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Abstract

Since the first Web page went online in 1990, the rapid development of the World Wide Web
has been continuously influencing the way we manage and acquire personal or corporate in-
formation. Nowadays, the WWW is much more than a static information medium, which it
was at the beginning. The expressive power of modern programming languages is at the full
disposal of Web application developers, who continue to surprise Web users with innovative
applications having feature sets and complexity, which are comparable to that of traditional
desktop applications. The global availability of information and applications make the WWW
a very attractive medium for both private and business purposes.

Accordingly, Web application development is an important topic both in industry and re-
search. Unfortunately, most Web application development projects are still conducted in an
ad-hoc manner, without relying on a well-defined software development process. Mistakes
that have been made in the early days of software development are often repeated in current
day Web projects. Some experts even speak of the Web crisis referring to the software crisis of
the 1970s. Therefore, it is advisable that Web projects start to employ appropriate software
development processes. On the one hand, this seems like an easy task, as there already exist
a multitude of process models designed for software development. On the other hand, Web
applications have some unique features that make it difficult to apply a standard development
process. Therefore, there is a great need for methods and tools that are specific to Web applica-
tions and can be employed for standard development processes.

Over the last decade, the Web engineering research community has produced numerous
methods for Web application development. Most of these methods are model-based, i.e., they
propose (graphical) models that capture different aspects of a Web application and are in-
tended to be used in the design phase of a development process. Most methods employ three
types of models that capture the application’s content, navigation structure and presentational
aspects. A strong focus is usually on modeling content and the application’s navigational char-
acteristics. However, as Web applications get increasingly interactive and incorporate content
management features, it gets more and more important to support the modeling of content
management functionality. Unfortunately, most methods treat content management opera-
tions as second-class citizens. They are usually considered only on a very abstract level and
are incorporated into existing models, which produces various problems.

This work presents the flashWeb method, which fills in many gaps that are left open by
existing solutions. First, the method introduces the additional Operation Model, which can
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be used to explicitly specify content management operations. Operations are represented by
model elements that can be combined in a flexible manner into composite operations, which
represent more complex pieces of application logic. Second, the flashWeb method introduces
a novel approach to combine different models by employing direct graphical connections be-
tween model elements. Finally, the method is supported by a CAWE tool that allows to create
flashWeb models and to generate a fully-functional Web application from them.
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Zusammenfassung

Seit der Veroffentlichung der ersten Webseite im Jahr 1990 beeinflusste die rasche Entwicklung
des WWW die Art und Weise, wie wir Informationen zu personlichen oder geschiftlichen Zwe-
cken beziehen und verwalten. Das WWW hat sich von einem statischen Informationsmedium,
was es zu Anfang war, in betrdchtlichem Mafle weiterentwickelt. Webapplikationsentwick-
lern stehen heutzutage vielféltige Moglichkeiten moderner Programmiersprachen zur Verfii-
gung, die beziiglich Funktionalitdt und Komplexitdt herkommlichen Desktop-Anwendungen
in nichts nachstehen. Die globale Verfiigbarkeit macht das WWW zu einem sehr attraktiven
Informations- und Applikationsmedium sowohl fiir private als auch fiir geschiftliche Zwecke.

Es ist daher nicht allzu iiberraschend, dass Webanwendungsentwicklung sowohl in der
Industrie als auch in der Forschung eine wichtige Rolle spielt. Es existieren viele Sprachen,
Frameworks und Werkzeuge, welche fiir die Webanwendungsentwicklung eingesetzt werden
konnen. Ungliicklicher Weise werden viele dieser Technologien ad-hoc eingesetzt und Weban-
wendungsprojekten liegt meistens keine fundierte Methodik zu Grunde. Das Konzept des mo-
dellbasierten Web-Engineerings versucht, diesen Missstinden ein Ende zu bereiten. Die grund-
sdtzliche Idee hinter diesem Konzept ist die Verwendung von (graphischen) Modellen, welche
fiir die Sammlung von Anforderungen und fiir den Entwurf der Webanwendung eingesetzt
werden konnen. Nach dem Entwurf dienen die Modelle als Vorlage fiir die Programmierung
oder als Eingabe fiir ein Generierungswerkzeug, das in der Lage ist, aus den Modellen eine
funktionsfdhige Implementierung zu generieren.

Diese Arbeit stellt die flashWeb Methode vor, die auf erprobten Konzepten des modellba-
sierten Web-Engineerings basiert. Die Methode fiihrt ein neues Modell fiir die Erfassung von
Content-Management-Operationen ein und stellt ein neues Konzept fiir die graphische Verbin-
dung von verschiedenen Modellen vor. Diese Erweiterungen versetzen die flashWeb Methode
in die Lage, Webanwendungen mit komplexer Content-Management-Funktionalitdt erstellen
zu koénnen. Des Weiteren ermoglichen die semantischen Verbindungen zwischen den verschie-
denen Modellen die Generierung funktionsfahiger Webanwendungen aus den Modellen.

Modellbasierte Methoden fiir Webanwendungsentwicklung konzentrieren sich grundsétz-
lich auf die Modellierung von drei verschiedenen Aspekten. Erstens unterstiitzen sie die Mo-
dellierung von Inhalten. Zu diesem Zweck, wird oft ein so genanntes “Datenmodell” oder
ein “Konzeptionelles Modell” eingesetzt. Diese Modelle lehnen sich oft an die Notation eines
UML-Klassendiagrammes an und haben den Zweck, Objekte und Objektbeziehungen fiir die
Datenhaltung der Webanwendung zu definieren. Der zweite Modellierungsaspekt, der oft ei-



ne Rolle spielt, beschiftigt sich mit der Navigationsstruktur der Webanwendung. Hierzu wird
oft ein so genanntes “Hypertext Modell” oder ein “Navigationsmodel” verwendet. Die Navi-
gationsstruktur einer Webanwendung spielt selbstverstandlich eine wichtige Rolle, deswegen
wird diesem Modelltyp in der Regel viel Aufmerksamkeit geschenkt. Das dritte Modelltyp, das
oft von Web-Engineering-Methoden eingesetzt wird, ist ein so genanntes “Benutzerschnittstel-
lenmodell” oder “Prasentationsmodell”. Dieser Modelltyp hat die Aufgabe die Benutzerober-
flache der Webanwendung zu definieren.

Leider wird die Definition von Anwendungslogik von vielen Web-Engineering-Methoden
vernachldssigt. Es gibt zwei grundlegende Probleme, die hdufig anzutreffen sind. Zum einen
werden Operationen der Anwendungslogik auf einer eher abstrakten Ebene betrachtet, so dass
die Generierung einer funktionsfahigen Webanwendung, die die entsprechenden Operationen
umsetzt, nicht moglich ist. Zum anderen wird die Definition von Operationen, wenn {iiber-
haupt vorhanden, in bereits existierende Modelle integriert. Modelle die hierzu zweckentfrem-
det werden sind oft das Datenmodell oder das Navigationsmodell.

Ein wichtiger Aspekt in der modellbasierten Webanwendungsentwicklung ist die Definition
von semantischen Verbindungen zwischen verschiedenen Modellen ohne hierdurch unnétige
Einschrankungen einzufiihren. Ein Beispiel hierfiir ist die Definition eines Datenobjektes und
dessen Einbindung in das Navigationsmodell und in das Benutzerschnittstellenmodell. Die
Information, die durch das Datenobjekt reprédsentiert wird, soll sinnvoll in die Navigationss-
truktur der Webanwendung eingebunden und dem Benutzer ansprechend présentiert werden.

Einerseits sollen die Verbindungen zwischen den Modellen gentigend Flexibilitdt bieten, so
dass der Entwickler in der Lage ist, Webanwendungen mit beliebiger Datenstruktur, Naviga-
tionsstruktur und Benutzeroberfliche zu spezifizieren. Andererseits sollen die Verbindungen
konkret mit Hilfe einer formalen Sprache ausgedriickt werden konnen, so dass sie eine geeig-
nete Vorlage fiir Codegenerierung bieten.

Leider weisen viele Web-Engineering-Methoden hinsichtlich dieser Anforderungen Defizite
auf. Eine hdufig anzutreffende Schwachstelle ist ein dominantes Datenmodell, das alle ande-
ren Modelle, wie zum Beispiel das Navigationsmodell, beeinflusst. Ist dies der Fall, hat der
Webanwendungsentwickler keine Moglichkeit eine beliebige Benutzeroberflache zu definie-
ren, da das Navigationsmodell und das Prasentationsmodel aus dem Datenmodell abgeleitet
werden miissen. Ein anderes Problem, das ebenfalls haufig auftrifft, sind lose Verkniipfungen
zwischen den Modellen, zum Beispiel nur per Namensgebung, so dass eine direkte Codegene-
rierung aus den Modellen nicht mdglich ist.

Eine wichtige Innovation dieser Arbeit ist die Vorstellung des Operationenmodells, das ei-
ne grafische Notation fiir die Definition von einfachen und zusammengesetzten Operationen
bietet, mit deren Hilfe ein Grofsteil der Anwendungslogik einer Webanwendung spezifiziert
werden kann. Das Operationenmodell verbindet das Datenmodell und das Benutzerschnitt-
stellenmodell einer Webanwendung in einer einzigartigen und flexiblen Weise, so dass der We-
banwendungsentwickler beliebige Inhalte und Anwendungslogik in die Benutzeroberflache
der Webanwendung integrieren kann. Diese Flexibilitdt bietet keine andere Web-Engineering-
Methode.

Die Verwendung eines zuséatzlichen Modells fiir die Definition von Operationen bietet viele
Vorteile. Erstens ist ein Grofiteil der Anwendungslogik der Webanwendung in einem einzigen
Modell gekapselt. Zweitens konnen in diesem Modell reine Datenoperationen klar von kom-
plexerer Anwendungslogik getrennt werden. Schliefdlich werden Operationen nicht in andere
Modelle gepackt sondern nur per Referenz eingebunden. So muss jede Operation nur ein Mal
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definiert werden und kann beliebig oft zur Anwendung kommen.

Eine weitere Neuerung, die in dieser Arbeit prasentiert wird, ist die Vorstellung einer grafi-
schen Notation fiir die Verbindung verschiedener Modelle einer Webanwendung. Zu diesem
Zweck werden gerichtete Kanten eingesetzt, die Elemente des Operationenmodells eindeu-
tig mit Elementen des Datenmodells und des Benutzerschnittstellenmodells verbinden. Diese
Art der Modellverkniipfung bringt verschiedene Vorteile mit sich. Zum einen bieten die Ver-
bindungen einen guten Uberblick iiber die gesamte Anwendungslogik der Webanwendung.
Zum anderen ist diese Art der Verbindung formal eindeutig, so dass aus den Modellen eine
funktionsfdhige Webanwendung generiert werden kann.

Der strukturierte Aufbau dieser Arbeit sorgt fiir eine klare Prasentation der erarbeiteten Lo-
sungen. Kapitel 2 enthdlt Grundlagen rund um den Begriff Webanwendung. Neben einem kur-
zen historischen Riickblick, werden alle relevante Begriffe und Technologien vorgestellt. Ka-
pitel 3 prasentiert die Disziplin der modellbasierten Webanwendungsentwicklung. Es werden
geschichtliche Hintergriinde prasentiert, die Rolle von Modellen fiir die Webanwendungsent-
wicklung erortert, die grundsétzliche Vorgehensweise bei der Webanwendungsentwicklung
erklart und schliefslich verschieden Web-Engineering-Methoden miteinander verglichen. Ka-
pitel 4 stellt die in Rahmen dieser Arbeit entwickelte Web-Engineering-Methode namens flas-
hWeb vor. Nach einem generellen Uberblick iiber die Methode werden alle Modelle, die die
Methode einsetzt und die Art und Weise wie die Modelle miteinander verkniipft werden kon-
nen, detailliert vorgestellt. Kapitel 5 beschreibt wie die flashWeb Methode die schnelle Imple-
mentierung von Webanwendungen erméglicht. Im Zentrum der Betrachtung steht das flas-
hWeb CAWE (Computer-aided Web Engineering) Werkzeug, das die vollautomatische Gene-
rierung von Webanwendungen aus den Modellen der Methode ermdglicht. Das abschliefiende
Kapitel 6 bewertet die erarbeitete Losungen. Es werden Vor- und Nachteile der flashWeb Me-
thode erortert, der Vergleich mit anderen Web-Engineering-Methoden gezogen und statistische
Ergebnisse der Codegenerierung prasentiert.
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CHAPTER 1

Introduction

It is easy to find superlatives when it comes to describing the World Wide Web. Its develop-
ment has been truly remarkable right from the beginning and it has transformed the way we
think about acquiring information both in personal and in business life. For example, before
the WWW era, planning a weekend in a foreign city or just a nice evening in one’s home town
was considerably more difficult and time-consuming. Traditional information sources like city
guides and newspapers are not available around the clock, they cost more than a few minutes
of online time and of course they lack interactivity. In contrast to that, the WWW offers us
interactive maps, for example, to find a nearby movie theatre, the home page of the theatre
informs us about movies that are currently playing and, in most cases, it allows us to make
a reservation online. Another scenario from business life could involve a corporate employee
looking for the smallest price for a certain product. Instead of acquiring different prices from
possible suppliers by phone, the employee may use online catalogs to compare products and
prices or may even utilize a dedicated Web portal that integrates product data from different
suppliers to find the appropriate product at the best conditions automatically.

Of course, these are just simple example scenarios and the WWW provides a large variety of
services and a huge amount of information just about any imaginable topic. However, the Web
has been not always this versatile. In its early days, it contained only static text, which was
extended over time with additional resources, e.g., images, videos, etc. It was the introduction
of the first Web applications that gave a glimpse of the WWW'’s true potential. Nowadays,
behind almost every portal on the Web, there are one or more Web applications and the WWW
has evolved from a simple information medium to an application platform.

Accordingly, Web application development has become a prominent topic. There exists a
myriad of languages, frameworks and tools, which can be used for Web application devel-
opment. New technologies, buzzwords, and marketing terms, e.g., Web 2.0, come and go
frequently, indicating the rapid evolution of the Web. Unfortunately, many of these technolo-
gies are used in an ad-hoc manner and Web application development projects are rarely based
on a solid Web engineering method. The concept of Model-based Web Engineering tries to
bring order to this chaos. The central idea behind the term is to employ a set of (graphical)
models that can be used to capture requirements and to design the Web application. After the
design phase, the models can be used as a blueprint for creating the implementation or may
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be even provided as input to a code generator that is capable of producing the implementation
automatically.

In this work, the flashWeb method is introduced, which integrates well-established concepts
of model-based Web engineering and introduces a new model for defining content manage-
ment operations as well as a novel model-weaving approach. With these extensions, the flash-
Web method is capable of specifying Web applications with comprehensive content manage-
ment functionality. Furthermore, the models are cohesive enough to generate a fully functional
implementation from them.

1.1 Problem Domain

The most prominent development methods in the field of model-based Web engineering, the
Web Modeling Language (WebML) [CFBO00], the Object-Oriented Hypermedia Design Method
(OOHDM) [SR98], and the UML-based Web Engineering (UWE) [BKM99] employ different
graphical models to design Web applications. These and other methods usually focus on three
main aspects in order to describe a Web application and provide different graphical models to
capture corresponding characteristics. The first aspect concerns the modeling of the Web ap-
plication’s content. To this end, the methods employ a “Data Model” or a “Conceptual Model”
that is usually very similar to a standard UML class diagram. The aim of this model is simply to
specify objects and relationships that are used for storing Web application content. The second
aspect of importance and accordingly the second model type that is provided by these meth-
ods is concerned with capturing the Web application’s navigation structure. A corresponding
model is usually named the “Hypertext Model” or the “Navigation Model”. Hypertext is a
special feature of Web applications, thus this model usually receives a lot of attention. Finally,
the last model that is usually offered by a Web engineering method defines the Web applica-
tion’s user interface. Accordingly, it is called the “User Interface Model” or the “Presentation
Model”.

On the one hand, Rode comes to the conclusion that model-based Web engineering methods
developed by the research community are more sophisticated than commercial products if it
comes to the graphical modeling of Web applications [Rod05]. Commercial modeling tools
for Web applications have evolved from traditional software tools, therefore they are good
at modeling content structure and application behaviour but they are poor at dealing with
navigation structures and hypertext. However, they are usually better at generating executable
code for some target platform, e.g., J2EE or .NET.

On the other hand, most research approaches do not consider application behavior, i.e., con-
tent management operations and other application logic in an appropriate fashion. There are
two general problems with the way such operations are handled. First, in many cases opera-
tions are considered at a very high level, thus a partial or full generation of the corresponding
functionality is out of the question. A corresponding example is an operation purchaseProduct,
which of course is far too general to be used for code generation. Purchasing a product in
an online store usually includes a set of different steps that are to be modeled in more detail.
Second, operations are usually integrated into one of the existing design models. For example,
the WebML integrates content management operations into its hypertext model thereby com-
plicating the model and making it more difficult to understand the actual navigation structure
of the Web application.
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An important aspect in model-based Web engineering is creating semantic connections be-
tween different models without introducing unnecessary restrictions. For example, if the con-
tent model of a Web engineering method defines content objects, then the navigation model
and the user interface model of the same method should provide a way to represent the con-
tent object in the Web application’s navigation structure and integrate it into the user interface.
However, semantic connections between models should be flexible enough and allow the Web
application developer to create arbitrary content structures, navigation structures, and user in-
terfaces. On the other hand, it is desirable that semantic connections are precise enough to be
expressed with a formal language, thus the models may be used as a basis for code genera-
tion. Unfortunately, most Web engineering methods have deficits regarding these aspects. A
common problem is that the navigation model of a Web engineering method is usually closely
related to the method’s content model. This is, for example, the case for the OOHDM and the
UWE methods. Both methods derive the navigation structure of the application from the con-
tent model, thus navigation nodes are basically views of content nodes, which forces the Web
application designer to create a navigation structure that reflects the content structure of the
Web application very closely.

1.2 Contribution

This work contributes to the research area of Web engineering in multiple ways. The main
aspects of the contribution are summarized in the following listing.

Analysis of the status quo. As a prerequisite for the proposed innovations presented in this
work a comprehensive and representative selection of existing Web engineering methods are
analyzed and compared to each other (see Section 3.4). The comparison includes multiple as-
pects such as employed models, model weaving capability, and code generation. Furthermore,
each of the four selected Web engineering methods are analyzed using a common example
scenario, which allows a thorough and fair comparison. The result of the analysis is a set of
weaknesses that are eliminated by the modeling approach presented in this work.

Introduction of the Operation Model. The main innovation of this work is the introduction
of the Operation Model (see Section 4.4) that provides a graphical notation for defining basic
and composite operations, which may be used to specify a large part of the Web application’s
business logic. The Operation Model connects the Content Model and the Composition/Nav-
igation Model of the flashWeb method in a unique and flexible manner, thereby allowing the
Web application developer to seamlessly integrate content and business logic into the Web
application’s user interface. With this additional model, the Web application developer is pro-
vided with a flexibility that is not offered by any other Web engineering method. The idea of
the Operation Model has been published at the ICWE 2006 [JSKMO6a].

Introduction of a new model weaving approach. The second important innovation that is
introduced in this work is a novel model weaving approach (see Section 4.2) that allows to
combine generic user interface components and operations to achieve maximal flexibility for
defining the Web application. The flashWeb method provides a graphical notation (directed



1 Introduction

edges) to connect elements of different models. This novel approach allows the Web applica-
tion developer to specify the dynamic content for a user interface element quickly and in an
intuitive manner. Additionally, the graphical connections provide a good overview of the Web
application for the developer. Finally, flashWeb’s model weaving approach defines formal con-
nections between the models and creates a cohesive specification of the entire Web application,
thereby facilitating the generation of a fully functional implementation. The idea of this novel
model weaving approach has been published at the MDWE 2006 [JSKMO6b].

Complete object-oriented design. An important characteristic of the proposed Web engi-
neering method is to rely on object-oriented principles throughout the entire design process.
Most existing Web engineering methods use a mixture of object-oriented ideas and concepts
from relational modeling. The flashWeb method provides a cohesive object-oriented view of
the Web application, which is familiar to developers, who are used to think in object-oriented
terms.

Proof of concept. The last contribution of this work is a proof of concept by introducing
the flashWeb CAWE tool (see Section 5.2) that is composed of a graphical editor and a code
generator plugin. The editor demonstrates that it is easy to create flashWeb’s graphical models
and the code generator plugin creates an executable implementation of the Web application
on-the-fly. The flashWeb method and the CAWE tool has been presented at ER 2007 [JSSKO07].

1.3 Overview

This work provides a comprehensive overview of model-based Web application development
in general and introduces the flashWeb method, which extends existing solutions with an ad-
ditional model and a novel model weaving approach. This work is divided into six chapters.
This first chapter provides an initial introduction to the research area of model-based Web
application development, highlights some of the challenges in this area and summarizes the
work’s contribution.

Chapter 2 gives a detailed explanation of what Web applications are. This knowledge is of
course a prerequisite for understanding how to develop Web applications, thus, it builds a
solid foundation of the knowledge presented in this work. To this end, Section 2.1 gives an
introduction to the early history of the WWW beginning from the idea of a hyperlinked infor-
mation system at CERN to the emergence of the first search engines. Subsequently, Section 2.2
introduces Web applications by providing a set of basic definitions that are used throughout
this work and also contains a categorization of Web applications. Additionally, Section 2.2.3
specifies an example Web application that is used in this work to demonstrate the features of
different model-based Web engineering solutions and to compare them. Finally, Section 2.3
contains basic background information about technologies that are used to implement Web
applications. To this end, different sub-sections introduce core Web technologies, different ar-
chitectural patterns, and frameworks for Web application development.

The topic of Chapter 3 is model-based Web engineering, i.e., the discipline of developing
Web applications using different (graphical) models. The chapter begins with a short historical
overview of the Web engineering research area in Section 3.1. After that, Section 3.2 explains
the role of models for software development in general and specifically for Web application
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development. Section 3.3 describes the Web application development process. It explains why
Web applications are different from traditional desktop applications, it introduces the Web
application life cycle and provides information about different process models for Web appli-
cation development. Finally, Section 3.4 introduces and evaluates four prominent Web engi-
neering methods that have been proposed by the Web engineering research community since
the mid 1990s.

The centerpiece of this work is Chapter 4, which introduces the flashWeb Web engineering
method. The chapter begins with the description of the method’s most important character-
istics in Section 4.1, it continues with a general overview of the method in Section 4.2, before
subsequent sections introduce the method’s four models, namely the Content Model in Sec-
tion 4.3, the Operation Model in Section 4.4, the Composition/Navigation Model in Section 4.5,
and the Presentation Model in Section 4.6.

Chapter 5 describes how to implement Web applications using the flashWeb method. To
this end, Section 5.1 outlines the general implementation strategy of flashWeb, which is in a
nutshell the utilization of a CAWE tool to create graphical models and to generate a ready-to-
run Web application from them. Section 5.2 introduces the flashWeb CAWE tool, Section 5.3
provides details about the Zope 3 Web application framework, which is the target framework
of the code generator that is described in Section 5.4.

Chapter 6, the final chapter of this work, contains a detailed evaluation of the flashWeb
method. Sections 6.1 and 6.2 explain the advantages and limitations of the method, respec-
tively. Section 6.3 describes how the flashWeb method supports different process models for
Web application development. Section 6.4 summarizes the differences between flashWeb and
other Web engineering methods, which have been introduced in Section 3.4. Section 6.5 pro-
vides statistics about the generated Web applications. Finally, Section 6.6 outlines some en-
hancements and extensions of the flashWeb method as potential future work.
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CHAPTER 2

Web Applications

As established in the previous chapter, the World Wide Web (WWW) has become a major factor
in business and in private life. But how did it come to that and what are Web Applications after
all? The first part of this chapter gives a short historical overview of the WWW'’s development
from the very beginning of hypertext systems, through the creation of the first Web page to the
emerging of large Web sites. After that, the second part deals with the evolution of Web sites
into Web applications. Finally, the third major part of this chapter provides insight into the
technological background of Web Applications.

2.1 Before the Age of Web Applications

The WWW is a complex information system which is implemented by a huge number of com-
puters connected by the Internet. Therefore, the success story of the WWW is also a success
story of the Internet, which is the underlying communication network. Like its predeces-
sors, the telegraph, the telephone, and the radio, which were all invented in the 19th cen-
tury [MPSS99], the primary task of the Internet is basically to transmit information. However,
its protocols: the Internet Protocol (IP) [Uni81] and the Transmission Control Protocol (TCP)
[CK74][CDS74] and its communication peers: PCs, Laptops and mobile phones are far more
sophisticated than those of its predecessors.

According to estimates in January 2008, there were over half a billion permanently reachable
computers on the Internet [URIO8g] and about 1.3 billion people [URIO8h] who had access to
it. These figures are growing at a very high rate and they will probably double during the next
ten years. Obviously, the Internet is an extremely popular communication network and the
WWW is one of its most popular services.

The original task of the WWW was to provide a collection of documents to its users that
were interconnected by references (hyperlinks). However, the idea of a hypertext system was
invented long before the creation of the first Web page. The first significant publication regard-
ing a hypertext system was the article “As We May Think” [Bus45] in the Atlantic Monthly by
Vannevar Bush in 1945. In his publication, Bush describes a hypertext system called “Memex”,
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a mechanical device that allows for the efficient storage and retrieval of information using mi-
crofilm as storage medium.

In 1965, Nelson proposed a futuristic library system called “Xanadu”, which should allow
for the storage and publication of information in a non-linear manner. His vision was that this
computer system stored all the world’s information in so called hypertext form and that this
information was freely created and shared among arbitrary individuals. Nelson was the first
who used the term hypertext. Remarkably, today’s WWW shares many common characteristics
with Nelson’s Xanadu.

Another visionary of the 20th century working in the field of hypertext systems was Doug
Engelbart who developed a collaborative workspace called On Line System (NLS) [Eng62]
[GCO00], which allowed several users to work on hypertext in a parallel manner. Engelbart
also invented the “Mouse”, which he demonstrated together with NLS at the Joint Computer
Conference in San Francisco in 1968.

Howewer, it wasn’t before 1990 that the first Web page went online. Tim Berners-Lee, the
inventor of the World Wide Web, started to work on the predecessor of the WWW at CERN,
the European Organization for Nuclear Research [URIO8c], in 1980. He called the program
Enquire Within Upon Everything (Enquire) [BL0O], which he used to organize people, projects,
and computer programs.

He called the second version of his programm the World Wide Web, which he described in a
proposal [BL89] at CERN in 1984. During the next few years he developed all cornerstone tech-
nologies of the WWW: the Hypertext Transfer Protocol (HTTP) [BL91][BLFG*99], the Uniform
Resource Identifier (URI) [BL94] and the Hypertext Markup Language (HTML) [BLC93]. He
programmed a simple Web server and registered it under the domain “info.cern.ch” [URIO8m].
He also created the first Web client running on his NeXT personal computer. Finally, he cre-
ated the very first Web page documenting the WWW project under the URL http://info.cern.ch/
hypertext/WWW/TheProject.html [URI92] in 1990. Although, the WWW was operational in late
1990, besides Berners-Lee’s initial Web pages, there was virtually no content on it and it was
unknown to the public. At that time, information systems like the Wide Area Information
Servers (WAIS) [PFG*94][URI03], Gopher [AML"93], or News using the Network News Trans-
port Protocol (NNTP) [KL86] were more popular.

During the following years, several Web browsers like “Erwise”, “ViolaWWW” or “Mosaic”
were developed and towards the end of 1993 info.cern.ch registered 10.000 hits per day. Since
that year the number of Web sites world-wide has been growing exponentially [URIO81]. With
the number of Web sites growing fast, the need for search capability in the WWW arose. Ac-
cordingly, in 1994 two of the first major search engines entered the scene, Lycos and InfoSeek.
Both had extensive indexes of the WWW and could handle search queries in a timely fashion
[SM98]. However, in 1995 they were quickly superseded in terms of popularity by AltaVista,
that introduced natural language queries and boolean expressions. Since then a large number
of different browsers, Web servers, and search engines have been introduced and are used by
millions of people all over the world.

2.2 From Web Sites to Web Applications

Since its emerging in 1990, the WWW has been developing at a tremendous rate. Web sites
that started as a collection of a few pages have grown to huge portals attracting a considerable
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amount of visitors. In the beginning, Web sites were merely a static collection of pages. User
interactivity was restricted to simple navigation through predefined references (hyperlinks)
between Web pages. However, soon enough, Web sites began to execute simple computations
and to offer personalization facilities. Web sites started to provide Web forms, which allowed
Web site visitors to enter text or make some simple choices, e.g., using radio buttons. The
input was analyzed and the Web server generated a corresponding response. However, the
Web site visitor had to input that information each time he visited the Web site. Later on, the
state of user interaction was captured with so-called “Cookies”, pieces of information that were
stored at the client side, ensuring that personalization settings lasted until the next visit of the
user. Over time, many Web sites have evolved into fully-fledged Web Applications that are
capable of executing complex computations and are adaptable to user requirements in many
ways. Current-day Web Applications may take into account the user’s geographic location or
consider the user’s browser settings, e.g., adjusting the user interface to the preferred language.
Additionally, modern Web portals allow the user to sign up and to create an account that may
store a complete user profile and diverse user preferences permanently.

Many definitions exist for the term “Web Application” [Con03][KPRR06][LH99][W5h04].
Some are very general, stating that everything that may be accessed through a browser is a
Web Application [Woh04]. Other definitions are more restrictive and require that the user is
allowed to change the Web Application’s internal state, thus according to that state change
the Web Application may adapt its behavior [Con03]. Taking different definitions and the
decentralized nature of the WWW into account, it is hard to determine when the first Web
Applications emerged.

2.2.1 Basic Terminology

Surprisingly, several resources that deal with Web Application development fail to provide a
clear basic terminology. In contrast to that, this section introduces definitions for the most im-
portant terms that are relevant for this work. The following definitions have been created using
ideas from different Web engineering resources and lexicons [LH99][Con03][KPRRO6][CS06]
[RP06].

The WWW has started as a hypertext system. However, Web Applications incorporate more
and more features of traditional software. For example, Google offers a set of officc Web Appli-
cations [URIO8d] that resemble traditional applications of an office suite, e.g., a word processor
and a spreadsheet editor that run in a Web browser without prior installation. However, the
vast majority of the WWW is still composed of simple hypertext and hypermedia resources,
thus, it is natural to begin with the definitions of these terms.

Definition 1 Hypertext is a collection of one or more text resources that include at least one “in-
ternal” or “external” reference to a text resource of the same collection. An “internal” reference is a
connection from one section of a text resource to another section of the same text resource. An “exter-
nal” reference is a connection from one section of a text resource to a section of another text resource.

Note that this definition is kept as general as possible in order to avoid any dependencies
from existing hypertext systems, e.g., the WWW. To this end, the term text resource is used
instead of the term document. A document suggests a somewhat rigid idea of something that
has a title, a text body, and perhaps some sections. Although most hypertext systems employ
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the notion of a document, e.g., Web pages are implemented with HTML documents, historical
[Bus45] and future hypertext systems have used and may use different concepts.

Additionally, this definition for the term “hypertext” includes the definitions of “internal”
and “external” references, also called hyperlinks. This distinction is important, because a single
text resource that contains a single internal reference already constitutes a hypertext.

Finally, the provided definition abstracts from any implementation aspects. There are no
assumptions about storage mediums, how hyperlinks in text resources may be activated or
if the implementing system is a mechanical device or a computer. Accordingly, the provided
definition identifies hypertext as an information resource with certain characteristics. It is not to
be confused with the implementing system, i.e., a hypertext system.

Definition 2 Hypermedia is an amplification of hypertext. Besides simple text, hypermedia may
include further resource types, e.g., images, audio, video, computer animation, etc. References between
resources may originate from or target any media type.

The difference between hypertext and hypermedia is simple. As the provided definition
for hypermedia states, in contrast to hypertext, it may include additional media types. Of
course, besides audio and video, text is also a media type, thus hypertext is a special type of
hypermedia, using only text as medium.

As a matter of fact, most systems that employ hypertext are actually hypermedia systems.
The historical Memex [Bus45] that was conceived by Vannevar Bush in 1945 was already a
hypermedia system. Besides books and telecommunication records, it was also supposed to
store photographs. The WWW started as a pure hypertext system. The first Web pages [URI92]
created by Tim Berners-Lee in 1990 contained only text. However, as an URI may identify any
media type, webmasters of the WWW’s early days started very soon to reference images from
their Web pages and the WWW evolved into a hypermedia system.

Note that theoretically each media type in a hypermedia system may contain outgoing and
incoming references. In this context, an outgoing reference is a link that points from a resource
that is the focus of consideration to another resource and an incoming reference is a link that
points to a resource that is being considered. Incoming references are very common in current-
day hypermedia systems (e.g. the WWW) for all media types, because it is very easy to refer-
ence any kind of resource using an URI. However, outgoing references must be supported by
the corresponding media type and the hypermedia system. In case of the WWW, this is triv-
ial for text resources, as HTML provides the <a>... </a> tag for defining links. It is somewhat
more difficult to provide outgoing references from images. To this end, HTML provides the
<map>...</map> element that allows to add an interactive overlay map to an image defining
different image areas that may be associated with outgoing references. However, this technol-
ogy has not been adapted for videos yet. Thus, it is not possible to stop playback of a WWW
video resource and click on a certain area of a video frame to be redirected to an associated
resource.

The provided definition for the term “hypermedia” identifies an information resource and
not the implementing system. Thus, subsequently the corresponding definition is provided.

Definition 3 A Hypermedia System is an application that allows to create, to publish, and to
retrieve hypermedia resources.

10
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Again, the provided definition is kept general. Although, this definition of a hypermedia
system suggests, that it is some kind of an application that supports the management of hyper-
media, it does not imply a specific implementation, e.g., data files on a distributed computer
network. However, hypermedia systems have some common characteristics and goals (and
certain ways to support them), which are elaborated in the subsequent sections.

The first goal of a hypermedia system is to support creating and modifying hypermedia
content. To this end, the WWW provides HTML for the creation of Web pages and URIs for
identifying different hypermedia resources. During the early days of the WWW, building Web
pages was somewhat difficult. At that time, there were no HTML editors, thus Web pages had
to be written using plain text editors. Thus, content creators were forced to learn the HTML
syntax if they wanted to build Web pages. Although HTML is not a difficult language, only the
large number of HTML editors, that are nowadays available, open up the world of Web page
authoring to everyone.

The second goal that should be supported by a hypermedia system is content publishing.
This aspect has become easier during the evolution of the WWW. To publish content on the
WWW, one has to set up a Web server and put some Web pages on it. However, Internet service
providers offer shared Web servers that may be rented and some advertisement-financed Web
portals even provide Web space free of charge. Thus, virtually anyone who has access to the
Internet may publish information with little effort. Additionally, more and more collaborative
Web portals are being established, which allow users to contribute to mailing lists, forums and
wikis without registering for a specific service.

However, easy and unsupervised access to the WWW also generates some problems. Con-
tent is created, published, and removed from the WWW at a very high rate. Thus, the quality
and availability of information that is to be found is unpredictable and because of the size of
the WWW the search process for a certain piece of information may be very tiresome.

Finally, the last and probably most important goal of a hypermedia system is the support
for content retrieval. To this end, information should be always available, it should be easy to
locate a given piece of information and support for revisiting already localized content should
be provided. Unfortunately, the WWW arouses mixed feelings when it comes to judge its
content retrieval capability.

On the one hand, it provides the technological support that is required to fulfill the above
requirements. First, hyperlinks are easy to specify in HTML, thus they are commonly used.
Second, computer technology ensures that the browsing of hyperlink structures is fast. After
selecting a hyperlink on a Web page, the hyperlink’s target resource is usually presented in a
fraction of a second (assuming a reasonable Internet connection). Thirdly, browsers allow to
store bookmarks to resources, thus the repeated visiting of already identified information is well
supported.

Additionally, there are many services that facilitate content retrieval. The most prominent
are search engines that administer indexes covering large portions of the WWW and allow the
user to employ a keyword search resulting in a set of Web pages that match the users query.
Another practical starting point for WWW search are catalogs that maintain hierarchical Web
page indexes that may be searched or browsed manually. Finally, there exist many knowledge
portals, i.e., forums, wikis, encyclopedias that may be directly consulted.

However, due to the free nature of the WWW a vast majority of its content is practically
irrelevant to any certain individual. Thus, search engines, which are still the primary starting
points for most search activities, deliver thousands of results that make it difficult to identify
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those results that are relevant for the user. The WWW is developing at a tremendous rate
not only in size but regarding technological aspects. Web sites are replaced by complex Web
applications that are continuously catching up to traditional software regarding functionality.
Ultimately, the WWW is currently developing into an application space, where the user may not
only find hypermedia resources but also powerful applications that provide diverse function-
ality.

Definition 4 A Web Application is a software system that is based on technologies of the World
Wide Web and is able to process user input and to return a computed result through its user interface.

This definition contains some aspects that should be explained in detail. First of all, a Web
Application is a special kind of software system that is implemented using WWW technolo-
gies. In more detail, this statement means that a Web Application runs on a computer that is
accessible via TCP/IP, which is the basic Internet protocol for data transport and HTTP, which
builds on TCP/IP to allow the transport of hypermedia resources between a Web client and a
Web server. Accordingly, the Web Application runs on a Web server that potentially employs
an application server, it is identifiable by an URI, and accessible through a Web browser.

The usage of WWW technologies is of course an essential characteristic of Web applications.
A definition in one of the numerous books about Web engineering [KPRR06] states that Web
Applications are “based on standards of the World Wide Web Consortium (W3C)”. Although
the W3C is a prominent authority that supervises the development of many key WWW tech-
nologies, it is not advisable to restrict Web Applications to this technology subset. On the one
hand, there are many technologies, e.g., JavaScript that are commonly used for Web Applica-
tion development and are not supervised by the W3C, on the other hand, there exist numerous
W3C technologies that may be useful but are not necessary to create Web Applications. Al-
though the term “WWW technologies” is not overly precise, it is more suitable to characterize
the required set of technologies for Web Application development.

Also, the utilization of WWW technologies for application development does not mean that
a Web Application must run on the WWW. A Web server and a Web application may be set up
on any given computer that does not have to be connected to the Internet. Correspondingly, a
Web Application is a software system for the WWW but not necessarily on the WWW.

Another definition states that a Web Application is an application that may be accessed
through a Web browser [W6h04]. This is of course a very simplistic and dubious definition. On
the one hand, most browsers incorporate features that, for example, allow the user to browse
the local file system using the file:// naming scheme. Thus, most browsers are capable of open-
ing a simple text document that does not include any HTML code and is obviously not a Web
Application. On the other hand, in Web engineering research, it is customary to make a clear
distinction between Web sites and Web applications.

According to the definition that is provided in this work, a Web Application is a system that
accepts user input, processes it, and returns some kind of an output. The simple activation of
hyperlinks (browsing) on Web pages does not account as user input and the redirecting of the
user to the target resource of a hyperlink should not be regarded as data processing. Therefore,
a Web site, which is a simple collection of hypermedia resources is not a Web Application.

The definition of Conallen [Con03] is based exactly on this distinction. He argues that the
user of a Web Application must be allowed to change the Web Application’s internal state
so that this internal change may determine its behaviour. He also states that according to his
definition search engines are not to be considered as Web Applications. He points out that after
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the user of a search engine submits a query and receives a search result, the internal state of the
search engine stays unchanged. Obviously, Conallen’s definition requires the Web Application
to be able to store a change of state permanently.

The definition used in this work is a little more liberal. As already discussed, it is required
that the user is allowed to provide input that is processed and that the result of this processing
is returned to the user. However, an internal state change is not necessary. Accordingly, a
search engine that accepts user input, computes search results, and provides them to a user is
regarded to be a Web Application.

2.2.2 Categorization

Today the WWW offers a large number of Web Applications that are employed for different
purposes. Accordingly, Web Applications are developed to achieve various goals, they operate
in different application domains and have varying complexity. Web Applications have evolved
from Web sites, thus in most cases, they also exhibit many characteristics typical for Web sites.
The following subsections provide different approaches for the categorization of Web applica-
tions that have been derived from various resources [Pow98][LH99][KPRR06][BGPO00].

2.2.2.1 Development History

A straightforward approach is to track the development of Web Applications by time and com-
plexity as Figure 2.1 (see [KPRR06]) demonstrates.

Collaborative

Workflow-based
. Portal-oriented
Transactional

Figure 2.1: Web Application Categories

COMPLEXITY

DEVELOPMENT HISTORY

Static Web sites were the predecessors of Web Applications. Besides standard navigation ca-
pability, i.e., the user was able to activate hyperlinks, they did not offer any further interactive
features. Interactive Web Applications appeared as Web sites began to incorporate interactive
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user interface elements. The user was allowed the first time to input data via Web forms and
the Web server generated corresponding response documents via the Common Gateway In-
terface (CGI) technology. However, these first Web applications allowed a rather small degree
of interaction, because access to the Web Application’s content was read-only. As the need for
the management of large data volumes arose, i.e., the first online shops and online reserva-
tion systems appeared, Web Applications started to employ database management systems for
backend storage. These transactional Web Applications provided the first time write access to
the Web Application’s content. Additionally, database technology provided a consistent data
storage that was safe to operate in a multi-user scenario. Workflow-based Web Applications
employ workflow technology and are to be splitted into two categories. First, Web Applica-
tions may utilize an internal workflow engine for process management. In this case, the Web
Application is really workflow-based as workflow technology is directly employed to achieve
goals. Second, the Web Application may be participating in a global workflow, acting as a
single service, e.g., in a Web Services scenario. Collaborative Web Applications are usually em-
ployed if several individuals or groups are supposed to create, manage, and share content. In
this category, the subject of collaboration may vary. Groupware applications focus on docu-
ment management, email, and shared appointment scheduling and are usually employed for
project coordination and management. In contrast to that, forums, wikis, and chatrooms are
more generic in nature and may be used for general information exchange without a particular
focus. A current trend in the WWW goes towards the sharing of personal information. This
trend is supported by so called social Web Applications, which facilitate the building of social
networks, e.g., student or alumni portals. Another example are Weblogs that many individuals
use to regularly publish personal experiences and opinions on diverse topics. Finally, portal-
based Web Applications support the building of central access points and online communities
by providing key communication features, e.g., user accounts, events, news, etc.

Of course, there are many Web Applications that belong to more than one of the introduced
categories. For example, social Web Applications are often collaborative in nature and are
often implemented as a Web portal. Additionally, they may utilize workflow technology or a
database management system.

2.2.2.2 Document-centric vs. Application-centric

Web sites are composed of a number of Web pages that are usually implemented as HTML
documents. An HTML document may include different hypermedia resources, e.g., images,
videos, etc. In contrast to the early days of the WWW, these resources are usually directly
embedded into the document, and most Web browsers are capable of rendering an integrated
document view that may, for example, display text, images, and video playback at the same
time. A document represents a basic concept regarding the structure of hypermedia content.
Therefore, Web sites are to be considered document-centric.

The first Web Applications appeared as Web sites started to incorporate features that are
usually only provided by traditional software applications. The user was allowed to input
some data using simple HTML forms and the Web Application responded correspondingly.
Thus the first Web Applications were actually more or less Web sites with some application
functionality, and therefore still to a great extent document-centric.

However, nowadays WWW technologies have developed so far that some Web applications
are difficult to tell apart from traditional desktop applications. This development have been
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boosted especially through the introduction of the AJAX [URI05] technology set. The main
achievement of AJAX is the introduction of asynchronous communication between Web client
and Web server that allows for a much faster response of the Web Application’s user interface
and ultimately a look & feel that resembles traditional desktop applications. A good example
for this category of Web Applications is Google’s Web office suite [URIO8d]. It provides a set
of applications that do not rely on the concept of Web pages to implement application logic.
Therefore, these applications are regarded application-centric.

2.2.2.3 Application Domains

Web Applications are omnipresent in the WWW. No matter what kind of information one
needs, the WWW probably has the answer and, in many cases, there exist a specialized Web
Application that helps to find or process the information in an efficient way. Thus, it is obvi-
ous that Web Applications may be also categorized by the application domain. The following
paragraphs describe some of the most important domains.

One of the more prominent Web Application domains is e-business. In this domain, Web
Applications are employed for business-to-business (B2B), for business-to-consumer (B2C), or
for consumer-to-consumer (C2C) purposes. In the B2B area, enterprises operate online product
catalogs, ordering and logistic systems that may be used by other companies to plan or conduct
business transactions. In the B2C area, enterprises often offer their products in online shops to
end customers. Finally, in the C2C area, many online portals allow private individuals to rent,
buy, or sell virtually any kind of product from or to other individuals.

Another large application domain is education. Governments, universities, schools, and
other educational institutions of many nations offer a wide range of portals that provide edu-
cational content. Besides presenting many hypermedia resources, these portals employ a vari-
ety of Web Applications that target different audiences. The range of applications spans from
small demonstrations for pupils to complex online exam systems for students and graduates.

A further popular application domain is entertainment. The main application providers in
this area are information portals like Yahoo!, AOL, and MSN. The application range is remark-
able. Besides traditional board and card games, portal visitors may choose from a variety of
modern video games from diverse areas, e.g., sports, adventure, or role playing.

Last but not least, Web Applications are often used in the area of informational collaboration.
For any given topic there exists a number of forums, wikis, and chat rooms, where participants
may exchange ideas about their favorite topics. Additionally, over the past few years a num-
ber of general information portals and encyclopedias have been established that are used by
the public to share information freely. Examples are Wikipedia [URIO8n], which is the largest
online encyclopedia containing about 10 million articles in over 250 languages at the time of
writing and Flickr [URIO8f] a photo-sharing portal that allows geographical tagging of photos
having two billion photos and and an upload volume of 4-5 million photos per day.

2.2.2.4 Content Management Capability

All previous categorizations are useful to get a good overview about specific characteristics,
employed technologies, and application domains of Web applications. However, Web engi-
neering methods should not support a specific technology or application domain exclusively.
They must remain generic in nature so that the design and architecture of the Web Application
remains independent from implementing technologies and a potential application domain.
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Therefore, in this section, a further differentiation is introduced that classifies Web applica-
tions regarding their content management capability. This classification is used in Section 3.3
to differentiate between existing Web engineering methods and the approach presented in this
work.

Static Web Sites. A Web site is a collection of Web pages that contain hypermedia resources.
Its only purpose is to provide information to the Web site’s user. The presented information
may be traversed using the hyperlink structure of the Web site, and besides activating hyper-
links the user is not able to interact with the site. Especially, the Web site does not provide Web
forms that allow the user to input data. Thus, the Web site’s content is completely static and it
does not react to user behaviour in any way.

Note that according to Definition 4, a static Web site is of course not a Web Application.
This category is still introduced here as a contrast to subsequent categories that do define Web
applications. This category is also useful for categorizing Web engineering methods introduced
in Section 3.3.

An example for this category is a portal that provides information about books. It may
contain several indexes that list books by title, category, or author, and for each book a separate
page may exist that describes the book. Additionally, for each author an author page may exist
including a short biography. The user of the book portal may use the indexes to find a page
that describes the book of his choice. From the book page he may browse back to an index or
to the page of the book’s author. All information of the book portal is static and the only way
for the user to interact with the portal is to browse the provided content.

Simple Web Applications. In contrast to a Web site, a Web Application allows for user in-
teraction. Besides the presentation of static content, a Web Application that belongs to this
category provides user interface components that may be used by the user to influence the
Web Application’s behaviour. Typical user interface components for this purpose are links,
buttons, and text entry fields. The provided user input, i.e., text that is entered in a form or
the activation of a particular link or button, is interpreted by the Web Application and a corre-
sponding response is generated. However, the user’s input is not stored and it does not modify
the Web application’s content in any way.

The previous book portal example may be extended from a Web site to a simple Web ap-
plication by providing some components for user interaction. For example, the portal may
include a search form that allows the user to search for books or authors. To this end, the user
may enter some keywords into the search form and submit the query. The book portal then
may analyze the query and return some results. However, the user’s interaction is still limited
as he is not allowed to modify the Web Applications content. For example, it would be nice
if the user would be able to write a comment about a book he already read and provide this
information to other users.

Web Applications for Content Management. Web Applications that support content man-
agement functionality belong to this category. Content management operations (CRUD) allow
the Creation, the Retrieval, the Update, and the Deletion of content. Web Applications in this
category are usually more interactive, because the users input may be stored permanently and
can be used for personalization purposes in the same or future work sessions. Additionally,
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only Web Applications, which support CRUD operations, may be used for collaboration pur-
poses. The permanent storage of information is a prerequisite for collaboration as the input of
one user must be stored if it should be presented to another user later on.

Accordingly, the book portal application that supports basic content management may al-
low the user to write book reviews, which may be stored on the portal server permanently.
Additionally, the book portal may allow a user to manage his own reviews, i.e., to change or
to delete those reviews, which have been created by the user. Eventually, the user is allowed
to create, modify, and delete content of the book portal.

2.2.3 Example Application - The Book Portal

This section specifies the Book Portal, an example Web Application that is used throughout the
entire work for different purposes. First, in Section 3.4, a number of existing Web engineering
methods are described. In order to facilitate the comparison of these methods, all of them are
illustrated using the Book Portal example. Second, the description of flashWeb models and the
demonstration of the code generation capability of the approach are based on this example.
On the one hand, this general example ensures the consistent presentation of the flashWeb
approach, on the other hand, it allows to compare it to other Web engineering methods.

The Book Portal example Web Application supports a basic subset of the functionality that
is usually supported by a real-world online book store. The focus is rather on functionality
than size of the example. It shows information about several objects, e.g., books and authors,
it provides common navigational access structures like menus and indexes and it supports
content management.

2.2.3.1 Content

The main purpose of the Book Portal example Web Application is to provide information about
books. Each book record of the portal provides some basic information, e.g., the book’s title,
a short description, or the number of the book’s pages. Books are organized by a hierarchical
category system. Each book may be assigned to one or more categories, which may have an
arbitrary number of subcategories. Additionally, the Book Portal provides information about
book authors. An author record contains the author’s first names, last name, and a short bi-
ography. For each book the portal stores the complete list of authors. The Book Portal also
manages portal users and allows them to create book reviews. A review record contains a title,
the review text and a score, which indicates the users opinion of the book. Finally, a user of the
Book Portal is allowed to fully manage his reviews. Thus, he may delete an already written
review or assign the review to another book. The assignment date is stored, thus it is clear
when a certain review for a certain publication was issued. Table 2.1 provides an overview of
objects that are relevant for this example.

2.2.3.2 Navigation Structure

After specifying content requirements for the Book Portal, this section outlines the portal’s
navigation structure. To this end, user interface pages and navigation paths between pages are
sketched in Figure 2.2.

The Portal page is the main entry point of the Book Portal application. It contains the main
menu that has entries pointing to the Categories, the Authors, and the Search pages. Note
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Title The title of the book.
Book Abstract A short description of the book’s content.
Pages The number of the book’s pages.
ISBN The International Standard Book Number.
Category Name The name of the category.
FirstNames The author’s first names.
Author LastName The author’s last name.
Biography The author’s biography.
Title The title of the review.
Review Text The review text.
Score A number between one and five indicating the quality of the
book.
FirstNames The user’s first names.
LastName The user’s last name.
User Nickname An alias that is shown to other users of the portal.
Email The user’s email address.

Table 2.1: Book Portal Types

that each page of the Book Portal contains the main menu, thus it is possible to navigate from
them to these main areas. However, corresponding navigation arrows, e.g., starting from the
Portal page and pointing to the Categories, the Authors and the Search pages are not
repeated for each page in Figure 2.2.

The Categories page provides a list of books for the selected category and allows the user
to navigate to the Book page, which provides information about a selected book. From the
Book page, the user may navigate back to the Categories page or forward to the Author
and Review pages, which provide information about book authors and book reviews. Addi-
tionally, the Book page allows the user to go to the Add Review page to issue a review. The
Authors page lists authors and allows navigating to the Aut hor page, which shows informa-
tion about a selected author. The last page that is accessible from the main menu is the Search
page. It allows to execute a search, for that results are presented on the Search Results
page.

Finally, the User page provides a personal overview for a logged-in user of the Book Portal
and it lists the user’s reviews. From this page, the user may navigate to the Manage Review
page that allows to change a review or to assign a review to another publication.

2.2.3.3 User Interface Specification

The previous section provided an overview of the Book Portal’s navigation structure. How-
ever, to facilitate the comparison of Web engineering methods that support the fine granular
modeling of user interface components, each page of the portal should be defined more accu-
rately. Subsequently, each page of the Book Portal application is described briefly and illus-
trated by a simple sketch. The first set of pages is depicted in Figure 2.3

The Portal page provides a horizontally-aligned main menu that is placed near to the top
of the page. Note that this menu is included into each page of the portal. Subsequently, this fact
is not mentioned repeatedly. The menu contains three entries that point to the Categories,
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Authors

Categories

Author

Search Results

Add Review Review

Manage Review

Figure 2.2: Navigation Structure of the Book Portal

the Authors, and the Search pages, which represent three different ways for the portal’s
user to look for books. The main area of the page shows a guided tour of the ten most popular
books of the portal, depending on review scores issued by portal users. This view shows the
title, the list of authors and the abstract for a selected book. The user may navigate through the
ten most popular books using the corresponding navigation buttons.

The Categories page allows the user to select a book from a hierarchical category list.
The page features two areas, occupying the left-hand and the right-hand sides of the page,
respectively. The left area shows a category tree that may be browsed interactively by showing
or hiding sub-categories, i.e., branches of the category tree. If a certain category is selected, all
books of the corresponding category are listed in the right hand side area. This listing shows
for each entry the book’s title, and the list of authors. A certain book entry may be selected in
order to navigate to the corresponding Book page.

Another area of the Book Portal application, which is accessible from the main menu is the
search area. It consists of the Search and the Search results pages. The Search page is
very simplistic. It contains a search form consisting of a text entry field and a Search button. Af-
ter entering a seach term and activating the Search button, the user is redirected to the Search
Results page. This page list the results of the search, i.e., a list of books that match the query.
Entries of the result list may be selected in order to navigate to the corresponding Book page.

Additionally to browsing categories or conducting a keyword search, the portal user may
also examine the portal’s author database. Corresponding pages of the Book Portal, i.e., the
Authors and Author pages are depicted in Figure 2.4.

