and Peter J. H. King. Using Space-Filling Curves for
Multi-dimensional Indexing. In Proceedings of the 17th British National
Conferenc on Databases (BNCOD’00), pages 20–35. Springer, 2000.

[LK06] Karsten Loesing and Sven Kaffille. Open Chord. http://sourceforge.

net/projects/open-chord/, 2006.

[LT92] Robert Laurini and Derek Thompson. Fundamentals of Spatial Information
Systems. Academic Press Ltd., 1st edition, 1992.

[LW06] Xiuqi Li and Jie Wu. Improve Searching by Reinforcement Learning in
Unstructured P2Ps. In Proceedings of the 26th International Conference
on Distributed Computing Systems Workshops (ICDCSW’06), page 75.
IEEE, 2006.

[MAK03] Mohamed F. Mokbel, Walid G. Aref, and Ibrahim Kamel. Analysis of
Multi-Dimensional Space-Filling Curves. Geoinformatica, 7(3):179–209,
2003.

[MBR03] Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. Sym-
phony: Distributed Hashing in a Small World. In Proceedings of the 4th
Conference on USENIX Symposium on Internet Technologies and Systems
(USITS’03), page 10. USENIX Association, 2003.

[MDR10] Faraz Memon, Frank Dürr, and Kurt Rothermel. Index Recommendation
Tool for Optimized Information Discovery Over Distributed Hash Tables. In
Proceedings of 35th International Conference on Local Computer Networks
(LCN’10), pages 104–111. IEEE, 2010.

[MJFS01] Bongki Moon, H. v. Jagadish, Christos Faloutsos, and Joel H. Saltz.
Analysis of the Clustering Properties of the Hilbert Space-Filling Curve.
IEEE Transactions on Knowledge and Data Engineering, 13(1):124–141,
2001.

[MK02] Daniel A. Menascé and Lavanya Kanchanapalli. Probabilistic scalable P2P
resource location services. SIGMETRICS Performance Evaluation Review,
30:48–58, 2002.

[MN04] Chip Martel and Van Nguyen. Analyzing Kleinberg’s (and Other) Small-
world Models. In Proceedings of the 23rd International Symposium on
Principles of Distributed Computing (PODC’04), pages 179–188. ACM,
2004.

157

http://sourceforge.net/projects/open-chord/
http://sourceforge.net/projects/open-chord/

Bibliography

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A Scalable and
Dynamic Emulation of the Butterfly. In Proceedings of the 21st Annual
Symposium on Principles of Distributed Computing (PODC’02), pages
183–192. ACM, 2002.

[MRPM08] Elena Meshkova, Janne Riihijärvi, Marina Petrova, and Petri Mähönen.
A Survey on Resource Discovery Mechanisms, Peer-to-Peer and Service
Discovery Frameworks. Computer Networks, 52:2097–2128, 2008.

[MTD+08] Faraz Memon, Daniel Tiebler, Frank Dürr, Kurt Rothermel, Marco Tomsu,
and Peter Domschitz. OID: Optimized Information Discovery using Space
Filling Curves in P2P Overlay Networks. In Proceedings of 14th Inter-
national Conference on Parallel and Distributed Systems (ICPADS’08),
pages 311–319. IEEE, 2008.

[MTD+09] Faraz Memon, Daniel Tiebler, Frank Dürr, Kurt Rothermel, Marco Tomsu,
and Peter Domschitz. Scalable Spatial Information Discovery over DHTs.
In International Conference on Communication System Software and
Middleware (COMSWARE’09), pages 1–12. ACM, 2009.

[MTDR10] Faraz Memon, Daniel Tiebler, Frank Dürr, and Kurt Rothermel. Optimized
Information Discovery using Self-adapting Indices over Distributed Hash
Tables. In Proceedings of 29th International Performance Computing and
Communications Conference (IPCCC’10), pages 105–113. IEEE, 2010.

[ND08] Jeonghun Noh and Sachin Deshpande. Pseudo-DHT: Distributed Search
Algorithm for P2P Video Streaming. In Proceedings of the 10th Interna-
tional Symposium on Multimedia (ISM’08), pages 348–355. IEEE, 2008.

[NYF08] Linh Thai Nguyen, Wai Gen Yee, and Ophir Frieder. Query Workload
Driven Summarization for P2P Query Routing. In Proceedings of the
8th International Conference on Peer-to-Peer Computing (P2P’08), pages
63–72. IEEE, 2008.

