
Institut für Verteilte und Parallele Systeme

Abteilung Verteilte Systeme

Universität Stuttgart
Universitätsstraße 38
D - 70569 Stuttgart

Studienarbeit Nr. 2354

Probabilistic map representation
using GeoTools

Daniel del Hoyo

Course of Study: Computer Science

Examiner: Prof. D. Kurt Rothermel

Supervisor: M.Sc. Pavel Skvortsov

Commenced: 24. October 2011

Completed: 29. March 2012

CR-Classification: C.2.4, E.2.0, H.3.4, I.3.5



Abstract

With the current raise of many different smartphones devices and tablets, which
have among other functions, a GPS sensor, the ability to make use of services
based in the user’s location is increasing, as the number of applications offering
this type of service. In addition, the number of social networks which allow
users to share their location is also increasing.
To avoid any kind of leak that could lead to violate user’s privacy or security,
location privacy techniques should be implemented. Obfuscation will be used
in order to avoid the usage of third party solutions. The generation of cloaking
regions allows users to define an associated privacy police and configuration,
associated with every different type of feature, when map-aware knowledge is
available.

This paper presents different methods of probabilistic map representations and
an obfuscation technique used when unveiling user’s position.

Keywords: GeoTools, Cloaking, Obfuscation, Probabilistic representation,
Map-awareness, Location privacy.

1



Contents

List of figures 4

List of tables 5

List of equations 6

1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 10
2.1 GeoTools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 OpenLayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 GML, KML and OpenStreetMap formats . . . . . . . . . 12
2.3.2 Shapefile format . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Other formats . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Basics of location privacy . . . . . . . . . . . . . . . . . . . . . . 25

3 Related work 31
3.1 The PROBE approach . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Privacy preserving through a memorizing algorithm . . . . . . . 32
3.3 Preventing velocity-based linkage attacks . . . . . . . . . . . . . 34
3.4 Landscape-aware location-privacy protection . . . . . . . . . . . . 36
3.5 Map-aware Position Sharing . . . . . . . . . . . . . . . . . . . . . 37

4 Problem formulation 40

5 Implementation 43
5.1 UML diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Point and its associated polygon . . . . . . . . . . . . . . 46
5.2.2 Coordinate reference system . . . . . . . . . . . . . . . . . 46
5.2.3 Intersection of geometries . . . . . . . . . . . . . . . . . . 47
5.2.4 Defining radius . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Probabilistic map representation . . . . . . . . . . . . . . . . . . 50
5.3.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Probabilistic graphical representation . . . . . . . . . . . 51
5.3.3 PMR: type dependent . . . . . . . . . . . . . . . . . . . . 52
5.3.4 PMR: predefined values . . . . . . . . . . . . . . . . . . . 53
5.3.5 PMR: traffic knowledge, grid representation . . . . . . . . 55
5.3.6 PMR: traffic knowledge, objects . . . . . . . . . . . . . . 57

2



5.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Evaluation 60
6.1 Precision measure, transforming geometries, transforming coor-

dinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Calculating intersected surface . . . . . . . . . . . . . . . . . . . 61
6.3 Point and its associated polygon . . . . . . . . . . . . . . . . . . 63
6.4 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5 CPU, disk needs, and memory usage . . . . . . . . . . . . . . . . 66
6.6 Mobile solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Conclusions 70

References 71

3



List of Figures

1 Willing to reveal position according to the service [26] . . . . . . 7
2 Different location privacy techniques [26] . . . . . . . . . . . . . . 8
3 OGC specifications [1] . . . . . . . . . . . . . . . . . . . . . . . . 10
4 OpenLayer protocols . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 GML hierarchy (UML diagram) [7] . . . . . . . . . . . . . . . . . 13
6 OpenStreetMap used in the free software ’Marble’ . . . . . . . . 15
7 Attribute examples in a .dbf file . . . . . . . . . . . . . . . . . . . 16
8 Example of MultiPatch parts [11, p21] . . . . . . . . . . . . . . . 17
9 Map produced with DLG data . . . . . . . . . . . . . . . . . . . 18
10 Geometry class hierarchy [6] . . . . . . . . . . . . . . . . . . . . . 19
11 k-zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
12 Cryptographic scheme of the 2PLoc protocol [22] . . . . . . . . . 27
13 Service query and dummies generation [30] . . . . . . . . . . . . 28
14 Obfuscation methods [27] . . . . . . . . . . . . . . . . . . . . . . 29
15 Double transformation example . . . . . . . . . . . . . . . . . . . 29
16 Hprobe geographical context . . . . . . . . . . . . . . . . . . . . 31
17 PROBE sensitivity function [31] . . . . . . . . . . . . . . . . . . 32
18 PROBE: generated obfuscated regions [31] . . . . . . . . . . . . . 32
19 Breaching location privacy using velocity information [41] . . . . 34
20 Different cloaking techniques [41] . . . . . . . . . . . . . . . . . . 35
21 Map-aware position sharing model [43] . . . . . . . . . . . . . . . 37
22 Open-space algorithm [43] . . . . . . . . . . . . . . . . . . . . . . 38
23 Map-aware algorithm [43] . . . . . . . . . . . . . . . . . . . . . . 38
24 Global UML diagram . . . . . . . . . . . . . . . . . . . . . . . . . 43
25 Adjusting CR size . . . . . . . . . . . . . . . . . . . . . . . . . . 49
26 Probabilistic map representation: flow diagram . . . . . . . . . . 50
27 PMR: selection menu . . . . . . . . . . . . . . . . . . . . . . . . . 51
28 PMR: scaling probabilities . . . . . . . . . . . . . . . . . . . . . . 52
29 Probabilistic map representation: relative values . . . . . . . . . 53
30 Probabilistic map representation: predefined values . . . . . . . . 55
31 Probabilistic map representation: open space . . . . . . . . . . . 56
32 Probabilistic map representation: traffic knowledge and objects . 58
33 Program: intersections found (city) . . . . . . . . . . . . . . . . . 62
34 Program: intersection found (forest) . . . . . . . . . . . . . . . . 63
35 Different granularity levels . . . . . . . . . . . . . . . . . . . . . . 64
36 CPU usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
37 Memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4



List of Tables

2.1 Supported types of different formats . . . . . . . . . . . . . . . . 22
2.2 Comparison of different formats . . . . . . . . . . . . . . . . . . . 23
6.1 Hardware used for testing . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Comparative table of precision error according to size and zoom

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Comparative table of different transforming geometries methods 61
6.4 Comparative table of different coordinate reference systems . . . 61
6.5 Associate point to polygon techniques . . . . . . . . . . . . . . . 64
6.6 Running time, no PMR . . . . . . . . . . . . . . . . . . . . . . . 65
6.7 Running time, surface PMR . . . . . . . . . . . . . . . . . . . . . 65
6.8 Running time, predefined PMR . . . . . . . . . . . . . . . . . . . 65
6.9 Running time, objects PMR . . . . . . . . . . . . . . . . . . . . . 66
6.10 Running time, cells PMR . . . . . . . . . . . . . . . . . . . . . . 66
6.11 Comparative of different mobile OS . . . . . . . . . . . . . . . . . 68

5



List of Equations

3.1 PROBE approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Landscape aware location privacy . . . . . . . . . . . . . . . . . . . . . 36
4.1 Intersection surface, disjoint set . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Intersection surface, non-disjoint set . . . . . . . . . . . . . . . . . . . 42
5.1 Probabilistic map representation: relative values . . . . . . . . . . . . 52
5.2 Probabilistic map representation: opensapce values . . . . . . . . . . . 56
5.3 Probabilistic map representation: objects . . . . . . . . . . . . . . . . 57

6



1 Introduction

1.1 Motivation

A huge number of new applications that use location features are being devel-
oped constantly, and they are now widely spread and available on the market.
This software permits to the user, among other, realize queries about where is
the closest restaurants that better fit her needs, or knowing if her friends are
somewhere close to her actual position.

Figure 1: Willing to reveal position according to the service [26]

Unfortunately, this new services come associated to a privacy problem refer-
ring to the location of the user. Letting anyone know where you are in every
moment leads to the lost of privacy at all, and even drives a malicious users to
be able to make a physical attack. Also, users are nowadays more concerned in
every subject referring their privacy, as Figure 1 and some studies shows [34].

1.2 Objectives

The main topic of this study thesis is to work with the different features of the
objects, and to implement an obfuscation method to assure location privacy.
The next associated task and topics will be covered:

• Overview the GeoTools library.

• Study of different location privacy methods (like the ones shown in Figure
2, and obfuscation techniques

7



• Obtaining the different features of objects, in order to calculate the inter-
section between regions

• Representation of Features in a graphic map, using GeoTools

• Calculate and represent cloaking regions when using obfuscation tech-
niques

• Implement different probabilistic map representation techniques

• Calculate and graphically represent probabilistic location values

Figure 2: Different location privacy techniques [26]

1.3 Scenario

The algorithm and software developed were realized in order to guarantee the
user’s location privacy. To do so, imprecise user’s position is represented as a
circular shape. It’s important to know how secure it is, i.e. which map objects
lay under it (are intersected). Once we know this it would be possible to de-
cide how the privacy radius should be increased, assuring the privacy of the user.

A typical usage scenario could be a mobile client, with some privacy settings
configured, and who’s walking inside a random city. When the user tries to
use a location-based service, the solution we present here will be applied at the

8



user’s side, revealing in a secure way the geolocation of the user, according to
her privacy settings, when possible.

1.4 Structure

This thesis study will be structured as follows:

• Study of different tools and data structures that are at our disposal.

• Analysis of the existing related work, that concerns the goals of our study.

• Formulation and development of a solution to this study thesis topic.

• Analysis and evaluation of the proposed solution.

• Conclusions and possible future work.

9



2 Background

As first point of this work,two of the most common used toolkits(GeoTools and
OpenLayers) will be analyzed, and also some of the most common an extended
formats, in order to determine which one of them suits better to our objectives.

2.1 GeoTools

GeoTools [1] is a Java toolkit oriented to the development of GIS software. It
has different methods to manage geographic information, and also to draw ge-
ometries.
GeoTools offers support for a wide number of formats, including raster formats,
vector formats (shapefile), xml bindings (gml,kml), and database support. The
data structures used in this library are based on Open Geospatial Consortium
specifications shown in figure 3.

Figure 3: OGC specifications [1]

GeoTools core features are the following [1]:

• Definition of interfaces for key spatial concepts and data structures.

• A clean data access API supporting feature access, transaction support
and locking between threads.

• A stateless, low memory renderer, particularly useful in server-side envi-
ronments.

• Powerful schema-assisted parsing technology using XML Schema to bind
to GML content.

• Open plug-in system.

• Extensions that can provide additional capabilities built using the spatial
facilities of the core library.

10



2.2 OpenLayers

OpenLayers is an open source JavaScript library. It provides support for dis-
playing map data in web browsers, in a similar way like Microsoft or Google
do it with Bing Maps or Google Maps respectively. As one of the Open Source
Geospatial Foundation tools, it’s able to communicate with many different pro-
tocols.

Figure 4: Different communication between protocols with OpenLayers [32]

As shown in figure 4, it provides the following features:

• Load data from many different sources. Some of them are:

– Web Map Service

– Web Feature Service

– Google Maps

– OpenStreet Map

– ArcGIS Server

– Yahoo! Maps

11



• Provides support for different data formats:

– GML

– KML

– GeoJSON

– GeoRSS

Many projects, like OpenStreetMap, use it for different task. As we’re not
interested in displaying info into web browsers, a deeper analysis of its charac-
teristics won’t be realized.

