
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Diplomarbeit Nr. 3201

Extending an Open Source BPEL Engine for
Multi-Tenancy Support

Michael Baldauf

Course of Study: Computer Science

Examiner: Prof. Dr. Frank Leymann
Supervisors: Dipl.-Inf. Tobias Binz

Dipl.-Inf. Steve Strauch
Commenced: June 20, 2011
Completed: December 20, 2011

CR-Classification: D.2.11, H.3.5, H.4.1, H.5.3

Abstract

WS-BPEL is the de-facto standard for orchestrating Web services into business processes.
Workflow engines can execute WS-BPEL processes. Furthermore, workflow engines handle
the communication with external service partners providing the Web services. One future
goal is to achieve tenant-aware Web services and thereby tenant-aware workflow engines
to handle Web services. These tenant-aware Web services are specifically configured for the
tenants, and the tenant-aware engines are able to configure such a process instance and offer
them on a per-tenant basis. This reduces provider costs and efforts.

The goal of this diploma thesis is to describe how workflow engines can support multi-
tenancy, especially in the area of communication, and how this is of advantage for providers
who offer their services over the Web using such a workflow engine. The providers should be
able to offer tenant specific instances of applications on one workflow engine. In this diploma
thesis, a concept to extend a workflow engine to handle a tenant context is developed. It is
therefore an extension of the workflow engine in the area of communication. The concept is
implemented by extending the open source WS-BPEL engine OW2 Orchestra.

i

Contents

1 Introduction 3
1.1 Problem Statement . 3
1.2 Research Design . 4
1.3 Motivating Example . 4
1.4 Definitions and Conventions . 5
1.5 Outline . 5

2 Fundamentals 7
2.1 Service-Oriented Architecture . 7

2.1.1 SOAP . 8
2.1.2 Apache CXF . 9

2.2 The Workflow Engine Orchestra . 11
2.3 Cloud Computing . 12

2.3.1 The Five Essential Characteristics . 12
2.3.2 The Three Service Models . 12
2.3.3 The Four Deployment Models . 13

2.4 Multi-Tenancy . 14
2.4.1 Single-Tenancy . 14
2.4.2 Multi-Tenancy Models . 15

3 Related Work 17
3.1 Tenant-Aware Web Applications . 17
3.2 SaaS Applications and Multi-Tenancy Patterns 17
3.3 Architectures . 19
3.4 Migrating and Reengineering . 22
3.5 ActiveVOS . 24
3.6 Apache ODE, WSO2 BPS, and WSO2 Stratos 25
3.7 Tenant-Aware BPEL Engines . 26
3.8 Existing Workflow Engines . 26

4 Concept and Specification 29
4.1 Requirements for a Tenant-Aware Workflow Engine 30

4.1.1 General Requirements . 30
4.1.2 Funtional Requirements . 30
4.1.3 Non-Functional Requirements . 31

4.2 OrchestraMT Model . 32
4.3 The Tenant Context . 33

4.3.1 Tenant Context Structure . 33

iii

Contents

4.3.2 Tenant Context Life Cycle . 36
4.3.3 Requirements for the Tenant Context Concept 36

4.4 Extract Tenant Context from Incoming SOAP Message 37
4.5 Extend Process Instance to Manage Tenant Context 38
4.6 Include the Tenant Context in Outgoing SOAP Messages 40
4.7 Save and Load the Tenant Context Data . 42
4.8 External Usage and Internal Handling . 42

5 Design and Implementation 45
5.1 Development Environment . 45
5.2 Orchestra Architecture . 46
5.3 Extending Orchestra . 47

5.3.1 Tenant Context Class . 47
5.3.2 Tenant Context Handler Class . 48
5.3.3 Extract Tenant Context . 48
5.3.4 Extend Process Instance . 49
5.3.5 Include Tenant Context . 52
5.3.6 Export and Import Tenant Context Data 55
5.3.7 Issues with Implementation . 55

5.4 Example . 56
5.4.1 Synchronous Echo Scenario . 56
5.4.2 Asynchronous Taxi Scenario . 57

5.5 Test and Test Cases . 58
5.5.1 Test . 58
5.5.2 Test Cases . 58

6 Summary and Future Work 61

A Developing Orchestra 63
A.1 How to Build and Run the Engine . 63
A.2 How to Deploy and Address a Web Service . 64
A.3 Orchestra Logging . 65

B BPEL and WSDL Examples 69
B.1 Echo BPEL Process and WSDL Example . 69
B.2 LoanService BPEL Process and WSDL Example 72

Bibliography 77

iv

List of Figures

2.1 The Structure of a SOAP Message . 8
2.2 The Orchestra Architecture . 11
2.3 The Model of the NIST Cloud Computing Definition 13
2.4 The Four Levels of a Multi-Tenancy Model . 15

3.1 Multi-Tenant Oriented Business Process Customization System Architecture . 20
3.2 Multi-Tenant, Secure, Load Disseminated SaaS Architecture 21
3.3 Architecture of Migrated Application . 23
3.4 Multi-Tenancy Reengineering Pattern . 24
3.5 The Multi-Tenant PaaS Models . 25

4.1 The Tenant-Aware Composition Engine’s Architecture 29
4.2 The Orchestra Multi-Tenant Model . 34
4.3 The Tenant Context Structure . 36
4.4 The Tenant Context Life Cycle . 37
4.5 The Incoming Message Processing . 38
4.6 Create Process Instance . 39
4.7 The Execution Flow . 40
4.8 The Synchronous Outgoing Message Processing 41
4.9 The Asynchronous Outgoing Message Processing 41
4.10 The Internal Tenant Context Handling and External Usage 43

5.1 Modified Parts of the Orchestra Architecture 46
5.2 The BPEL Activities . 52
5.3 Synchronous Echo Scenario . 56
5.4 Asynchronous Taxi Scenario . 57

A.1 Build the Engine . 63
A.2 Run the Engine . 64
A.3 Listing of Deployed Web Services . 65
A.4 Deploy a Web Service . 66
A.5 Address a Web Service . 67
A.6 The Logging Properties File . 67

v

List of Figures

vi

List of Tables

2.1 The Incoming Interceptor Chain Phases . 10
2.2 The Outgoing Interceptor Chain Phases . 10

3.1 Comparison of Existing Workflow Engines . 27

4.1 Use Case: Send Service Request . 31
4.2 Use Case: Passing Tenant Context . 32
4.3 Use Case: Send Service Response . 33

5.1 The Test Cases . 58

List of Algorithms

4.1 Extract the Tenant Context Elements from the Message Header 38
4.2 Include the Tenant Context Elements to the Message Header 40

vii

List of Algorithms

viii

List of Listings

4.1 A SOAP Header with Tenant Context . 34
4.2 The XML Schema Definition of Tenant Context 35
5.1 TenantContext.java Class . 47
5.2 Extract Tenant Context Part in the CxfWSImpl.java Class 49
5.3 Create Process Instance . 50
5.4 Call Handle Method . 50
5.5 The Process Start . 51
5.6 Add Interceptor to InterceptorChain in the CxfWSImpl.java Class 52
5.7 Add Interceptor to CXF Client in the CxfInvoker.java Class 53
5.8 The Interceptor to add the Tenant Context to the Message Header 54
5.9 The Hibernate Mapping File . 55
5.10 Example of a Valid Loan Service Request . 59
A.1 The Logger Function . 66
B.1 Echo BPEL Process File . 69
B.2 Echo WSDL File . 70
B.3 LoanService BPEL Process File . 72
B.4 RiskAssessment WSDL File . 74
B.5 Approval WSDL File . 75

ix

List of Listings

x

List of Abbreviations

ASF Apache Software Foundation
BPEL Business Process Execution Language
DB Database
ESB Enterprise Service Bus
GUI Graphical User Interface
IaaS Infrastructure as a Service
ID Identification
IDE Integrated Development Environment
ITHA Isolated Tenancy Hosted Applications
JAX-RS Java API for RESTful Web Services
JAX-WS Java API for XML Web Services
JSP JavaServer Pages
MBPC Multi-Tenant Oriented Business Process Customization System
MSLD Multi-Tenant, Secure, Load Disseminated SaaS Architecture
MTEA Multi-Tenant Enabled Applications
MTS Multi-Tenant System
NIST National Institute of Standards and Technology
OASIS Organization for the Advancement of Structured Information Standards
ORM Object-Relational Mapping
OS Operating System
PaaS Platform as a Service
QoS Quality of Service
RP Request Parser
SaaS Software as a Service
SM Service Manager
SMBs Small and Medium Businesses
SOA Service-Oriented Architecture
STS Single-Tenant System
SVBs Very Small Businesses
TID Tenant Identifier
UID User Identifier
UUID Universally Unique Identifier
VM Virtual Machine
VRC Validation Rule Component
XML Extensible Markup Language
XSD XML Schema Definition

1

List of Listings

2

1 Introduction

The concept of Web services and the associated architectural paradigm of Service-Oriented
Architecture (SOA) are nowadays very important for the business IT [WCL+05]. A definition
of SOA is shown in [TOG]. One of the main characteristics of SOA is the reuseability of the
software components like Web services. There are some proven technologies in SOA, e.g.,
workflow engines or an Enterprise Service Bus (ESB). With a workflow engine, modeled
processes like BPEL processes can be executed. The ESB takes care of the service controlling,
providing, and the communication between the individual services. To realize the SOA
paradigm with the workflow engines and ESB, Cloud computing represents another signif-
icant and important paradigm. A definition of Cloud computing is shown in Section 2.3.
A realation between SOA and Cloud computing is shown in [BGK+11]. Cloud computing
enables the SOA paradigm. It supports the service orientation of SOA with the help of the
three service models IaaS, PaaS, and SaaS. Cloud computing adds the cloud characteristics
to the delivered and consumed services. Furthermore, Cloud computing realize the SOA
characteristics with the help of five essential characteristics. One of the main challenges is to
provide the proven technologies in the cloud. One main feature of SOA and Cloud computing
is to support tenant-aware applications, engines, and ESBs. Especially for the providers of
applications tenant-aware workflow engines are a significant property, because one shared
engine for a number of individual tenants is more resource efficient. The provider can offer
tenant specific instances of the applications on one running workflow engine without setting
up one workflow engine for each tenant.

1.1 Problem Statement

The goal of this thesis is to analyze existing concepts of multi-tenant composition engines and
to extend the open source BPEL engine Orchestra to support multi-tenancy on a per-tenant
basis. This means, that each tenant gets his own, specific, and configured process instance.
Therefore, a Web service is called by processing a SOAP message including a tenant context
explicit in its header. For the first time this tenant context includes a tenant identifier (TID)
and a user identifier (UID) but should be expandable for further work. The specific instance
is implemented based on tenant specific metadata.

The main focus of this diploma thesis is to add the multi-tenancy support in the area of
the communication. This means the handling of the tenant context in the communication
framework. More precisely to get the tenant context into a workflow engine, realize the
internal passing, and include it into outgoing messages, e.g., to communicate with an ESB.

3

1 Introduction

The management and configuration of the tenant specific process instances is not discussed
or implemented in this diploma thesis.

Another important task is the investigation of an extensible and reusable concept of the tenant
context and the integration of it into the SOAP message protocol as seen in Section 4.3. Based
on this, the BPEL engine Orchestra is extended by extracting the tenant context from the
incoming SOAP message into a variable as shown in Section 4.4. To realize the support of a
tenant specific instance it is necessary to extend the process instance to manage the tenant
context as shown in Section 4.5. The last step is to include the tenant context in the outgoing
SOAP message as shown in Section 4.6.

1.2 Research Design

This Section demonstrates the individual steps that were necessary in preparing this diploma
thesis to reach the goal of extending a workflow engine with multi-tenancy support in the area
of communication. The first step was to achieve specialized knowledge through research on
multi-tenancy approaches for compositions and applications as described in the Related Work
Chapter 3. This knowledge was acquired by reading research papers, literature, thematically
related diploma thesis, and definitions. The knowledge is analyzed to define the requirements
for tenant-aware workflow engines. The concept and specification of this diploma thesis is
created as shown in the Chapter 4. Therein, the requirements for a tenant-aware workflow
engine and the use cases for the extension of the engine are presented. The concept is desgined
and implemented in a open source workflow engine. Both, concept and implementation are
evaluated on the basis of a example scenario.

1.3 Motivating Example

For a better understanding of tenant-aware workflow engines and the associated tenant
specific process instances, sample use case scenarios are presented in this Section. Two
simple example scenarios are described: The examples are the synchronous echo and the
asynchronous taxi scenario. The two scenarios will be described in more detail in Section
5.4. For the sake of simplicity, simple Web services are used in this motivating example.

The synchronous echo scenario works as follows: A user sends a request SOAP message
including a sample string in its body to the workflow engine. The executed BPEL process
sends a request message including a sample string in its body to the echo Web service. The
process directly receives the response message from the echo Web service and sends a reply
message including the same string back to the user. Figure 5.3 in the implementation Chapter
5 shows the synchronous scenario.

In the asynchronous taxi scenario, a user calls a taxi company and wants to arrange for a
taxi to a desired address. The taxi company sends a request SOAP message including the
company’s tenant context and the desired user address to the workflow engine. The process

4

1.4 Definitions and Conventions

is executed and in one step a Web service is invoked with the tenant context information.
For example, this Web service could be a customer SMS notification service. The called Web
service is choosen by the tenant’s (taxi company’s) specific preferences, e.g., to use a preferred
low priced SMS service provider. This is realized by the communication with an multi-tenant
ESB. The workflow engine calls the ESB and asks for the tenant specific Web service with
the help of the tenant context. The ESB handles the received tenant context and invokes
the tenant specific Web service1. The user is notified by the chosen Web service. After a
delay, e.g., the user has to confirm the notification response, the process receives a response
message including the tenant context from the Web service. This is the information that the
customer is already successfull notified. Figure 5.4 in the implementation Chapter 5 shows
the asynchronous scenario.

1.4 Definitions and Conventions

To better understand this document, some conventions are used. For reasons of comfort, we
explain these here to avoid misunderstandings.

• Companies and departments representing tenants.

• Clients and subscribers representing users.

• Single instance multi-tenancy and native multi-tenancy are equal models.

• A tenant is not the same as a user. A tenant includes a lot of different users, who are his
stakeholders.

• Cloud or Clouds refer to the the term Cloud computing which is described further in
the Fundamentals chapter.

• An instance of an service is an instance of the application implementing the service
[MUTL09].

1.5 Outline

This diploma thesis is divided into six chapters - introduction, fundamentals, related work,
concept and specification, design and implementation, and a summary and outlook chapter
at the end which summarizes the work done in this diploma thesis and gives an outlook on
the future work.

In detail, each chapter covers the following topics:

Chapter 1 - Introduction: The introduction begins with the problem statement covered in
this diploma thesis. After this, the research design of this diploma thesis and two motivating
examples are described. Then the reader gets a short overview over the individual chapters.

1The communication with the multi-tenant ESB is not realized in this work. The ESB’s invocation of the specific
Web service is done Stefan Essl [Ess11]. This work realizes only the Web service invocation including the
tenant context information

5

1 Introduction

Chapter 2 - Fundamentals: Chapter 2 gives a brief introduction of the basic technologies and
concepts used in this thesis. It covers the topics Service Oriented Architecture, the workflow
engine Orchestra, Cloud computing, and Multi-Tenancy and its related subtopics.

Chapter 3 - Related Work: Chapter 3 covers the current research and industrial status of
tenant-aware workflow engines and Web applications. It describes and explains the two multi-
tenant PaaS compositions ActiveVOS and WSO2 Stratos, and two tenant-aware applications.
Furthermore, multi-tenancy patterns to make applications tenant-aware are presented. In
addition, research approaches of multi-tenant architectures and reengineering patterns are
described. Then a comparison of tenant-aware workflow engines is presented.

Chapter 4 - Concept and Specification: The concepts and specifications of the work covered
in this diploma thesis are discussed in Chapter 4. The Chapter starts with the specification of
the tenant context, its structure, its life cycle, and its reuseability and extensibility. Then it
describes the default Orchestra procedures to receive messages, invoke a process instance,
send messages, and an approach to modify them. This Chapter is a starting point for the
validation of the described approach.