[OM84] J. A. Orenstein and T. H. Merrett. A Class of Data Structures for Associat-
ive Searching. In Proceedings of the 3rd SIGACT-SIGMOD Symposium on
Principles of Database Systems (PODS’84), pages 181–190. ACM, 1984.

[oSN] National Institute of Standards and Technology (NIST). Secure Hash
Algorithm. http://csrc.nist.gov/publications/fips/fips180-2/

fips180-2withchangenotice.pdf.

[Pea90] Giuseppe Peano. Sur une courbe, qui remplit toute une aire plane (On
a Curve Which Completely Fills a Planar Region). In Mathematishe
Annalen, 1890.

[pee] PeerSim: A Peer-to-Peer Simulator. http://peersim.sourceforge.

net/.

158

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://peersim.sourceforge.net/
http://peersim.sourceforge.net/

Bibliography

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing
nearby copies of replicated objects in a distributed environment. In
Proceedings of the 9th Annual Symposium on Parallel Algorithms and
Architectures (SPAA’97), pages 311–320. ACM, 1997.

[Pug90] William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees.
Communications, 33:668–676, 1990.

[QNS02] Changtao Qu, Wolfgang Nejdl, and Holger Schinzel. Integrating Schema-
specific Native XML Repositories into a RDF-based e-learning P2P Net-
work. In Proceedings of International Conference on Dublin Core and
Metadata Applications: Metadata for E-Communities: Supporting Di-
versity and Convergence, pages 81–89. Dublin Core Metadata Initiative,
2002.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized
Object Location and Routing for Large-scale Peer-to-Peer Systems. In
Proceedings of IFIP/ACM International Conference on Distributed Systems
Platforms, pages 329–350. ACM, 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A Scalable Content-addressable Network. In Proceedings of
the 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM’01), pages 161–172.
ACM, 2001.

[RHRS04] Sriram Ramabhadran, Joseph Hellerstein, Sylvia Ratnasamy, and Scott
Shenker. Prefix Hash Tree - An Indexing Data Structure over Distributed
Hash Tables. In Proceedings of the 23rd Symposium on Principles of
Distributed Computing (PODC’04). Springer, 2004.

[Rip01] Matei Ripeanu. Peer-to-Peer Architecture Case Study: Gnutella Net-
work. In Proceedings of the 1st International Conference on Peer-to-Peer
Computing (P2P’01), pages 99–100. IEEE, 2001.

[RLS+03] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp,
and Ion Stoica. Load Balancing in Structured P2P Systems. In Peer-to-
Peer Systems II, volume 2735 of Lecture Notes in Computer Science, pages
68–79. Springer, 2003.

[SA06] Gleb Skobeltsyn and Karl Aberer. Distributed Cache Table: Efficient
Query-driven Processing of Multi-term Queries in P2P Networks. In
Proceedings of the International Workshop on Information Retrieval in
Peer-to-Peer Networks (P2PIR’06), pages 33–40. ACM, 2006.

[SAAA05] Ozgur D. Sahin, Shyam Antony, Divyakant Agrawal, and Amr El Abbadi.
PRoBe: Multi-dimensional Range Queries in P2P Networks. In Proceed-

159

Bibliography

ings of the 6th International Conference on Web Information Systems
Engineering (WISE’05), pages 332–346. Springer, 2005.

[Sag94] Hans Sagan. Space-Filling Curves. Springer, 1994.

[SBR04] Nima Sarshar, P. Oscar Boykin, and Vwani P. Roychowdhury. Percola-
tion Search in Power Law Networks: Making Unstructured Peer-to-Peer
Networks Scalable. In Proceedings of the 4th International Conference on
Peer-to-Peer Computing (P2P’04), pages 2–9. IEEE, 2004.

[SGG03] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. Measuring and
Analyzing the Characteristics of Napster and Gnutella Hosts. Multimedia
Systems, 9(2):170–184, 2003.

[SMK+01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable Peer-To-Peer lookup service for internet
applications. In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM’01), pages 149–160. ACM, 2001.