2.3 Data formats

With the objective to select the most suitable data format to our purposes,
an study of the different available data formats to represent information about
maps has been done.
It has been analyzed the ability and precision representing geographic limits,
geometric limits and properties, and some other interesting characteristics, like
the ability to extend the format in order to add our own properties.

The study done is explained in the following sections:

2.3.1 GML, KML and OpenStreetMap formats

Geography Markup Language (GML)

GML is an XML grammar defined by the Open Geospatial Consortium
in the year 2000 in order to express geographical features [7]. It’s an open,
vendor-independent standard , used as a modelling language for geographic sys-
tem, as well as an open interchange format for geographic transactions. As it’s
XML-based, its format is human readable, which gives an advantage when an-
alyzing and understanding it.
It offers different primitives, which include features, geometry, coordinate sys-
tems and topologies among others.

For GML, Feature and geometric objects are different. A feature is a physical
object, and it can be defined(but it doesn’t have to) by one or more geometric
objects. The most important ones are Point, LineString and Polygon, but more
complicated ones, like Curves can be defined.

A Point is defined by a tuple of an x and y coordinate. A LineString is defined
by two or more points, with linear interpolation between them. A Polygon is
defined by an inner and outer rings. A Ring can be defined as a LineString,
where the beginning and the ending of it is the same. Outer rings express the
outer part of the polygon, inner rings refer to the inside part of it.

12



Figure 5: GML hierarchy (UML diagram) [7]

In order to refer just to the object whose data the user is interested in (like
hotels and restaurants for a tourist software, for example), application schemas
can be defined, based on the domain of interest.
As ISO standard (ISO 19136:2007), it’s widely used nowadays. Developers and
researchers (OpenGis, Galdos Inc., Ionic Software, Cubex...), Governmental
agencies(US census bureau, Ordnance Survey UK, National Resources Canada)
and geographic software developers (Esri, MapInfo, Oracle, NTT Data) base
their work on GML.

GML strength resides in its XML-based format. As XML, the data integrity
can be easily checked, easy read and edited(just a text editor is needed), and as
XML is very extended, is easy to work with (many APIs and classes available)
and to integrate with non-spatial data.

Once the GML data is obtained, a transformation between the data and some
vectorial graphic format (like SVG), is needed. Many software offer this func-
tionality, like GMLDataStore combined with GeoTools, for example.
Some examples of very extended software or related formats based on GML are:

13



Web Features Service (WFS)

The Open Geospatial Consortium provides an interface standard (WFS) [8],
that allows requests for geographical features. GML passes data back and forth
between the WFS and the client. Static and dynamic interfaces are available
for this purpose.

Google Maps: GeoXml

As Google Maps is very used and extended, many extensions have been de-
veloped in order to work with GML spatial data. One of them is GeoXml [9],
which provides client-side parsing of GML, including GML from WFS servers,
and some other options to work with.

GeoRSS

In order to encode location as part of a web feed, GeoRSS was raised as
emerging standard. Location consist of geographical points, lines, and polygons
of interest and related feature descriptions.

CityGML

CityGML [10] has been developed as an information model for the repre-
sentation of sets of 3D urban objects. Actually, an OGC candidate specification
has been released for public comments (August 2011).

Keyhole Markup Language (KML)

KML is also an XML notation for expressing geographical annotations and
visualizations both in two and three-dimensional maps. The Open Geospatial
Consortium adopted it as a standard in 2004.
Originally, it was developed for using with Google Earth by Keyhole Inc, which
was acquired by the Google company. Today, this language is used for the vi-
sualization of geographic information tailored by Google Earth, although some
open source Earth programs, like Marble, are starting to use it. It can be used
to carry GML content.

It uses a tag-based structure with nested elements and attributes. Many free
tools and documentation are available online, including KML references and
tutorials on Google Code. The KML files can be compressed using a zip utility,
giving us the KMZ files

As not all the structures contained in GML can be transformed to KML, and
in this work we are not interested in developing an Earth browser, KML won’t

14



be studied in detail.

OpenStreetMap (OSM)

As studied in the previous Studienarbeit [12, p15], the OpenStreetMap-
format (OSM from now on) is a collaborative project [13] to create free and
editable maps.

OSM doesn’t imply just a data format, but different ones and databases. They
can be consulted through the OSM API, which offers a REST interface, which
can be used to obtain the data we’re interested in, or the different tiles, speci-
fying the longitude, latitude, and the zoom level after a previous conversion.

Some possible geometric objects in OSM could be Nodes, Ways, ClosedWays,
Relations, and Tags. There’s an analogy between Node and Point in GML,
Way and LineString and also between ClosedWay and Polygon. Relations are
aggregations of different objects, and tags can be used to store meta-data.

Figure 6: OpenStreetMap used in the free software ’Marble’

15



2.3.2 Shapefile format

The ESRI Shapefile format, SHP, is a proprietary data format [11] for geo-
graphic information systems. Nowadays, there’s plenty of geographical infor-
mation available in this format. Due to the fact that it’s well documented, it’s
a de facto standard. It’s used to describe geometries, like points and polygons.
Each item may also have attributes.

A shapefile is a set of several files. These are:

• .shp: the geometry itself.

• .shx: a positional index of the feature geometry, to allow seeking.

• .dbf : columnar attributes for each shape.

Figure 7: Attribute examples in a .dbf file

Also, some optional files can be defined, in order to specify the coordinate
system, character encoding, or metadata in XML format.

SHP data is generated by the U.S. Census Bureau, therefore, free maps of US
can be obtained. Unfortunately, it’s not so widely extended in the rest of the
world, but also maps from any other place can be obtained (previous payment)
from some entities like geofabrik.de.

There are different shape types that can be used. Some of the most important
ones are:

• Point: defines a point, using an X and Y coordinate.

• MultiPoint: represents a set of points.

• PolyLine: an ordered set of vertexes that consist of one or more parts.
A part is a connected sequence of two or more points, but they don’t have
to be connected one another.

• Polygon: one or more rings. A ring is a connected sequence of four or
more points that form a closed, non-self-intersecting loop. Inner and outer
ring can be defined with this shape.

• MultiPatch: consist of a number of surfaces patches. Each surface patch
describes a surface, which can be rings, triangle stripes, or triangle fans.

16



Measures can be added, obtaining the PointM and MultiPointM types
among others.

Figure 8: Example of MultiPatch parts [11, p21]

Shapefile has some limitations. The edges of a PolyLine or a Polygon are
defined using points. Therefore, the spacing between them determines the scale
for which the data are useful. If smooth shapes want to be achieved, additional
points would be required. Also, this format lacks the capacity to store topolog-
ical information or any feature topology.
The data type field with is also highly correlated with the geometric boundaries
of features. Maximum length of floats and doubles is 13 digits, but usually the
free available maps make use only of 6 or 7 digits.
Circular arc curves are not supported on shapefiles This doesn’t make the shp
format the best suitable when we are interested in geometric limits.

It is used in many software, such as gvSIG, Kosmo, Shape Viewer, uDig or
GRASS GIS.

2.3.3 Other formats

Historically speaking, the hardware development supposed a big impulse to the
software development of generic cartographic applications. Therefore, from the
early 60s, many data formats have been developed since then, and they served
as proof of concept and inspiration of the data formats used nowadays.
Many countries and state agencies wanted to be on the shape edge of the geospa-
tial revolution, investing resources on developing new data formats.

Some of the most famous(but almost no used any more) are:

17



Spatial Archive and Interchange Format (SAIF)

The SAIF format [2] has been considered one of the precursors of the GML
standard. Nowadays, it only has an historic interest. It was defined in the 90s
as a self-describing extensible format to support the storage of geospatial data.
Formed by two major classes, the Class Syntax Notation (a data definition lan-
guage), and the Object Syntax Notion (used to represent the object data), it
became a Canadian National Standard in 1993. It was taken into account on
the initial version of the Open Geospatial Interoperability Specification, what
became later the Open Geospatial Consortium (OGC).

Canadian Council on Geomatics Interchange Format (CCOGIF)

The Canadian Council on Geomatics Interchange defined the CCOGIF for-
mat [3], a very general medium in which to represent a data model. It’s focused
on a very low level, therefore, a more sophisticated mapping file is required in
order to make full use of the data.

Digital line graph (DLG)

A digital line graph [5] is a cartographic map feature (digital vector) dis-
tributed by the US Geological Survey. They are distributed in three scales:
large, intermediate, and small, containing different categories of features de-
pending on the scale. These can be: Public land survey system, boundaries,
transportation, hydrography, hypsography, non-vegetative features, survey con-
trol and makers, man-made feature end vegetative surface cover. Usually, they
come in SDTS format.

Figure 9: Susquehanna River watershed sub-basins produced with DLG data
[35]

18



On the next following pages, more up-to-date formats will be analyzed.

Simple feature access (SFA)

It’s an OpenGIS and ISO standard (ISO 19125), that specifies a common
storage model of geographical data using text or binary. The geometries are
also associated with a spatial reference system, attributes, methods and asser-
tions.

Figure 10: Geometry class hierarchy [6]

Part of the most important geometries that can be defined are:

• Point: defines a point, using an X and Y coordinate.

• Curve: sequence of points, with the subtype of Curve specifying the form
of the interpolation between them.

• LineString: A curve with linear interpolation between points

19



• Surface: Single patch that is associated with one exterior boundary and
0 or more interior boundaries.

• Polygon: Planar surface.

Also, other objects are available (MultiSurface, MultiPoint).

The representation of the objects can be done using well-known-text (a text-
markup-language notation), or using a binary format. The text representation
of geometry are defined using the BNF notation. The binary representation
permits geometric objects to be exchanged between an SQL client and an SQL-
implementation in binary format.

GeoTools offers support for Simple Feature. The GML simple feature standard
is close to this data format.

GPS track database

In the last years, the amount of devices that can connect to a GPS station,
have increased and spread all over the world. Due to this, GPS information can
be reused to make queries about geographic information.
Using an XML schema, for example, GPS information can be described. The
GPX open format [14] allows as to define waypoints, tracks, and routes. Tags
storing location, time and so on can be defined, making this format really use-
ful to interchange data between GPS devices and different software applications.

A geodatabase is a spatial database designed to store, query and manipulate
geographic information of low dimensionality. Basically, it’s a type of a spatial
database, with optimizations for 2 and 3 dimensions, and Euclidean distance.
It can handle point, line, or polygon data types. The reference system can be
specified.
Different geospatial data types can be specified, not just points. For exam-
ple, using SQL syntax, a polygon can be added to a table using the following
command:

INSERT INTO D i s t r i c t s ( DistrictName , Di s t r i c tGeo )
VALUES ( ’ Stadtmitte ’ , geometry : : STGeomFromText
( ’POLYGON ((0 0 , 150 0 , 150 150 , 0 150 , 0 0 ) ) ’ , 0 ) ) ;

Although many geodatabases can be queried using SQL, the spatial data only
be accessed using specialized software. But, as a spatial database, it gives us all
the advantages of a relational database management system. Many commercial
and open source DBS offer support to store geospatial data, like PostgreSQL,
MySQL, and Oracle.

The main difference between this format and the other ones seen before is its

20



capability to store feature topology.
It should be noticed that the user will query for points, and geometries. There-
fore, the higher the number of registers and points our database has, the better
the geographic limits and the results we will have.