Chapter 5 - Design and Implementation: Based on the Orchestra engine, this Chapter covers
the implementation details of passing the tenant context through the system and all of the
components involved in this process.

Chapter 6 - Summary and Future Work: At the end of this diploma thesis, a summary and
outlook is given to summarize the realized work and discuss the future work in the context
of this topic.

6

2 Fundamentals

This chapter will cover the main technologies and concepts used in this diploma thesis, which
are fundamental to understand the concepts and principles introduced in the following
chapters. The focus here is not to give a complete introduction of all topics, but rather give
the reader the hands-on knowledge which is necessary for a better understanding. It covers
topics such as Service-Oriented Architecture (SOA), Cloud computing, Multi-Tenancy, and
related subtopics. In this chapter, the reader will also receive a short introduction to the open
source BPEL engine Orchestra, since it is used to validate the concepts and specification.

2.1 Service-Oriented Architecture

Service-Oriented Architecture is a specific architecture style which supports service orienta-
tion [TOG]. A service constitute the substantial part of the SOA concept and gives an abstract
view of a business function [WCL+05]. One of the proven technologies in SOA is the concept
of an Enterprise Service Bus (ESB). An ESB implements the interaction between applications.
Furthermore, it takes care of the controlling and providing of the application. The ESB
receives a Web service invocation message, chooses the specific Web service, and invokes
it. In the case of a tenant-aware system, the ESB receives the service invocation message
including the tenant information (tenant context), chooses the tenant specific Web service,
and invokes it. There are some definitions of SOA in the dedicated literature [WCL+05], from
the OASIS Group [OAS06], and from the Open Group [TOG]. The definition of the OASIS
Group [OAS06] is as follows:

"A paradigm for organizing and utilizing distributed capabilities that may be under the con-
trol of different ownership domains. It provides a uniform means to offer, discover, interact
with and use capabilities to produce desired effects consistent with measurable preconditions
and expectations."

7

2 Fundamentals

2.1.1 SOAP

SOAP is a flexible message protocol used to exchange information in a decentralized and
distributed environment [W3C]. SOAP once stood for Simple Object Access Protocol. The
structure of a SOAP message is shown in Figure 2.1. SOAP messages could be bind to
different network transport protocols (for example http) and are based on the XML infoset
[WCL+05]. The SOAP envelope contains 1..N SOAP headers and 1..M SOAP bodys. The
provided definition of SOAP in [WCL+05] is as follows:

"SOAP is the fundamental messaging framework for Web services. With SOAP, you can
access Web services through loosely coupled infrastructure that provides significant resilience,
scalability, and flexibility in deployment using different implementation technologies and
network transports."

Figure 2.1: The Structure of a SOAP Message (Source: [MSDa])

8

2.1 Service-Oriented Architecture

2.1.2 Apache CXF

Apache CXF [APAa] is a open source Web service framework and a combination of the
two open source projects Celtix1 and XFire2. It is used by the open source BPEL engine
Orchestra. It supports JAX-WS3 and JAX-RS as API for Web service and RESTful Web service
development. In addition maven4 tooling is supported. Furthermore, according to [APAa],
Apache CXF supports the following Web service standards:

• SOAP

• WS-Addressing

• WS-Policy

• WS-ReliableMessaging

• WS-SecureConversation

• WS-Security

• WS-SecurityPolicy

One important thing inside the CXF architecture [APAb] are Interceptors [APAd]. In-
terceptors can handle the messages. For example, reading the content, processing headers,
or logging. Interceptors can be used for clients and servers and are stored in interceptor
chains. The participant (client or server) who sends the message to the other participant has
an outgoing interceptor chain. And the receiving participant has accordingly an incoming
interceptor chain. Furthermore, there are outbound and inbound error handling chains to
handle SOAP faults. The interceptor chains are divided up into phases. The phases of the
incoming chain are shown in Table 2.1 and the phases of the outgoing chain are shown in
Table 2.2. The implementation of each interceptor has a handleMessage method. It is also
possible to log incoming or outgoing SOAP messages by adding an in/out interceptor to the
associated interceptor chain [APAc].

1http://celtix.ow2.org/
2http://www.xfire.com/
3http://jax-ws.java.net/
4http://maven.apache.org/

9

2 Fundamentals

Phase Functions
RECEIVE Transport level processing
PRE/USER/POST_STREAM Stream level processing/transformations
READ This is where header reading typically occur
PRE/USER/POST_PROTOCOL Protocol processing, such as JAX-WS SOAP handlers
UNMARSHAL Unmarshalling of the request
PRE/USER/POST_LOGICAL Processing of the umarshalled request
PRE_INVOKE Pre invocation actions
INVOKE Invocation of the service
POST_INVOKE Invocation of the outgoing chain if there is one

Table 2.1: The Incoming Interceptor Chain Phases (Source: [APAd])

Phase Functions
SETUP Any set up for the following phases
PRE/USER/POST_LOGICAL Processing of objects about to marshalled
PREPARE_SEND Opening of the connection
PRE_STREAM
PRE_PROTOCOL Misc protocol actions
WRITE Writing of the protocol message, such as the SOAP En-

velope
MARSHAL Marshalling of the objects
USER/POST_PROTOCOL Processing of the protocol message
USER/POST_STREAM Processing of the byte level message
SEND

Table 2.2: The Outgoing Interceptor Chain Phases (Source: [APAd])

10

2.2 The Workflow Engine Orchestra

2.2 The Workflow Engine Orchestra

In this Section the open source BPEL engine Orchestra5 is presented. The engine is based
on the OASIS6 standard WS-BPEL 2.0 [OAS07]. The main focus is on the architecture of the
engine. Orchestra’s architecture is shown in Figure 2.2. The significant parts of the engine for
this work are the open-source Web service framework Apache CXF in the Web service part
on the right side in Figure 2.2 and the Invoker part of the service container in the core of the
system.

Orchestra

Orchestra Engine
Web Service

ESB

CXF

Axis

Camel

Petals

Operating ConsoleFunctional Console

Designer BPMN
Web 2.0

Eclipse /
Netbeans BPEL

Designers

BPEL

Process Virtual Machine

Service Container

P
er

si
st

an
ce

H
is

to
ry

In
vo

ke
r

P
ub

lis
he

r

Q
ue

rie
r

Jo
b

C
om

m
an

d

C
lu

st
er

in
g

F
IH

 /
U

P
H

O
S

G
I

Figure 2.2: The Orchestra Architecture (adapted from [PLJ10])

5http://orchestra.ow2.org/
6Organization for the Advancement of Structured Information Standards. http://www.oasis-open.org/

11

2 Fundamentals

2.3 Cloud Computing

Cloud computing is a model which enables offering and utilization of computer resources,
software, and information. The resources have been provided and accessed over a network
like the internet. The National Institute of Standards and Technology (NIST) provides a
concise and specific definition:

"Cloud computing is a model for enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction. This cloud model promotes availability and is composed of five
essential characteristics, three service models, and four deployment models." [MG11].

Another definition of Cloud computing can be found in [Ley11]. In [VMCL09] the concept of
Cloud computing, the definition of a Cloud, and the characteristics of cloud computing in the
associated literature are discussed. In the following Subsections the five essential character-
istics, three service models, and four deployment models of the NIST Cloud definition are
described.

2.3.1 The Five Essential Characteristics

The five essential characteristics described in [MG11] are on-demand self-service, broad network
access, resource pooling, rapid elasticity, and measured service. They are shown at the top of
Figure 2.3. The first essential characteristic is called On-Demand Self-Service. This means the
consumer can self obtain capabilities like network storage or server time. Another essential
characteristic is Broad Network Access. Therein, the consumer can access network available
capabilities through standard mechanisms. The characteristic Resource Pooling means that
the consumer normally has no control or knowledge about the location of the used pooled
resources like storage or virtual machines (VMs). Rapid Elasticity designate that the consumer
can acquire the capabilities rapidely, elastically, in some cases automatically, at any time and
unlimited. The last essential characteristic is Measured Service. It means that the automatically
controlled resource usage of a cloud system leads to transparency for consumer and provider.

2.3.2 The Three Service Models

The three service models described in [MG11] are Software as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service (IaaS) which are shown in the center of Figure
2.3. In all three models the provider offers a cloud infrastructure to a customer. SaaS means
that the consumer use applications which are accessable over the Web, offered by a provider,
and running on the providers cloud infrastructure. But the consumer cannot configure the

12

2.3 Cloud Computing

underlying hardware and software or the application itself. In contrast, in the PaaS model
the consumer can deploy his own acquired applications and has to configure these. The IaaS
model goes one step further and enables the customer to deploy and run arbitrary software
like operating systems (OS) and applications on the providers cloud infrastructure. The user
has to configure and control his own deployed and running software, but not the underlying
cloud hardware.

2.3.3 The Four Deployment Models

The four deployment models described in [MG11] are private cloud, community cloud, public
cloud, and hybrid cloud. They are shown at the bottom of Figure 2.3. In the first deployment
model called Private Cloud, the cloud infrastructure is deployed only for one organization. The
next deployment model is the Community Cloud model wherein several organizations share
one cloud infrastructure. The model wherein the general public or large industry groups use
the cloud infrastructure is called Public Cloud. The last deployment model is the Hybrid Cloud.
Therein two or more of the three above described clouds Private, Community, or Public are
connected together.

S
ervice

M
odels

Software as a Service
(SaaS)

Platform as a Service
(PaaS)

Infrastructure as a Service
(IaaS)

E
ssential

C
haracteristics

D
eploym

ent
M

odels

On-Demand
Self-Service

Broad
Network
Access

Resource
Pooling

Rapid
Elasticity

Measured
Service

Private Community Public Hybrid

Figure 2.3: The Model of the NIST Cloud Computing Definition

13

2 Fundamentals

2.4 Multi-Tenancy

Software as a Service (SaaS) is a software delivery model where different tenants can access,
use, and rent applications from SaaS providers. Hosting one application for each tenant is not
very efficient and economic. Due to this fact we need variable and customizeable instances of
applications which support multi-tenancy.

The application instances of the tenants or companies have to be served concurrently. There
are a lot of different approaches to realize the concept of multi-tenancy. One of the important
techniques are isolation points and customization of applications [CWZ10]. Isolation points
are some parts of an application which have a tenant specific value or behavior (e.g., a
variable). This isolation points are stored in a metadata repository for each tenant. There are
some approaches for better isolation techniques in security, performance, availability, and
administration in [GSH+07]. With customization, tenant-specific behaviors can be enabled.

Multi-tenancy has a lot of benefits for both, providers and subscribers of Web applications. The
providers get a higher profit margin because their delivery costs of applications are reduced.
Thereby the subscribers or clients of Web applications have decreased costs. Reducing costs
makes the application offering more attractive for tenants or clients like small and medium
businesses (SMBs) and the very small businesses (SVBs). Multi-tenancy support makes
expensive applications affordable for those SMBs and SVBs [KNL08]. But there are also
disadvantages for providers and subscribers in relation to multi-tenancy like insufficient data
or application isolation. Every tenant should use his own data set and shouldn’t get access to
the data of other tenants (data isolation). Furthermore, each tenant should not affect the other
tenants by using the application (performance isolation).

Multi-tenancy support is not limited to SaaS applications. Another possibility is to make
a server capable to support multi-tenancy. One way is that multiple virtual machines can
be provided by one physical host. Each tenant accesses such a virtual machine as his own
server.

2.4.1 Single-Tenancy

In the single-tenancy concept, only one single instance of an application for each tenant is
provided. With single-tenancy each tenant gets his own (specific) software application by
installing the software on his own IT infrastructure or rent it over the SaaS platform from
a provider as a Web service. On the one hand single-tenant applications are cheaper to
design and build, but on the other hand multi-tenancy applications are more flexible and
customizable. This leads to Web applications for different tenants without rewriting the
original source code. However the single-tenancy applications have to be redesigned and
the code has to be rewritten for each tenant. This is one of many reasons why multi-tenancy
applications are needed for the SaaS platform model.

14

2.4 Multi-Tenancy

2.4.2 Multi-Tenancy Models

Multi-tenancy can be classified into two types [GSH+07], native multi-tenancy and multiple
instances multi-tenancy. In the native multi-tenancy model, all tenants share one application
instance. But every tenant has its own resources and configuration and does not realize
something about the shared instance. With native multi-tenancy it is possible to support
thousands of simultaneous tenants. However in the multiple instances multi-tenancy pattern,
every tenant has its own application instance. Only the hardware or operating system is
shared by all tenants. One problem of customizing a native multi-tenancy application for
each tenant is that the services of other tenants could be affected, because they share the same
application instance.

There are four levels of a multi-tenancy of an application instance [KNL08, CC06]. In level
one every tenant has his own application instance with his own customized code. Level two
devotes a configurable code of the application and every tenant gets his own instance. Level
three utilize a configurable code and one individual customizeable instance of the application
by the metadata of each tenant. Thereby each tenant has the impression that the application is
his own seperate instance. Level four also utilize a configurable code and a set of individual
customizeable instances of the application to support load-balancing.

Figure 2.4: Four Levels of a Multi-Tenancy Model (Source: [KNL08])

15

2 Fundamentals

16

3 Related Work

In this Chapter, the current research and industrial state of multi-tenant enabled workflow
compositions and Web applications is investigated. First, two tenant-aware Web Applications
are presented. After this, usage of multi-tenancy patterns to make applications tenant-aware is
introduced. Then four architectures for multi-tenancy systems as well as methods to migrate
and reengineer applications are described. Furthermore, the two multi-tenant PaaS products
ActiveVOS and WSO2 Stratos and their functionality will be described. In addition, a diploma
thesis about tenant-aware BPEL engines is reviewed. Last, a table of existing workflow
engines is shown and they are compared in the area of the framework, compatibility, and
tenant-awareness.

3.1 Tenant-Aware Web Applications

There are some approaches to support multi-tenancy in Web applications. One of these
multi-tenant Web applications is the Electronic Contract Management Application described
in [KNL08]. With the Electronic Contract Management Application, multiple tenants can
manage their contracts very cheap and completely online. The application is used and hosted
by IBM for a number of tenants. The conclusion of this industrial experience is that the
application is stable and useful because it reduces cycletime and transaction costs. It also
increases the productivity of sales and the efficience by saving a lot of time for the contracted
users. The application realizes three important attributes of a multi-tenant application: (1)
customizability, (2) efficiency, and (3) scalability.

The second multi-tenant application is called CodenameMT, a multi-tenant version of the
single-tenant application Codename. CodenameMT is originated from Codename by the multi-
tenant reengineering pattern proposed in [BZP+10]. The migrating is done very cheap,
quickly, and efficiently. CodenameMT supports the key benefits like increased usage of hard-
ware resources, easier servicing, and non changed look-and-feel of the application. Tests
of CodenameMT have shown that the major functionality of the original application is unaf-
fected.

3.2 SaaS Applications and Multi-Tenancy Patterns

The recent work done by Ralph Mietzner et. al. in the area of multi-tenant SaaS applications
[MMLP09, MUTL09, MLP08] proposes to use multi-tenancy patterns to make applications
tenant-aware. Furthermore, there is several related work discussed, like a framework for

17

3 Related Work

tenant-aware SaaS applications and whole tenant-aware applications. In contrast to this
focus on the deployment of tenant-aware applications, the focus of [MUTL09] is more on
the modeling of them. There are multi-tenancy patterns described to solve multi-tenancy
problems. They also describe a real world running example application related to their
multi-tenancy patterns. The application is called eCommerce Concept (eCCo) and used by
the automotive industry to sell new and used vehicles. Thereby different dealers (tenants) can
use the application and customize it to their needs like the specific tax rate of their market or
the GUI. The application is implemented and operated only once, but the GUI is configurable
by the tenant’s specific metadata. The Web services are orchestrated using BPEL and run on
an IBM WebSphere Process Server.