The Authors page is the last page that is accessible via the main menu, which is contained
by all pages of the Book Portal. This page displays an index of authors sorted by their last
names. Each entry in the authors list contains the first names and the last name of the corre-
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| Categories | | Authors | | Search | | Categories | | Authors | | Search |
Books of the Day Categories Books
Physics of the Impossible (Michio Kaku) * Art . F’(f’]\%isciﬁiso oli ;flli;mpossible
Kaku (Parallel Worlds, Beyond Einstein, Hyperspace) introduces complex * Science * Einstein: His Life and
theories of physics to general readers. As The Economist notes, Kaku makes a S Astronomy Universe (Walter Isaacson,
good stab at explaining difficult physics. But his grasp of his subject is perhaps c
trumped by his knowledge of science fiction. While Kaku writes in language ° Chem|5try Edvaidlyeumann)
designed to captivate nonscience readers, it’s his references to pop culture from . Physics
Star Trek to Terminator that clarify his fringe physics.
* Romance

. seach Search Results

| Categories | | Authors || Search | | categories | | Authors || search |

Enter your query: Your results:

| | * Physics of the Impossible (Michio Kaku)

« Einstein: His Life and Universe (Walter Isaacson, Edward Hermann)

Figure 2.3: The Portal, Categories, Search and the Search Results Pages

sponding author. Entries may be selected in order to navigate to the Author page.

The Author page contains an overview of an author and his books. The author’s name is
shown at the top of the page and the left-hand side of the page displays the author’s biography.
The right-hand side of the page provides an index of the author’s books. For each book the
index displays the book title. The portal user may select a book entry from the index in order
to reach the Book page.

The Book page is one the most important pages of the portal. It may be reached through
different navigation paths of the portal, i.e, from the Categories, the Author, or from the
Search Results pages. It is also the most complex page of the portal showing information
about several content objects. The page shows an overview of a single book of the Book Portal
and of some related objects as well. The book’s title is shown at the top of the page and a
short abstract on the left-hand side. The right-hand side contains the list of authors and some
further details about the book, e.g., the books categories, the number of pages, etc. The bottom
area shows all reviews that have been issued for the corresponding book by users of the Book
Portal. A review entry shows the review title, the name of the user that issued the review, and
the review score. The Add Review button at the bottom of the review area may be activated in
order to navigate to the Add Review page.

The final set of pages of the Book Portal deals with presenting and managing reviews. Cor-
responding pages are depicted in Figure 2.5.

The Review page shows information about a book review. This page is accessible from
the Book page, which lists reviews for a certain book or from the User page, which shows
reviews of a certain user. The page displays the review title at the top and the review text on
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T

| Categories | | Authors | | Search |

| Categories | | Authors | | Search |

Autor List | Physics of the Impossible |
* Fuqua, Paul Abstract Authors
* Hermann, Edward -
! Kaku (Parallel Worlds, Beyond Einstein, * Michio Kaku
O H u nter, FII Hyperspace) introduces complex theories of
physics to general readers. As The
* [saacson y Walter Economist notes, Kaku makes a good stab
U at explaining difficult physics. But his grasp .
S Kaku D M |Ch 10 of his subject is perhaps trumped by his Book Details
knowledge of science fiction. While Kaku . . . L
writes in language designed to captivate Categories: Physics, Science Fiction
nonscience readers, it's his references to Pages: 352
pop culture from Star Trek to Terminator ISBN: 978-0385520690
that clarify his fringe physics.

| Categories | | Authors | | Search |

Reviews
* Terrific book about physics. (5) (by Physics_Freak)

Michio Kaku Add Review
Biography Books
Kaku was born in San Jose, California, and : :
attended and played first board on the chess ° PhySICS of the Impossmle
|:am of (iubberl;;Hiﬁh ﬁchool inSPa\o Allg in * Einstein‘s Cosmos
the early 1960s. At the National Science Fair
in Albuquerque, N.M., he attracted the * Hyperspace

attention of physicist Edward Teller, who
took Kaku as a protégé, awarding him the
Hertz Engineering Scholarship. Kaku
received a B.S. degree summa cum laude
from Harvard University in 1968 where he
placed first in his physics class.

F=IIE=A

Figure 2.4: The Authors, Author, and the Book Pages

the left-hand side. The right-hand side of the page displays some additional information about
the review, i.e., the review score, the nickname of the user who had issued the review, and
finally the date on which the review was associated to a certain book. The Review page also
provides a set of navigation buttons at the bottom of the page. The Delete Review and Manage
Review button allow the user to delete a review or to navigate to the Manage Review page,
respectively. Note that these buttons are shown only if the user is logged in. Finally, the Back
to the Book button leads the user back to the book page.

The Add Review page allows a user to issue a review for a selected book and may be
reached from the Book page. The page provides a Web form that contains a field for each
attribute of a review, i.e., the title, the review text, and the score. At the bottom of the form, the
Add review button allows to issue a review for the corresponding book using the values that
were filled into the form. After saving the review, the user is sent to the corresponding book
page.

A User is a special object of the Book Portal. It does not only represent simple content but
is associated with a person who owns a user account and is allowed to log in to the Book Por-
tal. Usually, there are a number of additional pages that provide functionality to support user
management, e.g., a registration page, a log-in page, etc. However, for the sake of simplicity,
these parts of the Web Application are omitted. Correspondingly, the User page simply dis-
plays information about a user. The page is divided into two vertical areas. The left-hand side
of the page displays personal data, i.e., the name, and the email address of the user. The right-
hand side area of the page lists all reviews of the user in an index. Each review entry contains
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| Categories | | Authors | | Search |

| Terrific book about physics.

Review Text

I think the biggest reason some people reject
evolution is a lack of imagination. It's difficult
for humans to picture the vast amount of
time it takes for organisms to evolve. To
speculate on the many mysteries of science
takes a vivid imagination. Fortunately, author
Michio Kaku has one. He brings a bright-
eyed, gee-whiz sense of wonder to his

Score:
5 Stars

User:
Physics_Freak

subject, and his writing makes it

Date: 2008-09-01

| Delete Review | | Manage Review | | Back to the Book |

Add Review

| Categories | | Authors | | Search |

| Enter new review

Book Physics of the Impossible

Review Title |

Review Text |

Score |

Save Review

Manage Review

| Categories | | Authors | | Search |

| Categories | | Authors | | Search |

| Associate review to book | | Physics_Freak |

Review

Terrific book about
physics. (5)
| think the biggest reason some

people reject evolution is a lack of
imagination. It's difficult for

Select Book

* Physics of the Impossible
(Michio Kaku)

* Einstein: His Life and
Universe (Walter Isaacson,
Edward Hermann)

Personal Data

Name: Albert Newton
Email: an@physics.net

Reviews

* Terrific book about physics.
(Physics of the Impossible )

Log out

humans to picture the vast
amount of time it takes for
organisms to evolve. ...

Figure 2.5: The Review, Add Review,Manage Review, and the User Pages

the title of the review, and the title of the publication for which the review was issued. After
selecting a certain review from the index, the user is sent to the Review page.

Finally, the Manage review page displays an overview of a review and allows a user to as-
sociate a review to a book. Note that the Book Portal provides a simple way to create reviews.
The Book page contains an Add Review button that leads to the Add Review page. Reviews
issued on this page are automatically associated to the corresponding publication. However,
the Book Portal also allows a user to reassign a review to an arbitrary book using the Manage
Review page. This page contains two vertically-oriented areas. The left-hand side area dis-
plays areview, i.e., a title, the review text, and the review score. The right-hand side area shows
the book to that the review is associated and provides a user interface component that allows
to change this association, e.g., a selection of all books and a Reassign button.

2.3 The Technological Viewpoint

Previous sections explained what Web Applications are and how they may be categorized re-
garding different points of views. Additionally, the last section provided a comprehensive
Web Application example that will be used throughout this work. However, until now, it is
unclear which technologies may be used to implement Web Applications. Therefore, this sec-

22



2.3 The Technological Viewpoint

tion sheds some light on this topic and introduces different models, protocols, and languages
that together provide an execution environment for Web Applications.

2.3.1 The Big Technology Picture

A traditional application usually runs on a single computer and it is compiled for a certain com-
puter architecture and operating system. The executable program, i.e., the complete program
byte code resides on the computer running the application. The application may interact more
or less directly with the hardware and software of the host computer, i.e., utilizing appropriate
libraries of the operating system.

In contrast to that, a Web Application is not a single executable, which can be simply run on
a computer. It depends on another application, the Web browser, which allows the user to in-
teract with the Web Application. The Web browser runs on the client computer and interprets
Web application code that is sent from the Web server using a range of protocols and lan-
guages that are explained in the subsequent sections. Executing a Web Application includes a
client and one or more server computers thereby implementing the client-server paradigm (see
Section 2.3.4.2). Client and server usually communicate over an intranet or over the Internet.
Figure 2.6 depicts a typical communication scenario over the Internet.

DNS
Server
4
DNS Query DNS Answer
Client Computer (1) DNS Query
Web ® (2) DNS Answer o (3) HTTP Request
e atewa
B @ HTTP Request y Web Server
rowser Server
@ HTTP Response @ HTTP Response

Figure 2.6: Web Application Execution

The user of the client computer starts the communication requesting a resource identified
by a URL, e.g., http://www.example.org. However, the client does not know which computer
on the Internet hosts the corresponding resource. It is only aware of the IP address of the
Gateway Server, which connects the client computer to the Internet and of the IP address of
the DNS server (see Section 2.3.3.2), which can resolve the given URL to the corresponding
IP address. Correspondingly, the client sends a DNS query © to the DNS server through the
gateway server and requests the IP address for the given domain. The DNS server responds
with a DNS answer @, which includes the required IP address. Having the required IP address
of the Web server that hosts the desired resource, the client communicates with it via HTTP (see
Section 2.3.3.3). It sends an HTTP Request @ to the Web server and, if the resource is available,
it is sent back via an HTTP Response @ to the client. In case of an error, e.g., the resource is not
available, a corresponding HTTP response is returned. Finally, the Web browser ® interprets
the Web server’s response, which is usually an HTML document and displays it to the user.
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Note that this example describes only the request and delivery of a single Web page. During
the execution of a Web Application, this pattern is used repeatedly to deliver a number of Web
pages and other resources to the client so that the whole functionality of the Web Application
may enfold.

Also note that the scenario depicted in Figure 2.6 is just a typical example. There are many
circumstances that may alter this scenario. For example, the DNS resolver at the client, the
component that tries to acquire the IP address of a certain host by communicating with the
DNS server, usually operates a cache that stores IP addresses for frequently visited domains.
Thus, the client computer does not have to ask the DNS server each time it requests a resource
from the same Web server. Furthermore, the Internet gateway and the DNS server may be the
same computer or they may be several computer nodes apart.

It is important that any Web Application developer has a basic understanding of this technol-
ogy setting. Whereas low level communication, i.e., DNS resolving, is handled transparently
by the operating system, elements of the HTTP communication, i.e, HTTP requests and HTTP
responses, are fundamental units of Web Application development. They negotiate not only
the simple transfer of Web Application resources but allow to exchange diverse information
that control the execution of the Web Application. Examples include the exchange of Cookies
(see Section 2.3.3.6) for storing control data at the client or the usage of ETags for caching pur-
poses. Consequently, Web application development frameworks usually provide high-level
objects and methods for controling HTTP communication.

2.3.2 Network Layer Models

The communication scenario shown in Figure 2.6 concerns a number of hardware and software
components. There are potentially many computers involved that may be linked to each other
via different connections, e.g., cable or wireless connections and the communicating partici-
pants may employ a number of protocols and languages on different levels of abstraction. This
section introduces two different models that help to understand how this communication is
organized and ultimately how components, protocols- and services play together at different
levels to facilitate the operation of Web applications.

2.3.2.1 OSI Reference Model

The Open Systems Interconnection (OSI) Reference Model [ZD83][Bra07a][Tan03] was first
proposed in 1983 and introduced a seven-layer model for inter-process communication, which
is depicted on the left-hand side of Figure 2.7. The basic idea of the model is to create different
layers for communication functionality at different abstraction levels so that only neighbouring
layers may interact. Basic design principles for the model required that each layer may have a
well-defined function and that the amount of information that must be exchanged between the
layers should be minimal. Additionally, the number of layers should be large enough so that
distinct functions may be encapsulated in different layers and small enough for an appropriate
implementation. Subsequently, all layers of the OSI model are described briefly.

The physical layer deals with communication hardware and defines how bits are transmit-
ted over a physical channel, e.g., a copper cable. This layer is typically concerned with me-
chanical and electrical issues, i.e., how many pins does a cable connector have, what voltages
are used to differentiate between a 1 and a 0, how long the transmission of a single bit lasts,
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Figure 2.7: Network Reference Models

etc. Also, the beginning and the end of a transmission must be recognizable.

The data link layer controls the flow of data and ensures that transmission errors are de-
tected and handled appropriately. This is achieved by breaking the data to be sent into data
frames, e.g., a few thousand bits that are sent over the physical layer in a controlled manner.
To this end, data frames are sent sequentially between sender and receiver. If an error occurs,
e.g., the frame is lost, it may be retransmitted or the error is signaled to the upper layers. In
many protocols of this layer, the receiver sends an acknowledgment frame to the sender in
order to signal a successful transmission.

The network layer controls the operation of the network. It handles routing packets from
source to destination. One key issue of routing packets is to determine the path of packets in
the network. Paths may be static for all packets that are sent in the network, may be dynam-
ically determined for each conversation or even be different for each single packet. Another
important task of this layer is to handle different loads, i.e., to deal with senders that are too
fast or receivers that are too slow. Last but not least, the network layer has to cope with routing
packets between different networks. This is a difficult task because different networks may use
different packet sizes or protocols.

The main task of the transport layer is to receive data from the session layer and regardless
of the size of the data to ensure the sequential and error-free transport of data from the source
to the destination. To achieve this, the data is usually split into smaller packets that have an
appropriate size for the network layer. Note that the transport layer and all other layers that
are higher up in the hierarchy of the OSI model are concerned with point-to-point communi-
cation. They are not aware of network paths, they only consider the source and the destination
communication nodes.

The session layer provides the concept of a session between two computer programs that are
communicating with each other. A session may be initiated, kept alive, or closed. In the keep
alive phase the communication partners may utilize different services of the session, which
include dialog control, i.e., which partner is to transmit and which is to receive data or syn-
chronisation, i.e., making sure that long transmissions may be paused or continued.

The presentation layer defines the syntax and the semantics of information that is to be
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transmitted between computer applications. This is important so that computer applications
may rely on standards and do not have to re-implement common data encodings. Well-known
examples are the ASCII standard that codes characters or the Multipurpose Internet Mail Ex-
tensions (MIME) for attaching different non-text information to emails.

The final layer of the OSI model is the application layer. It allows for protocols that provide
high-level input and output routines that may be used by computer applications for commu-
nication. An example is HTTP (see Section 2.3.3.3) that allows to transfer Web pages and other
resources between computer applications. As all other layers of the OSI model, the application
layer relies on functionality provided by lower levels. Consequently, a typical Web browser
relies on sessions and transfers data utilizing well-known file formats.

2.3.2.2 The TCP/IP Reference Model

Although the OSI model itself is still valid, associated protocols and implementations are rarely
used due to complexity and performance issues. In contrast to that, protocols of the TCP/IP
Reference Model [CK74][Tan03][Hun02] are widely used, whereas the model itself is not of
much importance. The most prominent implementation of the TCP/IP model is the Internet.
Consequently, all Internet applications, e.g., Web Applications rely on protocols defined by this
model. The TCP/IP model is depicted on the right-hand side of Figure 2.7.

The network access layer is the lowest layer of the TCP/IP model. It corresponds to the first
two layers of the OSI model and deals with sending data frames over the physical network.
Actually, the model does not define standard protocols for this layer. Corresponding func-
tionality is implemented by device drivers and operating system sub-routines, thereby being
highly device dependent.

The Internet layer of the TCP/IP model is comparable to the network layer of the OSI model.
Its main task is to route packets from one computer to another through one or more computer
networks. To this end, the layer defines the Internet Protocol (IP) [Uni81], which provides
several key formats and routines. The IP address uniquely identifies a computer in the network
and an IP packet is the basic unit of transmission between communicating peers. Additionally,
the Internet Protocol defines routines for routing IP packets and defines how packets may be
fragmented or reassembled if necessary.

The transport layer of the model is similar to the transport layer of the OSI model. It makes
sure that two peers are able to exchange data regardless of the size of the data or the location
of the peers in the network. To this end, the layer defines the Transmission Control Protocol
(TCP) [CK74][CDS74], which transports data from the source to the destination computer via
splitting the data stream into several IP packets and passing them on to the Internet layer. The
TCP process on the destination computer reassembles the packets into the original data stream.

The session and presentation layers of the OSI model proved to be an unnecessary overhead.
It is still important that applications utilize standards that are defined in this context, however,
extra layers for this functionality are not practicable. Thus, these layers and the application
layer of the OSI model have been merged into the application layer of the TCP/IP model. The
application layer provides higher-level protocols for direct communication between computer
applications.
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2.3.2.3 Tying it all together

The relevance of the introduced reference models for Web Applications becomes clear if proto-
cols and languages that are essential for Web Applications are mapped to corresponding layers
of the models. Figure 2.6, which shows a typical communication scenario that takes place dur-
ing the execution of a Web Application, already introduced some of the higher-level protocols,
e.g., HTTP and DNS. Figure 2.7 shows a more complete list of relevant technolgies and maps
them to different layers of the OSI and TCP/IP models, respectively.

During the execution of a Web Application any two neighbouring computers that are in-
volved in the process need to be able to exchange messages. To this end, a physical connec-
tion, e.g., a computer cable must exist that connects them. Lower-level protocols of the mod-
els ensure that communicating peers during the execution of a Web Application may utilize
higher-level Web-application-specific protocols and languages. For example, if communicat-
ing computers are connected by cables, the Ethernet standard may be used, which defines
protocols that allow to send data over coaxial or telephone cables but abstracts from the physi-
cal properties of these transport mediums. The Internet Protocol (IP) ensures that data packets
are correctly routed between network nodes and the Transmission Control Protocol (TCP) es-
tablishes an error-free channel enabling peer-to-peer communication. Note that these lower
level protocols are not Web-application-specific, however, they are basic elements of network
communication and therefore also essential for communication between Web clients and Web
servers.

Finally, the application layer of the TCP/IP model (and corresponding layers of the OSI
model) provides room for Web Application-specific-protocols. Relying on lower-level proto-
cols, Web client and Web server programs may directly communicate using HTTP, a protocol
that defines the typical request-response pattern for communication between Web client and
Web server. Additionally, Web pages that are sent by the Web server and are interpreted by the
Web client are encoded in HTML.

Note that the TCP/IP model does not define an explicit Session Layer, however, many Web
Applications utilize sessions to overcome the stateless nature of HITP communication. Unlike
the other technology examples in Figure 2.7 the notion of a session is a programming paradigm
and not a concrete technology.

2.3.3 Technologies

The previous sections provided an overview of how Web Applications are executed and which
technologies are involved in the process. Different protocols and languages were mapped to
different layers of the introduced reference models for network communication. In this section,
the most important technologies for Web Applications are introduced in more detail. Note that
the discussion of lower-layer protocols, e.g., Ethernet, IP and TCP, is omited as they are not
Web Application specific and, according to the philosophy of layered network models, they
may be complemented or even replaced in future networks by other protocols. Note that this
is already happening to Ethernet as many networks utilize wireless communication technology
as an alternative. A detailed discussion of lower-level protocols may be found in [Tan03] and
[Cla03].
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2.3.3.1 Unified Resource Identifier

A Uniform Resource Identifier (URI) [BL94] is one of the core technologies of the WWW. It is a
structured name that unambiguously identifies a resource in the WWW. As Web Applications
are WWW resources, they must be identifiable by one or more URIs. An URI has the following
syntax:

<scheme>://<authority><path><query><fragment>
The following example is a correct URI:
http://mel@example.org:80/section/document .html?accessed=today#toc

A scheme defines the syntax and semantics of all other remaining components of an URL
Therefore, the URI syntax is very flexible and URIs may take diverse forms. For example, the
“http” scheme may be used to identify resources on the WWW. A URI using this scheme is
usually interpreted by a Web browser that tries to acquire the corresponding Web resource
using the remaining sections of the URI.

The authority section identifies the authority that manages the required resource. For ex-
ample, if the “http” scheme is used, the authority section identifies a computer in the network
that is able to provide the corresponding resource. In this case the authority section may be
composite and may use the following form:

<userinfo>@<host>:<port>

The host part is mandatory and identifies the computer on the network. To this end, the IP
address or a domain name (see Section 2.3.3.2) for the host must be provided. Additionally, a
port may be specified, which is assumed to be a port on the host computer that is bound to a
Web server process providing Web resources. Finally, the userinfo part may be specified that
identifies a user requesting the resource. Note that the current example defines the domain
name “example.org” the port 80 and the user name “me”.

The path and the query sections of the URI identify a resource managed by the authority.
The path section has a hierarchical structure, whereas the query section may contain further
information that may be used to identify a resource. The query section is delimited by a ques-
tion mark (?) from the path section, if a query section is present. The path section of the URI
is used by a Web server to identify a resource stored in a corresponding hierarchical storage.
However, this is of course not mandatory and not always the case. Also, key-value pairs are
often used as part of a query. Thereby, a key is delimited by an equal sign (=) from the value and
several key-value pairs are delimited by ampersands (&). In the current example, the path sec-
tionis “/section/document .html”, which identifies the resource named “document.html”
under the structure component named “section” and the query contains the key-value pair
“accessed=today”.

The final section of an URI is the fragment section. It may identify a specific fragment of
a resource, a specific view of a resource, or also a completely different secondary resource.
However, in most cases the fragment section is used to refer to a specific section of the primary
resource. If the fragment section is present, it is delimited by the number sign (#).

Note that the terms URI and URL are often used as synonyms. However, this is not correct.
A Uniform Resource Locator (URL) is a special URI that not only identifies a resource but also
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locates it, i.e., also identifies the location of the resource on the network. A URL is a URI, thus
it uses the same syntax. For example “mailto:me@example.org” isa URI but not a URL. It
uses the “mailto" scheme and unambigously identifies an email address but does not locate
it, as email addresses do not have a location. In contrast to that “http://example.org/
index.html” is a URI and also a URL, because it also idendifies the location of the resource
“index.html” on the host identified by the domain “example.org". Of course, all resources
in the WWW must be locateable, thus URIs using the “http” scheme are always URLs, too.

Also note that URLs using the “http” scheme may identify a host in the authority section
by using a domain name. This is a very important aspect for two reasons. First, names like
“www .example.org” are much easier to memorize than the corresponding IP address “208.
77.188.166". Second, the extensive growth of the WWW is only manageable because it relies
on the highly scalable Domain Name System.

2.3.3.2 Domain Name System

The Domain Name System (DNS) is one of the core technologies of the Internet. It is a dis-
tributed system that maps hierarchical names to IP addresses, thus, Internet hosts may be
identified by names that are easier to recognize. The hierarchical structure is not only used
to structure the names themselves but also to distribute the authority for managing names at
different levels of the name tree. Therefore, the DNS is a highly scalable distributed system
that is managed by many countries, organizations, and individuals.

A domain name consists of labels separated by dots. For example, “www.example.org.”
is a valid domain name. Note that the trailing dot is not accidental, it denotes the root of the
name tree. Labels from the right to the left separated by dots build the name tree. Labels at the
tirst level are also called Top Level Domains (TLD). They are managed by the Internet Assigned
Numbers Authority (IANA) [URIO8f]. Examples are “com”, “edu” or “info” and additionally
each country has a two character TLD according to the ISO 3166 list of country name abbrevia-
tions, e.g., “de” for germany. Labels at the second level are also called Second Level Domains.
Usually, they are managed by the authority who is responsible for the corresponding TLD.
Generally, the management of all further sub-domains are recursively delegated to organiza-
tions or individuals who usually rent these sub-domains from the corresponding authority.

Resolving domain names to IP addresses follows a similar hierarchical pattern. The authority
responsible for a domain usually operates one or more domain name servers that map names
to IP addresses for the corresponding domain. A name server may be asked for the IP address
belonging to a specific domain. If the name server has a corresponding record, it returns the
answer immediately. If not, it delegates the query to another name server that probably has the
required information or may delegate the query towards the right direction. Delegation may
proceed downwards, i.e., towards a name server that governs a subdomain or upwards, i.e.,
towards a name server that is responsible for the parent domain.

Note that name servers heavily rely on redundancy and caching, so that domain queries are
often answered by a name server that is not even responsible for the domain in question. This
reduces the load on name servers that govern popular domains.

2.3.3.3 HyperText Transfer Protocol

Another cornerstone of WWW technology is the HyperText Transfer Protocol (HTTP) [BLFG99].
Since the birth of the WWW, this protocol has been used for communication between Web

29



2 Web Applications

clients and Web servers. The communication pattern is simple. The Web client requests a
resource by sending an HTTP request to the server and the server answers with an HTTP re-
sponse. HTTP is a text-based, human-readable protocol, thus both request and response may
be easily interpreted. A simplistic HTTP request may be as short as depicted in Listing 2.1.

GET /index.html HTIP/1.1
Host: example.org

Listing 2.1: HTTP Request Example

The first line of an HTTP request begins with the specification of a method that defines what
action should be executed by the Web server. In this example, a resource should be acquired,
thus the request uses the “GET” method and provides the location and the name of the desired
resource, which is “/index.html”. Table 2.2 shows a selection of methods that may be used in
an HTTP request.

GET Retrieves a resource identified by the request.

POST Sends data to the server in the context of the resource identified by the request.

PUT Sends a resource to the server to be stored as the resource identified by the re-
quest.

DELETE Requests to delete the resource on the server identified by the request.

HEAD Request to get only the HTTP headers of a server response without the actual
resource identified by the request.

Table 2.2: Common HTTP Request Methods

Note that at the end of the first line of the HTTP request the desired HTTP version is speci-
fied, in this case version 1.1. The first line of the request may be followed by additional lines,
the so-called request header fields. The only mandatory header field in a request is the host
tield that specifies a domain name from which a resource is requested. Note that a blank line
after the request headers is necessary to mark the end of the request headers section.

Similar to an HTTP request, an HTTP response has also a simple structure. A typical HTTP
response is presented in Listing 2.2.

The first line of the response contains the currently used HTTP version, a status code, and
a corresponding reason phrase. The status code is a 3-digit integer indicating the status of the
response, whereas the reason phrase adds a short explanation of the status code intended for
human readers.

After the first line of the HTTP response, a number of response header fields and entity
header fields follow, that contain information about the Web server, the communication pro-
cess, and the requested resource. In the current example, the Server response header field gives
away that the host uses the Apache Web server running on the operating system CentOS and
the Content-Type entity header field states the content type of the resource, which is “text/html”
in this case. Note that header fields may be specified in an arbitrary order. Finally, after a blank
line marking the end of the header field section, the entity body follows. The body section
may contain text or binary information corresponding to the Content-Type field. The current
example contains a simple HTML document.
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HTTP/1.1 200 OK

Content—Type: text/html

Date: Mon, 19 May 2008 13:48:38 GMT

Server: Apache/2.2.3 (CentOS)

Last—Modified: Tue, 15 Nov 2005 13:24:10 GMT
Content—Length: 101

Connection: close

<HIML>
<HEAD>
<TITLE>Example Web Page</TITLE>
</HEAD>
<BODY>
Example Content
</BODY>
</HIML>

Listing 2.2: HTTP Response Example

Note that the HTTP 1.1 specification [BLFG™99] describes a number of header fields that
may be used in HTTP request or response messages to manage and optimize the communica-
tion between Web client and Web server. This includes authentication, cookie handling, cache
management, etc. The reader is referred to the specification for a detailed description.

2.3.3.4 HyperText Markup Language

Besides URIs and the HTTP, the HyperText Markup Language (HTML) is the third and last
core technology of the WWW. HTML is the basic language for building Web pages and Web
Applications. If a Web client requests a Web page from a Web server, the server sends a HTTP
response with an entity body that contains the Web page encoded in HTML. The Web client,
usually a Web browser, interprets the HTML source code of the Web page and renders it for
the end user. The current HTML 4.01 specification [RLH]99] and the upcoming HTML 5 W3C
working draft [HHO8] define a wide range of language elements for building Web pages. This
section gives a brief overview of the most important features of HTML but, of course, does not
cover the language’s whole functionality.

HTML is an application of the Standard Generalized Markup Language (SGML) [Int86],
which is a meta language for creating markup languages. Consequently, HTML is a markup
language that provides content, structural and presentational information. An HTML doc-
ument contains a number of (nested) elements that are denoted by tags and assign specific
semantics to the corresponding fragment of the document. Tags are used by Web clients to
interpret a document encoded in HTML and to render it in an appropriate fashion. Listing 2.3
shows a simple HTML document.

The list of allowed elements (tags), attributes, and nesting rules of an SGML application is
defined by the Document Type Definition (DTD); accordingly, this is also the case for HTML.
A correct HTML document begins with the DOCTYPE definition that specifies which DTD
version is to be used to validate and interpret the document. Note that different DTDs have
been defined for HTML 4.01 that allow a different set of tags to be used in a document. The
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current example uses the “strict” DTD [URIO8e] that omits language elements that serve only
presentational purposes.

<!DOCTYPE HIML PUBLIC "—//W3C//DID HIML 4.01/ /EN"
"http:/ /www.w3.org/TR/html4/strict.dtd">
<HIML>
<HFAD>
<TITLE>My first HIML document</TITLE>
<LINK href="style.css" rel="stylesheet"
type="text/css">
<SCRIPT type="text/javascript"
src="script.js"></SCRIPT>
</HEAD>
<BODY class="cool">
<P>Hello world!</P>
<A href="another.html">Another document.</A>
</BODY>
</HIML>

Listing 2.3: Simple HTML Example

The basic structure of an HTML document is simple. The main element is the HTML element
that is divided into two parts. The HEAD part mainly contains meta data, e.g., the title of
the document provided by the TITLE tag. The BODY section contains the document’s main
content. Note that elements may be nested according to nesting rules defined in the DTD. The
order and the hierarchy of elements define the structure of the HTML document.

Besides the already introduced elements, the language defines a set of elements that repre-
sent paragraphs, lists, tables, hypertext links, etc. Most elements are composed of a start tag,
the content, and an end tag. The element’s name, e.g., “TITLE”, appears in the start tag and in
the end tag. The content section of an element may contain text, other elements, or both.

HTML elements may have attributes that add specific semantics to the element. Attributes
are provided as key-value pairs in the start tag of an HTML element. For example the class
attribute of the BODY element with the value “cool” assigns a style instruction that is stored
in an external style sheet to the corresponding element. The allowed set of attributes for each
element is defined in the DTD.

Early versions of HTML allowed only rudimentary control over the presentation of HTML
documents and rendering conventions were hard-coded into the Web browser. HTML 3.2 in-
troduced a set of element attributes for specifying alignment, font sizes, and colors. However,
this was not an ideal choice as content and presentational aspects were intermixed. To avoid
that, HTML 4 and upcoming versions pursue another course. They rely on so-called Cascading
Style Sheets (CSS) that specify all presentational aspects of an HTML document.

Style definitions are usually stored in a separate document, the style sheet, which may be
linked to the HTML document via the LINK element in the HEAD section. Style definitions
that are specified in the style sheet may be linked to an HTML element using the element’s
class attribute. Listing 2.3 links the style sheet “style.css” to the presented example document.

Perhaps the most important feature of HTML is its support for hypertext (see 2.2.1). To this
end, the document’s author may define a link between an HTML document and another Web
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resource, which may be the same or another HTML document or an arbitrary resource on the
Web. A link has two anchors and a direction. A hyperlink in HTML is defined with the A
element. Note that the BODY section of the example HTML document in Listing 2.3 defines a
link to a second document named “another.html”.

Finally, HTML allows for scripting, which is basically the direct or indirect integration of
program code into a HTML document which is executed at the client side, i.e., by the Web
browser after the delivery of the HTML document from the server. Scripts may be executed
by the browser when the document loads or after a specific event, e.g., the user moves the cur-
sor over a specific area or activates a link. HTML's support for scripting is independent from
the actual scripting language. It offers two ways for specifying scripting code for a document.
Similarly to a style sheet, the code may be stored in an external file and referenced by a SCRIPT
element in the HEAD section. Listing 2.3 shows an example linking to the script file named
“script.js”. Alternatively, the scripting code may be directly embedded into the HTML docu-
ment. To this end, the program code may be specified as content of the SCRIPT tag and placed
into the HEAD or BODY section of the document. Note that the scripting capability of HTML
is an essential prerequisite for the development of Web Applications.

2.3.3.5 Sessions

A session captures the state of the interaction between a Web client and a Web server for a
certain user for a certain period of time. An example scenario is the interaction of a customer
with a Web shop. The customer is allowed to place products into a virtual shopping cart
and after selecting all required products, he is asked to complete the order procedure, which
usually includes providing personal information, etc. in a multi-page dialog. To capture the
entire state of this interaction the Web shop application has to store a number of data items,
e.g., which products have been placed by the user into the shopping cart and what information
has the user already filled in during the order procedure.

However, the HTTP is a stateless protocol. Thus, after a single HTTP request-response dialog
the Web server considers the communication to be finished. Any further requests are consid-
ered to be independent from any previous ones. Of course, this is not satisfactory because in
the depicted scenario a number of requests from the Web client must be identifiable as part
of the same communication dialog. Unfortunately, HTTP offers no solution for associating a
number of HTTP requests as a cohesive unit.

To circumvent this deficiency, Web Applications have to explicitly support sessions. There is
no standard way to implement sessions, thus Web application developers usually choose one of
the following four solutions. First, all state values may be stored in cookies (see Section 2.3.3.6)
at the client side. The Web server may use these values as required to determine or change
the state of the interaction. This solution has the disadvantage that the size and the number of
allowed cookies per site is restricted.

Second, an improved version of the first approach uses a unique identifier in a cookie at
the client side and manages all the required session data in a server-side map. Thus, the Web
server only has to acquire the unique identifier of a client to be able to look up required state
values in it's own storage. Besides being free of some cookie limitations, this approach has a
further important advantage. The Web server is able to use its own storage for handling state
values, thus depending on the capabilities of this storage, it may also use complex data types.
However, all solutions using cookies have a general drawback. The storage of cookies may be
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restricted or even completely forbidden in the settings of the Web client. Many Web users have
disabled cookies as they may be misused for advertising or other undesirable purposes.

Third, all state values may be included into every request specified as query parameters in
the URL (see Section 2.3.3.1). This solution has the advantage that it is independent of cookie
limitations, however it has some of the same drawbacks as the first solution. The length of
a URL, thus the space to store state values, is usually limited. Although the 255 byte limit
[BLEG199] is no longer valid, most Web clients still have a built-in restriction regarding the
allowed length of a URL. Additionally, the problem of using complex data types as state values
still applies.

Finally, the most flexible solution is to include a unique identifier into every request and to
manage state values on the server. This solution is analogous to the second approach without
depending on cookies.

Ultimately, the concept of a session is an important paradigm that is crucial for Web Ap-
plications. Regardless of the complexity of a Web Application, the communication between
the user and the application is usually more complex than a stateless request-response pat-
tern. Therefore, session management is a basic challenge that must be supported by every Web
Application. To this end, Web application development frameworks (see Section 2.3.5) always
have built-in support to deal with sessions.

2.3.3.6 Cookies

A cookie is a piece of text information that a Web server may store at the client computer if the
Web browser is configured to accept it. The Web browser sends cookie-data back to the Web
server that set the corresponding cookie with every subsequent request. The cookie mechanism
may be used for arbitrary purposes, however, there exist some common usage patterns. Cook-
ies allow customization, i.e., a Web Application may store user settings permanently, e.g., store
the favourite color scheme of a user for a particular Web site. Another popular use of cookies
is user identification, i.e., a unique identifier is stored permanently to identify the current user.
Finally, as described in the previous section, cookies are often used for session management.

According to the specification [KMO0O0], the Web browser should accept at least 20 cookies
from a domain and support at least a cookie size of 4 kilobyte. Of course, the size of a cookie
depends on the usage pattern, however, most cookies have a size of a few hundred bytes.

Web servers and Web clients use HTTP request and response header fields to handle cookies.
Using the example from Section 2.3.3.3, the response of a Web server may include a special
header field to set the cookie at the client like shown in Listing 2.4.

HTIP/1.1 200 OK
Content—Type: text/html
Set—Cookie: id=1; path=/section;

Listing 2.4: Set Cookie Example

The Set-Cookie header field of this HTTP response instructs the Web browser to store the
string “id=1". Note that other header fields and the entity body of the HTTP response are
omitted in Listing 2.4 for simplicity. The path setting defines that the cookie is relevant for all
resources that are under the specified path, i.e., for all resources under the container named
“section”. Accordingly, any subsequent requests from the client for a resource that resides in
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the folder “section” include a corresponding HTTP request header field as depicted in List-
ing 2.5.

GET /section/document.html HTTP/1.1
Host: www. example. org
Cookie: id=1

Listing 2.5: Use Cookie Example

The cookie header field of the HTTP request in Listing 2.5 includes the cookie that was previ-
ously set by the Web server, i.e, the value “id=1" (see Listing 2.4). Note that if there are several
cookies to return they are provided in the cookie field separated by semicolons. Also note that
Set-Cookie header field in a HTTP response may contain besides the path parameter several fur-
ther parameters that regard domain handling, expiration date, etc. that are omitted here for
the sake of simplicity.

2.3.4 Web Architectures

Previous sections provided detailed definitions for all terms regarding Web applications and
introduced all basic technologies that are relevant for implementing them. However, Web Ap-
plications are complex systems that cannot be planned and implemented in an ad-hoc manner.
Thus, it is not advisable to begin the development of a Web Application by opening a text editor
and starting to type the source code of the first page in HTML. Additionally, Web Application
development includes many recurrent design patterns and tasks and Web Applications usually
support common functionality and have many common components. Therefore, a developer
should always utilize state-of-the-art software and hardware architectures, frameworks, and
platforms that support Web application development. In this section, a general architecture for
Web applications and a suitable architecture for an underlying platform are introduced.

2.3.4.1 Web Application Architecture

As already suggested, Web Applications can become complex systems that manage a consid-
erable amount of data, support comprehensive business logic, and provide various ways of
content presentation. To this end, this section introduces a three-layer architecture for Web
Applications that is depicted in Figure 2.8.

The bottom layer of this architecture is the Content Layer. This layer includes all compo-
nents that are responsible for the low-level management of the Web Application’s data. There-
fore, it usually supports all CRUD operations, namely to create, read, update, and delete data
entities. Besides basic data access components, the content layer may offer more sophisticated
data access interfaces, e.g., a data query language.

The middle layer of the depicted Web Application architecture is the Operation Layer. This
layer handles most of the Web Application’s business logic. Note that compared to traditional
applications, Web Applications have a strong focus on navigational characteristics. Naviga-
tional features and patterns constitute an important part of a Web Application’s business logic.
Thus, the operation layer contains components that focus rather on higher-level data manipu-
lation and implement arbitrary business logic algorithms.
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Figure 2.8: Three-Layer Web Application Architecture

The top layer of the presented architecture is the Presentation Layer. It contains all compo-
nents that implement the Web Application’s user interface. These components usually offer
navigational and presentational functionality. Navigation components implement a range of
navigational access structures, e.g., menus and indexes. Presentation components integrate the
functionality of operation layer components into the Web Application’s user interface. They
show data that originates from components of the content layer or computed information that
have been acquired from components of the operation layer.

2.3.4.2 The Client-Server Architectural Paradigm

Web Applications are typical client-server applications. The functionality of the Web Applica-
tion enfolds during a dialog between the client, e.g., a Web browser, which is an application
on the client tier and the server, e.g, a Web server, which is an application on the server tier.
This simple two-tier architecture is depicted in Figure 2.9.

______CllentTier ServerTler
TCP/IP
Client Application i HTTP s Server Application
I G—
(Web Browser) | 12 (Web Server)
Client Computer 3 i Server Computer

Figure 2.9: Client-Server Architecture

Naturally, the client-server architectural setting relies on the client-server communication
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pattern. Consequently, it is always the client that starts the communication dialog. It requests
a service from the server (HTTP request), which in case of a Web Application may be a single
page of the user interface and the server responds (HTTP response) with the required resource
(see also Section 2.3.3.3).

Traditionally, Web clients are thin clients, i.e., they implement only a small portion of the
Web Application’s business logic. However, since the introduction of the AJAX technology
set [URIO5], there is an increasing trend towards more application logic at the client side, i.e,
towards fat clients. Using AJAX, the client does not have to wait for the response of the server
to load a new page of the user interface but it may request resources in the background in
an asynchronous manner, which leads to a much more smooth user experience. This new
communication pattern allows to move a significant part of the application logic to the client
side.

2.3.4.3 Web Application Platform Architecture

For simple Web sites, the basic client-server architecture, where the server part is fulfilled by a
simple Web server, is appropriate. However, Web Applications are usually more complex sys-
tems. They often manage considerable amounts of data. For example, an average online store
manages thousands of customers and a few orders of magnitude more products. Consequently,
Web Applications also implement complex business logic. Therefore, Web Applications usu-
ally require a more complex technology configuration at the server side. Figure 2.10 depicts a
four-tier architecture [[PMMO04] that constitutes a more suitable environment for complex Web
Applications.

Data Management
Tier

7777777777777777777777777777777777777777777777777777777777777777

9 Application
<:> Server
o

(Business Logic) i

Client Tier Web Tier Application Tier

,,,,,,,,,,,,,,,,,,,,,

| | web Browser ‘
3 (Presentation) |

|| Web Server ‘
&|l (Presentation) |

(Data Storage)

Client Computer Server Computer

|
I
|
|
|
. Database !
£ Server !
o |
|
|
I
|
|
I
|
|
I
|

Figure 2.10: Four-Tier Web Application Plattform

The client tier is the same as in the simple client-server setting, which was introduced in the
previous section. An application at the client tier may be a Web browser that communicates
with a server. The first server component in this setting is a Web server that resides on the
Web tier. In contrast to the simple client-server setting, the Web tier is not the only server tier
and it is not responsible for executing business logic. Its task is rather to handle the presen-
tation of resources and to manage the communication with the client tier. The execution of
business logic is managed by an application server that resides on the application tier. An
application server is a specialized software component that provides a runtime environment
for applications in general and, of course, for Web Applications in particular. The application
server communicates with the back-end storage, executes all business routines, and forwards
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computed resources to the Web tier. The last tier of this architecture is the data management
tier. Its purpose is to manage a Web application’s data. On this tier, data storage is usually
handled by a database management system.

2.3.4.4 Developing Web Applications For Specific Platforms

There are many different ways of developing a Web Application for a particular Web Appli-
cation platform, i.e., to decide which layers of the Web Application are to be implemented for
which tiers of the platform. Important factors that determine a specific configuration are of
course the actual functionality of the Web Application, performance issues, or cost considera-
tions.

For data-intensive Web Applications, the content layer may be implemented using a database
management system and deployed to the data management tier of a Web application platform.
On the other hand, if a Web Application does not have to handle much data, the content layer
may be implemented as a simple file-based storage on the application tier thereby omitting the
data management tier.

Components of a Web Application’s operation layer are usually developed for the applica-
tion tier of a Web Application platform, where business routines are executed in an application
server. However, in many cases some of the business logic is moved to the client tier, e.g.,
implementing business routines in a client-side scripting language like JavaScript.

Dynamic presentation components of a Web Application’s presentation layer usually com-
puted on the application tier of the Web Application platform are automatically forwarded to
the client tier. In contrast to that, static presentation components usually reside on the Web tier.
However, in order to provide a highly responsive user interface, some of the presentation logic
is developed directly for the client tier, i.e., coded in JavaScript.

Note that performance and cost considerations may determine the distribution of the tiers of
a Web Application platform to one or more server computers. If high performance is required,
each tier should be realized by one or more servers. On the other hand, if costs are to be
minimized, one or more tiers can be realized on the same server.

2.3.5 Web Application Frameworks

The previous section introduced a general three-layer architecture for Web applications. How-
ever, it is considerably time consuming to design and implement this architecture for each new
Web Application from scratch. Given the popularity of the Web it is not surprising that there is
a myriad of Web Application development frameworks that provide the same or a similar ar-
chitectural pattern. Most of these frameworks also bring along a pre-configured easy-to-install
runtime platform or rely on a collection of standard applications, i.e., a standard Web server
like Apache or the popular Tomcat application server.

A Web Application framework is a development environment and often also a runtime envi-
ronment for Web Applications. It usually brings along a set of standard modules that support
common tasks Web Applications have to tackle. Some of these common tasks include database
connectivity, Web page template support, user and session management. The task of a database
module is to support access to one or more database management systems. Web Applications
often have to handle a considerable amount of data, thus the usage of an appropriate sys-
tem, i.e., a DBMS, is advisable. Another common framework module is a template engine
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that supports the generation of dynamic Web pages based on templates. Finally, many Web
Applications support permanent user accounts and interact with users utilizing sessions. Ac-
cordingly, framework modules abstract from low-level tasks of user and session management
(see Section 2.3.3.5).

A popular architectural pattern, that many Web Application frameworks are based on, is the
Model-View-Controller (MVC) pattern that is shown in Figure 2.11.

View il
|
|
i Actions Manage
|
|
! -
Present -#  Controller
Manage
Model -—

Figure 2.11: Model-View-Controller Architecture

The MVC architectural pattern is based on three main components: the model, the controller,
and the view. The model is a domain-specific representation of the Web Application’s content
and it is not aware of the view or the controller. The controller is the heart of the system. It
responds to user actions that originate from a view, possibly modifies the model, and presents
further views to the user. Finally, the view (or views) represent(s) the user interface of the Web
Application. It renders the model into appropriate user interface components.

Note that the MVC pattern is similar to the Web Application architecture introduced in Sec-
tion 2.3.4.1, however, there are subtle differences. The MVC pattern is more technology-near
and therefore less general in nature. For example, the controller is a central component that
is responsible for the control of every user request. In contrast to that, the operation layer de-
scribed in Section 2.3.4.1 is more general. It’s task is to implement business logic operations
that may be used, if required.
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CHAPTER 3

Model-based Web Engineering

The previous chapter provided a general overview of Web applications. After a historical
preamble, relevant terms regarding Web applications were explained and subsequently the
most important technologies and terms for Web applications were introduced. This informa-
tion builds the basis for topics of this chapter because knowing, what Web applications are, is a
prerequisite for understanding how to develop them. The chapter begins with a short historical
overview of the Web engineering research field. The second part gives a general introduction of
the model-based Web engineering discipline. After that, the third part of this chapter explains
what models are and how they may be used for Web application development. Finally, the
last major part of this chapter introduces a list of model-driven Web application development
methods that have been proposed over the last decade.

3.1 A Short History of Web Engineering

The history of Web engineering shows many interesting parallels to the history of the software
engineering discipline and, of course, it has been greatly influenced by it. Most major trends,
e.g., CASE tools, object-orientation, the use of formal languages, or the organization of the
development process using standardized process models (e.g. the waterfall model [Roy87]),
have influenced the research field of Web engineering.

At the dawn of the WWW, there was no need for an engineering approach to put informa-
tion on the Web. Web sites were merely a collection of a few Web pages that were created
by enthusiastic researchers using some text editor. However, the WWW became very popular
very quickly and by the time the first Web search engines had emerged, the first methods for
developing hypermedia applications were published [GPS93][ISB95][SR95b]. Note that hyperme-
dia applications were not Web applications in the sense defined in Section 2.2.1. Hypermedia
applications were purely informational systems without content management functionality.
However, at that early time, researchers had already recognized that the development of hy-
permedia systems requires more expertise than just putting together a few Web pages.

By the end of the 1990s, a number of further development methods have emerged for hyper-
media applications. Popular terms to characterize this new research discipline were “Web Site
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Design” [FFKT98][AMM98], “Hypermedia Application Design” [SRB96], and “Hypermedia
Engineering” [LH99]. The definition of Lowe and Hall [LH99] is reflected in Definition 5.

Definition 5 Hypermedia engineering: the employment of a systematic, disciplined, quantifi-
able approach to the development, operation, and maintenance of hypermedia applications.

Research approaches have incorporated many ideas from the software engineering disci-
pline, e.g., object-orientation, formal languages, or graphical notations like UML [KHKRO5].
Given the huge importance of models and the broad definition of the term model provided in
Section 3.2.1, most Web engineering methods can be considered model-based. However, many
methods have also defined a graphical notation to specify their models.

Generally, research approaches put their focus on three main aspects if it comes to modeling.
The first aspect concerns the conceptual modeling of the application’s data. A corresponding
model is usually named “Conceptual Model” or “Data Model”. The second aspect is modeling
the navigation structure of the application with a “Hypertext Model" or a “Navigation Model”.
Finally, the last aspect concerns the presentation of content and is captured with a “Presentation
Model” or a “User Interface Model”.

The term “Web Engineering” was coined by Murugesan et al. [MDHG99] in 1999. The
authors also provided a rather broad definition of the term, which is reflected in Definition 6.

Definition 6 Web engineeringis the establishment and use of sound scientific, engineering, and
management principles and disciplined and systematic approaches to the successful development, de-
ployment, and maintenance of high-quality Web-based systems and applications.

By the end of the 1990s, it became clear that the development of Web sites and hyperme-
dia applications were at a stage software development was at the time of the software crisis
[LLO7]. Most hypermedia applications were developed in an ad-hoc manner without relying
on a structured development process or on proven development techniques. As a result, the
quality of hypermedia applications was poor and development projects caused enormous costs
and missed planned deadlines. The obvious analogy to the history of software engineering
was quickly recognized. The terms “Hypermedia Crisis” [LH99] and “Web Crisis” [MDHG99]
were coined.

Towards the end of the 1990s a steadily increasing number of Web sites have incorporated
interactive features and evolved into Web applications. It became clear that the WWW was
starting to evolve from a purely informational medium into an application medium [MDO01].
This fact was also reflected in most research methods that started to use the terms “Web Ap-
plication Design” [DIMG95][SR98] and “Web Engineering” [MDO01]. Also Web engineering
methods started to allow for data manipulation operations [BCFMO00][Tur02] and incorporated
them into existing models.

The evolution of Web applications into complex systems supporting sophisticated business
processes had its impact on the Web engineering community. Many Web engineering meth-
ods started to incorporate modeling techniques and modeling elements to support business
processes [KKCMO04]. To this end, research methods pursue two main approaches. First, exist-
ing models are extended with model elements that support the modeling of business processes
[BCCFO3][SLO3]. Second, new models are defined to capture the business process requirements
[BCCFO3][KKCMO3].

One of the latest trends in Web engineering is the emerging support for Rich Internet Ap-
plications (RIAs) [BCFC06]. Web applications are becoming increasingly complex systems and
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the request-response paradigm prevents traditional Web applications from having a fast and
flexible user interface. Therefore, RIAs utilize the AJAX technology set to implement user
interfaces that hide the communication process between client and server from the Web appli-
cation’s user. The result is a flexible and highly responsive user interface and user experience
that is comparable to that of traditional software.

3.2 Using Models

The development of Web applications is a complex activity. Usually, there are many human
and non-human resources involved in achieving the goals of a certain development project.
The project usually involves many different activities that have to be executed and coordinated.
To this end, Web application development and software development in general employ a
large number of different models. This section describes the relevance of these models for Web
application development. First, Section 3.2.1 describes the notion of a model and Section 3.2.2
introduces several approaches for model categorization. Second, Section 3.2.3 elaborates on the
role of models for software development in general and Section 3.2.4 introduces a set of models
for Web application development in particular. Finally, Section 3.2.6 describes the benefits of
code generation from formal models.

3.2.1 What is a Model?

A model is an abstract representation of an object, a system, a concept or another model. Its
aim is to describe the existing or planned original containing only attributes that are relevant
for a specific task. Models are ubiquitous in every day life. Architects usually create a blue
print before they authorize the construction of a new building and in many cases they also
create three dimensional computer models or even build a small plastic model of the planned
building.

These models serve different purposes but they also exhibit some common characteristics
that are typical for models. There is always an original that is copied or is going to be created
using the model. Thus, the model is just another representation of this original. However, a
model always offers a certain amount of abstraction in respect to the original. Otherwise, it
would not be a model but an exact copy. For example, a blue print of a building omits most of
a building’s characteristics, e.g., the materials or the color of the paint that are used to construct
and decorate the building.

3.2.2 Model Categorization

Models may be categorized in many different ways. One distinction that is frequently made
[LLO7][Tab06][BS04] addresses the general purpose of the model. A descriptive model always
represents something that already exists. For example, a toy train is a simplified copy of a
real train. On the other hand, a prescriptive model serves as a plan for something that is to be
created, e.g., a blue print of a building.

In many cases, a particular system is described using different complementary models. Con-
sider a traffic light system at a road crossing which is a distributed system composed of several
units (see [BS04]). This system may be described with different models that focus on different
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aspects of the system. A structural model may define the location of all system components at
the crossing. Whereas a behavioral model may specify the behavior of components as contained
units and their interaction. As a matter of fact, system behavior may be even captured with
several models. For example, a state/transition model may define states and valid transitions
between states for a single traffic light. Additionally, an interaction model may specify mes-
sages that are sent between components and actions that are executed upon message reception.

Another aspect of differentiation is the actual physical form and, if required, the formal no-
tation that is used to create the model. Both physical form and notation may vary considerably.
Consider the blue print of a building. The formal notation is a complex graphical representa-
tion containing geometrical figures, numbers, and text. However, the physical representation
of a blue print may exist on paper, stored on a hard drive of a computer, or just in the mind of
the architect.

3.2.3 The Role of Models for Software Development

Models are used for two main purposes in software engineering. First, process models describe
the development process itself. These models define principles, practices, and activities that are
to be followed or executed during software development. Second, software models describe the
subject of the development process, which is the software system to be developed. Section 3.3.3
describes the Web application development process and introduces different process models
that may be applied for Web application development. This section deals with software models
and describes how they may be employed for different development activities.

Software models are usually created as a plan for a software system that is to be built. Thus,
they are clearly prescriptive models (see Section 3.2.2). However, in some cases, models are cre-
ated from an existing software system. For example, many model-based software engineering
tools support the automatic reverse engineering of models from source code. In these cases, we
deal with descriptive models that document an existing system. Furthermore, software engi-
neering principles dictate that models should always be kept consistent with the implemented
software system, thus models that have been created with prescriptive intention may also be
used in a descriptive manner. Software systems may become extremely large and complex. To
address this complexity, it is advisable to capture both their structure and their behavior with
a number of different models. Finally, a piece of software has no physical representation thus
it makes no sense to build a physical model for it. Therefore, software models differ rather in
formal notation than in physical representation. Popular formal notations for software model-
ing employ a combination of text, graphs, and diagrams. Subsequent paragraphs elaborate the
role of models for different activities of the software development process.

