
Institute of Parallel and Distributed Systems
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3291

Evolution of Coordinated
Behavior in a Heterogeneous

Robot Swarm

Katja Deuschl

Course of Study: Computer Science

Examiner: Prof. Dr. rer. nat. habil. Paul Levi

Supervisor: Dipl.-Inf. Florian Schlachter

Commenced: 27.09.2011

Completed: 29.03.2012

CR-Classification: I2.2, I.2.6, I.2.9, I.2.11

Abstract

In cooperative and collective robotic systems, a swarm as a whole can handle sit-
uations and solve problems that single robots cannot, although each of the single
robots of the system is completely autonomous. Single robots can exploit their
physical conjunctions like docking elements for example to join together into ar-
tificial organisms which are capable of dealing with a changing environment and
challenges that are too complex for a single robot.

This thesis is part of the Symbrion and Replicator project funded by the European
Commission and investigates whether robots can be forced to develop cooperative
behavior in a swarm by using an evolutionary approach. For this purpose we con-
sider a task that can only be performed by two or more robots cooperatively, like
a rescue scenario, bilateral docking or coordinated locomotion. Because the fit-
ness function according to this task can be very complex, we first break the whole
task into simpler ones and examine them by the use of related work and modern
approaches as for example CGE, the Common Genetic Encoding or EANT, the Evo-
lutionary Acquisition of Neural Network Topologies. All applied approaches are
biologically motivated and increase the level of realism in neural simulations. Af-
terwards, these approaches will be applied to more complex scenarios. Because
a serial artificial evolution of individual robots on a physical robot might require
quite a long time, the system is first tested using a simulated scenario. Based on
the existing evolutionary framework, the controllers will be evolved and evaluated
online and onboard. This thesis concludes with presentations and sample scenarios
which illustrate the evolved coordinated behavior in solving a variety of different
tasks.

Contents

List of Figures ii

List of Tables iv

1 Introduction 1
1.1 Symbrion Replicator . 1
1.2 Outline . 2

2 Problem Statement 5

3 Nature as a Role Model 7
3.1 Swarm Behavior . 8

3.1.1 Swarm Robotics . 10
3.2 Biological Neural Network . 11

3.2.1 Motivation . 11
3.2.2 Neural Networks . 12
3.2.3 Information Transfer in Neural Networks 14
3.2.4 Types of Neurons . 14

3.3 Artificial Model of Neural Network 15
3.3.1 Artificial Neurons . 15
3.3.2 Artificial Neural Network . 17
3.3.3 Learning in Artificial Neural Networks 17
3.3.4 Mutation of Artificial Neural Networks 20
3.3.5 Reinforcement Learning vs. Other Kinds of Learning 20

4 Evolutionary Approaches 21
4.1 EA - Evolutionary Algorithms . 21
4.2 Related Work . 24

4.2.1 CGE - Common Genetic Encoding 24
4.2.2 GNARL - GeNeralized Acquisition of Recurrent Links 27
4.2.3 NEAT - Neuroevolution of Augmenting Topologies 30
4.2.4 EANT - Evolutionary Acquisition of Neural Network Topolo-

gies . 32

i

Contents

5 Implementation 37
5.1 Applied Software . 37

5.1.1 Simulation Tool . 37
5.1.2 Documentation and Visualization Tool 38

5.2 The Framework . 41
5.2.1 EvoRoF . 41

5.3 Execution in Simulation . 52
5.3.1 Mapping the Scene . 53

6 Experiments 57
6.1 Preliminary Considerations . 57

6.1.1 Choice of Fitness Function . 57
6.1.2 Choice of Selection Function 63
6.1.3 Choice of Team Composition and Level of Selection 65
6.1.4 Online and Onboard Evolution 65
6.1.5 Execution of the Task in Simulation 67

6.2 Experimental Setups . 68
6.2.1 Setup 1 - Simple Neural Network 70
6.2.2 Setup 2 - Network with Hidden Neurons 70
6.2.3 Setup 3 - Trained Network with Hidden Neurons 72
6.2.4 Setup 4 - Simple Network with Structural Mutation 72

7 Results and Evaluation 73
7.1 Result of Simple Neural Network . 73
7.2 Result of Network with Hidden Neurons 77
7.3 Result of Trained Network with Hidden Neurons 81
7.4 Result of Simple Network with Structural Mutation 86

8 Conclusion 91

9 Appendix 93

Bibliography A

ii

List of Figures

3.1 A colony of ants [The]. 7
3.2 An example of the swarm intelligence of ants [Tec]. 9
3.3 Several swarm robots self-assembled to overcome an obstacle in the

arena [Sym]. 10
3.4 Nature versus technology [Sim]. 11
3.5 Exemplary illustration of the human Neural Network [All]. 12
3.6 Schematic representation of nerve cell (neuron) following [Liv11]. . . 13
3.7 Schematic representation of human Purkinje cell following [Rei00]. . 14
3.8 Schematic representation of Artificial Neuron j following [Liv11]. . . 15
3.9 Selection of existing activation functions. 16
3.10 Schematic representation of a two-layer Artificial Neural Network