There are three basic types of instances in [MMLP09, MUTL09] to realize the tenant spe-
cific adaptation of SaaS applications, single instance, single configurable instance, and multiple
instances of a service. The authors of [MUTL09] propose another taxonomy of the multi-
tenancy patterns. Thereby Web services are either non-configurable or configurable. If its
a non-configurable service and there is one instance used by all tenants, it is called single
instance service. In contrast, the service is called multiple instance service when every tenant
has his own separate instance of the service. If the service is configurable and one instance is
used by all tenants, it is called single configurable instance service. When every tenant has his
seperate instance of a configurable service, it is called multiple configurable instances service.
The multiple instances service pattern is used when the service logic is very specific for each
tenant, the data of a tenant is very private and critical, or the quality of services (QoS) is
very specific for each tenant. However, this variant violates the notion of the single instance
multi-tenancy architecture. Furthermore, it is harder to update the several multiple instances
than one shared single instance. There are no process engines which support multi-tenancy
on a per-tenant basis. Multi-tenancy on a per-tenant basis means that each tenant gets his
own specific and different configured process instance in addiction to a tenant identifier (TID).
Therefore, the idea is to call the Web service by processing a SOAP message which includes a
tenant context explicit in its header1 or implicit in its payload. There are two different notations
of service invocations, a basic invocation and a invocation under tenant context. A so called tenant
handler extracts the tenant context and retrieves the tenant’s specific metadata from a database
by the TID. The service is implemented based on this tenant specific metadata.

The eCommerce Concept (eCCo) SOA application described in [MUTL09] is an example for
the described multi tenancy patterns. The described application is a automotive point-of-sales
Web service application defined as BPEL process. The main functionality of the application
is that car dealers can deal with the sale of new and used cars. A dealer corresponds to a
user and a dealer organization to a tenant. The application is hosted centralized and can be
used by several dealers. However, dealers or dealer organizations can be in different markets
where different modificated instances of the application are used. The differences can be
financial options, tax rates, exchange, or external services, and differences in the GUI. To
support the offering of tenant-specific instances and not only the support of modifiable and
market specific instances, the used workflow engine must be tenant-aware. This means it
must be able to handle a tenant context to create dealer specific instances.

1This is similar to the approach in this thesis

18

3.3 Architectures

3.3 Architectures

There are different architectures for multi-tenancy systems. This section prevents four kinds of
multi-tenant architectures. The first architecture is the Multi-tenant Oriented Business Process
Customization System (MBPC) in [SLLW09b] or also called Business Process Customization
Framework in [SLLW09a]. This multi-tenancy system enables the customization of processes
based on BPEL.

There are some problems in orchestrating BPEL business processes. The first problem is that
a deployed BPEL process cannot be modified at runtime. Furthermore, it is difficult to realize
business logic rules like QoS and handle exceptions caused by service invocations with BPEL
processes. When tenants change services or the relationships between them, logical errors can
occur. The architecture of the MBPC consists of a execution environment, a resource layer, and
a kernel framework. Tenants can customize processes and services before they are deployed
to the engine. The system can handle errors like unsuccessful process executions or prevent
errors like wrong customization. The customization of the business processes is realized by
adding points of variability in the BPEL process. The extension of BPEL is VxBPEL from
Michiel Koning [KSS09].

The Multi-tenant Oriented Business Process Customization System (MBPC) consists of the
three components: execution environment, resource layer, and kernel framework as shown in
Figure 3.1:

• Execution environment: Includes the BPEL engine and external services.

• Resource layer: Includes the data storage needed by the system like tenant database or
user database.

• Kernel framework: Is the core of the system. It includes five modules: business defini-
tion, service manager, service customizer, rule manager, and verification engine.

The second SaaS multi-tenant architecture is proposed in [PLL10]. The architecture is called
Multi-Tenant, Secure, Load Disseminated SaaS Architecture (MSLD). The system as shown in
Figure 3.2 is divided into five services:

• Responder Service: Handles the user requests.

• Routing Service: Includes three components, Service Manager (SM), Request Parser
(RP) and the Validation Rule Component (VRC). The SM indexes every hosted service.
The RP and VRC validate the incoming requests. VRC parse requests to check, e.g., the
valid value range and valid data types. However the RP parses the requests to check if
it concurs to the defined XML schema.

• Security Service: Controls authentication and authorization. Every user request passes
the Security Service. The Responder Service and Routing Service depend on the re-
sponse of the Security Service.

• Logging Service: There are two major tasks of the Logging Service, first logging the
service failures and second logging the user service requests. This helps to realize the
pay-as-you-go business model, where you only pay what you have used.

19

3 Related Work

Figure 3.1: Multi-Tenant Oriented Business Process Customization System Architecture
(Source: [SLLW09b])

• Realization Service: Hosts all offered services.

The Request propagation runs as follows: The Responder Service receives the user’s service
request and checks if it has a valid session and if its a valid customer. This validation of the
request is realized by routing the request to the Security Service. When the Security Service
validates the request its logged by the Logging Component and routed to the Routing Service.
At the Routing Service the request is validated if its datatypes and value ranges are valid.
Now, if the validation was successfull the Routing Service routes the request to the Realization
Service. The Realization Service passes the request to the dedicated services. After the service
is executed the response is routed to the Responder Service. The Responder Service checks
the type of the service customer and transforms the response according to the skills of the
customer. Thereby, the one instance of a service can be used by different customers.

The third SaaS multi-tenant architecture in [KNL08] is divided into three services, Tenant
Specific Metadata Customization, multi-tenancy SaaS Security Service and multi-tenancy SaaS
Data Model. In this System every tenant gets an unique identification (ID) and an own admin-
istrator. This administrator creates the user accounts for each tenant. There are three kinds of
databases in the data model, one for the tenant information, one for the end user information,
and one for the electronic contracts between customer and service provider. The tenant’s
administrator has to customize the application presentations, branding, user-interfaces, and
Web pages by configuring the applications metadata. To realize this, they use the Customiza-
tion Module. The users from different tenants have to be authenticated and authorized based
on their unique ID by the Security Service. In the realized electronic contract management
application in [KNL08] are eight modules: admin module, access control module, workflow

20

3.3 Architectures

Figure 3.2: Multi-Tenant, Secure, Load Disseminated SaaS Architecture (Source: [PLL10])

module, email notification module, electronic signature module, document management
module, data extraction and search module, and a life cycle management module. These
eight modules are tenant specific by the unique tenant ID numbers and retrieve the tenant
specific metadata by interacting with the Metadata Service. The hosted application by the
application provider is shared by different tenants. Due to this fact the application has to
be parametric to realize the customization. The Metadata Customization Model enables
this customization of applications by each tenant with sets of customization templates. The
application can, e.g., customized by setting the tenants company logo. The System uses a
centralized authentication system. The users have roles according to their tenant IDs. The
tenants and their users will be authenticated by the unique tenant ID and a password. The
administrator can assign the user to an access level, add the general information of the user,
and set the role of a user like submitter, signer, counter-signer, approver, or reviewer. The
multi-tenancy Data Model has to be robust and secure. The tenant’s specific data should

21

3 Related Work

be isolated from the other tenants because they use the same application instance and each
tenant has its own specific data. The multi-tenancy SaaS application uses a shared database
and schema. The resources, software codes, and the data of the tenants are hosted in the same
database on the same set of servers.

The fourth and last multi-tenant SaaS system presented in this section is shown in [SR11]. The
goal of the system is to support the custom requirements of individual tenants and not only
the common needs of several tenants. As the other presented systems and architectures in
this section, this system has a shared an centrally-hosted application used by a large number
of different tenants. Because of this its important to realize the application variations of the
different tenants. We have to distinguish between common services used by all tenants and
specific services created for and used by some tenants. However, the system is not only a
collection of service variants. It should be able to analyze the service degree of variability.
With thresholds, the evolution of the multi-tenant SaaS system can be controlled. The provider
can offer a mix of re-used services and new developed services to the tenants. The higher
the part of the re-used services the lower are the costs of extra developed services. And this
increase the profit of the provider.

3.4 Migrating and Reengineering

A method to migrate isolated tenancy hosted applications (ITHA) into multi-tenant enabled
applications (MTEA) is proposed in [ZSTC10]. The main focus is on the three aspects: data
model, access control, and tenant management. To support multi-tenancy it is important to
isolate the data of each tenant. To migrate from ITHA to MTEA it is important to be aware of
the architectual similarities and differences of the two models. The data model in ITHA only
describes the business requirement. In contrast, in MTEA the data model has to support the
data isolation and take-up a large number of tenants. In ITHA there is a user authentication
because there is only a single-tenant. In contrast, in MTEA there is a tenant authentication.
The login is done by the three inputs: tenant name, user name, and password. MTEA has a
tenant management console which does not exist in ITHA.

As shown in Figure 3.3, we need new or modified elements to migrate the ITHA to MTEA.
The relational database which stores the business data of one tenant should be extended to
hold the data of multiple tenants. In addition, a tenant database has to be added to hold
the tenant and user information data. To support an access control in the MTEA, we need a
security access control module. The tenant management module is added to manage multiple
tenants and their data in the database. There are three kinds of data models (1) shared DB
and shared schema, (2) separated DB, and (3) shared DB and separated schema. The target
data model chosen for MTEA is shared DB and separated schema. In MTEA the tenant
authentication has to be performed before the user authentication. Every tenant has his own
schema address in the database. When a user logs in, the schema address of the tenant he
belongs to is added to the user’s session. Whenever a user asks for the specific business
data after log in, he will get access to the data through the schema address. The resources

22

3.4 Migrating and Reengineering

of one tenant should only be shared by users belonging to him and not by users from other
tenants.

Figure 3.3: Architecture of Migrated Application (Source: [ZSTC10])

[BZP+10] presents an approach to reengineer an existing industrial single-tenant software
system2 from Exact3 into a multi-tenant one. The multi-tenancy reengineering pattern is
shown in Figure 3.4. As in the other architectural approaches, a single instance of the software
is shared by multiple tenants and is customized according to the requirements of each tenant.
Because of this, the application must be customizeable or configurable by each tenant’s
requirements. There are two definitions in [BZP+10]:

• Multi tenant application: "A multi-tenant application lets customers (tenants) share
the same hardware resources, by offering them one shared application and database
instance, while allowing them to configure the application to fit their needs as if it runs
on a dedicated environment."

• Tenant: "A tenant is the organizational entity which rents a multi-tenant SaaS solu-
tion. Typically, a tenant groups a number of users, which are the stakeholders in the
organization."

The migration from a Single-Tenant System (STS) to a Multi-Tenant System (MTS) can be done
easily, cost effective, transparently, and with little effects for the application developer. In a
MTS tenants must be authenticated because they use the same environment but should only
access their own data. Therefore a database layer ensures that the tenant specific data is stored
or retrieved by the associated tenant. Furthermore, it is easier to add an additional tenant
authentication mechanism than to change the current login mechanism. When a tenant logs
in, a session ticket is generated. The application is loaded and configured by the information
in this session ticket.

2The application Exact Codename, a research prototype
3A Dutch-based software company. http://www.exact.com

23

3 Related Work

Figure 3.4: Multi-Tenancy Reengineering Pattern (Source: [BZP+10])

3.5 ActiveVOS

The authors of [SLLW09b] have developed a prototype system based on the Multi-Tenant
Oriented Business Process Customization System (MBPC) shown in Chapter 3.3. The main
idea of the MBPC system is, that each tenant can customize the provided Web service based
on his needs. In contrast, the approach of this diploma thesis will support multi-tenancy by
providing tenant or user specific customized instances of the applications. The used process
engine of the prototype system is ActiveVOS from Active Endpoints4. The experimental
evaluation of the system simulates four tenants and each tenant has ten users. The author’s
conclusion after the evaluation of some statistics was that the MBPC system is suitable for
multi-tenant customization of business processes based on BPEL.

With ActiveVOS, business processes can be executed. One of the new features of ActiveVOS

4http://www.activevos.com/

24

3.6 Apache ODE, WSO2 BPS, and WSO2 Stratos

9.0 is the multi-tenancy support5 6 at runtime in the Data Center Edition. The 1..n tenants
share a partitioned single instance of the ActiveVOS software as shown in Figure 3.5(a). Each
tenant works on his own customized application instance. Thereby a tenant can create and
manage his own processes and these processes are completely isolated. The multi-tenant
architecture divides ActiveVOS into tenant groups which are controlled by the multi-tenant
administration. Tenant groups reduce the management complexity. According to the multi-
tenant architecture, each tenant has his own isolated shared hardware and software resources.
Each of the 1..n tenants groups 1..m users, who are his stakeholders.

Shared Database

1..m Users

ActiveVOS

Tenant 2 Tenant nTenant 1

(a) ActiveVOS Model

WSO2 Stratos

WSO2 BPS
(ODE)

Shared Database

Tenant 1

Tenant 2

Tenant n1..m Users

(b) WSO2 Stratos Model

Figure 3.5: The Multi-Tenant PaaS Models

3.6 Apache ODE, WSO2 BPS, and WSO2 Stratos

The WSO2 Business Process Server (BPS)7 is an open-source Business Process Server. It can
execute WS-BPEL business processes and is powered by Apache ODE8. The business process
and process instances can be deployed, managed, and monitored by a Web based graphical
console. One of the features of the newest version WSO2 BPS 2.1.0 is the Carbon integration
layer for Apache ODE with multi-tenancy support. It supports native multi-tenancy in the
BPEL engine. Apache ODE is not multi-tenant capable by itself. The multi-tenancy support is
enabled by including Apache ODE into in the WSO2 Stratos environment.

WSO2 Stratos9 is described in [APW+11]. As shown in Figure 3.5(b), WSO2 Stratos handles
the different tenants that they share one WSO2 BPS engine. WSO2 Stratos provides a series of
functionalities like the tenant self-provisioning and tenant usage metering and billing. Server
hardware, JVM, database, and instances of an ESB are shared by the WSO2 Stratos architecture.
Furthermore WSO2 Stratos supports tenants, SMBs, and business units to develop their own

5http://www.activevos.com/cp/787/whats-new-in-activevos-9-0
6http://www.activevos.com/products/activevos-data-center/features
7http://wso2.org/library/bps
8http://ode.apache.org/
9http://wso2.com/cloud/stratos/

25

3 Related Work

multi-tenant and single-tenant SaaS applications and APIs. From the supplier point of view
it is possible to develop higher level APIs and SaaS applications and provide them to the
customer. Like in ActiveVOS, in WSO2 Stratos each of the 1..n tenants groups 1..m users, who
are his stakeholders.

3.7 Tenant-Aware BPEL Engines

A research of tenant-aware BPEL engines is done in the diploma thesis of Andreas Buchholz
[Buc10]. Therein the multi-tenancy types, like native multi-tenancy, multi-instance multi-tenancy,
as well as single-tenancy are presented and discussed. They are rated regarding to their
advantages and disadvantages in the area of individuality, scalability, isolation, and resource
usage. Furthermore, the Apache ODE engine is extended to support multi-tenancy by using
multi tenant prototypes for the three modes IaaS, PaaS, and SaaS. The resulting prototype is
called ODEMT.

3.8 Existing Workflow Engines

This Section shows a current list of workflow engines and compares the engines in the area of
the supported framework, the compatibility of standards, and the multi-tenancy awareness.
Only ActiveVOS and WSO2 Stratos in combination with Apache ODE and WSO2 BPS are
tenant-aware engines as described in Section 3.5 and 3.6.

26

3.8 Existing Workflow Engines
N

am
e

V
en

do
r

Fr
am

ew
or

k
C

om
pa

tib
ili

ty
M

ul
ti-

Te
na

nc
y

A
ct

iv
eV

O
S

[A
C

T]
A

ct
iv

e
En

dp
oi

nt
s

Se
rv

le
to

r
Ja

va
EE

B
P

M
N

2.
0,

W
S-

B
P

E
L

,
B

P
E

L
4P

eo
p

le
/

W
S-

H
um

an
Ta

sk

Ye
s

A
p

ac
he

O
D

E
[A

PA
e]

A
SF

(d
on

at
ed

by
In

-
ta

lio
)

A
p

ac
he

A
xi

s,
JB

I,
Ja

va
EE

B
P

E
L

4W
S

1.
1,

W
S-

B
P

E
L

2.
0,

(W
S-

H
u

m
an

Ta
sk

w
it

h
A

p
ac

he
H

IS
E)

,A
pa

ch
e

Ye
s

B
iz

Ta
lk

Se
rv

er
[M

BI
]

M
ic

ro
so

ft
.N

ET
B

P
E

L
,

B
P

M
N

,
R

FI
D

,
W

SD
L

,
U

D
D

I,
W

S-
*

N
o

iB
ol

tS
er

ve
r

[I
BO

]
M

ag
ic

So
ft

w
ar

e
E

nt
er

-
pr

is
es

Ja
va

EE
BP

EL
4W

S
N

o

jB
PM

[J
BP

]
jB

os
s

Ja
va

EE
W

S-
BP

EL
N

o
O

ra
cl

e
B

P
E

L
P

ro
ce

ss
M

an
ag

er
[O

R
A

]

O
ra

cl
e

C
or

po
ra

ti
on

Ja
va

EE
W

S-
B

P
E

L
2.