As a first major activity of a software development project, requirements for the planned
system have to be captured. This activity must be carried out with reasonable care because
errors made in this early phase may cost a lot of resources to fix later on. Ultimately, if project
managers and developers do not manage to capture the requirements of customers correctly,
the project will probably fail. Being so important, there is a extra sub-discipline of software en-
gineering addressing problems of this field called Requirements Engineering. The requirements
analysis activity must produce answers to the following set of initial questions. What is the
general business purpose of the system? What particular functionality do customers need?
How will end-users interact with the system? Answers to these questions must be discovered
in a dialog between customers and members of the development team and documented using a
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set of models. These models should capture at least three different views of the system [Pre(05].
First, the information model defines the information domain and characterizes the system’s data
flow. To this end, it is captured what input data is accepted, what data is stored permanently,
and what output data is produced. Second, a functional model defines what functionality the
system provides. Finally, a behavioral model captures how the system interacts with its environ-
ment, e.g., how it reacts to end-user input. Optimally, these models utilize a notation that is
appropriate for communication with the customers thus the models may serve as specification
of the system.

Besides requirements engineering, design is another vital activity of the software engineer-
ing process. Its goal is to transform customer requirements into technical design models. The
effort necessary to execute this task depends of course on the complexity of the planned sys-
tem and partially on the quality of the models that have been created during the requirements
analysis phase. If requirements have been captured with imprecise natural language descrip-
tions, the design effort may be considerable. Otherwise, if requirement analysis has produced
more formalized models, e.g., use-case diagrams, activity diagrams and, statechart diagrams,
the transition to corresponding design models may be much more smooth. Ultimately, design
modeling ought to capture three different aspects of the system [Pre05]. First, an architecture
model defines a system framework that structures system modules, which implement the sys-
tem’s functionality. Second, interface models define the system’s interaction with its environ-
ment, e.g., depict graphical user interfaces. Finally, a component model captures the detailed
design of system modules that are to be integrated into the system architecture.

Design is the last activity of the development process that produces models. All further
development activities, e.g., implementation or maintenance use models for different purposes
and adjust them to changes, if necessary. Design models are a blueprint of the software system
to be built. The most obvious way to use this blueprint is to let it serve as a plan for creating the
source code of the designed software system. To this end, developers have two alternatives to
choose from. First, they may produce the source code manually. Second, if the design models
employ an appropriate formal notation, developers may use a tool to partially or fully generate
the source code of the system. However, most development tools support only an initial code
generation step, after which the code must be adjusted manually. A code generation approach
that manages to keep models and code synchronized is preferable to a solution that provides
only partial code generation support.

Testing is of course an activity that must play a fundamental role in any serious development
process. However, testing is not an activity that ensures the quality of the produced software.
Software quality originates from solid design and proper implementation. However, testing
may be applied to detect design flaws or errors in the source code. Ultimately, the elimination
of identified defects leads to increased software quality. Models may be employed for testing
in two ways. First, they may be used as documentation to easily identify components that
must be tested. A comprehensive overview of the system architecture also allows to identify
critical spots of the system, e.g., important internal and external interfaces. Second, models as
a formal definition may be used to automatically generate test cases. Of course, generated code
for testing must be manually adjusted. Creating reasonable test cases always requires a certain
understanding of the components to be tested that must be provided by an expert.

Finally, models play an important role for the operation and maintenance phase of the soft-
ware life cycle. Naturally, during this phase it is more easy to fix errors or add new components
to the software if a comprehensive documentation is available. Of course, this is only the case
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if the models are kept up-to-date with the implementation. However, this is a difficult task
because it requires additional effort. Again, a development method that automatically ensures
that models and code are kept synchronized is of great advantage.

3.2.4 Modeling Web applications

The previous section explained how modeling may be utilized for software development in
general. Note that most presented aspects are also valid for Web application development.
However, Web applications do have some unique characteristics (see Section 3.3.1) that intro-
duce additional requirements, not only for the development process but also for the models
and the modeling techniques.

In the Web engineering community, there is no consensus on a general process model that
may be applied to Web application development [KPRR06]. Most experts agree that light-
weight models are usually more suitable than their heavy-weight counterparts. This observa-
tion is described in detail in Section 3.3.3. However, the disunity is not restricted to process
models. There is a considerable number of methods that have been proposed for Web appli-
cation development over the last decade. Section 3.4 introduces a representative selection of
methods, each of which present a somewhat different approach for developing Web applica-
tions. However, these methods also exhibit common characteristics. For example, many of
these methods pursue a model-based development approach. The focus of this section is on
the description of models that may be applied for Web application development. To this end,
the following sub-sections explain which model types may be used for which activities of the
development process. However, first a general categorization of models is provided.

Kappel et al. have introduced a simple model for capturing the scope of modeling activi-
ties for Web application development [KPRR06] (see Figure 3.1). The model defines the three
dimensions Levels, Aspects, and Phases.

Levels

Presentation

Hypertext

Content
St o S Phases
rucy Analysis Design Implementation

Behavior

Aspects

Figure 3.1: Dimensions of Modeling

The Levels dimension defines three levels that correspond to different aspects of Web ap-
plication modeling. The Content level refers to models that capture the information domain
and the business logic of the Web application. The Hypertext level refers to models that specify
navigational characteristics of the application. Finally, the Presentation level defines the layout
and final appearance of the Web application’s user interface.

Of course, models that correspond to these levels may additionally have an extra focus on a
certain aspect of a particular level. Therefore, the Aspects dimension splits each level into the
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two aspects Structure and Behavior. Correspondingly, models of each level may have a focus
on structure, e.g., a class diagram may capture the content structure of an application or on
behavior, e.g., a state diagram may define the set of allowed states for one or more content
objects.

Finally, the Phases dimension captures activities of the Web application development pro-
cess. Correspondingly, prominent activities of the process, e.g., Analysis, Design, or Implemen-
tation are depicted as units of this dimension. Ultimately, this dimension amending the Levels
and Aspects dimensions suggest that each model of a certain level or aspect may be created or
used in different phases of the development process.

The following sub-sections provide a brief description of the three levels of modeling in-
troduced in Figure 3.1. Note that an additional level that explicitly captures business logic
operations is introduced in Section 4.4.

3.2.4.1 Content Modeling

Web applications are traditionally content-based applications. A vast majority of applications
in the WWW today still focus on the presentation of content, e.g., text documents, images,
videos, etc. To this end, most applications utilize a back-end system that is capable of managing
large data volumes. Therefore, content modeling is an essential activity for developing Web
applications. Without a proper content model it may prove difficult to build a Web application
that satisfies the informational needs of potential user groups.

Content models capture content requirements of the Web application. Thus, models that
belong to this category are usually created during the requirements analysis phase. As the
Aspects dimension of Figure 3.1 indicates, content modeling deals with the structure and the
behavior of the Web application.

The content structure of a Web application is usually captured with a class diagram. Primarily,
a class diagram defines the object types that the Web application is going to support. For exam-
ple, if during the requirements analysis phase for the Book Portal (see Section 2.2.3) developers
identify the need for storing book authors, the class diagram of the application will surely con-
tain the corresponding Book and Author classes. Additionally, the class diagram may define
associations between content classes to reflect relationships between real-world objects. For
example, the fact that authors write books may be expressed in the content model with a cor-
responding association between the Author and Book classes. Finally, class diagrams usually
allow to group content classes into packages that correspond to modules of the Web applica-
tion. There are several graphical notations that are appropriate to define the content structure
of a Web application. Popular notations are the Entity-Relationship Diagram or the UML Class
Diagram.

The second aspect considering the content of a Web application is modeling its behavior.
Actually, content does not really behave, people do. Thus, the real question is, which operations
may be executed by users of the system for which content objects and how these operations
affect the state of content objects. These questions may be answered with several different
models. First, operations that are related to a certain content object may be specified in the cor-
responding class of a class diagram. Basic operations simply manage the attributes of content
objects, e.g., an operation setTitle of a book object may allow to update the title of a book in
the content storage. Complex operations may combine several basic operations or may addi-
tionally implement custom business logic routines. Second, a state diagram may define a set of
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states that are allowed for a certain content object. For example, the state new for a book object
may indicate that the corresponding book is new on the market. Additionally, this diagram
type specifies a set of transitions that bring an object from one state into another. A transition
may be triggered by an operation and it may depend on different conditions. For example,
an operation toRegular may change the state of a book to regular if the book has been in the
state new for at least six month. Finally, the “behavior” of content may also be captured with a
sequence diagram. This diagram type captures small usage scenarios and maps operations that
are part of the scenario to content classes thereby creating a connection between the behavior
and the structure of content.

3.2.4.2 Hypertext Modeling

The most significant characteristic of Web applications compared to traditional software appli-
cations is the strong reliance on hypertext. Usually, each page of the Web application’s user
interface contains a significant number of hyperlinks and the user may follow an arbitrary
path along the hypertext structure of the Web application. This highly non-linear navigation
has its advantages but also its drawbacks. One possible risk is that, if navigation paths are not
carefully designed, the user may get quickly disoriented or even execute some actions unin-
tentionally. To avoid this, the navigation structure and access to operations managing content
must be designed properly. To this end, hypertext modeling addresses two different aspects.
First, the modeling of the hypertext structure, also called navigation structure. Second, the
modeling of navigation behavior, which defines the behavior of the application in response to
navigation actions executed by the user.

Web application development methods usually employ a custom graphical notation for the
definition of the navigation structure. Naturally, the graphical notation is in most cases a simple
graph with nodes and edges. Nodes usually correspond to pages of the user interface and
edges represent a navigation step between two pages. Additionally, the navigation structure
model may employ a set of access structures that specify common navigational patterns. Access
structure examples are a menu that contains a simple set of central hyperlinks, an index that
allows the selection of an item from a set of similar items, and a guided tour, which guides the
user through a predefined path usually visiting a set of similar nodes.

The second aspect of navigation modeling is the definition of navigation behavior. A user
of a simple Web site is not able to interact with the content of the site. Thus, if it comes to
Web site design, modeling just the navigation structure is sufficient. In contrast to that, Web
applications provide different ways for the user to interact with content. In many cases, the
user is allowed to search, create, or modify the content of the Web application. To this end,
possible user actions are integrated into the navigation structure of the application. Thus, if
the user activates a particular action during navigation, the Web application reacts correspond-
ingly. This navigation behavior may take different forms. First, if the user navigates from one
page to another, the Web application may pass along some parameters from the source to the
target page. Subsequently, the application may use the parameter values to dynamically con-
struct the target page. This is a rather passive interaction because in most cases the user does
not even recognize the parameter transfer. Second, during a navigation step, the user may
activate a certain operation that changes the content of the application. This is a more direct
interaction that should be clearly indicated on the user interface of the Web application. Ulti-
mately, user actions may have different scopes and may serve different purposes. An action
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may be atomic or part of an interaction process. To this end, methods for Web application
development employ a range of different proprietary model elements to express navigation
behavior.

3.2.4.3 Presentation Modeling

Besides modeling content and navigation the third main activity supported by most Web ap-
plication development methods is presentation modeling. The presentation model defines the
user interface of the Web application. Accordingly, it is vital that this modeling activity is
executed with appropriate care. No matter how accurate the other models are, the Web appli-
cation’s user is going to have great difficulties if the user interface does not provide a clear and
intuitive view of the Web application’s content and its navigation structure.

Similarly to the specification of content and navigation, presentation models have to take
into account two aspects. The presentation structure that defines the layout of the user interface
and presentation behavior that specifies user interface elements that allow users to interact with
the application.

Models that define the structure of the user interface usually rely on a set of standard model
elements that may be used repeatedly to construct the user interface. A central element of user
interface modeling is a page. A page is usually populated with further elements that may be
composite or atomic. Composite elements may contain subelements and create a substructure
on the page. For example, most Web pages are divided into a navigation area and a display
area. Thus, a structure model element that allows to define different areas on a page may
become handy for user interface modeling. Atomic elements simply display a portion of the
Web application’s content or reveal a certain part of the navigation structure. To this end, the
presentation model usually employs different listings and object views for displaying content
and provides links, menus, or breadcrumbs to present navigation.

Another concern of presentation modeling is the specification of presentation behavior. As
a matter of fact, this task includes three different aspects. The first one is access to content
behavior. One task of the presentation model is to provide appropriate views for the user
over the Web application’s content. As described in Section 3.2.4.1, content behavior may be
accessed and controlled through content management operations. Consequently, if the user
should be able to manage the Web application’s content, the presentation model must contain
elements that provide access to these operations. Furthermore, there may be a correlation
between the Web application’s content and the way it is presented, thus a change of content
may directly affect presentation behavior.

The second aspect that must be considered about presentation behavior is its relation to
navigation behavior. Besides presenting content, another task of the presentation model is to
provide a clear and intuitive view of the Web application’s navigation structure. As described
in Section 3.2.4.2, navigation links may have different semantics and accordingly their activa-
tion may have different results. Hence, the presentation model should support a set of different
user interface elements that correspond to navigation links with different semantics. Similar
to the relationship between content and presentation in many cases, there may be a correlation
between navigation behavior and presentation behavior. A simple example is the transport of
parameter values between two pages during a navigation step. The fact that the navigation
step is a special one, i.e., it transports parameter values, is a characteristic of navigation behav-
ior. However, if the presentation of the target page changes according to parameter values, this
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reaction is a manifestation of presentation behavior.

Finally, presentation behavior may be completely independent of the Web application’s con-
tent or navigational behavior. First, many Web applications allow the user to customize the
appearance and the behavior of the user interface. To this end, the user may select from a set
of options to configure an individual user profile for the interface. Furthermore, many Web
applications support user groups, in which case for each group an individually pre-configured
user interface profile may exist.

Besides defining structure and behavior, presentation modeling comprises a final task, which
is rarely supported by Web application development methods, namely the modeling of the
actual visual appearance of the user interface. Creating a certain look of the user interface (color
scheme, font types, custom graphics, etc.) is a task for a graphic designer and usually not for a
programmer. This task involves a certain amount of artistic creativity and providing modeling
support for the actual process of creating the required look may prove difficult. However, a
task that can be tackled is support for the management of style definitions, once they have been
created by graphic designers.

3.2.5 Model Weaving

A common problem in model-based software engineering is that the models of choice, which
are used to describe the same system from different points of view, are only loosely coupled.
In this context, loosely coupled means that elements of different models that have some kind
of a semantic connection are not bound to each other in a formal way. An example that demon-
strates this problem is a simple user interface component of the Book Portal application that
allows the portal’s user to search for books. Let’s assume that the user interface specification
of the application includes the definition of a search page with a search form and a submit
button. Lets also assume that another model, which specifies the application’s operations de-
fines a search operation that actually executes the search. The question is how to connect the
elements of these two different models to each other. This question is not trivial because there
is a range of aspects that have to be considered for such a connection. First, the user interface
component has to be mapped to the appropriate operation. Second, if the operation requires
parameters, they have to be mapped to the fields of the corresponding Web form. Finally, the
operation’s result has to be presented in some form, thus, it has to be mapped to an appropriate
component of the user interface, e.g., a presentation component on a result page.

This example demonstrates that in some cases semantic connections between different mod-
els can become rather complex, thus if the models are intended to be used for code generation,
these connections have to be formalized. The process of connecting different models in a for-
mal way is called model weaving.

Many software engineering resources do not discuss model weaving explicitly [Som07][LL07]
[SVO5][CEQOQ]. They assume that models are used as a blueprint for manual implementation,
or as input for a code generator tool that creates separate portions of the implementation for
each model which have to be manually integrated at the code level.

Pressman and Lowe [PL09] investigate the relationships between different models for Web
application development from different perspectives. Examining the requirements gathering
perspective they provide a list of questions that the developer should ask in order to identify
connections between the Web application’s content and functionality and in order to investi-
gate how content is presented on the Web application’s user interface. They do not provide a
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self-developed solution for weaving different models. Instead, they refer to the Web applica-
tion Extension for UML (WAE) approach [Con03] for connecting content and functionality and
to the WebML for integrating functionality to the user interface. Unfortunately, the WAE em-
ploys a graphical notation that is rather high-level and cannot be used for direct code genera-
tion and the WebML integrates content management operations directly into the user interface
specification instead of using a weaving approach. For a detailed discussion of the WebML
approach, the user is referred to Section 3.4.4.

A model-weaving approach for Web applications is presented by Cicchetti et al. [CDRP06]
[CDRO8], who propose the utilization of two explicit weaving models that connect a data model
to a composition model and a composition model to a navigation model using UML as graph-
ical notation. Unfortunately, the approach has several disadvantages. First, it proposes two
extra models merely for model-weaving purposes. Thus, the weaving models repeat model
elements from other models and introduce a lot of redundancy. Second, mappings that are
used in the weaving models appear to be rather coarse grained. Content entities are assigned
to navigation nodes and navigation nodes are assigned to Web pages. A fine-grained speci-
fication of the user interface is not possible. Finally, this approach does not consider content
management operations at all, which is nowadays a must for any Web engineering solution.
Note that the flashWeb approach presented in this work avoids all these problems.

3.2.6 Generating Code

As described in Section 3.3.3.2, Web application developers are usually under time pressure
during the development process. The importance and the competitive nature of the WWW
force development teams to work in short development cycles and to deal with constantly
changing requirements. Under these circumstances, any techniques that speed up develop-
ment are more than welcome. One viable option to achieve this goal is to employ code gener-
ation technology.

Code generation relies on a formal specification of the system for that the implementation is
to be generated. This specification usually contains several models that employ a set of stan-
dard elements to capture certain aspects of the system. As described in the previous section,
methods for Web application development usually employ models to capture three different
views of a Web application: content, navigation, and presentation. Depending on how power-
ful and well-connected the models are, a partial or complete generation of the implementation
may be possible.

Partial code generation is a goal that may be achieved with most methods for Web applica-
tion development (see Section 3.4). These methods usually employ several graphical models
to capture different aspects of the Web application. Most of these graphical models may be
expressed with an appropriate representation (e.g. XML) that may serve as input for a gen-
erator tool, which is capable of producing the source code of the application. However, most
Web application development methods utilize models that cover only a certain part of the Web
application’s functionality. Additionally, in most cases the models are more or less isolated and
semantic connections between them are not clear or not expressed in a formal manner. As a
result only a certain part of the implementation can be generated.

The partial generation of the Web application may seem promising at first glance, however,
there are many problems attached to it. The first and most important deficit is that the partial
code must be supplemented by hand. For example, if a business logic operation should be
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executed after the user activates a certain user interface element, the actual code for the call
must be inserted into the generated source code. Generally, if the models that are used for
code generation are not properly integrated, the connections must be manually supplemented
after the generation process.

Another problem that arises from this first disadvantage and from the fact that Web appli-
cations are usually developed incrementally is the continuous need for the synchronization
of models with generated source code. Partial code generation may be reasonable if there is a
single development iteration. In this case, the models are initially used to generate a partial im-
plementation and the missing parts are added manually. However, if the development process
includes many iterations some new problems arise. Besides the described integration effort,
developers have to make sure that newly generated components do not interfere with man-
ually created ones. New iterations include new requirements that result in changed models
and in changed generated code. Manually implemented components may be overwritten or
invalidated by additionally generated code. An example is the simple renaming of a content
model component, which often occurs if requirements change. All references to the compo-
nent in the custom part of the implementation use the old name thus being invalid. Ultimately,
the employment of partial code generation in a development process with a high number of
increments is problematic. One has to keep track of any changes of the models between two
increments very precisely. Subsequently, every piece of code, that has been created manually
and is affected by the change of the models, has to be updated. This additional documentation
effort may prove extremely time-consuming thus the advantage of the partial code generation
approach may shrink or even disappear completely.

One alleged solution for keeping graphical models and generated code synchronized is the
approach to re-engineer models from generated code. This feature is provided by some mod-
eling tools for traditional software development. These tools analyze the source code of an
application and create a graphical model from it. Theoretically, this approach may be used for
each development increment of a Web application to re-engineer all models from the source
code, then modify the models according to the requirements for the given increment, and fi-
nally, to re-generate the implementation. However, there are two major problems that make
this approach impractical. First, re-engineering graphical models from source code is possible
for some models, e.g., a class diagram of a content model, however, it is very difficult or even
impossible for some others, e.g., a presentation model. Second, the layouting of graphical mod-
els after the re-engineering step has to be done manually. Automatic layouting algorithms are
not able to reconstruct the layouting information (positioning, grouping of model elements)
that is usually created by a modeling expert. This task may be very time-consuming for large
models. Ultimately, partial code generation brings very little help for Web application devel-
opment.

Compared to approaches that allow partial code generation, Web application development
methods that manage to generate a fully functional Web application are clearly superior. Full
code generation may be achieved if the models and extension facilities of the approach manage
to specify the complete functionality of the application. Basically, there are two ways to achieve
that. As a first alternative, the development method may employ models that capture the entire
functionality of the Web application. This approach is impractical, because it requires models
that are powerful enough to specify arbitrary functionality. However, models employed by
Web application development methods are usually designed to specify common functionality.
To capture unique features ,e.g., custom algorithms, the models lack the expressive power of
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a programming language. Therefore, the development approach must provide an extension
facility that allows for the specification of custom program code. Basically, there are two ways
to accomplish this extensibility. First, the models may have custom elements that allow to
specify custom program code. In this case, custom code is stored with the models and can be
inserted into the source code during the generation process. Second, the generated source code
may contain extensible areas that may be used to insert custom code into the implementation
manually. Both approaches have advantages but some disadvantages as well. Storing program
code in a model breaks its language independence. Thus, if the model is to be used to generate
implementations for several target platforms, custom elements must support the specification
of program code in all corresponding target languages. However, the developer has a very
good overview of custom code and the code is better integrated into the models. Inserting the
program code into the implementation after the generation step requires certain designated
areas in the code where extensions may be added. The developer has to be careful not to leave
these areas to avoid unintentional overwriting of custom code by the generator. However,
inserting the code in place, i.e, where it belongs, has the advantage that the developer does
not have to copy the code into the model. Ultimately, full code generation capability of a
development method may speed up the development process considerably and works well
with an iterative process model.

The gap between partial and full code generation is considerable. Theoretically, the extension
mechanisms described previously, which allow to insert custom program code into the imple-
mentation, could be employed for an approach that supports only partial code generation.
However, they are only practicable for small amounts of program code. Most model-based
methods for Web application development are very far from supporting full code generation.
They usually fail to properly integrate their models, which is a prerequisite for a functional
Web application that has been generated automatically. As mentioned before, most develop-
ment approaches provide at least models that capture the content, the navigation structure, and
the presentation of the Web application. These models are expressed with different diagrams
and can be used to generate a certain part of the application. For example, a code generator
may produce the implementation of an object from a class component of a content model. The
implementation may also define some operations that can be used to control the behavior of
objects of this type. But how do these operations relate to other parts of the application? Which
navigation steps may execute which operations? How does the user interface react to the exe-
cution? These questions stay unanswered as most Web application development methods fail
to define semantic connections between content behavior, navigation behavior, and presenta-
tion behavior. The solution to these problems is model weaving. Models have to be designed
to allow for integration with other models. This is a central aspect of the flashWeb approach
presented in Section 4.

3.3 Engineering Web Applications

As established in Section 3.1, the development of Web engineering methods have been influ-
enced by advances of the software engineering discipline. However, Web applications have
some unique characteristics that must be accounted for. Therefore, existing models and devel-
opment processes for traditional software are not always adequate to cover the needs of Web
application development. To fill in this gap, existing methods and models have to be extended
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or complemented by new ones.

This section provides an overview of the process of Web application development. First, Sec-
tion 3.3.1 highlights some differences between traditional software and Web applications and
points out consequences for the process of Web application development. Second, Section 3.3.2
introduces the software life cycle, a model describing different stages of a Web application dur-
ing its development and application. Finally, Section 3.3.3 discusses whether standard software
engineering processes are adequate for Web application development.

3.3.1 Conventional Software vs. Web Applications

Web applications are different from traditional software applications in many ways. Most
unique features of Web applications can be directly derived from the nature of the WWW,
which is an ubiquitous, constantly and rapidly evolving medium supporting hyperlinked con-
tent and applications. Subsequently, a selection of the most important characteristics of Web
applications (see [KPRRO6]) is presented.

Most Web applications strongly rely on hypermedia (see Section 2.2.1). This is natural as
Web applications have evolved from hypermedia applications and most of them still heavily
utilize hyperlinked content. Using hyperlinks creates a complex, non-linear navigation struc-
ture through the Web application’s content. An obvious advantage of such a navigation struc-
ture is the great flexibility and speed for the user. However, there are some disadvantages,
too. First, hypermedia may cause cognitive overload for the user because it is difficult to keep
in mind all semantic jumps during the browsing process. Second, the navigation graph may
be very complex thus the user may feel quickly disoriented. Traditional software applications
usually do not offer navigation structures at this level of complexity.

Web applications are usually content-driven software systems. Primarily, the WWW is a
medium for publishing digital information. Consequently, Web sites and Web applications
usually have a strong focus on publishing information via documents. Therefore, Web appli-
cations are often described as document-centric. Furthermore, the presented content is always
a key factor for attracting and satisfying users of the system. The expectation of users regarding
the quality and topicality of content is often very high. In many cases, documents and articles
that are published through the Web application are created by skilled or even professional
writers. This focus on content is seldom among traditional software applications.

Additionally, the presentation of content plays a very important role for the success of a Web
site or a Web application. If a user is convenient with the look & feel of the system, he is going
to use it further. This willingness depends often on the fact whether an application uses stylish
presentation components and up-to-date presentation techniques. Therefore, the development
of a Web application involves not only system architects and programmers but in many cases
also graphic designers, who ensure that the application gets a unique touch. Although usability
and look & feel are also important aspects for developing traditional software components, in
many cases there is a stronger focus on functionality compared to presentation.

Another unique characteristic of Web applications is their integration into a global applica-
tion space, the WWW. Traditional software products are usually self-contained, stand-alone
programs. Of course they may communicate with other applications in various ways but the
core functionality of each program is well defined and is usually packaged into one or more
executables that are executed on a single computer. In contrast to that, the execution of a Web
application may involve many different server and client machines. Different server machines
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may provide different parts of the application and a Web application may integrate the func-
tionality of other Web applications (see mesh-ups); thus, the boundaries between applications
are hard to define. As a result, Web application developers have to possibly consider a range of
technical characteristics, e.g., APIs, authorization, or accounting of numerous existing systems.

The WWW as a platform for Web applications is a medium which is globally available
around the clock. This ubiquity and constant availability brings along some chances but also
some challenges for Web application developers. On the one hand, location and time informa-
tion about the user may be utilized to provide location-aware and time-specific content and
services. On the other hand, in a global context it is difficult to customize the application for a
certain target group because of the heterogeneous social background of the Web application’s
users. Most Web applications are developed for the general public, thus making assumptions
about age, nationality, and other cultural aspects of potential users is virtually impossible. In
traditional software development, the target group for an application is usually more concrete.

Besides the social context Web applications are also determined by restrictions of a techno-
logical context. The WWW uses the infrastructure of the Internet, thus all technical aspects,
e.g., bandwidth, server load, or features of an access device, must be considered. The main dif-
ficulty is the fact that these characteristics are mostly not known in advance. A potential user
of the Web application may be connected to the Internet by cable and using a high-end desk-
top computer or he may want to access the WWW via a mobile phone, which has completely
different characteristics regarding connection speed and screen resolution. Therefore, the Web
application developer has to define an acceptable range for each parameter, within which the
Web application functions normally. The Web application may even explicitly support differ-
ent target platforms providing different user interfaces that consider the characteristics of the
corresponding platform. However, support for different platforms is a significant development
decision and has to be addressed while planning the development process.

Finally, the rapid development of the WWW is a general factor that keeps Web application
development methods, processes, and tools at the state of constant change. First, the impor-
tance of the WWW as a global information medium exerts enormous competitive pressure
on organizations and enterprises to deploy and maintain appropriate Web applications that
support their diverse business needs. Consequently, requirements for Web applications are
constantly changing and information has to be made available as fast as possible. Of course,
this pressure is propagated to Web application development teams and manifests itself in con-
stantly shortening development cycles and in time-consuming maintenance. A further neces-
sity that originates from the rapid development of the WWW is the adaptation of new tech-
nologies (e.g. AJAX) allowing Web applications to remain competitive.

Besides all differences, there are also obvious similarities between Web applications and tra-
ditional software applications which are not discussed here in detail. However, there is an
interesting trend in Web application development that is worth mentioning. Since the begin-
ning of the new millennium, Rich Internet Applications (RIAs) are getting increasingly popu-
lar. This category of Web applications utilize the AJAX technology set to build user interfaces,
which are comparable to user interfaces of traditional software applications, regarding the
richness and responsiveness of the interface.
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3.3.2 Web Application Life Cycle

During its development a Web application runs through different phases. In each phase, the
focus is usually on one specific activity. For example, all development processes, which may be
applied for Web application development, allow for an implementation phase in which compo-
nents of the Web application are being programmed. Of course, it depends on the development
process whether phases take place consecutively or whether there is a stronger focus on some
of the phases compared to others. Furthermore, the process may also determine whether a cer-
tain phase may take place once or several times. Regardless of a certain development process,
a Web application is at any given point in one or more of the following phases.

The Requirements Analysis Phase subsumes activities that are concerned capturing
requirements for a planned Web application. Important activities in this phase are the iden-
tification, documentation, and validation of requirements. As a matter of fact, requirements
identification is the most difficult part because customers usually find it difficult to precisely
define their needs and expectations. Therefore, requirements have to be identified during an
intensive dialog between developers and customers. Furthermore, compared to traditional
software development, requirements analysis for Web applications is slightly more difficult.
This is due to the fact that there is little knowledge about the target audience of the planned
Web application (see Section 3.3.1). Another problem is the multi-disciplinarity of experts par-
ticipating in the development process, e.g., writers, graphic designers, and programmers, who
usually use different concepts and terms. Therefore, creating a coherent set of requirements
that is well understood by all participants may prove difficult.

In the Design Phase requirements are used to create a technical plan for the required Web
application. The main activities in this phase include the decomposition of problems into
manageable units that lead to modules of the system, the definition of interfaces for mod-
ule communication, and the definition of an architecture, which provides a framework for the
conceived modules. Again, Web application development is somewhat different from the de-
velopment of traditional software applications, because of the dominance of the client-server
architectural setting. In most cases, the architecture of a Web application orients itself towards
the client-server paradigm and defines business logic modules for the server side as well as for
the client side. However, this orientation towards the underlying infrastructure is not manda-
tory. Architectures that abstract from such aspects (see Section 2.3.4.1) can be the better choice.
Note that in the design phase graphical models may be employed to boost productivity (see
Section 3.2).

In the Implementation Phase, the design is used to create the source code of the Web
application. To this end, an appropriate programming language is selected that supports the
requirements of the customers and the development team. In many cases, additionally to the
programming language a Web application framework is utilized that provides a range of use-
ful modules required by most Web applications. Note that some Web application frameworks
suggest a certain architectural type, e.g., frameworks based on the MVC paradigm (see Sec-
tion 2.3.5), whereas other frameworks allow for an arbitrary design. Therefore, in some cases
the choice of a certain framework should already be made in the design phase. Depending on
the usage of models and CASE tools the implementation phase may vary regarding required
time and effort. Especially, the implementation phase may be minimized if the development
team employs a model-based engineering method which is supported by a CASE tool capable
of partially or fully generating the Web application’s source code.
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Testing, which is conducted in the Test Phase of the Web application development is the
most important development activity for ensuring the proper quality of a Web application.
Important activities during this phase include testing functional requirements, usability, per-
formance, and security. However, testing Web applications is different from testing traditional
software applications because of three main reasons. First, the content-driven nature of Web
applications and the importance of content presentation requires a strong focus on these as-
pects. Second, the WWW as a platform for Web applications brings along a set of liabilities,
e.g., unpredictable bandwidth or server loads and different end devices. Finally, uncertainties
about the actual user group regarding age, experience, or cultural background of users makes
it difficult to develop appropriate test procedures.

As mentioned before, one challenge of Web application testing is to check whether the pre-
sented content satisfies certain quality requirements. This is a time-consuming activity, as the
content usually contains a fair amount of natural text, which can only be checked automati-
cally to a certain extent. Another aspect unique to Web application testing is the integrity of
the hyperlink structure. Current WWW technology does not support the automatic checking
of hyperlink integrity thus the target of a given hyperlink may be removed at any time result-
ing in a broken link. However, there exist Web application frameworks that support automatic
hyperlink checking and the integrity of the hyperlink structure may also be validated using
automatic tools using crawling technology.

Further aspects that play an important role in Web application testing is usability and presen-
tation. These two aspects are strongly related. On the one hand, a Web application should meet
certain usability criteria, e.g., possess an intuitive navigation structure. On the other hand, each
competitive Web application needs a compelling presentation, i.e., comply to certain aesthetic
requirements. Of course, testing usability and presentation is pretty difficult. This is due to the
fact that these aspects may be judged completely differently by any two individuals.

Last but not least, testing Web application performance is usually more challenging than
testing the performance of traditional software applications. The additional complexity results
from the technical diversity of the Internet and from the unpredictable usage profile of the Web
application. Web application users may connect to the Internet via slow or fast connections,
they may use end devices with varying computing power, and they may choose from a set
of different Web browsers. Therefore, the Web application must be tested for multiple target
environments with completely different performance characteristics. Finally, Web applications
are multi-user applications. They may be accessed by thousands of users concurrently. There-
fore, the Web application and the underlying infrastructure must be tested for different loads
including extremes like sudden usage peaks.

The Operation and Maintanance Phase of Web applications is characterised by con-
stant change. In contrast to traditional software applications, new versions of a Web applica-
tion are published more frequently. This fact is due to the enormous competitive pressure that
dominates the WWW. Thus, besides the mandatory activity of fixing errors, this phase is usu-
ally characterised by ongoing improvement of the Web application. The final phase of the Web
application life cycle is the Ret irement Phase, in which the application is removed from its
runtime environment and gets archived.

Note that depending on the complexity of the Web application and the applied develop-
ment process, the phases of the Web application development life cycle may occur in different
constellations. However, most of the time they do not take place sequentially. Thus, the term
life cycle, suggesting that the phases are ordered in a linear fashion, is somewhat misleading.
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Actually, different phases may be emphasized or considered less important, they may overlap
and even reoccur.

Heavy-weight software development processes, like the Waterfall Model [Roy87][Pre05] usu-
ally have a strong emphasis on requirements analysis and design. They employ a set of for-
malized documents capturing these aspects which are time-consuming to create. In contrast to
that light-weight, agile development processes like Extreme Programming (XP) [Bec04][Pre(05]
focus on the implementation phase and try to avoid the overhead of creating large formalized
documents.

As already suggested, different phases of the Web application life cycle seldom take place
sequentially and may overlap. This has several reasons. First, the rapid evolution of Internet
technology and the competitive pressure in the WWW ensure that requirements for a Web ap-
plication change constantly, i.e., also during development. Second, testing is a central activity
that is crucial for the success of the development project, thus it should overlap with other
phases, e.g., design and implementation. Finally, as a response to competitive pressure and
short development cycles, it is common practice to develop several versions of the Web appli-
cation in parallel. In this case, phases that take place concurrently are natural. For example, the
design and implementation phases of a basic version may be ongoing during the requirements
analysis phase of an extended version.

Finally, development processes that advocate iterative development, e.g., the Spiral Model
[LLO7], build on reoccurring phases of the Web application life cycle. In such cases, the Web
application is developed in several cycles, each of which includes the same set of phases, e.g.,
requirement analysis, design, implementation, and testing. Cycles are repeated until the Web
application is mature.

3.3.3 Web Application Development Process

In Section 3.3.1 differences between traditional software applications and Web applications
have been elaborated. These differences point out the need for a development process that
takes into account the specifics of Web applications. Unfortunately, there are no established
process models for Web application development. Web application development projects usu-
ally rely on a process model for traditional software development or do not employ a process
model at all. Only a small percentage of projects employ a specialized development method
that is tailored to Web application development [LF05].

The focus of this work is not to define a process model for Web application development but
to introduce a development method that can be used in conjunction with any process model.
To this end, the following sub-sections describe some characteristics of the Web application
development process. Section 3.3.3.1 introduces the term development method. Second, Sec-
tion 3.3.3.2 introduces a set of characteristics that are typical for Web application development.
These characteristics are vital for the choice of the right process model. Third, Section 3.3.3.3
discusses the suitability of heavy-weight and light-weight process models for Web application
development.

Note that Section 6.3 contains a discussion of the flashWeb method’s support for different
development process models. The discussion is based on the terms and explanations of this
section.
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3.3.3.1 Methods for Web Application Development

The term development process subsumes all activities that concern the development of an appli-
cation. The development process usually follows a process model, which is a plan that defines
which development activities are to be executed and which resources (human and non-human)
are to be used to achieve the goals of the development project. The process model usually de-
fines the order of activities and in many cases a set of milestones that are to be reached at some
point during development. Many process models define certain roles that are embodied by
one or more members of the development team and are assigned to appropriate activities. Af-
ter all, the main purpose of a process model is to organize and coordinate the development
process.

In contrast to a process model, a development method is not concerned with the organiza-
tion of the overall development process but provides detailed recommendations, instructions,
and tools that help to achieve well-defined development goals. For example, a development
method may suggest that the application should be developed using object-oriented concepts,
a certain graphical modeling notation to capture the design of the Web application, and a cer-
tain CASE-Tool that supports the creation of graphical models. Thus the main goal of a devel-
opment method is to provide techniques and tools for the execution of certain development
activities, e.g., the creation of development artifacts like source code and documentation. An
optimal development method should be flexible enough to be used in conjunction with differ-
ent process models. However, this is not always the case as sometimes it is hard to determine
the boundary between a process model and a certain development method. For example Ex-
treme Programming postulates that source code should be developed in pairs. The actual idea
that any given piece of code may only be created or altered if two developers simultaneously
work on it, is clearly part of a development method. However, the decision that this method
is the only allowed way to work on source code in the project is part of the process model
[KPRRO6].

3.3.3.2 Characteristics of Web Application Development

The WWW and particularly Web applications are getting increasingly important for the suc-
cess of any enterprise. This is especially true for companies that directly rely on the WWW as
a medium for business transactions. Therefore, the success of Web development projects is in
many cases vital for the success of an enterprise. Accordingly, the choice of an appropriate pro-
cess model that takes into account the specifics of Web application development is imperative.
This section introduces several typical factors [KPRR06][Pre05] that determine Web application
development.

Immediacy and Continuous Evolution Due to the importance of the WWW as a communi-
cation and application medium and the fierce competition in the WWW, enterprises are forced
to launch or update their Web applications as soon as possible. This necessity of immediate pres-
ence on the WWW puts development crews under a lot of pressure, as they are forced to work
in short development cycles. To make things worse the rapid development of content and technol-
ogy and the necessary adaptation to social and cultural impacts in the WWW cause a frequent
change of requirements. As a result, the development process is rather communication intensive as
customers need to often articulate their additional requirements, which results in an increased
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communication effort for the development team as team members have to synchronize their
activities frequently.

Incremental and Parallel Development The enormous time pressure and frequently chang-
ing requirements call for a process model that supports incremental and parallel development. The
incremental approach ensures that the Web application is developed in several increments.
Usually, the first version of the Web application is an architectural prototype, which contains
the main building blocks of the application but does not provide detailed functionality. The
second increment may be a first publishable version of the application and further versions
concentrate on providing the missing detailed functionality. Incremental development sup-
ports not only changing requirements but also a short time-to-market period. First, early ver-
sions of the application are usually general enough to support requirements that emerge late
in the development process. Thus, there is a good chance that the new functionality can be
included into the application at low cost. Second, vital functionality of the Web application
may be already included into early versions, thus, a first version may be published early in the
development process.

A further aspect that characterizes Web application development is the parallel execution
of activities. On the one hand, parallelism is natural when it comes to developing Web appli-
cations because of the diverse disciplines that are involved in the development process. User
interface developers may work together with graphic designers to create the user interface of
the Web application, whereas data modeling experts and programmers may work on core busi-
ness logic. On the other hand, parallelism may be introduced artificially into the development
process to get the necessary work done faster. To this end, several small groups can work on
similar problems to increase development speed. Sometimes it is even the case that different
versions of the application are developed in parallel.

Reuse and Integration Web applications usually provide a common basic set of features. For
example, many Web applications provide user authentication, employ sessions for the man-
agement of user interaction, or maintain user profiles that support user groups with different
requirements. Additionally, there may exist a set of further functionalities that are enterprise
specific and are necessary only for Web applications of a certain enterprise. Anyway, com-
mon features should be packaged into modules that can be reused in several development
projects. Furthermore, it is advantageous to utilize a Web application framework that brings
along ready-to-use modules for common functionality. Through reuse of components the de-
velopment effort may be minimized.

Another aspect that is typical for Web applications is the integration of existing data or the
integration of the enterprise’s legacy systems. In the early days of the WWW, first large Web
sites were merely read Web front-ends to some enterprise database. Over time, these Web sites
have evolved into Web applications that not only support read access to enterprise data but
also allow data modification. Although databases still play a very important role for Web ap-
plication development, data integration is just one side of the coin. The rapid development
of the WWW has brought along technologies that enable Web developers to build powerful
Web user interfaces and to integrate virtually any kind of enterprise legacy system into the
Web. During the integration process of a legacy system, a certain part of the system’s func-
tionality may be reprogrammed and integrated into the Web application, whereas other parts
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remain in the legacy system to allow the Web application to serve as a wrapper to such legacy
functionality.

Adapting to Complexity Web applications are rapidly evolving systems. As already estab-
lished, the competitive pressure in the WWW forces developers to work in short development
cycles and the problem of frequently changing requirements is answered by incremental de-
velopment. However, permanently arising additional requirements let the Web application
grow continuously. Consequently, the complexity of the system increases steadily. As a mat-
ter of fact, a Web application that starts with a minimalistic first version, may develop into a
formidable system with a large feature set. This evolving complexity affects several develop-
ment activities. First, the design of the system may require modification as the system architec-
ture must support the additional requirements. To this end, additional system modules have
to be inserted into the design or existing ones have to be modified or merged. Second, the
implementation of the Web application may need some refactoring as a result of the changed
design. Third, the deployment strategy for the Web application may need adaptation as the
altered implementation or the need to support more simultaneous users may require an im-
proved infrastructure. After all, the development process model must support the changing
complexity level of the Web application. It must allow reoccurring development activities and
must be able to manage human and non-human resources in a flexible manner.

3.3.3.3 Heavy-weigth vs. Light-weight Processes Models

Until the 1990s, traditional (heavy-weight) development process models dominated the field
of software engineering. Process models of this category, e.g., the Waterfall Model or the Ratio-
nal Unified Process (RUP) [JBR99] emphasize the importance of planning and documentation.
The development process is usually divided into several phases, which are scheduled at the
beginning of the development process. Each phase has a specific focus and a set of goals that
are to be reached before the transition into the next phase is allowed. The end of a phase is
usually marked by a milestone, which defines the goals of the phase, i.e., specifies which arti-
facts (documentation, source code) have to be brought to which state. After passing through
all phases, the product has been developed and the development process ends.

For example, the RUP defines the four phases inception, elaboration, construction, and transi-
tion. In the inception phase a vision of the product is developed and basic usage patterns of the
application are captured with a use case model. Also, a simplistic architecture of the system
is drafted in this phase. Additionally, most important risks of the process are identified and
a rough schedule for the project is created. The elaboration phase concentrates on completing
the use case model and designing and implementing the basic system architecture. At the end
of the phase, the project manager should be able to plan all necessary activities and estimate
the required resources for the project. The construction phase is the most resource-intensive
phase of the RUP. The focus is on implementing all requirements that have been captured with
use cases. Basically, the architecture that has been implemented in previous phases is filled
with modules that correspond to all customer requirements. Last but not least, the goal of the
transition phase is to test and transfer the product to the customer. To this end, a small num-
ber of beta-testers are asked to test the system. Defects that are revealed during beta-test are
scheduled for correction.

Heavy-weight development process models are primarily suitable for the development of
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large critical systems, which are developed over several years. However, they may be the
wrong choice if it comes to the development of medium or small systems. In such cases,
a strictly defined process and the numerous documentation artifacts that are required by a
heavy-weight process model may constitute an unnecessary overhead. Since the end of the
1990s, a number of agile (light-weight) process models and development methods have been
proposed that try to circumvent the drawbacks of heavy-weight approaches.

Agile approaches follow a set of principles that have been articulated by advocates of agile
software development in a manifesto [URIO8i]. The manifesto formulates some basic princi-
ples that differentiate agile process models and methods from traditional approaches. First,
it states that individuals and interactions are more important than processes and tools. Second,
working software is valued more than comprehensive documentation. Third, customer collabora-
tion is preferred over contract negotiation. Finally, responding to change is regarded superior to
following the plan. Ultimately, as these principles suggest agile approaches try to get rid of a
strict and rigid development plan and the burden of extensive documentation and concentrate
on individuals and collaboration to be able to respond to changing requirements.

Perhaps the most well-known agile software development approach is Extreme Program-
ming (XP) [BecO4]. This approach postulates the four core values communication, simplicity,
feedback, and courage. The first value, communication, emphasizes that a direct dialog between
developers and customers and also among developers is considered more important than writ-
ing and sharing documents. Simplicity is paramount if it comes to designing the system or
writing code. Simple solutions are easier to create, understand, and maintain. The third core
value, feedback, is the main activity of quality assurance in XP. Continuous customer feedback
ensures that the product corresponds to customer requirements. Last but not least, courage is
the fourth core value and postulates that developers should not be afraid of trying new ideas
and unconventional solutions.

Additionally to the core values, XP defines about a dozen of good practices that should be
applied during development. As an excerpt, three of these practices are introduced here. The
tirst example is test-driven development. In a development process that follows the XP model
tests are developed and implemented before actual code for the product is written. All tests
are evaluated each time new functionality is added to the system. The second example is
collective code ownership. This means that all developers of the project are responsible for the
complete code. Consequently, every developer may work on any part of the system at any
time. The advantage of this approach is increased development speed as any programmer of
the team may fix a given problem or extend an arbitrary part of the system. The final exam-
ple of XP practices that are mentioned here is probably the most well-known characteristic of
this approach, which is pair programming. This practice suggests that at any given time any
two programmers of the team may create or alter any piece of code of the system, but never
alone. This approach has several advantages. First, it helps to achieve the goal of collective
code ownership, as at least two programmers are familiar with a given part of the system. Sec-
ond, it facilitates and encourages communication, which is a core value of XP. Finally, it helps
to improve the performance of single developers as they may learn a great deal from their
colleagues.

Of course, XP does not merely define some core values and good practices but also defines
activities like design, testing, or coding, and suggests a workflow of activities for each iteration
of the project. For a full description of the method, the reader is referred to [Bec04] and [Pre05].
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3.4 Model-based Web Engineering Methods

Over the last decade, a variety of methods for Web application development have been pro-
posed. This section introduces a comprehensive and representative selection of these methods.
The Book Portal example from Section 2.2.3 is used to illustrate how graphical models are
employed by these methods to define a Web application. Note that these methods are not
fully-fledged Web application development process models (see Section 3.3.3.1). Usually, they
describe how different development activities are to be executed and provide different mod-
els for Web application design. However, there are a lot of aspects, e.g., project management,
resource planing, communication handling, etc., that have to be considered by a development
process model, which these methods fail to address.

3.4.1 Relationship Management Methodology (RMM)

The Relationship Management Methodology (RMM) [ISB95] [DIMGY95][IKK97][IKK98] is a
methodology for the design of hypermedia systems. It focuses on the modeling of complex
information domains and provides graphical models and guidelines for the construction of
Web information systems. As the name of this methodology suggests, RMM focuses on the
management of relationships between information entities. The initial work on the RMM was
published in 1995 [ISB95] and, at that time, Web applications as we know them today were
non-existent. Consequently, the RMM supports the development of informational systems,
i.e., Web sites that do not support content management functionality. The RMM also provides
a CASE tool [DIMGY5] that supports creating the graphical models.

The RMM suggests a set of development steps that may be carried out sequentially through-
out a Web application development project. The first step is the analysis of informational and
navigational requirements, however, this step is not explicitly supported by the approach, i.e.,
RMM does not provide a model or any guidelines for this activity. After Requirements Anal-
ysis, RMM defines three core development steps that are supported with graphical models
and detailed instructions. The E-R Design step utilizes a standard Entity-Relationship Diagram
[Che76] to model the information domain that underlies the Web site to be built. The Entity
Design step employs so-called m-slices to define complex views over information entities. Fi-
nally, the Navigation Design step uses the Relationship Management Data Model that specifies a
set of modeling primitives for defining the navigation structure of the information system.
Additional to these core modeling activities, RMM suggests three further development steps
that concentrate on the actual implementation of the system utilizing the core RMM models.
The User-Interface Screen Design step defines concrete user interface elements to implement the
views that have been created in the Entity Design step. In the Construction step, the information
system is implemented. Finally, as the name suggests, in the Testing and Evaluation step the im-
plemented Web site is tested and evaluated. Note that the RMM methodology concentrates on
the three core activities mentioned before, which are explained in detail in the following sec-
tions. Further information about the development process proposed by RMM may be found
in [IKK98].

3.4.1.1 E-R Design

The RMM employs a standard Entity-Relationship diagram to model the information domain
of the system. This graphical notation was selected because it is a well understood and doc-
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umented model that is primarily used to define the data model of relational databases, which
often serve as storage backend behind Web information systems. Figure 3.2 depicts the Entity-
Relationship diagram for the Book Portal using the graphical notation employed by RMM.
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Figure 3.2: E-R Diagram of the Book Portal for RMM

Entity-Relationship modeling is well documented in various resources [Che76][SKS06][Dat04],
thus, subsequently only specialties of the RMM are highlighted without explaining the E-R
modeling approach in general. The RMM employs only a subset of the functionality that is
provided by E-R modeling, thereby unnecessarily limiting the capabilities of the approach. It
does not allow specialization or multi-valued attributes, which are important to reduce the
complexity of the E-R model. Note, for example, that the User and the Author entity types
both possess the FirstName and LastName attributes, thus it would be appropriate to capture
these attributes with a Person entity type and use the is-a specialization relationship to de-
fine specialized person entities. Also note that RMM requires to split all many-to-many rela-
tionships into two one-to-many relationships to prepare the E-R model for further processing.
Relationships between entity types are used in navigation modeling to derive the navigation
structure of the Web site. This may be observed looking at the Write and Written_by one-to-
many relationships between the Author and Book entity types that may have been modeled
with a single many-to-many relationship.

Another fact that limits the expressive power of the RMM approach is the lack of data types
in E-R modeling. Development methods that support data types may introduce this additional
information early into the design process. Finally, E-R modeling does not support attributes
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that describe relationships. This is a disadvantage compared to some object-oriented modeling
notations, e.g., UML. For example, it would be more appropriate to specify the CommentDate
attribute as an attribute of the Commented_by relationship than as an attribute of the Review
entity type. Afterall the CommentDate attribute should denote the date on that a specific review
was associated with a specific book.

Also note that the E-R notation used by RMM is somewhat different from the standard nota-
tion defined by Chen [Che76]. The RMM method denotes one-to-many relationships between
two entity types with a dashed edge that opens up into three lines at the “many" end of the
relationship.

3.4.1.2 Entity Design

The aim of the Entity Design step is to define views over one or more entity types and to use
these views to display information on Web pages. The original RMM proposal [ISB95] intro-
duces the notion of a slice that is a grouping of selected attributes of a single entity type, i.e.,
a special view of the entity type focusing on certain aspects. For each entity type, an arbitrary
number of slices can be defined and connected by so called structural links. These slice defini-
tions are implemented as interlinked Web pages that allow the user to browse different views
of a certain entity. However, this original proposal proved to be too limited for Web site design.
One obvious problem is that Web pages that correspond to slices are rather simple and cannot
contain any access structures leading to other entities. Furthermore, this approach does not
allow to present information from different entities on the same Web page.

An extension of the original proposal introduces the notion of so called m-slices [IKK97] that
replace slices in RMM to provide a more powerful way for the definition of views over entities.
The graphical notation of m-slices is explained by means of the Book page from the Book Portal
example (see Section 2.2.3.3). Figures 3.3 and 3.4 provide m-slices that are necessary to capture
the information that is shown on the Book page.

An m-slice is a collection of attributes, access structures, and other m-slices that allow the re-
cursive building of arbitrary views over one or more entity types. The graphical notation of an
m-slice contains an entity component (rectangle with rounded corners) and a slice component.
The entity component specifies the name of a basis entity type (top left corner) and the slice
element provides the name of the m-slice (at the bottom) that is used to identify an m-slice if it
is included in another m-slice. Information that originates from the basis entity is placed into
the intersection of the entity and the slice. Example a) in Figure 3.3 defines a simple view over
the Category entity type. The Name attribute of the Category entity type is placed into the
intersection of the entity and the slice because it is an attribute of this entity type. This simple
m-slice contains the name of a Category entity. Example b) is a comparably simple definition
of an m-slice that provides the name of an Author entity composed of the FirstName and the
LastName attributes. As mentioned before an m-slice may contain other m-slices and also nav-
igation access structures. Example c) defines a view over the Review entity type that contains
the review’s title and also the name of the user that created the review. To this end, this m-slice
includes the Title attribute of the Review entity type and the User Name m-slice. Note that the
User Name m-slice is placed into the slice area that does not intersect with the area of the entity.
This denotes that this m-slice contains information originating from an entity other than the
basis entity, i.e., this m-slice shows information from a User entity and not from a Review
entity. The User Name m-slice is connected with a solid edge to the basis entity. The label of this
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Figure 3.3: Basic m-slice Examples for the Book Page

edge indicates that the User entity is accociated to the Review entity by the Provides relation-
ship. Note that the User Name m-slice itself is not shown in Figure 3.3, however, it can be built
similarly to the Author Name m-slice. Finally, example d) depicts the Book Details m-slice that,
as the name suggests, provides details about a Book entity. To this end, this m-slice contains
the Pages and ISBN attributes of a book and also an index of the book’s categories. Note that
the category index uses the Category Name m-slice that is depicted in example a) and that the
edge between the category index and the entity refers to the Belongs_to relationship between
the Book and the Category entities. Figure 3.3 shows four m-slice examples with increas-
ing complexity that define information units for the Book page of the Book Portal example.
Figure 3.4 presents an m-slice that defines the information content of the entire Book page.

The Book page (see Section 2.2.3.3) shows complex information about a Book entity includ-
ing simple attributes, different views of related entities and several navigation structures. To
this end, the Book View m-slice employs some of the previously defined m-slices from Fig-
ure 3.3. First, the Title and Abstract attributes of the Book are included as these attributes are
to be directly shown on a corresponding page. Second, the Book Details m-slice is included
to provide detailed information about the book. Third, an author index is specified using the
Author Name m-slice and the Written_by relationship between the Book and the Author enti-
ties. Finally, a review index is defined using the Review Listing m-slice and the Commented_by
relationship between the Book and the Review entities.