GeoJSON

It’s an open format for encoding geographic data structures. Its name is
related to the fact that it’s based on JSON. The advantage between JSON and
XML is that the JSON format is more compact. The data types supported by
GeoJSON [15] are:

• Positions

• Point

• MultiPoint

• LineString

• MultiLineString

• Polygon

• MultyPoligon

• Features

• Geometry Collections

Also, the geographic coordinate system can be specified.

It’s an extended format. Some well-known services, like OpenLayer, or the
geolocation capability from Twitter, are served using GeoJSON.

Apart from the data formats seen before, there are also other file formats de-
signed to work with geospatial data. Despite most of them are not open-source,
and they belong to a governmental organization, some of the most common are
the following ones.

National Transfer Format (NTF)

It was designed in 1988 by the British Standard Institution. It is now the
standard transfer format for the Ordnance Survey digital data.

21



Systematic Organization of Spatial Information (SOSI)

Samordnet Oppleg for Stedfestet Informatsjon (SOSI), known in English as
Systematic Organization of Spatial Information includes standardized defini-
tions for geometry and topology, data quality, coordinate systems, attributes
and metadata. Developed by the Norwegian Mapping and Cadastre Authority,
is used for exchange of geographical information in Norway.

2.4 Analysis

As we’re going to work with the GeoTools toolkit, the data formats we’re
going to use should be compatible with it. The SimpleFeautres GML and the
Shapefile format offer a well-documented interface and a large number of com-
patible classes.
Another factor that should be considered is the available data sources, docu-
mentation, and if it’s widely spread and used in real software and hardware.
Both GML, Shapefile, and OSM are well documented and widely used. Also,
KML is used by the Google Earth software. There are many shapefiles available
to work with. The documentation and use of a GPS track database basically
depends on de database management system we’re working with.

Some of the most important files will be analyzed. The rest of them have been
discarded, due to the fact that they’re a proprietary format, or just because
they don’t suit our needs.

The object types that a format offers will determine the way we work with it.
Most of them can include metadata information. The different objects offered,
broadly speaking, are as follows:

Object SimpleFeatures SHP OSM GPS track DB

Basic Point
LineString
Polygon

Point Poly-
Line Poly-
gon

Nodes Ways
ClosedWay

Point Line
Polygon

Complex Yes Yes - -
Metadata Properties Attribute Tags -

Table 2.1: Supported types of different formats

22



To summarize all this, a comparative table with the different available for-
mats has been developed:

````````````Property
Filetype

GML KML OSM SHP
GPS track

DB

GeoTools compatible X X X X X
3D 7 X 71 X2 X
Geographic limits X X X 73 X4

Feature topology 7 7 7 7 X
Graphic details medium medium high high low

Data format XML XML XML/binary binary binary(queries)

Metadata X X X5 tickYes 76

Availability high medium high low7 high8

Table 2.2: Comparison of different formats

Every format summarized in this table are consistent with the GeoTools
toolkit we are using. Therefore, they should be considered as objects of study.
Furthermore, as already mentioned, all of them are open-source formats which
make them possible candidates for the study thesis we are conducting.

On the first place, we can notice that several of them have support for 3D
representation. Only GML and OSM do not support it (although there are
available extensions to do so). Since we are only interested in representing 2-
dimensional maps, in order to study and normalize probabilities, a priori it’s
not factor that is relevant to this work, although it might be interesting in a
future.

Some other factors are very relevant to our study. The first one is the geo-
graphical limit. Our program will work with the location of different users. The
more accurate and reliability we are able to obtain from our data structure, the
better and more accurate the results and calculations that the software offers
will be. It is necessary to be able to determine exactly if a user is inside the
building, in the limits of it, or just in the vicinity.

1OSM-3D [37] can be used for this purpose. This project is being developed by the uni-
versity of Heidelberg.[38]

2Using software and format extensions, like 3D Analyst [36]
3Fails when scaling, as explained in section 2.3.2
4Amount of points depending, see section 2.3.3)
5Tags can be used for this. (section 2.3.1)
6DB could be extended, depending on the DBMS. See section 2.3.3
7Maps can be acquired from geofabrik.de
8Maps can be converted from OSM data. Many open source software, like RouteConverter

[39] is available to do so

23



In addition, we will work with different scales, therefore, the data and service
quality should not be decrease when reducing the scale and increasing the zoom
level. We’re more interested in geographic limits of the object rather Than its
geometric information, in order to work with probabilities (i.e., knowing if a
point is inside a building or not).
The geographic information that our data structure is able to offer is not a rel-
evant factor in our case, but it also should be taken into account.
Also the ability to introduce and work with metadata in the different formats
we are studying.

Another important factor, and necessary to be considered, is the availability
and the up-to-date data we have. We are interested in our program to work
with updated maps and data, easy to get and download, either because their
availability in the format we’re using, either by their free or low price. In this
aspect, OSM format is the one who better suit our needs, because many maps
are accessible and downloadable for free, and are being permanently updated
by its users.

The data format itself (binary, text...) doesn’t suppose any problem, since
our toolkit is capable of handling a wide range of them. However, it is true that
the more alternatives it offers, the more methods to process the data we will
have.

Therefore, we are interested in maximizing the accuracy of geographic bound-
aries, and the availability of the data, as main factors, and in these two should
reside the strength of the data format we have chosen.
Once these requirements have been fulfilled, other characteristics such as geo-
graphic information, or the format it uses, can be taken into account.

With all these we can conclude that the format that best suits our needs is
OSM, as it can be checked reviewing the realized analysis summarized in the
present table.
However, the previous study thesis source code we have, works with the shape-
file format. Due to the fact that these format also suit to our needs, and such
a change in the implementation is not strictly necessary, and will derive in an
extra investment of effort and time, we will keep using this data format.
It would be interesting to support also the OpenStreetMap format. When de-
veloping for shapefiles, and using the GeoTools toolkit, is easy to convert OSM
to SHP, and make use of them.

With the purpose of possible future developments and improvements, the fea-
sibility of adapting the structure of our program to the Openstreetmap data
format will be analyzed later on.

24



2.5 Basics of location privacy

As it has already been mentioned, the upcoming development making use of
the geographical position of the user, and also the development of new, diverse,
and useful services, has brought with it some new problems, relating location
privacy issues among others.
Location privacy can be defined as the ability to prevent other parties from
learning one’s current or past location [17]. Therefore, any system that obtains
or works with location data is susceptible to have some location privacy flaws.

Many different methods have been developed in order to assure location
privacy. Basically, they can be classified in 4 different main categories:

• Regulatory strategies: governmental agencies stablish with diverse
laws how and under what conditions the location data can be used. Due to
the fact that this measures are out of the developer control, and it would
be possible to any coder(either by a misuse of the software, either because
regulatory strategies are different in his own country) to not comply with
the regulatory requirements, they won’t be analyzed in detail in this paper.

• Privacy polices: a set of rules are legislated which define how informa-
tion is to be stored and used. Also, it can be established when can the
data be revealed. As the location-based service (LBS) is not obliged to
obey those rules, it’s not applicable in our actual scenario where we’re
working at.

• Anonymization methods: The idea behind is to hide the relation-
ship between the user’s identity and its location. Some strategies, like
k-anonymization, fall under this profile, and would be studied in the fol-
lowing lines.

• Focus on the location data itself: Degrade the quality of the location
information. Doing this, the user doesn’t inform of a concrete position, but
informs of a region. The obfuscation techniques will fall into this category.

Anonymization smethods:

One of the most used anonymization strategies is k-anonymity [29]. This
technique is based in restricting location updates only when the user is inside a
sensitive area. The position would only be send if inside that zone, are at least
k−1 with the same characteristics. Of course, if it’s not a very dense zone, or a
widely used service, the region would be bigger, resulting in a bigger vagueness
of the location and a degradation of the service.

25



Sadly, nowadays LBS are not spread enough, so it’s very likely that we would
have to work with broad regions.

Figure 11: Map subdivision for
k-areas of k=3 [46]

Most published k-anonymity approaches
use a trusted third party as an anonymizer
where the implementation could be based
on a centralized [3] or distributed archi-
tecture. One of the important challenges
in k-anonymity is to find k-1 other users
to keep the anonymity. To calculate the
different k-zones, a sensitive map has to
be available,with at least k-sensitive ar-
eas.

Despite of the fact that different alterna-
tives solutions based on this idea has been
purposed (working in non-trusted systems
[18], or even making use of collaborative
k-anonymization [19], either using a third-
party or peer-to-peer approaches), none of
them can be applied in our defined scenario,
for the reasons already told.

Also, there are some inherited additional problems, like the computational
cost of this solution, or the need to take into account the semantic in order
to avoid the location of an user inside a k-zone. Some other problems with k-
anonymity approaches are the reduction of accuracy and the need for a trusted
third party.
Cryptographic approaches:

In protecting the data, we can make use of cryptographic and ciphering tools
[20] [21]. This protocols provide us some classic services, like authentication,
secrecy, and nor-repudiation. One of the most common methods implies the use
of session tickets, as the 2PLoc [22] solution does.

Also, private information retrieval techniques (PIR), can be used. This guar-
anties that the location server will answer our queries without knowing what
kind of information are we asking for.
Unfortunately, all this increase not only the computational traffic, but also the
data traffic, producing bottle necks in the location service. As we are going to
use our software in mobile devices and smart phones, we want to keep those to
factors as low as possible, so this kind of solutions won’t be considered.

Focusing on the data itself:

26



Figure 12: Cryptographic scheme of the 2PLoc protocol [22]

The dummies generation strategies are based in creating some dummy loca-
tions, and then send them beside the real location to the server provider. There
are many different and a huge variety of techniques, between the simple ones,
who only generate random dummy tracks, from more complex ones.

As it’s not an heuristic function, some unrealistic movements can be gen-
erated. For example, the dummy user might appear in the middle of a lake,
or crossing a highway while walking. Just by simple observation, the service
provider or a malicious user can distinguish the real user from the dummy.
Also, we have to take into account that it’s very likely that a real user realize
frequently one or more itineraries with the same start and ending point (like
going home to work, for example). Data mining of the different locations could
lead to an eavesdrop of information, and to the revelation of the real geolocation.

Therefore, dummy generation algorithms that assure location privacy are a bit
more complex, implying the use of some more elaborated techniques, like geo-
caching to avoid a possible data-mining [24], or the application of some Gaussian
noise distribution function [21], due to the fact that even the x-y-z positions ob-
tained by a GPS device are not 100% accurate, and have some implicit noise.

As in the previous cases, all this increase the time cost and network traffic,
making this solution a bad approach to suit our needs.

The location privacy technique that will be developed in this work will be
obfuscation. This kind of solution tries to protect the location of the user avoid-
ing to reveal the real position.
With that objective, instead of sending an exact position p to the location server,
a region P ′ is sent, where p ⊂ P ′. The new region can be continuous, or discrete.
To simplify the problem, we will assume a continuous region.

27



Figure 13: Service query and dummies generation [30]

Working with regions the quality of the information is degraded, reducing the
accuracy and the quality of the service (QoS). Again, we found the classic trade-
off between privacy and usability.

There are different alternatives [27] to deal with obfuscation:

a) Obfuscation by enlarging the radius:
Obfuscation by increasing the location of the measurement area is the most
widely spread solution.

b) Obfuscation by shifting the centre:
Shifting the centre is another viable possibility. The new region can be de-
rived by calculating the distance between the two centres. It provides the
same privacy as the enlarging technique.

c) Obfuscation by reducing the radius:
It consists in reducing the radius of the location area. The privacy is pro-
duced by a correspondent reduction of the probability to find the real user
location within the returned area.

Combinations between this techniques are possible. Although, there’s no
point in fusing more than 2 transformation. As we know, it’s mathematically
possible to transform any circumference in another one realizing at most two
transformations. The combination between enlarging and reducing has no sense,
but the Shift-Enlarge S − E or Shift-Reduce S − R double transformation are
applied, and will be used.

28



Figure 14: Obfuscation methods [27]

Figure 15: S-E and S-R transformation examples [27]

To measure the effectiveness of the different methods that try to assure loca-
tion privacy (either unlinking the relationship between the user and her position,
either hiding the real location), how to measure it should be defined. With that
objective, different methods have been purposed. Among the most common
ones, the relevance term [27] has to be defined. Relevance take into account the
precision of the measure data, and the user preferences. It’s not the same in
terms of location privacy a user who does not want to reveal her position inside
a radius of 20 meters, than other one whose radius is 10 kilometres.

29



Many of the concepts that have been explained here will be discussed and ap-
plied during this work.

30



3 Related work

3.1 Protecting location privacy against spatial inferences:
the PROBE approach

Some concrete methods and approaches have been purposed in order to solve
the location privacy problem.
One of this approaches, already mentioned in the previous work, is the PROBE
approach.

Figure 16: Different geographical context [31]

PROBE tries to pro-
tect the user’s privacy
but also taking into ac-
count the geographical
context. For example, in
the figure shown at the
left of this paragraph,
H represents Hospital, L
stands for Lake, and R
for Residential District,
as seen in (a). Let’s as-
sume a user of the LBS

to whom the Hospital is a sensitive location. Also, obfuscation will be assumed,
increasing the region where the user can be. What would a malicious user be
able to infer? We have different possibilities:

- (b) The obfuscated region is located inside the hospital: the attacker can
easily deduce that the user is inside a sensitive area.

- (c) The obfuscated region is between the lake and the hospital: as it’s impos-
sible for the user to be inside the lake (as assumption), again, the location
inside a sensitive area can be easily deduced.

- (d) The obfuscated region is between the hospital and the residential district:
since the hospital is the only sensitive place, the attacker could say that the
location is sensitive to some extent.

This leak is due to the fact that obfuscation techniques can’t protect the user
against the linking between semantic location and geometric information. In
order to do this, the PROBE approach defines the sensitive metric, to calculate
“how sensitive a region is”. With that objective, the probability density function
pdf is used.

The formula

P (r) =

∫
r

pdf (3.1)

denote the probability that a user known to be in Ω is actually located in
region r. If P (r) = 0, we say that the region is unreachable.

31



Therefore, the sensitivity of r with respect to the feature type Hospital can
be defined as follows. Note that the sensitivity to any unreachable region is set
to 0.

Figure 17: PROBE sensitivity function [31]

Once we have defined the sensitive metric, the obfuscation algorithm can be
applied. It will use Hilbert curves to generate the obfuscated regions. Different
algorithms are available [31].

These algorithms are applied to a single cell, and not to the whole sensitive
feature. In this method, the original sensitive method is fragmented, using the
locality propriety of Hilbert curves, and each fragment is expanded separately.
Doing this, we can generate obfuscated locations that are smaller than the re-
gions obtained obfuscating the entire region.

Applying this algorithm we obtain the desired obfuscated regions:

Figure 18: PROBE: generated obfuscated regions [31]

All locations on the map are represented as features. Each feature can has
its sensitivity level, and therefore, it would be easy to apply these techniques.

3.2 Privacy preserving through a memorizing algorithm

One of the new attack methods to infer location information of a user is data-
minning. It’s very likely that an user realizes daily the same itinerary (going
from home to work, from work to school to pick up the kids, and so on). Let’s
assume that obfuscation using dummies is being used. The dummies generated

32



in every track will be different. Therefore, if an attacker is storing every location
we send to the server, including the dummy ones, after some or many observa-
tions, it would be possible to infer the user location tracking, and distinguish it
from the dummies.

To solve this,Quynh Chi Truong, Anh Tuan Truong, and Tran Khanh Dang
[23] propose the following solution. The obfuscation algorithm has to memorize
the rectangles, using a database. Therefore, at different times, the middleware
will check the database in order to find it, and will save it if it hasn’t been
found. When the user wants to use the location service, she will send the real
location to the middleware. The middleware will check if it’s the first time. If
yes, it will create the rectangle according to the privacy settings. Otherwise, it
will get the rectangle from the database.

The pseoducode to do that is:

if (first time) {

get random rectangle covering the user ’s

position based on the privacy level;

save this rectangle and the privacy

level;

return this rectangle;

}

else {

if (less level ){

perform dividing function and get a

proper rectangle;

save this rectangle;

return this rectangle;

}

else if (greater level){

get the greatest saved rectangle;

add some cells to this rectangle to

satisfy the privacy level;

save the added rectangle and the

privacy level;

return the added rectangle;

}

else { //equal level

return the saved rectangle;

}

}

}

We have to take into account that if an attacker knows the maximum speed
of the user, and when does the user move out of a rectangle, the size of the
area that contains the user can be limited. To avoid this, the authors propose
a “time delay factor”, that means, the creation of the new rectangle would be
delayed in time, to make the inference of any location information more difficult.

In order to guarantee privacy when using data-mining, these paper could lead to

33



the use of a GPS database in order to implement the presented method. Because
some of the techniques presented in this work make use of traffic knowledge, it
would be possible to implement this solution, and therefore, it should be taken
into account.

3.3 Preventing velocity-based linkage attacks

Cloaking regions (CR) are often used to provide location privacy. In fact, in
this work, a CR will be purposed in order to solve privacy issues. As we know,
at timestamp t1, the user will send the region CR1 instead of the real position.
At timestamp t2, the new region CR2 will be send to the location server. The
difference between ti and ti+1 doesn’t need to be the same for every i. If an
attacker knows the maximum speed of the user (either because she’s walking,
riding a bike, or going by car), he could calculate the reachable region from any