0,
BP

M
N

N
o

O
W

2
O

rc
he

st
ra

[O
R

C
]

O
W

2
A

p
ac

he
A

xi
s,

A
p

ac
he

C
X

F,
O

SG
i,

Ja
va

EE

W
S-

BP
EL

2.
0

N
o

P
ar

as
of

t
B

P
E

L
M

ae
st

ro
[M

A
E]

Pa
ra

so
ft

Se
rv

le
t

W
S-

B
P

E
L

,
B

P
E

L
4P

eo
p

le
/

W
S-

H
um

an
Ta

sk

N
o

P
et

al
s

B
P

E
L

E
n-

gi
ne

[P
ET

]
Pe

ta
ls

Li
nk

Ja
va

EE
W

S-
B

P
E

L
2.

0,
W

SD
L

1.
1

an
d

2.
0

N
o

SA
P

E
xc

ha
ng

e
In

fr
as

tr
u

ct
u

re
[S

A
P]

SA
P

A
G

BP
EL

N
o

V
ir

tu
os

o
U

ni
ve

r-
sa

lS
er

ve
r

[V
U

S]
O

pe
nL

in
k

So
ft

w
ar

e
U

D
D

I,
W

S-
B

P
E

L
,

W
S-

*
N

o

W
eb

Sp
he

re
P

ro
ce

ss
Se

rv
er

[I
BM

]

IB
M

Ja
va

EE
W

S-
BP

EL
N

o

Ta
bl

e
3.

1:
C

om
pa

ri
so

n
of

Ex
is

ti
ng

W
or

kfl
ow

En
gi

ne
s

(S
ou

rc
e:

W
eb

re
se

ar
ch

)

27

3 Related Work

28

4 Concept and Specification

In this chapter, an approach for enabling multi-tenancy support in the Orchestra BPEL engine
is presented to solve the challenges discovered in the previous chapters. A graphic of the
multi-tenant system including the tenant-aware composition engine Orchestra, the tenant-
aware enterprise service bus (ESB), and the multi-tenant service registry is shown in Figure
4.1. Therein the SOAP message with the tenant context in its header is sent to the multi-tenant
Orchestra engine. This Engine handles the tenant context and creates a tenant specific process
instance of the Web service. The engine can call the multi-tenant ESB with a SOAP message
including the tenant context.

Multi-Tenant
Orchestra

SOAP
Message

Header: tCtx

Body: Payload

SOAP
Message

Header: tCtx

Body: Payload

Process Instance
tCtx = T1

Invoke

Multi-Tenant
ESB

Process Instance
tCtx = T1

Process Instance
tCtx = Tn

Multi-Tenant
Service Registry

Figure 4.1: The Tenant-Aware Composition Engine’s Architecture

The concept to realize the multi-tenancy support in the Orchestra BPEL engine is divided into
several parts. At first, the requirements for a tenant-aware workflow engine are presented.
Then the concept of the tenant-aware Orchestra engine is described. After this, the concept of
a tenant context including its structure and lifecycle as well as the used message protocol is
described (Section 4.3). The reuseability and extensibility of the tenant context is a important
aspect of the concept and due to this fact specified in this Chapter. After that, a detailed

29

4 Concept and Specification

description of each step in the tenant context life cycle associated to the Orchestra BPEL
engine is given. The first desribed step in Section 4.4 is how the tenant context is extracted
from the message header and stored in a system variable. Then the extension of the Orchestra
engine to handle the tenant context is described in Section 4.5. After that, the addition of the
tenant context into the outgoing message header is explained in Section 4.6. One another
thing, described in Section 4.7, is how to save and load the tenant context to and from a
database to avoid loss of the tenant context information. The last subject of the concept is the
external usage and internal handling of the above described tenant context in the Orchestra
engine (Section 4.8).

4.1 Requirements for a Tenant-Aware Workflow Engine

In this Section the requirements for an multi tenant aware workflow engine are described.
There are general requirements, functional requirements, and non-functional requirements.
Some of the requirements are derived from the needed properties of tenant-aware composition
engines and applications described in the related work Chapter 3.

4.1.1 General Requirements

The general requirements for a workflow engine are the three functions described in [MSDb].
These three functions are described as follows:

• Action Validation: The workflow engine checks if the current action is valid for the
current workflow state.

• Check Permission: The workflow engine checks if the current user has the permission
to execute the action.

• Evaluate Condition and Execute Procedure: If Action Validation and Check Permission
are fulfilled and the evaluation of the condition is true, the workflow engine executes
the action and returns the result.

4.1.2 Funtional Requirements

The functional requirements for a tenant-aware workflow engine are:

• Extract the tenant context from the incoming message header to a system variable. This
is explained in more detail in the use case table 4.1.

• Extend the process instance to handle the tenant context. This is explained in more
detail in the use case table 4.2.

• Add the tenant context to the outgoing message header. This is explained in more detail
in the use case table 4.3.

• Data, process, and performance isolation.

30

4.1 Requirements for a Tenant-Aware Workflow Engine

Name Send Service Request including a tenant context to the work-
flow engine

Goal The tenant context of an incoming message has to be ex-
tracted and stored into the defined tenant context system
variable.

Actor A user sends a request including a tenant context to the
workflow engine using a predefined endpoint of the Web
service.

Pre-Condition The workflow engine is up and running and the Web
service is deployed.

Post-Condition The workflow engine is waiting for service requests.
Post-Condition in Special Case A notification is sent to the tenant. The workflow engine

is waiting for service requests.
Normal Case The engine receives the request message and extracts the

tenant context from the message header into the defined
tenant context system variable.

Special Case The workflow engine is unable to extract the tenant con-
text from the incoming message header and notifies the
tenant and/or administrative staff thereof. Neverthe-
less the engine has to be able to accept further service
requests.

Table 4.1: Use Case: Send Service Request inclusive Tenant Context to the Workflow
Engine

4.1.3 Non-Functional Requirements

There are three non-functional requirements for a tenant-aware workflow engine: extensibility,
reusebility, and backwardcompatibility. They are described as follows:

• Extensibility: The workflow engine is extendable when the implementation takes into
consideration future extensions of the engine. There are two kinds of extensions, adding
new functionality to the engine or modificate existing functionality of the engine.

• Reusability: The implementation of the workflow engine has to be reusable to reduce
implementation time for extensions or modifications.

• Backward compatibility: If the workflow engine is tenant-aware and it can receive and
handle older non multi-tenant Web service calls, then it is backward compatible.

31

4 Concept and Specification

Name Passing the tenant context through the workflow engine to the
process instance

Goal The tenant context has to be passed through the system
to the starting point of the process instance.

Actor The engine passes the tenant context through the classes
which are involved to start the process instance.

Pre-Condition The workflow engine is up and running and the Web ser-
vice is deployed. The tenant context has to be extracted
successfully before.

Post-Condition The workflow engine is waiting for service requests.
Post-Condition in Special Case A notification is sent to the tenant. The workflow engine

is waiting for service requests.
Normal Case The tenant context is passed successfully through the

system and the process instance is extended to handle
this tenant context before the process is started.

Special Case The workflow engine is unable to pass the tenant context
through the system and so the process instance is not
extended to handle the tenant context before the process
is started. It notifies the tenant and/or administrative
staff thereof. Noneetheless the engine has to be able to
accept further service requests.

Table 4.2: Use Case: Passing Tenant Context Through the Workflow Engine to the Process
Instance

4.2 OrchestraMT Model

There are two fundamental multi-tenant models. The one is the Multi-tenant PaaS Model as
shown in Figure 3.5. Examples of this model are ActiveVOS and WSO2 Stratos and have been
already described in Section 3. Therein multi-tenancy is realized from the customer’s point of
view. In both systems, multi-tenancy support is provided by sharing applications between
different tenants. The tenants are partitioned in discrete groups with access to hardware and
software. In Contrast, in the Orchestra multi-tenant model, each tenant gets his own specific
process instance as shown in Figure 4.2. Therein each tenant calls the Web service offering the
business process to the outside on the same endpoint of the engine. The open source BPEL
engine Orchestra should be modified to create these tenant specific business process instances.
In this model, multi-tenancy is realized from the point of view of the supplier. After the
modification, the multi-tenancy supporting Orchestra engine is called OrchestraMT.

32

4.3 The Tenant Context

Name Receive Service Response inclusive tenant context from the
workflow engine

Goal The tenant context has to be added to the outgoing mes-
sage header.

Actor The workflow engine sends a response message includ-
ing the tenant context to the tenant.

Pre-Condition The workflow engine is up and running and the Web ser-
vice is deployed. The tenant context has to be available in
the defined system variable after the process is executed.

Post-Condition The workflow engine is waiting for service requests.
Post-Condition in Special Case A notification is sent to the tenant. The workflow engine

is waiting for service requests.
Normal Case The tenant context is added to the outgoing response

message header and the response message is sent to the
tenant.

Special Case The workflow engine is unable to add the tenant context
to the outgoing message header and notifies the tenant
and/or administrative staff thereof. Nevertheless the
engine has to be able to accept further service requests.

Table 4.3: Use Case: Send Service Response Including Tenant Context from the Workflow
Engine

4.3 The Tenant Context

To achieve multi-tenancy in a composition engine, tenant specific process instances are needed.
Due to this fact, with the help of a tenant context the needed information about a tenant can
be kept. The tenant specific process instances in a tenant-aware composition engine can be
realized with the tenant specific metadata and functionality. To receive this tenant specific
metadata and functionality, each tenant has his own unique tenant identifier (TID). This TID
is part of the tenant context. The tenant context is added to the header of a message protocol
to transfer it from the tenant to the composition engine. The engine can extract the tenant
context and use the information about the tenant to create the tenant specific instance.

4.3.1 Tenant Context Structure

The structure of the tenant context is compact. It consists of the two elements tenant identifier
(TID) and user identifier (UID) and a arbitrary number of optional entries. This structure
is represented graphically in Figure 4.3. The TID is a Universally Unique Identifier (UUID)
which represents a company or a department. On the basis of the TID and its associated
metadata, the engine can invoke the tenant specific process instance. The UID is a Universally
Unique Identifier which represents the stakeholders of the associated company or department.
The tenant context is implemented as XML Schema Definition (XSD) as shown in Listing 4.2.
An example tenant context in a SOAP header is shown in Listing 4.1. To support consistency,

33

4 Concept and Specification

Shared Database

1..m Users

Orchestra MT

Tenant 2 Tenant nTenant 1

Business Processes

Instance 1 Instance 2 Instance n

Figure 4.2: The Orchestra Multi-Tenant Model

the tenant context structure of this work is similar to the work done by Stefan Essl [Ess11].
The important thing for future work is the extensibility and reuseability of the tenant context.
As a result of this, the tenant context definition in Listing 4.2 has an optional entry including a
key and a value. The optionalEntry can be used as often as desired. The used communication
message protocol in this diploma thesis is the SOAP message protocol. It is based on XML
and so the tenant context defined in Listing 4.2 can be easily integrated. As shown in Section
2.1.1 a SOAP message consists of a header and body element. The SOAP message body
contains the payload and does not care in our approach. It does not make sense to add the
tenant context to the body of the SOAP message, because this part of the message includes the
payload for the Web service. The called Web service should not be affected by this additional
information. Due to this fact the tenant context is added to the SOAP message header.

Listing 4.1: A SOAP Header with Tenant Context
<soapenv:Header>

<tenantContext>
<tenantId>16c2025386054b679001935c50c8b707</tenantId>
<userId>dc0b71dd4c994efb964bbc30efd552cc</userId>
<optionalEntry>

<key>tenantName</key>
<value>Example Inc.</value>

</optionalEntry>
<optionalEntry>

<key>userEmailAddress</key>
<value>user@example.org</value>

</optionalEntry>
</tenantContext>
<anotherHeader>

<element1>value1</element1>
<element2>value2</element2>
<element3>value3</element3>

</anotherHeader>
</soapenv:Header>

34

4.3 The Tenant Context

Listing 4.2: The XML Schema Definition of Tenant Context

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="UUIDType">
<xsd:simpleType>

<xsd:restriction base="ID">
<xsd:pattern

value="[af09]{8}[af09]{4}[af09]{4}[af09]{4}[af09]{12}" />
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

<xsd:group name="tenantUserId">
<xsd:sequence>

<xsd:element name="tenantId" ref="UUIDType" />
<xsd:element name="userId" ref="UUIDType" />

</xsd:sequence>
</xsd:group>

<xsd:element name="tenantContext">
<xsd:complexType>

<xsd:sequence>
<xsd:choice>

<xsd:element name="tenantContextKey" ref="UUIDType" />
<xsd:group ref="tenantUserID" />

</xsd:choice>
<xsd:element name="optionalEntry" minOccurs="0" maxOccurs="unbounded"

>
<xsd:complexType>

<xsd:element name="key" type="xsd:string" />
<xsd:element name="value" type="xsd:anyType" />

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

</xsd:schema>

Another concept of the tenant context structure is only to add a reference of the tenant context
information to the header of the SOAP message. The referenced tenant context information
can be stored in an external database. This can be useful to handle voluminous tenant context
information in future work. Because larger tenant context information can unnecessarily
expand the message and, for example affect, the message transmission time. The procedure is
as follows: The composition engine only extracts the tenant context reference and retrieve the
whole tenant context information from the external database. But the tenant context structure
in this work is very compact and because of this no reference to the tenant context information
in an external database is used. Instead, for the sake of simplicity, the first concept to add the
tenant context directly to the header of the SOAP message is used and implemented.

35

4 Concept and Specification

Tenant
Context

(tCtx)
Tenant Identifier

(TID)

User Identifier
(UID)

Optional Entries

Figure 4.3: The Tenant Context Structure

4.3.2 Tenant Context Life Cycle

The tenant context described in the last Subsection goes through different steps as shown
in Figure 4.4. At the beginning of the life cycle, the header of the incoming SOAP message
includes the tenant context. In the first step the tenant context is extracted from the SOAP
header by OrchestraMT and stored in a system variable. Secondly, the engine invokes the
process instance and the instance handles the tenant context information. Finally, the tenant
context is added to the header of the outgoing SOAP message. This could be a direct reply
message to the tenant or an invocation message of an Web service.

4.3.3 Requirements for the Tenant Context Concept

The tenant context concept in this diploma thesis has to fulfill the two requirements reuse-
ability and extensibility. This means that the concept is reusable and extensible for another
or future work in this area. To realize this and keep the reuseability and extensibility, the
structure of the tenant context cannot be static. At the moment there are only two elements
in the tenant context, tenantId (TID) and userId (UID). But it is easy to add elements to
the tenant context object by adding further optionalEntry elements to the header of the
incoming SOAP message and parse those new elements, too.

36

4.4 Extract Tenant Context from Incoming SOAP Message

SOAP
Message

Header

inclusive
tCtx

Receive
Message

Extract tCtx

in
Variable

Invoke
Application

Instance

Send
Message

Add tCtx

to
Header

SOAP

Message

tCtx tCtx tCtx

SOAP

Message

Figure 4.4: The Tenant Context Life Cycle

4.4 Extract Tenant Context from Incoming SOAP Message

The first step is to get the input message, extract the tenant context from the SOAP header, and
store it in a system variable. The concept is shown in Algorithm 4.1. Therein the tenant context
header in the SOAP message is searched and every element of this tenant context header is
extracted to a set M of tenant context header elements if the local name is tenantId, userId, or
optionalEntry. The valid function in Algorithm 4.1 validates the extracted tenantContextElement.
When the local name of the element is optionalEntry, the therein contained key and value
information is extracted. Thereby, the extensibility of the tenant context for future work is
guaranteed.