Note that the Entity Design step of RMM may specify for each entity an arbitrary number of
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Figure 3.4: Design of the Book View with RMM

m-slices that define information units with different complexities. Each m-slice is defined only
once and may be used in an arbitrary number of other m-slices. Any m-slice (simple or com-
plex) may be used to create a page of the Web site that is modeled with RMM. Note however
that m-slices merely define what information is to be shown and not how this information is
to be presented.

3.4.1.3 Navigation Design

The aim of the Navigation Design step of RMM is to define the Web site’s navigation structure.
Navigation design with RMM strongly relies on the content model created in the E-R Design
step of the development process. Navigation paths may be only created corresponding to
relationships between entities or to navigate between different views of a single entity. For
example, the navigation model may define access structures between a Book and Author
entities only if the content model includes a relationship between these two entity types.

The RMM provides a set of graphical modeling primitives that may be combined to build a
navigation model. The most basic elements for navigation modeling are the Unidirectional Link
and the Bidirectional Link, which are used to specify navigation paths between different user
interface pages defined by m-slices. An unidirectional link creates a navigation step between
two pages that can be traversed only in one direction. In contrast to that, the bidirectional
link allows navigation in both directions. Of course, RMM also allows for the definition of
more powerful access structures. The Conditional Index specifies an index to a selected set of
entities of the same type. A condition may refer to a relationship between two entities, for
example, to create an index of authors on a book page. A Conditional Guided Tour defines a
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guided tour that analog to the index may restrict the set of presented entities with a condition.
Finally, a Conditional Indexed Guided Tour is an element that combines an index and a guided
tour to create an access structure that allows to navigate to selected entities and also to traverse
entities in a linear fashion. The condition may refer to a relationship just like in the case of an
index. Note that a condition may also be empty so that the corresponding navigation structures
may allow access to the complete set of entities of a certain type. The last model element for
defining navigation is the Grouping element, which allows to group an arbitrary number of the
previously introduced access structures. Figure 3.5 depicts a so called Relationship Management
Diagram that defines the navigation structure of the Book Portal example application using the

described modeling elements.
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Figure 3.5: Relationship Management Diagram of the Book Portal for RMM

The main entry point to the navigation structure of the Book Portal Web site is defined by

a Grouping (upside-down triangle), which includes a link to categories, an index of authors,
as well as a guided tour (small rectangle with an arrow) of books. Additionally, the diagram
defines a set of indexes that are derived from relationships between entities. For example,
there are the Write and Written_by relationships between the Book and Author entities that are
expressed with corresponding indexes. Note that these indexes utilize conditions that refer to
the corresponding relationships in order to restrict entities that can be visited using the indexes.
An index that does not specify a condition is, for example, the index of authors included in the

Grouping element.
Unfortunately, the limited expressive power of RMM for navigation design does not allow to
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define the complete Book Portal example. The relationship management diagram may contain
only entities just like the E-R diagram for content modeling and does not employ the notion of
a user interface page. Allowed access structures are derived from relationships between enti-
ties, thus the definition of custom access structures is not possible. There are several parts of
the Book Portal example that cannot be expressed with an relationship management diagram.
First, the definition of user interface pages that do not correspond to an entity type is not possi-
ble. Thus the Authors or the Search pages cannot be modeled. This results in an overloaded
navigation design because the developer does not have the freedom to place indexes on cus-
tom pages. Correspondingly, a possible implementation for the navigation structure depicted
in Figure 3.5 must place the author index on the front page instead of on an extra Authors
page. Second, as pages of an implementation always correspond to an entity, it is not possible
to place a guided tour on an arbitrary page. Note that the Book Portal example has a guided
tour of popular books on the front page which cannot be modeled with RMM. Third, RMM
does not provide the notion of a menu, thus, it is not possible to define a menu that appears on
multiple pages of the user interface.

3.4.1.4 Conclusions

As also recognized in [GHSLO02], the expressive power of RMM for modeling Web sites is rather
limited. It is suitable to model a simple Web site that is derived in a straight-forward manner
from an Entity-Relationship diagram. However, it does not support custom pages or custom
navigation structures. The RMM was conceived for the design of Web sites, thus of course,
it does not support the design of Web applications with content management functionality.
However, as one of the first approaches for the design of Web information systems, the RMM
has inspired many subsequent methods for Web application development.

3.4.2 Object-Oriented Hypermedia Design Method (OOHDM)

The Object-Oriented Hypermedia Design Method (OOHDM) [SR95a][SRB96][SR98] [RPSO08]
is an approach for modeling Web applications relying on object-oriented design principles.
First resources describing the OOHDM were published in the mid 1990s. The original moti-
vation for the approach was to support new requirements for Web applications emerging at
that time, including the need to support services, new navigation structures, and sophisticated
user interface elements. Since then this approach has been maintained constantly and it still
appears as one of the major methods for Web application development in recent publications
[RPSO08].

The OOHDM approach is built around a few cornerstone statements. First, it postulates that
navigation classes are views of conceptual classes. This means that the navigation model is
independent from the conceptual model and that the designer may decide which units of the
conceptual model play a role in navigation design. Second, the OOHDM utilizes appropriate
abstractions to organize the navigation space. Third, it separates the tasks of navigation design
and user interface design. Finally, the OOHDM argues that there are some design decisions,
which have to be made during the implementation of the Web application.

The OOHDM provides a set of graphical models and describes how these models may be
used for certain development activities. The main activities of OOHDM are Requirements Gath-
ering, Conceptual Design, Navigational Design, Abstract Interface Design, and Implementation.
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3.4.2.1 Requirements Gathering

This activity is a recent addition to the OOHDM [RPSO08]. Early descriptions of the approach
[SRB96][SR98] did not cover requirements analysis for Web application development. The Re-
quirements Gathering activity aims at specifying the interaction of users with the Web applica-
tion employing use cases. To this end, the OOHDM uses the so-called User Interaction Diagram
[VSDS00] that provides a graphical notation for capturing user interaction more precisely than
a UML Use Case Diagram. Figure 3.6 depicts a User Interaction Diagram for a use case in which
the user of the Book Portal searches for a book and then navigates to one of the book’s authors
or to a book review. Note that a detailed description of the graphical notation of this diagram
type may be found in [VSDS00].

Book Title

Author (Firstname, Lastname,
Biography, Books (Title))

Book (Title, Abstract,
Authors (Name),

Categories (Name),

Pages, ISBN,

Review s (Title, User))

Review (Title, Text, Score,
User (Name))

[ manage review |

Figure 3.6: User Interaction Diagram Example for OOHDM

In this use case, a user of the Book Portal tries to locate a book in the portal by the book’s
title. Thus, the first state of the interaction process is the user providing the title of the book to
the system. This user input is denoted by the rectangle in the first ellipse in the top left corner.
If the user provided the title correctly, the interaction process reaches the second state and the
system provides detailed book information. The ellipse in the middle specifies exactly, what
information about the book is provided, e.g., a title, an abstract, a list of authors, or a list of
reviews. Note that transitions between states are illustrated with directed edges between the
source state and the target state. Transition edges may have labels that specify the number
of options along a transition. In this use case, the user is required to specify the exact name
of a book, thus the system may provide a single choice for the user, i.e., to select the book.
After the system delivered information about the book, the user may proceed to look at the
authors of the book or examine some of the book’s reviews. These choices are indicated by the
last two states of this interaction process. Both states may be reached through transitions that
are labeled with [1..N] multiplicities, because in both cases there may be several options for the
user to choose from. The top right ellipse denotes the interaction state that is reached if the user
decides to view information about one of the book’s authors. In this case, the system provides
the author’s name, biography, and a list of the author’s books. The bottom right ellipse defines

70



3.4 Model-based Web Engineering Methods

a state in that the system shows information about a book review, e.g., the title, the review text,
a score, the name of the user that issued the review, and the review date. Additionally, the last
state defines the manage review operation that may be executed by the user.

Note that depending on the size of the Web application a considerable number of diagrams
may be necessary to capture the entire user interaction process. Also the number of neces-
sary diagrams depends on the number of interaction paths that are included in the diagrams.
One the one hand, the presented diagram could include additional states, e.g., states in which
information about categories or users are presented. On the other hand, the state in which
information about a book author is presented could have been left out to concentrate on books
and reviews. Furthermore, if the application is to be used by different user groups it may be
necessary to specify a set of diagrams for each user group. Ultimately, this type of diagram is
very useful to capture the requirements of a Web application because it may be used to derive
information units that are to be included into other models. For example, it is apparent that a
content model of the Web application implementing the depicted interaction process should at
least support book, author, and review objects. Furthermore, it is to assume that the navigation
model of the application will provide a book page from that the user may navigate to pages
that present author and review information.

3.4.2.2 Conceptual Design

The original graphical notation of OOHDM for conceptual design [SR98] was a UML-near
notation providing the usual modeling concepts of a class diagram, i.e., classes, attributes,
relationships between classes, etc. However, at some point in time, the OOHDM switched to
employ a UML class diagram for conceptual modeling. Figure 3.7 shows a UML class diagram
of the Book Portal application.

The UML is a well known modeling language for application design and class diagrams are
very well documented elsewhere [KHKRO5], thus there is no need for a detailed discussion
of the graphical notation. However, as a UML class diagram is more powerful compared to
an Entity-Relationship diagram, it is worth to mention a few differences using the Book Por-
tal example. First, the UML provides the concept of data types and allows the definition of
multiplicities for attributes. Observe the FirstNames attribute of the Person class that has the
String data type and the multiplicity of one-or-more. Second, the UML class diagram supports
association classes that may contain attributes describing relationships between objects. An
example is the CommentDate attribute of the Comment association class between the Review
and Publication classes. Finally, the OOHDM employs the notion of operations, which are
actions that may be executed by the Web application’s user. The OOHDM specifies operations
in UML-conform manner in the operation compartment of the class element. Observe, for ex-
ample, the manageReview() operation in the Review class. Ultimately, a UML class diagram
provides sufficient expressive power to define the content model of a Web application and
there are also other methods for Web application development that employ UML for this task
(see the UWE approach in Section 3.4.3).

3.4.2.3 Navigation Design

Navigation design is a critical step of the OOHDM for the Web application development pro-
cess. The navigation model is considered a view of the conceptual model and defines which
information units (conceptual classes) are relevant for presentation to the Web application’s
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manageReview() N
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Figure 3.7: Conceptual Model of the Book Portal for OOHDM

user and which navigation structures are appropriate to interconnect these information units.
To this end, the OOHDM employs two different diagram types for navigation design and a
SQL-like query language that may be used in conjunction with the diagrams for the exact
specification of views and access structures.

Navigation Class Diagram The first diagram that the OOHDM employs for navigation mod-
eling is the Navigation Class Diagram. It defines navigation nodes that are views over concep-
tual classes and access structures that interconnect navigation nodes. To this end, this diagram
identifies which classes of the conceptual model are relevant for navigation, which attributes of
a conceptual class are to be included for presentation and which relationships between classes
are to be converted into access structures between navigational nodes. Figure 3.8 depicts a
Navigational Class Diagram of the Book Portal application.

The graphical notation of this diagram is similar to the notation of the Conceptual Model.
However, the specified navigation edges and the index definitions prohibit the notation from
being UML-compliant. The diagram includes all conceptual classes of the Book Portal that are
relevant for navigation. For example, it contains the Book navigation class that specifies what
information is to be shown on a navigation node that presents a book object. To this end, the
class contains the Title, Abstract, Pages, and ISBN attributes. Additionally, the Book navigation
class specifies the Categories and Authors indexes as well as a Review listing. Besides indexes
and listings, the navigational model may also define simple links between objects. Observe the
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Figure 3.8: Navigational Class Diagram of the Book Portal for OOHDM

Review navigation class that provides a link to the User class. To this end, the User attribute
defines an anchor utilizing the SQL-like query language of the OOHDM. The expression “u:
User where u Provide r” identifies a User object that is related to the Review object by the
Provide relationship. Note that navigation steps are also illustrated with edges between navi-
gation classes. For example, the edge between User and Review classes indicate that thereis a
navigation step between these two nodes and that it is based on the Provide relationship. How-
ever, this information is redundant as the User class already defines a review index. Also note
that the Navigational Class Diagram supports specialization. Analog to the Conceptual Model,
the User and Author classes are specializations of the Person class. Also analogous is the
specification of the manageReview() operation in the Review class. The operation is included
into the navigation model because it is relevant for user interaction.

Navigation Context Diagram The second diagram of the OOHDM for navigation modeling
is the Navigation Context Diagram. This diagram relies on the notion of a Navigation Context,
which is the context in that a set of objects are presented to the Web application’s user. The
notion of navigation contexts are best explained by example. A simple navigation context
of the Book Portal application may be “Authors of a book”. In this context, the user is usually
presented a view of an Author object that additionally to author information also contains user
interface elements that allow navigation to the next and previous authors. Another context that
may be employed by the example application is “All Authors” which, as the name suggests,
includes the complete set of authors. In this context, it may be desirable to provide an alternate
presentation of an Author object. For example, if an author is visited in the context “Authors
of abook”, it is reasonable to include a link “Back to the Book” into the author view. In contrast
to that if an author is visited in the context “All Authors”, an appropriate link may be “Back to
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the Author Index”. Also navigating to the next or to the previous author in different navigation
contexts may generate different results. This is obvious as the number and ordering of objects
in different contexts may differ greatly.

Ultimately, a Navigation Context defines a context-sensitive presentation of objects and context-
sensitive navigational characteristics for object sets. To provide a custom object presentation,
each navigation context defines a view for the corresponding object in form of a so-called In-
Context navigation class. The notation of such a navigation class is identical to those of the Nav-
igation Class Diagram and may define attributes, access structures, and operations for an object.
The navigational characteristic of an object set is determined by a navigation context in two
ways. First, the context identifies those objects that may be visited in the context. Second, the
context defines the order in that objects may be visited. A Navigation Context Diagram includes
all navigation contexts of an application and defines additional access structures (menus, in-
dexes, etc.) that provide access to the contexts. Figure 3.9 depicts all navigation contexts of the
Book Portal example application.

Category

F Categories
~| Alphabetical

L]
by Category

|
' Categories Book » by Book
]
by Category [ - -
””””””””””” P~ by User -t

! |
! |
i Main Menu | by Author |-
! |
! |

User
;r 7777777777777 ! Author
! Authors

i | Authors

Alphabetical

Review

Figure 3.9: Navigation Context Diagram of the Book Portal for OOHDM

This diagram employs a proprietary graphical notation for capturing navigation contexts
and access structures. Menus and indexes are denoted with simple rectangles having dashed
edges. Navigation contexts (light grey background) are grouped by type (dark grey back-
ground). A small black box in the top left corner of a rectangle denoting a navigation context
indicates that the corresponding navigation context includes an index. Navigation contexts are
separated by a dashed line if it is not allowed to switch from one context to another without
leaving the current context.

The Navigation Context Diagram of the Book Portal defines a main menu with two entries that
lead to the Categories and Authors indexes, respectively. From the Categories index the user may
navigate to the Categories Alphabetical navigation context, which belongs to the Category group.
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This group also contains a by Category context because categories are nested and categories
may be browsed by categories. Note that there is no dashed line between the two navigation
contexts of the Category group. This indicates that it is possible to switch between these two
contexts at any time. The small black boxes indicate that these contexts employ indexes. A pos-
sible implementation for this navigation construct is a tree-like navigation structure that shows
categories in alphabetical order and for each category a sub-tree provides sub-categories.

Navigation edges between groups and navigation contexts in Figure 3.9 indicate possible
navigation steps for the user of the Book Portal application. For example, the navigation edge
pointing from the Book group to the by Book context of the Author group indicates that the user
may navigate from all contexts of the Book group to this context. Besides the by Book context
the Author group also contains the Authors Alphabetical context. However, these contexts are
separated with a dashed line, which indicates that the user cannot switch from one of these
contexts to the other. Of course, if the user of the Book Portal is in the by Book context, then he
looks at information about an author in context of a book. The context contains all authors of
the corresponding book and the user may navigate to the previous or next author. In this con-
text, it makes no sense to switch to the Authors Alphabetical context that includes the complete
list of authors.

3.4.2.4 Abstract Interface Design

The final design activity of the OOHDM for Web application development is the definition
of the Web application’s user interface. According to the OOHDM, the aim of this activity is
to cover three major tasks. First, it should define the appearance of user interface elements.
Second, it should specify which elements activate navigation. Finally, it should define which
elements are responsible for providing further functionality of the Web application, e.g., data
input by the user or the activation of operations. The OOHDM postulates that these aspects
must be captured with a model and must be considered in the design phase and not merely
during implementation. Furthermore, the approach requires that the user interface is defined
at an abstract level making the model independent from the actual implementation. To this
end, early publications on the OOHDM [SRB96][SR98] employed the notion of Abstract Data
Objects and Abstract Data Views. Abstract data objects are elements of the navigation model,
e.g., navigation classes, menus, or indexes. Abstract data views are actually abstract user inter-
face elements, e.g., buttons, text fields, etc. These abstract elements may be combined to create
more complex components of the user interface. For example, several text fields and a button
may be combined to create a Web form. However, the OOHDM does not define a classification
or a concrete graphical notation for abstract data views. It merely employs simple sketches to
indicate a possible layout of user interface elements. Figure 3.10 depicts the layout of the Book
page of the Book Portal application.

The figure provides a rather high-level definition of the Book interface page. It indicates that
a corresponding page of the implementation includes some of a book’s attributes, e.g., the title
or the abstract. Additionally, it defines some areas that may display information related to the
book, e.g., reviews or information about authors. Finally, it suggests some interface elements
that allow navigation to other pages of the user interface, e.g., to a page about authors or to a
page that allows to submit a review.

A current publication on OOHDM [RPSO08] introduces a taxonomy of abstract interface
widgets that may be used to create a more detailed design of the user interface. The taxonomy
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Figure 3.10: Abstract Interface Design of the Book Page for OOHDM

defines three types of widgets. First, it includes the ElementExhibitor widget, which is used to
denote an interface component that presents content to the Web application’s user. Second,
it includes the SimpleActivator widget, which specifies an interface component that reacts to
user interaction. Finally, it defines the VariableCapturer widget and a set of its specializations,
which denote interface components that capture user input. Additionaly, to these widget types
the taxonomy includes the CompositelnterfaceElement widget that allows to arbitrarily combine
the previously introduced widgets. The OOHDM argues that these abstract interface widgets
must be mapped to elements of the navigation models and to concrete components of a cho-
sen implementation framework. The approach uses the OWL [URIO4b] to achieve the latter,
however, fails to provide a solution for the former.

3.4.2.5 Implementation

The last activity of the OOHDM is the implementation of the Web application. Unfortunately,
the OOHDM is not supported by a CASE tool that is able to generate an implementation from
its graphical models. During the development of the OOHDM, several approaches have been
proposed to support the implementation phase. Early publications [SRB96][SR98] suggested
to implement the Web application using a relational database management system (RDBMS)
for data storage, and HTML and CGI scripting for constructing the user interface without pro-
viding any detailed guidelines. This was of course a great disadvantage of the method at that
time, because the implementation of a Web application utilizing the mentioned technologies
based on OOHDM models was very time consuming for several reasons. First, the OOHDM
employs an object-oriented data model which has to be mapped to the relational data model
of an RDBMS. Object-relational mapping is a time-consuming and error-prone development
activity. Second, the OOHDM employs the concept of navigation contexts for defining the
navigation structure of the Web application. Although the navigation context is an interesting
design concept, it adds another level of complexity to the implementation.

In 1999, the OOHDM-Web implementation environment [SPM99] was introduced to sup-
port the implementation phase of the OOHDM. This environment employed the Lua scripting
language and a set of templates to construct the Web application’s user interface. The sys-
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tem provided three Web interfaces. The first one allowed the developer to create the naviga-
tion schema and the interface templates according to the existing conceptual schema of the
underlying RDBMS. The developer could use the second interface to create instance data cor-
responding to the previously defined schemata. The third interface presented the actual Web
application to the end user. Unfortunately, the OOHDM-Web environment did not support the
OOHDM'’s graphical models but provided form-based Web interfaces for all modeling tasks.

In [LSO3][SSML04][NS06], the OOHDM was continuously extended to produce the Seman-
tic Hypermedia Design Method (SHDM). During its evolution, the SHDM has employed a
range of different languages and frameworks. First, the models known from the OOHDM
were expressed with the Resource Description Framework (RDF) [URIO4a] and DAML+OIL
[URIO1] and the Java programming language was utilized for implementation [LS03]. After-
wards, the approach switched to the Web Ontology Language (OWL) [URIO4b] and the Sesame
RDF Framework [URIO8k] for storing models and data [SSML04]. Finally, in [NS06] the Hy-
perDe modeling and implementation environment was introduced. This environment is based
on the Ruby on Rails Framework [THO07][URIO08j] and still employs the Sesame framework for
data storage. HyperDe also relies on a proprietary Domain Specific Language (DSL) based
on the Ruby programming language. HyperDe allows to create and modify the design mod-
els and application data using the DSL. Although the SHDM uses a set of new technologies
the focus of the approach is still the same as that of the OOHDM. The advantage of SHDM is
that it is capable of producing an implementation, however, to this end all graphical models
have to be manually recreated in a notation (e.g. the HyperDe DSL) that is appropriate for the
implementation environment.

3.4.2.6 Conclusions

The OOHDM is well suitable for the design of Web information systems as its models for
requirements analysis, conceptual modeling, and navigation design allow to capture most of
their relevant aspects. However, the approach has two major deficits. First, it does not support
the development of Web applications that provide content management functionality. Second,
the OOHDM does not provide a CAWE tool that supports the creation of graphical models
and is able to generate a functional implementation. The advantages and disadvantages of the
approach are summarized subsequently comparing it to the RMM.

The OOHDM employs a UML class diagram to create the Conceptual Design of the Web ap-
plication. Compared to the RMM, which employs an Entity-Relationship diagram for content
modeling, the OODHM’s approach is superior. However, it makes little use of the greatest
advantage of class diagrams, which is modeling behavior with operations. As a matter of fact,
the OOHDM does not deal with the detailed design of application behavior. It is typical for
an OODHM conceptual design to specify behavior on a rather abstract level. Take for example
the manageReview() operation of the Review class in Figure 3.7. Usually, the management of
a content object is more complicated than just defining a corresponding operation. It includes
control over object attributes, object relationships, and possibly over attributes of relationships.

The OOHDM provides two diagrams for modeling navigation concerns of Web applications.
The Navigation Class Diagram has roughly the same expressive power as m-slices of the RMM.
However, the OOHDM’s notation is more compact, consistent with the content model, and
more intuitive for designers. Unfortunately, both methods rely strongly on their content mod-
els for deriving nodes of the application’s navigation structure. They do not allow to define
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custom nodes that do not directly correspond to a content model class. The Navigation Con-
text Diagram in OOHDM introduces the concept of a Navigation Context, which defines how the
user may iterate over different objects sets and how each object is presented in a certain context.
This concept strongly relies on classes and relationships between classes that are defined in the
OOHDM'’s conceptual schema as these are used to derive the definition of element sets and
different access structures, e.g., menus and indexes. Unfortunately, the Navigation Context Dia-
gram does not allow to define custom navigation nodes or navigation structures either. Thus,
the OOHDM is not capable of modeling the complete navigation structure of the Book Portal
application. Note that the Search page or pages supporting the management of reviews, e.g.,
the Add Review and Manage Review pages cannot be modeled with OOHDM.

The Abstract Interface Design activity of the OOHDM defines the user interface of the Web ap-
plication at an abstract level. To this end, the method uses abstract interface elements that may
be used to compose each page of the user interface. Abstract interface elements are mapped
to navigation nodes and to concrete user interface widgets of an implementation framework.
This activity is named User-Interface Screen Design in the RMM. Although the RMM identifies
this activity as a unique step of the development process, in contrast to the OOHDM, it does
not provide any models or guidelines for executing it. Unfortunately, the OOHDM gets im-
precise when it comes to user interface design. Early publications on the OODHM introduce a
simplistic graphical notation that sketches the layouting of each user interface page. However,
this graphical notation does not provide any mappings to navigation nodes. The SHDM, which
is an extension of the OOHDM, employs the RDF and the OWL to specify textual mappings
instead of a graphical notation. On the one hand, the OODHM way to model the user inter-
face is too imprecise to be useful for a direct implementation. On the other hand, the SHDM
abandons graphical modeling which is a great disadvantage of the method.

Finally, the OOHDM'’s and the SHDM's support for automatically creating the implementa-
tion is insufficient. Neither the OOHDM nor the SHDM provides a CAWE tool that is capable
of creating graphical models and generating a fully functional implementation. Both imple-
mentation environments that support these methods dispense with graphical modeling. The
OOHDM-Web environment provides different Web interfaces, whereas the HyperDe environ-
ment employs a domain-specific language to programmatically create models and instance
data.

3.4.3 UWE

The UML-based Web Engineering (UWE) method for Web application development was intro-
duced towards the end of the 1990s [BKM99][HKO00]. It is based on previous Web engineering
methods, e.g., the RMM and the OOHDM, but in contrast to them, it employs the UML for
all design activities of the Web application development process. Besides standard UML dia-
grams, e.g., use case diagram or class diagram, the UWE method extends the graphical nota-
tion of the UML with a UML profile. Originally, the method supported three design activities
[BKM99]. First, modeling the application domain with a Content Model. Second, modeling nav-
igational characteristics of the Web application with a Navigation Space Model and a Navigation
Structure Model. Finally, the modeling of the user interface with a Presentation Model. Over
time, the UWE process has been extended to support requirements analysis with use case
diagrams and activity diagrams [HKO0][KK02a] with additional focus on business processes
[KKCMO3][KKZHO04]. Subsequent sections describe each design activity of the UWE.
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3.4.3.1 Requrirement Analysis

The UWE method started to support the Requirement Analysis phase of the Web application
development process shortly after the method had appeared [HK00]. The method suggests to
specify requirements for the Web application with a standard UML Use Case Diagram [HKO00]
[KKO02a]. This diagram captures a piece of the Web application’s behavior by connecting users
to certain functionalities of the application. To this end, a use case diagram employs two core
concepts. First, an actor is a user, who interacts with the system in some way;, e.g., a customer or
an administrator. Of course, the notion of an actor does not identify a single user instance but
rather a group of users. Second, a use case specifies certain functionality of the system that is
linked to one or more actors. Use cases are connected to actors with simple associations, which
denote that the functionality captured by the use case is to be provided for the corresponding
actor. It is also possible to define relationships between use cases. The «include» relationship
between two use cases denotes that one use case includes the other, i.e., the included use case
is always executed along with the including use case. Additionally, the «extend» relationship
between use cases denotes that a use case extends another one, i.e, the extending use case may
be executed with the extended use case. Finally, it is allowed to define specialization/general-
ization relationships between use cases or actors, respectively. A specialized actor inherits all
use cases that are associated to its super-actor.

In [KKZH04], a custom «navigation» keyword is introduced to mark use cases that include
navigation activity by an actor. As navigation design is a key aspect in Web application de-
velopment, this extension to the use case diagram is advantageous. It allows to denote system
functionality with navigational characteristics early in the development process. Use cases
that are not marked with the «navigation» keyword define business logic that is not related to
navigation.

The UML defines several possible graphical notations for a use case diagram. A commonly
used notation denotes actors with a stick figure icon and use cases with an ellipse. Associations
between actors and use cases are denoted with a solid line and relationships between use cases
with dashed arrows. Names of use cases are written inside the ellipsis and all other names
of keywords are positioned above or below the corresponding graphical element. Figure 3.11
depicts a partial use case diagram of the Book Portal application.

Figure 3.11 shows the User actor that is associated with the two main use cases Find Book
and View Book. Both use cases are navigation relevant, because the user of the Web application
is supposed to carry out one or more navigation steps while using the corresponding function-
ality. The Book Portal allows the user to find books through different channels. He may use
keyword search, browse through categories or through the list of authors. Corresponding use
cases are defined as extensions of the Find Book use case. The View Book use case includes
the View Reviews use case because reviews of a book are to be presented together with book
information. Both use cases are navigation relevant, which is indicated with the «navigation»
keyword. Finally, the Logged In User is a specialization of the User actor and is associated
with two additional use cases. The Add Reviewand Manage Review use cases deal with the
management of reviews. However, this functionality is restricted to logged-in users only, thus
the corresponding use cases are not associated with the User actor.

Of course, use case diagrams are not appropriate to create an in-depth requirements spec-
ification of a Web application. Although the designer is free to define use cases at different
abstraction levels, the expressive power of a use case diagram is weak, if it comes to specify-
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Figure 3.11: Partial Use Case Diagram of the Book Portal for UWE
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ing relationships between use cases and in general between user actions. For example, certain
activities are to be executed in a specific order or they may depend on various conditions. For
example, it is obvious that a customer of an online store may only proceed to checkout if he
has already placed some products into the shopping cart. The necessity to further refine the
requirements specification was also recognized by the creators of UWE. In [KZE06], the UWE
method is extended to capture requirements in a more detailed manner utilizing UML Activ-
ity Diagrams. Furthermore, the UWE UML profile defines three action stereotypes that may be
used in activity diagrams to denote Web-application-specific actions. First, the «browse» ac-
tion indicates that the Web application’s user is required to browse, i.e., to navigate between
different pages of the user interface. This action is marked with an arrow icon. Second, the
«search» action denotes that the user is provided a search form, with which he may execute
a search. This action is illustrated with a question mark icon. Finally, the «user transaction»
action specifies a transaction that changes the Web application’s content and is indicated with
a bidirectional arrow icon. The UWE method proposes to create one or more activity diagrams
for each use case of a requirements specification. In Figure 3.11, the partial use case diagram of
the Book Portal application included the Add Review use case. Figure 3.12 depicts an activity
diagram for this use case.

The Book Portal application allows registered users to create book reviews that may be read
by other users of the portal. To this end, a logged-in user may navigate from a book page to
a Web form that allows him to create a review. This process is depicted in Figure 3.12 with an
activity diagram. The process allows the user to create zero or more reviews for a book and
includes four activities. First, the user may view information about a book, for example, on a
book page. Second, he may activate a button Add Review on the book page to be forwarded to
an appropriate Web form. Third, the user may provide the review data. Finally, if the input
data was correct, the review is created and the user may look at the book page containing the
new review or abandon the process. Note that the first two actions include browsing activity
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Figure 3.12: Activity Diagram of the Add Review Activity for UWE

by the user, thus they are marked with an arrow icon. The last is a transactional action that
creates a new data object, thus this action is marked with a bidirectional arrow.

3.4.3.2 Content Modeling

The UWE method employs the UML for all design activities. This is also the case for modeling
the Web application’s content. For this task, the UWE method utilizes a standard UML class
diagram. In contrast to the OOHDM, which adopted full UML compliance at some point in
the method’s maturing process, the UWE method has applied a UML class diagram for content
modeling from the beginning. It utilizes the options of a UML class diagram fully. Figure 3.13
depicts the Content Model of the Book Portal application for the UWE method.

The syntax of a UML class diagram is well known and is described in detail elsewhere
[KHKRO5]. Also, Figure 3.13 showing the content model for the UWE approach is very similar
to the corresponding model of the OOHDM, which is shown in Figure 3.7. Accordingly, the
class diagram is described in Section 3.4.2.2. However, there are two subtle differences between
the two methods. First, the UWE method utilizes the expressive power of the class diagram to a
somewhat larger extent. For example, it defines role names for associations. Correspondingly,
the Provide association between the User and Review classes is also characterized with the
role names ReviewProvider at the user end and Reviewltem at the review end of the association.
Second, the UWE method defines operations at a lower level of abstraction than the OOHDM.
For example, it is characteristic for the UWE approach to define operations like addReview() or
deleteReview() for the Review class rather than a more general operation manageReview() (see
Figure 3.7), which is to cover all aspects that are related to the management of a content ob-
ject. Ultimately, the UML class diagram is well suited to capture the content model of a Web
application.
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Figure 3.13: Content Model of the Book Portal for UWE

3.4.3.3 Navigation Modeling

The UWE approach provides two models that consider the navigational characteristics of a
Web application [HKO00][KKO02a]. The Navigation Space Model defines which objects are relevant
for navigation and may be visited by the Web application’s user. The Navigation Structure Model
specifies how navigation objects may be reached by the user and connects them with different
access structures, e.g., menus and indexes. The first model is directly derived from the Content
Model of the UWE method, whereas the second model, which defines the navigation structure
of the Web application, utilizes components of the first model, i.e., depends on objects of the
navigation space. Both models employ a set of stereotypes that extend the standard UML
notation.

Navigation Space Model The Navigation Space Model defines objects that are relevant for
navigation and connects them directly with navigation links. To this end, the model offers two
concepts, which are modeled with UML stereotypes. First, the «navigation class» stereotype de-
fines an object that is a node in the navigation space of the Web application. Navigation classes
correspond directly to classes of the Content Model. Each content model class that is relevant for
navigation is included in the navigation space and becomes a navigation class that contains all
attributes of the corresponding content model class. Additionally, content model classes that
are left out of the navigation space may be included as derived attributes of a navigation class.
In such a case, an OCL [War03] constraint defines which content model class is to be included
as a derived attribute. Second, the «direct navigability» stereotype defines associations between
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navigation classes and indicates that there is a direct navigation link between corresponding
navigation objects. Note that these associations are derived directly from associations between
content model classes but they define navigation paths, thus they possess different semantics.
According to the navigational requirements of the Web application, these associations may be
unidirectional or bidirectional. Figure 3.14 depicts the Navigation Space Model of the Book Portal
application.

« navigation class » | « navigation class » |:|
User Author
FirstNames: String [1..*] FirstNames: String [1..*]
LastName : String LastName : String
Email: String Biography: String
Provider A 1 Authors A 1.
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Score: Intg er < . ] Pages: Integer < > <
- med Reviews Book | |SBN: String " 1.
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Figure 3.14: Navigation Space Model of the Book Portal for UWE

The syntax of this model is very similar to a standard UML class diagram. However, there
are two minor differences, which correspond to the two basic concepts of the UWE approach
for defining the navigation space of the Web application. The «navigation class» stereotype is
depicted as a stereotyped class and is additionally marked with a small box at the right-hand
side of the class header. This can be observed at all five navigation classes in Figure 3.14. Note
that this navigation space diagram example does not employ specialization/generalization,
thus all classes additionally contain attributes of their super-classes. Also note that this nav-
igation space model contains all classes of the corresponding content model, thus there are
no classes to be represented as derived attributes. However, the designer could decide not to
include the Authors class into the navigation space and to represent this object as a derived
attribute Authors of the Book navigation class.

The «direct navigability» stereotype is a stereotyped association and is shown as a directed
arrow between classes. An example is the bidirectional association between the Author and
Book classes. The role name at the end of an association indicates which role a specific navi-
gation class plays in regard to the other class. The multiplicities indicate how many objects of
a certain type are related to another object at the opposite side of the association. For example,
the Authors label and the 1..* multiplicity of the association between the Book and Author
classes specify that there may be one or more navigation links from a book to authors in the
navigation space and that the role of the linked objects is to be the Authors, which is of course
trivial in this case.
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Navigation Structure Model The Navigation Structure Model of the UWE method captures
the navigation structure of the Web application. It extends navigation nodes and direct navi-
gation associations between nodes that have been defined in the Navigation Space Model. The
aim of the model is to specify how navigation objects may be visited by the Web application’s
user. To this end, the model enhances the navigation space with common access structures,
e.g., indexes, menus, and guided tours.

The initial version of this model introduced in [BKM99] was strongly influenced by the
OOHDM'’s Navigation Context Diagram. It is based on the notion of navigation contexts, which
were introduced by the OOHDM (see Section 3.4.2.3). This version of the model utilizes three
stereotypes to define different navigation contexts. First, a simple «navigation context» stereo-
type defines the complete set of navigation objects of a certain type. Second, the «grouped
context» stereotype specifies a partitioning of navigation objects by a certain grouping condi-
tion. An example for a grouped context is the partitioning of books by authors. The books of an
author build a single partition and all partitions (each belonging to a single author) compose
the grouped context. Finally, the «filtered context» stereotype defines a set of navigation objects
that have been selected from all objects of a certain type depending on a particular condition.
An example of a filtered context is a list of books having more than 1000 pages. All contexts
belonging to a certain class are gathered into a package. Additionally, access structures like
menus and indexes are used to connect navigation contexts. However, this approach being a
UML copy of the OOHDM'’s Navigation Context Diagram brings along all disadvantages of the
model. The most evident problem is that the concentration on navigation contexts and their
grouping into packages produces a diagram that does not depict well the navigation struc-
ture of a Web application. Perhaps, this was the reason for the UWE method to abandon this
approach.

In [HKOO], a new Navigation Structure Model was introduced that has been used since then
for modeling the navigation structure of Web applications with the UWE method. This model
is similar to the one that was proposed by the RMM for navigation design (see Section 3.4.1.3),
however, it employs a UML notation and a set of stereotypes for defining common access
structures. The «menu» stereotype specifies a menu which corresponds to the commonly used
menu access structure. A menu item may be connected to all other elements of the model. The
«index» stereotype specifies an index to a set of navigation objects of a certain type that have
been selected by some criteria. An index is always connected to a navigation class. The «guided
tour» stereotype corresponds to the commonly used concept of guiding the user through a set
of navigation objects that similarly to an index have been selected by certain criteria. Finally,
the «query» stereotype specifies a query by the Web application’s user, i.e., the user may specify
some input data that is used to produce a certain result, which may be, for example, an index
of navigation objects. Figure 3.15 depicts the Navigation Structure Model of the Book Portal
application.

The entry point to the Book Portal application is modeled with the Main Menu. The menu
entries lead to the main areas of the application. The Categories and Authors entries point to
indexes of categories and authors, respectively. An «index» stereotype is depicted with a rect-
angle with three horizontal lines inside. Note that for each index an ordering is specified. For
example, authors are listed by their names and categories by their names and by their parent
categories. The multiplicity at the end of the navigation association pointing to an index is
always 1 because there is always a single index. In contrast to that, the multiplicity at the end
of the association between an index and a navigation class is usually 1..*, because the index has
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Figure 3.15: Navigation Structure Model of the Book Portal for UWE

usually one or more entries, thus it points to one or more navigation objects.

As already mentioned, the Navigation Structure Model extends the Navigation Space Model.
Navigation classes that are defined in the first model are also in the second one. However,
for the sake of simplicity a simplified notation is employed. A «navigation class» stereotype is
depicted without the list of its attributes. Note that all navigation paths defined in the navi-
gation space are present in the navigation structure model. However, they are extended with
appropriate access structures. Note, for example, that the simple navigation paths between the
Book and Author navigation classes are now modeled with indexes.

The Search entry of the main menu points to a query. A «query» stereotype is shown as a
box with a question mark inside. The result of the query is an index that shows books ordered
by their title and authors ordered by their name. Note that the «query» stereotype is a model
element that is not provided by the RMM or the OOHDM, thus the UWE is the first in the list
of introduced Web engineering methods that is capable of modeling the search feature of the
Book Portal application.

The Books of the Day entry of the main menu is not supposed to be a menu entry at all. The
Book Portal application shows a guided tour of popular books on the portal page. A «guided
tour» stereotype is depicted with a rectangle and an arrow inside it. As the UWE approach
does not support the modeling of user interface pages, the guided tour has to be modeled
standalone and must be referred to from the main menu.
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3.4.3.4 Business Process Modeling

In [KKCMO3][KKZH04], the UWE method is extended to consider business processes. How-
ever, the approach presented is not really a mature solution to support business process model-
ing, i.e., it does not allow to create complex workflows and it does not employ a powerful work-
flow language. It is rather an acknowledgement that Web applications are not merely about
presenting content through simple navigation structures. Consequently, the UWE method pro-
vides a few stereotypes that define application-logic-relevant components, which may be in-
serted into the navigation model of the Web application and employs UML activity diagrams
with a stronger focus on application behavior.

The first extension of the method for modeling application logic are two stereotypes, which
may be used to enhance the Navigation Stucture Model of the Web application. The «process node»
stereotype may be used to define new nodes in the navigation structure that specify application
logic components and do not correspond to any content model classes. Note that previously
the UWE method allowed to create only navigation nodes that were directly derived from a
content model class. An example regarding the Book Portal application may be the Create
Review process node, which may provide functionality for creating a book review. Additionally
to process nodes, the «process link» association stereotype may be used to connect them to
common navigation nodes. Consequently, a process link may be used to connect the Create
Review process node to the Book navigation node.

The second approach of the UWE method to support business processes, is utilizing UML
activity diagrams that have a stronger focus on application logic. However, the UWE method
already utilizes this diagram type in the requirements analysis phase, thus this extension is
more of a paradigm shift than a new modeling approach. Note that the example activity di-
agram in Figure 3.12 has already a focus on application logic. It defines a process to create
a piece of content, i.e., a book review, which may be very well a part of the business process
implemented by the Web application.

3.4.3.5 Presentation Modeling

The last design activity of the UWE method is presentation modeling. To this end, the method
provides a Presentation Model, which defines how the navigation structure of the Web applica-
tion is exposed to the user. The model provides for each navigation node and access structure
of the navigation model an appropriate presentation.

The aim of the presentation model is to define the structural organization of user interface
elements rather than their visual appearance. To achieve that, the UWE method provides a set
of atomic user interface elements that may be combined to build more complex composite user
interface structures. A basic building block of the model is the «frameset» stereotype. It may
be used to define arbitrarily nested composition structures as a frameset may contain other
framesets and also any other element of the model. Another basic element is the «presentation
class» stereotype. It is used to define the presentation of an entire navigation node and may
also contain subelements, however no framesets or other presentation classes. Additionally
to a frameset and a presentation class, the model provides some further elements that specify
the presentation of content, access structures, and interactive user interface components. For
example, self-explanatory stereotypes that represent content are the «text», «<image», or «video»
stereotypes. The «collection» stereotype may be used to define a list of elements of the same
type, e.g., a list of images. Access structures may be represented with the «anchor» or «anchored
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collection» stereotypes. The former is to be used if a single link to a certain navigation node
is required. The latter corresponds to an index and defines links to a set of navigation objects
of the same type. Finally, the «form» and «button» stereotypes may be used to include further
interactive components into the user interface. A form allows the user to provide input data
and a button represents an interface component, which may be used to initiate a navigation
step, to execute an operation or both. Figure 3.16 depicts the presentation specification of the
Book navigation class with the Book presentation class.

« presentation class »
Book

Categories ™™™ | | Authors ™™™ | | Search ™=

Title M
Authors =
Categories =
Abstract WA
Pages M
ISBN A
Reviews E=

Add Review @

Figure 3.16: The Book Presentation Class for UWE

The presentation of a Book object is rather self-explanatory. The layout is defined with a
Book «presentation class» stereotype. The presentation class includes a set of user interface ele-
ments that specify information about a book and access structures to other navigation nodes of
the Web application. At the top of the layout, the main menu includes the Categories, Authors,
and Search entries. Detail information about a book, e.g., the title, the abstract, or the num-
ber of pages, is specified with «text» stereotypes. Indexes of other objects, e.g., book authors,
categories, and book reviews, are indicated with «anchored collection» stereotypes. Finally, the
Add Review «button» stereotype specifies a button that leads to a section of the Web application,
which provides the functionality to create a book review.

3.4.3.6 Tool Support

During the development of the UWE method, there have been several efforts to provide tool
support for the method. The aim of the intended support was twofold. First, the tool had to
provide features for creating and storing the graphical models. Second, it was supposed to
support the generation of an implementation. Whereas the first task could be tackled with the
ArgoUWE CASE tool [KKMZ03], the second one has been never achieved.

The first approach to generate an implementation from UWE models was the UWEXML
framework [KKO02b]. It utilized a code generator tool that received different UWE models,
which were rendered as XML files. From these XML definitions, the tool produced a partial
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implementation for the Cocoon XML publishing framework [URIO8a] that was embedded into
a J2EE setting. While the tool was able to produce a content storage, it was not suited to gen-
erate a fully functional user interface of the Web application. Besides the inability to produce
a fully functional implementation, the approach had the disadvantage that the models had
to be created in XML. Thus the graphical notations proposed by the UWE method had to be
transformed into an XML representation manually.

To avoid this problem, the open-source ArgoUML modeling tool has been extended to sup-
port the graphical models of the UWE method. The extended tool is ArgopUWE [KKMZ03]
and facilitates the creation of all diagrams of the UWE method. To this end, the ArgoUWE
uses standard diagrams of ArgoUML, e.g., use case diagram, class diagram, etc., and extends
them with UWE-specific stereotypes. An interesting feature of ArgoUWE is its capability to
automatically derive navigation models from the content model. This is possible because there
is a strong relationship between these models. Unfortunately, ArgoUWE is not capable of
generating an implementation of the Web application, thus its main purpose is to facilitate
requirements analysis and design through graphical modeling.

3.4.3.7 Conclusions

The UWE method is very similar to Web engineering approaches that had existed long before
the method was proposed. In particular, it integrates several characteristics of the RMM and
the OOHDM, which have been introduced in sections 3.4.1 and 3.4.2, respectively. However,
the UWE method also brings along some new concepts and techniques for Web application
modeling. Its main advantage compared to previous approaches for Web application devel-
opment is that it relies on the UML as a graphical notation for all design activities. The UML
provides a standardized and therefore familiar way for developers to model Web applications.
One major deficit of the method (and of UML in general) is that different models capture differ-
ent aspects of the Web application at different abstraction levels without specifying sufficient
semantic connections to other models. Subsequently, advantages and disadvantages of the
UWE method are discussed in detail comparing the method to the OOHDM.

Like the OOHDM, the UWE method did not support the Requirement Analysis phase of the
Web application development process from the beginning. Both methods introduced this ac-
tivity at some point during the methods” evolution process. The UWE method proposes the
utilization of UML use case diagrams and UML activity diagrams for this purpose. A use case
diagram specifies actors and usage scenarios that define in what ways a user may interact with
the Web application. Unfortunately, use case diagrams are usually far too abstract to be useful
for capturing detailed requirements or to be used to derive characteristics of the Web applica-
tion regarding its content or navigation structure. An activity diagram specifies a set of actions
that may characterize the behavior of the Web application more precisely than a use case dia-
gram. As a matter of fact, the UWE method proposes to create one or more activity diagrams
for each use case. However, the suitability of activity diagrams for directly deriving design
models from them depends strongly on the developers ability to find an appropriate abstrac-
tion level for actions. For example, in an e-commerce setting, the action Buy Product may be
too abstract, whereas the action Look at Product Name may be too specific. In contrast to the
UWE method’s approach, the OOHDM'’s User Interaction Diagram (see Section 3.4.2.1) seems
to be more appropriate to capture a first draft of the requirements specification. It defines a
set of user interaction states and, for each state, it specifies what user input is expected and
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what information to the user is provided. This model is more suitable to indicate content and
navigational requirements of the Web application.

Like the OOHDM, the Content Model of the UWE method is defined with a standard UML
class diagram. However, it is to mention that the OOHDM switched to UML-support for con-
tent modeling after the UWE method was proposed, thus this is a feature that has been bor-
rowed by the OOHDM from the UWE method and not vice versa. Ultimately, a UML class
diagram is well suitable to specify the informational need of the application domain. The same
or similar notations are employed by many Web application development methods. However,
the UWE method seems to better exploit the capabilities of the class diagram. It uses more
features, e.g., role names for associations, and it defines more concrete operations.

Navigation design is supported by the UWE method with two models. The Navigation Space
Model is very similar to the OOHDM's Navigation Class Diagram, however, it provides less fea-
tures. The UWE method keeps this model very simple. Content model classes that are relevant
for navigation are included into the navigation model and become navigation classes, which
represent nodes of the navigation space. Associations between content model classes are used
to derive direct navigation paths between navigation nodes. In contrast to the OOHDM, the
UWE method does not use navigation classes to define a filtering of attributes that are relevant
enough to be presented on the user interface. Additionally, it is not clear if this model supports
specialization/generalization. Unfortunately, all publications about the UWE method provide
very simplistic examples without inheritance hierarchies, if it comes to navigation modeling.

The second model of the UWE method for navigation design is the Navigation Structure
Model. This model is based on the navigation space model and extends it with a number of
common access structures, e.g, menus, indexes and guided tours. Note that this model is very
similar to the RMM'’s Relationship Management Diagram (see Section3.4.1.3). Also note that sim-
ilarly to the RMM and the OOHDM, the UWE method only allows to define navigation nodes
that directly correspond to content model classes. The specification of a custom navigation
node that represents arbitrary information or correspond to a custom set of content classes is
not possible. For example, none of these methods are capable of modeling the start page of
the Book Portal application. This navigation node does not correspond directly to any content
model class, however, it is an important member of the navigation space.

The UWE method employs the Presentation Model to define the presentation of navigation
nodes and access structures that have been specified during navigation design. This model
provides a set of presentation elements that may be used to construct the parts of the user
interface piece by piece. Again, this model is very similar to the OOHDM’s Abstract Interface
Design. However, similarly to navigation design, it does not allow for the definition of custom
components, e.g, user interface pages with arbitrary elements.

3.4.4 WebML

Like all other Web engineering methods that were introduced towards the end of the 1990s,
the initial focus of the Web Modeling Language (WebML) [CFB00] was on modeling data-
intensive Web sites. Since then the method has been extended to support data-entry operations
[BCFMO00], business processes [Bra06] [BCFMO06], and semantic Web applications [Bra07b].
WebML and the WebRatio [URIO8b] commercial toolkit are being constantly developed by a
considerable number or researchers and developers. Accordingly, the WebML is the most com-
prehensive approach for Web application development originating from the Web engineering
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research field.

The WebML has been inspired by previous Web engineering methods, especially the RMM
and the OOHDM. Similarly to these methods, the WebML provides different models to cap-
ture different aspects of the Web application. The Data Model defines the Web application’s
content structure with an Entity-Relationship diagram. The Hypertext Model subsumes two
further models and expresses them in a single diagram, which utilizes the proprietary WebML
notation. First, the Composition Model specities pages and different presentation units that yield
the basic structure of the Web application’s user interface. Second, the Navigation Model defines
different access structures and connects pages and presentation units with each other, thereby
specifying the Web application’s navigation structure. Finally, the Presentation Model defines
the actual visual appearance of user interface elements.

Note that in contrast to other Web engineering methods, the WebML pursues a different
paradigm for combining the content model, the navigation model, and the Web application’s
user interface model. Previously introduced methods employed the notion of a navigation
space, in which navigation nodes were defined as more or less flexible views over content ob-
jects and navigation paths corresponded strictly to relationships between these objects. Addi-
tionally, the aim of presentation modeling was to specify a visual representation of navigation
nodes without the possibility to introduce any custom user interface elements. In contrast to
that, the WebML does not restrict user interface modeling to the concept of navigation nodes.
It utilizes the concept of user interface pages that are initially independent from content or nav-
igation concerns and may be constructed piece by piece through combining a set of basic user
interface elements, which may refer to arbitrary content objects or specify arbitrary navigation
structures.

As stated in [RPSO08], the WebML method favors an iterative development process. For
each iteration, the method proposes the following set of phases. First, the aim of the Require-
ments Analysis phase is to gather informational and functional requirements for the desired
Web application. However, the method does not provide any models or guidelines for this
activity. Second, the Conceptual Modeling phase includes the creation of the Data Model and the
Hypertext Model. The data model is derived from the informational requirements and defined
with an Entity-Relationship diagram. Hypertext modeling includes the definition of user in-
terface pages, main presentation units, and basic access structures, which may be extended
and refined in subsequent iterations. Third, in the Implementation phase the actual Web appli-
cation is constructed using an appropriate technological infrastructure. Finally, in the Testing
and Evaluation phase the quality of the application is evaluated. Depending on the result of this
phase, the development process enters a new development cycle, is deployed at the customer’s
infrastructure, or both.

3.4.4.1 Data Model

Similarly to the RMM, the WebML employs an Entitiy-Relationship diagram to capture the
Data Model of the Web application. However, it utilizes a larger subset of E-R features than
the RMM and it provides a custom graphical notation. The model specifies entity types and
attributes, which are characterized by data types. This is a WebML-specific extension, because
data types are usually not of concern in E-R modeling. Besides standard attributes, an entity
type may also specify derived attributes, which represent computed values. The WebML also
marks for each entity a set of attributes that identify an entity unambiguously, i.e., a key. Enti-
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ties may be connected with relationships, which are using a consistent naming scheme for role
names. For example, the relationship between the Book and Author entity types is character-
ized by the role names BookToAuthor and AuthorToBook corresponding to both directions of the
relationship. This naming scheme is used in other models to identify relationships between
entity sets. Additionally, multiplicities may be used to specify how many partners a certain
entity may have considering a certain relationship. Note that in contrast to the RMM, the
WebML also allows specialization/generalization hierarchies. A small disadvantage of the E-
R modeling notation that is used by the WebML is its inability to specify describing attributes
for relationships. The WebML suggests to create an extra entity that represents the relation-
ship and contains the corresponding attributes. Figure 3.17 depicts the data model of the Book
Portal application.
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Figure 3.17: Data Model of the Book Portal for WebML

The WebML uses a custom graphical notation to define the E-R model of a Web application.
It is different from the original E-R notation [Che76], especially regarding how it depicts at-
tributes. It places them inside the box that represents an entity type making the notation very
similar to the syntax of a UML class diagram. Besides some minor differences, this model is
very similar to the content model of other Web application development methods, e.g., the
OOHDM (see Figure 3.7) and the UWE method (see Figure 3.13). The most obvious difference
is that the CommentDate attribute that actually belongs to the Comment relationship is modeled
as an attribute of the Review entity. The WebML suggests to model attributes that characterize
a relationship with an extra entity between the original entities of the relationship. However,
this is a bad solution because it results in very complicated content management patterns, if
it comes to creating corresponding relationship instances. The UML provides the concept of
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an association class which is in contrast to the WebML’s E-R notation well suitable to define
relationship attributes. Note that, although the WebML uses the notion of attribute data types,
these are not represented in the graphical notation of the data model.

3.4.4.2 Hypertext Model

The aim of WebML's Hypertext Model is to define the Web application’s user interface, which
usually heavily relies on hypertext and hypermedia. To this end, the method provides a model
and a proprietary graphical notation, which may be used to specify two different aspects of
the user interface. First, how user interface pages are composed of elementary content units.
This is called the Composition Model. Second, how content units and pages are interconnected
with navigation links and more complex access structures. This is called the Navigation Model.
Although the WebML states that both aspects are covered by the hypertext model, it does not
try to separate these aspects explicitly.