point in CR1, and violate the location privacy.

Figure 19: Breaching location privacy using velocity information [41]

The solution from [41] purposes a new algorithm to solve this linkage attacks.

Let’s consider A to the CRA and B to the CRB . The metrics used to measure
distances are the followings:

• Hausdorff distance: It’s the largest distance between any point in A to
some point in B.

• Point-pairwise distance: It’s the maximum distance between any point
in A to any point in B.

This metrics will be used for the explained methods.

The different methods an attacker could use to violate user’s privacy depend on
the knowledge of the attacker of the features in the map the user is in:

• The attacker doesn’t have any map knowledge: the privacy objective is to
prevent the disclosure of exact positions.

34



• The attacker has map knowledge: in this case, the attacker can access to
the map features, this means, sensitivity of buildings can be used in the
attack. We must ensure that the user can be located outside sensitive
areas at both timestamps.

In this paper we’re focused on map-awareness, and how it is achieved. Not
just the attacking techniques, but also the disclosure conditions depend on this
knowledge.

There are two different cloaking techniques that can provide the required con-
ditions:

• Temporal cloaking: Temporal cloaking is suitable when the partition
of the map into CRs is fixed in advance. Note that, since no computa-
tion is performed CR on-line, temporal cloaking is particularly suitable
to be performed directly on the mobile device. As an additional benefit,
performing cloaking on the device itself can make use of supplementary
information about the user’s trajectory. When the conditions mentioned
above do not satisfy, instead of disclose the CR, this operation is delayed
until the next request. There are different methods in how to implement
this delay, like deferral and post date, but an heuristic between these two
methods is the best approach to do so.

• Spatial cloaking: When the user’s mobile device has sufficient resources,
or when cloaking is performed by a trusted service, CRs can be dynam-
ically computed at the time of the request. The advantage of such an
on-line approach is that the CR can be tailored for the user’s privacy
profile, and consequently the QoS can be improved. A CR construction
algorithm can take into consideration the boundary, and find a CR that
is safe to disclose.

Figure 20: Different cloaking techniques [41]

35



In addition, the quality of the service shouldn’t be reduced.

This work is interesting to our study thesis topic, due to the fact that shows
the linkage attacks that an attacker could make when having knowledge of the
features of the map, which is our case.

3.4 Landscape-aware location-privacy protection

The authors of [44] purpose a generic formalization to represent the associated
problem when representing the different probabilities that can be covered by a
cloaking region.
To do so, the following scenario is suggested: first of all, there will be an user A,
who wanders within some landscape. This system also has a trusted agent, who
is the one in charge of releasing the obfuscated location information to the third
party. The trusted agent won’t receive incorrect or wrong information, thus, he
can receive non-precise locations, as result of executing obfuscation techniques
and algorithms. Finally, there should be a third part agent, who will try to
de-obfuscate the location information he receives.

In most real situations, landscape information can help the third party to
perform inference over the data obfuscated, violating user’s location privacy
requirements. Hence, the conditions within the location of the user can be un-
veiled without affecting the configuration of the privacy levels without affecting
location privacy profiles of the users, can be formalized and defined.

As it has already been mentioned, the user will send to the trusted agent the
location information in a non-precise way. To do so, he can use techniques re-
lated with cloaking regions, using circles of radius r, or squares with size length
2R, depending on the coordinate system and metrics.
If no associated information is available(this means, the localization distribution
function has the same probability for every location). obfuscation methods are
easier to apply.

The application is provided with a pSLA/A probability by the user, which is
the corresponding one to the maximum likelihood level within he wants to be
located.

Therefore, the general statement of the problem is defined by

Pr(A & C | r) =

∫
s

dt Pr(A at t | B)×
∫

Ω(t,r)

dz Pr(C at z | A at t) ≤ pSLA/A

(3.2)

where Pr(A & C | r) is the probability that the position of A is C within a
distance r, S refers to the coordinate reference system, Ω(t, r) is a region around

36



point t of radius r, t is the position of A, and z the position where C expects to
find A.
In this paper the authors present different methods and conditions to reveal (or
not) the imprecise location information, depending on the landscape scenario,
and if it’s neutral or not. Among this work this will be taken into account: if
the landscape is non-neutral, the probability distribution of the user location
results from the combination of the obfuscated information, and the information
coming from the map.

Different probabilistic map representation techniques will be presented and stud-
ied in following sections.

3.5 Map-aware Position Sharing for Location Privacy in
Non-trusted Systems

Dürr et al. [43] purpose an alternative method to guarantee location privacy.
Location service provider (LS) might not be fully trusted by the users. Even
if the servers are not malicious and misuse the data, they are susceptible to be
attacked, which would compromise user’s privacy. Therefore, instead of sending
the precise position to the LS, this information is split in the so called position
shares of limited precision. Using a share fusion algorithm, these shares can be
combined to obtain a precise location. Doing this, different precision levels can
be defined for individual applications.

Usually, the user might want to trade-off his privacy in terms of the preci-
sion of positions provided to location based applications (LBA) and the quality
of service provided by the LBA. With this method, this could be easily done.

The presented scenario consist in a mobile object MO, location servers, and
location based applications (LBAi).

Figure 21: Map-aware position sharing model [43]

Giving a position p, the share generation algorithm produces a set of shares
of minimum precision Φmin: generate(p, n,Φmin) = S

37



This set S = (s0, s1, ..., sn) consists in a master position s0 and a set of refine-
ment shares.
Therefore, given a refinement sk, a more precise position can be obtained using
a share fusion algorithm: fuse(so, sk) = pk
Each refinement share increase the precision by a well defined value ∆Φ. Fusing
all the set reconstructs the precise position of the user.
Supposing map-awareness, and sporadically triggered share generation, this pa-
pers purposes three different algorithms which fulfils the presented properties:

• Basic approach: open space
Positions are defined as circles with a determined radius (precision). Each

Figure 22: Open-space algorithm [43]

refinement share defines a shift vector that shifts the center of the previous
obfuscation circle. At the same time, the radius is decreased.
In this approach, shares can be added in any order since the shift operation
is a commutative operation. The maximal length of shift vectors has to
be limited. As result, any refined circle is completely contained in the
previous circle.

• Extended approach: map-aware
Previous approaches suppose no knowledge of the map where the user

Figure 23: Map-aware algorithm [43]

is in. When map-awareness is achieved, and attacker could increase his

38



radius of knowledge ignoring the areas where the user can’t be (i.e, rivers,
lakes, sea...) which will produce a privacy leak.
However, the solution to this is very simple: by increasing the size of the
area of the location region(S = Sarea−Sunlikely), the algorithm presents
the same properties already mentioned.

Using different security metrics, the quality of service of these algorithms
has been evaluated, showing that the presented algorithms are a good and valid
approach to protect location privacy.

This thesis will focus on this paper. In fact, many of the functions and al-
gorithms that will be implemented and explained in this work could be used to
implement the different methods presented here. Intersections between surface,
and calculate intersected areas is needed as part of the map-aware algorithm.
This study thesis will focus on that part of the algorithm.

39



4 Problem formulation

In the previous sections, we’ve studied the different formats available for rep-
resenting data in geographic information systems. We considered also different
methods and algorithms used to assure location privacy.
In the present work, as it has already been mentioned, we will be working with
data in the shapefile format.This will lead to an easy integration with the pre-
vious work [12].
We will have as input the user location. In a future, this information will be
obtained from a GPS sensor, but in this solution the position is obtained when
the user clicks on any point of the map. Therefore, there’s no need to take into
account possible error measures due to the sensor, despite some studies [40] do
so.

We want to provide location privacy using the obfuscation strategy. Instead
of disclosing the real and exact position of the user, a circular region where
the user is will be revealed. The method used for obfuscation will enlarge the
privacy radius.
As the PROBE approach has shown on section 3.1, we have to calculate which
features are inside the obfuscation area, in order to determine its characteristics,
associated probabilities, and to guarantee the location privacy, increasing the
radius when necessary.

Privacy radius will be defined by the user’s application.With the objective to
realize test, and to calculate areas, this software will use a small radius, related
with the zoom level that is being used. The size of this cloaking region has to
be adjusted to guarantee the location privacy of the user.

Therefore, and taking into account all the data and factors above mentioned,
the software we have developed will calculate the features who are inside the
privacy region, either because they’re partially or completely inside it. When
possible, the surface of the features inside the privacy region will be calculated.

The algorithm used to calculate the intersections is simple, and will be described
in detail in the implementation section (5.2.2). As first step, a bounding box
will be generated, containing the features that are likely to intersect(because
they’re close to the user position). After that, and using GeoTools API, we will
check if they really intersect or not, calculating the intersected geometry when
they do. Once we have that geometries, a coordinate reference system change
has to be done, in order to calculate the intersected surface.

40



The goal of this study thesis is summarized in the following input and out-
comes:

• As input to our system, we will have the probability of a user to be in
a certain location. This data can be given as a probability distribution
function. We should be able to represent in our map these probabilities,
and show them graphically. To do so, we are using shapefiles. The loca-
tion position of the user will be obtained when any point of the map is
clicked. Also, we can have some traffic database knowledge, that will be
used to calculate probabilistic map representations.

• As outcome, a restricted map region has to be defined, to determine if
the position is likely to be disclosed or not, and therefore, if the location
is secure (in privacy terms). The intersection between the privacy region
and the features will be calculated. Also will be a probabilistic map rep-
resentation approach.

Additionally, we will be able to assign feature (or feature type) probabilities, and
to normalize the distribution probability within this region. And adjustment of
an obfuscation circle size depending on normalized probability distribution of
the neighbouring area should be possible.

Therefore, there are two main aspects in this work:

• Map-awareness: Features need to be extracted from the map files. The
shapefile chosen format can represent buildings and objects as features.
Doing this, every single feature can be associated with a privacy sensitiv-
ity level, permitting any algorithm to consider it in many different ways
when calculating a safe cloaking region. Therefore, it would be possible
to have access to map features, and to define a threshold or sensitivity
level associated with every type of feature. This would allow to the user
configure a privacy profile, defining which features and at which threshold
level should be disclosed or not, depending on the location of the user.

• Calculating intersections: One of the main task is to obtain the inter-
sected surface between the cloaking region and the selected feature.

Detecting and calculating these intersection is a complex process. In a
generic way, it can be expressed with the following expression:
Let MP = {MP1,MP2, ...,MPn} the set of n multipolygons close to the
cloaking region.
As we know, every multipolygon MP is formed by a set of polygons. Let
MPi = {P i

1, P
i
2, ..., P

i
m} the set of m polygons which form part of MPi,

and let’s call CR to the cloaking region.

41



The set MP is disjoint if MPi ∩MPj = ∅ ∀i, j
/
i 6= j

Assuming a disjoint set of multipolygons, we can define the intersection
surface I.S as

I.S. ≡ CR
⋂

MP =

n∑
i=1

CR
⋂

MPi (4.1)

where

CR
⋂
MPi =

∑m
j=1 CR

⋂
P i
j

represents the intersection between the CR and a specific multipolygon.
Generalizing this expression for non disjoint features, we obtain the ex-
pression

I.S. ≡ CR
⋂

MP =

n∑
i=1

CR
⋂

MPi −∆S (4.2)

where ∆S =
∑i=n−1j=n

i=1;j=i+1 MPi

⋂
MPj

⋂
CR

Therefore, the intersection between a circle (our cloaking region) and an-
other geometric figure, should be analyzed. In some particular sceneries,
these can be easily expressed.

Two main sub cases can be defined: intersections when the polygon is
convex, and intersection when the polygon is concave. This second type,
however, can be expressed as a set of convex polygons, and work with the
formulas of the first case.

There are different algorithms and theorems to calculate the mentioned
intersections (Polygon clipping [42], Two Ears theorem), but they do not
form part of this study thesis, and therefore, won’t be analyzed in detail.
Fortunately, the GeoTools toolkit we’re working with provides a powerful
source of functions to calculate surfaces and intersections.
Due to the nature of this algorithms, and the conversions needed between
different representation systems, small numerical errors will be introduced.
If S is the intersected surface, and S′ the calculated intersected surface,
this error can be defined as:

∆ε =| S − S′ |

42



5 Implementation

The previous version of the software presented in [12] has to be extended in
order to calculate the intersection between features and the cloaking region. To
do so, the M apViewerFrame class has to be extended. Also, an auxiliary class
C onstants has been defined.

5.1 UML diagrams

Figure 24: Global UML diagram

Global diagram The presented classes have been extended or defined to
implement this part of the algorithm.

43



• MapViewerFrame: It has been extended in order to implement the
intersections between features. It’s explained in detail in the following
sections.

• Constants: In order to make the code more easy to read and versatile.
It’s explained in detail in the following sections.

• MyZoomInAction, MyZoomOutAction, MyPanAction: extended
classes of the ZoomAction and PanAction swing class, needed to paint the
cloaking region.

• MyCirlce: extended class of swing JPanel, used to draw and represent
the cloaking region.

Constants class

Now, we will focus on the constant class showed at the bottom left of fig-
ure 24. It’s used to define some constants used in the program. The most
interesting ones are:

• Strings: output messages to the user.

• Boolean pixels: if true, the size of the cloaking region is defined in pixels.

• int circle r pixels: size of the cloaking region radius in pixels.

• int circle r meters: size of the cloaking region radius in meters.

• Boolean debug: if true, a log output file will be generated.

• String logfile: route to the file where the log will be stored.

• PMR PMR method: probabilistic map representation method.

• int PMR predefined prob: when using PMR with predefined values,
if no value is set, this will be used.

• PMR PMR method: probabilistic map representation method.

• int cell dim: when using PMR cell method, it defines the NxN size of
the window.

• int cell w: when using PMR cell method, it defines the width of the
window in meters.

44



MapViewerFrame class

A UML diagram of this class is shown in the upper right part of figure 24. In
order to calculate the interested regions, the selectFeatures method had to be
modified. The pseoducode is the following:

CR = new CloakingRegion ( c l i c k e d P o i n t ) ;
bbox = new BoundingBox )
i n t e r s e c t i o n l i s t=new L i s t ( ) ;
for ( int i =0; i<bbox . s i z e ; i ++;){

Polygon p=bbox [ i ] ;
i f p . i n t e r s e c t s (CR)

i n t e r s e c t i o n l i s t . add (p ) ;
}
c a l c u l a t e I n t e r s e c t i o n S u r f a c e (CR, i n t e r s e c t i o n l i s t ) ;

The main part of the algorithm reside on calculateIntersectionSurface. This
method will call the different private functions in order to obtain the desired
region.

The following auxiliary private methods have been defined:

• String getWKTFromResource(String resName): receives a WKT
file as input, returns the format. It’s not used in the actual implementa-
tion, but might be useful in future versions.

• String decimalFormat2(double d): formats a number to 2 decimal
digits, in order to show it to the user.

• String getRadio(Geometry g) : given a cloaking region, return its
radio.

• Polygon constructPolygon(double height, double x, double y,
GeometryFactory geometryFactory): creates a polygon in a deter-
mined geometryFactory. (x,y) is the upper left corner.

• double calculateScaling(Point screenPos, AffineTransform screen-
ToWorld,GeometryFactory geometryFactory): returns the actual
scaling factor shown in the map. It’s needed to represent the cloaking
region in meters.

• Geometry transformGeometry(Geometry g): transforms a given
geometry to a different coordinate reference system.

• double intersectedSurface(Geometry g1, Geometry g2): calcu-
lates the intersection between two geometries. It makes use of transform-
Geometry().

45



• double calculateIntersectionSurface(SimpleFeatureCollection feat,
Geometry circle): calculates the intersection between a list of geome-
tries, and the cloaking region. It makes use of the intersectedSurface
method.

5.2 Design

5.2.1 Point and its associated polygon

As we already know, the user can select any location of the map to choose
a building (or another feature). If we want to calculate the surface of that
building, we have to know which building (or features) are the ones who contain