consisting of two neurons j and k. 17

4.1 Exemplary representation of a fitness landscape. 22
4.2 Basic EA cycle [Nis97]. 24
4.3 Example of a valid phenotype. 27
4.4 Example of initial network created by GNARL algorithm. 29
4.5 According phenotype to tables 4.2 and 4.3 before and after adding a

new node. 32
4.6 Example of special crossover of structure. 35

5.1 Simple example of a graph visualized via Graphviz. 39
5.2 Example of a more complex graph representing a neural network. . . 40
5.3 Overview of the classes the EvoRoF framework consists of. 41
5.4 Inheritance diagram for the class Genes. 41
5.5 Overview of the files the logger can creates. 47
5.6 Inheritance diagram for the Wrapper class. 49
5.7 Image file for the boundaries. 53
5.8 Perspective view of the arena of figure 5.9. 53
5.9 Exemplary initial state of the arena. 54
5.10 Shape of the robots in simulation. 55
5.11 SCOUT Robot (PISA Robot) . 55
5.12 Range and fiducial sensors of the robot. 56
5.13 Range and fiducial sensors of the robot in perspective view. 56

iii

List of Figures

6.1 The arena containing two reference points surrounded by a light bar-
rier. 63

6.2 Perspective view of the arena. 64
6.3 Representation of the fiducial sensors. 67
6.4 Illustration of the uncertainty in the measured fiducial pose in Stage. 68
6.5 Example of initial fully connected graph with random weights. . . . 71
6.6 Initial graph with zero weights. 71

7.1 Results of experiment 1. 74
7.2 Run that contains the individuals with the highest fitness value of

experiment 1. 74
7.3 Graph of the individual with the highest fitness of the island on the

red robot. 75
7.4 Graph of the individual with the highest fitness of the island on the

blue robot. 75
7.5 Results of experiment 2. 78
7.6 Run that contains the individuals with the highest fitness value of

experiment 2. 78
7.7 Graph of the individual with the highest fitness of the island on the

red robot. 79
7.8 Graph of the individual with the highest fitness of the island on the

blue robot. 79
7.9 Results of experiment 3. 81
7.10 Run that contains the individuals with the highest fitness value of

experiment 3. 82
7.11 Graph of the individual with the highest fitness on the red robot for

experiment 3. 83
7.12 Graph of the individual with the highest fitness on the blue robot for

experiment 3. 83
7.13 Results of experiment 4. 86
7.14 Run that contains the individuals with the highest fitness value of

experiment 4. 87
7.15 Graph of an individual of the red robot of experiment 4. 88
7.16 Graph of an individual of the blue robot of experiment 4. 88
7.17 Results of experiment 4 . 89

iv

List of Tables

3.1 Equations according to the activation functions of figure 3.9. 16

4.1 Table containing the genotype, that encodes the phenotype in fig-
ure 4.3. 27

4.2 Table containing the genotype before adding a new node. 31
4.3 Table containing the mutated genotype after adding a new node. . . 31

5.1 Table showing the variables of the WorldModel. 48

6.1 Table showing the mapping of sensor values to input neurons. 69

7.1 First part of the picture sequence illustrating evolved robots of ex-
periment 1. 76

7.2 Second part of the picture sequence illustrating evolved robots of
experiment 1. 77

7.3 Picture sequence illustrating evolved robots of experiment 2. 80
7.4 Picture sequence illustrating evolved robots of experiment 3. 84
7.5 Second picture sequence illustrating evolved robots of experiment 3

with repositioned fiducials. 85
7.6 Picture sequence illustrating evolved robots corresponding to the

graphs of figure 7.15 and 7.16 of experiment 4. 90

v

1 Introduction

In cooperative and collective robotic systems, a swarm as a whole can handle sit-
uations and solve problems that single robots can not, although each of the single
robots of the system is completely autonomous. Single robots can exploit their
physical conjunctions like docking elements for example to join together into ar-
tificial organisms which are capable of dealing with a changing environment and
challenges that are too complex for a single robot. "An important goal of collective
robotics is the design of control systems that allow a group of robots to accomplish
common tasks by coordinating without a centralized control."[BTB+07]

This thesis is part of the Symbrion and Replicator project funded by the Euro-
pean Commission and investigates whether robots can be forced to develop collec-
tive behavior in a swarm by using an evolutionary approach. For this purpose we
consider a task that can only be performed by two or more robots cooperatively,
like a rescue scenario, bilateral docking or coordinated locomotion. Because the fit-
ness function according to this task can be very complex, we first break the whole
task into simpler ones regarding the deliberations of Nolfi and Floreano in [NF00]
and examine them by the use of related work and modern approaches as for ex-
ample CGE, the Common Genetic Encoding [KSE+07] or EANT, the Evolutionary
Acquisition of Neural Network Topologies [KS05b]. All applied approaches are
biologically motivated and increase the level of realism in neural simulations. Af-
terwards, these approaches will be applied to more complex scenarios. Because
a serial artificial evolution of individual robots on a physical robot might require
quite a long time, the system is first tested using a simulated scenario. Based on
the existing evolutionary framework, the controllers will be evolved and evaluated
online and onboard. This thesis concludes with presentations and sample scenarios
which illustrate the evolved cooperative behavior in solving a variety of different
tasks.