The WebML method applies four concepts to structure the hypertext model. A Site View is
a complete hypertext that represents a certain aspect of the Web application or corresponds to
certain requirements. For example, a designer may identify different user groups and define
for each group a site view, which is in that case a customized user interface that considers all
requirements of that user group. Site views may be split up into disjoint areas using the Area
concept. An area groups pages, which build a coherent unit of the user interface, e.g., represent
information about the same topic or provide a certain functionality of the Web application.
Page components represent nodes of the user inteface and may contain an arbitrary number of
content units. Finally, a Content Unit shows information about one or more entities of the data
model.

Content Units The WebML provides five elementary content units. The Data Unit represents
information about an entity and allows the selection of those attributes that are relevant for
presentation. The Multidata Unit represents information about multiple entities. It also allows
to select relevant attributes. The Index Unit presents descriptive keys of a set of entities and al-
lows the selection of one or more entities. Note that this definition of an index is different from
the definitions used by other Web engineering methods, because usually only the selection of
a single entity is allowed. Besides the basic index, that allows the selection of a single entity
out of a linear list of entities, the WebML provides two further indexes. First, the Hierarchical
Index represents a nested, tree-like index structure with an arbitrary number of nesting levels.
Second, the Multichoice Index allows the selection of several entities from a linear entity list. The
Scroller Unit represents navigation elements that allow to browse through a set of entities. For
this unit, a so-called block factor may be defined that specifies how many entities are presented
to the user at the same time. Note that a scroller unit alone does not represent any content.
It has to be connected to some other element, e.g., a data unit or a multidata unit that shows
information about the entities, which were selected by the scroller unit. Finally, the Entry Unit
represents a form that may be used by the Web application’s user to provide input data.
Besides the entry unit, all other content units have to be characterized by a source and a
selector. The source identifies the type of entities, which should be presented by the corre-
sponding content unit. The selector provides a condition that selects a subset of entities of the
source entity type. A selector may use basic arithmetic and Boolean operators to combine en-
tity attributes, references to relationships, constants, and parameters. A selector that includes
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parameters is called a parametric selector. A parameter to the selector of a content unit is usually
provided by a navigation link. For example, a multidata unit may show books of the certain
author. To this end, the multidata unit may specify the “Book” type as the source and the para-
metric selector “AuthorToBook(OID)”. The OID of the author may originate from a navigation
link that, for example, allows navigating from an author entity to the list of the author’s books.
The textual definition of the source and the selector are provided below the icon of a content
unit in the graphical notation of the hypertext model.

Content units that represent information about one or more entities, e.g., a data unit or an
index unit allow to specify a set of entity attributes that are relevant for presentation. An
enumeration of selected attribute names may be added to the textual definition of the unit.
Content units that show several entities of a certain type, e.g., the multi-data unit and the index
unit may also define the order of entities. The order may depend on one or more attributes of
the corresponding entity type and may have the direction ascending or descending.

Links Content units mostly represent information about one or more entities of the Web ap-
plication’s content. To define the actual navigation structure of the application, the WebML
employs the notion of links. Links connect content units and pages with each other and spec-
ify how the user may navigate between them. Links are also able to transport information
between components. The WebML defines three different link types. A simple Link connects
content units and pages with each other. The source and the destination of a link may be con-
tent units on the same or on different pages. If the source of the link is a content unit, then the
link may transport an arbitrary number of parameters to the target. Depending on whether
the source content unit represents a single or multiple entities, the link may transport in each
parameter a single value, e.g., the value of a certain attribute of the entity, or a set of values,
i.e., the values of a certain attribute of all entities. The graphical notation of a link is a solid,
directed arrow. The parameter specification includes the name of the parameter and the name
of the selected attribute and is displayed as an arrow label.

The second link type is a specialization of a simple link. The Automatic Link is utilized to
connect two content units on the same page and to automatically transport an initial value if
the user visits the page. This makes, for example, sense if the source of the link is an index unit
and the target is a data unit. The designer may use a simple link to connect these components,
thus, if the user selects an entity from the index, it is displayed by the data unit. However, if the
user just got to the corresponding page, then he did not have the opportunity to interact with
the index and the data unit cannot display anything. For such cases, it is recommendable to
use an automatic link instead. The automatic link makes sure that, if the user visits the page, a
certain entity from the index is automatically selected and transported to the data unit without
any user interaction, thus the data unit may display this initial value. The default is to display
the first entity of the index. The graphical notation of an automatic link is like of a simple link
except for a small box containing the letter “A” at the middle of the link arrow.

The last link type is the Transport Link. Its aim is to transfer values between two content
units that reside on the same page without any user interaction. This link type is used if a
content unit requires some information independently of the user’s navigation behavior. For
example, if a data unit on a page displays information about a certain entity, a multi-data unit
may display information about a set of related entities, thus a transport link may connect these
two units to transport the identification of the data unit’s entity to the multi-data unit. The
graphical notation of a transport link is a dashed arrow.
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The WebML specifies the user interface of the Web application more precisely than previ-
ously introduced Web engineering methods. The hypertext model of the entire Book Portal
application is too large to be depicted in one figure. Therefore, specific characteristics of the
WebML graphical notation are explained with a set of partial examples.

Figure 3.18 depicts the definition of the Book Portal’s main page. Note that among all Web
engineering methods introduced in this chapter, only the WebML is capable of modeling a
version of this page that comes close to the actual requirements. The reason for that is the
inablity of all other methods to define user interface nodes, that do not correspond strictly to
any entity of the content model.

Book Portal
BookScroll Book Data
BookID : OID
4D [ T B
Book 00
[OID = BookID]
Categories Authors Search

Figure 3.18: Hypertext Model of the Portal Page for WebML

The portal page ought to show a guided tour of popular books regarding the average review
scores provided by portal users. Unfortunately, the expressive power of WebML selectors are
not sufficient enough to express this query. Instead, the WebML specification of the portal page
in Figure 3.18 shows a guided tour of all books. To this end, the Book Portal page includes
two content units. The BookScroll scroller unit on the left-hand side specifies the navigation
interface for browsing through all books of the portal. The source specification below this
unit states that entities of the Book type are required. The unit has no selector, thus all books
are considered. The scroller unit is connected to a data unit with a transport link. The link
transports the OID of the currently selected book in the BookID parameter to the data unit.
The source specification of the data unit defines that the unit displays information about Book
entities. Additionally, the selector of the unit states that the OID of the displayed book must be
equal to the value that is transported by the link in the BookID parameter. Consequently, the
data unit shows information about the book that is currently selected by the scroller unit.

The Book Portal page is also connected to the Categories, Authors, and Search
pages with simple navigation links. Unfortunately, the WebML does not define model ele-
ments that correspond to the notion of a menu or an anchor. Thus, the main menu of the Book
Portal has to be modeled with simple links to corresponding pages.

A somewhat more complex example is depicted in Figure 3.19, which shows the hypertext
model of the Book page.

The Book page contains the Book Data data unit that displays the book’s title, abstract,
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Figure 3.19: Hypertext Model of the Book Page for WebML

number of pages, and the ISBN. Of course, the page can only display data about a book if it is
clear which book entity is to be displayed. To this end, the selector of the data unit specifies
that the OID of the book entity has to be equal to the value of the BookID parameter that is
transported by the incoming link of the page. Note that the identification of the book is for-
warded to the three indexes of the Book page by corresponding transport links. The indexes
represent the book’s authors, categories, and reviews. Each index defines a source and a selec-
tor that corresponds to the information to be shown. Additionally, the indexes specify which
entity attributes are to be presented as keys of the index. For example, the source specification
of the Book Authors index states that the index presents Author entities. The selector of the
index references the BookToAuthor relationship and selects those Author entities that have a
corresponding relationship to the Book entity with the id Bookld. Finally, the attribute specifi-
cation states that only the Firstname and Lastname attributes of each author are to be shown as
keys of the index. Note that all indexes are connected with navigation links to corresponding
pages of the Book Portal, however, link parameters and the detailed specification of all pages
is omitted for the sake of simplicity.

Content Publishing Patterns The WebML defines a small set of basic content units, which
may be used to represent content on the Web application’s user interface. In contrast to most
other Web engineering methods, the WebML does not employ concrete model elements that
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correspond to well-known presentation patterns, e.g., a guided tour. Instead, it suggests to
compose these patterns using its elementary content units and calls them content publishing
patterns. Subsequently, some of the most common patterns are introduced.

The Cascaded Index pattern allows the Web application’s user to browse through a set of in-
dexes with different content focus to finally reach the presentation of a desired entity. This
pattern is utilized several times by the Book Portal application. For example, the user is al-
lowed to select a book from the book index on the Categories page and after that an author
on the Book page, which leads him to the Author page, where information about the author
entity is presented. The WebML implements this pattern with two consecutive index units and
a data unit. The book index allows the selection of a book and transports the identification of
the book to the author index that employs an appropriate selector to present only authors of
the selected book. Finally, the author index transports the identification of the author to the
data unit that shows information about the author.

The Filtered Index pattern allows the user to conduct a search and select an entity from search
results index in order to view information about the entity. This pattern also is employed by
the Book Portal application. The Search page provides the user a search form that leads to the
Search Results page, which presents an index of books that correspond to the user’s query.
After selecting an author entity from the index, the user is presented information about it. This
pattern may be defined with WebML in a straightforward manner with an entry unit, an index
unit and a data unit. The entry unit receives user input and forwards it to the index unit,
which employs an appropriate selector to present authors that match the user’s query. Finally,
the index transports the author’s identification to the data unit to present author information.

The Guided Tour is a commonly used pattern in Web application development and allows the
user to browse through a set of entities one by one. The Book Portal application utilizes this
pattern to present books on the Book Portal page. This pattern may be composed with a
WebML scroller unit and a data unit. To this end, the scroller unit may be configured to allow
browsing all books of the portal, i.e., specify “Book” as source and no selector. Additionally,
the scroller unit is connected to the data unit with an automatic link (see Section 3.4.4.2) so that
the identification of the currently selected Book entity is transported to the data unit, which
presents the corresponding book.

Note that the WebML defines a few further content publishing patterns that represent mostly
variations of previously introduced patterns [CFB*03]. For example, the Filtered Scrolled Index
is a filtered index, which additionally splits up search results into partitions of the same size
and allows to browse between partitions. Similarly, Indexed Guided Tour is an extension of a
simple guided tour and additionally provides an index in front of the standard guided tour
functionality thus the user may first select an entity from an index before browsing through
entities one by one.

Operation Units Among all Web engineering methods introduced in this chapter, the WebML
is the only one that supports the design of Web applications with content management func-
tionality. A typical Web application of this class does not only provide information based on
entities and relationships but also allows the user to create, to modify, and to delete entities
and relationships between them. To this end, the WebML provides a set of Operation Units that
may be used to specify content management functionality [BCFMOO][CFBOO][CFB*03]. The
WebML inserts operation units into the hypertext model, thus, corresponding functionality is
well integrated into the Web application’s navigation structure.
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All operation units of the WebML have some common characteristics. First, they require
certain input data that is to be processed by the corresponding operation. For example, an
operation that creates a new entity certainly needs valid values for all attributes of the entity.
To this end, operation units always have one or more inbound links that transport required
parameter values. Second, there are two ways the execution of an operation may come to an
end. It may succeed or fail. For both possibilities, there is a corresponding link type, i.e., an OK
link and a KO link, which may be used to direct the Web application’s user to an appropriate
page after the execution of the operation. Subsequently, most important WebML operation
units are introduced.

The Create Unit allows to create a new entity of a certain type. To this end, the source specifi-
cation of the unit specifies the name of an entity type of which a new entity is to be created. The
create unit needs at least one inbound link that delivers all required attribute values. Usually,
these values originate from an entry unit. The create unit also provides a set of assignments
that map names of link parameters to attribute names. In case of the create unit, the OK link
usually points to a page that presents the newly created entity and the KO link guides the user
back to the entry form.

The Modify Unit allows to modify attribute values of one or more entities of a certain type.
The source specification identifies the entity type of which entities are to be modified. The
modify unit requires two kinds of input data. First, data that may be used for the identification
of those entities that should be modified. For example, an inbound link may transport the ID
of a single entity or just a simple value that is matched against all values of a certain attribute
of all entities to select an appropriate entity set for modification. Second, one or more values
that serve as new attribute values of selected entities. Parameter names of inbound links are
mapped to attribute names of the corresponding entity type with a set of assignments. The OK
link of the modify unit usually leads to a page that presents the modified entities and the KO
link usually points back to the entry form, from which new attribute values for the modification
originate.

The Delete Unit may be used to delete one or more entities of a given type. The entity type is
determined as usual by the unit’s source specification. The delete unit requires data that is de-
livered by an inbound link and can be used to determine those entities, which are to be deleted.
To this end, inbound link parameters may deliver the IDs of entities for direct identification or
some values that can be used in a selector expression to determine the appropriate set of enti-
ties. The OK link of the delete unit usually leads to a page that lists other entities of the given
entity type thus the user may observe the absence of the deleted entity. In most cases, the KO
link leads back to the page, on which the user initiated the delete operation.

Besides operations that allow to create, to modify, or to delete entities of the Web applica-
tion’s content, the WebML also defines operations for the management of relationships be-
tween entities. The Connect Unit creates a new relationship instance between two entities. To
this end, the unit requires the identification of both entities between which the new relationship
is to be created. Usually, this identification is provided by inbound links that originate from
a page displaying information about both entities. Note that the WebML does not support
attributes that characterize relationships, thus the connect unit does not require any further
input values. The source specification refers to one of the two role names of the corresponding
relationship. For example, if the designer intends to define an operation that creates a relation-
ship between the Author and the Book entities then the corresponding connect unit may use
the AuthorToBook role name as source specification. The OK link of the unit may point to a page
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that presents information about the connected entities and the KO link may lead back to the
page the user came from.

The Disconnect Unit deletes an existing relationship instance between two entities. Similarly
to the connect unit, it requires as input the identification of those entities between which the
relationship is to be removed. As in the case of other operation units, input parameters are
transported to the unit by inbound links, which, for example, may originate from a page that
displays information about both entities in question. The source specification identifies the
relationship of which an instance is to be deleted unambiguously. Analog to the previous
example, the AuthorToBook role name may be used as source specification to define a disconnect
operation for the relationship between the Author and the Book entities. The OK and KO links
of the unit may point to the page the user came from.

Note that among all presented Web engineering methods of this chapter, the WebML is the
only one that is able to define the Manage Review page of the Book Portal application, be-
cause this page relies on content management functionality. Figure 3.20 depicts the WebML
specification of the Review and Manage Review pages, which allow to view reviews and to
associate reviews to books.
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Figure 3.20: Review Management Specification with WebML

The Review page contains two data units that present information about a review and also
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includes links to other pages, which are concerned with review management, i.e., the Manage
Review and the Delete Review pages. The Review Data unit receives the id of a Review
entity in the ReviewID parameter of an inbound link and displays some information about the
review, e.g., the title, the review text, the score, and the date of the review. A transport link
automatically forwards the id of the review to the User Data unit that displays the nickname of
the user who created the review.

The Manage Review page, which is accessible through a link from the Review page, provides
functionality for associating a review to a book. To this end, the page contains a Review Data
unit that displays the review title and the review text and a Book Index unit that presents an
index of all books of the portal. Both units are connected to the Connect Review operation
unit that creates a new relationship instance between a Review entity and a Book entity. To
this end, the id of the review and the book are forwarded to the connect operation unit by
corresponding links originating from the Review Data unit and the Book Index unit. Note that
the ReviewID and BookID parameters are used by the connect unit to identify the entities to be
connected. Finally, the OK link of the connect unit points to the Review page and the KO link
leads back to the Manage Review page.

Note that the WebML also allows to combine operation units in order to define more complex
content management patterns. For example, a very common pattern is the creation of an entity
and its subsequent assignment to an already existing entity with a newly created instance of
a certain relationship. Note, however, that the graphical notation of the WebML may become
confusing if the content management patterns get more complex.

3.4.4.3 Implementation

The WebML does not provide a graphical presentation model that determines the look and feel
of the Web application’s user interface. Presentation artifacts are produced during the imple-
mentation phase of the WebML development process. The method employs a template-based,
generative approach to create the Web application’s implementation which consists of four
phases. First, the hypertext model is used to automatically generate an XHTML template of
each page. This template is a page skeleton that includes an initial representation of all page
components. Second, the presentation for each content unit is created manually by a graphic
designer using CSS. Third, XSLT technology is used to automatically insert these presenta-
tion definitions into the generated templates. Finally, an application programmer extends the
generated Web application with custom functionality.

3.4.4.4 Conclusions

The WebML has been inspired by previous Web engineering methods like the RMM and the
OOHDM. However, it introduces a new way to define the hypertext structure of the Web appli-
cation. Whereas other methods focus on capturing the Web application’s navigation structure
at a rather conceptual level, the WebML provides a hypertext model that employs model ele-
ments with a lower abstraction level, which facilitate the exact composition of the Web appli-
cation’s user interface and the generation of an implementation. Also, the WebML manages to
integrate operations into its hypertext model which enables the approach to define Web appli-
cations with content management functionality. Subsequently, advantages and disadvantages
of the WebML method are presented and compared to other Web engineering methods.
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Similarly to the RMM, the WebML employs E-R modeling to define the Web application’s
Data Model. Unfortunatelly, the E-R notation used by the WebML has the disadvantage that it
cannot express relationship attributes. Other than that, the expressive power of the WebML's
content model is equivalent to that of other methods.

The WebML's Hypertext Model pursues a unique way of defining the Web application’s user
interface and navigation structure. All other Web engineering methods introduced in this
chapter focus on the definition of the navigation structure on a conceptual level and not on
the construction of the user interface. To this end, they utilize the notion of a navigation space
containing navigation nodes and they define different access structures, e.g., indexes or guided
tours which connect navigation nodes and strongly rely on relationships of the content model.
Consequently, an index may only list all objects of a certain type or all objects that have a
certain relationship to an object that is in focus of a specific navigation node. For example, if
the Web application’s user views information about a book provided by a corresponding book
navigation node, then this node may provide an index to all authors of the book relying on
the author writes book relationship between these objects. However, more complex filtering of
objects to be shown in an index is not supported. Furthermore, as there may be only one book
navigation node in the navigation space, only a single index that shows book authors may exist
in the entire Web application, because the index is bound to the book context.

In contrast to that, the WebML'’s approach to define the Web application” user interface and
navigation structure is much more flexible. It does not rely on the concept of navigation nodes
that have an associated context. It utilizes the concept of user interface pages, which are ini-
tially context independent. Thus, a single page may represent information about several entity
types of the content model. Especially, the WebML allows to define several pages that present
information about the same entity. It also allows to define custom links between pages, thus,
the Web application’s navigation structure is independent from its content structure. Further-
more, the WebML utilizes a simple query language that determines entities, which are to be
presented by content units. The query language has access to attributes and relationships of
entities and may compare attribute values and constants using arithmetic expressions. Last
but not least, the WebML hypertext model provides operation units that may be used to define
Web applications with content management functionality. Other Web engineering methods in-
troduced in this chapter define operations at a very abstract level and do not integrate them
properly into the navigation structure of the Web application.

Unfortunately, the WebML way to model the Web application’s user interface and especially
its approach to integrate operations into the hypertext model has also some disadvantages.
First, the WebML concentrates on the definition of the user interface and defines several link
types to connect elements of the hypertext model. Some link types denote a navigation step by
the Web application’s user, some other specify merely the transport of values between model
elements. Consequently, the navigation structure of the Web application may become unclear.
To make things worse, the WebML defines content management operations directly in the
hypertext model. As operation units require a number of inbound and outbound links, the
navigation structure becomes even more concealed.

All together, the WebML provides the most powerful graphical notation among all presented
methods in this chapter. Especially, the low abstraction level of the hypertext model for defin-
ing the Web application’s user interface enables the generation of large parts of the implemen-
tation, which has to be modified only marginally to get a fully functional application prototype.
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3.4.5 Summary

The four methods that have been introduced in previous sections build a representative selec-
tion of model-based Web engineering methods that have been proposed by the Web engineer-
ing community. The following table shows an overview of the models that are proposed by
these methods for designing Web applications.

Content Navigation Operations Presentation
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RMM Relationship | Management -
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Table 3.1: Model Overview of Introduced Web Engineering Methods

The introduced methods have their individual advantages and weaknesses. A common
feature among all methods is the utilization of a comprehensive content model, although all
methods use a different name for this model type. The second model category deals with the
definition of navigation structures. This is a well supported feature by most methods, but
there are subtle differencences. The OOHDM and UWE methods identify nodes of their con-
tent models that are relevant for navigation and connect corresponding navigation nodes with
standard access structures that are derived from relationships between content model nodes in
a straightforward manner. The RMM also uses a set of standard access structures, e.g., indexes
and guided tours, but it also provides the concept of m-slices that allow a fine-grained defi-
nition of what information appears on user interface pages. The WebML uses the Hypertext
Model for navigation modeling, which is the most sophisticated navigation model among the
introduced methods. It allows the definition of user interface pages including arbitrary content
and arbitrary navigation structures. Unfortunatelly, all methods neglect to provide an opera-
tion model that allows to define comprehensive application logic. The RMM does not support
operations at all. The OHHDM and the UWE methods allow to specify operations only at an
abstract level in their content models, however, it is unclear how these operations correspond
to user interface components. The WebML is the only method that has a reasonable concept for
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defining operations by providing so-called operation units. Unfortunately, it integrates opera-
tion units into its hypertext model instead of defining a separate model for them. The OOHDM
and the UWE methods also provide models for defining the presentation of the Web applica-
tion. Their presentation models provide elements that define the appearance of user interface
pages. The RMM and the WebML do not have explicit presentation models, however, they
specify user interface pages in theit navigation models more precisely than the OOHDM and
the UWE methods.

Ultimately, these methods provide more or less suitable models for designing Web applica-
tions, however, the overall design is only cohesive enough in the case of WebML to be used as a
straightforward implementation guideline or as input for a CAWE tool that is able to generate
large parts of the Web application’s implementation. Further methods and tools that have been
investigated but not selected to be discussed in detail are ADM [AMM98], ADM-d [MAMO3]
and ADM-2 [AP03], HDM [GPS93], HDM2 [GMP93], HDM-lite [FP00] and HDM2000 [BGP00],
Hera [HFV03] and Hera-S [vdSHBCO06], Homer [MAM™00], the OO-HMethod [GCP00] and
OOWS [PAF01a][PAF01b] (both based on the OO-Method [PGIP01][PIP*97]), Strudel [FFLS97]
[FFK*+98][FFLS00][FFLS98], Fun-Strudel [FST99] and Strudel-R [FLSY99], Tiramisu [ALW99],
W2000 [BGP01], and WSDM [TCO03].
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CHAPTER 4

Modeling Web Applications with flashWeb

The main contribution of this work is the introduction of the flashWeb model-based approach
for Web application development, which is described in this chapter. The flashWeb method
uses UML and UML-near notations, therefore, the semantics of the proposed models is in most
cases intuitively comprehendible. UML is a formal language and it is common knowledge,
thus, any UML-near notation is immediately familiar to software engineers. Despite of this fact,
a set of additional formalisms are used throughout the following chapters in order to define
the precise meaning of every model construct. To this end, the models as well as the model
weaving constructs are described by a UML meta model at the beginning of each chapter.
Additionally, composite operations in Section 4.4.2.2 are explained using an auxiliary graphical
notation.

This chapter is structured as follows. Section 4.1 introduces the basic characteristics of the
flashWeb method. Section 4.2 explains which models the method provides for which purposes
and introduces the general idea of graphical connections between different models. Finally,
each model of the flashWeb method is described in separate sections.

4.1 flashWeb Characteristics

As already indicated in Section 3.4 (see concluding subsections, respectively), most existing
Web engineering methods have some deficiencies that are worth addressing. Accordingly, the
flashWeb method tries to avoid the shortcomings of other methods and is based on a set of key
principles that are introduced subsequently.

The first main characteristic of flashWeb is the extensive usage of graphical models. To this
end, it utilizes different models that define different aspects of the Web application. For each
model, the level of abstraction and the number of model elements are defined in a way that
allows to specify a preferably maximal portion of the Web application leaving only a minimal
part that has to be implemented in a customized manner. Note that, even for such custom
parts, flashWeb models provide custom elements that integrate custom code into the models
(see subsequent paragraph on extensibility). It is vital for the success of a Web engineering
method to offer a set of model elements with sufficient expressive power and flexibility. Ap-
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propriate graphical models can be easily transformed into a functional implementation by a
code generator in a matter of seconds. In contrast to that, custom parts that have to be imple-
mented and integrated into the system manually require orders of magnitude more time and
resources. Therefore, every piece of the Web application that can be captured with a formal
model and transformed into code automatically saves a lot of time and effort for the develop-
ment team and makes the success of the development project more likely.

A major innovation of the flashWeb approach is the introduction of the novel Operation
Model, which allows to capture all business logic operations of a Web application in a sin-
gle model. The model provides for each entity of the target domain a set of standard content
management operations, which allow simple access to the Web application’s content. Fur-
thermore, composite operations combine standard operations in order to compose composite
pieces of application logic. Finally, custom operations enable the Web application developer to
define arbitrary application logic. The Operation Model may be combined with other models
of the flashWeb method in a very flexible manner. The model is introduced in great detail in
Section 4.4.

An important characteristic of flashWeb is the high level of model independence. Of course,
the models can be flexibly combined (see next paragraph) to create a cohesive specification of
the Web application, however, the number of constraints that a model may lay upon another
model is minimal. For example, flashWeb’s Operation Model provides a standard set of con-
tent management operations for each class of the Content Model, but it is not restricted to this
initial set. Additionally, it may include an arbitrary number of operation classes that provide
custom or composite operations that are independent of the Content Model. The level of in-
dependence between the Operation Model and the Composition/Navigation Model, which
defines the Web application’s user interface is even greater. Model elements for user interface
definition are generic in nature and may be arbitrarily combined with content management
operations. Additionally, arbitrary user interface structures may be specified that do not rely
on operations at all. This level of model independence is often not the case with other Web
engineering methods. However, the need for flexibility is a key characteristic in every Web
application development project. This is due to the fact that requirements for Web applications
are diverse and they often change, even during a single development project. Therefore, the
models in use have to provide the greatest level of flexibility. Any unnecessary constraints that
originate from the development method or are imposed by the nature of the models on the
development team result in a smaller coverage of the Web application’s functionality and, as
explained in the previous paragraph, in the consumption of unnecessary resources.

One of flashWeb’s novelties is its high level of model weaving capability. Although the
method’s models are independent in a sense that they do not lay unnecessary constraints on
each other, the models can be graphically combined to create a cohesive specification of the
Web application. For example, a model element that defines an object listing on the Web ap-
plication’s user interface can be graphically connected (by an edge) to a content management
operation that delivers the corresponding data. This kind of graphical connection between dif-
ferent models is a unique characteristic of flashWeb in the research field of Web engineering.
Without having precise connections between models, a Web engineering method may apply
one or both of the following techniques. First, it may simply repeat the required graphical el-
ement instead of referring to it. Second, it may refer to the graphical element by name. Both
approaches have disadvantages. Repeating model elements causes unnecessary redundan-
cies, which are especially undesirable for graphical modeling because model size is always a
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great concern. In contrast to that, referring to model elements by name is not as depictive as
a graphical reference. Therefore, the flashWeb approach relies on graphical references (edges)
between different models thereby providing a superior overview of the designed system and
a faster and more intuitive way for defining references. Again, the overall benefit for the Web
application development process is saving time.

Besides a set of appropriate model elements, flashWeb models offer extension facilites,
which ensure that the complete functionality of the Web application is captured and that a
fully functional implementation can be generated. Web applications can have arbitrary com-
plexity. Of course, graphical modeling can cover only a certain part of this complexity, because
it usually does not have the expressive power of a programming language. Consider a simple
algorithm of the Book Portal example that computes the ten most popular books of the por-
tal based on user ratings. Such an algorithm cannot be expressed with flashWeb models or
with a model of any other Web engineering method because that would require the expres-
sive power of a programming language. Web engineering methods that are capable of code
generation usually ignore this problem completely and declare such components as necessary
customization work after the generation process, i.e., the required algorithm is implemented
in a suitable programming language of the target runtime environment and merged into the
generated code. However, this approach has a huge disadvantage. The created models cannot
be used for further code generation without overwriting the altered code. There are partial
solutions to this problem, which are detailed in Section 3.2.6.

The flashWeb method pursues an approach that eliminates this problem and provides an
optimal integration of custom application logic into its models. To this end, it uses custom
model elements that define the corresponding component as precisely as possible and inte-
grates it into the model. In case of the simple algorithm that was mentioned before, flashWeb’s
Operation Model offers a so-called custom operation that can be used to specify the name (e.g.
getPopularBooks), the result type (e.g. a list of Book objects), and the implementing code of the
operation. This specialized model element integrates the custom functionality into flashWeb’s
Operation Model smoothly and ensures that the corresponding custom code is automatically
merged into the implementation during the code generation process. The overall advantage of
such an extension mechanism for the Web application development process is substantial. The
developer may model standard functionality with standard model elements, he may integrate
the signatures of custom parts into the models and add an implementation stub or even im-
plement the custom functionality right ahead. In any case, the models can be used repeatedly
to generate a functional implementation that does not have to be manually extended at some
point after the generation process.

As already indicated, the flashWeb Web engineering method supports code generation.
However, achieving the generation of a fully functional implementation is not a trivial task.
As a matter of fact, several aspects that have been illustrated previously in this chapter are
important prerequisites for effective code generation. First, the models have to possess suf-
ficient expressive power to capture a potentially maximal part of the requirements. Second,
different models have to be connected in a formal way in order to enable the generation of a
cohesive implementation. Finally, models have to provide extension facilities that allow for
custom business logic components.

For example, it is not sufficient to handle business logic operations at an abstract level. An
operation purchaseBook() may be sufficient to capture the fact that the Web application allows
its users to buy books, however it is not even nearly sufficient for the generation of a functional
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implementation. Ordering products is a far more complex activity and it usually involves se-
lecting desired products, providing payment information, etc. It cannot be implemented with
a single operation. As already mentioned, the second common problem is that connections be-
tween different models are not precise enough for code generation purposes. For example, if
the addToShoppingCart() operation, which may be part of the book purchase process, should be
made available to the Web application’s user, then it is not sufficient just to specify an “Add to
Shopping Cart” button in the specification of the user interface. The operation has to be associ-
ated to the corresponding button precisely. The flashWeb method provides arbitrary flexibility
for the developer to define business logic operations and to graphically connect them to user
interface elements, thereby ensuring a cohesive specification. As mentioned before, it also pro-
vides extension facilities for custom business logic components, which is also an aspect that is
often ignored by other Web engineering methods. Of course, such details are only relevant if a
method supports code generation in the first place.

A final characteristic feature of the flashWeb method is relying on object-oriented princi-
ples throughout the entire development process. The flashWeb method uses object-oriented
concepts in all of its models. To this end, the Content Model is specified using the UML and
all other models employ a UML-near notation. The developer may define and use well known
object-oriented concepts like types, classes, and objects in all flashWeb models.

4.2 Overview

The flashWeb Web engineering method provides graphical models that are primarily suited
to be used in the design phase of a Web application development process. The focus of the
method is on design models because they offer the appropriate level of abstraction that facili-
tates code generation and therefore can be used for rapid Web application development. Some
of the Web engineering methods introduced in Section 3.4 also provide a model for require-
ments specification. Although these models can be very useful to capture requirements, they
are too high-level to be mapped precisely to design models and therefore they cannot be used
directly for code generation. Of course, many techniques for requirements analysis and many
different models for requirements specification can be used in conjunction with the flashWeb
method. However, corresponding results have to be manually transformed into flashWeb de-
sign models. An appropriate graphical model for requirements modeling that can be easily
mapped to flashWeb’s models is the User Interaction Diagram [VSDSO00] introduced in Sec-
tion 3.4.2.1.

The flashWeb method provides four models to describe a Web application. The Content
Model specifies all real-world objects and their relationships that are relevant for the designed
Web application. To this end, this model employs classes, attributes, and associations that are
well known from object-oriented modeling. The Operation Model specifies content manage-
ment operations that provide full read and write access to objects and object relationships, i.e.,
to the content of the Web application. Additionally, it provides composite and custom opera-
tions that allow to define arbitrary business logic. Elements of the Composition/Navigation
Model define the composition of the Web application’s user interface and specify theWeb ap-
plication’s navigation structure. Components of the user interface access operations in order to
present or manipulate content and to execute business logic. Finally, the Presentation Model
defines the visual appearance of the user interface. Unlike the first three flashWeb models, it
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does not utilize a graphical notation. It consists of a set of style definitions that can be assigned
to elements of the Composition/Navigation Model in a flexible way.

As mentioned in Section 4.1, a unique feature of flashWeb are graphical connections between
different models. A graphical edge may associate a certain element of a model to an element
of another model in order to express a certain semantic connection. Figure 4.1 depicts a simple
example of flashWeb’s graphical models and model connections. Note that the example uses
the Book Portal scenario, which was introduced in Section 2.2.3.

Authors B Author

— | 3

Composition /
Navigation
Model

Operation
Model

Content

FirstNames: String [1..*]

Lastname: String
M Odel Biography: String

Figure 4.1: Overview of flashWeb Models

In this example, an author is modeled with an Author class of the Content Model. The
Operation Model defines the getAuthorList operation for the Author class that returns a list
of all author objects. Finally, the Composition/Navigation Model defines the Authors and
Author pages, which provide information about authors and a single author respectively.

Connections between the Content Model and the Operation Model (dashed arrow) indicate
which operations access which content objects. For example, in Figure 4.1, the directed arrow
between the Author class of the Content Model and the getAuthorList operation of the Op-
eration Model visualizes that the operation accesses objects of the Author type. Connections
between the Operation Model and the Composition/Navigation Model show, which Web page
components access which operations.

The Authors page of the Composition/Navigation Model contains an ObjectIndex ele-
ment with the name “Author List” that lists all authors and allows the selection of a single
author from this list. This model element is connected to the getAuthorList operation indicating
that it uses data originating from this operation. The Author page contains an ObjectView
element with the name “Author View" that shows details about the selected author. If the
user of the Web application selects an author on the Authors page, then he is directed to the
Author page.

Note, the example in Figure 4.1 is kept simple and omits some modeling details that are yet
to be introduced. The intention of this example is to give an idea of the nature of flashWeb
models and basic model interactions. All flashWeb models are explained thoroughly in the
next section. Corresponding subsections also provide detailed examples using the Book Portal
scenario.
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4.3 Content Model

The Content Model of flashWeb defines the information domain of the developed Web appli-
cation. It specifies all real-world entities and relationships between them that are relevant for
the Web application. This model builds the basis for content-intensive Web applications by
defining the application’s content structure, which may be referenced by other models. The
Content Model utilizes the syntax of a UML class diagram. Figure 4.2 shows the meta model
of flashWeb’s Content Model.

Element <
subPackage

. NamedElement
name: String <}
ContentPackage MultiplicityElement

1 lower: Integer [0..1]
upper: UnlimitedNatural [0..1]

A

1 *
Type <— TypedElement
Zf type
Attribute ContentClass
5”pe'C'ass> isAbstract: Boolean ‘1 - Attribute
1 class ownedAttribute
1 * 1
— Association

AssociationEnd

roleName: String

Figure 4.2: Meta Model of the Content Model

Main elements of the Content Model are the ContentPackage, the ContentClass, and
Association components, which will be introduced thoroughly using the Book Portal exam-
ple application from Section 2.2.3.

The UML class diagram is well suited to model the Web application’s content. Not surpris-
ingly, it is used by several other Web engineering methods for this task, e.g., the OOHDM or
the UWE method. Subsequently, a short description of the main characteristics of the Content
Model are introduced and slight differences to other methods are described. Figure 4.3 depicts
the Content Model of the Book Portal example application from Section 2.2.3.

4.3.1 Content Packages

The ContentPackage element of the Content Model provides a means to separate self-contained
subsections of the Web application. An arbitrary number of classes can be put into a package
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Figure 4.3: Content Model of the Book Portal with flashWeb

and the system may consist of an arbitrary number of packages. The example in Figure 4.3
includes one package with the name “BookPortal”. Given the rather small size of the Book
Portal example, a single package is sufficient to hold all classes of the model. Note that most
Web engineering methods do not employ the notion of a package in their content models to
identify sub-systems of the modeled Web application. However, this model element is very
useful if the model is getting large.

4.3.2 Content Classes

A single entity of the real world is modeled with the ContentClass element and a set of
attributes. For example, authors of the Book Portal application are captured with the Author
class shown in Figure 4.3.

Note that the graphical notation of a content class is composed of three parts. The header
section displays the name of the class. The attributes section contains all attributes that char-
acterize the given class. Finally, the operations section usually contains a set of operations that
specify the behavior of the modeled object. The flashWeb method employs a separate model
for defining operations which is introduced in Section 4.4. Consequently, the operations section
of content model classes are left empty.

A content class may hold an arbitrary number of attributes. Each attribute is characterized
by its type and its multiplicity. The type of an attribute may be chosen from a set of primitive
data types like Integer, String, or Boolean. Additionally, the type may be an enumeration of
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these basic data types. Finally, each class of the model defines a new type that may be used
as attribute type in any other class of the model. The multiplicity of an attribute is defined
through a min-max notation. Both values can be arbitrary positive integers or * to denote
infinity. For example, the Biography attribute of the Author class is of type String and has the
multiplicity [1..1]. This multiplicity means that this attribute may have exactly one value. Note
that this is the standard multiplicity for attributes, thus it is usually omitted in the model.

The Content Model supports specialization/generalization as known from object-oriented
modeling. As depicted in Figure 4.3, the Author class is a specialization of the Person class.
Consequently, an author possesses all attributes of a person, e.g., the FirstNames attribute,
which is of the String type and has the multiplicity [1..*]. Accordingly, any person may have
one or more first names.

Note that flashWeb models are strictly typed. To this end, data types and multiplicities are
used in all models to characterize attributes, variables, operation parameters, etc.

Finally, a class may be assigned the abstract property to indicate that there will be no instances
of that particular class in the implemented system. Abstract classes are used in inheritance
hierarchies to capture common attributes of their sub-classes. In Figure 4.3, the Publication
class is marked abstract, because the Book Portal application does not have general publication
items. Instead, it manages books, which are specialized publications. Note that the abstract
property does not have any further relevance for the Content Model. However, it will be
important for the Operation Model (see Section 4.4), because abstract classes possess a different
set of operations than regular classes.

4.3.3 Associations

The Content Model allows the specification of relationships between modeled objects. To this
end, any two classes may be connected by an Association as known from UML. An associ-
ation is characterized by a name, the multiplicities of participating classes, and role names that
describe the role of an object in the corresponding relationship. Consider the Write associa-
tion between the Author and Publication classes in Figure 4.3. The role of an author in this
relationship is to be the “Writer” and the role of a publication is to be simply the “Publication”.
Of course, an author may have an arbitrary number of publications, thus the multiplicity at the
publication-end is ¥, which is the short form for [0..*]. In contrast to that, a publication must
have at least one author thus the multiplicity at the author-end is [1..*].

Relationships between objects may be characterized by attributes. This is modeled by an as-
sociation class, which is connected to the corresponding association with a dashed line. Analog
to a plain content model class, an association class may define an arbitrary number of attributes
in the attribute section of the class. The name of the association is displayed in the header sec-
tion. In Figure 4.3, the Comment association between the Review and Publication classes
is specified by an association class providing the CommentDate attribute.

Besides simple associations, the Content Model allows two further association types that
specify asymmetric relationships, i.e., one partner of the association plays a more dominant
role than the other. Figure 4.4 depicts a possible extension of the Book Portal’s content model
providing corresponding examples.

The first of these association types is the aggregation, which specifies a part-of relationship.
The current example shows the Promot ionFlyer class, which is connected to the Book class.
Each book may contain one to three promotion flyers (consider the multiplicity [1..3]), which
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Figure 4.4: Aggregation and Composition Examples

include some advertisement, e.g., about reading glasses. Note that the same flyers can be also
included in other books, thus a flyer is not an exclusive part of a book. This fact is modeled
by the multiplicity * at the book-end of this association. In contrast to an aggregation, the
composition specifies an exclusive part-of relationship. Figure 4.4 shows the Chapter class, which
models chapters of a book. A book may have an arbitrary number of chapters indicated by the
* at the chapter-end of the association. However, a specific chapter can never be part of another
book, thus the multiplicity at the book-end is 1. Note that aggregations and compositions may
be also characterized through role names. However, in this example, role names are omitted
as they would match the corresponding class names.

Note that similarly to attributes, associations are also inherited from a super-class to all of its
sub-classes. For example, the Comment association between the Review and Publication
classes is inherited to the Book class, thus it also exists between the Review class and the Book
class. This will be relevant for the Operation Model (see Section 4.4), because it provides for
classes that participate in associations a set of content management operations that manage
relationships between objects.

4.3.4 Notation Variations

Any graphical modeling solution for Web application development has the disadvantage that
with the growing size of the models it gets increasingly difficult for the developer to keep
a proper overview of the developed application. There are two major goals that have to be
achieved by a modeling solution to overcome this dilemma. First, the model has to be able to
abstract from details, thus the developer may keep track of the overall application structure
and of dependencies between different application parts. Second, it must be possible to focus
on parts of the model that are currently under development.

To this end, each flashWeb model provides alternative graphical notations that hide details,
which may be irrelevant at a certain point in time. The ultimate goal of these simplified nota-
tions is to allow developers to focus on those parts of the model that are of interest to them. Of
course, this flexibility can only be achieved with an appropriate CAWE tool (see Section 5.2)
that supports these alternative notations.

The Content Model provides two simplifications, which are demonstrated in Figure 4.5.

The first solution of the Content Model to abstract from details is to represent packages and
classes with a minimized graphical notation, which hides all sub-elements of the given model
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Figure 4.5: Notation Variations of the Content Model

element. In case of a package element, this means that all classes that are inside of the package
are hidden. Observe the minimized Shop package on the right-hand side of Figure 4.5. This
package may provide content definitions for an online shop component of the Book Portal. A
minimized package element contains a symbol (two arrows directed into opposite directions)
in the element’s header section which indicates that the corresponding package can be max-
imized. Note that the Administration package, which does not contain any sub-elements
yet, is maximized, thus it does not show the corresponding symbol in the header section.

Similarly to packages, a class element can be represented with a simplified notation as well.
A minimized class element does not show the attributes of the class or the operations section.
Instead, a small, empty portion of the attributes section is displayed. Analog to the package el-
ement, the header section of a minimized class element contains the appropriate arrows symbol.
Examples of the minimized representation of a class element can be observed for the Person
and Author classes in Figure 4.5.

The second approach of the Content Model for a simplified presentation is to hide associ-
ations. In Figure 4.5, most associations are hidden. An example is the Provide association
between the User and Review classes. Note that if there exists at least one hidden associ-
ation in which a class is participating, a corresponding symbol (a circle with the letter A) is
shown in the header section of the class. This can be observed at the Review class, for which
no associations are visible, and also at the Publication class because of the absence of the
Comment association. In contrast to that, the Category class has no A-symbol because all
relevant associations are visible.

Note that these simple mechanisms allow a fine-grained control of which model elements
are displayed and how detailed the provided information is. A typical usage scenario of these
simplified representations in a development setting may hide all packages of a Web application
except for the one that is under development. The package may show minimized versions of
all classes and hide all associations except for a small subset which is in the developer’s focus.
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4.3.5 Summary

As Web applications are usually content-intensive systems, many Web engineering solutions
originate from the data/content management research area. Accordingly, content modeling
as an essential part of any Web engineering method is usually a well-supported activity. Be-
sides minor deficiencies of some other methods, e.g., WebML'’s inability to model relationship
attributes (see Section 3.4.4.1), most methods employ content models with similar expressive
power. However, they do not provide alternative simplified notations to ensure the usability
of the model in a development environment.

4.4 Operation Model

The Operation Model of flashWeb defines a set of standard content management operations
that provide full read and write access to the Web application’s content. Additionally, this
model supports the definition of arbitrary business logic. To this end, the model provides two
modeling constructs. First, composite operations (see Section 4.4.2.2), which may compose
standard content management operations but also other composite operations into more com-
plex units of business logic. Second, custom operations (see Section 4.4.2.7), which integrate
custom application code into the model.

The Operation Model serves as an intermediary between the Composition/Navigation Model
(see Section 4.5) and the Content Model. Elements of the Composition/Navigation Model de-
fine the Web application’s user interface and may be associated to arbitrary operations of the
Operation Model. Ultimately, the Operation Model provides access to the Web application’s
content as well as to further business logic and allows to integrate them into the Web applica-
tion’s user interface in a flexible manner. Note that component reuse is an important feature of
the Operation Model. To this end, each operation of the model is defined only once and can be
used by an arbitrary number of Composition/Navigation Model elements. Figure 4.6 depicts
the meta model of flashWeb’s Operation Model.

The syntax of the Operation Model is simple. As a matter of fact, it corresponds closely to the
syntax of the Content Model. Main constructs of the model are the OperationPackage and
the OperationClass elements, which will be introduced subsequently. Figure 4.7 depicts a
representative part of the Book Portal’s Operation Model.

4.4.1 Operation Packages

Similarly to the Content Model, the Operation Model provides the OperationPackage el-
ement. Actually, for each package of a content model, there usually exists a corresponding
package of the operation model bearing the same name. In most cases, this makes sense and
helps the developer to keep the overview. Note however, that an operation model may spec-
ify additional packages that do not correspond to any content model constructs. An operation
package may contain an arbitrary number of operation classes, which provide different content
management operations (see subsequent sections). Ultimately, an operation package bundles
a part of the Web application’s business logic. Figure 4.7 depicts the “BookPortal” operation
package and a set of exemplary operation classes.
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Figure 4.6: Meta Model of the Operation Model

4.4.2 Operation Classes

The OperationClass is the central model element of the Operation Model. The major goal
of an operation class is to contain a set of operations that manage objects of a certain type.
These standard operations provide full control over a specific object, e.g., they allow to create,
to modifiy or to delete a book in the Book Portal application. Furthermore, standard opera-
tions manage relationships between objects, e.g., they allow to associate a book to an author.
Additionally, an operation class may specify composite operations, which may combine other
operations into a larger unit of application logic. Finally, custom operations allow the developer
to integrate custom functionality, e.g., a specific algorithm into the Web application’s applica-
tion logic. Note that all operation types are explained thoroughly in subsequent sections.

The graphical notation of an operation class is composed of three parts. The header section
displays the class name. The attributes section is of course empty, as attributes of the class are
defined in the content model. The goal of an operation class is to specify operations, which are
placed into the operations section of the class.

An operation model provides for each content class a corresponding operation class. Ob-
serve, for example, the Author operation class in Figure 4.7, which corresponds to the Author
content class in Figure 4.3. Accordingly, this operation class provides standard content man-
agement operations for an author object. The signature of an operation is simple. It is com-
posed of the operation name, the parameter list, and the data type of the operation’s return
value. Observe the createAuthor operation, which requires three parameters and returns an
object of the Author type.

Note that abstract content model classes have operation model counterparts that provide
only a few operations. This is due to the fact that abstract classes have no instances, thus
most content management operations do not make sense. An example in Figure 4.7 is the
Publication operation class. Finally, also association classes of a content model have oper-
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Figure 4.7: Partial Operation Model of the Book Portal

ation model counterparts. Their aim is to provide access to relationship partners and relation-
ship attributes. Note that associations between classes are visualized in the Content Model and
are not repeated in the Operation Model.

4.4.2.1 Standard Operations

Basic operations provide simple access to the Web application’s content. They allow to retrieve,
to create, to modify, or to delete content objects. Additionally, they also provide similar access
to associations. For example, the right-hand side of Figure 4.7 depicts the Author operation
class, which lists the most important standard operations for the Author type.

The Operation Model distinguishes three categories of standard operations. The first cat-
egory includes class-level operations, which cannot be called directly on a single object be-
cause they concern several objects or the corresponding object does not exists yet. Class-level
operation signatures are underlined, as you can observe in Figure 4.7. Listing 4.1 shows the
generalized signatures of class-level operations.

The first class-level operation is the constructor, which creates a new object of a certain type.
It requires parameter values for all attributes of the object and returns the newly created object.
An example for a constructor is the createAuthor operation of the Author class in Figure 4.7.
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create <type>(<params>): <type>
get<type>List (): <type>[]
select <type>(<params>): <type>[]

Listing 4.1: Class-level Operations

A frequently required functionality is to acquire all objects of a certain type. This is achieved
by the get<type>List() class-level operation. For obvious reasons, this operation does not re-
quire any parameters. It returns a set of objects, which is indicated by the type name and the
trailing square brackets at the end of the operation signature. An example for the object-list
operation is the getAuthorList operation of the Author class in Figure 4.7. Its return type is
Author[], i.e., a set of Author objects.

Another common requirement is to deliver a set of objects that have certain characteristics,
e.g., a list of authors with a specific last name. To this end, the select<type>(<params>) class-
level operation allows to filter objects according to one or more attribute values. Accordingly,
the operation requires one or more parameters that provide the necessary attribute values. For
example, the select Author operation of the Author class may be called with the parameter Last-
Name="Smith’ to acquire all authors that have the last name “Smith”. This operation returns a
set of Author objects, so the return type is specified with Author[].

Note that the set of class-level operations is kept minimal. There are further possible meth-
ods of this category that can be added if necessary. For example, some developers like to
work with Ids. Although, the flashWeb method abstracts from the notion of unique identi-
fiers, because in object-oriented modeling the notion of an Id is not really necessary, the set
of class-level operations could be extended to include operations that allow the usage of Ids.
For example, the get<type>(Id) and delete<type>(Id) operations could be used to acquire or to
delete an object of a specific type with the provided identifier. For the current example, the
corresponding operations are getAuthor(Id) and delete Author(1d).

The second category of standard operations is called instance-level operations, because they
provide functionality to manage a single object of a certain type. The object, on which an
instance-level operation is called, will also be referred to as the operation’s context. Signatures
of instance-level operations are not highlighted in any way, as it can be observed in Figure 4.7.
Listing 4.2 shows the generalized signatures of all instance-level operations.

get<attribute >(): <type>
set<attribute >(<param>)
edit(<params>): <type>
delete ()

Listing 4.2: Instance-level Operations

There are two instance-level operations that access attribute values of an object. The getter
operation, i.e., get<attribute> retrieves the value of a certain attribute. For example, the get-
FirstNames operation returns the first names of an author. As usual, the type of the operation’s
return value is indicated at the end of the operation signature, in this case String[], i.e., a set of
string values.
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Accordingly, the setter operation, i.e., set<attribute>(<param>) sets the value for a certain at-
tribute. Using the current example, the setFirstNames operation allows to alter an author’s first
names. Of course, this operation requires a set of String values to be passed on to the FirstNames
parameter. Note that a setter operation has no return value.

An operation class provides getter and setter operations for all attributes of the corresponding
content class. However, for the sake of simplicity, these methods are omitted for all further
attributes of the Author class in Figure 4.7.

Of course, in some cases, it is desirable to modify all attributes of an object at once. The
appropriate instance-level operation for this task is the edit operation. It requires values for all
attributes of an object as parameters and returns the modified object as the result. An example
of this operation for the Author class can be observed in Figure 4.7. It requires values for all
attributes of an author and returns the modified Author object.

Finally, the last instance-level operation allows to delete an object. The delete operation re-
quires no parameters and has no return value. Accordingly, the operation signature is rather
simple, as it can be observed at the Author class in Figure 4.7.

The third and last group of standard operations belong to the category of association-level
operations. These operations allow to manage associations between objects, i.e., to associate
two objects and to change or to remove the association between them. As it can be observed in
Figure 4.7, operations of this category are dashed underlined. Note that, for each association
in the content model, a set of corresponding association-level operations are created for each
participating class. However, the number and signatures of operations depend on several
factors that will be explained subsequently. Operation names are constructed using the role
names of associations and return types of the operations are the types of association partners
or of corresponding association classes. Listing 4.3 shows the generalized signatures of all
association-level operations.

add<partner_role >(<partner_obj >, <params>): <type>
get<partner_role>List (): <type>[]

change<partner_role >(<partner_obj >, <params>): <type>
delete<partner_role >(<partner_obj>)

Listing 4.3: Association-level Operations

The first association-level operation creates an association between two objects. The add
<partner_role> operation requires at least one parameter, which is the partner object that should
be associated to the current object. If the association between the two objects is described by
attributes, i.e., the corresponding association is modeled with an association class in the content
model, this operation requires further parameters, i.e., values for each describing attribute.
Note that the return type of this operation may also vary. In case of a simple association, the
currently associated partner object is returned. If the association has describing attributes then
an instance of the association class is returned holding the associated partner and all describing
attributes.

Consider the simple Write association between the Author and Publication classes in
Figure 4.3. This association is represented by the addPublication method in the Author class,
which assigns a publication to an author. Accordingly, the operation requires an object of the
Publication type as parameter and it returns the same object as the operation result. Usu-
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ally, the Publication class would include the corresponding addAuthor operation as well,
however, the Publication class is abstract, thus it contains only class-level operations. Of
course, the Book class contains the add Author operation because it is a sub-class of the abstract
Publication class.

As further example, consider the Comment association between the Publication and the
Review classes in Figure 4.3. This association is characterized by the CommentDate attribute.
Accordingly, the Review class in Figure 4.7 contains the addPublication operation, which re-
quires an object of the Publication type as association partner and a value for the Com-
mentDate attribute as second parameter. Also, the return value of this method is not of the
Publication type but of the Comment type. This type represents the association between
the Review and Publication classes. An instance of the Comment class holds both objects
that participate in the association and all describing attributes. Observe the Comment class
in Figure 4.7. It provides the getPublication, getReview, and getCommentDate operations, which
return the corresponding partners and the single describing attribute of this association.

The second association-level operation returns one or more association partners of an object.
The get<partner_role>List operation requires no parameters and its return value is determined
by two factors. First, analog to the add operation, the return type is different if the correspond-
ing association has describing attributes. Second, the multiplicity of the return value corre-
sponds to the multiplicity that was defined at the partner-end of the association in the content
model.

As an example, consider the getPublicationList operation of the Author class in Figure 4.7. It
returns all publications of an author. Of course, an author may have several publications, thus
this operation returns a set of objects, which is indicated by the “List" keyword in the operation
name and the Publication[] return type. Another get operation is the getPublication operation of
the Review class, which returns the publication for that the review was written. A review
can be associated to a single publication, thus the name of this operation does not include the
“List” keyword and it returns a single object, which is of the Comment type.