The processing in the original Orchestra source code is shown in Figure 4.5. Therein (1) first
an CXF input message object is created. (2) Then the message content is extracted from the
CXF input message to a DOMSource list. The Orchestra engine has it’s own input message
structure. (3) Due to this fact, an Orchestra input message has to be created from the CXF
message. The default Orchestra processing has to be extended as follows: When the message
content is extracted, the tenant context has to be extracted from the SOAP message header
into a variable. The reuseability and extensibility described in Subsection 4.3.3 is achieved by
the optionalEntry of the tenant context.

37

4 Concept and Specification

Algorithm 4.1 Extract the Tenant Context Elements from the Message Header
M := ∅
for all (headerElement ∈ soapHeader) do

if (headerElement = tenantContext) then
for all (tenantContextElement ∈ headerElement) do

if (valid(tenantContextElement) = true) then
M← tenantContextElement

end if
end for

end if
end for

(1)

Input
Message

(2)

Message
Content

Tenant
Context
Object

(3)

incoming
Orchestra
Message

extract
message
content

extract
tenant
context

CXF to
Orchestra

Figure 4.5: The Incoming Message Processing

4.5 Extend Process Instance to Manage Tenant Context

When the Web service offering the business process to the outside is called, the created BPEL
process instance has to be extended to handle the tenant context. The tenant context is needed
to realize the concept of a tenant specific instance of a BPEL process. The processing in
the original Orchestra engine source code to create the process instance is shown in Figure
4.6. Therein (2) an instance of the BPEL execution is created with the input data of (1a) the
incoming Orchestra message. When it is a two way operation, a message carrier object is
created including a random Universally Unique Identifier (UUID). (1b) This message carrier
is additional input data of the created BPEL execution instance. If there is no two way
operation, no message carrier is created and added. The original Orchestra source code must
be modified as follows: Whether it is a two way operation or not, a message carrier object is
created. The engine must be able to handle the tenant context data within the message carrier
object. Therefore, a get and set method in the implementation class of the message carrier
interface is needed to add the tenant context to the message carrier.

38

4.5 Extend Process Instance to Manage Tenant Context

Tenant
Context
Object

(1b)

Message
Carrier

(2)

Create
Execution
Instance

(1a)

incoming
Orchestra
Message

create
message carrier

including
tenant context

add to
execution
instance

add to
execution
instance

Figure 4.6: Create Process Instance

Figure 4.7 shows the internal flow of the execution after the process instance is created. The
individual processing steps are described as follows: (1) After the process instance is created,
the process is executed. The first step is to pass the message carrier object (MC) including the
tenant context (tCtx) (2) with the help of a handle method to the starting point of the execution.
Along this path the message carrier is added to a pending message object (PM). (3) At the
starting point of the execution, the tenant context is extracted from the pending message object
and added to the current execution. Therefore, methods to get and set the tenant context
in the BpelExecution class have to be created. When the process gets started, the execution
object (EX) including the tenant context is passed to the execution of the current specific
BPEL process activity. (4) The executeActivity method is implemented by every activity and
has to be extended to handle the tenant context. This means that the tenant context must
be maintained in new created executions, like child executions. Therefore, the get and set
method in the BPEL execution is used. The current parent execution provides the tenant
context over its get tenant context method and the child execution gets the tenant context
over its set tenant context method. When the executed BPEL activity is the invoke activity, the
current execution object including the tenant context is stored in an InvokeJob object by a set
method. This execution is fetched with the help of the corresponding getExecution method.
(5) The invocation is executed by the executeInvoke method. If it is a two way operation,
the tenant context inside the execution object is stored in a new message carrier object. The
handle method in step (2), used on the way from the creation of the instance to the starting
point of the execution, is called with this new message carrier object including the tenant
context. This is the starting point of a cycle as long as synchronous invocations are processed.
(6) When it is a one way operation, no message carrier object is created. The tenant context is
extracted from the current execution and passed to the CxfInvoker class. Therein the CXF
client is created and invokes the asynchronous Web service.

39

4 Concept and Specification

PM

(3)
Start

(4)
Execute
Activity

(2)
Handle

(5)
Execute
Invoke

MC

MC

MC EX

EX

(6)
Client
Invoke

(1)

Create
Execution
Instance

tCtx

tCtx

tCtx

tCtx

tCtx

tCtx

MCtCtx

two
way

one
way

Figure 4.7: The Execution Flow

4.6 Include the Tenant Context in Outgoing SOAP Messages

The next step is to create the outgoing message and add the tenant context to its header. This
concept is shown in Algorithm 4.2, where every tenant context element tenantContextElement
of the tenant context map consists of a key-value mapping. For each element tenantContextElement
a node tenantContextElementNode is created and added to the tenant context root node
tenantContextRootNode. Finally, this tenant context root node is added as one header node
to the header MessageHeader of the outgoing SOAP message.

Algorithm 4.2 Include the Tenant Context Elements to the Message Header
M := {tenantContextElement | tenantContextElement ∈ tenantContext}
for all (tenantContextElement ∈ M) do

tenantContextElementNode← tenantContextElement
tenantContextRootNode← tenantContextElementNode

end for
MessageHeader ← tenantContextRootNode

There are two variants of adding the outgoing message header. One for the synchronous
communication and the other for the asynchronous communication. Both are realized with
the help of an own implemented Apache CXF interceptor. The interceptor adds the tenant
context information to the header of the outgoing message in the write phase of the CXF
message processing. The two variants are described as follows:

40

4.6 Include the Tenant Context in Outgoing SOAP Messages

• Synchronous Variant
In the original Orchestra source code, (2) the CXF outgoing message is created from the
(1) Orchestra outgoing message. The default Orchestra procedure has to be modified by
adding the tenant context information to this CXF outgoing message. This is shown in
Figure 4.8.

Tenant
Context
Object

(2)

Output
Message

(1)

outgoing
Orchestra
Message

Orchestra
to CXF

Figure 4.8: The Synchronous Outgoing Message Processing

• Asynchronous Variant
In the original Orchestra source code, (2) first the CXF outgoing message is created from
the (1) Orchestra outgoing message. (3) Then the Apache CXF client is invoked with
the help of the created CXF outgoing message. The default Orchestra procedure has to
be modified as follows: When the CXF outgoing message is created, the tenant context
has to be added to it. Then the Apache CXF client is invoked with the modified CXF
outgoing message. The processing and the modified step is shown in Figure 4.9.

Tenant
Context
Object

(2)

Output
Message

(3)

Client
invokes

Web service

add to
client

(1)

outgoing
Orchestra
Message

Orchestra
to CXF

Figure 4.9: The Asynchronous Outgoing Message Processing

41

4 Concept and Specification

4.7 Save and Load the Tenant Context Data

The tenant context has to be stored in a database because the process instance including the
tenant context is only in the system cache and can be lost when other process instances are
being used. In this case, the process instance including the tenant context is fetched from
the database. The backup of the process instance is done by the object-relational mapping
(ORM) library for java called hibernate1. To realize this, the tenant context is converted to a
string and this string is defined in the hibernate XML schema. The schema is mapped to the
relational database as the other data of the Orchestra engine.

4.8 External Usage and Internal Handling

There are several input and output representations of the tenant context in the OrchestraMT

engine. They are categorized in two main layers as shown in Figure 4.10. The two layer are
described as follows:

• External tenant context usage layer
Therein are the various types of the external tenant context usage like testing and
logging outputs of the tenant context, input and output messages containing the tenant
context, insertion and selection of the tenant context to/from database, and the optional
output of the tenant context as file (for example as an xml file).

• Internal tenant context handling layer
Includes the three main internal representations of the tenant context in the system: The
tenant context object as main handled object in the system and the tenant context as
String representation and as DOMSource as alternative types.

In the outer layer of Figure 4.10 there are the various components which use the tenant
context in a different way. On the left side the tenant context handling of the in- and outgoing
messages to and from the system is shown. Both messages have the tenant context in their
header. The tenant context of the incoming message is extracted and stored in a created tenant
context object variable as described in Section 4.4. The values, like TID and UID, of the tenant
context object variable are added to the outgoing message as described in Section 4.6. For
tests and logging of the system as shown in the upper part in Figure 4.10, the tenant context
object has to be converted into a string. To save and load the tenant context via hibernate to
and from a relational database as described in Section 4.7, the tenant context object has to be
converted into a string. These two database external tenant context usages are shown on the
right side in the outer layer of Figure 4.10. The last and optional part in the external layer is
the output of a tenant context file as shown in the lower part of Figure 4.10. For this, the main
tenant context object has to be converted to a string like for the database or testing/logging
components. The internal layer of Figure 4.10 shows the internal tenant context as concept.
Furthermore, the relationship between the internal tenant context and the components of the

1http://www.hibernate.org/

42

4.8 External Usage and Internal Handling

external tenant context usage layer is shown. The conversion between the different tenant
context representations should be done by a tenant context handler.

External
tCtx

usage

Internal
tCtx

handling

In
Message

Out
Message

Test
(JUnit)

In
Database

Out
Database

File

Tenant Context

Logging

Figure 4.10: The Internal Tenant Context Handling and External Usage

43

4 Concept and Specification

44

5 Design and Implementation

In this Chapter, the concepts presented in the previous Chapter 4 are transferred into practice.
First, the modified parts of the Orchestra architecture are shown and described. The second
part of this Chapter covers the extension of the open source BPEL engine Orchestra with
the tenant context concept presented in the Chapter before. This covers the implementation
of the tenant context and the needed and used tenant context handlers. Furthermore, the
implementation of the tenant context lifecycle phases, extracting the tenant context from the
message header to a system variable, extending the process instance to handle the tenant
context, and adding the tenant context information to the header of the outgoing message is
presented.

5.1 Development Environment

The first step of the implementation was to set up a development server which includes
the open source Orchestra BPEL engine version 4 (revision 6547). The used Integrated
Development Environment (IDE) was Eclipse version 3.7.0 with Java 6. The graphical open
source functional testing solution soapUI version 4.0.0 was used to address the deployed
Web services. Apache Tomcat is an open source servlet container developed by the Apache
Software Foundation (ASF) and a open source software implementation of the Java Servlet
and JavaServer Pages (JSP) technologies. Apache Tomcat version 6.0.33 is used to run the open
source Orchestra BPEL engine. Apache CXF is a open source Web service framework and
used by the Orchestra BPEL engine. It supports SOAP and a lot of the other WS-* specification
standards and is described in the previous Section 2.1.2. Apache Maven is used as software
building and comprehension tool to build the Orchestra BPEL engine. A Guide how to build
and run the Orchestra Engine and how to deploy and address a Web service with soapUI is
included in the Appendix Chapter A.

45

5 Design and Implementation

5.2 Orchestra Architecture

The whole Orchestra architecture was already shown in Figure 2.2. The modified parts of the
architecture are marked by the thick boundry in Figure 5.1. The first modified part is on the
right side and called Web service. It includes the Web service framework Apache CXF already
explained in Section 2.1.2. In this part the incoming and outgoing messages are modified to
handle the tenant context inside their message header. This is realized with the help of the
Apache CXF Interceptors (Section 2.1.2). Another modificated part is the Orchestra Invoker.
The BPEL process instance is extended to handle the tenant context on invoke a Web service.
A lot of Orchestra core classes are involved in the tenant context passing process and therefore
listed in Section 5.3.4. Furthermore, the whole passing process is described there.

Orchestra

Orchestra Engine
Web Service

ESB

CXF

Axis

Camel

Petals

Operating ConsoleFunctional Console

Designer BPMN
Web 2.0

Eclipse /
Netbeans BPEL

Designers

BPEL

Process Virtual Machine

Service Container

P
er

si
st

an
ce

H
is

to
ry

In
vo

ke
r

P
ub

lis
he

r

Q
ue

rie
r

Jo
b

C
om

m
an

d

C
lu

st
er

in
g

F
IH

 /
U

P
H

O
S

G
I

Figure 5.1: Modified Parts of the Orchestra Architecture

46

5.3 Extending Orchestra

5.3 Extending Orchestra

One of the main tasks of this diploma thesis is to extend the Orchestra BPEL engine to enable
multi-tenancy in communication. This means to extract the tenant context from the incoming
message, extend the process instance to handle the tenant context, and include the tenant
context in the outgoing message. The source code of the engine is written in Java. The
extension of the engine is done by the modification of existing classes and the creation of new
classes.

5.3.1 Tenant Context Class

The TenantContext class implements the defined tenant context. It contains a hash map for
the tenant context elements like the TID and UID. The hash map is a mapping between the
key of a tenant context element and its value. Each of the tenant context elements extracted
from the incoming message header can be added to the tenant context hash map by the
addTenantContextElement() method. Because of this hash map the tenant context is
extensible in further work. The most important elements of the tenant context described
in this diploma thesis are the TID and UID. Due to this fact, there are two get methods
getTenantID() and getUserID() to support direct access to this elements. But there is
also the possibility to get the whole tenant context map from the tenant context object by the
get method getTenantContextMap().

Listing 5.1: TenantContext.java Class
package org.ow2.orchestra.services;
...
public class TenantContext {

final String tenantIdString = "tenantId"; final String userIdString = "userId";
private Map<String, String> tenantContextMap = new HashMap<String, String>();

public void addTenantContextElement(String inElementNameString, String
inElementValueString) {

if ((inElementNameString != null) && (inElementValueString != null))
this.tenantContextMap.put(inElementNameString, inElementValueString);

}

public Map<String, String> getTenantContextMap() {
return this.tenantContextMap;

}

public String getUserID() {
return this.getTenantContextElement(userIdString);

}

public String getTenantID() {
return this.getTenantContextElement(tenantIdString);

}
}

47

5 Design and Implementation

5.3.2 Tenant Context Handler Class

In the TenantContextHandler class, the methods to handle the different types of the
tenant context in the several lifecycle phases are implemented. The main methods are:

• stringToTenantContext(): Converts an XML string into the tenant context object.
This method is used when the tenant context information is loaded from the database.

• tenantContextToString(): Converts the tenant context object into an XML string.
This method is used when the tenant context information is saved in the relational
database by using hibernate.

• tenantContextToXml(): Converts the tenant context object into an XML DOM-
Source object. This method is very useful for the conversion from the tenant context to
the XML string. The first step is to convert the tenant context to a DOMSource. This
DOMSource can be easily converted to a XML String or used to add the tenant context
to the header of the outgoing SOAP message.

• xmlToTenantContext(): Converts an DOMSource object into the tenant context
object. This method is very useful to create a tenant context object from the DOMSource
structure and its elements.

• headerToTenantContext(): Converts the extracted header object into the tenant
context. Therein the key and value of each tenant context element are extracted into the
hash map of the tenant context object.

• tenantContextToElement(): Converts the tenant context object into a W3C Dom
element. This element is added as child node to the header of the outgoing message.

5.3.3 Extract Tenant Context

The first step in the tenant context life cycle is to extract it from the incoming SOAP message
header. This is shown in Listing 5.2. To realize this, first the incoming message in the
CxfWSImpl class is casted into a SOAP message. Secondly a new tenant context object is
created. Then the defined tenant context header is extracted and the child nodes are added
to the tenant context object with the addTenantContextElement() method described in
Section 5.3.1. The key in the tenant context hash map is the local name of the child node and
the value is the text content of the respective child node.

48

5.3 Extending Orchestra

Listing 5.2: Extract Tenant Context Part in the CxfWSImpl.java Class

package org.ow2.orchestra.cxf;
...
import org.apache.cxf.binding.soap.SoapMessage;

public final class CxfWSImpl implements org.apache.cxf.service.invoker.Invoker {
TenantContext tenantContext = new TenantContext();
TenantContextHandler tCtxH = new TenantContextHandler();
...
public DOMSource[] invoke(final Exchange exchange, final Object payload) {

...
final Message inMessage = exchange.getInMessage();
...
SoapMessage soapMessage = (SoapMessage) inMessage;

List<Header> soapHeaderList = soapMessage.getHeaders();

if (soapHeaderList != null) {
for (Header h: soapHeaderList) {

Object obj = h.getObject();
tCtxH.headerToTenantContext(obj, tenantContext);

}
}
...