[SOTZ05] Yanfeng Shu, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou. Supporting
Multi-Dimensional Range Queries in Peer-to-Peer Systems. In Proceedings
of the 5th International Conference on Peer-to-Peer Computing (P2P’05),
pages 173–180. IEEE, 2005.

[SP03] Cristina Schmidt and Manish Parashar. Flexible Information Discovery in
Decentralized Distributed Systems. In Proceedings of the 12th International
Symposium on High Performance Distributed Computing (HPDC’03),
pages 226–235. IEEE, 2003.

[SP04] Cristina Schmidt and Manish Parashar. Analyzing the Search Charac-
teristics of Space Filling Curve-based Indexing with the Squid P2P Data
Discovery System. Technical Report TR-276, CAIP, Rutgers University,
2004.

[Sri01] Kunwadee Sripanidkulchai. The Popularity of Gnutella Queries and its
Implications on Scalability, 2001.

[SW05] Ralf Steinmetz and Klaus Wehrle. Peer-to-Peer Systems and Applications.
Springer, 2005.

[SX07] Haiying Shen and Cheng-Zhong Xu. Locality-Aware and Churn-Resilient
Load-Balancing Algorithms in Structured Peer-to-Peer Networks. IEEE
Transactions on Parallel Distributed Systems, 18(6):849–862, 2007.

[SXC06] Haiying Shen, Cheng-Zhong Xu, and Guihai Chen. Cycloid: A Constant-
degree and Lookup-efficient P2P Overlay Network. Performance Evalu-
ation, 63:195–216, 2006.

160

Bibliography

[THS+04] Egemen Tanin, Aaron Harwood, Hanan Samet, Sarana Nutanong, and
Minh Tri Truong. A serverless 3D World. In Proceedings of the 12th
International workshop on Geographic information systems (GIS’04), pages
157–165. ACM, 2004.

[Tie08] Daniel Tiebler. Optimierung multidimensionaler Bereichsanfragen mittels
raumfüllender Kurven in Peer-to-Peer-Netzen. Diploma thesis, Universität
Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik,
Germany, August 2008.

[TP03] Peter Triantafillou and Theoni Pitoura. Towards a Unifying Framework for
Complex Query Processing over Structured Peer-to-Peer Data Networks. In
Proceedings of International Workshop on Databases, Information Systems
and Peer-to-Peer Computing (DBISP2P’03), pages 169–183. Springer,
2003.

[tpc] Transaction Processing Performance Council. http://www.tpc.org/.

[TR03] Dimitrios Tsoumakos and Nick Roussopoulos. Adaptive Probabilistic
Search for Peer-to-Peer Networks. In Proceedings of the 3rd International
Conference on Peer-to-Peer Computing (P2P’03), pages 102–109. IEEE,
2003.

[TR06] Dimitrios Tsoumakos and Nick Roussopoulos. Analysis and Comparison of
P2P Search Methods. In Proceedings of the 1st International Conference
on Scalable Information Systems (InfoScale’06). ACM, 2006.

[TS10] Sabu M. Thampi and K. Chandra Sekaran. An Enhanced Search Tech-
nique for Managing Partial Coverage and Free Riding in P2P Networks.
Computing Research Repository, abs/1006.1017, 2010.

[VZZ+00] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy Lohman, and Alan
Skelley. DB2 Advisor: An Optimizer Smart Enough to Recommend its own
Indexes. Proceedings of 13th International Conference on Data Engineering
(ICDE’00), 0:101–110, 2000.

[WZK05] Haojun Wang, Roger Zimmermann, and Wei-Shinn Ku. ASPEN: An
Adaptive Spatial Peer-to-Peer Network. In Proceedings of the 13th Inter-
national Workshop on Geographic Information Systems (GIS’05), pages
230–239. ACM, 2005.

[YGM02] Beverly Yang and Hector Garcia-Molina. Improving Search in Peer-to-
Peer Networks. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS’02), pages 5–14. IEEE, 2002.

[YLY07] Fuyong Yuan, Jian Liu, and Chunxia Yin. A Scalable Search Algorithm
on Unstructured P2P Networks. In Proceedings of the 8th International
Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed (SNPD’07), pages 199–204. IEEE, 2007.

161

http://www.tpc.org/

Bibliography

[YS07] Liu J. Yin C. Liang S. Yuan, F. and N. Shen. A Novel Search Algorithm
Utilizing High Degree Nodes. In Proceedings of the 2nd International Con-
ference on Communications and Networking in China (CHINACOM’07),
pages 44–48. IEEE, 2007.