Note that specialization/generalization hierarchies and abstract classes make things a little
bit more complex regarding association-level operations. Abstract classes (like Publication)
have no instances in an actual implementation. Accordingly, at any association-level operation
of the Book Portal application, any parameter or return value, that is of the Publication
type, will be actually an instance of a sub-type, e.g., a Book object. Also, get operations are
handled in a special way in the case of specialization/generalization. If a class is associated
to another class that has sub-classes, then additional get operations are added for each sub-
type. An example is the getBookList operation of the Author class which complements the
getPublicationList operation and allows to retrieve those publications of an author that are also
books. Note that the Book Portal example is kept simple and that the Publication class
has only a single sub-class. If it had more, lets say an additional Article sub-class, then the
Author class would include an additional getArticleList operation.

The third association-level operation allows to change attribute values of an association be-
tween two objects. The change<partner_role> operation is only available in an operation class if
the association is characterized by attributes, i.e., the corresponding association in the content
model has an association class. The operation requires the partner object as first parameter if
the multiplicity of the association at the partner-end allows to have multiple partners. Oth-
erwise, the association partner is unambiguous. Values for all describing attributes as further
parameters are always required. The return value of the operation is of the type that is defined
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by the corresponding association class.

An example in Figure 4.7 is the changePublication operation of the Review class. It allows to
change the CommentDate attribute of an association between the Review and Publication
objects. This operation does not require the association partner (e.g., Publication) as first
argument, because a review may have only a single associated publication. However, the
operation still requires a parameter value for the CommentDate attribute. The return value of
the operation is of the Comment type.

The final association-level operation allows to remove an association between two objects.
Similarly to the change operation the delete<partner_role> operation requires the partner object
as parameter if the object is allowed to have several partners. If only a single association part-
ner is allowed, the operation does not require parameters. This operation does not have a
return value.

Consider the deletePublication operation in the Review class in Figure 4.7. This operation
removes the Comment association between a Review and a Publication object. As areview
may be associated only to a single publication, the operation does not require any parameters.

Note that the introduced standard operations already facilitate the development of Web ap-
plications with powerful content management functionality. A Web application that provides
access to the complete set of standard operations allows the Web application’s user to create,
manage, and delete objects and relationships between them according to the content manage-
ment schema defined by the Web application architect. However, there are still some tasks that
cannot be achieved with standard operations. A common requirement is to execute several
standard operations at once as part of a single transaction. This problem is solved by compos-
ite operations, which are introduced in the following section.

4.4.2.2 Overview of Composite Operations

Composite operations combine two or more (standard) operations as one transaction. They
play an important role in the design of the Web application’s business logic because it is a com-
mon requirement to execute several operations in response to a single user action. The notion
of composite operations is of course elementary for any programming language. However,
most modeling languages, e.g., UML, do not provide a graphical notation for the composition
of operations.

Consider the example of a Web application user, who wants to issue a book review at the
Book Portal application. If there were only standard operations available, then the user would
be forced to create the review first and then to associate the review to a book in a second step.
The corresponding standard operations for this task are the createReview and the addPublication
operations of the Review class in Figure 4.7. In contrast to that, a composite operation may
combine these two standard operations to form a single unit. Such composite operations can
be integrated into the Web application’s user interface much easier.

There are four types of composite operations, which are depicted in Figure 4.8. The sequen-
tial execution groups two independent operations into a single unit and defines the execution
order. The simple chain not only defines the execution order but also allows the second oper-
ation to receive the results of the first operation. The join defines the execution order of three
operations and allows the third operation to receive the results of the first two operations. Fi-
nally, the split defines the execution order of three operations allowing the first operation to
pass on results to the second and third operations.
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Figure 4.8: Composite Operations

All composite operations share some common characteristics, which are explained in this
section. Figure 4.9 introduces a simple auxiliary notation and a formalism, which will be used
subsequently to explain input and output mappings that have to be taken into account for
composite operations.
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Figure 4.9: General Auxiliary Notation for Composite Operations

As shown in Figure 4.8 a composite operation merges the execution of two or three child op-
erations and acts as a single unit of the Web application’s business logic. A child operation
may be any operation of the operation model, i.e., a standard operation, another composite
operation or a custom operation (see Section 4.4.2.7).

Regarding the composition of child operations into a composite operation, there are three
aspects that have to be considered. The set of input parameters, the operation’s return value,
and in case of instance-level or association-level operations the operation context. Let P be
the set of input parameters of a composite operation and p(n) | 1 < n < 3 the set of input
parameters of child operations. Also let R be the return value of the composite operation
and r(n) | 1 < n < 3 the return values of child operations. The context of an operation is
the object on which the operation is called. For example, the context of a delete operation
may be a Book object. If this operation is executed, the book object is deleted from storage.
The context is of course only relevant for instance-level and association-level operations (see
Section 4.4.2.1). Let C be the context of the composite operation and ¢(n) | 1 < n < 3 the
contexts of child operations. Note that the order of a composite operation’s parameter list is
defined by the order of child operations, i.e., first it includes parameters that are required by
the first operation, then parameters that are required by the second operation, etc. If a child
operation requires a context and the context is provided as parameter in the parameter list of
the composite operation, then it is always placed in the list before any other parameter that
is required by the same child operation. Note that this auxiliary notation and the introduced
formalism are not part of the flashWeb Operation Model. They are merely used to provide a
detailed explanation of input-output mappings between composite operations.
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4.4.2.3 Sequential Execution

The sequential execution combines two operations into a composite operation unit that are
sequentially executed but are not depending on each other, i.e., the result of the first operation
is not used by the second operation. Figure 4.10 depicts both the auxiliary notation (left) and
the flashWeb notation (right), which can be used in the Operation Model.
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Figure 4.10: Notation of the Sequential Execution

Although the sequential execution of two child operations does not seem very complicated,
there is a number of configurations that can occur regarding the mapping of input and output
values. The auxiliary notation in Figure 4.10 shows all relevant input and output values for
all participating operations. First, parameters of both child operations usually originate from
the parameter list of the composite operation (p(1) C P,p(2) C P). Of course, one or both
child operations may not require parameters at all (e.g., p(1) = 0)). Second, one or both child
operations may require a context (e.g., instance-level operation). The context object for one or
both child operations may originate from the parameter list of the composite operation (e.g.,
c¢(1) € P) or may be identical to the context of the composite operation if it is an instance-level
operation. Finally, the return value of the composite operation can be either the return value
of one of the child operations (R € {r(1), r(2)}) or it may have no return value at all (R = ().

Note that the flashWeb Operation Model employs a simpler graphical notation to specify a
sequential execution. The so-called operation connector of this operation is depicted on the right-
hand side of Figure 4.10. Its aim is to indicate which child operations are part of the composite
operation, in which order they are executed and the return value of which child operation
serves as return value of the composite operation. Note that in the operation model the opera-
tion connector is placed next to the signature of a composite operation and the numbered ports
of the connector are connected to the signatures of child operations by directed dashed edges.
The direction of these edges indicate whether an operation requires parameters or whether it
has a return value. Figure 4.11 depicts a concrete operation model example of the sequential
execution composite operation.

In this example, the replaceReview composite operation is specified, which deletes an existing
review and creates a new one instead. Also this operation returns the newly created Review
object. Note that for the sake of simplicity it is assumed that the review is not associated to any
publications yet, thus the association does not have to be re-created as well. Also note that in
Figure 4.11 all operations of the Review class that are irrelevant for the current example are
omitted.

The first child element of the replaceReview composite operation is the delete operation of
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Figure 4.11: Sequential Execution Example

the Review class. This operation is at the instance-level, i.e., it requires a context, which is
obviously a Review object. The composite operation just shares the context with the delete
operation (C' = ¢(1)). The delete operation does not require any parameters (p(1) = ) and does
not return a value (r(1) = ().

Note that all of these facts are indicated by the graphical notation in Figure 4.11. The sig-
nature of the delete operation is connected by a dashed edge to the first port of the replaceRe-
view operation’s connector, indicating that it is the first child operation. Both operations are
instance-level operations (not underlined) of the Review class, showing that they share the
same context. The signature of the delete operation indicates that it does not require parameters
or return a value. This is additionally indicated by the missing arrow heads of its connection
to the operation connector.

The second child element of the replaceReview composite operation is the createReview op-
eration of the Review class. It is a class-level operation, i.e., it does not require a context
(c(2) = 0). This child operation has input parameters, which are provided by the parameter
list of the composite operation (p(2) € P). As a matter of fact, these are the only values that are
required to execute both child operations, so the operation signatures are identical (P = p(2)).
The replaceReview operation returns the return value of the createReview operation (R = 7(2)).

These facts are also clearly represented by the graphical notation in Figure 4.11. The createRe-
view class-level operation (underlined) of the Review class is connected to the second port of
the replaceReview operation’s connector. The arrowheads at both ends of the connection indi-
cate that this child operation requires parameters and returns a value. Of course, this can be
observed at the operation signature as well. Finally, the return value of this child operation
is used as the return value of the composite operation, which is indicated by the highlighted
second port of the operation connector.

4.4.2.4 Simple Chain

The simple chain is similar to the sequential execution as it combines two sequentially exe-
cuted child operations into a composite operation. However, the return value of the first child
operation is required as input for the second child operation. Figure 4.12 depicts the auxiliary
notation (left) and the operation connector (right).

The auxiliary notation in Figure 4.12 shows input and output values for the combined child
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Figure 4.12: Notation of the Simple Chain

operations. If the first child operation requires parameters, then these have to come from the
parameter list of the composite operation (p(1) C P). In contrast to that, the parameters for the
second child operation may come from the composite operation’s parameter list (p(2) N P # ()
or from the return value of the first child operation (r(1) € p(2)). Both child operations may
require a context. Similarly to parameters, the context may come from the parameter list of the
composite operation (e.g. ¢(1) € P) or for the second operation from the return value of the first
operation (e.g. ¢(2) = r(1)). The context may also be identical to the context of the composite
operation (e.g. ¢(1) = C). The return value of the composite operation may be the return value
of one of the child operations (R € {r(1), r(2)}). Note that the operation connector of the
simple chain composite operation on the right-hand side of Figure 4.12 is almost identical to
the previously introduced connector of the sequential execution operation. The only difference
is that the dependency between the two child operations is indicated by an arrow that points
from the first to the second port of the operation connector. Figure 4.13 depicts an operation
model example for the simple chain composite operation.

The composite operation of this example is named createReviewForProvider, and besides cre-
ating a new Review object, it also associates it to a User object. The newly created Review
object is the operation’s return value. Note that the creation of an object in the context of an-
other object is a common content management pattern. Also note that Figure 4.13 shows only
those operations of the Review class that are relevant for this example.

The first child element of the createReviewForProvider composite operation is the createReview
operation, which is indicated by its connection to the first port of the operation connector. It is
a class-level operation thus it does not require a context (¢(1) = 0). The createReview operation
obviously requires values for all attributes of a Review object, which are provided by the
parameter list of the composite operation (p(1) C P). The created Review object is the return
value of the createReview operation and is used by the second operation as context. This fact is
indicated by the solid line of the arrow between the two ports of the application connector. If
the return value would be required for the second operation as a simple parameter, the arrow
between the ports had a dashed line.

The second child element of this composite operation example is the addReviewProvider association-
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Figure 4.13: Simple Chain Example

level operation of the Review class indicated by its connection to the second port of the oper-
ation connector. This operation associates a user to a review and requires a Review object as
context, which is the return value of the createReview operation (¢(2) = r(1)). The addReview-
Provider operation requires a single parameter, which is the User object that is to be associated
to the newly created Review object. This parameter originates from the parameter list of the
composite operation (p(2) C P). The return value of this operation, which is the associated
User object is not required any further. In contrast to that, the return value of the first child
operation serves as the return value of the composite operation (R = r(1)). This fact is indi-
cated by the highlighted first port of the operation connector.

4.4.2.5 Join

The join is the first composite operation to combine three child operations. The idea is similar
to the simple chain operation with a minor difference. Instead of one, there are two child opera-
tions, which deliver return values for a third child operation. Figure 4.14 depicts the auxiliary
notation and the operation connector for this operation.
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Figure 4.14: Notation of the Join
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The auxiliary notation in Figure 4.14 depicts input and output value dependencies between
three child operations. The composite operation may deliver parameters for the first and sec-
ond child operations (p(1) C P,p(2) C P). Parameters for the third operation may come from
the parameter list of the composite operation (p(3) N P # @) or from the return values of the
first two operations (r(1) € p(3), r(2) € p(3)). Of course, one or more child operations may
require a context, i.e., they may be instance-level or association-level operations. In that case,
the context for the first two operations may have the same context as the composite operation
(c(1) = C,¢(2) = C) or originate from its parameter list (¢c(1) € P, ¢(2) € P). In case of the third
operation, the context may originate additionally from the return value of one of the first two
operations (¢(3) € {r(1), r(2)}). Finally, the return value of the composite operation may be
the return value of any of the child operations (R € {r(1), r(2), r(3)}).

The operation connector on the right-hand side of Figure 4.14 illustrates the dependencies
between all child operations. Arrows point from the first two ports to the third port of the
operation connector indicating that the return values of the first two operations are required
as input for the third operation. Figure 4.15 depicts an operation model example for the join
composite operation.
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Title: String,
Text:String,

Score: Integer): Review

Figure 4.15: Join Example

The createUserAndReview composite operation of this example combines three child opera-
tions. First, the createReview class-level operation of the Review class creates a Review object.
Second, the createUser class-level operation of the User class creates a User object. Finally, the
addReviewProvider association-level operation of the Review class associates the newly
created review to the also newly created user. Parameters that are required by the first two
operations originate from the parameter list of the composite operation (p(1) U p(2) = P).
The execution order of child operations is indicated by the connections between the compos-
ite operation’s connector and the signatures of the corresponding child operations. Also, the
arrows between the connector’s ports indicate that the addReviewProvider operation receives
input from the other two child operations. The solid arrow between ports 1 and 3 shows that
the return value of the createReview operation is used as context (r(1) = ¢(3)), while the dashed
arrow between ports 2 and 3 shows that the return value of the createUser operation serves as
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parameter (r(2) = p(3)) for the addReviewProvider operation. Finally, the return value of the
first child operation is the return value of the composite operation (R = r(1)).

4.4.2.6 Split

The last composite operation is the split. Similarly to the join operation, it combines three child
operations. However, instead of joining the return values of two child operations, it splits the
return value of a single child operation and provides it for two other operations. Figure 4.16
depicts the auxiliary notation and the operation connector for this operation.
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Figure 4.16: Notation of the Split

If the first child operation requires parameters, then these have to come from the composite
operation’s parameter list (p(1) C P). Parameters for the second and third operations may
come from the parameter list of the composite operation (p(2)NP # 0, p(3)NP # 0) or from the
return values of the first operations (r(1) € p(2), (1) € p(3)). If one or more child operations
require a context, then it may be identical to the composite operation’s context (e.g. c¢(1) = C)
or the context may be a parameter of the composite operation (e.g. ¢(1) € P). Additionally,
the context of the second and third child operations may be the return value of the first child
operation (¢(2) = (1), ¢(3) = r(1)). As usual, the return value of the composite operation may
be the return value of any of the child operations (R € {r(1), r(2), 7(3)}).

The operation connector on the right-hand side of Figure 4.16 illustrates the nature of the
split operation. Arrows point from the first port to the second and third ports of the operation
connector. This indicates that the return value of the first child operation is provided as input
for the second and third child operations. Figure 4.17 depicts an example of the split composite
operation.

The addReviewForPublication composite operation creates a review of a certain user for a cer-
tain book. To this end, it combines the createReview class-level operation, the addReviewProvider
association-level operation and the addPublication association-level operation, which associates
the review to a publication, e.g., a Book object. Parameters for the createReview operation are
provided by the parameter list of the composite operation (p(1) C P). The arrows between the
operation connector’s ports indicate that the second and third operations receive input from
the first operation. In this case, the input is the context for both operations (¢(2) = ¢(3) = r(1)),
which is the newly created Review object returned by the createReview operation. This fact is
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Figure 4.17: Split Example

indicated by the solid arrows between the connector’s ports. Finally, the return value of the cre-
ateReview operation is the return value of the composite operation (R = r(1)). This is indicated
by the operation connector’s first port, which is highlighted.

Of course, a composite operation may not only include standard operations but also other
composite operations. Accordingly, a composite operation may recursively combine an arbi-
trary number of other operations and thus define a complex piece of application logic. Note
that the functionality of the join and split composite operations may be simulated by two simple
chain operations, respectively. However, as the corresponding examples demonstrate the join
and split operations are suitable to implement frequently required application patterns, thus
they are included into the flashWeb Operation Model for convenience reasons.

Note that the aim of composite operations is not to provide a graphical programming lan-
guage. Although they are very useful for defining common content management patterns,
the expressive power of composite operations, which only include standard operations and
other composite operations, is limited. Important programming concepts like conditions and
iteration are not supported. Thus, if the power of a programming language is required the
Web application developer should utilize custom operations, which are introduced in the next
section.

4.4.2.7 Custom Operation

The aim of the Operation Model is to define basic building blocks of the Web application’s busi-
ness logic in a graphical manner. Previous sections introduced a set of standard operations,
which provide simple content management functionality and composite operations, which al-
low to combine them into larger blocks of application logic. However, even the simplest Web
application usually includes functionality that cannot be expressed with standard operations.
The Book Portal application (see Section 2.2.3) provides an appropriate example. The Portal
page shows a guided tour of the ten most popular books of the portal, ranked by review scores
of portal users. In order to get the list of most popular books, a simple algorithm has to be
executed, which includes calculating the average review score for each book of the portal and
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sorting the books by this average score.

To consider application logic that is beyond the scope of standard operations and their com-
bination into composite operations, the Operation Model provides the custom operation. It is
a container for arbitrary application code utilizing an appropriate programming language of
the implementation environment. As mentioned before, the aim of the operation model is to
provide building blocks of business logic and the model element with the finest granularity for
this task is an operation. Beyond that, the Operation Model does not provide modeling help.
However, as any other operation, a custom operation is described by its signature, which in-
tegrates the provided piece of application logic very well into a Web application’s operation
model.

Figure 4.18 shows the partial Book operation class. Additionally to some remaining standard
operations like the createBook class-level operation, this class includes the getTopTenRatedBooks
custom operation, which implements the functionality that was described previously.

createBook(Title: String,

Abstract:String,

Pages: Integer
ISBN: String): Book

getTopTenRatedBooks(): Book]]

getTitle(): String
setTitle(Title: String)

Figure 4.18: Custom Operation Example

The signature of a custom operation is the same as of any other operation of the Operation
Model. It is composed of the operation name, the parameter list and the type of the return
value. Note that the current custom operation example in Figure 4.18 does not require any
parameters and it returns a set of Book objects.

Custom operations may be defined at all levels that have been described in Section 4.4.2.1. A
custom operation may be a class-level operation defining functionality that is not restricted to
dealing with a single instance, it may be an instance-level operation that manages a single in-
stance or an association-level operation that handles relationships between instances. Note that
the developer may specify the appropriate category arbitrarily and that the chosen category is
indicated by the same graphical schema (underlining) as for standard operations. Addition-
ally, the signature of a custom operation is displayed in italic to distinguish it from standard
and composite operations.

Similarly to composite operations, a custom operation cannot be created automatically but
has to be defined by the Web application developer. The definition includes two steps. First,
the developer specifies the operation signature, i.e., the operation name, the parameter list, and
the return type. The signature integrates the custom operation smoothly into the operation
model of a Web application and ensures that it may serve as a child operation in composite
operations or that it may be used by the Composition/Navigation Model (see Section 4.5) to
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integrate custom application code into the user interface. Second, the developer provides the
implementation using an appropriate programming language, i.e., the programming language
of the target runtime environment for which the Web application is developed. Listing 4.4
shows a possible implementation of the getTopTenRatedBooks operation in Python.

books = getClass (). getBookList ()
book_ratings = {}

#calculate and store average ratings for each book
for book in books:
ratings = [review.getScore() for review
in book.getReviewList ()]
avg_rating = sum(ratings) / len(ratings)
book_ratings[book] = avg_rating

O 00 NI O Ul i W IN -

—_ =
)

#sort books by average rating in descending order
books.sort (lambda x, y: cmp(book_ratings[y],
book_ratings[x]))

[
g1 = W DN

#return the top ten (or less)
return books[:10]

—_
(o)

Listing 4.4: Example Custom Operation Code

Note that this implementation is pretty simple and self-explanatory. However, there are
some details that have to be explained subsequently. Of course, it is desirable for the Web
application developer to be able to access any operation of the operation model from any cus-
tom operation. To this end, the developer may use the special getClass operation that returns
a desirable class object, which provides all class-level operations of a certain operation class. If
the getClass operation is called without parameters, then it returns an object representing the
class, in which the current operation is defined. As an example, observe the first line in List-
ing 4.4. The getClass operation provides access to the Book class and the getBookList class-level
operation may be called, which returns a list of all books. Furthermore, the getClass operation
may provide access to an arbitrary class of an operation model if it receives the qualified name
of the class (including the names of all packages separated by dots) as parameter. Accord-
ingly, the getClass operation may also provide access to the Book class if it is called with the
“BookPortal.Book” parameter value.

The Web application developer may use instance-level and association-level operations as
well. These operations require a context, i.e., an object on which they may be called. Listing 4.4
provides examples for both cases. In line 7, the getReviewList association-level operation is
called on a Book object in order to acquire all reviews of a book. Finally, during the iteration
over all reviews (lines 6 and 7), the getScore instance-level operation is called on all Review
objects.

Of course, not only standard operations are allowed to be accessed from a custom operation,
but also composite operations and other custom operations. Ultimately, the Web application
developer has access to the complete application logic and may extend it arbitrarily. Thus
the custom operation is an extension facility of the Operation Model, which allows to specify
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application logic that cannot be expressed with standard or composite operations. The impor-
tance of such extension facilities is described in Section 4.1. Furthermore, the implications of
extension facilities for the code generation process are discussed in Section 3.2.6.

4.4.3 Connections Between Operations and Content

Graphical connections between models are a key characteristic of the flashWeb development
process. They express an important part of the Web application’s logic and provide an en-
hanced overview thereof. Figure 4.19 depicts an UML class diagram that defines data access
connections between the Operation Model and the Content Model.

Data Access
Connection

operationEnd: Boolean

contentEnd: Boolean

} Content
Operation : Model
1 Target
Association Content 1 * .
cl cl @ Attribute
ass ass class ownedAttribute

Figure 4.19: Meta Model of Connections between the Operation Model and the Content Model

A data access connection visualizes for each operation the manner of data access. It may di-
rectly connect an operation to a target in the Content Model, which may be a class, an attribute,
or an association class. A data access connection may be unidirectional or bidirectional indi-
cating whether an operation receives data from the content storage, writes data to the content
storage, or both. Corresponding boolean attributes of the Data Access Connection asso-
ciation specify whether the connection is directed towards the operation end, the content end,
or both. Figure 4.20 depicts an example including the graphical representation of data access
connections of the Review operation class to corresponding content model elements.

For example, the createReview class-level operation creates a new Review object and is con-
nected to the corresponding content model class, i.e., the Review class. This operation is con-
cerned with an object as a whole, thus its scope is the class and accordingly the target of the
data access arrow is the header of the Review content model class. Note that the arrow is bidi-
rectional indicating that the operation modifies the Web application’s content and also receives
data from the content storage, i.e., the newly created Review object. Note that there are also
further operations that have the scope of a whole object, e.g., the edit and delete operations.
These are all connected to the header of the Review class.

The scope of an operation may also be a single attribute. This is the case for the so-called
getter and setter operations. An example is the getTitle operation of the Review operation class.
It is connected directly to the Title attribute of the Review content model class. Of course,
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BookPortal

createReview(Title: String, %
Text:String,
Score: Integer): Review
getReviewList(): Review[] €-- - ‘

selectReview(<args>): Review[] [ e |

edit(Title: String, Text: String, Score: Integer): Review [#--------——————————————————————————, ]
delete) e i

getTitle(): String 1
setTitle(Title: String) e !

Operation
Model

,,,,,,,,,,,,

I

I

I I I
I I I
I I I
I I I
A
I I I
BookPortal | | |
i i i
I I I
I I I
I I I
I I I
I I I
I

P - Comment
{abstract}
CommentDate: Date

Title: String

Abstract: String

Pages: Integer |

* ! 1
!

Content
Model

---1—» Title: String
Text String
Score: Integer

Publication Review

Figure 4.20: Operation Model - Content Model Connections Example

this operation only reads data thus the data access arrow is directed from the attribute to the
operation signature. In contrast to that, the setTitle operation, which alters the value of the
Title attribute of a Review object, has a data access arrow that is directed from the operation
signature to the attribute.

Finally, operations that manage relationships between objects are connected to the corre-
sponding association or association class. For example, in Figure 4.20 the addPublication op-
eration is connected with a bidirectional data access arrow to the Comment association class
indicating that the operation manages the Comment relationship between Publication and
Review objects.

Note that the target (scope) of an operation in the Content Model does not exactly correspond
to the level (see Section 4.4.2.1) of the operation, but they come close. Class-level operations are
always connected to the header of the corresponding content class. Similarly, association-level
operations are always connected to the association or to the association class, for which they
provide data management functionality. However, instance-level operations are more diverse.
If the operation concerns the whole object (e.g. edit), it is connected to the class. Otherwise, i.e.,
if the operation manages a single attribute, then it is connected directly to the attribute.

The semantics of model connections between the Content Model and the Operation Model
are straightforward. They visualize for each operation the manner of data access, i.e., what
is accessed by the operation and how it is accessed (read/write). Also, the semantics of data
access connections of standard operations is the same for all classes, e.g., the getter operation
provides read access to a single attribute, no matter to which attribute in which class it belongs.
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Therefore, an appropriate CAWE tool may generate these connections automatically. Note that
composite and custom operations do not have data access connections to the Content Model.
Both operations combine standard operations, which have their own connections.

4.4.4 Notation Variations

Although data access connections can be very helpful to provide a quick overview over the
way operations access content, their number can grow fast. Note that Figure 4.20 shows only
a single operation class and it even omits some operations. However, similarly to the Content
Model the flashWeb method defines alternative notations for the Operation Model as well.
These notation variations ensure that data access connections, which are not in the focus of
concern, may be temporarily hidden.

The operation model in Figure 4.21 depicts the Review class, which is displayed with this
minimzied notation. Observe the arrows symbol on the right-hand side of the class header
indicating that the class is minimized and that operations of this class are hidden. Given an
appropriate CAWE tool that is able to manage flashWeb models, the developer may minimize
all operation model classes that are not relevant for him and focus on a few classes that are
in the focus of his interest. Analogously to the content model, operation packages may be
represented with the minimized notation as well.

BookPortal
getReviewList(): Review(] ettt .
: Operation
edit(Title: String, Text: String, Score: Integer): Review [€-------------—-—-----———~—-—~—-—~———+ | i
getTitle(): String K=====ssssscccccamamzaas 3 3 Model
U | |
getPublication(): Comment s | b
deletePublication() i | ! !
|
L | o
! :
o | .
BookPortal 3 ! } ! i
T ! A
A : v | ! ! !
Pibiesien _commen: [
I I
r I
{abstract) CommentDate: Date i i i
Title: String ! ! ! Content
Abstract: String | v v
Pages: Integer : m Model
* { 1
‘ L
Publication Review

Figure 4.21: Minimized ContentClass Example

Note that minimized notations in the content model and the operation model also effect the
visualization of data access connections between the models. For example, if a data access con-
nection points from a getter operation to an attribute of a content class and the visualization of
the class is changed to the minimized notation, then the corresponding attribute is hidden and
the data access connection cannot be attached to it. Thus, if model elements that are connected
through data access connections are minimized, then the connections have to be adapted as
well. The minimized notations may be applied to different models (content and operation)
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and at different levels (classes, packages), thus, if the developer employs the minimized nota-
tion, then a large number of different configurations may occur. Subsequently, the most im-
portant variations are introduced using the example from Figure 4.20. However, for the sake
of simplicity, subsequent examples omit most operations of the Review operation class. The
remaining operations are sufficient to demonstrate the nature of graphical minimizations that
affect data access connections. Note that the Publication operation class and its connections
are omitted as well. Figure 4.21 depicts the case where a content model class is minimized.

This minimization step affects only data access connections that were attached to attributes
of the Review content class, i.e., getter and setter operations of the Review operation class.
The only difference is that data access connections cannot be attached to the corresponding
attributes anymore, thus they are attached to the left-hand side of the class header. This way
it is signalized that these connections have different semantics than connections, which are
attached to the top of the class header.

A further minimization step may be applied to an operation class. This case is depicted in
Figure 4.22.

BookPortal

M Operation
T Model

BookPortal

I
I
I
I
I
L
I
I
I
I
I
I
I
|
- . v
PEBIcEen __Comment__
{abstract}
CommentDate: Date

Title: String Content

Abstract: String
Pages: Integer 3 ) m Model
© | 1
L

Publication Review

Figure 4.22: Minimized OperationClass Example

In this example, the Review operation class is minimized, thus all operation signatures of the
class are hidden. Of course, data access connections that were attached to operation signatures
must be adapted accordingly. To this end, the three remaining data access connections that
originate from the Review class and are attached to the Review content class and the Comment
association class indicate that the Review operation class includes one or more corresponding
operations. Note that these connections are not directed as they cannot be associated to single
operations.

A further option to achieve a minimized notation of the content model is to hide associations
of a class as described in Section 4.3.4. Figure 4.23 demonstrates this option by hiding the
Comment association between the Review and Publication classes.

Note that both content model classes have the A-symbol in their class headers indicating that
they participate in an association, which is currently not visible. Of course, if an association or
an association class is hidden, then data access connections that were attached to them cannot
be visualized. This can be observed in Figure 4.23, where the Review operation class has only
connections to the Review content class.
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BookPortal

Operation
m ,,,,,,,,,,,,, Model

BookPortal

Publication A i
{abstract} !

Title: String Content
Abstract: String ‘ Model
Pages: Integer L Review A §

Figure 4.23: Hidden Association Example

Finally, both models provide the option to minimize one or more packages. Figure 4.24
depicts an example of a minimized operation package.

Operation
Model

BookPortal

Publication A [ S ‘
{abstract} ! 3
Title: String } | Content

Abstract: String ‘
Pages: Integer —=== Review A Model

Figure 4.24: Minimized OperationPackage Example

Of course, if a package is minimized, there are not many data access connections left to be
visualized. The current example depicts two connections from the minimized BookPortal
operation package to the minimized Review content class indicating that the package has an
operation class that accesses content defined by the content class. Note that in this setting the
Publication class normally has the same connections as the Review class, because the op-
eration model does define a Publication operation class that includes corresponding opera-
tions. However, the Publication operation class has been omitted in all previous examples
for the sake of simplicity, thus its connection to the content model is omitted here as well.

4.4.5 Summary

The Operation Model of the flashWeb approach is a unique characteristic among Web engi-
neering methods. Most methods usually concentrate on content or on hypertext modeling and
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neglect handling data management operations properly. Those methods that do consider op-
erations usually do so at an abstract level and integrate operation specifications into existing
models. Note that in Section 3.4 a set of typical Web engineering methods has been introduced.
Corresponding sub-sections explain how these methods handle operations. For example, the
OOHDM (Section 3.4.2) and the UWE (Section 3.4.3) methods do not provide modeling con-
structs that specify standard operations. With these methods, it is only possible to specify cus-
tom operations without predefined semantics which are integrated into their content models.
In contrast to that, the WebML method (Section 3.4.4) considers standard content management
functionality. However, it integrates operations into its Hypertext Model, which creates an
unnecessary complex graphical notation.

The separate Operation Model of the flashWeb method benefits the Web application devel-
opment process and aids the developer in different ways. It provides a clear separation of
concerns, which is helpful for creating and maintaining the models. For example, during the
design phase of a development project a domain modeling expert may create the Web applica-
tion’s content model and another expert may create and extend the operation model with a set
of business logic operations containing complex computations. Thus, one advantage of sepa-
rate models is their support for dividing the overall problem into easier manageable pieces and
allowing developers to work on partial solutions in parallel. Furthermore, this clear separation
of the Web application’s design makes it much more easy to overview its functionality, which
may be very beneficial, if it has to be extended or errors have to be found. Also the explicit and
precise specification of operations makes it possible to integrate them seamlessly into the user
interface in a flexible way. Modeling the user interface and integrating content management
functionality will be the topic of subsequent sections.

4.5 Composition/Navigation Model

The Composition/Navigation Model of flashWeb defines the Web application’s user interface.
As the name of the model suggests, its purpose is twofold. First, it provides a set of graphical
model elements, which allow piece-by-piece composition of user interface pages. Second, it
allows to connect different model elements by navigation edges thereby defining the Web ap-
plication’s navigation structure. Furthermore, most model elements may be graphically con-
nected to the Operation Model in order to integrate content management operations into the
user interface. Section 4.5.1 provides a detailed overview of general concepts of the model and
Section 4.5.2 presents the list of the most important model elements.

4.5.1 General Concepts

Most elements of the Composition/Navigation Model rely on the same set of basic modeling
concepts, which are introduced in this section. First, many model elements may contain sub-
elements in order to recursively construct parts of the user interface. This aspect is described in
Section 4.5.1.1. Second, each model element defines a namespace of variables that may be used
to store input and output data for a user interface component. The concepts of variables and
namespaces are explained in Section 4.5.1.2. Third, some model elements may be connected to
operations of the Web application’s operation model. The nature of these connections and their
relationship to namespaces is described in Section 4.5.1.3. Fourth, navigation edges, which

135



4 Modeling Web Applications with flashWeb

define the Web application’s navigation structure are explained in Section 4.5.1.4. Finally, Sec-
tion 4.5.1.5 introduces the notion of conditions, which determine whether a component of the
user interface is displayed. Figure 4.25 depicts a generalized example that illustrates the most
important concepts of the Composition/Navigation Model.

var_a: Type_A

Element B var_c: Type_C . . .
var_b: Type_B var b b var c Composition/Navigation
{var_a = value_a} = = Model

o

OperationPackage

OperationClass

var_a P param_a Opoeration

,,,,,,,,,,,,,,,,, ) H .
e e operation(param_a): Type_B Model

Figure 4.25: Composition/Navigation Model Concepts

4.5.1.1 Recursive Composition

Similarly to the other flashWeb models, the Composition/Navigation Model provides a set of
graphical model elements, which may be combined in different ways to build the model, i.e.,
the Web application’s user interface. Each element specifies certain user interface functionality,
e.g., data display or data manipulation. In many cases, a model element is allowed to include
child elements, which define a certain part of the functionality specified by the element. Using
such model elements, the Web application’s user interface may be constructed in a recursive
manner. The graphical notation for sub-element inclusion is simple and intuitive. All child
elements are placed inside the graphical representation of the parent element. Observe the
elements A and B on the left-hand side of the composition/navigation model in Figure 4.25.
Element B is a child component of element A, which is made obvious through the graphical
representation. Note that this example contains a fair amount of further information, which is
to be ignored at this point. Subsequent sections will provide appropriate explanations.

4.5.1.2 Variables

Each element of the Composition/Navigation Model may define an arbitrary number of vari-
ables. A variable is specified by a name and a type, which determines what kind of data the
variable may hold. For example, element A in Figure 4.25 defines a variable with the name
var_a and the type Type_A. The purpose of a variable is to store data that is required by a cer-
tain element, e.g., to display the data. Variable names that are defined for a single element
build the element’s namespace.
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Of course, at modeling time there is no data flow and variables do not actually store data.
This is only the case if the models are used to generate an implementation, which is executed
in an appropriate runtime environment. Thus at modeling time, a variable is just a name that
may be used in mappings between namespaces in order to indicate which model elements (e.g.
operations) provide data and which elements receive it.

Note that in case of nested element structures a child element includes all variables of the
parent element’s namespace. This fact is not expressed in a graphical manner and has to be
kept in mind by the developer. For the current example this means that element B also includes
the variable var_a from the namespace of element A into its own namespace. Thus, if element
B had a child element that would require content of type Type_A, it would be no problem to
assign the variable var_a to it. Note that the expression in curly braces is a condition, which will
be explained in Section 4.5.1.5. However, you may observe that the condition also references
the variable var_a although defined in element A.

Also note that the Composition/Navigation Model employs the notion of an element’s con-
text. The context is the set of those variables from the element’s namespace that are actually
used by the element. A certain element may define an arbitrary number of variables but usu-
ally it only requires a few of them to fullfill its purpose, e.g., to display the data provided by
certain variables. The definition of the context also considers nested element structures. If a
child element requires a variable, i.e,, it is in its context, then it also belongs to the context of
the parent element. For example, the context of element B in Figure 4.25 includes the variables
var_a and var_b. It uses var_a in a condition and it forwards var_b to another element (see Sec-
tion 4.5.1.4). The context of element A is the same (i.e. var_a and var_b), because it is the parent
of element B and it does not require any further variables. In contrast to that, the context of
element C is empty because it does not use the variable var_c in any way.

4.5.1.3 Operation Calls

A unique feature of the flashWeb method is its ability to connect different models graphically
in order to show model dependencies and to define application logic. In Section 4.4.3 connec-
tions between the Operation Model and the Content Model were introduced. However, those
connections have merely informational value. They express certain semantics that cannot be
changed. In contrast to that, connections between the Composition/Navigation Model and
the Operation Model are much more dynamic and also much more relevant for the application
logic. A single connection of this type is called an operation call and specifies which operation
of an operation model is used by a certain element of a composition/navigation model.

Elements of the Composition/Navigation Model are generic in nature, thus they do not spec-
ify what actual data they display or manage. This information is provided by operation calls.
For example, if a certain element can display a list of objects, it does not specify what type
of objects it requires or how many of them. If the element is connected to an operation that
delivers Book objects (see Section 2.2.3), then it displays books, if it is connected to another
operation that returns Author objects, then it displays authors. Correspondingly, the Web ap-
plication developer may integrate content and functionality into the user interface in a very
flexible and powerful way.

The graphical representation of an operation call is a dashed arrow between an operation
signature and the port of a Composition/Navigation Model element. The port is represented
by a small numbered square at the bottom of the element. Note that depending on the element
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type it may possess several ports, which are sequentially numbered. An operation call also
specifies a mapping of input and output values between the element and the operation, and
the graphical connection representing the operation call may be unidirectional or bidirectional.
If an operation requires parameters, then corresponding mappings are provided on the right-
hand side of the connection and it is directed towards the operation signature. Note that, if the
operation requires a context (see Section 4.4.2.1), then instead of a parameter name the special
keyword “context” is used. If an operation returns a value, then a mapping on the left-hand
side of the connection maps the return value to a variable of the element’s namespace and the
connection is directed towards the element’s port.

These characteristics may be observed in Figure 4.25. Element B has a single operation port,
which is connected to the example operation’s signature. The operation requires the parameter
param_a, which is provided by the mapping on the right-hand side of the connection. This
mapping specifies that the variable var_a is mapped to the parameter param_a. The second
mapping on the left-hand side of the connection maps the result of the operation to the variable
var_b in the namespace of element B. Note that the connection is bidirectional as the operation
requires parameters and returns a value.

4.5.1.4 Navigation Structure

The navigation structure of the Web application is defined through directed solid edges be-
tween elements of the Composition/Navigation Model. Similarly to operation calls, naviga-
tion edges may also provide mappings that map variables of two different namespaces. The
purpose of these mappings is to specify value transfers between components of the user inter-
face. Of course, the actual transfer may only take place during the execution of a Web applica-
tion that has been generated from the model.

Figure 4.25 provides a simple example of a navigation step between element B and element
C. Variable var_b from the namespace of element B is mapped to variable var_c of the names-
pace of element C. Thus, user interface components that may be defined under these elements
may access the same value under different names.

4.5.1.5 Conditions

The last concept of the Composition/Navigation Model is the possibility to specify condi-
tions that determine whether a certain user interface component defined by a model element
is included into the Web application’s user interface. A condition may be included into the
specification of any model element and it will be evaluated during the execution of an imple-
mentation that was generated from the model. If the condition is satisfied, the corresponding
component is included into the user interface.

A condition is specified in curly braces under the variable definitions in the top left corner of
amodel element. It may use binary arithmetic operators (=, #, <, >, <, >) to compare variables
and values of basic data types. Additionally, comparisons may be combined with the Boolean
operators AND, OR and NOT. Accordingly, a condition is always a boolean expression that
may be evaluated to true or false.

Figure 4.25 includes an example condition for element B testing whether the variable var_a
has the value value_a. Note that, instead of a comparison, an expression or a part of it may con-
sist of a single variable. In that case, the expression evaluates to true if the variable exists and
has a value that itself evaluates to true. In this context, any value that is not false is treated as
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true. For example, the condition {var_b} may be used to test whether this variable has actually
a value.

4.5.2 Model Elements

There are four basic categories of Composition/Navigation Model elements. Structure ele-
ments mainly serve as containers for other elements. In most cases, they also serve as child
elements allowing the definition of nested containment hierarchies. Content elements inte-
grate pieces of the Web application’s content into the user interface, i.e., they display one or
more objects or calculated values. Data-entry elements provide for the user different ways to
modify the Web application’s content. Data that is selected or entered is forwarded to an op-
eration or to another Composition/Navigation Model model element. Navigation elements
define navigation edges that connect elements of the Composition/Navigation Model thereby
defining the Web application’s navigation structure. Note that these categories only define
the main purpose of a certain model element. There are several elements that combine more
than one of these aspects in some way and therefore belong to several categories. Subsequent
sections introduce all elements of the model one by one.

4.5.2.1 User Profile

A UserProfile is a structure element that holds the complete user interface specification for
a certain user group. Usually, a Web application provides a different interface for different
user groups. For example, administrators may access certain areas and functionality of the
application, which is prohibited for standard users. Note that user profiles cannot overlap
thus a certain profile has to include all elements that define the user interface for a certain user
group. Also note that the UserProfile element may contain only Page elements as direct
child elements.

The graphical representation of a user profile employs the same notation as the Package
element of the Operation Model. Observe the Standard user profile on the right-hand side of
Figure 4.26 containing a single Page element.

4.5.2.2 Page

The Page element represents the most basic concept for structuring the Web application’s user
interface. Of course, for each Web application the number of actual pages may vary consid-
erably. Some applications consist of a few pages that offer information in a highly dynamic
manner, e.g., using the Ajax technology set. Other, more conventional applications redirect the
user more often to a new page in order to update the user interface. Anyway, the concept of a
user interface page (Web page) is indispensable. Accordingly, the flashWeb method employs
the Page element to model a page of the user interface. Figure 4.26 illustrates the syntax of this
element and also provides an example using the Book Portal (see Section 2.2.3 application.
The left-hand side of the figure depicts the generalized notation of the Page element. The
graphical notation consists of two parts. The header section shows the name of the page and
displays a small page icon on the right-hand side, whereas the body section includes variable
definitions and an area where child elements may be placed. A Page element may contain an
arbitrary number of other model elements. Of course, it may not contain other pages because
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Figure 4.26: The Page Element

a page is only allowed as direct child element of a user profile. Also, the Page element may
have an arbitrary number of ports, which may be connected to arbitrary operations.

The right-hand side of Figure 4.26 depicts a simple example including the Authors page,
which has no sub-elements but defines the authors variable that may store a list of Author
objects. The only port of the Page element is connected to the getAuthorList operation of the
Author operation class which delivers all authors of the Book Portal. In this example the
authors variable is only used to store authors and is not accessed by any further model element.
Of course, the page element could contain sub-elements that make use of the authors list.

4.5.2.3 Area

The Area element may be used to partition a single user interface page into several areas.
An area element may include an arbitrary number of child elements including other Area
elements, thus it facilitates the definition of an arbitrarily nested page structure. Figure 4.27
depicts the element’s syntax and a simple example.

The graphical notation of the Area element, which is depicted on the left-hand side of the
tigure, is almost identical to the notation of the Page element. The element’s header displays
a name and an icon and the body section contains variable definitions and a sub-element area
for child elements. Also it may have an arbitrary number of ports. The only difference is that
this element may additionally specify a condition (see Section 4.5.1.5), which appears under
the variable specifications.

The right-hand side of Figure 4.27 shows a simple example depicting the Authors page, which
now includes an Area child element with the name “Authors Area”. In contrast to the previous
example, here the getAuthorList operation is connected to a port of the Area element and not
to a port of the Page element. Correspondingly, the area specification also contains the authors
variable, which is mapped to the result of the operation. Additionally, the area specification
includes the simple condition {authors}, which checks whether the variable has a valid value.
In this trivial example, this is always the case because the corresponding operation always
delivers a true value.
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Figure 4.27: The Area Element

4.5.2.4 Label

A very simple but important element of the Composition/Navigation Model is the Label
element. It allows the specification of a simple label that may show arbitrary text provided by
the application developer at modeling time. A label may be used as a companion for many
other elements that need to be described with a piece of text. For example, a model element
that presents a list of content objects usually does not have an explicit header, which states the
purpose of the list. Therefore, a Label element providing the text “Author List” may inform
the Web application’s user that the corresponding user interface element represents a list of
authors. In contrast to that, the text “Author Index” may indicate that the user may not only
view information about authors but also select a single author from the index. Figure 4.28
shows the general notation of the Label element and also a usage example.

Standard

Authors

<content>

Authors Area W

<condition>
authors: Authorf]
Author List Lol 2o
<mappings> {authors}

v

Figure 4.28: The Label and Link Elements

The general graphical notation of the Label element, which may be observed on the left-
hand side of the figure is simple. In contrast to most other model elements, it does not have
a header but only a body section. It contains the textual content that is to be presented on the
user interface and an optional condition.

The right-hand side of Figure 4.28 shows an example for the usage of the Label element.
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This example includes the Authors page, which contains an Area element with the name “Au-
thors Area”. This area is supposed to show information about authors, e.g., an author listing.
To this end, it contains the authors variable, which provides the corresponding list of Author
objects. Note, however, that the model element specifying the author list is omitted in this
example for the sake of simplicity. In order to describe the author listing, the example contains
a Label element with the text “Author List”. The element also contains a simple condition,
which makes sure that the label is only shown if there are actually any objects to show.

4.5.2.5 Link

The concept of navigation steps that define the navigation structure of the Web application has
been already introduced in Section 4.5.1.4. The corresponding member of the Composition/-
Navigation Model that may be used to specify a navigation step is the Link element. Any
model element that provides some kind of navigation functionality relies on this element in
order to specify the next node in the navigation path. To this end, the Link element is used to
graphically connect the anchor element and the target element in the model.

The general graphical notation of the Link element is a solid directed arrow, which is de-
picted on the left-hand side of Figure 4.28. Optionally, the arrow may be labeled with names-
pace mappings that associate a variable of the anchor element’s namespace to the target ele-
ment’s namespace (see Section 4.5.1.2 and Section 4.5.1.4).

A simple example for the usage of the Link element is depicted on the right-hand side of
Figure 4.28. The Authors page contains a Labe 1 element with the text “Go to Books”. This label
serves as the anchor element of the link, which points to the Books page. The Label element
and the Link element together specify a hyperlink of the user interface. Note that the contents
of the Book page are omitted for the sake of simplicity.

4.5.2.6 Action Link

The ActionLink element specifies a user interface component that allows the Web applica-
tion’s user to take a navigation step and to simultaneously execute a content management
action, i.e., execute an operation from the Web application’s operation model. To this end, the
element combines features of the Label and the Link elements that were introduced previ-
ously and it uses an operation call (see Section 4.5.1.3) allowing to be connected to an operation.
Figure 4.29 shows the general notation of this element and provides a usage example.

The graphical notation of the Act ionLink element that is depicted on the left-hand side of
the figure is self-explaining if one is familiar with model elements that have been introduced
in previous sections. Basically, it is composed of a Label element that has additionally a port,
which may be connected to an operation. Furthermore, this element integrates a Link element
that may be connected to another component of the model, e.g., a Page element.

The right-hand side of Figure 4.29 depicts an example illustrating a possible usage scenario
for an ActionLink element. The Author page includes an Area element with the name “Au-
thor Area”, which presents information about an author. Details of this presentation are ir-
relevant for this example thus they are omitted. Next to this area is an ActionLink element
baring the text “Delete Author" that specifies a user interface component allowing to delete
the Author object that is currently viewed from the Web application’s storage. This may be
an important functionality for a site administrator. Correspondingly, the operation call of the
ActionLink element is connected to the delete operation of the Author operation class. The
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Figure 4.29: The ActionLink Element

Author object from the author variable of the Author page is provided to the operation as con-
text. Finally, the link of the ActionLink element is connected to the Authors page, thus after
deleting an Author object the Web application’s user is directed to a page that for example
presents the list of all authors.

4.5.2.7 Content ltem

A ContentItem element integrates a single piece of information into the Web application’s
user interface. This information may be a simple value of a basic data type, e.g., the last name
of an author or the textual representation of an object, e.g., a comma-separated list of all object
attributes. Figure 4.30 shows a general graphical representation of this element and a usage
example.

The graphical notation of the ContentItem element may be observed on the left-hand side
of the figure. The body section of this element displays a solid line, which is the characteristic
icon identifying a content item. Besides the icon the body section may contain a condition. The
header section shows the element’s context, i.e., a single variable that provides content for this
element. Note that the context for this element may originate directly from an operation call or
from a variable of the parent element’s namespace. If the context originates from an operation
call, then the element’s port is connected to an operation in the usual way and the name to
which the operation’s result was mapped is displayed in the header. However, if the context is
a variable from the parent element’s namespace, then there is no operation call, the element’s
port is not displayed and the header just shows the name of the corresponding variable.

These two cases are demonstrated by the example on the right-hand side of Figure 4.30.
The Author page includes two ContentItem elements and defines the author variable in its
namespace. Note that the origin of a value for this variable is not relevant for this example.
Thus, just assume that it stores an Author object. The first content item on the left-hand side
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Figure 4.30: The ContentItem Element

of the Author page is connected to the getLastName operation. The author variable is mapped
to the context of the operation and its result to the name “lastname”, which is displayed in the
content item’s header. Obviously, this content item receives its context, which is the author’s
last name from the connected operation. This content item also specifies the {author} condition,
which makes sure that the item is only shown if the author variable exists and has a valid value.

The second content item on the right-hand side of the Author page receives its context from
the author variable of the page’s namespace. Accordingly, this variable and its type are shown
in the element’s header. Therefore, this content item represents an Author object in a simple
textual form. This content item uses the same condition as the first example.

4.5.2.8 Object View

A very common requirement for a Web application is to display data about a single object in a
structured way. This requirement is fulfilled by the Object View element. In contrast to the
ContentItem element, which may also display single values, the ObjectView element can
also represent an entire object at once. To this end, it provides the list of the object’s attributes
together with corresponding attribute values. A suitable rendering of this element may be a
simple two-column table. The first column may contain attribute names and the second the
attribute values. Of course, the model element itself does not suggest a specific rendering, thus
alternative representations are possible. Figure 4.31 depicts the general notation of this element
and also provides an example demonstrating how it may be used.

The general notation of the ObjectView is depicted on the left-hand side of the figure. The
element’s body section contains the icon, which is a simple rectangle, and a condition, which
is optional. The element’s header shows the context specification, i.e., a single variable that
provides the object to be shown. As usual, the context may originate from an operation call
or from a variable of the parent element’s namespace. The element possesses a single port
that may be connected to an operation or hidden, if the context is a variable from the parent
element’s namespace. In both cases, the origin of the input is indicated in the header section.
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Figure 4.31: The ObjectView Element

The right-hand side of Figure 4.31 depicts an example demonstrating both cases. The Authors
page defines the author_id and another_author variables. Note that for this example the origin
of the values of these variables is not important. Assume that the author_id variable stores an
integer and that the another_author variable stores an Author object.

The Authors page contains two ObjectView elements. The first one on the left-hand side
receives its input from the getAuthor operation, thus its port is connected to the operation’s
signature. Note that this operation returns an Author object if it is provided an appropriate
id. Correspondingly, the author_id variable is mapped to the Id parameter of the operation.
This object view also specifies the {author} condition, thus it is only shown if the operation
returns an appropriate result.

The second ObjectView element on the right-hand side of the Authors page receives its
context from the another_author variable. This is indicated by the context specification in the
element’s header. Similarly to the other object view, it specifies a condition, which makes sure
that data is only presented if there is a valid input value. Ultimately, both elements represent
an Author object.

4.5.2.9 Object Editor

The aim of the flashWeb Web engineering method is to allow the specification of Web appli-
cations that provide full content management capabilities. To this end, the method utilizes
appropriate content management operations (see Section 4.4) that provide read and write ac-
cess to the Web application’s content. However, these operations have to be leveraged by cor-
responding user interface components in order to allow the Web application’s user to access
them. The ObjectView element that have been introduced previously is concerned with the
appropriate presentation of a single content object on the user interface, i.e, it provides read
access to the Web application’s content. In contrast to that, the aim of the Object Editor
element is to allow the modification of an existing object, i.e., to provide write access. To this
end, the rendering of this element usually includes a Web form, which allows the Web appli-
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cation’s user to input new values for object attributes. Figure 4.32 depicts the general notation
of this element and provides a corresponding usage example.
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Figure 4.32: The ObjectEditor Element

The left-hand side of the figure depicts the general notation of the ObjectEditor element.
The element’s header shows the context, which is a single variable containing an object that is
to be modified. The body section contains an icon and an optional condition. Also the element
has a single port that may be connected to an operation that delivers the context object. Of
course, as usual the context may originate from the parent element’s namespace in which case
the port is not displayed. Finally, the ObjectEditor element has a single Act ionLink (see
Section 4.5.2.6) as sub-element. This sub-element has a single port that may be connected
to an operation that actually carries out the modification of the context object. Additionally,
the element has a navigation arrow that may be connected to a Page or an Area element.
A possible rendering for the ActionLink sub-element is a user interface button that may
be activated by the Web application’s user in order to call the corresponding operation and
possibly to navigate to another user interface page.

The right-hand side of Figure 4.32 depicts an example that illustrates how the ObjectEditor
element may be used. The Edit Author page on the left-hand side contains a single ObjectEditor
element, which has the author variable from the page’s namespace as context. The port of the
contained ActionLink element is connected to the edit operation of the Author class which
is responsible for the modification of an Author object. The labels of this connection indicate
that the result of the operation is mapped to the author variable and that the ObjectEditor
element provides values for all attributes of an Author object as parameters of the edit opera-
tion. Note that a trivial mapping, which has the same name as source and target, e.g., “First-
Names » FirstNames” is abbreviated through “FirstNames”. Finally, the navigation arrow of
the ActionLink element is connected to the Author page, which presents information about
the edited Author object utilizing an ObjectView element.
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4.5.2.10 Object Creator

The Composition/Navigation Model of the flashWeb method supports all standard content
management operations that are offered by the method’s Operation Model (see Section 4.4).
Accordingly, it does not only provide user interface components for presenting or modifying
existing content objects but also an appropriate component for creating new instances. This
content management operation is facilitated by the ObjectCreator element. Figure 4.33
depicts the general notation of this element and provides an example.
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Figure 4.33: The ObjectCreator Element

The left-hand side of the figure depicts the general notation of the ObjectCreator element.
The element’s header section specifies the type of the object that is to be created. The body
section contains an icon (rectangle with three dots) an optional condition and an ActionLink
sub-element. The operation port of the ActionLink may be connected to a create operation
that actually creates a new instance of the designated type. Additionally, the navigation link of
this element may be connected to a page that is presented to the Web application’s user after
the new object has been created. A typical rendering of the ObjectCreator element includes
a form that allows the user to input values for each attribute of the object to be created. The
ActionLink sub-element is usually rendered as a button, e.g., bearing the label “Add”.