}
...

}

5.3.4 Extend Process Instance

The next step in the tenant context life cycle is to extend the BPEL process instance to handle
the tenant context. After the extraction of the tenant context from the incoming SOAP message
header, the created tenant context object has to be passed through the execution flow of the
BPEL execution instance. The following Java classes are involved in the process flow:

• org.ow2.orchestra.cxf.CxfWSImpl.java

• org.ow2.orchestra.cxf.CxfInvoker.java

• org.ow2.orchestra.services.MessageCarrier.java

• org.ow2.orchestra.services.MessageCarrierImpl.java

• org.ow2.orchestra.services.ReceivingService.java

• org.ow2.orchestra.services.AsyncAssociateMessage.java

• org.ow2.orchestra.services.PendingMessage.java

• org.ow2.orchestra.services.Receiver.java

• org.ow2.orchestra.services.InvokeExecutor.java

• org.ow2.orchestra.services.job.ExecuteInvokeJob.java

• org.ow2.orchestra.runtime.BpelExecution.java

49

5 Design and Implementation

First of all, a MessageCarrier object is created in the CxfWSImpl class and the TenantContext
object is stored in it. This MessageCarrier object including the TenantContext object is
added to the BPEL process instance. This is shown in Listing 5.3.

Listing 5.3: Create Process Instance
package org.ow2.orchestra.cxf;
...
public final class CxfWSImpl implements org.apache.cxf.service.invoker.Invoker {

TenantContext tenantContext = new TenantContext();
...
public DOMSource[] invoke(final Exchange exchange, final Object payload) {

...
MessageCarrierImpl messageCarrier;

if (operationInfo.hasOutput()) {
messageCarrier = new MessageCarrierImpl(tenantContext, true);

}
else
{

messageCarrier = new MessageCarrierImpl(tenantContext, false);
}
...
final BpelExecution instance = ReceivingService.handle(..., messageCarrier,

...);
...
}

}

The BPEL process instance is created by calling the handlemethod of the ReceivingService
class. If there is no existing execution waiting, a new AsyncAssociateMessage object
without a start date of a parent instance and including the tenant context object is created.
Otherwise, the start date of the parent instance is used. The declaration of the handlemethod
is shown in Listing 5.4.

Listing 5.4: Call Handle Method
package org.ow2.orchestra.services;
...
public final class ReceivingService {

...
public static BpelExecution handle(..., final MessageCarrier messageCarrier,

...)
{

return commandService.execute(
new AsyncAssociateMessage(operationKey, incomingMessage, messageCarrier,

lock, parentInstanceStartDate)
);

}
...

}

In the execution of the AsyncAssociateMessage class, first the storeIncomingMessage
method from the Receiver class is called to create a PendingMessage object. This object

50

5.3 Extending Orchestra

includes the MessageCarrier object. If there is a waiting execution, it is received by calling
the getWaitingExecution method of the Receiver class. Otherwise, a new instance
is created with the startNewInstance method from the Receiver class. This method
calls the createNewInstance and therein, the modified bpelExecution retrieve the tenant
context from the transferred pending message. To realize this, a getTenantContext()
method is added to the PendingMessage class and a setTenantContextmethod is added
to the BpelExecution class. The tenant context is added to the created bpelExecution before
the process is started as shown in Listing 5.5.

Listing 5.5: The Process Start

package org.ow2.orchestra.services;
...
public class Receiver {

...
private static ExecElementToSignal createNewInstance(

final PendingMessage pendingMessage,
...) {
...
bpelExecution.setTenantContext(pendingMessage.getTenantContext());
...
bpelExecution.begin();

return Receiver.getStartElementExecution(bpelExecution, startElement,
pendingMessage);

}
...

}

After this, the BpelExecution instance is created in the CxfWSImpl class. This instance
includes the tenant context. When the process execution begins, the current specific BPEL pro-
cess activity has to be executed by the executeActivity method. The executeActivity
method is implemented by every BPEL activity. A list of all activities which implement the
executeActivity method is shown in Figure 5.2.

The executeActivity methods create new executions, like child or parent executions. To
maintain the tenant context, the getTenantContext and setTenantContext methods
of the BPEL execution are used. When the executed BPEL activity is the invoke activity,
the current execution object including the tenant context is stored in an InvokeJob object
by a setExecution method. This execution is fetched with the help of the corresponding
getExecution method in the execute method of the ExecuteInvokeJob class. Then
the executeInvoke method of the InvokeExecution class receives the execution object.
If its a two way operation, a new messageCarrier object is created and the tenant context
of the execution object is added to it. The previously described handle method is called with
the message carrier as input data as shown in Listing 5.4. When its a one way operation, the
tenant context is extracted from the current execution and passed to the CxfInvoker class.
Therein, the CXF client is created and invokes the asynchronous Web service.

51

5 Design and Implementation

Figure 5.2: The BPEL Activities

5.3.5 Include Tenant Context

The last step in the tenant context life cycle is to add the tenant context to the header of the
outgoing message. There is a need here to distinguish between calling a synchronous or
asynchronous Web service:

• Synchronous
If the process is called synchronously, a direct response message is replied. To add
the tenant context information to the header of the outgoing message, a interceptor as
shown in Listing 5.8 is used. This interceptor handles the outgoing message by adding
the header to it. The CxfWSImpl class is modificated by adding the interceptor to the
InterceptorChain as shown in Listing 5.6.

Listing 5.6: Add Interceptor to InterceptorChain in the CxfWSImpl.java Class

package org.ow2.orchestra.cxf;
...
public final class CxfWSImpl implements org.apache.cxf.service.invoker.

Invoker {
...
public DOMSource[] invoke(final Exchange exchange, final Object payload) {
...
if (operationInfo.hasOutput()) {

...
exchange.getEndpoint().getOutInterceptors().add(

new AddTctxHeaderInterceptor(tenantContext));
exchange.getEndpoint().getOutInterceptors().add(

52

5.3 Extending Orchestra

new LoggingOutInterceptor());
exchange.getEndpoint().getOutFaultInterceptors().add(

new AddTctxHeaderToFaultMsgInterceptor(tenantContext));
exchange.getEndpoint().getOutFaultInterceptors().add(

new LoggingOutInterceptor());
...
return CxfMessageUtil.orchestraToCxfMessage(responseMessage,

operationStyle, operation.getOutput().getMessage());
}
...
}
...

}

• Asynchronous
The process can be called asynchronously. To add the tenant context information to the
header of the outgoing message which invokes the Web service, the CxfInvoker class
is modificated as shown in Listing 5.7. The tenant context information is retrieved from
the current BPEL instance and added to the header of the outgoing message by using
an interceptor as shown in Listing 5.8. This interceptor handles the outgoing message
by adding the header to it. The interceptor is added to the created cxf client as shown in
Listing 5.7.

Listing 5.7: Add Interceptor to CXF Client in the CxfInvoker.java Class

package org.ow2.orchestra.cxf;
...
public class CxfInvoker implements Invoker {

...
public MessageVariable invoke(final TenantContext tenantContext, ..)
{

final Client client = this.createCxfClient(operationKey,
addressingInfo, definition, service, port);

...
final DOMSource[] outMessage = CxfMessageUtil.orchestraToCxfMessage(

requestMessage, operationStyle, operation.getInput().getMessage());
...

client.getOutInterceptors().add(new AddTctxHeaderInterceptor(
tenantContext));

client.getOutInterceptors().add(new LoggingOutInterceptor());
client.getOutFaultInterceptors().add(new

AddTctxHeaderToFaultMsgInterceptor(tenantContext));
client.getOutFaultInterceptors().add(new LoggingOutInterceptor());

...
final Object[] res = client.invoke(operationKey.getOperationName(), (

Object[]) outMessage);
...

}
...

}

53

5 Design and Implementation

The used interceptor to add the tenant context information to the header of the OutMessage
is shown in Listing 5.8. First, the interceptor receives the tenant context object. After this, it
handles the message in the outgoing WRITE phase. The tenant context object is converted to a
DOMSource Element by using the above described tenantContextToElement() method
from the TenantContextHandler class. This DOMSource Element is added to the header
list and this header list is added to the OutMessage. The interceptor to add the tenant context
information to the header of the fault message is very similar. The only difference is that the
OutFaultMessage is modified instead of the OutMessage.

Listing 5.8: The Interceptor to add the Tenant Context to the Message Header

package org.ow2.orchestra.cxf;
...
import org.apache.cxf.message.Message;
import org.w3c.dom.Element;

public class AddTctxHeaderInterceptor extends AbstractPhaseInterceptor<Message> {

private TenantContext tenantContext;

public AddTctxHeaderInterceptor(TenantContext tenantContext) {
super(Phase.WRITE);
addAfter(SoapPreProtocolOutInterceptor.class.getName());
this.tenantContext = tenantContext;

}

public void handleMessage(Message message) {
List<Header> outHeaders = new ArrayList<Header>();
TenantContextHandler tenantContextHandler = new TenantContextHandler();
Element value = tenantContextHandler.tenantContextToElement(this.

tenantContext);
if (value != null) {
Header outHeader = new Header(new QName(""), value);
outHeaders.add(outHeader);
Exchange exchange = message.getExchange();
Message outMsg = exchange.getOutMessage();

if(outMsg == null) {
outMsg = new org.apache.cxf.message.MessageImpl();
outMsg.setExchange(exchange);
outMsg = exchange.getEndpoint().getBinding().createMessage(outMsg);
exchange.setOutMessage(outMsg);

}
outMsg.put(Header.HEADER_LIST, outHeaders);

}
}
...

}

54

5.3 Extending Orchestra

5.3.6 Export and Import Tenant Context Data

To save the tenant context information, first the data is converted to an (XML-)string with
the tenantContextToString() method of the TenantContextHandler class. Then
the string is mapped via hibernate to a relational database in an dedicated column. This
new column is created in the database table of the BpelExecution class. The associated
hibernate xml file is called bpel.execution.hbm.xml and modified as shown in Listing
5.9. It is stored in /orchestra-core/src/main/resources/hibernate/core/

The two files wherein the database table with the tenant context column will be created are:

• org.hibernate.dialect.DerbyDialect-create.sql

• org.hibernate.dialect.H2Dialect-create.sql

Listing 5.9: The Hibernate Mapping File

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC ...>

<hibernate-mapping package="org.ow2.orchestra.runtime"
default-access="field" auto-import="false">

<class name="BpelExecution" table="RUNT_EXECUTION" discriminator-value="E">
...
<property name="xmlTenantContextString" column="TENANT_CONTEXT_"/>
...

</class>
...

</hibernate-mapping>

5.3.7 Issues with Implementation

The implementation of the presented concept is a prototype. More extensive or additional
parts of it are classified as future work. This affectes in particular the extension of the process
instance to handle the tenant context. In this work, the first step up to a certain depth is
done. Lost information of the tenant context during the life cycle was intercepted by stubs.
Much effort has been put in maintaining the tenant context information in every step of the
execution flow. Despite intensive endeavors, it was not possible to exactly locate the source
of the lost tenant context information. To avoid this problem a dummy value was used to
simulate and examine the concepts for its functionality. This has been tested by an extensive
logging of the execution flow. The results of this logging tests show that the described concept
of the execution flow works properly.

55

5 Design and Implementation

5.4 Example

To conclude this Chapter, the scenarios of the Motivating Examples Section 1.3 are presented.
The two scenarios are the Synchronous Echo Scenario and the Asynchronous Taxi
Scenario.

5.4.1 Synchronous Echo Scenario

First, the Synchronous Echo Scenario is presented. The associated example WS-BPEL
process is shown in Figure 5.3. The process receives an input message of an user. The message
including a string in the body and a tenant context information in the header. This string
of the incoming message’s body is added to the body of the outgoing reply message. The
tenant context information is first extracted from the header of the incoming message. Then
it is stored in a variable (the tenant context object) and is finally added to the header of the
outgoing reply message after the process is executed. This reply message is sent to the process
user. The source code of this example process is located in Appendix B.1.

Business
Process

User

Start

Invoke

End

echo
Web service

Request

Response

Figure 5.3: Synchronous Echo Scenario

56

5.4 Example

5.4.2 Asynchronous Taxi Scenario

The other scenario is the Asynchronous Taxi Scenario. A user wants to order a taxi to
a specific address at a certain point in time. (1) The called taxi company (tenant) receives
the taxi order of the user. (2) The process as shown in Figure 5.4 receives an input message
from the taxi company with the specific address and point in time information in the body
and the tenant context information in the header. The tenant context information is extracted
from the header of the incoming message and stored in a variable (the tenant context object).
The user has to be notificated, e.g., by a SMS-notification service and he has to confirm this
notification within a specified time. (3) The process realize this by calling the tenant preferred
SMS-notification Web service on the basis of the tenant context information. (In this approach,
the tenant context is added to the header of the Web service calling message). (4) The called
Web service notifies the user. After a waiting period due to the (5) user confirmation, (6) the
SMS-notification Web service sends a reply message back to the process. The reply message
can be, e.g., that the user has confirmed the taxi order process. (7) Finally, the process sends a
response message to the taxi company.

Business
Process

User

Start

Invoke

End

SMS
notification

Web service

(waiting
period)

Taxi
Company
(Tenant)

(3) tCtx

(5) C
onfirm

ation

(6) tCtx

(4) N
otification

(1) Order

(2) Request
(tCtx)

(7) Response
(tCtx)

Figure 5.4: Asynchronous Taxi Scenario

57

5 Design and Implementation

5.5 Test and Test Cases

In this Section, the evaluation and test of the previously presented implementation is de-
scribed.

5.5.1 Test

There are two test variants to realize the tests of the implementation: The first is the JUnit
testing framework of Java. Using JUnit, the TenantContext and TenantContextHandler
classes are tested. The second test variant is realized by using soapUI1 and the previously
described logging interceptors. To start, the Orchestra is running and workflows to test are
deployed. Testing is done by sending a test request message including the tenant context
and analyze the results. The result can be the response message in soapUI, the logging of the
request or response message, or the logging of the

5.5.2 Test Cases

The described synchronous echo scenario is used due to its simplicity to test the addition of
the tenant context elements to the outgoing message header. But it is not suitable for the fault
cases. As a result of this, the loan service (located in Appendix B.2) process is used to
test the four essentially test cases: (1) The tenant context element(s) are in the header and the
payload is correct, (2) no tenant context element(s) are in the header and a faulty payload is
sent, (3) the tenant context element(s) are in the header and a faulty payload is used, and (4)
no tenant context element(s) are in the header and the correct payload is sent. This four test
cases are shown in Table 5.1. Whereby valid payload means that it is a correct request and
invalid payload means that it is a incorrect request. In the case of the loan service, a valid
entry in the amount part of the request message only consists of numbers. The fault case is
triggered by adding some characters to it. For simplicity, in Table 5.1, the whole tenant context
or valid parts of it inside the request message header are called valid tenant context.
Analogous to this, invalid tenant context means that there is no part of a valid tenant
context header. An valid example of a loan Service request in soapUI is shown in Listing
5.10.

Valid Payload tCtx Header Msg Body Msg Header
false false Payload false
false true Payload tCtx Header
true false Fault Msg false
true true Fault Msg tCtx Header

Table 5.1: The Test Cases

1http://www.soapui.org/

58

5.5 Test and Test Cases

Listing 5.10: Example of a Valid Loan Service Request

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:loan="http://orchestra.ow2.org/loanApproval/loanService">
<soapenv:Header>
<tenantContext>

<userId>dc0b71dd4c994efb964bbc30efd552cc</userId>
<tenantId>16c2025386054b679001935c50c8b707</tenantId>
<optionalEntry>

<key>userEmailAddress</key>
<value>user@example.org</value>

</optionalEntry>
</tenantContext>
<anotherHeader>

<element1>value1</element1>
<element2>value2</element2>
<element3>value3</element3>

</anotherHeader>
</soapenv:Header>
<soapenv:Body>

<loan:request>
<firstName>Sample</firstName>
<name>User</name>
<amount>40000</amount>

</loan:request>
</soapenv:Body>

</soapenv:Envelope>

For the sake of simplicity, the echo Web service to test the invocation of an asynchronous
Web service is used. It is invoked in the asynchronous BPEL process. Like the synchronous
echo scenario, it is very simple to test the addition of the tenant context elements to the
outgoing message header. In this example there is no reply message of the invoked echo
service. Therefore, the outgoing and client invoke message is logged by an logging interceptor.
The asynchronous test cases are the same four test cases as in the synchronous test and shown
in Table 5.1.