that point. A first approach to do so is asking every polygon if it contains the
selected point.

As we’re working with a high number of features, this solution doesn’t seem
to be a good method. Another alternative to do so would be using the Query
Lab that GeoTools offers. This method works great for a spatial database, but
there are better alternatives when we’re working with shapefiles. One of the
most common methods is to use a bounding box. If we treat the screen as a
bounding box, and then we make a request for the content, it would be much
faster, and there’s no need to compare if all of the polygons contain that point,
but just the ones inside the bounding box. More exacts polygon can be defined,
using Filters. In fact, with this method, we can ask directly which polygon
contains the point. As a different approach (but also very common), we can ask
for the distance between the point and the polygons.

As it will be shown later, a comparative study has been done between the
bounding box method, and some different filters. The less time-consuming one
after the test for our case is a bounding box of a 3x3 pixel matrix. The pseudo-
code to do that is the following:

BoundingBox bbox=new BoundingBox ( c l i ckedPo int , 3 , 3 ) ;
L i s t l=new L i s t (map . getPolygons ( bbox ) ) ;
while ( l . hasNext ( ) ){

Polygon p=l . next ( ) ;
i f ( Polygon . conta in s ( c l i c k e d P o i n t ) ){

// Point i n s i d e po lygon
}

}

5.2.2 Coordinate reference system

The coordinate reference system is an important part of this project. In order
to calculate intersections, not only our privacy region, but also features, should
be represented in the same coordinate reference system.
Unfortunately, there might be some lossy problems when converting between
formats. Therefore, it’s important to make this conversions only when needed.

46



Also, computationally speaking, they’re high cost operation, so during the im-
plementation, an effort in order to reduce the number of transformations has
been done.

To do so, we have used the java advanced imaging core library (jai core). By
default, most of the maps in the shapefile format are stored using the world
geodetic system (WG84). While this format is very useful in order to work with
latitude and longitude coordinates, it’s hard to work with it when calculating
surfaces. Therefore, a transformation between coordinates system should be
done. We’re interested in working with a Cartesian system, in order to have
the results in meters. The geomatics committee define many different formats
(EPSG), and some of them suit our needs. We can transform our features either
by indicating the EPSG code, or reading them from a file.
Unfortunately, and due to the format representation of the data itself, there
might be some losses while doing this conversion. After some tests and calcu-
lating intersections between small buildings, the destination format chosen is
DefaultGeocentricCRS.CARTESIAN.

To realize the conversion, we simply apply a Math transformation, suing the
GeoTools reference system:

Geometry targetGeometry = null ;
CoordinateReferenceSystem equalAreaCRS =

DefaultGeocentricCRS .CARTESIAN;
MathTransform transform = CRS. findMathTransform (

DefaultGeographicCRS .WGS84, equalAreaCRS , true ) ;
Geometry targetGeometry = JTS . trans form (

or ig inalGeometry , trans form ) ;

5.2.3 Intersection of geometries

As part of our algorithm, we want to calculate if our privacy region (a circle of
radius r) intersects with any of the features shown in the map. If so, we can
calculate the intersected area.
As it has been already mentioned, the reference system play an important role
here. It’s important to know in which reference system is our privacy region
represented, and in which reference system are our features being represented.
When calculating the area, we can get incorrect results if we don’t take this into
account.

In order to reduce the transformation between coordinate reference systems,
the steps to calculate intersections are the followings:

• Calculate bounding box: A reduced number of features will be inside
the bounding box. Any feature that might intersect with the privacy
region is inside it.

47



• Calculate privacy envelope: When calculating an envelope, it will use
the same coordinate reference system as the maps we’re working with.
Therefore, no additional transformation would be needed.

• Calculate intersected regions: using the envelope, and the bounding
box, we will check it the envelope intersects with any feature of the bound-
ing box. If so, they will be added to an intersection list. The part of the
source code which does this task is:

i f ( c i r c l e . i n t e r s e c t s ( geometry ) ) {
i n t e r s e c t e d f e a t u r e s . add ( ( SimpleFeature ) f ) ; }

• Calculate region surface: Now the intersected list, if not empty, will be
iterated, generating the intersected geometries, and transforming them to
a Cartesian reference system. Doing so reduce the computational cost of
the transformations. The surface of a geometry can be directly obtained
using GeoTools API.

To simplify this process, and make the source code more human-readable, the
following functions have been defined:

• private Geometry transformGeometry(Geometry g): Receives a
geometry, returns the transformed geometry.

• private double intersectedSurface(Geometry g1,Geometry g2):
Receives to geometries (in WG84 format), calculate the intersection, trans-
form the resulting geometry, and calculates its area. It makes use of the
transformGeometry method.

• private double calculateIntersectionSurface(SimpleFeatureCollection
feat, Geometry circle): Receives a list of features and the private re-
gion, returns the surface of the intersection between the circle and the
features. It makes use of the previous functions.

Defining them, everything can be easily calculated just making use of calcu-
lateIntersectionSurface().

48



5.2.4 Defining radius

The length of the radius of the privacy region is defined directly into the source
code. By default, it’s defined by pixels (40 pixels), but it can easily be defined
by meters (100 meters). Defining it by pixel size provide us the ability to change
it’s area depending on the zoom level: the higher the zoom is, the smallest the
region.
We can simply change from one measure to another just selecting the option in
the cloaking region menu.

Figure 25: Adjusting CR size

To draw the circle region, the radius in pixel has to be specified. Therefore,
in order to work with a CR specified in meters, some calculations have to be
done. First of all, according to the scale, the pixels needed to represent a meter
are calculated. According to this value, the radius of the circle(in pixels) is
generated. As the scale might be too big, and pixels have to be specified as
integers, some error ε could happen, but it will be irrelevant for our task.

The function which calculate this value is private double calculateScaling(Point
screenPos, AffineTransform screenToWorld, GeometryFactory geometryFactory).
Then, the radius in pixel of the CR can be directly obtained:

boolean meters mode=Constants . p i x e l s ;
i f ( ! meters mode )

p i x e l s i z e=Constants . c i r c l e s i z e ;
else

p i x e l s i z e = ( int ) c a l c u l a t e S c a l i n g ( screenPos ,
screenToWorld , geometryFactory ) ;

Everything can be easily adjusted by modifying the constants file:

public stat ic boolean p i x e l s ; // d e f a u l t v a l u e : p i x e l s ( t r u e )
public stat ic int c i r c l e r p i x e l s ; // radius , in p i x e l s
public stat ic int c i r c l e r m e t e s ; // radius , in meters

49



5.3 Probabilistic map representation

One of the main tasks of this work is to represent different probabilities of users,
in order to calculate better cloaking regions, and ensure privacy location. We can
distinguish between different cases when doing probabilistic map representation
(PMR), depending on if there’s some traffic knowledge i.e. distribution function
of the locations:

• If we don’t have a traffic database, then objects should be checked:

– If we don’t have objects by itself, object types (buildings, for exam-
ple), will be used. The same probability will be assigned to each of
the object types.

– If we have objects, a predefined probability of them will be used.
How to assign it will be explained later.

• If we have a traffic database, then we should decide how we will be working:

– If we work with cells (opensapce), the map will be divided in a set
of cells. For each cell, the number of traffic points inside it should be
counted. Doing this, we will be able to assign a probability to each
cell.

– If we work with objects, the number of traffic points inside each
object should be counted, in order to assign a different probability
to the different objects.

The next flow diagram summarizes the different cases we have. More accu-
rate approaches use a traffic database. In concrete, when using objects, we’re
using also map knowledge, so it would be the best approach. The more generic
ones don’t use any traffic database. Assigning the same probability to every
object type is the most simple solution, but also the most unrealistic.

Figure 26: Probabilistic map representation: flow diagram

50



Any of the explained methods can be easily chosen from the menu. The size
for the cell method can be defined. Also, these methods can be selected directly
using the Constants file.

Figure 27: PMR: selection menu

5.3.1 Normalization

Once we have calculated the probabilities using one of the previous method
presented, it can be useful for future calculations to normalize them. In order
to do this, an external Statistics lib (com.aliasi.stats.Statistics) will be used.
The usage of it is very intuitive: as input, it receives a vector containing the list
of probabilities, and it produces a vector with the normalized probabilities as
output:

array prob = new double [ n ] ;
array prob N = new double [ n ] ;
a r ray prob = . . .
array prob N = com . a l i a s i . s t a t s .

S t a t i s t i c s . normal ize ( array prob ) ;

5.3.2 Probabilistic graphical representation

Although probabilities and normalized probabilities can be consulted by check-
ing the output or the logfile, it might be useful to have some kind of graphical
representation.
A shading filter can be used for this purpose, using the probability as parameter.

For the methods where this is not possible, like in cell PMR, a colouring
function can be implemented manually.
It’s important to notice that intersections are represented in red.

51



Figure 28: PMR: scaling probabilities

5.3.3 PMR: type dependent

For this representation, we will be working with a concrete object type (build-
ings, for example). Other kind of objects types won’t be taken into account in
the presented formulas.
Continuing with the schema shown on figure 26 ,let’s suppose that we don’t
have any traffic knowledge, and also, that we don’t have any objects defined,
just object types (buildings). As there’s no other value that could lead us to
assign probabilities, we have to take the assumption that every object type rep-
resented has the same probability.
To do so, we will use a window (in this case, 200x200 px), of size Sw, and for
every object type we’re interested, we will get its surface. The probability of
each object can be represented as:

P (obji) = S(obji)/Sw (5.1)

In the following example, we can appreciate the list of calculated probabili-
ties.
The objects types we’re interested(buildings) are shown in grey. Other types

of objects(lakes, parks) are shown in black. As explained before, they can be
coloured using filters.

52



Figure 29: Probabilistic map representation: relative values

5.3.4 PMR: predefined values

Let’s suppose that we don’t have any traffic knowledge, but, this time, we have
objects defined individually. These objects can be associated with some pre-
defined probability values. Following the implementation of the previous study
thesis [12], these properties can be imported from an external xml file.

In order to show how this works with an example, the probabilities of each
object will be defined. In this case, a P (obj|type = university) = 0.8 will be
set. The rest of objects will follow the rule P (obj) = 0.001 :

53



<?xml version=” 1 .0 ”?>
<P r o p e r t i e s>

<D e f i n i t i o n>
<Attr ibute key=”proba” type=”Double” />
<Attr ibute key=” t e s t ” type=” St r ing ” />

</ D e f i n i t i o n>
<s e t >

<F i l t e r>
<PropertyIsBetween>

<PropertyName>osm id</PropertyName>
<LowerBoundary>

<L i t e r a l>0</ L i t e r a l>
</LowerBoundary>
<UpperBoundary>

<L i t e r a l>99999999</ L i t e r a l>
</UpperBoundary>

</ PropertyIsBetween>
</ F i l t e r>
<Attr ib key=”prob” value=” 0.001 ” />

</ s e t>
<s e t >

<F i l t e r>
<PropertyIsEqualTo>
<PropertyName>type</PropertyName>

< l i t e r a l>u n i v e r s i t y</ l i t e r a l>
</ PropertyIsEqualTo>

</ F i l t e r>
<Attr ib key=”prob” value=” 0 .8 ” />
<Attr ib key=” t e s t ” va lue=” uni bu i l d i n g ” />

</ s e t>
</ P r o p e r t i e s>

When trying to access the defined properties, the following java sentence should
be used:

Feature f = . . . ;
Double p=(Double ) f . getProperty ( ”prob” ) . getValue ( ) ;

This instruction gets the value of the property “prob”.

The following image shows the result of defining the associated probabilities
as mentioned. University buildings are coloured in dark grey, and have an as-
sociated probability of P = 0.8. The rest of buildings are coloured in light grey,
and have an associated probability of P = 0.001.
A list with the associated probabilities is shown below. These calculations are
done as part of the getting intersected features process. The objects inside the

54



Figure 30: Probabilistic map representation: predefined values

window will also be represented with their associated probabilities, as shown in
figure 30.

5.3.5 PMR: traffic knowledge, grid representation

Let’s suppose that, this time, we do have traffic knowledge. The first task is to
obtain and interpret this knowledge. To do so, we will make use of the KML
format, already explained in previous sections. It represents the points in xml,
therefore, it’s easy to access to its contents and manage it using a parser.
An example of a valid KML file could be the following:

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<kml xmlns=” h t t p : //www. openg i s . net /kml /2 .2 ”>

<TrackDB>
<name>Simple t rack DB</name>
<d e s c r i p t i o n>

D i s t r i b u t i o n o f po in t s among the map
</ d e s c r i p t i o n>
<Point>

<coo rd ina t e s>9 .577081 , 49 .776003 ,0 </ coo rd ina t e s>
</ Point>
. . .

55



<Point>
<coo rd ina t e s>9 .577320 , 49 .775782 ,0 </ coo rd ina t e s>

</ Point>
<Point>

<coo rd ina t e s>9 .578148 , 49 .775152 ,0 </ coo rd ina t e s>
</ Point>

</TrackDB>
</kml>

Once this file is defined and read, it’s easy to work with a collection of points.
Auxiliary functions have been defined in order to read the KML file, or check if
an object contains a set of points.

Taking the assumption that no object is defined, the next step is to subdi-
vide the window we’re working with into cells. For testing purposes, a 220x220
window will be subdivided in 121 cells of 20x20.

Let’s call Nw to the number of points inside the window, and Ni, j the number
of points inside the cell Ci, j. The probability of an user to be inside a cell will
be defined as

P (Ci, j) =
Ni, j

Nw
(5.2)

In the following image, a matrix containing every Ci, j of the represented
map is shown.

Figure 31: PMR: a) Open space b) Open space with objects

56



Every single cell is coloured in a different way: if its probability is higher, its
colour will be darker. In the software, only cells are represented. Here, we have
overlaid cells and objects (although they’re not used) to show exactly where the
cells are created.

An example matrix representing the number of points is given by:

Celli,j =

0 0 0 3 2 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3 1 0
0 0 0 0 0 0 0 0 1 2 0
0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 2 0 0 0
0 0 0 0 0 0 3 2 1 0 0
0 0 1 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

The matrix containing the associated probabilities can be simply calculated
as Cell

Nw
:

P (Celli,j) =

0 0 0 3
29

2
29 0 0 0 0 0 0

0 0 0 0 1
29 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3
29

1
29 0

0 0 0 0 0 0 0 0 1
29

2
29 0

0 0 0 0 0 2
29 0 0 0 0 0

0 0 0 0 0 1
29 0 0 0 0 0

0 0 0 0 0 0 1
29

2
29 0 0 0

0 0 0 0 0 0 3
29

2
29

1
29 0 0

0 0 1
29 0 0 0 0 0 0 0 0

0 3
29 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

All the probabilistic work presented here is based on realistic approaches.

5.3.6 PMR: traffic knowledge, objects

This time, instead of using cells as basis, we will use the predefined objects.
To implement this method, a window will be defined, and every point inside the
window will be counted. Let’s call this number Nw. Once we have this number,
the number of points that are contained in the objects inside the defined window
will be counted. This number will be nominated as Ni, where i represents the
building.

Not only the number of points inside it, but also the size of the object (Si,
in square meters) is indirectly taken into account, because only the points in-
side the intersection and inside the window are counted.
Working with this windows, the probability of an user to be inside the building
is will be defined as

P (i) =
Ni

Nw
(5.3)

57



In the following image, a table containing every P(i) for the given example
is shown.

Figure 32: Probabilistic map representation: traffic knowledge and objects

Figure 32 also shows the location of different points contained in the track
database. The object which contains more of this points will be, therefore, the
one with the highest probability, and is represented in a darker colour.

58



5.4 Others

• Constants class: a new class (Constants) has been defined. It makes
the code more easy to read, customize, and debug, many changes can be
easily done just editing this class. Among others, Strings, radius value,
and log file are defined here.

• Read WKT (getWKTFromResources): as it has already been men-
tioned, the reference system can be read from a WKT file. In order to
test different formats, a function to do so has been implemented:

S t r ing getWKTFromResource ( S t r ing f i l e )

• Debug: a constant for debugging and a log file are defined now. When
debugging, the trace of the program can be easily be checked just reading
the log file.

59



6 Evaluation

To known how the presented algorithm works, different topics are evaluated on
the following lines.
Also, some implementation aspects can be realized in different ways. In order
to choose the solution which better suits the needs presented on this thesis, an
analysis of different aspects has been realized.

In order to so, the following hardware has been used:

Device CPU RAM Disk
Laptop 1.40 GHz 4096 MB 300 GB

Table 6.1: Hardware used for testing

6.1 Precision measure, transforming geometries, transform-
ing coordinates

Precision measure:

Due to the conversion between pixels and meters, some precision error ε will
be generated, as explained in 5.2.4. In order to evaluate it, different cloaking
regions have been generated, with different scaling levels. The following table
represent the difference between the real size of the cloaking region, and the
calculated size:

````````````Zoom level
Meters

10 100

Low 0.020 2.014
Medium 0.503 24.680
High 65.459 290.124

Table 6.2: Comparative table of precision error according to size and zoom level

As we can see, the higher the zoom is, the higher the error. Also, the error
is correlated with the dimension of the radius. This is due to the fact that the
scaling error is propagated.

Transforming geometries:

The transformation between different coordinate representation system can
be done, either at the beginning, before calculating the intersection geometries,
or at the end, meaning that the intersection is calculated first, and after that,

60



the result is transformed.
A priori, this second option needs less transformation operation, and therefore,
should be faster. We will check it running a simple test between the directed
and the delayed conversion algorithms, calculating the needed time to analyse
a number of features. The processing time is represented in milliseconds:

````````````Features
Method

Direct Delayed

4700 2179 984
2000 480 253
150 169 138
10 1013 11

Table 6.3: Comparative table of different transforming geometries methods

As we said, if the transformation is delayed, much better results are obtained.

Coordinate reference system:

Depending on the Cartesian system used to represent our geometries, we
can get better and more precise results. If we define our own reference system
using an external WKT file, instead of using some of the default formats, we can
define more parameters, and therefore, obtain better results. But, even though,
measure errors will be introduced. As we don’t want to affect the quality of
service, a balance between processing time and measure error should be done.
In order to select the best method, the transformation between coordinate ref-
erence systems using a default reference system, and one read from a file, has
been realized. Time is expressed in milliseconds:

````````````Features
Method

File Default

1500 4055 239
25 123 22
10 72 23
2 1025 8

Table 6.4: Comparative table of different coordinate reference systems

Reading the format from a file highly increase the execution time, and the
accuracy it can provide is more or less the same as any of the default reference
systems. Therefore, WKT files won’t be used.

6.2 Calculating intersected surface

In order to evaluate how efficient and accurate our intersection algorithm is
working, precise coordinates of the different features of buildings are needed.

61



As input, we only have the information stored in the map. Anyway, we can
draw the cloaking region area, and check visually the number of features that
are intersecting with our CR, in order to measure how good the developed
methods work. Three different scenarios are presented:

• Buildings shapefile, no intersection:

No intersection will be displayed or detected.

• Buildings shapefile, 6 intersections:

Figure 33: Program: intersections found (city)

The correct number of intersected features is displayed, and the intersected
surface between the CR and the features is shown. The features which
intersect with the CR are shown in red.

62



• Forest shapefile, intersection:

Figure 34: Program: intersection found (forest)

Again, the intersected features are shown in red. This time, the intersected
surface is much bigger, as it’s correctly displayed on the image.

Due to the data format of the shapefile, small calculating errors can be
introduced. This means, that for small cloaking regions (5 meters radius), the
calculated intersection surface might not be very accurate. Fortunately, we
will rarely work which such cases, and when working with bigger surfaces, the
algorithm behaves as expected, as seen on Figure 34.

6.3 Point and its associated polygon

To evaluate this search method, 10 random points inside a building have been
selected, using different zoom levels. The numbers of comparisons needed to
find the belonging polygon, and the time (in milliseconds) needed, have been
measured, and an arithmetic mean has been calculated.

The methods compared are: check all polygons, 3x3 bounding box, 10x10
bounding box, intersect filter, and the point filter. The results are the following:

As we can see, the smallest the bbox is, the faster the method is. The
bbox method also has a big correlation with the zoom level(the higher the zoom
is, the less polygons inside the bbox are). Using a more exact polygon with
the intersection method will result in a slower check, but less features will be

63



Method None bbox(3x3) bbox(10x10) Intersect Point filter
Polygons 17490 1.2 10.5 1.1 1.1
Time(ms) 850.6 5.9 10.1 600.7 7.6

Table 6.5: Associate point to polygon techniques

retrieved. The point filter doesn’t need a big amount of time to be realized, and
also very few polygons need to be checked. Therefore, a small bounding box,
or the point filter, are the two methods that better suit our implementation.
As in order to calculate intersections, we might need not just the polygon who
contains the clicked point, but also the ones close to them, the bounding box
method is the one we will use.

6.4 Runtime

In order to measure runtime, a bounding box filter has been defined (as explained
in the implementation section). After that, 10 different tests have been executed
for each zoom level (granularity) and probabilistic map representation method.

Figure 35: Different granularity levels: a) very coarse b) coarse c) fine d) very
fine

64



The average of this 10 iteration has been calculated, and it’s represented in
the following tables:

Granularity Objects Time(ms)
very coarse 2662,7 1181,8
coarse 525,4 418,4
fine 34 38,3
ultra fine 2,1 19,8

Table 6.6: Running time, no PMR

Granularity Objects Time(ms)
very coarse 1868,2 9416,7
coarse 880,5 2229,4
fine 30,8 108,4
ultra fine 2,9 27,8

Table 6.7: Running time, surface PMR

As we can see in these tables, as we increase the zoom level, and therefore,
we use a finer granularity, the number of intersections that need to be calculated
is reduced, and therefore, the time needed to compute the different operations
decreases.
When using a probabilistic map representation approach, the time (measured
in milliseconds) is increased: more operations and instructions need to be ac-
complished in order to obtain the desired data.

In the following cases, when using a traffic database, the time used to load
it is not taken into account.

Granularity Objects Time(ms)
very coarse 1406 24706,5
coarse 480,9 1548,3
fine 43,8 168,4
ultra fine 2,8 130,8

Table 6.8: Running time, predefined PMR

When using a predefined probabilistic map representation, the time needed
is higher than the one we need when used surface-based PMR. This is because
every object needs to be read an accessed in order to find the “probability”
property.

65



Granularity Objects Time(ms)
very coarse 2113,1 14970,3
coarse 407,5 473,1
fine 61,4 146,9
ultra fine 2,1 130,3

Table 6.9: Running time, objects PMR

For cells, a 500 meters and 10x10 grid has been defined for every test. It’s
enough to our purposes, because the track database we have defined is not so
big.

Granularity Objects Time(ms)
very coarse 2692 3983,5
coarse 556,4 2360,2
fine 58,5 1778,6
ultra fine 1,9 1728,2

Table 6.10: Running time, cells PMR

Not only in the objects PMR, but also in cells PMR, objects (either the
buildings or the cells from the cell grid) need to be used in order to find the
number of points inside it. The more objects we have (coarse granularity),
the more operations need to be calculated. Therefore, the time will be higher.
When using cells, we also have to define the objects(grid cell), therefore, it will
be slightly slower than the objects PMR method.

6.5 CPU, disk needs, and memory usage

As many of this probabilistic map representation and location based services
will be used in mobile devices, it would be useful to measure the results ob-
tained in a smartphone device.
Unfortunately, up to this date, the geotools toolkit is not fully available for
mobile operative system like android, iOS, or windows mobile, and to adapt
this toolkit for this kind of operative systems lays out of the scope of this work.
GeoTools toolkit is available however to windows and most of the UNIX sys-
tems, and to any device which can run java.