[ZCS05] Hai Zhuge, Xue Chen, and Xiaoping Sun. Preferential Walk: Towards
Efficient and Scalable Search in Unstructured Peer-to-Peer Networks. In
Special Interest Tracks and Posters of the 14th international Conference
on World Wide Web (WWW’05), pages 882–883. ACM, 2005.

[ZH06] Yingwu Zhu and Yiming Hu. Enhancing Search Performance on Gnutella-
Like P2P Systems. IEEE Transactions on Parallel Distributed Systems,
17:1482–1495, 2006.

[ZHS+04] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Ku-
biatowicz. Tapestry: a resilient global-scale overlay for service deployment.
22:41–53, 2004.

[ZLXN03] Zhenyun Zhuang, Yunhao Liu, Li Xiao, and Lionel M. Ni. Hybrid Periodical
Flooding in Unstructured Peer-to-Peer Networks. International Conference
on Parallel Processing (ICPP’03), 0:171, 2003.

[ZRL+04] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm,
Christian Garcia-Arellano, and Scott Fadden. DB2 Design Advisor: In-
tegrated Automatic Physical Database Design. In Proceedings of the 13th
International Conference on Very Large Data Bases (VLDB’04), pages
1087–1097. VLDB Endowment, 2004.

[ZZSL07] Haoxiang Zhang, Lin Zhang, Xiuming Shan, and V.O.K. Li. Probabilistic
Search in P2P Networks with High Node Degree Variation. In Proceedings
of International Conference on Communications (ICC’07), pages 1710
–1715. IEEE, 2007.

162

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Problem Statement and Contribution
	Problem Statement
	Contribution

	Structure

	Background
	Peer-to-Peer Overlay Networks
	Peer-to-Peer Information Discovery Systems
	Unstructured Peer-to-Peer Systems
	Uninformed Search
	Informed Search

	Structured Peer-to-Peer Systems
	Ring (Chord)
	Torus/Hypercube (CAN)
	SkipList (SkipNet)
	Butterfly Networks (Viceroy)
	Tree (Plaxton Tree)

	Space-Filling Curves

	Optimized Information Discovery System
	Introduction
	System Architecture
	Attribute Domain Sub-setting
	SFC-based Data Indexing
	Data Placement
	Query Resolution
	Query Optimization
	Routing Optimization
	Computation Load Distribution

	System Evaluation
	Evaluating SFC-based Indices
	Evaluating Query Optimizations
	Basic Routing vs. Routing Optimization
	Routing Optimization vs. Computation Load Distribution

	Related Work
	Specialized Overlay Networks
	DHT-based Overlay Networks
	Individual Indices
	Combined Index

	Conclusion

	Index Recommendation for Optimized Information Discovery
	Introduction
	OID System Architecture
	Query Cost Estimation
	Index Recommendation Algorithms
	Naïve Index Recommendation
	Scalable Index Recommendation
	Cost-based Merge Algorithm
	Similarity-based Merge Algorithm
	Selection Algorithm

	System Evaluation
	Performance Evaluation
	Influence of Varying Attribute Combinations
	Influence of Varying Number of Indices
	Influence of Varying Popularity Distribution

	Network Simulation
	Evaluation Summary

	Related Work
	Conclusion

	Self-adapting Optimized Information Discovery System
	Introduction
	Evolution of the OID Architecture
	Index Adaptation
	Distributed Workload Collection
	Index Recommendation
	Adaptation Decision
	Index Installation

	System Evaluation
	Varying Number of Attributes
	Varying Number of Indices
	Varying Number of Data Objects
	Efficiency of Distributed Workload Collection

	Related Work
	Unstructured P2P Information Discovery Systems
	Structured P2P Information Discovery Systems

	Conclusion

	Application: Spatial Information Discovery
	Introduction
	System Architecture
	Data and Query Model

	Data Indexing
	Data Placement
	Query Resolution
	System Evaluation
	Performance Evaluation
	Data Distribution
	Performance vs. Data Distribution
	Query Optimization

	Related Work
	Non-DHT based Systems
	DHT-based Systems

	Conclusion

	Summary and Future Work
	Summary
	Future Work

	Bibliography