59

5 Design and Implementation

60

6 Summary and Future Work

In this diploma thesis the extension of a BPEL engine for multi-tenancy support in the area of
communication was researched. The examination of other work in the area of tenant-aware
composition engines and applications presented a number of requirements for workflow
engines to support Web services on a per tenant basis, like data, process, and performance
isolation. For a better understanding of the work done in this diploma thesis, the needed
fundamentals like basic knowledge are given in the Fundamentals Chapter 2. After that, an
extensible and reusable concept of an tenant context and how to integrate it into a message
protocol is presented in the Concept Chapter 4. Furthermore, the life cycle phases of the
tenant context information inside the engine are described.

To validate the concepts presented in the Concept Chapter 4, the open source BPEL engine
Orchestra [ORC] was extended to support multi-tenancy in the area of communication. This
includes the tenant context handling, like extracting the tenant context from the incoming
message, handling the tenant context information inside the system and the process in-
stance, and adding the tenant context to the outgoing messages of the business process. The
message protocol used to evaluate the concept of the Tenant Context is SOAP which was
described in 2.1.1. The details of the concept implementation are described in the Design and
Implementation Chapter 5.

Before the open source BPEL engine Orchestra could be extended, much effort has been put
into understanding the original source code and architecture of the engine. The acquired
knowledge about developing Orchestra are documented in Appendix A. This knowledge is
useful for future developers who want to extend the Orchestra engine.

The work done in this diploma thesis does not cover all the aspects of tenant-awareness
on workflow compositions, only those in the area of communication. The future work to
realize the whole tenant-aware system is to realize the communication with the tenant-aware
Enterprise Service Bus (ESB). For example, the asynchronous Web service described in 5.4.2 is
invoked by a message including the Tenant Context. But this invocation should be realized
by the ESB. Another future work is to solve the issues of the implementation. Furthermore,
Web service providers can make their services tenant-aware using the multi-tenancy patterns
presented by Mietzner et. al. [MMLP09, MUTL09, MLP08].

61

6 Summary and Future Work

62

Appendix A

Developing Orchestra

In this Appendix Chapter important manuals how to setup the Orchestra engine is presented.
This includes manuals how to build and run the engine as well as how to deploy and address
a Web service.

A.1 How to Build and Run the Engine

The first step after the code changes is to build the engine that the changes will take effect. To
do this, open the command line and go to the /workspace/Orchestra/engine/ directory. After
this enter mvn clean install -DskipTests -DskipDoc to repackage the jar files and install it in the
maven local repository as shown in Figure A.1. The switches −DskipTests and −DskipDoc
can be used to shorten the build. -DskipTests will skip test execution and -DskipDoc will skip
the user guide, javadoc and source-jar creation.

Figure A.1: Build the Engine

After the rebuild of the engine, the next step is to run the engine. This is accomplished by
executing mvn jetty:run-war in the /workspace/Orchestra/engine/cxf/war directory as shown in

63

Appendix A Developing Orchestra

Figure A.2. Now the Orchestra engine is running on the localhost and port 8080. To test it,
open http://localhost:8080/orchestra/ in a Web browser. If the engine is running and there are no
Web services deployed yet, the text "No services are running" must appear. Otherwise the
deployed Web services are listed as shown in Figure A.3.

Figure A.2: Run the Engine

A.2 How to Deploy and Address a Web Service

To deploy a Web service, go to the examples directory in /orchestra-cxf-tomcat-4-8-02/, choose
an example Web service and execute ant deploy inside the directory of the Web service. For
example run ant deploy in /orchestra-cxf-tomcat-4-8-02/echo/ to deploy the echo Web service as
shown in Figure A.4.

Adressing a deployed Web service is performed as follows: Install and open the functional
testing solution soapUI1. Create a new soapUI project and choose the related wsdl file of
the deployed Web service. The binding and a suitable default request message is created
automatically by soapUI. Change the endpoint address of the request message to the endpoint
address of the deployed Web service as shown at http://localhost:8080/orchestra/. Finally the
default request message can be submitted to the specified endpoint adress and the return
message of the adressed and deployed Web service appears on the right side as shown in
Figure A.5.

1http://www.soapui.org/

64

A.3 Orchestra Logging

Figure A.3: Listing of Deployed Web Services

A.3 Orchestra Logging

In this Appendix Chapter the logging process in the Orchestra engine is described. This
is important to test parts of the engine during the developing process. The responsible
logging class is the java.util.logging class. To change the logging properties, the
logging.properties file as shown in Figure A.6 has to be configured. Therein the logging
status of the respective classes can be set. The file is stored in /workspace/Orchestra/packages/common/tomcat/src/main/resources/conf/

But it is possible to define the location of the logging configuration file by setting the
java.util.logging.config.file system property to e.g.:

mvn jetty:run-war -Djava.util.logging.config.file myLogging.properties

There are several logging levels:

• OFF

• INFO

• FINE

• WARNING

• ALL

• SEVERE

65

Appendix A Developing Orchestra

Figure A.4: Deploy a Web Service

The level is set in the properties file by adding the project class and set their logging level.
E.g., for the CxfWSImpl.java class and the logging level ALL:

org.ow2.orchestra.cxf.CxfWSImpl.level=ALL

In the associated class, a logger has to be created, e.g., for the CxfWSImpl.java class. Therein
the needed packages are imported and a logger function implemented. This funktion is used
to choose the logging level and set the output logging string. This is shown in Listing A.1.

Listing A.1: The Logger Function

import java.util.logging.Level
import java.util.logging.Logger
...
private static Logger log = Logger.getLogger(CxfWSImpl.class.getName());
...
CxfWSImpl.log.<LOGGING LEVEL>(<LOGGING STRING>);

66

A.3 Orchestra Logging

Figure A.5: Address a Web Service

Figure A.6: The Logging Properties File

67

Appendix A Developing Orchestra

68

Appendix B

BPEL and WSDL Examples

This Chapter presents some of the BPEL and WSDL files of the used Web services in the
motivating examples and tests. The examples are from the Orchestra CXF tomcat 4.8.0
package1.

B.1 Echo BPEL Process and WSDL Example

Listing B.1: Echo BPEL Process File

<?xml version="1.0" encoding="UTF-8"?>
<process name="echo"

targetNamespace="http://enterprise.netbeans.org/bpel/echo/echo_1"
xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bpws="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:sxt="http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension

/Trace"
xmlns:sxed="http://www.sun.com/wsbpel/2.0/process/executable/

SUNExtension/Editor"
xmlns:wsdlNS="http://enterprise.netbeans.org/bpel/echo/echo_1"
xmlns:ns1="http://localhost/echo/echo"
xmlns:ns2="http://xml.netbeans.org/schema/echo">

<documentation>
The synchronous BPEL process illustrates a simple synchronous
flow. The process receives an input message and sends it back
synchronously. A client starts the synchronous process by invoking
a request-response operation. After invoking a synchronous process,
the client is blocked until the process finishes and returns the result.

</documentation>

<import namespace="http://localhost/echo/echo"
location="echo.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>

<partnerLinks>
<partnerLink

name="echo"
partnerLinkType="ns1:partnerlinktype1"

1Available at http://repo1.maven.org/maven2/org/ow2/orchestra/orchestra-cxf-tomcat/

69

Appendix B BPEL and WSDL Examples

myRole="partnerlinktyperole1">
<documentation>

This partner link represents the client who sends an
input message to the process and receives the response.

</documentation>
</partnerLink>

</partnerLinks>

<variables>
<variable name="outputVar" messageType="ns1:responseMessage">

<documentation>Output variable.</documentation>
</variable>
<variable name="inputVar" messageType="ns1:requestMessage">

<documentation>Input variable.</documentation>
</variable>

</variables>

<sequence>
<documentation>

The sequence includes several activities
which are executed in lexical order.

</documentation>
<receive

name="start"
partnerLink="echo"
operation="operation1"
portType="ns1:portType1"
variable="inputVar"
createInstance="yes">
<documentation>

The Receive activity makes the process
to wait for the incoming message to arrive.

</documentation>
</receive>
<assign name="Assign1">

<copy>
<from variable="inputVar" part="inputType"/>
<to variable="outputVar" part="resultType"/>

</copy>
</assign>
<reply

name="end"
partnerLink="echo"
operation="operation1"
portType="ns1:portType1"
variable="outputVar">
<documentation>

The Reply activity returns a message from the process
to the partner which initiated the communication.

</documentation>
</reply>

</sequence>
</process>

70

B.1 Echo BPEL Process and WSDL Example

Listing B.2: Echo WSDL File

<?xml version="1.0" encoding="UTF-8"?>
<definitions

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="echo" targetNamespace="

http://localhost/echo/echo"
xmlns:tns="http://localhost/echo/echo"
xmlns:ns="http://xml.netbeans.org/schema/echo"
xmlns:plink="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns:bpws="http://docs.oasis-open.org/wsbpel/2.0/varprop">

<message name="requestMessage">
<part name="inputType" type="xsd:string"/>

</message>

<message name="responseMessage">
<part name="resultType" type="xsd:string"/>

</message>

<portType name="portType1">
<operation name="operation1">

<input name="input1" message="tns:requestMessage"/>
<output name="output1" message="tns:responseMessage"/>

</operation>
</portType>

<binding name="binding1" type="tns:portType1">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="

document"/>
<operation name="operation1">

<soap:operation soapAction="http://orchestra.ow2.org/echo/operation1"
/>

<input name="input1">
<soap:body use="literal"/>

</input>
<output name="output1">

<soap:body use="literal"/>
</output>

</operation>
</binding>

<service name="service1">
<port name="port1" binding="tns:binding1">

<soap:address location="http://localhost:${HttpDefaultPort}/orchestra
/port1"/>

</port>
</service>

<plink:partnerLinkType name="partnerlinktype1">
<plink:role name="partnerlinktyperole1" portType="tns:portType1"/>

</plink:partnerLinkType>

71

Appendix B BPEL and WSDL Examples

</definitions>

B.2 LoanService BPEL Process and WSDL Example

Listing B.3: LoanService BPEL Process File

<?xml version="1.0" encoding="UTF-8"?>
<bpws:process exitOnStandardFault="no" name="loanService"

suppressJoinFailure="yes"
targetNamespace="http://orchestra.ow2.org/loanApproval/loanService"
xmlns:bpws="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:ns="http://orchestra.ow2.org/loanApproval/common"
xmlns:ns0="http://orchestra.ow2.org/loanApproval/riskAssessment"
xmlns:ns1="http://orchestra.ow2.org/loanApproval/approval" xmlns:tns="http://

orchestra.ow2.org/loanApproval/loanService">

<bpws:import importType="http://schemas.xmlsoap.org/wsdl/"
location="loanService.wsdl" namespace="http://orchestra.ow2.org/

loanApproval/loanService"/>
<bpws:import importType="http://schemas.xmlsoap.org/wsdl/"

location="riskAssessment/riskAssessment.wsdl" namespace="http://orchestra
.ow2.org/loanApproval/riskAssessment"/>

<bpws:import importType="http://schemas.xmlsoap.org/wsdl/"
location="approval/approval.wsdl" namespace="http://orchestra.ow2.org/

loanApproval/approval"/>
<bpws:import importType="http://schemas.xmlsoap.org/wsdl/"

location="common.wsdl" namespace="http://orchestra.ow2.org/loanApproval/
common"/>

<bpws:partnerLinks>
<bpws:partnerLink myRole="loanService" name="customer" partnerLinkType="

tns:loanServiceLT"/>
<bpws:partnerLink name="approver"

partnerLinkType="ns1:approvalLT" partnerRole="approver"/>
<bpws:partnerLink name="assessor"

partnerLinkType="ns0:riskAssessmentLT" partnerRole="assessor"/>
</bpws:partnerLinks>
<bpws:variables>

<bpws:variable messageType="ns:creditInformationMessage" name="request"/>
<bpws:variable messageType="ns0:riskAssessmentMessage" name="risk"/>
<bpws:variable messageType="ns:approvalMessage" name="approval"/>

</bpws:variables>
<bpws:flow name="Flow">

<bpws:links>
<bpws:link name="receive-to-assess"/>
<bpws:link name="receive-to-approval"/>
<bpws:link name="approval-to-reply"/>
<bpws:link name="assess-to-setMessage"/>
<bpws:link name="setMessage-to-reply"/>
<bpws:link name="assess-to-approval"/>

</bpws:links>
<bpws:receive createInstance="yes" name="Receive"

72

B.2 LoanService BPEL Process and WSDL Example

operation="request" partnerLink="customer"
portType="tns:loanServicePT" variable="request">
<bpws:sources>

<bpws:source linkName="receive-to-assess">
<bpws:transitionCondition><![CDATA[$request.amount < 10000]]>

</bpws:transitionCondition>
</bpws:source>
<bpws:source linkName="receive-to-approval">

<bpws:transitionCondition><![CDATA[$request.amount >= 10000]]
></bpws:transitionCondition>

</bpws:source>
</bpws:sources>

</bpws:receive>
<bpws:invoke inputVariable="request" name="Assess"

operation="check" outputVariable="risk"
partnerLink="assessor" portType="ns0:riskAssessmentPT">
<bpws:targets>

<bpws:target linkName="receive-to-assess"/>
</bpws:targets>
<bpws:sources>

<bpws:source linkName="assess-to-setMessage">
<bpws:transitionCondition><![CDATA[$risk.level=’low’]]></

bpws:transitionCondition>
</bpws:source>
<bpws:source linkName="assess-to-approval">

<bpws:transitionCondition><![CDATA[$risk.level!=’low’]]></
bpws:transitionCondition>

</bpws:source>
</bpws:sources>

</bpws:invoke>
<bpws:assign name="SetMessage" validate="no">

<bpws:targets>
<bpws:target linkName="assess-to-setMessage"/>

</bpws:targets>
<bpws:sources>

<bpws:source linkName="setMessage-to-reply"/>
</bpws:sources>
<bpws:copy>

<bpws:from>
<bpws:literal>yes</bpws:literal>

</bpws:from>
<bpws:to part="accept" variable="approval"/>

</bpws:copy>
</bpws:assign>
<bpws:invoke inputVariable="request" name="Approval"

operation="approve" outputVariable="approval"
partnerLink="approver" portType="ns1:approvalPT">
<bpws:targets>

<bpws:target linkName="receive-to-approval"/>
<bpws:target linkName="assess-to-approval"/>

</bpws:targets>
<bpws:sources>

<bpws:source linkName="approval-to-reply"/>
</bpws:sources>

</bpws:invoke>

73

Appendix B BPEL and WSDL Examples

<bpws:reply name="Reply" operation="request"
partnerLink="customer" portType="tns:loanServicePT" variable="

approval">
<bpws:targets>

<bpws:target linkName="approval-to-reply"/>
<bpws:target linkName="setMessage-to-reply"/>

</bpws:targets>
</bpws:reply>

</bpws:flow>
</bpws:process>

Listing B.4: RiskAssessment WSDL File

<wsdl:definitions
targetNamespace="http://orchestra.ow2.org/loanApproval/riskAssessment"
xmlns:tns="http://orchestra.ow2.org/loanApproval/riskAssessment"
xmlns:common="http://orchestra.ow2.org/loanApproval/common"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<wsdl:import location="../common.wsdl" namespace="http://orchestra.ow2.org/
loanApproval/common"/>

<plnk:partnerLinkType name="riskAssessmentLT">
<plnk:role name="assessor" portType="tns:riskAssessmentPT" />

</plnk:partnerLinkType>

<wsdl:message name="riskAssessmentMessage">
<wsdl:part name="level" type="xsd:string"/>

</wsdl:message>

<wsdl:portType name="riskAssessmentPT">
<wsdl:operation name="check">
<wsdl:input message="common:creditInformationMessage" />
<wsdl:output message="tns:riskAssessmentMessage" />