The right-hand side of Figure 4.33 depicts a usage example for the ObjectCreator ele-
ment. The example includes two pages. The first one is the Add Author page, which contains
an ObjectCreator element that is set up to create an Author object. To this end, the oper-
ation port of the ActionLink sub-element is connected to the createAuthor operation of the
Author operation class. The ObjectCreator element provides all necessary parameters for
the operation, i.e., the first name, the last name, and the biography of the author. The return
value of this operation is the newly created Author object. Observe the navigation link of the
ObjectCreator element, which forwards the newly created object to the Author page. This
page contains a simple ObjectView element that presents the newly created object.
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4.5.2.11 Obiject List

A common presentation pattern for Web application data is an object listing. Of course, there
are different ways to represent a list of objects thus an appropriate model element has to be
customizable. This task is tackled by the ObjectList element. It supports two different ways
to present an object listing. First, if the presentation is not further specified by one or more
sub-elements, then this element provides a standard representation. For example, the list of
objects may be displayed in a simple table having a column for each object attribute and a row
for each object showing appropriate attribute values. Second, the appearance of an entry in
the object list may be specified arbitrarily by one or more sub-elements. For example, several
ContentItem elements may be used as sub-elements of the Object List element in order
to achieve a customized representation. To this end, the ObjectList element provides a
special item variable that represents a single entry from the list of objects that are presented.
Sub-elements of the ObjectList may use this iterator variable as their context.
Figure 4.34 depicts the generalized notation of this element as well as some examples.
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Figure 4.34: The ObjectList Element

The general notation of the ObjectList model element is depicted on the left-hand side of
the figure. The notation employs some usual concepts of the Composition/Navigation Model.
The element’s header section shows the context specification, the body section displays an
icon, includes variable specifications, a condition, and a sub-element area. Furthermore, the
element may have an arbitrary number of ports. However, as already pointed out, there are
two different ways to set up a ObjectList element and its features have to be combined
accordingly.

The first setup provides a simple standard representation of the object list, e.g., a tabular
view. To this end, the element’s port has to be connected to an operation or it may receive its
context from the parent element’s namespace. Additionally, a condition may be specified. This
case is demonstrated by the ObjectList element on the left-hand side of the Authors page in
Figure 4.34. The element’s first port is connected to the getAuthorList operation, which returns
a list of Author objects. The operation’s result is mapped to the authors variable, which is
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displayed in the element’s header, i.e., it is the element’s context. Furthermore, the variable is
used in the element’s condition.

The second case can be somewhat more complex, because the Object List element in-
cludes one or more sub-elements that specify the presentation of listed objects. In this case, the
element includes the special item variable, which may be used by sub-elements as context. This
variable represents a single object from the object list. Consider the second example in the mid-
dle of the Authors page. The context of this particular ObjectList element is the author_list
variable from the Authors page. The element contains a Contentltem sub-element, which has
the item variable as context. Accordingly, the presentation of each element in the object list is
defined by the Content Item sub-element, which may be rendered as a comma-separated list
of attribute values.

Of course, an ObjectList element may have an arbitrary number of sub-elements that
together specify the representation of an object list entry. The third example on the right-hand
side of the Authors page demonstrates how so-called iteration ports allow the specification of
operation calls that provide values, which may be included into the representation of an object
list entry. Note that the first port of an ObjectList element may be only connected to an
operation that delivers the general input for the element, e.g., a list of objects. Any further ports
of the element are iteration ports, which are assigned to the presentation of a single object. In
an actual implementation, all operations that are connected to iteration ports are executed for
each entry of an object listing. Note that an iteration port is represented by a dashed box in
contrast to a standard port that is depicted by a solid box. The context of the ObjectList
example on the right-hand side of the Authors page is the authors_list variable from the page’s
namespace. Note that the origin of content for this variable is irrelevant for this example.
Of course, the author objects could originate from the getAuthorList operation like in the first
example. Note, however, that the second port of the ObjectList element is connected to the
getLastName operation of the Author operation class. It uses the item variable as context and
delivers the last name of an author. This value is bound to the name variable, which, in turn,
serves as the context for the Content Item sub-element. Altogether, this example specifies an
author list, which displays for each author his last name.

4.5.2.12 Object Index

It is often the case that a Web application user wants to know more about a specific entry if he
is confronted with a list of objects. In this case, it is desirable for the user to be able to select the
corresponding entry, for example, by clicking on it in order to be directed to a page presenting
the follow-up information. This functionality is provided by the ObjectIndex element. Of
course, it is very similar to the ObjectList element, which represents a list of objects without
allowing the selection of an entry. Figure 4.35 depicts the generalized notation of this element
and a usage example.

The notation of the ObjectIndex element presented on the left-hand side of the figure is
almost identical to the notation of the ObjectList element. Correspondingly, all explanations
and examples provided in Section 4.5.2.11 are also valid for this element. The first of two minor
differences is a different icon, which is to be observed in the top-right corner of the element’s
body section. The second one is the additional navigation link, which allows to connect the
element to a follow-up page that usually represents detail information about the selected entry.
The navigation link may bear arbitrary variable mappings between the element’s namespace
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Figure 4.35: The ObjectIndex Element

and the namespace of the follow-up page. The special item variable in the element’s namespace
holds the entry that was selected by the Web application’s user.

The right-hand side of Figure 4.35 depicts a simple usage scenario. The Authors page in-
cludes a single ObjectIndex element that specifies an index of authors. To this end, the
element’s first port is connected to the getAuthorList operation of the Author operation class.
Correspondingly, the result of this operation, which is a list of Author objects constitutes the
element’s context. The item variable, which is of course of the Author type represents the se-
lected Author object. This variable is used in the mapping of the element’s navigation link,
which points to the Author page. The item variable is mapped to the author variable of this page
and is used by an ObjectView element in order to present detailed author information. Note
that both the ObjectIndex element in the Authors page and the ObjectView element in the
Author page include simple conditions, which ensure that the author listing and the author
view are only displayed if the corresponding variables contain appropriate values.

Note that the ObjectIndex element presented in this example could also contain sub-
elements in order to specify a more customized presentation of a single list entry. This pos-
sibility is omitted in the current example for the sake of simplicity. Observe the examples in
Figure 4.34, which contains such definitions.

4.5.2.13 Multi-level Object Index

Although a simple index is already a very useful structure for allowing the Web application’s
user to browse through the Web application’s content, sometimes it is desirable for an index to
have multiple levels. An extension of the author index example from the previous section may
additionally include the list of an author’s books on the follow-up page, which is presented to
the user after he selects an author entry from the index. However, this information may also
be presented by an index with two levels on a single page. The first level may show authors
and the second level for each author a list of his books. Listings and indexes with multiple
levels are usually rendered with a tree-like representation. This functionality is provided by
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the Multi-level Object Index element. Figure 4.36 depicts the generalized notation of
this element and an example implementing the mentioned two-level author index.
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Figure 4.36: The MultilevelObjectIndex Element

Naturally, the general notation of the MultilevelObjectIndex element is similar to the
notation of the ObjectIndex element, however there are some differences. First, instead of
a single variable the element’s header contains a set of variables, one for each level of the in-
dex. Second, the element’s body section contains for each level a separate sub-element area,
which may arbitrarily define the representation of entries at the corresponding level. Third,
the element provides for each level an operation port, which may be connected to an ap-
propriate operation that delivers values for the corresponding level. Note that this usage
of operation ports differs from that of other elements. For example, a Page element may
have an arbitrary number of ports that may be used independently. In contrast to that, an
ObjectList or ObjectIndex element has a first port that is responsible for delivering the
initial list of objects to be shown and all other ports, so-called iteration ports, are activated
once for each element of the initial list. Ports of a MultilevelObjectIndex element per-
petuate this concept indefinitely. Every port of this index depends on the port of the previous
level, thus it is activated once for every entry of the previous level. Note that all ports of the
MultilevelObjectIndex element are depicted with dashed squares in order to indicate
that they provide analogous functionality.

The right-hand side of Figure 4.36 depicts a simple example of aMultilevelObjectIndex.
The Authors page includes the index that lists authors at the first level and an author’s books
at the second level. To this end, the index has two ports that are connected to appropriate
operations of the Author operation class. The first port is connected to the getAuthorList
operation and delivers the list of all Author objects to the authors variable and the second
port is connected to the getBookList operation that delivers Book objects for an author to the
books variable. Both variables are displayed in the element’s header section. Note that the
MultilevelObjectIndex element utilizes a special variable for each level of the index which
may hold a single object of the corresponding type. For example, the item1 variable belonging
to the first level is of the Author type and may hold a single object of this type. These desig-
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nated variables serve two purposes. First, they may be used as context for subsequent levels.
Observe that the item1 variable holding an appropriate Author object is provided as context
for the getBookList operation. Second, they identify the object at a certain level that is selected
by the user. This is the case for both navigation links of the index element. The item1 variable
is mapped to the author variable of the Author page and the item2 variable is mapped to the
book variable of the Book page. The rendering of this example on the user interface is straight-
forward. The Authors page shows a two-level index. If the user selects an author at the first
level, he is directed to the Author page, if he selects a book at the second level, he is directed
to the Book page. Note that these follow-up pages are not detailed in Figure 4.36. Also note
that the representation of objects at the two levels could have been arbitrarily specified using
sub-element areas and further model elements.

4.5.2.14 Set Navigator

A presentation pattern that is often provided by Web engineering methods is the -called guided
tour, which allows the Web application’s user to visit several items of a homogeneous list in
a sequential manner. Usually, the view of an item provides links to the previous and the next
items of the list. This presentational pattern is supported by the SetNavigator element. Ad-
hering to the flexible nature of the flashWeb method, this model element is highly customiz-
able. It may represent any homogeneous set of objects that are returned by any operation of
the operation model. Furthermore, the actual object view that shows a single element of the
object list may be constructed using arbitrary elements of the Composition/Navigation Model,
e.g., one or more ObjectView or Content Item elements.

Note that the SetNavigator element is very similar to the ObjectList element that was
introduced in Section 4.5.2.11. The minor difference is that in contrast to the ObjectList
element, which presents a list of objects at once, the SetNavigator element presents one
object at a time and allows navigating to the next or previous objects. Note that regarding the
categories introduced at the beginning of Section 4.5.2, this element represents content and it
also provides navigational functionality.

The general syntax of the ObjectList and the SetNavigator elements is almost iden-
tical except for the different icons. In order to avoid repetition, subsequent explanations are
kept short. All descriptions of the previous section also apply to the SetNavigator element
including the examples provided in Figure 4.34. Figure 4.37 depicts the generalized notation
of this element and an example of a somewhat more advanced usage of the SetNavigator
element.

The generalized notation of the SetNavigator element on the left-hand side of the fig-
ure indicates the main characteristics of the element. The notation is identical to that of the
ObjectList element except for the different icon in the top-right corner of the element’s body
section.

The example on the right-hand side of Figure 4.37 demonstrates how elements of the Com-
position/Navigation Model and operations may be combined in a flexible way to define the
view that is presented to the Web application’s user for each object of the set. The current ex-
ample specifies a guided tour of authors and shows for each author some detail information
and the list of the author’s books. To this end, the Authors page contains a SetNavigator
element, which is connected to the getAuthorList operation that delivers a list of Author ob-
jects. The item variable, which in this case represents a single Author object, is used by the
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Figure 4.37: The SetNavigator Element

two sub-elements of the SetNavigator element. The first one is an ObjectView element
that uses the item variable as context in order to define a simple view of an author. The second
sub-element is an ObjectList element that specifies the list of the author’s books. To this
end, the item variable is passed to the getBookList operation as context, which delivers a list of
Book objects. This operation is connected to the first port of the ObjectList element, thus it
delivers it’s context, i.e., a list of books.

4,5.2.15 Menu

A common component of Web application user interfaces is a menu that directs the Web ap-
plication user to different parts of the application. The Composition/Navigation Model offers
the Menu element that provides corresponding functionality. Figure 4.38 depicts the general
notation and a simple menu example.
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Figure 4.38: The Menu Element
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The notation of the Menu element, which is depicted on the left-hand side of the figure, relies
on the usual concepts of the Composition/Navigation Model. Similarly to an Area element,
the header section shows the menu’s name, the body section holds an icon, variable definitions,
and a condition. A minor difference is that this element may have an arbitrary number of
subelement areas, one for each menu entry. Of course, each sub-element area may contain
an arbitrary definition of the corresponding menu entry, however, usually a simple definition
suffices, e.g., a Label element combined with a Link element. Finally, as many other model
elements, the Menu element may have an arbitrary number of operation ports.

The right-hand side of Figure 4.38 depicts an example, which defines the main menu of the
Book Portal application (see Section 2.2.3). The Menu element in the Book Portal page includes
three entries. Each entry is composed of a Label element and a Link element that points to
a corresponding follow-up page. As entries of the main menu are simple strings, it suffices
to use simple labels to specify them. Of course, in some cases menu entries may be more
dynamic, thus the usage of operation ports may be required to provide appropriate values and
ContentItem elements may be necessary to represent them.

4.5.2.16 Form

The ObjectCreator and ObjectEditor elements of the Composition/Navigation model
specify user interface components that allow the Web application’s user to create and modify a
content object respectively. These interface components utilize appropriate forms that contain
fields for each attribute of the corresponding object, thus the user may specify initial attribute
values for a new object or provide new values for an existing object. These values are used
as input for the add and edit operations of the target object’s operation class. However, the
operation model of a Web application usually includes a set of further content management
operations that may have alternative signatures. For example, setter operations require a single
parameter and custom operations (see Section 4.4.2.7) may have an arbitrary signature. The
integration of these operations into the Web application’s user interface requires a customiz-
able form, which may be adapted to the operation’s requirements in a flexible manner. This
problem is tackled with the Form model element, which allows the specification of a Web form
with arbitrary fields, specified by the Field element, thus it may be adapted to the parameter
requirements of an arbitrary operation of the operation model. Figure 4.39 depicts the general
notation of the Form and Field elements and provides a combined usage example.

The left-hand side of the figure displays the Form and Field elements. The Form element,
which is depicted at the bottom bears the name of the form in the element’s header section. The
body section contains an icon, an optional condition, a set of field areas, and an ActionLink
element (see Section 4.5.2.6). Each field area may contain a single Field element that provides
the specification of one field of the form. The label of the Act ionLink element may specify an
arbitrary string, however, values like “Save” or “Submit” are common. The operation call of
the ActionLink element may be connected to an appropriate operation that uses the values
provided by the form. Finally, the element’s navigation link may be connected to a Page ele-
ment that specifies the user interface page that should be presented to the user after activating
the form.

The Field element may be used in conjunction with the Form element to specify the fields
of the form. To this end, a single Field element is placed into each field area of the form,
which may have an arbitrary number of fields. The body section of the Field element shows
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Figure 4.39: The Form Element

an icon and specifies the field variable and the field type. The field variable is used to map the
field to a parameter of the connected operation. Note that the field variable has an appointed
data type that specifies what kind of data is required by the field. The field type specifies the
type of the field, i.e., whether a single value or multiple values are required or how the user
may interact with the corresponding user interface element. Common field types are “input
tield”, and “text field”, which specify a single-value field for String data or “selection” and
“multiple selection”, which allow the Web application user to select one or more values from
a predefined list. As a first possibility, the operation port of the Field element may be used
to connect the element to an operation that delivers an appropriate value or list of values to
be selected from. Alternatively, this context information may also originate from a variable of
the parent element’s namespace. In both cases, the header section of the Field element shows
this context specification. If the header section is empty, i.e., no context is specified, the field
has no predefined value, thus the user has to provide it.

The right-hand side of Figure 4.39 shows a simple usage example for the Form element.
The Author page displays information about an author employing an ObjectView element
that uses the author variable of the page as context. Additionally, this page includes a Form
element that allows to update the author’s biography. To this end, the form contains a single
Field element, which has the type “text field”. The field specifies the Biography field variable
of the String type which is used in the mapping of the field’s operation call to associate it to
the Biography parameter of the setBiography operation. Note that the author variable from the
page’s namespace is provided to the operation as context. Finally, the navigation link of the
forms ActionLink element points to the Author page, thus after activating the form the Web
application’s user remains on the same page.
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4.5.2.17 Association Creator

Previous sections have introduced different model elements that support content management
operations concerning the manipulation of a single object. The task of corresponding user
interface components is to allow the Web application’s user to view to create or to modify a
single content object. Note that there is no specific model element that supports the deletion
of an object. This task may be simply achieved by utilizing an ActionLink element and
connecting it to the appropriate delete operation.

However, manipulating objects in an isolated manner is only one side of the coin if it comes
to content management. Another important aspect is the management of relationships be-
tween objects. The first element of the Composition/Navigation Model that targets this prob-
lem is the AssociationCreator element. It specifies a user interface component that allows
the Web application’s user to associate two content objects regarding associations that have
been defined in the Web application’s content model. Considering the Book Portal application,
an appropriate example is associating Book objects to Author objects, thus for each author a
list of his books may be stored and vice versa. Figure 4.40 depicts the general notation of this
element and also provides a usage example.

Standard
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books: Book][]

Manage Author =

author: Author
books: BookI[]

O+0

item: Book
{author and books}

author: Author

<object>: <type>
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item: <type>
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v

—
{author}

|
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R | 2 Book Portal ! publication < item
i
i
|

Figure 4.40: The AssociationCreator Element

The left-hand side of the figure shows the general notation of the AssociationCreator
element. The element’s header contains two context variables. The first one specifies an object
for that an association is to be created. The second variable specifies a list of possible asso-
ciation partners. Correspondingly, this element possesses two operation ports that may be
connected to operations, which deliver appropriate context objects.

The element’s body section contains an icon (two rectangles with a plus sign between them),
the item variable, an optional condition, and an ActionLink sub-element. The task of the
item variable is to store an association partner that is selected by the Web application’s user.
It may be used as context or a parameter for an appropriate operation. The operation port
of the ActionLink sub-element may be connected to an operation that creates the association
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between the target objects. Its navigation link may be connected to a follow-up page that is pre-
sented after the execution of the operation. A possible rendering of the AssociationCreator
element presents a short info about the context object and a form that contains a selection field
of possible association partners and a field for each describing attribute of the association. The
ActionLink sub-element is usually rendered as a button, for example, bearing the label “As-
sociate”.

The right-hand side of Figure 4.40 shows an example of how the AssociationCreator el-
ement may be used. The Manage Author page provides the functionality for associating Author
and Book objects. To this end, the page contains the author and books variables. The origin of
values for these variables is not important for this example. The Author object that is to be
associated to a Book object is presented with a simple ObjectView element on the left-hand
side. The AssociationCreator element on the right-hand side of the page uses the author
and the books variables as context and also specifies a condition that checks whether these vari-
ables have valid values. The operation port of the ActionLink sub-element is connected to
the addPublication operation of the Author operation class. The author variable is provided
as context and the item variable, which holds the selected association partner, i.e., a selected
Book object, is mapped to the publication parameter of the operation. The navigation link of
the element points to a follow-up page, which is omitted in this example.

Note that the content model of the Book Portal example application (see Figure 4.3 in Sec-
tion 4.3) specifies the Book class as a specialization of the Publication class, thus the cor-
responding association-level operation in the Author operation class is called addPublication
and requires a parameter of the Publication type. Of course, any instances of a sub-class,
e.g., Book instances, are also allowed as valid parameters.

4.5.2.18 Association Modifier

The previous section introduced a model element that supports the association of two ob-
jects. Of course in many cases, an association between two objects is described by one or more
attributes. For example, the Comment association between the Review and Publication
classes of the Book Portal application is described by the CommentDate attribute (see Figure 4.3
in Section 4.3). In some cases, it is necessary to update attributes of an association without hav-
ing to redefine it, i.e., it should not be necessary to delete and recreate the association. To this
end, the Operation Model defines for each association an appropriate change operation. The
corresponding element of the Composition/Navigation Model that integrates this operation
into the Web application’s user interface is the Association Modifier element shown in
Figure 4.41. A typical rendering for this element is a Web form that provides fields for each
attribute of the association allowing the user to provide new values and issue the modification.

The left-hand side of the figure shows the general notation of the AssociationModifier
element. The element’s header contains a first context variable that specifies an object for that
an association attribute is to be modified. The second context variable may contain the associa-
tion partner. Accordingly, this element possesses two operation ports, which may be connected
to operations delivering the context objects.

Note that the second context variable and also the second operation port are optional. It
depends on the multiplicity of the association partner whether its specification is necessary
or not. For example, an author may write several books. Thus, if the Write association had
any describing attributes, the corresponding change operation of the Author operation class
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Figure 4.41: The AssociationModifier Element

and also any referring AssociationModifier elements had to provide a Book object as
association partner in order to make clear to which book instance the modified association
refers to. In contrast to that, if an object has only a single association partner, e.g., a review
always refers to a single publication, it is not necessary to specify the association partner.

The element’s body section contains an icon (two rectangles and a cogwheel), an optional
condition, and finally an ActionLink sub-element. Similarly to other model elements that
provide values as input for an operation, the AssociationModifier element includes an
ActionLink sub-element. The operation port of this sub-element may be connected to an
operation that modifies the attributes of an association between two objects. The element’s
navigation link may be connected to a follow-up page that is presented after the execution of
the corresponding operation.

The right-hand side of Figure 4.41 shows the usage of the AssociationModifier element.
This example demonstrates the modification of the CommentDate attribute of the Comment
association between a Review and a Book object. To this end, the Manage Review page contains
the review variable, which provides a Review object for that an association is to be modified.
The origin of a value for this variable is not relevant for this example. An ObjectView element
on the left-hand side of the page shows some supplemental information about the review.
The focus of this example is on the AssociationModifier element on the right-hand side
of the page. This element uses the review variable as context and the operation connector of
the ActionLink sub-element is connected to the changePublication operation of the Review
operation class. The review variable is provided to the operation as context along with the
single CommentDate parameter. Note that there is no need to define this parameter explicitly
as a variable in the element’s namespace. Finally, the navigation link of the element targets a
page that is omitted from this example for the sake of simplicity.
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4.5.2.19 Association Remover

The AssociationRemover is the last model element that deals with associations between
objects. As the name suggests, it specifies a user interface component that allows the Web
application’s user to delete an association between two objects. This is a common functionality
in any content management system. Assume, for example, that an administrator of the Book
Portal example application registers that he has associated the wrong author to a specific book.
In this case, the false association has to be removed from the system and the correct one has
to be created. A possible rendering for this element is a Web form that lists partner objects
that have been already associated to the target object. The form allows the selection of one
association partner that is to be removed from the list of associated objects and the initiation
of the corresponding operation. Figure 4.42 depicts the general notation of this element and
provides a usage example.
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Figure 4.42: The AssociationRemover Element

The left-hand side of the figure shows the general notation of the AssociationRemover
element. The element’s header contains two context variables. The first one specifies an object
for that an association is to be removed. The second one specifies a list of already associated
partner objects. This model element possesses two operation ports that may be connected to
operations, which deliver values for the context variables.

The body section of the element contains an icon (two rectangles with a minus sign between
them), an optional condition, and an Act ionLink sub-element. This sub-element’s operation
port may be connected to an operation that deletes an association between two objects. Finally,
the navigation link may be connected to a page that is to be presented after the operation was
executed.

The right-hand side of Figure 4.42 presents an example for the AssociationRemover el-
ement. The example shows how this element may be used to remove a Write association be-
tween an Author and a Book object. This is achieved by the Manage Author page that contains
the author and the books variables. The origin of values for these variables is not of concern
for this example, however, it is assumed that the books variable contains Book objects that are
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already associated to the Author object in the author variable regarding the Write association.
An ObjectView element on the left-hand side of the page presents the Author object for that
an association is to be deleted. The AssociationRemover element on the right-hand side of
the page uses the author and books variables as context, contains a simple condition that checks
whether these variables have valid values, and connects its ActionLink sub-element to the
deletePublication operation of the Author operation class. The author variable is provided as
context for the operation and the special item variable that holds a selected Book object is pro-
vided as a parameter. The navigation link of the ActionLink sub-element points to a page
that is omitted from this example.

Note that similarly to the AssociationModifier element, the multiplicity of association
partners for an object also affects the usage of the AssociationRemover element. However,
the implications are somewhat different. If an object is allowed to have multiple association
partners regarding a given association, then the AssociationRemover element may be used
as previously described in this section. However, if an object is only allowed to have a sin-
gle association partner, then it is not necessary to use the AssociationRemover element to
delete the association. In such a case, the corresponding delete operation does not require any
parameters because the association partner is unambiguous. Thus, the usage of a user interface
component that allows the selection of a potential association partner, for which the associa-
tion is to be deleted, is unnecessary. In case of a single association partner, it suffices to use a
ActionLink element that is connected to the corresponding delete operation.

4.5.2.20 Custom ltem

Web applications have evolved from simple Web sites into complex systems that often have
a similar complexity level to traditional software applications. Correspondingly, many Web
applications possess comprehensive user interfaces and any model-based Web engineering
method that aims to support the development of such complex applications has to provide
a powerful set of model elements for user interface design. However, it is not reasonable to ex-
tend the model with one or more new model elements every time a problem cannot be solved
with the existing set of elements. The flashWeb approach provides a powerful set of standard
model elements for user interface design that have been introduced in previous sections. These
elements may be combined in a flexible way to match the largest part of any user interface
specification. User interface requirements that cannot be fulfilled with this set of elements are
supported with the CustomItem element. It allows the specification of custom code utilizing
(programming) languages of the target platform the Web application is deployed to. For exam-
ple, if the target platform is Java EE the Custom Item element may be used to specify HTML
and JSP instructions that solve the given problem. Similarly to the Custom Operation (see
Section 4.4.2.7) of the Operation Model, this element may be used to insert custom code into
the model, i.e., into the user interface specification. Figure 4.43 depicts the general notation of
the CustomItem element and provides a usage example.

The left-hand side of the figure shows the general notation of the CustomItem element.
The element’s header section specifies a name, the body section contains an icon depicting a
question mark, an arbitrary number of variables, and an optional condition. As many other
elements of the Composition/Navigation Model, this element may have an arbitrary number
of operation ports, thus it may be connected to an arbitrary number of operations that may
provide appropriate input values. Note that the custom code, which is provided by the ap-
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Figure 4.43: The CustomItem Element

plication developer, is not displayed explicitly. Of course, any CAWE tool that supports the
flashWeb approach has to provide an appropriate way in order to allow the developer to at-
tach the custom code to instances of this model element.

The usage example for the Cust omItemelement on the right-hand side of Figure 4.43 shows
the Author page, including an ObjectView element to show author data and a CustomItem
element that provides some additional information about the author’s books. The CustomItem
element has a single operation port that is connected to the getBookList operation of the Author
operation class. The operation receives the author object as context and delivers a list of the
author’s books, which is mapped to the books variable of the CustomItem element.

The additional information about the author’s books on the Author page should include the
total number of books and the title of three books. To this end, the CustomItem element
utilizes the code provided in Listing 4.5.

1 The portal has information about

2 <span tal:content="python:len(books)" />

3 books of this author.

4

5 Selected books:

6 <ul>

7 <li tal:repeat="book books[0:3]"

8 tal: content="python: book. getTitle () ">
9 </li>

10 </ul>

Listing 4.5: Custom User Interface Code

The exemplary code that is shown in this listing may be used for the Zope [vW08] Web ap-
plication framework. The example includes simple text and additionally utilizes HTML, TAL
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and Python. The Template Attribute Language (TAL) of the Zope framework is introduced
in Section 5.3 in more detail. However, the current example may be understood without any
deeper knowledge of TAL. Line 2 shows the number of books that are stored in the books vari-
able. To this end, the len Python method computes the length of the book list and the tal:content
expression inserts the result as the content of the span HTML element. The lines 6-10 specify
a simple listing of three book titles. To this end, the tal:repeat expression in line 7 specifies that
the Ii HTML element should be repeated three times, once for each of the first three books of
the book list. Finally, in line 8 the tal:content expression specifies that the getTitle method is to
be called in order to insert the title of a book as the content of the [i HTML element. Note that
the presented code is fault tolerant and works also if an author has less then three books.

4.5.3 Content Management Patterns

Web applications that facilitate the management of non-trivial content usually support a vari-
ety of common content management patterns. Most of these patterns are seamlessly integrated
into Web application interfaces and provide an improved user experience without getting actu-
ally recognized by the Web application’s user. Perhaps the most basic but also the most impor-
tant pattern is the presentation and management of one or more content objects in the context
of another content object. Regarding the Book Portal application, a simple example for context
specific presentation is showing all reviews of a user (see Section 2.2.3.3 and Section 4.3). An
example for context-specific content management is creating, modifying, or deleting a review
for a selected user. In all of these examples, the context is a user object.

Subsequently, the content management pattern of creating a new object in the context of
another object is presented. The example in Figure 4.44 uses the Review and the User objects
of the Book Portal application to demonstrate how easily content management patterns may
be defined with the flashWeb mehtod.

The specification of a content management pattern includes two steps. The first step is to
create an appropriate composite operation (see Section 4.4.2.2) that provides the required con-
tent management functionality at the operation level. To this end, in Figure 4.44 the Book
Portal operation package contains the Review operation class, which defines the createRe-
viewForProvider composite operation. This composite operation combines the createReview and
addReviewProvider operations in order to create a new Review object and to associate it to an
existing User object in a single step. Note that composite operations and this specific example
are explained in detail in Section 4.4.2.2.

The second step of creating a content management pattern is the integration of the created
composite operation into the user interface specification. To this end, the Standard user pro-
file in Figure 4.44 includes the User Reviews page that provides the corresponding functional-
ity. The page defines the user variable and contains two elements. Note that the origin of a
value for the user variable is not relevant for this example. The first element of the page is an
ObjectView element (see Section 4.5.2.8) on the left-hand side. It uses the user variable in or-
der to present information about the User object, which plays the role of the context object for
this example. The right-hand side of the page contains an ObjectCreator element, which
actually integrates the createReviewForProvider operation into the user interface. To this end,
the operation port of this element is connected to the operation and the connection provides
all necessary mappings. The directly by the ObjectCreator element and the user variable is
mapped to the ReviewProvider parameter of the operation. Finally, the result of the operation is
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Figure 4.44: Example for the Create in Context content management pattern

mapped to the review variable and forwarded by the navigation link of the ObjectCreator
element to a follow-up page that is omitted from this example for the sake of simplicity.

Note that this section provides merely a simple example of a content management pattern,
which combines only a few model elements. Of course, the flexible nature of the flashWeb
method allows for the composition of patterns with arbitrary complexity. This is due to the
fact that composite and custom operations of the Operation Model (see Sections 4.4.2.2 and
4.4.2.7) are able to express arbitrary application logic and that elements of the Composition/-
Navigation Model may be composed in a similar flexible manner to provide appropriate user
interface components for these operations.

4.5.4 Notation Variations

Similarly to the Content Model and the Operation Model (see Sections 4.3 and 4.4) of the flash-
Web Web engineering method, the Composition/Navigation Model also provides different
alternative notations for all of its elements. The aim of these alternative notations is to hide de-
tails of an element that are not of concern to the Web application developer at a specific point
in time during his modeling activity. A flashWeb CAWE tool that supports these simplified
notations allows the Web application developer to focus on a certain part of the user interface
without being overwhelmed by unnecessary details of other parts.

Basically, alternative notations for the Composition/Navigation Model offer two different
ways to abstract from details. First, any model element may be minimized, thus only a minimal
representation of the element is displayed. The minimized notation of an element hides the
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element’s body section entirely except for an icon. This is of course a major reduction of in-
formation, especially for elements that have subelements, as these are hidden as well. Second,
operation calls of a Composition/Navigation Model element may be hidden explicitly. In this
case, all connections of a given model element to any operation of the Operation Model are
hidden.

Similarly to the simplified notations of other flashWeb models, all simplifications are indi-
cated by icons, which are displayed in the header section of a given model element. A min-
imized element is indicated by an arrow icon and an element, for which operation calls have
been hidden, bears a small circle with the letter “O” inside it. Figure 4.45 depicts an example
using the Book Portal application scenario.

Standard
Author B

author: Author
author: Author } books: Book[] CompOSition/
= item: Book =% . S
authorsy S5+ A — Navigation
Model

Book Portal

getAuthorList(): Author]] Model

T B0k
| Operation

--» getBookList(): Book]]

Figure 4.45: Minimized Book Page Example

This example specifies a part of the Book Portal application that shows information about au-
thors and their books and also allows the Web application’s user to request additional informa-
tion about a selected book. It is used for a step-by-step demonstration of alternative graphical
notations for included model elements. The first configuration depicted in Figure 4.45 spec-
ifies the Author and the Book pages for the Composition/Navigation Model and the Author
and Book classes for the Operation Model. The Book page is already minimized as it is in-
dicated by the arrows symbol in the element’s header. Additionally, all operation calls that
originate from this page are hidden as well, which is indicated by the O-symbol in the header
of the page. Of course, one may assume that one or more hidden operation calls target the
Book operation class, which itself is minimized.

The left-hand side of the Author page contains an ObjectView element. This element is
minimized, thus the body section shows only a small icon. However, as the minimized notation
of an element still displays the header, it is clear that this element refers to the author variable
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from the namespace of the Author page in order to provide information about an Author
object. The right-hand side of the page contains an Object Index element that is represented
with its standard, non-minimized notation. This index receives its data from the getBookList
operation of the Author operation class. To this end, the elements operation port is connected
to the operation and it provides the author variable as context. The result of the operation, a list
of books, is provided to the index, which is indicated in the element’s header.

However, the example presented so far still contains some elements that may be further
simpified. Figure 4.46 presents the same scenario with two other elements using simplified
representations.

Standard

Author
author: Author Com pOSitiOI"I/
sooke: ook Navigation
=
Model
Book Portal i

m Book ! Operation
Model

Figure 4.46: Minimized Object Index Example

The first element that is represented with a minimized notation in contrast to the specifica-
tions in Figure 4.45, is the ObjectIndex element on the right-hand side of the Author page.
The single content of the element’s body section is a small icon. The header section displays
the arrow symbol indicating that the element is minimized. Note however that the element’s
header does not contain the O-symbol and that correspondingly the operation call targeting
the Author operation class is still displayed.

The second element that differs compared to Figure 4.45 is the Author operation class. It is
minimized, i.e., all operation signatures of the class are hidden, which is indicated by the arrow
symbol in the header section of the class. Notice however that the operation call that originates
from the Object Index element is now connected to the header of the Author operation class.
This is due to the fact that all operation signatures are hidden and that the operation call cannot
be associated to the right operation. Also note that the operation call does not specify any map-
pings between variables and operation parameters because the information is not relevant any
more at this level of abstraction. Finally, Figure 4.47 depicts an almost minimal representation
of the example scenario.

This representation additionally hides the content of the Author page. This fact is addition-
ally indicated by the arrow symbol in the header section of the page. Note however that the
operation call between the Author page and the Author operation class is still displayed. Of
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Figure 4.47: Minimized Author Page Example

Book Portal

course, the operation call is not connected to an operation port of the page because that would
represent different semantics. Connecting the operation call just to the bottom of the page in-
dicates that the operation call originates from a hidden sub-element of the page. Note that
packages and user profiles also have simplified notations. Thus a final abstraction step for this
example could be the minimized representation of the Standard user profile and the Book Portal
operation package.

4.5.5 Summary

The Composition/Navigation Model that has been introduced in the previous sections allows
the Web application developer to design the Web application’s user interface in an effective
and efficient manner. To this end, it provides model elements that may be combined freely
to build an arbitrary user interface. The fine granularity of model elements ensures that an
overwhelming part of the user interface may be constructed using standard elements and that
only a minimal part has to be customized.

The explicit distinction between operations (Operation Model) and user interface compo-
nents (Composition/Navigation Model) of a Web application has many advantages. First, the
separation of concerns ensures a clear design and the reusability of components. Second, the
Web application may be developed in a parallel manner. A developer that focuses on content
management functionality may specify a set of content management operations and a user in-
terface expert may concentrate on the development of the user interface. The generic nature
of elements of the Composition/Navigation Model allows the smooth integration of content
management operations into the user interface. Finally, the navigation structure of the Web
application is defined in a single model and is not intermixed with other concepts, e.g., with
content management patterns.

Unfortunately, most Web engineering methods neglect to define a powerful model for user
interface design that is precise enough for the generation of the actual user interface. The
only exception is the WebML approach that has been presented in Section 3.4.4. However,
the WebML integrates basic content management operations into the user interface specifica-
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tion and ,in contrast to flashWeb, it does not offer the advantages that have been mentioned
previously.

4.6 Presentation Model

The aim of the Composition/Navigation Model that has been introduced in the previous sec-
tion is to define the user interface of a Web application. However, as the name of the model
suggests, its focus is on the composition of user interface pages and on the definition of the Web
application’s navigation structure. It does not define the actual appearance of each user inter-
face component. The separation of content and presentation is an important paradigm that
should be followed by any design method that aims to support the development of content-
intensive Web applications. Following this paradigm, flashWeb’s Composition/Navigation
Model specifies what parts of the Web application’s content are to be presented on which user
interface page. As an addition to that, flashWeb’s Presentation Model assigns to each user inter-
face component an appropriate presentation. Figure 4.48 illustrates this approach by providing
a simple example using the Book Portal scenario.

Composition/Navigation

Implementation
Model

e e[|
m File Edit Miew History  Bookmarks  Tools  Help
Author Information =i _I

author: Author . - v C =
Presentation

author: Author Model |FirstNames || Michio |
(Layout, Fonts,

E Colors, etc.)
{author} |:> Biography

|LastName || Kaku |

Done

Figure 4.48: Motivation for the Presentation Model

The left-hand side of the figure depicts a partial Composition/Navigation Model. The Author
Information page contains a single Object View sub-element that specifies a user interface
component, which provides information about an Author object. However, this partial model
does not specify how the corresponding information is to be presented. The right hand side
of the figure shows a possible rendering for this model, which is a Web page with the title
Author Information and a simple two-column table showing attribute names and corresponding
attribute values for a single author. Of course, even for such a simple example, it is a long way
from an abstract model to the actual presentation of a user interface component. It is the task
of a presentation model to define all the necessary information to fill in this gap. Some aspects
that have to be specified are the layout of all components, e.g., the presentation of an author
object with a table-like structure, the positioning of components regarding their parents, e.g.,
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the positioning of the author information inside the page, the specification of text fonts, text
colors, background colors, etc. For the flashWeb approach, all this information is provided by
the Presentation Model that relies on a few concepts, which are introduced in Figure 4.49.

User Profile

Default Format Profile

F |
e
R e = 7T

Custom Format Profile
— =
== m \
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Figure 4.49: Presentation Model Concepts

Note that flashWeb’s Presentation Model does not employ an explicit graphical notation like
all the other models presented so far. It is rather a set of concepts that are to be implemented
by a CAWE tool, which aims to support the flashWeb method. Consequently, the presentation
in Figure 4.49 is not a graphical notation but merely an illustration of these concepts.

The Presentation Model relies on four basic concepts. A Formatting Expression isa
piece of code that specifies a specific aspect of a model element’s presentation utilizing an
appropriate formatting language. The FormatCatalog is a hierarchical collection of format-
ting expressions. Note that in Figure 4.49 the format catalog has two groups, both of them
containing two formatting expressions. The DefaultFormatProfile specifies a common
presentation for all instances of a specific model element for a single user profile. Finally, the
CustomFormatProfile defines the presentation of specific model element instances for a
user profile. The following sub-sections describe each of these concepts in detail.

4.6.1 Formatting Expressions

A FormattingExpression abstracts from a concrete formatting language that may be uti-
lized to define the presentation of a Web application for a specific target platform. For example,
most Web application frameworks employ Cascading Stylesheets (CSS) for defining the final
presentation of the user interface. This technology allows to define the presentation of a user
interface component in a fine-granular manner but, of course, the language has its own syntax
that has to be followed. The motivation for the concept of a formatting expression is to abstract
from a specific formatting language and from the granularity of formatting constructs of the
given language. To this end, a formatting expression is composed of two parts. The first part
is a name that identifies the expression and the second part is a code fragment that contains the
actual formatting directives in the target language. A simple example of a formatting example

168



4.6 Presentation Model

may have the name “Small Red Text”. A corresponding code fragment using CSS is provided
in Listing 4.6.

font—family: ’Palatino Linotype’,6 Times, serif;
font—style: normal;

font—weight: normal;

font—size: 8pt;

color: red;

Ol = W N -

Listing 4.6: Example Code for a FormattingExpression

The listing contains five CSS formatting directives. The first line states that the preferred font
family is “Palatino Linotype” and also defines some alternatives if this font is not available.
The second and third lines state that the font style and font weight should be normal. The
forth line provides a directive that specifies the font size, which is set to eight point in this
example. Finally, the last line specifies the font color, which is red. Note that this is only a
subset of formatting directives that are offered by CSS for formatting text. Thus in order to
abstract from these directives, this code is assigned the name “Small Red Text” and may be
used in format profiles that are introduced in subsequent sections.

4.6.2 Format Catalog

The aim of the FormatCatalogis to gather formatting expressions in a structured way. To this
end, the format catalog employs the notion of a group that may contain an arbitrary number
of formatting expressions or sub-groups. However, formatting expressions and sub-groups
are not allowed to be mixed, thus a group either contains one or more expressions or one or
more sub-groups. For example, “Text Formats” would be an appropriate name for a group that
contains the “Small Red Text” formatting expression.

The general idea of the format catalog is for the user interface developer to create a struc-
tured repository of formatting expressions, which may be used to format different parts of the
user interface in a simple an flexible way. The concept of a catalog of formatting expressions
that abstracts from the actual syntax of the formatting language greatly facilitates parallel de-
velopment. An art designer may create the format catalog independently from the actual user
interface of a particular Web application. Simultaneously, a user interface designer may com-
pose the user interface and, after the end of these activities, formatting expression may be
assigned to elements of the user interface model as required. Of course, the art designer and
the user interface designer should synchronize their efforts.

4.6.3 Default Format Profile

The DefaultFormatProfile allows to define a default presentation for each model ele-
ment type of a certain user profile. A user profile, i.e., definitions that are contained in a
UserProfile model element (see Section 4.5.2.1) define the user interface of the Web ap-
plication for a certain group of users. Of course, it should be possible to format different user
profiles differently. Therefore, every user profile has its own default format profile.

The default format profile assigns to every model element type a presentation type and a cor-
responding set of formatting slots. A formatting slot represents a certain part of a user interface
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component’s presentation, e.g., the formatting of a row in a tabular view. Each formatting slot
of a presentation type may be associated to an arbitrary number of formatting expressions from
the format catalog. Figure 4.50 shows an example of a partial default format profile and the
association of formatting expressions to formatting slots.

Default Format Profile
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Text Formats
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Background
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>
£ | —| Object View
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Custom Format Profile
Main
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- -
Attribute Cell
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S| __| Object View
s (Id: 4987302)

Figure 4.50: Format Profile Examples

The right-hand side of the figure illustrates a default format profile with a single formatting
assignment. The ObjectView model element type is assigned the Tabular presentation type,
e.g., every instance of this model type is to be presented with a tabular view as default. This
tabular presentation type contains four formatting slots. The Main slot defines the apperance
of the entire view. For example, this slot may be used to specify the position of the component
inside its parent component. The current example in Figure 4.50 assigns a white background
color to the entire component. To this end, the slot is connected to a corresponding formatting
expression of the format catalog. The Row slot defines the formatting of rows of the tabular
view. A possible formatting option for this slot is, for example, the definition of a distance
between rows. However, the current example does not assign any formatting expressions to
this slot. Finally, the Attribute Cell and Value Cell slots define the presentation of table cells
that hold attribute names and attribute values, respectively. The current example assigns a
standard text format to both slots, a dark grey background color to an attribute cell and a light
grey background color to a value cell. Note that these formatting definitions may result in a
presentation that is similar to that shown on the right-hand side of Figure 4.48.

A default format profile may contain for every model element type an appropriate format-
ting assignment, thus every user interface component of a corresponding user profile is repre-
sented in a fashionable manner. Of course, every model element type may be assigned only
one formatting type from a list that is defined by the default format profile.

4.6.4 Custom Format Profile

The user interface of a modern Web application has to be tailored to the needs of its users.
Important data and functionality has to be highlighted and made easily accessible, whereas
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less important parts do not have to be emphasized. Accordingly, it is a common require-
ment that the presentation of selected user interface components may differ from the presen-
tation of other components of the same type. However, the default format profile that has
been introduced in the previous section only allows to specify a common presentation for
all instances of a certain model element type. Therefore, the flashWeb method employs the
CustomFormatProfile that facilitates the custom formatting of selected model elements.

The custom format profile relies on exactly the same concepts as the default format profile.
However, instead of defining the presentation of every model element of a certain type, it does
so for selected model element instances. The right-hand side of Figure 4.50 illustrates a custom
format profile that defines the presentation of a single Object View model element. In this
example, the Attribute Cell slot of the Tabular presentation type is assigned a red back-
ground color. Accordingly, the attribute names of the corresponding model element instance
are highlighted with red color, whereas all other instances of this type have grey backgrounds
for attribute names.

Note that the presentation of every model element is determined by formatting assignments
of the corresponding default format profile and possibly from a custom format profile. Natu-
rally, assignments of the custom profile overwrite assignments of a default profile. The gran-
ularity for overwriting formatting assignments is the slot level. Thus, if both the default and
the custom profiles assign formatting expressions to a certain formatting slot, the definitions
of the custom profile are used. However, if the custom profile does not define the formatting
of a certain slot, but the default profile does, the assignments of the default profile are used.

4.6.5 Summary

In contrast to other flashWeb models, the Presentation Model does not employ a graphical
notation that defines the appearance of user interface components. Instead, it is a set of con-
cepts that are to be implemented by a CAWE tool, which supports the flashWeb development
method. Note that such a tool is presented in Section 5.2.

The focus of flashWeb is clearly on the design of content, data management operations, and
the composition of the user interface. The development of a graphical model that also defines
the presentation of user interface components is future work. However, as the Composition/-
Navigation Model already provides a presentation-near notation, it is advisable to design a
graphical presentation model that is derived from it.
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CHAPTER 5

Implementing Web Applications with flashWeb

The previous chapter introduced the flashWeb method that utilizes different graphical mod-
els to capture the entire functionality of a Web application. Different models may be used to
design the Web application’s content storage, content management functionality, and its user
interface. From the developer’s point of view, flashWeb’s graphical models offer various bene-
fits. They support a structured development process and serve as an excellent documentation
of the Web application. However, the real advantage of the method comes from its intercon-
nected models that allow the generation of a fully functional implementation. This code gen-
eration capability speeds up the development process of any Web application considerably.
Note that Section 3.2.6 gives an overview of different code generation scenarios and explains
their advantages for the Web application development process. The aim of this section is to
present a set of technologies that have been developed to support the flashWeb Web engineer-
ing method. To this end, Section 5.1 outlines the overall implementation strategy, Section 5.2
describes the flashWeb CAWE tool, Section 5.3 introduces the Zope 3 implementation frame-
work, and finally Section 5.4 provides details about the code generation process.

5.1 Implementation Strategy

The general strategy of the flashWeb Web engineering method for developing a Web appli-
cation includes three main components. First, the developer uses the flashWeb CAWE tool,
which is a graphical model editor to create all four flashWeb models that specify the complete
functionality of the Web application. Second, a suitable implementation framework is utilized
that usually provides a set of common features and a runtime environment. Finally, a code
generator plug-in of the flashWeb CAWE tool uses the models to generate an implementation
for the framework. Figure 5.1 depicts these components.

Of course, the CAWE tool and the code generator plug-in are both sophisticated pieces of
software. The CAWE tool has to provide an intuitive and effective user interface that allows
to create and manage the graphical models. Additionally, the code generator has to be able
to transform the models into application code that fits the requirements of the implementa-
tion framework. To provide the maximal amount of flexibility, the architecture of the CAWE
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Figure 5.1: flashWeb’s Implementation Strategy

tool supports an arbitrary number of generator plug-ins, thus for different target frameworks
different plug-ins may be used.

The transformation of flashWeb models into a fully functional implementation is a non-
trivial task. The first challenge is the complexity of the models. The code generator has to
be able to incrementally traverse all models and transform them into an appropriate internal
representation that suits the generation process. The second challenge is the complexity of the
implementation framework. Web applications are usually implemented with a set of standard
languages, e.g., HTML, CSS, JavaScript, and with a set of languages that depend from the run-
time environment of the implementation framework, i.e., a server-side programming language
like C#, Java, or Python and additional template languages like ASP or JSP. Additionally, most
frameworks encourage or require the usage of a certain software architectural paradigm, e.g.,
the Model-View-Controller approach. Therefore, the actual implementation of the Web appli-
cation usually includes a large number of different software artifacts, i.e., implementation files,
configuration files, start-up scripts, etc. Accordingly, the code generator has to be able to han-
dle all these different programming languages and different file types. The final challenge is
to map the concepts of the modelled Web application to the concepts of the implementation
framework. Of course, the complexity of this task is determined by the actual implementation
framework and the chosen Web application architecture (see Section 2.3.4).

The flashWeb Web engineering method postulates the usage of a Web application architec-
ture that corresponds closely to the design provided by its models. This is indicated in Fig-
ure 5.1, where each flashWeb model is mapped to a corresponding implementation layer of
the implementation framework. Note however that most implementation frameworks do not
distinguish between a User Interface Layer and a Presentation Layer. Usually, the latter one in-
corporates the functionality of both layers.

Of course, all components of the implementation strategy that have been introduced in this
section may be implemented using technologies of an arbitrary framework, e.g., JavaEE, .NET,
etc. In order to prove the validity of the flashWeb approach, the following languages and
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frameworks have been used. The flashWeb CAWE tool is implemented in Java using the
Eclipse framework. The Zope 3 Web application framework is used to implement the Web ap-
plication and its built-in Web server is utilized as the runtime environment. The flexible nature
of this lightweight framework allows to build Web applications with an arbitrary architecture.
Therefore, Web applications developed with the flashWeb approach use all four implementa-
tion layers depicted in Figure 5.1. The functionality of the flashWeb CAWE tool is extended by
a code generator plug-in, which is developed in Java and is an actual Eclipse plug-in that is
seamlessly integrated into the CAWE tool. The following sections provide details about these
three main components of the implementation strategy.

5.2 flashWeb CAWE Tool

The main component of flashWeb CAWE tool is the flashWeb Model Editor [JSSK07][Sch07],
which allows the Web application developer to create, to modify, and to permanently store
Web application models. It has been designed to support all graphical models of the flashWeb
method and especially to support alternative notations of the models in order to facilitate effi-
cient Web application development. The editor is implemented in Java and uses the Rich Client
Platform of the Eclipse Framework [URI09] to run as a stand-alone application. Figure 5.2 de-
picts a screenshot of the editor’s user interface.

The GUI of the Model Editor is kept as simple as possible and it relies on well known con-
cepts for graphical user interface design. At the top of the application window, the Menu
provides access to basic commands of the editor. The Action Bar is situated directly below the
menu and includes icons for frequently-used features. Below the action bar you may observe
the Modeling Pane, which provides a single modeling area of unlimited size. Note that this
prototype does not have separate areas for different flashWeb models. Instead, all models are
created in the same area and are separated by a simple color code. Content model elements are
yellow, operation model elements are green, and finally elements of the user interface are blue.
Next to the modeling pane on the right-hand side, there is the Palette, which contains a list of
entries representing model elements.

The Web application developer may select an arbitrary element from the palette and cre-
ate a new model element instance in the modeling area with a subsequent left click. Further
customization of a model element is usually done through a context menu which is available
through a right click if the corresponding model element is selected. The last component of the
GUL is the Properties Pane at the bottom of the editor window. If a model element is selected in
the modeling area, this pane shows all of the element’s properties and allows the developer to
manage them comfortably.

Dealing with graphical models is usually not an easy task. During development, the models
get large quickly and the developer may find it difficult to keep an overview. To this end,
all graphical models of the flashWeb approach provide alternative notations that substantially
simplify those parts of the model that are not of concern to the developer at a given point in
time during development. These alternative notations have been introduced in Sections 4.3.4,
4.4.4, and 4.5.4, respectively.

Additionally to these alternative notations, the editor provides further features that simplify
working with large models. An important ability of the editor is to allow the fine granular
configuration of views of model connections. Especially between the content model and the
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Figure 5.2: GUI of the flashWeb Model Editor

operation model of a Web application, the number of connections is usually high. Therefore,
the editor allows to hide these connections temporarily and only show those that are relevant
for the developer. Furthermore, the model editor automatically highlights all model connec-
tions that are attached to a selected model element. This feature allows the developer to get a
fast overview of all model elements that are related to the currently selected element.

As mentioned before, the flashWeb CAWE tool may be extended by an arbitrary number of
code generator plug-ins. Each plug-in supports one target framework or runtime environment
for which code is to be generated. Generator plug-ins may be configured with the Preferences
dialog, which can be reached from the Edit menu entry of the model editor. Figure 5.3 depicts
the configuration of a generator plugin for the Zope 3 Web application framework.

The configuration options for a code generator plug-in are simplistic. As a matter of fact,
there are only two options that have to be considered. First, the developer has to choose the
generation mode, which may be “On-the-fly” or “On-demand”. If the generator is set to the
“On-the-fly” mode, it generates the Web application incrementally in the background without
consulting the developer. Every time the developer changes a certain part of a model, the cor-
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Figure 5.3: Code Generator Preferences Dialog

responding part of the implementation is updated automatically. If the generator is set to the
“On-demand” mode, the developer has to trigger the generation process explicitly. The sec-
ond configuration setting for a code generator plug-in specifies the target directory in which the
generated code is to be stored. Note that here only this simple interface of the code generator
is introduced. Section 5.4 provides actual details about a code generator plug-in for the Zope 3
Web application framework.