What can be done, however, is to measure some relevant factors like disk, CPU
and memory usage, and to estimate how long will it take to realize the same
operations in a smartphone device, taking into account the hardware resources
available on it.

Let’s assume that the previous test were realized in the following hardware.

66



In order to measure diverse metrics of CPU and memory usage, a tool called
Java Profiler[45] has been used for this purpose. During the different test sets
presented on the previous section, it has been used to calculate the average of
CPU and memory usage of the program. The results obtained are the following:

• CPU usage: 76.6 % (1.07 GHz)

• Memory usage: 44.3 kB

For the disk storage, let’s suppose that our program has a set of 5 maps.
Each map (in shapefile format) has a size of 165 MB. The jar file, with the
geotools lib included, has a size of 50.3 MB. Assuming a track database file of
150 MB, and filters and properties files with less than 1 KB, the storage space
needed would be: 156 ∗ 5 + 150 + 50.3 ≈ 980 MB which is not a problem for
actual devices.

The runtime of our algorithms will be limited then by CPU and memory stor-
age. This will lead to non-usable algorithms when using coarse granularity.
Fortunately, usually we will be working with fine granularity, and runtime will
be also limited by network speed and connection.

Figure 36: CPU usage

67



Figure 37: Memory usage

6.6 Mobile solution

Nowadays, GeoTools API is not available for the different mobile OS. There-
fore, it’s not possible to implement the presented algorithms in smartphones or
mobile devices.

As it has already been mentioned, GeoTools is a toolkit developed in Java.
However, with some slightly modifications, a certain number of libraries could
be used in the Android platform [47]. Through an incompatibilities analysis, it
should be possible to run the program shown in this work in Java compatible
platforms, like JavaME, Blackberry, or Android. Those OS have an available
emulator for PC, so there’s no need to have a real device in order to implement
and test the solution.
Unfortunately, this modifications lay out of the scope of this work.

OS Debugger Language
Android X1 Java2

Blackberry X1 Java
IOS SDK X3 Object Pascal
Palm OS X C, C++
QT SDK X C++
Windows Mobile X C, C++

Table 6.11: Comparative of different mobile OS

68



Another alternative would be to implement this methods using a different
library. Some of them are GeoTools and JTS [48] for Java, or GEOS [49] for C,
all of them open source.

1Integrated with Eclipse
2Portions of code can be in C,C++
3Integrated with Xcode

69



7 Conclusions

At this work a study about different available data formats which can be used
to represent geographic information has been realized. At the same time, the
tools available for this task have been analyzed. More concrete, the GeoTools
toolkit, including a study of the advantages and disadvantages of the represen-
tation data formats mentioned above related with their compatibility with this
suite.

Once all this has been studied in context, different techniques used to pro-
vide location privacy have been shown. Specially, a concrete study of different
obfuscation techniques has been realized.
The use of this techniques is strictly associated with intersections of surface
computation. Therefore, this methods have been implemented as an additional
functionality of the previous study thesis, which also includes computation of
surfaces, and intersections of different features with the cloaking region.

Different methods for probabilistic map representation have been formalized,
implementing them, and representing probabilistic values in a graphic way.

Runtime, number of intersections needed, and some other aspects, have been
evaluated, in order to determine the feasibility of the implementation of this
techniques in mobile devices. As presented in section 6.4 (Evaluation), although
a higher runtime and memory consumption can be expected, it would be fea-
sible to implement this methods for their usage in less powerful hardware (i.e
smartphones and tablets).

In a future version, it should be possible to work not only with shapefile data
format, but also with OSM. Also, a privacy profile could be defined, in order to
extend the presented algorithms, and disclose (or not) the real position of the
user. These methods could also be slightly modified to automatically adapt the
cloaking region radius, or to make use of shifting center obfuscation techniques.
The implementation of a real mobile application will deal to a more accurate
evaluation of these methods.

70



References

[1] OSGeo Geotools, Geotools documentation http://docs.geotools.org/

[2] Canadian Geomatics Interchange Standard, Spatial Archive and Interchange
Format: Formal Definition. Canadian General Standards Board, CGSB
171.1-95-CAN/CGSB, 1995.

[3] Canadian Council on Geomatics Interchange Format, CCOGIF Quick facts
http://docs.safe.com/fme/html/FME_ReadersWriters/FMEReadersWriters_

Left.htm#CSHID=ccogif/ccogif_ascii_quick_facts.htm|StartTopic=ccogif/

ccogif_ascii_quick_facts.htm

[4] American National Standard Institute, Spatial Data Transfer (Draft) ANSI
NCITS 320-1998, http://mcmcweb.er.usgs.gov/sdts/standard.html

[5] USGS, Digital Line Grap Standards: DLG-3 U.S. Department of the Inte-
rior, 1996. http://nationalmap.gov/standards/dlgstds.html

[6] Open Geospatial Consortium, Simple Feature Access: Common architecture
2011. http://www.opengeospatial.org/standards/sfa

[7] GML, Geography Markup Language Encoding standard documentation, ver-
sion 3.2.1, http://www.opengeospatial.org/standards/gml

[8] OpenGIS Web Feature Service Specification Open Geospatial Consortium.
http://www.opengeospatial.org/standards/wfs

[9] Lance Alan Dyas, GeoXML v3 June 2011, http://code.google.com/p/

geoxml/

[10] CityGML Open Geospatial Consortium, 2011. http://www.citygml.org/

[11] ESRI White Paper, ESRI Shapefile technical description. Environmen-
tal System Research Institute, United States, 1998. http://www.esri.com/

library/whitepapers/pdfs/shapefile.pdf

[12] Andreas Paul, Visualisierung von Kartenobjekten mit GeoTools Universität
Stuttgart, July 2011, ftp://ftp.informatik.uni-stuttgart.de/pub/library/
medoc.ustuttgart_fi/STUD-2312/STUD-2312.pdf

[13] OSM, OpenStreetMap documentation http://wiki.openstreetmap.org/

wiki/Main_Page

[14] Topografix, GPX Exchange Format Version 1.1, August 2004, http://www.
topografix.com/GPX/1/1/

[15] Howard Butler, Martin Daly, Allan Doyle, Sean Gillies, Tim Schaub,
Chirstopher Schmidt. GeoJSON Format Specification 2008. http://geojson.
org/geojson-spec.html

71



[16] Fosca Giannotti, Dino Pedreschi. Mobility, Data Mining and Privacy
Springer, Pisa, Italy, 1st Edition, 2008.

[17] Beresford, A.R., Stajano, F. Location privacy in pervasive computing Per-
vasive Computing, IEEE, p46-55, 2003.

[18] Frank Dürr, Pavel Skvortsov, Kurt Rothermel. Position Sharing for Loca-
tion Privacy in Non-trusted Systems PerCom, 2011.

[19] Hassan Takabi, James B. D. Joshi, Hassan A. Karimi. A Collaborative
K -anonymity Approach for Location Privacy in Location-Based Services
CollaborateCom, 2009.

[20] Emmanouil Magkos. Cryptographic Approaches for Privacy Preservation in
Location-Based Services: A Survey 2011.

[21] Yan Huang, Roopa Vishwanathan. Privacy Preserving Group Nearest
Neighbour Queries in Location-based Services using Cryptographic Tech-
niques IEEE GlobeCom, 2010.

[22] Amir Salar Amoli, Mehdi Kharrazi, Rasool Jalili. 2PLoc: Preserving Pri-
vacy in Location-Based Services Iran, IEEE, 2010.

[23] Quynh Chi Truong, Anh Tuan Truong, Tran Khanh Dang. Privacy Preserv-
ing through A Memorizing Algorithm in Location-Based Services MoMM,
2009.

[24] F. Diggelen. Gnss accuracy: Lies, damn lies, and statistics. GPS World,
2007.

[25] Man Lung Yiu, Christian S. Jensen, Jesper Moller. Design and Analysis of
a Ranking Approach to Private Location-Based Services May 2011.

[26] A.J. Bernheim Brush, John Krumm, James Scott. Exploring End User
Preferences for Location Obfuscation,Location-Based Services, and the Value
of Location SIGCH Conference, Microsoft, 2011.

[27] C.A. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati,
P. Samarati. Location Privacy Protection Through Obfuscation-based Tech-
niques 2007.

[28] Andreas Paul. Visualisierung von Kartenobjekten mit GeoTools 2011.

[29] Marco Gruteser,Xuan Liu. Protecting Privacy in Continuous Location-
Tracking Applications IEEE Security, 2004

[30] Akiyoshi Suzuki, Mayu Iwata, Yuki Arase, Takahiro Hara, Xing Xie, Sho-
jiro Nishio. A User Location Anonymization Method for Location Based Ser-
vices in a Real Environment Microsoft Asia, 2010.

72



[31] Maria Luisa Damiani, Elisa Bertino,Claudio Silvestri. Protecting location
privacy against spatial inferences: the PROBE approach 2009.

[32] OpenLayers documentation, http://trac.osgeo.org/openlayers/wiki/Documentation

[33] U.S. Census Bureau, http://www.census.gov/

[34] A. J. Bernheim Brush, John Krumm, James Scott. Exploring End User
Preferences for Location Obfuscation,Location-Based Services, and the Value
of Location Microsoft Research, 2010.

[35] Subsquehanna River Map gallery, http://www.srbc.net/gis/map gallery.html
2007.

[36] 3D Analyst extension suit, http://www.esri.com/software/arcgis/extensions/3danalyst/index.html
ArcGIS.

[37] OpenStreetMap-3D, http://www.osm-3d.org/home.en.htm

[38] Ruprecht-Karls-Universität, Abteilung für Geoinformatik Heidelberg. http:
//www.geog.uni-heidelberg.de/lehrstuehle/gis/

[39] RouteConverter, 2007. ww.routeconverter.de

[40] Pravin Shankar, Vinod Ganapathy,Liviu Iftode Privately Querying
Location-based Services with SybilQuery Rutgers University, 2009.

[41] Gabriel Ghinita, Maria Luisa Damiani,Claudio Silvestri Preventing
Velocity-based Linkage Attacks in Location-Aware Applications SIGSPA-
TIAL International Conference , 2009.Landscape-aware location-privacy
protection in location-based services

[42] Patrick-Gilles Maillot A New, Fast Method For 2D Polygon Clipping: Anal-
ysis and Software Implementation Sun Microsystems, 1992

[43] Pavel Skvortsov, Frank Dürr, Kurt Rothermel Map-aware Position Sharing
for Location Privacy in Non-trustedSystems, Proceedings of the 10th Inter-
national Conference on Pervasive Computing (Pervasive 2012), June 2012,
Newcastle, UK.

[44] Claudio Agostino Ardagna, Marco Cremonini, Gabriele Gianini Landscape-
aware location-privacy protection in location-based services Journal of Sys-
tem Architecture, p243-254, 2009.

[45] EJ technologies, Java Profiler documentation manual 2012. http://

resources.ej-technologies.com/jprofiler/help/doc/

[46] Bugra Gedik Protecting Location Privacy with Personalized k-Anonymity:
Architecture and Algorithms IEEE transactions on mobile computing, vol.
7, January 2008.

73



[47] Atlassian Confluence Open Source Project, GeoTools for Android Novem-
ber 2011. http://docs.codehaus.org/display/GEOTOOLS/Android

[48] Vivid solutions, JTS Topology Suite http://www.vividsolutions.com/jts/

JTSHome.htm

[49] Edgewall software, Geometry Engine Open Source http://trac.osgeo.org/

geos/

74



Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Daniel del Hoyo)

75