</wsdl:operation>
</wsdl:portType>

<binding name="riskAssessmentBinding" type="tns:riskAssessmentPT">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="check">
<soap:operation soapAction="http://orchestra.ow2.org/loanApproval/

riskAssessment"/>
<input>

<soap:body use="literal" namespace="http://orchestra.ow2.org/loanApproval
/riskAssessment" />

</input>
<output>

<soap:body use="literal" namespace="http://orchestra.ow2.org/loanApproval
/riskAssessment" />

</output>
</operation>

74

B.2 LoanService BPEL Process and WSDL Example

</binding>

<service name="riskAssessmentServiceBP">
<port name="riskAssessmentPort" binding="tns:riskAssessmentBinding">
<soap:address location="http://localhost:${HttpDefaultPort}/orchestra/

riskAssessmentPort"/>
</port>

</service>

</wsdl:definitions>

Listing B.5: Approval WSDL File

<wsdl:definitions
targetNamespace="http://orchestra.ow2.org/loanApproval/approval"
xmlns:tns="http://orchestra.ow2.org/loanApproval/approval"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:common="http://orchestra.ow2.org/loanApproval/common"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<wsdl:import location="../common.wsdl" namespace="http://orchestra.ow2.org/
loanApproval/common"/>

<plnk:partnerLinkType name="approvalLT">
<plnk:role name="approver" portType="tns:approvalPT" />

</plnk:partnerLinkType>

<wsdl:portType name="approvalPT">
<wsdl:operation name="approve">
<wsdl:input message="common:creditInformationMessage" />
<wsdl:output message="common:approvalMessage" />

</wsdl:operation>
</wsdl:portType>

<binding name="approvalBinding" type="tns:approvalPT">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="approve">
<soap:operation soapAction="http://orchestra.ow2.org/loanApproval/approval"

/>
<input>

<soap:body use="literal" namespace="http://orchestra.ow2.org/loanApproval
/approval" />

</input>
<output>

<soap:body use="literal" namespace="http://orchestra.ow2.org/loanApproval
/approval" />

</output>
</operation>

</binding>

<service name="approvalServiceBP">
<port name="approvalPort" binding="tns:approvalBinding">

75

Appendix B BPEL and WSDL Examples

<soap:address location="http://localhost:${HttpDefaultPort}/orchestra/
approvalPort"/>

</port>
</service>

</wsdl:definitions>

76

Bibliography

[ACT] ActiveVOS BPMS from Active Endpoints. Website. Available online at http:
//www.activevos.com/.

[APAa] Apache CXF. Website. Available online at http://cxf.apache.org/.

[APAb] Apache CXF Architecture. Website. Available online at http://cxf.apache.
org/docs/cxf-architecture.html.

[APAc] Apache CXF Debugging and Logging. Website. Available online at http:
//cxf.apache.org/docs/debugging-and-logging.html.

[APAd] Apache CXF Interceptors and Phases. Website. Available online at http://cxf.
apache.org/docs/interceptors.html.

[APAe] Apache ODE. Website. Available online at http://ode.apache.org/.

[APW+11] A. Azeez, S. Perera, S. Weerawarana, P. Fremantle, S. Uthaiyashankar,
S. Abesinghe. WSO2 Stratos: An Application Stack to Support Cloud Com-
puting. 2011.

[BGK+11] M. Behrendt, B. Glasner, P. Kopp, R. Dieckmann, G. Breiter, S. Pappe,
H. Kreger, A. Arsanjani. Introduction and Architecture Overview IBM
Cloud Computing Reference Architecture 2.0. 2011. Available on-
line at https://www.opengroup.org/cloudcomputing/uploads/40/
23840/CCRA.IBMSubmission.02282011.doc.

[Buc10] A. Buchholz. Multi-tenant-fähige BPEL-Engines. Diplomarbeit Nr. 2995, University
of Stuttgart, 2010.

[BZP+10] C.-P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, A. Hart. Enabling
Multi-Tenancy: An Industrial Experience Report. 26th IEEE International Confer-
ence on Software Maintenance in Timisoara, Romania, 2010.

[CC06] F. Chong, G. Carraro. Architecture Strategies for Catching the Long Tail. Website,
2006. Available online at http://msdn.microsoft.com/en-us/library/
aa479069.aspx visited on July 16th 2011.

[CWZ10] H. Cai, N. Wang, M. Zhou. A Transparent Approach of Enabling SaaS Multi-
tenancy in the Cloud. IEEE 6th World Congress on Services, 2010.

[Ess11] S. Essl. Extending an Open Source Enterprise Service Bus for Multi-Tenancy
Support. Masterarbeit Nr. 3166, University of Stuttgart, 2011.

[GSH+07] C. Guo, W. Sun, Y. Huang, Z. Wang, B. Gao. A Framework for Native Multi-
Tenancy Application Development and Management. The 9th IEEE International
Conference on E-Commerce Technology and The 4th IEEE International Conference on
Enterprise Computing, E-Commerce and E-Services, 2007.

77

http://www.activevos.com/
http://www.activevos.com/
http://cxf.apache.org/
http://cxf.apache.org/docs/cxf-architecture.html
http://cxf.apache.org/docs/cxf-architecture.html
http://cxf.apache.org/docs/debugging-and-logging.html
http://cxf.apache.org/docs/debugging-and-logging.html
http://cxf.apache.org/docs/interceptors.html
http://cxf.apache.org/docs/interceptors.html
http://ode.apache.org/
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx

Bibliography

[IBM] IBM Business Process Automation WebSphere Process Server. Website. Available
online at http://www-01.ibm.com/software/integration/wps/.

[IBO] Business and Process Integration Suite. Website. Available online at http:
//www.magicsoftware.com/en/products/?catID=41.

[JBP] jBPM JBoss Community. Website. Available online at http://www.jboss.
org/jbpm.

[KNL08] T. Kwok, T. Nguyen, L. Lam. A Software as a Service with Multi-tenancy Support
for an Electronic Contract Management Application. IEEE International Conference
on Services Computing, 2008.

[KSS09] M. Koning, C.-A. Sun, M. Sinnema. VxBPEL: Supporting variability for Web
services in BPEL. Information and Software Technology, 51:258–269, 2009.

[Ley11] F. Leymann. Cloud Computing: The Next Revolution in IT. 2011. Available online
at http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/
leymann/publications/INPROC-2009-65%20-%20Leymann%20-%
20Cloud%20Computing%20-%20PhoWo.pdf.

[MAE] BPEL Engine & Toolkit: BPEL Maestro Parasoft. Website. Available online at
http://www.parasoft.com/jsp/products/bpel.jsp?itemId=114.

[MBI] Microsoft BizTalk Server. Website. Available online at http://www.
microsoft.com/germany/biztalk/default.mspx.

[MG11] P. Mell, T. Grance. The NIST Definition of Cloud Computing. 2011.
Available online at http://docs.ismgcorp.com/files/external/
Draft-SP-800-145_cloud-definition.pdf.

[MLP08] R. Mietzner, F. Leymann, M. P. Papazoglou. Defining Composite Configurable
SaaS Application Packages Using SCA, Variability Descriptors and Multi-tenancy
Patterns. pp. 156–161, 2008. doi:10.1109/ICIW.2008.68. URL http://dl.acm.
org/citation.cfm?id=1381304.1381988.

[MMLP09] R. Mietzner, A. Metzger, F. Leymann, K. Pohl. Variability modeling to support
customization and deployment of multi-tenant-aware Software as a Service
applications. Principles of Engineering Service Oriented Systems, ICSE Workshop
on, 0:18–25, 2009. doi:http://doi.ieeecomputersociety.org/10.1109/PESOS.2009.
5068815.

[MSDa] Introducing Windows Communication Foundation: Accessible Service-Oriented
Architecture. Website. Available online at http://msdn.microsoft.com/
en-us/library/orm-9780596527563-01-10.aspx.

[MSDb] The Workflow Engine Model. Website. Available online at http://msdn.
microsoft.com/en-us/library/aa188337%28office.10%29.aspx.

[MUTL09] R. Mietzner, T. Unger, R. Titze, F. Leymann. Combining Different Multi-Tenancy
Patterns in Service-Oriented Applications. 2009 IEEE International Enterprise
Distributed Object Computing Conference, 2009.

[OAS06] Reference Model for Service Oriented Architecture 1.0. 2006. Available online at
docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf.

78

http://www-01.ibm.com/software/integration/wps/
http://www.magicsoftware.com/en/products/?catID=41
http://www.magicsoftware.com/en/products/?catID=41
http://www.jboss.org/jbpm
http://www.jboss.org/jbpm
http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/leymann/publications/INPROC-2009-65%20-%20Leymann%20-%20Cloud%20Computing%20-%20PhoWo.pdf
http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/leymann/publications/INPROC-2009-65%20-%20Leymann%20-%20Cloud%20Computing%20-%20PhoWo.pdf
http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/leymann/publications/INPROC-2009-65%20-%20Leymann%20-%20Cloud%20Computing%20-%20PhoWo.pdf
http://www.parasoft.com/jsp/products/bpel.jsp?itemId=114
http://www.microsoft.com/germany/biztalk/default.mspx
http://www.microsoft.com/germany/biztalk/default.mspx
http://docs.ismgcorp.com/files/external/Draft-SP-800-145_cloud-definition.pdf
http://docs.ismgcorp.com/files/external/Draft-SP-800-145_cloud-definition.pdf
http://dl.acm.org/citation.cfm?id=1381304.1381988
http://dl.acm.org/citation.cfm?id=1381304.1381988
http://msdn.microsoft.com/en-us/library/orm-9780596527563-01-10.aspx
http://msdn.microsoft.com/en-us/library/orm-9780596527563-01-10.aspx
http://msdn.microsoft.com/en-us/library/aa188337%28office.10%29.aspx
http://msdn.microsoft.com/en-us/library/aa188337%28office.10%29.aspx
docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

Bibliography

[OAS07] Web Services Business Process Execution Language Version 2.0. 2007. Available
online at http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.pdf.

[ORA] Oracle BPEL Process Manager. Website. Available online at http:
//www.oracle.com/technetwork/middleware/bpel/overview/
index.html.

[ORC] Orchestra: Open Source BPEL / BPM Solution. Website. Available online at
http://orchestra.ow2.org/xwiki/bin/view/Main/WebHome.

[PET] Petals Link Research Home. Website. Available online at http://research.
petalslink.org/display/research/Petals+Link+Research+Home.

[PLJ10] G. Porcher, G. Le Jeune. Orchestra. 2010. Available online at http:
//orchestra.ow2.org/xwiki/bin/download/Main/Documentation/
Orchestra_en.pdf.

[PLL10] Z. Pervez, S. Lee, Y.-K. Lee. Multi-Tenant, Secure, Load Disseminated SaaS
Architecture. 2010.

[SAP] SAP Exchange Infrastructure. Website. Available online at
http://help.sap.com/saphelp_nw04/helpdata/de/0f/
80243b4a66ae0ce10000000a11402f/content.htm.

[SLLW09a] Y. Shi, S. Luan, Q. Li, H. Wang. A Flexible Business Process Customization Frame-
work for SaaS. 2009 WASE International Conference on Information Engineering,
2009.

[SLLW09b] Y. Shi, S. Luan, Q. Li, H. Wang. A Multi-Tenant Oriented Business Process
Customization System. International Conference on New Trends in Information and
Service Science, 2009.

[SR11] B. Sengupta, A. Roychoudhury. Engineering Multi-Tenant Software-as-a-Service
Systems. 2011.

[TOG] The SOA Work Group : Definition of SOA. Website. Available online at http:
//www.opengroup.org/soa/soa/def.htm.

[VMCL09] L. Vaquero, L. Merino, J. Caceres, M. Lindner. A break in the clouds: Towards a
cloud definition. SIGCOMM Comput. Commun. Rev., 39(1), 2009.

[VUS] Virtuoso Universal Server. Website. Available online at http://virtuoso.
openlinksw.com/.

[W3C] W3C Recommendation - SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition). Website. Available online at http://www.w3.org/TR/
soap12-part1/.

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. Ferguson. Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR Upper Saddle River, NJ, USA,
2005.

79

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://orchestra.ow2.org/xwiki/bin/view/Main/WebHome
http://research.petalslink.org/display/research/Petals+Link+Research+Home
http://research.petalslink.org/display/research/Petals+Link+Research+Home
http://orchestra.ow2.org/xwiki/bin/download/Main/Documentation/Orchestra_en.pdf
http://orchestra.ow2.org/xwiki/bin/download/Main/Documentation/Orchestra_en.pdf
http://orchestra.ow2.org/xwiki/bin/download/Main/Documentation/Orchestra_en.pdf
http://help.sap.com/saphelp_nw04/helpdata/de/0f/80243b4a66ae0ce10000000a11402f/content.htm
http://help.sap.com/saphelp_nw04/helpdata/de/0f/80243b4a66ae0ce10000000a11402f/content.htm
http://www.opengroup.org/soa/soa/def.htm
http://www.opengroup.org/soa/soa/def.htm
http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/

Bibliography

[ZSTC10] X. Zhang, B. Shen, X. Tang, W. Chen. From Isolated Tenancy Hosted Application
to Multi-tenancy: Toward a Systematic Migration Method for Web Application.
2010.

All links have been last checked on December 19, 2011

80

Declaration

All the work contained within this thesis, except where otherwise
acknowledged, was solely the effort of the author. At no stage was
any collaboration entered into with any other party.

Stuttgart, December 20, 2011 ————————–
(Michael Baldauf)

	1 Introduction
	1.1 Problem Statement
	1.2 Research Design
	1.3 Motivating Example
	1.4 Definitions and Conventions
	1.5 Outline

	2 Fundamentals
	2.1 Service-Oriented Architecture
	2.1.1 SOAP
	2.1.2 Apache CXF

	2.2 The Workflow Engine Orchestra
	2.3 Cloud Computing
	2.3.1 The Five Essential Characteristics
	2.3.2 The Three Service Models
	2.3.3 The Four Deployment Models

	2.4 Multi-Tenancy
	2.4.1 Single-Tenancy
	2.4.2 Multi-Tenancy Models

	3 Related Work
	3.1 Tenant-Aware Web Applications
	3.2 SaaS Applications and Multi-Tenancy Patterns
	3.3 Architectures
	3.4 Migrating and Reengineering
	3.5 ActiveVOS
	3.6 Apache ODE, WSO2 BPS, and WSO2 Stratos
	3.7 Tenant-Aware BPEL Engines
	3.8 Existing Workflow Engines

	4 Concept and Specification
	4.1 Requirements for a Tenant-Aware Workflow Engine
	4.1.1 General Requirements
	4.1.2 Funtional Requirements
	4.1.3 Non-Functional Requirements

	4.2 Multi Tenant Orchestra Model
	4.3 The Tenant Context
	4.3.1 Tenant Context Structure
	4.3.2 Tenant Context Life Cycle
	4.3.3 Requirements for the Tenant Context Concept

	4.4 Extract Tenant Context from Incoming SOAP Message
	4.5 Extend Process Instance to Manage Tenant Context
	4.6 Include the Tenant Context in Outgoing SOAP Messages
	4.7 Save and Load the Tenant Context Data
	4.8 External Usage and Internal Handling

	5 Design and Implementation
	5.1 Development Environment
	5.2 Orchestra Architecture
	5.3 Extending Orchestra
	5.3.1 Tenant Context Class
	5.3.2 Tenant Context Handler Class
	5.3.3 Extract Tenant Context
	5.3.4 Extend Process Instance
	5.3.5 Include Tenant Context
	5.3.6 Export and Import Tenant Context Data
	5.3.7 Issues with Implementation

	5.4 Example
	5.4.1 Synchronous Echo Scenario
	5.4.2 Asynchronous Taxi Scenario

	5.5 Test and Test Cases
	5.5.1 Test
	5.5.2 Test Cases

	6 Summary and Future Work
	A Developing Orchestra
	A.1 How to Build and Run the Engine
	A.2 How to Deploy and Address a Web Service
	A.3 Orchestra Logging

	B BPEL and WSDL Examples
	B.1 Echo BPEL Process and WSDL Example
	B.2 LoanService BPEL Process and WSDL Example

	Bibliography