5.3 The Zope3 Web application Framework

The flashWeb Web engineering method is designed to be independent from any Web appli-
cation framework or runtime environment. Except for the proposed separation of content,
operational logic, user interface definitions, and presentation, the method allows to create Web
applications with arbitrary architectures. Thus, theoretically an arbitrary number of target
platforms may be supported with corresponding code generator plug-ins. However, an ideal
target platform should provide a certain degree of flexibility, thus the proposed implementa-
tion layers (see Figure 5.1 in Section 5.1) can be realized. To this end, the flashWeb CAWE tool
features a code generator plug-in for Zope 3, which is a powerful and extremely customizable
Web application framework that is introduced briefly in the following sub-sections.

5.3.1 Introduction

Zope 3 [VWO08] is an open-source, object-oriented, and component-based framework designed
for Web application development. It's component architecture is extremely flexible and it al-
lows to use the framework as a whole for publishing content and applications on the Web, but
it also facilitates the utilization of single components of the framework to be included as part of
any application that is written in Python. For example, Zope’s Object Database does not have
to be used for Web application development, it may be easily employed as the content storage
component of a standalone desktop application.

Important features of the framework are object-oriented data storage, HTML /XML templat-
ing, form generation and validation, internationalization, support for strong security, catalogu-
ing services, and support for testing. The framework also provides rudimentary support for
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workflow management, access to relational databases and XML processing. However, these
features are subject to further development.

Zope 3 relies on three main components if it is used as a server for running Web applications.
First, the Web Server component handles the communication with Web clients via diverse pro-
tocols, i.e., HTTP, WebDAYV, or XML-RPC. Second, the Publisher component deals with finding
objects that are required by incoming requests and publishes them to the clients. Finally, the
Application component handles all other aspects such as storing content, executing applica-
tion logic, etc. Of course, the Zope 3 framework provides many further components, e.g., for
storing data or ensuring security that may be used as a part of the application component.

5.3.2 The Component Architecture

The Component Architecture is the heart of the Zope 3 framework. It ensures that every compo-
nent of the framework has a well-defined purpose and it also provides facilities for combining
components in an extremely flexible manner. On one hand, concepts of the component archi-
tecture are used to tie together basic components of the framework itself. On the other hand,
they may be used to develop component-based Web applications. Main concepts of the com-
ponent architecture are introduced in the following sections.

5.3.2.1 Interfaces

An essential concept of Zope 3 is the notion of an Interface. This concept is known from different
programing languages, e.g., from Java. In general, an interface defines certain functionality,
which is to be provided by components that implement the interface. More specifically, an
interface usually includes the list of attributes and the signature of methods of an object, as
well as arbitrary documentation.

Note, however, that the usage of interfaces in Zope 3 is different from their usage in most
programming languages, where they often serve as a solution for the lack of multiple inher-
itance. As Python does offer multiple inheritance, there is no need to use interfaces for that
in Zope 3. Instead, interfaces have a more symbolic meaning and their sole purpose is just to
identify and describe certain functionality.

However, in contrast to many other programming languages and frameworks, Zope 3 makes
heavy use of interfaces. They can be used to register and to find components that provide
certain functionality. Globally registered components are usually called utilities. They can
be used to define so-called adapters that extend other components with certain functionality.
Furthermore, interfaces are widely used for security purposes, i.e., to allow or restrict access to
certain functionality.

5.3.2.2 Content Components

The aim of a Content Component, as the name suggests, is to handle content. Typical tasks of
a content component are to allow the storage, the modification, and the retrieval of simple
data. Data processing or data presentation are not the responsibility of a content component.
Like any other component in Zope 3, content components are to be described with interfaces.
In case of a content component, the interface specifies, which methods can be used to store, to
modity, or to retrieve content, but of course it does not specify how the data is stored internally,
thus the actual implementation of the content component remains replaceable.

178



5.4 flashWeb Code Generator Plug-in

5.3.2.3 Adapters

The Adapter concept is central to the component architecture of Zope 3. Adapters provide
certain functionality for other components of the framework, e.g., for content components or
for other adapters. Using this concept, the architecture of a Web application may be designed
to use an arbitrary number of functionality layers.

The adapter concept can be easily explained by an example. Assume that a Web application
has a content component that stores data about persons, e.g, the name, the birth date, etc. A
requirement for the Web application could be to list all persons and to display for each person
their age. Unfortunately, the content component does not have any knowledge about the age of
a person. A typical solution for this problem is to use an adapter that is capable of computing
the age of a person. Such an adapter would access the birth date of a person and acquire the
current date from the system to calculate a person’s age.

Adapters rely heavily on the concept of interfaces. The definition of an adapter has to specify
which interface it adapts, i.e., for what kind of objects does the interface provide functionality
and which interface it provides, i.e., what is the actual functionality of the adapter.

5.3.2.4 Utilities

The concept of a Utility is similar to the concept of an adapter. A utility provides certain func-
tionality, which is described with an interface. However, utilities are independent of other
components, i.e., they do not provide functionality for a certain type of components like an
adapter does. Ultilities rather provide a more general service that may be used by various
other components of an application.

There are two basic types of utilities that are commonly used in Zope 3. Global utilities that
follow the singleton software engineering pattern are registered and looked up only by their
interface. Common examples are database connectivity or mail delivery. In contrast to them,
the developer has the possibility to register utilities that are required several times. Examples
for such utilities are object factories or different object views.

5.3.2.5 ZCML

The Zope Configuration Meta Language (ZCML) [vIW08] is the glue that binds components of the
component architecture together. The aim of ZCML is to be used by site administrators who
maintain Web sites and Web applications. Using ZCML, the site administrator should be able
to configure a certain application without having to understand or change the source code of
included components. To this end, ZCML is based on XML and has simple semantics, thus
the site administrator is not required to have programming skills. Main aspects that may be
configured with ZCML are the registration of utilities and adapters, the registration of views,
which are special adapters providing presentation for a component or the security setup of
application.

5.4 flashWeb Code Generator Plug-in

Code generator plug-ins play a very important role for the flashWeb Web engineering method.
Although the usage of graphical models offer various advantages for Web application develop-
ment, it is the code generation capability of flashWeb that speeds up the development process

179



5 Implementing Web Applications with flashWeb

considerably and enables the method to be used for almost any Web project. The reader is
referred to Section 6.3 for a discussion of flashWeb’s support for different Web application de-
velopment processes.

An essential aspect for any Web application is a clear and well-structured conceptual archi-
tecture, which builds the backbone of the application and may be extended with appropriate
application modules. In Section 5.1, a four-layer Web application architecture is introduced
that adheres to the four models of the flashWeb method. The aim of a code generator plug-
in for the flashWeb model editor is to transform the graphical models to such a four-layered
implementation using an appropriate implementation framework. Of course, the introduced
four-layer architecture is merely an example and plug-ins supporting arbitrary Web applica-
tion architectures are allowed. This section introduces the Zope 3 Generator Plugin that achieves
this goal for the Zope 3 Web application framework.

5.4.1 Plugin Overview

Generating the implementation of a Web application is not a trivial task. There are many factors
that add to the complexity of this objective. First, Web applications are usually implemented
using several different languages. A Web application running on the Zope 3 framework uses
HTML, JavaScript, and CSS at the client side, Python, ZCML, and the Template Attribute Lan-
guage (TAL), a templating language for creating dynamic Web pages, at the server side. Corre-
spondingly, the code generator has to be able to handle correctly the specifics of each language,
e.g., the language syntax, indentation, and naming conventions.

Second, depending on the chosen implementation framework, a Web application compo-
nent is usually implemented with a set of software artifacts, i.e., class files, configuration files,
etc. For example, to define a content object the Zope 3 framework requires as a minimum that
there exists a Python class file that contains the object’s implementation, a Python interface file
that contains the object’s interface specification, and a ZCML configuration file that registers
the object’s interface in the system registry. Additionally, the configuration file has to be re-
ferred to from another configuration file in order to be loaded on start-up. Furthermore, the
developer has the freedom to put several definitions, e.g., object definitions or object interface
specifications into a single file. Correspondingly, there are many different ways to implement
a Web application component regarding the partitioning of a component’s specification, thus
the Web application generator has to provide a solid strategy to deal with this problem.

Finally, the code generator provides diverse functionality that requires the coordination of
components that fulfill a wide range of different tasks. The generator handles an internal repre-
sentation of a Web application’s model and reacts to events that signal a change in the models.
It manages different implementation artifacts and maps them to model components. It handles
code templates that help to generate reoccurring code fragments. Last but not least, it writes
source code artifacts to the file system. This complex functionality is incorporated into the code
generators architecture, which is presented in Figure 5.4.

The code generator has six main modules that depend on each other in various ways. Each
module is represented by a manager component that coordinates the tasks executed by the
corresponding module and also handles communication with other managers. The Preference
Manager provides preference pages for the model editor GUI (see Figure 5.3), handles the per-
manent storage of preference settings, and provides access to them for other managers. The
task of the Dispatch Manager is to handle events (e.g. create, change, delete) that originate from
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Figure 5.4: Architecture of the Code Generator Plugin

the model editor and to trigger appropriate actions of the generator. To this end, it maintains a
registry of generator components that are capable of handling events. Depending on the event
and the involved model component, the dispatch manager identifies the appropriate handler
and signals the need for code generation to the corresponding handler. The Model Manager is
responsible for the coordination of the code generation process. To this end, it provides han-
dler components that know exactly what is to be generated for which model element in case
of which model change event. To this end, this manager assigns to each model element a set
of implementation artifacts and signals them the need for code generation. The Artifact Man-
ager handles different implementation artifacts that are responsible for assembling the source
code of an implementation file. To this end, each artifact has access to a set of code templates
that help to create reoccurring code fragments. After assembling the code for a certain im-
plementation artifact, the artifact manager forwards the code to be written to the file system.
The Template Manager controls the look-up of code templates and the execution of the template
based generation of code fragments. Generated code fragments are provided to the appro-
priate implementation artifact. Finally, the Disc Manager writes the generated code, which it
receives from the artifact manager to the file system.

The described architecture of the code generator is of course independent from the actual im-
plementation framework and also from the architecture of the implemented Web application.
However, to be able to generate for a certain framework and to realize a certain Web appli-
cation architecture, some sub-components of the introduced code generator modules have to
be specific. On the other hand, it is desirable to be able to have several code generator plug-
ins that are designed to generate Web applications for different implementation frameworks.
Therefore, the code of the code generator is actually divided into two plug-ins. A generic code
generator plug-in contains everything that is independent from the framework and from the
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architecture of the generated Web application. This base plug-in can be used as a starting point
to implement a specific code generator plug-in for an arbitrary Web application framework.
The second plug-in is framework- and Web-application-specific, thus in this case it contains
components that are specific to the Zope 3 framework and adhere to the four-layer Web appli-
cation architecture introduced in Section 5.1.

Despite the separation of the code generator into two plug-ins, the architecture presented in
Figure 5.4 is still valid. The generic plug-in provides abstract classes for all introduced man-
agers and also for a set of further sub-components that may be specialized in the framework-
specific package. Usually there are three main areas of a code generator that have to be tailored.
First, the model manager has to provide handlers that are able to construct the Web application
adhering to the intended application architecture. Second, the artifact manager has to provide
artifacts that correspond to the requirements of the implementation framework. Finally, the
code generation templates handled by the template manager have to generate code using the
appropriate implementation languages.

5.4.2 The Content Layer

Asindicated in Figure 5.1, for each of the four flashWeb models, the code generator is supposed
to create a corresponding implementation layer of the Web application. This section describes
how the Content Model of a Web application is implemented with the Content Layer.

The Content Model of flashWeb (see Section 4.3) facilitates the design of a Web application’s
content storage. To this end, the most important element of the model is the Content Class,
which defines an object that is capable of storing data. A simple content class example is the
Author class from the Book Portal (see Section 2.2.3) example scenario.

The Zope 3 Web application framework provides explicit support for the implementation
of content objects. To this end, it offers the concept of so-called content components (see Sec-
tion 5.3.2.2). A content component in Zope 3 is implemented as a sub-class of the Persistent
class, which is an important component of the framework providing persistent storage for ob-
jects. Additionally, a content component usually implements the IContained interface, which
declares that the component is contained at some storage location. Such a storage location
is usually a so-called container that contains objects of a certain type. Figure 5.5 depicts an
overview of generated artifacts that implement the Author content object and the correspond-
ing AuthorContainer container.

The right-hand side of the figure depicts all implementation artifacts that are necessary to
store Author objects. The artifacts are modules and files that contain the implementing source
code. The implementation includes the two base modules “containers” and “objects” that
contain container definitions and object definitions, respectively. These modules exist once
for each content package and hold the specifications of objects and object containers of the
package. The container for Author objects is implemented by the “authorcontainer” module,
the “container.py” file that includes the container specification, the “interfaces.py” file that in-
cludes the interface specification of the container, and the “configure.zcml” configuration file
that registers these components with the system. The implementation of the actual Author
object is structured similarly to the implementation of the container. It consists of the “author”
module that contains the “object.py” object definition file and the “interfaces.py” interface file.
Additionally, it also includes the “events” sub-module which holds event definitions in the
“events.py” file and the corresponding interface definitions. Finally, the “configure.zcml” con-
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Figure 5.5: Implementation of the Content Model

figuration file registers all components with the system.

Note that there are some further concepts of the Content Model, e.g., content packages and
associations that are not included in this example explicitly. Those concepts are implemented
very similarly to the presented example therefore their description is omitted here.

5.4.3 The Operation Layer

The Operation Model of flashWeb (see Section 4.4) defines for each content object a correspond-
ing Operation Class that provides a range of content management operations. Using the
example from the previous section, this section describes the implementation of the Author
operation class.

Components of the Operation Layer are implemented with adapters (see Section 5.3.2.3) of
the Zope 3 Web application framework. Adapters allow to extend the functionality of a base
component in a simple manner. A content object is merely a vessel for data storage; thus, for
each content object, an adapter object is defined that provides access to the actual data. In
case of the Author content class, this means the definition of an AuthorOperations adapter
class that is described by the IAuthorOperations interface. Figure 5.6 depicts an overview of
generated artifacts that implement the adapter.

The Zope 3 Web application framework offers the developer arbitrary flexibility considering
the implementation structure of a component. To keep the generated implementation sim-
ple and uniform, the artifact structure that is used to implement an adapter is analogous to
the structure, which was used to implement containers and content objects. Every operation
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Figure 5.6: Implementation of the Operation Model

package contains an “objects” module that holds adapter specifications for the package. The
AuthorOperations adapter is implemented with the “author” module, the “operations.py”
file that contains the specification of the adapter, the “interfaces.py” file that contains inter-
face definitions for the adapter and the “configure.zcml” configuration file that registers all
components with the system.

5.4.4 The User Interface Layer

The implementation strategy for the User Interface Layer differs from the strategy of previ-
ously introduced implementation layers. A content object and the corresponding adapter that
provides content management operations are implemented with dedicated classes, for which
the implementing source code is generated from scratch. Of course, the generation of reocur-
ring code is supported by source code templates, nonetheless the code of each content and
operation class is unique. Instances of these classes are only created if the Web application’s
user executes a corresponding action. For example, a new Author object of the Book Portal ap-
plication is only created if a system administrator enters the required data into a corresponding
form and submits the data to execute the corresponding create operation.

In contrast to that, the implementation of the user interface is built by a set of standard com-
ponents that correspond to the elements of the Composition/Navigation Model introduced in
Section 4.5. This means for example that an Area element is implemented with a predefined
Area class. Thus, the implementation of the user interface is build through the appropriate
combination (nesting) of pre-defined implementation objects. Of course, this structure reflects
exactly the structure of the corresponding model. Also, instances of these implementation ob-
jects are created at initialization time of the Web application as they are also used for creating
the actual presentation of the user interface (see next section). Figure 5.7 depicts implementa-
tion artifacts for a small user interface fragment.

The left-hand side of the figure shows a partial Composition/Navigation Model. The model
consists of the Authors page, which contains two Area elements. The Authors Area on the left-
hand side also includes an Object List element, which presents a list of authors.

The implementation of this model is based on two main components. First, the flashWeb UI
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Figure 5.7: Implementation of the User Interface Structure

Framework provides for each model element an appropriate implementation class, for which
an arbitrary number of implementation objects may be instantiated. Note that this framework
is static and may be used for an arbitrary number of different Web applications. Second, the
code generator creates a module structure that corresponds to the structure of the model. Each
module consists of a folder and an “__init__.py” implementation file. Note, however, that
these details are omitted in Figure 5.7. A task of a module is to provide initialization code that
creates a corresponding implementation object at system startup and to serve as a container
for further sub-modules.

In case of the current example, the Authors page is implemented with a Page module that
is placed into the “default” user profile. This module specifies initialization code, which is
executed at system startup and achieves three goals. First, it uses the Page implementation
class from the flashWeb Ul framework to create a corresponding implementation object. Sec-
ond, it sets up this object with the data that is provided by the Page model element, e.g., the
name of the page. Finally, it makes sure that initialization code of all sub-modules are executed
recursively. Ultimately, the code generator does not create the implementation of the user in-
terface directly but it creates an auxiliary structure of initialization modules that instantiates
implementation objects at system startup.

5.4.5 The Presentation Layer

The last layer that is to be generated is the Presentation Layer. It defines for each user interface
component its exact appearance to the Web application’s user. The separation of presentation
from content is an important content management paradigm. Especially the large number of
potential client platforms (PC, PDA, mobile phones, etc.) requires that the Web application
may be presented with different user interfaces.

In order to provide the highest degree of flexibility, the implementation of the presentation
layer relies on dynamic page templates that are used to construct the presentation of user in-
terface components at runtime. To this end, the flashWeb UI Framework provides for each user
interface component, i.e., model element like Page, Area, etc., a presentation template that
determines the basic rendering of the element. Note, however, that this basic representation is
not generated and may be further refined by formatting expressions of the Presentation Model.
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Figure 5.8 depicts implementation artifacts for the presentation of the user interface fragment
from the previous section.
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Figure 5.8: Implementation of the User Interface Presentation

The left-hand side of the figure illustrates that the Presentation Model of flashWeb uses two
format profiles to define the fine-grained calibration of the user interface. Note, however, that
the Presentation Model is not a graphical model. The reader is referred to Section 4.6 for more
details.

The task of the code generator is to convert formatting expressions that are assigned to user
interface components into implementation artifacts. To this end, it creates a simple artifact
structure. As a matter of fact, all formatting expressions for user interface components of a
certain user profile are generated into a so-called “skin” module. The module contains the
two CSS files “default.css” and “custom.css”. As the names already suggest, these artifacts
contain formatting expressions from the default and the custom format profiles, respectively.
The “configure.zcml” configuration file registers the module with the system.

Ultimately, the presentation of a user interface component is determined by its basic pre-
sentation template and the assigned formatting expressions. However, the presentation of a
nested component, e.g., a page, is of course composed of a number of sub-elements. Therefore,
the nesting structure of user interface components, which is implemented by the User Interface
Layer is necessary for the construction of the presentation of nested user interface components.

In case of the Authors Page example, the complete modeling, generation, and runtime pro-
cess can be described as follows. The Web application developer uses the model editor to
define the Page, the two Area elements, and, finally, the Object List elements. He also
assigns formatting expressions using the format profiles. The code generator uses this model
to generate a module structure for the User Interface Layer and a skin module for the Presen-
tation Layer. At system startup the module structure is used to instantiate a corresponding
object structure representing the user interface. If a Web application user accesses the Authors
page, the runtime environment constructs the basic presentation code recursively using the
presentation templates for the page and for all sub-elements. The presentation templates also
integrate the formatting expressions from the skin module that together with the templates
determine the final presentation of page.
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5.5 Summary

Implementing Web applications with the flashWeb method is an easy task, because a huge part
of the Web application’s code is automatically generated from the models. A usually minor
part of the application code, e.g., specific algorithms that cannot be modeled with constructs
of the operation model, has to be coded by the developer and added to the model using cus-
tom model elements (see Section 4.4.2.7). After adding the custom part, a ready-to-run Web
application can be generated from the models in a matter of seconds.

The flexible plug-in architecture of the flashWeb CAWE tool ensures the usability of the
method with arbitrary target implementation frameworks. Regarding code generation, it does
not matter which frameworks are supported by flashWeb code generator plug-ins. For each
framework, different artefacts have to be generated that implement the Web application ad-
hering to a chosen Web application architecture. Of course, each target framework requires
a separate code generator plug-in. As a proof on concept, this chapter has introduced a code
generator plug-in for the Zope 3 Web application framework. As previously described, generic
components of the code generator reside in a basis plug-in that can be extended in a straightfor-
ward manner to create a specific code generator plug-in for alternative implementation frame-
works.
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CHAPTER 6

Evaluation and Conclusions

Throughout this work, many pros and cons were presented for model-based Web application
development and, especially, for the flashWeb Web engineering method. Section 3.2 introduced
the role of models for Web application development and Section 3.4 demonstrated how four
prominent Web engineering methods apply them in the development process. The capabilities
and limitations of these methods were discussed in concluding subsections, respectively.

The focus of this work is on the introduction of the flashWeb method, which of course re-
quires legitimation. To this end, this chapter provides a detailed evaluation of the flashWeb
method. Sections 6.1 and 6.2 describe some of the method’s general advantages and limita-
tions. Additionally, Section 6.3 provides a detailed discussion of flashWeb’s support for differ-
ent Web application development process models. Section 6.4 compares the flashWeb method
with other Web engineering solutions and Section 6.5 evaluates the code generation process.
Finally, Section 6.6 concludes this chapter by providing an outlook of possible future work.

6.1 Advantages of flashWeb

The flashWeb method does not require the employment of a certain Web application devel-
opment process. To the contrary, the increased development speed through code generation
enables the method to be used for both heavy-weight and light-weight development processes
(see Section 6.3). To this end, it supports different development activities that are usually part
of most development processes. The method’s graphical models and of course the flashWeb
CAWE tool may be used for the requirements gathering as well as for the design phase. Code
generator plug-ins of the CAWE tool eliminate the need for a lengthy implementation phase.
After potentially necessary refinements of design models, implementation artifacts are gener-
ated automatically. Finally, the advantages of graphical modeling and of the generative ap-
proach greatly facilitate any maintenance activities after product deployment.

A cornerstone of the flashWeb method is the utilization of graphical models, which are in-
troduced in detail in corresponding sections of Chapter 4. A great advantage of flashWeb’s
graphical models is the excellent overview of the developed application. Furthermore, the
utilization of different models to capture different aspects of the application ensures an appro-
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priate separation of concerns, which is an important paradigm for the development of content
management applications. The flashWeb method is also supported by a CAWE tool that allows
to create, manage, and store the graphical models permanently.

An outstanding and unique feature of the flashWeb method is the Operation Model, which
captures content management operations of a Web application. These content management
operations may be combined freely inside the model and associated to components of the user
interface through graphical connections. These connections seamlessly integrate arbitrary con-
tent management functionality into the Web application’s user interface.

Another important advantage of flashWeb is the capability of the flashWeb CAWE tool to
generate a fully functional implementation of the modelled Web application. This is ensured
by two important characteristics of flashWeb’s models. First, the models capture the entire
functionality of the Web application. Application parts that cannot be expressed with stan-
dard elements are captured with custom elements (see sections 4.4.2.7 and 4.5.2.20). Second,
semantic relationships between the models are clearly defined. Furthermore, the models may
be combined graphically in order to create a cohesive specification of the Web application. This
explicit model weaving technique enables the flashWeb CAWE tool to generate a ready-to-run
implementation. The code generation capability of flashWeb is not only useful for speeding up
the development process but also facilitates fast prototyping.

Last but not least, a further advantage of flashWeb is the clear structure and uniformity of
the generated implementation. As described in Section 5.4, the four models of flashWeb are
converted into four implementation layers. The architecture of the Web application is clearly
structured and all generated components are uniform. Thus theoretically, the application can
be maintained and extended easily without the flashWeb CAWE tool. A more practical ad-
vantage of a well-structured implementation is its support for debugging custom components.
The flashWeb CAWE tool does not have an integrated runtime environment, thus a Web appli-
cation that contains custom components has to be generated and then executed in a separate
runtime environment that supports debugging.

6.2 Limitations of flashWeb

Like all other methods for Web application development, flashWeb has its advantages and
limitations. This section introduces the most important problems of the approach but also
offers partial solutions.

The first problem that a Web application developer using the flashWeb method encounters
is the fact that the graphical models can get very large. This is of course a well-known problem
of graphical modeling, which is inherent in all other model-based methods for Web applica-
tion development. However, in case of the flashWeb method, this problem is probably even
more intense. First, flashWeb employs a model weaving technique that uses explicit graphi-
cal connections between components of different models. Correspondingly, all three graphical
models of flashWeb that are interconnected by these connections have to be displayed together.
Second, the number of graphical connections between the Content Model and the Operation
Model gets usually rather large.

Fortunately, the flashWeb method and the flashWeb CAWE tool offer a set of features that
counteract this problem. First, each graphical model defines alternative notations (see Sec-
tions 4.3.4, 4.4.4 and 4.5.4) that allow the developer to focus on a certain part of the model.
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To this end, model elements that are not of importance can be minimized. Second, the flash-
Web CAWE tool provides a set of further features like zooming, hiding, or highlighting model
connections, which make it easier to cope with large models.

Another aspect of flashWeb that may be considered as a problem are custom elements that
integrate actual implementation code into the models. An example for a custom model element
is a custom operation (see Section 4.4.2.7) that may be used to specify an arbitrary content
management operation using a programming language of the target runtime environment. Of
course, storing implementation code as part of the model is a mixture of two worlds, design
and implementation.

Unfortunately, there is no ultimate solution for this problem. Almost every Web application,
regardless of the application size, includes some kind of custom functionality that cannot be
modeled with standard model elements. Of course, there exist several alternative solutions
to deal with custom functionality. One is to generate the Web application and to extend the
generated code afterwards. However, this and other solutions usually have more disadvan-
tages than advantages. A more detailed discussion of different code generation strategies is
provided in Section 3.2.6.

A final problem, that results from supporting custom model elements and for which the
flashWeb CAWE tool does not provide a sufficient solution, is the cumbersome development
of custom code. The general problem is that the flashWeb CAWE tool is not able to run the gen-
erated code directly and therefore it does not provide any support for debugging. Therefore,
if debugging capability is required, another tool has to be employed. Ultimately, the develop-
ment pattern for custom code includes four steps. First, a custom element containing custom
code is added to the model with the model editor. Second, the model is used to generate the
Web application. Third, the generated code is tested in the runtime environment and possibly
debugged using an additional tool. Finally, if errors are found, the code is adjusted to eliminate
them and the adjusted code is added to the model, which of course requires to repeat steps two
to four all over again, alternatively, the adjustments can be added directly to the generated im-
plementation to skip step two, in which case the developer should not forget to store the final
code in the model after eliminating all errors.

6.3 flashWeb’s Support for Engineering Web Applications

The flashWeb approach may be used in conjunction with most development process models.
This section explains how flashWeb may be combined with heavy-weight and light-weight
process models for conventional software development and, more importantly, it describes
how flashWeb enables these process models to be used for Web application development in
the first place.

6.3.1 Support for Heavy-weight Process Models

The flashWeb approach works very well in conjunction with heavy-weight process models.
This category of process models usually divide the development process into a set of phases,
e.g., specification, design, implementation, etc. The flashWeb method explicitly supports two
common development activities, design and implementation.

Its support for the design phase is twofold. First, it facilitates the planing of the Web ap-
plication’s architecture. To this end, graphical models provide a package construct that allows
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the developer to divide the Web application into different modules. The flashWeb method
uses the basic paradigm of separating content, operations, and presentation and, correspond-
ingly, it provides appropriate models to capture these aspects separately. Thus the architec-
ture of the system must adapt to this architectural pattern. Second, flashWeb supports de-
tailed design relying on well-known object-oriented principles, e.g., modeling with data types,
classes, attributes, and operations. To this end, it provides three graphical models, the Content
Model (see Section 4.3) the Operation Model (see Section 4.4), and the Composition/Naviga-
tion Model (see Section 4.5), and appropriate fine-grained model elements in all models. Note
that the flashWeb approach utilizes a CAWE tool that includes a graphical editor for the com-
fortable creation of the models. The editor also supports different integrity checks so that the
integrity of the design is guaranteed.

A highlight of the flashWeb approach is its ability to produce a fully functional implementa-
tion of the Web application. To this end, a code generator component of the flashWeb CAWE
tool uses the models that have been created in the design phase to automatically generate the
source code of the Web application. A considerable part of the source code is uniform as it is
generated from standard model elements. The generated code provides standard functional-
ity such as the definition of objects, full access to object attributes, full access to the instances
of a certain type (e.g. filtering, sorting, etc.), and the management of relationships between
objects. Given a reasonable design, the portion of code that can be automatically generated
may be up to 90% [JSKM06a]. A usually minor part is custom code that has to be programmed
and stored together with the models as input for the generator. Programming routines that
implement non-standard behaviour belong to this category. To this end, the models provide
so-called custom elements that allow to attach custom code to the design. Ultimately, using the
flashWeb method and the flashWeb CAWE tool the development team may avoid a large part
of the implementation effort and concentrate on the custom part of the code.

A vital aspect for any heavy-weight development process model is thorough documenta-
tion. Documents are used for communication between customers and developers and also
among members of the development team. For example, in most heavy-weight development
processes, the requirements specification is a central document that is used by customers and
developers to agree on the functionality of the developed system. Similarly, the design docu-
ment is used by all team members who participate in the design or the implementation of the
system. The design document usually employs some kind of graphical notation and includes
a considerable number of figures and diagrams. This is certainly the case if the RUP is used
as process model as it heavily relies on UML to capture design. The flashWeb approach satis-
fies the need of heavy-weight processes for extensive documentation in an excellent way. Its
graphical models constitute a comprehensive documentation of the entire system. In contrast
to many other methods, flashWeb provides custom model elements for extending the system
with custom code, thus the generated source code has never to be modified. This approach
ensures that the models and the source code of the system are always synchronized.

Testing is a fundamental activity in every serious process model for Web application devel-
opment. The flashWeb approach minimizes the necessary testing effort of Web applications
considerably. As mentioned before, with this approach a large part of the Web application’s
implementation is generated and these components should be without any defects, thus there
is no need to test them. Of course, custom components must be tested as usual. However, the
overall testing effort is considerably reduced as the portion of custom code is small compared
to the amount of uniform generated code.
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6.3.2 Applying Heavy-weight Process Models to Web Application
Development

Heavy-weight process models are usually not adequate for Web application development.
The Web application development process bears some characteristics (see Section 3.3.3.2) that
are not well supported by heavy-weight process models. However, employing the flashWeb
method in conjunction with a heavy-weight process can eliminate some of these incompatibil-
ities, thus the corresponding process model may be applicable for Web application develop-
ment after all.

One of the most predominant characteristics of Web application development is the frequent
change of requirements. Usually, heavy-weight process models cannot effectively deal with
changing requirements and the cost of late modifications is very high. Heavy-weight process
models rely on thorough design and documentation that is always kept up-to-date. Thus, if
requirements change or new requirements emerge, besides the implementation also the design
and all corresponding documentation artifacts have to be updated. The flashWeb approach al-
leviates some of these insufficiencies as the approach ensures that design and implementation
are automatically kept synchronized. Furthermore, the capability of generating most of the
implementation saves a lot of time that may be used to update additional documentation, e.g.,
the specification document or the user guide. Using the flashWeb approach, the overall adjust-
ment effort that is necessary to react to changing or new requirements is considerably lower,
thus heavy-weight process models may be better applicable to Web application development.

Another typical characteristic of Web application development is the necessity of short de-
velopment cycles, which ensure that a new version of the application may be shipped to the
customer after a short period of time. It is of course difficult to fulfill this requirement if, be-
sides the implementation effort, a range of other activities that are required by a heavy-weight
process have to be executed. As described previously, flashWeb accelerates the development
process considerably and ensures that design and implementation are always synchronized.
Thus the approach not only ensures a improved response to changing requirements but also
facilitates shorter development cycles.

Note that the described aspects address only the most important problems that occur, if a
heavy-weight process model is to be employed for Web application development. Of course,
there are many further challenges (see Section 3.3.3.2) that have to be considered. For example,
incremental and parallel development may or may not be supported by a particular heavy-
weight process model, thus it is not appropriate to make general assertions regarding these
requirements. Note that the flashWeb approach supports many of these requirements (see
Section 6.3.5).

6.3.3 Support for Light-weight Process Models

Light-weight or agile software development processes concentrate on people, collaboration,
and communication instead of on planing, tools, and documents. Thus at the first glance, it
may not seem obvious why to employ a method together with an agile development process
that relies on thorough design and a CAWE tool. However, as the following paragraphs de-
scribe, there are many typical aspects about light-weight development processes that are well
supported by flashWeb.

A common characteristic of agile process models is incremental development. The applica-
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tion is not planned and designed completely during a early phase of the development process
but divided into several increments that are designed and implemented consecutively. An
initial increment of the system usually implements a basic architecture, which is gradually
extended by subsequent increments. The flashWeb method provides excellent support for in-
cremental development. All flashWeb models provide structuring elements that, on the one
hand, allow to create a basic architecture of the system and, on the other hand, enable the
developer to define arbitrary system modules. Furthermore, the models provide additional
fine-grained model elements that may be used to fill the modules with detailed functionality.
Ultimately, the developer enjoys complete freedom to split up the functionality of the system
into an arbitrary number of increments.

An important advantage of light-weight process models compared to their heavy-weight
counterparts is their openness to changing requirements. Agile process models try to mini-
mize the additional overhead of detailed planing and extensive documentation. Consequently,
additional requirements for the application may be incorporated into the development process
more smoothly. One way to anticipate and to respond to changing requirements is certainly
incremental development, which is well supported by flashWeb. Another advantage of the
method is the utilization of a CAWE tool that supports the generation of the implementation.
The increased development speed is of course independent from the process model, neverthe-
less it greatly facilitates fast response to any change of requirements.

Simplicity is a core value of most agile development process models. Of course, a simple
solution usually causes less problems than a more complex one, because it is less probable
that it contains defects and it is easier to create and to maintain. The flashWeb approach is all
about uniformity and simplicity. The provided set of standard model elements encourage the
developer to create a standard solution before thinking about a possibly more complicated cus-
tom approach. Additionally, source code that is generated from the models is highly uniform.
Thus, it is easy for the developer to integrate custom code into the implementation.

Another core value of agile software development is its focus on people and communication.
As a method for Web application design and implementation, flashWeb does not explicitly
boost communication between members of the development team, however, it doesn’t restrain
it either. As a matter of fact, it is the responsibility of the process model to stress the importance
of communication and encourage team members to communicate. For example, an important
practice of the XP process model is programming in pairs (see Section 3.3.3.3), which undeni-
ably facilitates communication between developers. Of course, the flashWeb CAWE tool may
be used by pairs of individuals to develop the models and generate the implementation and,
thereby as a side effect, facilitate communication.

6.3.4 Applying Light-weight Process Models to Web Application
Development

Generally, light-weight process models suit Web application development very well. There
are several key characteristics of Web application development (see Section 3.3.3.2), e.g., short
development cycles or changing requirements that are explicitly supported by agile process
models. As described in previous sections, the flashWeb method facilitates fast Web application
development and flexible response to changing requirements, thus it may easily be integrated
into light-weight process models. Therefore, regarding these aspects the flashWeb method does
not have to act as an enabler, which is certainly the case with heavy-weight process models (see
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Section 6.3.2).

However, there is one aspect about Web application development that is difficult to accom-
modate by an agile process model. The complexity level of the Web application may increase
considerably during the development process. Light-weight process models are primarily suit-
able to develop small and mid-size applications. However, if the complexity level of the Web
application gets too high, it may be necessary to assign more resources to planning and de-
sign, which is usually a strength of heavy-weight processes. The flashWeb method provides
the necessary thoroughness, which is required to build a complex Web application, without
slowing down the development process. It relies on graphical modeling and the generation of
the Web application’s implementation. On the one hand, the modeling approach facilitates the
definition of a system design that is flexible enough to adapt to increased complexity, on the
other hand, the generative approach compensates for the necessary modeling effort. After all,
the flashWeb method may enable a light-weight process model to better adapt to increasing
level of complexity.

6.3.5 Further Support for Web application Development

Previous sub-sections concentrated on flashWeb’s general support for different process models
and on its characteristics that enable the employment of these models for Web application
development. However, the flashWeb approach has some further characteristics that are not
process-model-specific but are still relevant for Web application development.

The first aspect to be mentioned is component reuse, which is one way to deal with the
enormous time pressure that is typical for Web application development. Of course, the initial
development of reusable components requires additional effort. One needs to identify func-
tionality that is reusable and partition it into appropriate modules. Furthermore, each module
needs a simple, easy to use, and properly documented interface. Of course, the initial effort
pays off if these components are employed in the same or in follow-up development projects.

The flashWeb approach supports component reuse at two levels. First, all flashWeb models
define fine-grained standard elements that are small components to be used repeatedly to build
the application. For example, the Composition/Navigation Model (see Section 4.5) provides
several generic view components that can be flexibly combined with other model elements to
present a uniform view over data originating from different sources. This may be described as
component reuse in the small. Second, flashWeb models provide different structure elements
that allow the definition of reusable modules. The graphical models provide an excellent mod-
ule documentation that is always up-to-date. Furthermore, the flashWeb CAWE tool allows
the easy definition and management of models, thus with its help, it is even possible to create
different skeleton applications that may be reused in different development projects. This may
be described as component reuse in the large.

Another characteristic of Web application development is the parallel execution of activities.
As described in Section 3.3.3.2, parallelism is natural for Web application development for two
reasons. First, usually there are several disciplines that are involved in the development pro-
cess, e.g., system architects, programmers, graphic designers, etc. Second, parallel execution
of similar tasks is often used to speed up the development process.

The flashWeb approach facilitates both forms of parallelism. To this end, it provides differ-
ent models that may be created by developers in parallel focusing on different tasks. First, a
modeling expert may create a Content Model (see Section 4.3) and an Operation Model (see
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Section 4.4) that define the content structure and basic content management operations of the
system. Second, at the same time a programmer may develop a custom module of the Op-
eration Model, which provides functionality that is not covered through basic content man-
agement. Finally, parallel to the first two developers, a user interface designer may create a
Composition/Navigation Model (see Section 4.5) that defines the user interface of the system.
Additionally, each of these tasks may be split into several sub-tasks that can be executed by
different members of the development team in parallel.

This high level of parallelism is explicitly supported by the flashWeb approach. To this end,
different flashWeb models are employed to capture different aspects and the models may be
flexibly combined to yield the overall system. However, because of the proper separation of
concerns, this combination may also occur after significant progress has been achieved in each
of the parallel activities. Of course, the developers have to agree on appropriate interfaces that
ensure a smooth integration of components that have been developed in parallel.

6.4 Comparison with other methods

The flashWeb method has been thoroughly described in Chapter 4 of this work and, addition-
ally, Sections 6.1 and 6.2 highlight some of the method’s advantages and limitations. Addition-
ally, this section compares the flashWeb method to other Web engineering methods, some of
which have been introduced in Section 3.4.

6.4.1 Feature Comparison

The most prominent characteristics of the flashWeb method are described in Section 4.1. Many
of these characteristics are superior to equivalent features of other Web engineering methods
as described subsequently.

A common characteristic of model-based Web engineering methods is the utilization of
graphical models for Web application design. Different models are applied to capture dif-
ferent aspects of the Web application (see Section 3.2.4). Unfortunately, many Web engineering
methods provide model elements that have a rather high level of abstraction. Such model
elements cannot be used to capture fine-grained functionality and therefore these Web engi-
neering methods are only partially suitable to develop current day Web applications that usu-
ally provide sophisticated functionality. Note that most Web engineering methods introduced
in Section 3.4 employ model elements that have a rather high level of abstraction or simply
lack model elements to capture specific functionality (e.g. content management operations).
Detailed comments are provided as conclusions of the corresponding sections. In contrast to
that, the flashWeb method aims at providing fine-grained model elements in all its models to
achieve a maximal coverage of the Web application’s requirements.

An important paradigm for the development of any complex system is the separation of
concerns. This paradigm is respected by most Web engineering methods by providing dif-
ferent models to capture different aspects of a Web application. For example, all methods
that were introduced in Section 3.4 provide a separate model for capturing the content struc-
ture and the user interface of the Web application. This enables different experts to work on
different aspects according to their expertise. However, as described in Section 3.4, Web en-
gineering methods (e.g. the UWE method) often utilize a dominant content model that has
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a great influence on what other models may specify. Another example is the WebML, which
defines content management operations as part of the user interface specification. Dependen-
cies between models or merging models into each other result in unnecessary constraints for
the modeller and it restricts the parallel development of different application parts. In contrast
to that, no flashWeb model constrains any other flashWeb model. Similarly to other Web en-
gineering methods, flashWeb models build on each other, i.e., the Operation Model provides
content management operations for objects that have been defined by the Content Model, etc.
However, models are not restricted to those concepts that have been defined by lower level
models. For example, flashWeb’s Operation Model may define arbitrary utility classes that are
not related to the Content Model in any way. As a matter of fact, flashWeb provides the great-
est amount of independence possible between it’s models by providing graphical references
between different models.

A very important objective of Web engineering is code generation (see Section 3.2.6). The
development speed-up that results from generating a part or the entire implementation of a
Web application instead of producing it by manual programming, provides additional time
and resources that can be used to create a thorough design and an appropriate documentation.
In contrast to flashWeb, most Web engineering methods do not provide code generation sup-
port. From the set of methods introduced in Section 3.4, the WebML is the only one capable of
generating at least a partial implementation of the modeled Web application. The lack of abil-
ity to generate a functional implementation can be ascribed to two common problems. First,
Web engineering methods usually fail to create sufficient connections between their models.
Thus, even if they could generate code using their different models, a significant program-
ming effort would be necessary to merge the generated code manually after the generation
step. As described in the previous section, flashWeb solves this problem by providing graph-
ical connections between its models. These graphical connections define precise relationships
between model elements that can be transformed into working code. Second, those Web en-
gineering methods that are capable of code generation often support only partial generation,
i.e., after the Web application is generated, the code must be adjusted manually to include cus-
tom components which cannot be generated. After that no further code generation is possible,
thus an incremental development approach is not supported. For example, this is the case
with the WebML method. In contrast to that, flashWeb models provide extension mechanisms
(see Section 4.1) that allow to specify custom components and integrate them into the models.
Accordingly, the models and the generated code are always synchronized and the Web appli-
cation can be regenerated easily after the models have been changed. Thanks to its extension
mechanisms, the flashWeb method is capable of generating a fully functional Web application
from its models. Further details on code generation, especially on the distinction between full
and partial code generation capability, are provided in Section 3.2.6.

Many Web engineering methods are database-driven, thus they rely on modeling techniques
from the world of relational database management, e.g., Entity-Relationship modeling. In con-
trast to that, many other methods use UML or proprietary graphical notations that support
object-oriented design. In Section 3.4, Web engineering methods from both areas were intro-
duced. Similarly to the latter ones, the flashWeb method relies on object-oriented modeling. To
this end, it uses the UML and UML-like syntax for all models.
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6.4.2 Summary

Guetal. argue [GHSLO02] that there is a considerable gap between the informational design and
the functional design in models of existing Web engineering approaches. While informational
design is well understood and supported, the functional design is usually covered poorly. A
comparison of selected Web engineering methods (e.g. OOHDM, WebML, UWE, etc.) with a
set of requirements established by the authors show that the “Ability to Model Sophisticated
System Functionality” and the “Ability to Link Information Architecture with Functional Ar-
chitecture” of these modeling approaches are insufficient. Figure 6.1 (adjusted from [GHSL02])
shows a comparison of several Web engineering methods including flashWeb, which has been
additionally inserted into the original diagram.
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Figure 6.1: Web Engineering Methods Comparison

The x-axis indicates a method’s capability to model a Web application’s information archi-
tecture. As mentioned before, most Web engineering methods support this task well. This is
also the case for flashWeb. It’s content model allows the exact definition of a Web application’s
information requirements and standard content management operations integrate any content
into the user interface seamlessly. To this end, flashWeb employs model elements that have
similar expressive power as corresponding model elements of the WebML. Therefore, these
two methods are at the same level considering the x-axis of Figure 6.1.

The y-axis depicts a method’s capability to model a Web application’s functional architec-
ture. As Figure 6.1 suggests, this task is generally not well supported by the listed methods.
They do not provide a solid strategy for the definition of functional characteristics. Some meth-
ods integrate operations into existing models, e.g., the content model and, in most cases, op-
erations are not well connected to the model defining the user interface, thus it is difficult to
integrate application logic into the user interface.
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This is exactly the main challenge that is addressed by the flashWeb method. The Operation
Model of flashWeb provides an essential basis for a Web application’s functional architecture.
It specifies basic content management operations that provide a solid connection between in-
formational design (i.e., the Content Model) and functional design (i.e., the Operation Model).
Furthermore, the method’s model-weaving strategy allows an easy integration of functionality
into the user interface. Therefore, the flashWeb method is higher ranked on the y-axis than
other methods in this comparison. Note, however, that even flashWeb is far from the top end
of the y-axis. This is due to the fact that it is yet to support higher level concepts for modeling
functional characteristics, i.e., design patterns or business processes.

6.5 Code Generation Statistics

An outstanding feature of the flashWeb Web engineering method is its capability to generate a
tully functional Web application for a selected implementation environment. To this end, the
developer models the Web application with the flashWeb CAWE tool employing two types of
model elements. Standard elements satisfy common Web application functionality and custom
elements can be used to allow for application-specific requirements. An important question is
of course, how large is the amount of custom code in a real Web application? Lets formulate this
question another way. Is the ratio of standard model elements to custom model elements large
enough to justify the usage of flashWeb and does the code generation capability really provide
a speed-up of the development process? To answer these questions the flashWeb development
approach has been tested in a real Web application development project.

6.5.1 Test Subject

The aim of the three-year research project nova-net financed by the German Federal Ministry
of Education and Research was to develop innovative methods and tools to support innova-
tion management process in enterprises. Main activities of the project were focused on two
major areas. The first area was dealing with the development of methods for finding informa-
tion on the WWW that can be utilized to support the innovation management process. Expert
knowledge has been identified as a crucial asset, thus, the goal of the information retrieval pro-
cess was to identify experts on the Web. Based on previous work [Jak03][JGHNO5][JGNMO5],
an information retrieval tool [KSJO6][KJWO07][KSJ07] has been developed capable of identify-
ing similar Web documents and extract their authors, who have been identified as potential
experts.

The second focal point of the research project was the development of methods and tools
for managing and evaluating information in order to support decision making processes. To
this end, a method [JKK*07] and a corresponding framework called the Scenario Management
Framework (SEMAFOR) [JKS05] have been developed. The framework has been implemented
as a Web application for the Zope 3 application server. It has four basic modules that can be
combined in a flexible manner to compose and evaluate business scenarios. The Descriptor
Module allows to gather business factors and their development over time. The task of the
Expert Module is to manage experts that deliver assessments about business factors. The Ques-
tionnaire Module provides functionality to conduct Web-based expert surveys about arbitrary
business factors. Finally, the Scenario Module allows to combine business factors into business
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scenarios and use expert knowledge to automatically compute probabilities and assessments
for the scenarios. Figure 6.2 shows a screenshot from the descriptor module of SEMAFOR.
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Figure 6.2: SEMAFOR Screenshot

User interface screens of the SEMAFOR tool have a uniform layout. Each screen is divided
into two areas. The left-hand side of the screen is occupied by the explorer area, which usually
shows objects of a certain module with a tree view. The right-hand side of the screen contains
the information area, which provides details about the object that is selected on the left. Ad-
ditionally, a breadcrumb above the areas allows fast access to the object tree of the explorer
area.

The example in Figure 6.2 shows a screen from the descriptor module. The left-hand side
of the screen shows a tree of business factors, also called descriptors. In this case, the right-
hand side of the screen shows the development of the “Health Awareness" descriptor, which
is selected on the left. This descriptor has three possible directions for development, i.e., “de-
crease", “increase”, and “no change". The diagram on the right-hand side shows how an expert
judged the probability for these development directions for three different moments in time.

It is obvious that SEMAFOR is not a trivial Web application. It provides a sophisticated
user interface that allows the user to view and manage content in various ways. Accordingly,
it is very well suited to test a model-based Web application development approach. On the
one hand, it provides functionality that can be easily captured with standard model elements,
e.g., objects that are represented with uniform tabular views. On the other hand, it integrates
custom functionality like the computation of scenario probabilities or the generation of expert
questionaires.

Therefore, SEMAFOR has been selected as a test subject for the flashWeb method. Note, how-
ever, that SEMAFOR has been modeled and generated with an early version of the flashWeb
CAWE tool [JSKM06a]. As a prototype, this tool did not have a graphical editor but required
models expressed in XML as input to generate a Web application. However, this early version
already used the same models as flashWeb, thus, the results of the code generation process that
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are presented in the next section are also representative for the code generation process of the
graphical flashWeb CAWE tool. The idea of using graphical models instead of XML has been
published in [JSKMO6b].

6.5.2 Test Results

The generated implementation of SEMAFOR [JSKMO06a][JKSB06] adheres to the principles of
the flashWeb Web engineering method and employs the four implementation layers intro-
duced in Section 5.1. Table 6.1 shows statistics about the generated code of SEMAFOR for
each of these implementation layers. The term standard code means that the code has been com-
pletely generated from the graphical models. The term custom code means that the code has
been added manually.

Layer LOC Percentage
Content Layer 3455 30.01%
Operation Layer (standard) 2601 22.58%
Operation Layer (custom) 682 5.92%
Composition/Navigation Layer | 4247 36.88%
(standard)

Composition/Navigation =~ Layer | 456 3.95%
(custom)

Presentation Layer 76 0.66%
Total 11519 100%

Table 6.1: Code Generation Results

The Content Layer of a Web application developed with flashWeb contains only generated
standard code. In case of SEMAFOR, the code of this layer amounts to 30.01% of the entire
source code. The Operation Layer includes standard code as well as custom code. Standard
code of this layer amounts to 22.58% of the entire code. The fraction of custom operations is
5.92% of the total, which is about one fifth of the Operation Layer. The Composition/Naviga-
tion Layer also has standard code, which makes up 36.88% and custom code, which amounts
to 3.95% of the total. Finally, the tiny portion of the Presentation Layer makes up 0.66% of the
entire code.

These figures characterize the implementation of a single Web application. Of course, the
source code distribution between the different implementation layers and especially the ratio
between standard and custom code may vary from application to application. As a matter of
fact, SEMAFOR provides a great amount of specialized functionality that is difficult to express
with standard components. The percentage of custom code is about 20% in the Operation
Layer and 10% in the Composition/Navigation Layer adding up to a total of 10% of the entire
source code of the application. This ratio is considered to be above the average. However,
even in this case, 90% of the application was modeled with standard elements, which is still an
overwhelming fraction of the application.
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6.6 Future Work

An extension that would bring an important enhancement to the flashWeb method and to the
flashWeb CAWE tool is the support for change management. Web application development is
usually characterized by a frequent change of requirements, thus the application’s implemen-
tation has to be adjusted often. This is not a problem during the actual development phase
because the application does not administer real data that is to be treated carefully. Applica-
tion prototypes may be tested with test data, which in many cases can be simply generated. If
changes become necessary, the data and the prototype may be replaced or even thrown away.

However, the circumstances are very different after the Web application has been deployed
and taken into service. The most sensitive part of the Web application regarding new function-
ality is the content storage. Content created by the Web application is usually valuable and
cannot be simply thrown away as changes occur. The most difficult situations emerge if the
content model of a Web application has to be changed. In such a case, it has to be ensured that
content is transferred from the obsolete content storage structure to the new structure. This is
usually achieved by running both structures in parallel and transferring the data via manually
written scripts. After data transfer, the old structures can be deactivated and the custom scripts
become useless. Note however that this process is usually error prone and tiresome.

Therefore, an extension of the flashWeb CAWE tool that provides support for change man-
agement would be very valuable and is an object for possible future work. An appropriate
solution for this problem could be the support for fine-grained versioning of the models. In
case of a necessary adjustment for a particular model element, a new version of the element
and an additional mapping between features of the old and the new version could facilitate a
smooth migration to the new functionality. To this end, the model editor has to be extended
with functionality that ensures an efficient management of different versions of model ele-
ments. Furthermore, the code generator has to be able to handle the generation of different
implementations according to these different versions and also to produce appropriate migra-
tion scripts.

Another feature that is not supported explicitly by flashWeb is the workflow-based design
of Web application functionality. Web applications are usually complex systems and, in most
cases, they implement some kind of a content management process or offer services that are
composed of several tasks executed by the Web application’s user. For example, e-business
Web applications like online shops and auction portals always use typical workflows that
guide the user through an ordering or a bidding process. These processes are usually im-
plemented with a set of user interface screens that are presented to the user in a specific order.

Unfortunately, the flashWeb method does not provide high-level support for the modeling
of such processes yet. Of course, it is possible to implement every user interface page of a
process using different flashWeb model elements but the navigation between the pages has to
be created manually. Also a status indicator that informs the user about the current state of the
process needs to be integrated into each page manually.

The last approach for a possible flashWeb extension that is presented here considers the capa-
bilities of the generated application, which may be improved by modifying the code generator
plug-in. The goal of this extension is to generate a Web application that allows the user to
customize the Web application’s user interface in a model-based manner.

Current-day Web applications usually allow its users to customize the user interface of the
application in different ways. Typical examples for user customization are the definition of
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how many information items of a certain kind are displayed, how this information is presented,
or whether the component presenting this information is to be included into a certain user
interface page at all. A simple example demonstrating these options is the summary page of
an online auction system that informs the user about his current activity. Assuming that this
summary page usually includes information about products that have been acquired recently
by the user over the auction platform, he may define the number of products that are to be
shown, the ordering of these products, e.g., ordered by date or price, or he may even choose
not to include this information into the summary page.

Such Web application functionality is of course an added value, however, it also means an
additional development effort for the Web application developer. The flashWeb method, which
uses a detailed user interface model, offers a unique opportunity to eliminate this development
overhead. The Composition/Navigation model of flashWeb may be used to generate a highly
dynamic user interface that allows the user to perform a model-based customization of the
interface. To this end, the code generator plug-in of the flashWeb CAWE tool must not generate
the source code of the user interface as simple HTML with some dynamic content inclusion
through scripting, but rather it has to create a sophisticated object structure that represents user
interface elements at runtime, which are capable of producing the HTML source code on the fly.
With this approach, each user interface component is represented by an appropriate runtime
object at the server side that stores all the necessary information to produce the component’s
presentation. Such a runtime object may be easily replicated to create customized versions of
the user interface component and may be easily manipulated not only from the server side but
also from the client side through AJAX technology.
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