1.1 Symbrion Replicator

This section gives a brief introduction into the two European Commission funded
open source and open science projects Symbrion and Replicator. Both projects
share common research fields and some common problems. The key idea of these
projects originates from a biological observation of symbiotic organisms. A symbio-
sis is a cooperative behavior between members of different species. For instance,

1

1 Introduction

individual elements can couple up and build more complex organisms with dif-
ferent functionalities. In such a union individual elements specialize or share re-
sources such as energy. Further more, these organisms can disaggregate and exist
further as stand-alone elements. "The main focus of the Symbrion and the Repli-
cator project is to investigate and develop novel principles of adaptation and evo-
lution for symbiotic multi-robot organisms based on bio-inspired approaches and
modern computing paradigms. Such robot organisms consist of super-large-scale
swarms of robots, which can dock with each other and symbiotically share energy
and computational resources within a single artificial-life-form."[Sym]

Symbrion [Sym]

The expression "Symbrion" stands for "Symbiotic Evolutionary Robot Organisms".
The Symbrion project is focused on investigation and development of novel princi-
ples of adaptation and is exploring artificial evolution in robotic population based
on bio-inspired paradigms. The robotic population consists of super-large-scale
swarms of robots building an organism. Like in a biological organism the members
can interconnect with each other by means of docking elements or symbiotically
share energy and computational resources.

Replicator [Rep]

"Replicator" is the acronym for "Robotic Evolutionary Self-Programming and Self-
Assembling Organisms". This project is closely related with the Symbrion project
and focuses on the problem of reconfigurability of actuators and sensors, learning
strategies for symbiotic robot systems as well as adaptive control structures. Thus,
an advanced robotic system, consisting of a swarm of small autonomous mobile
micro-robots are capable of self-assembling into large artificial organisms which is
based on modular sub-systems that can be autonomously reconfigured.

1.2 Outline

This thesis is divided into 9 chapters which are outlined in this section.

Chapter 1 - Introduction The introduction chapter covers briefly the Symbrion and
the Replicator project which this thesis is part of.

Chapter 2 - Problem Statement This chapter describes the problem statement cov-
ered in this diploma thesis.

Chapter 3 - Nature as a Role Model Chapter 3 describes how nature can be used
as a role model for modern approaches by examining the functionality of the

2

1.2 Outline

human brain and the swarm behavior of ants. At the end of this chapter a
possible mapping from biological patterns to artificial methods is presented.

Chapter 4 - Evolutionary Approaches The fourth chapter gives an overview of evo-
lutionary approaches such as evolutionary algorithms. Furthermore, related
work already done in this field of research so far which implements the meth-
ods introduced in the previous chapter is presented.

Chapter 5 - Implementation Chapter 5 is separated into three section. The first sec-
tion covers the applied software such as the specification and description of
the simulation tool Player/Stage as well as tools used for the visualization
and documentation of the code and the results. You can read about the Evo-
RoF framework this thesis is based on in the second section. This is followed
by the presentation of implemented extensions and developed approaches.
Chapter 5 concludes with information about how the task is executed in sim-
ulation.

Chapter 6 - Experiments During the research for this thesis challenges arose that
have to be met such as the choice of the fitness function or the mapping from
real robots into the simulation. These and more preliminary considerations
are pointed out in chapter 6 which ends with a detailed description of four
experimental setups and their execution steps.

Chapter 7 - Results and Evaluation Firstly, the simulation results are being repre-
sented. Also, a discussion of the results and evaluations in simulation is re-
vealed in chapter 7.

Chapter 9 - Conclusion The last chapter concludes with an outlook on possible fu-
ture research topics and on further development.

3

2 Problem Statement

In this thesis, the artificial evolution of cooperation between two or more robots is
in the main focus. Using evolutionary processes, the robots should learn to coop-
erate and fulfill a common task together, like bilateral docking, rescue scenario or
coordinated locomotion. Based on an existing evolutionary framework, the con-
trollers should be evolved and evaluated online and onboard. Finally, experiments
and demonstrators should show the evolved cooperation in different tasks.

To achieve those goals we are breaking down the problem statement into the
following steps:

Improve and Extend Evolutionary Framework

As a first step we need to extend the existing evolutionary framework, created and
developed by Schlachter et al. in [SADL12], to support the evaluation of swarm
based robotics. Those extensions are based on the existing techniques described in
the related work in chapter 4.2.

Validate Extended Framework

Once those extensions are implemented, this extended framework was validated
using a few less complex tasks such as the collision avoidance as test scenarios.

Cooperative Behavior

The final step is to show cooperative behavior of two or more robots using this
extended framework. The preliminary step here is to navigate cooperatively to a
specific reference point. Here the reference point is marked by surrounding light
barriers which can only be passed together. Together in this context means, that
the robots can only have a certain distance to each other. In the extended version of
this scenario - motivated by the foraging of ants - the robots should navigate back
and forth between more than one reference points.

5

3 Nature as a Role Model

"That which is not good for the swarm, neither is it good for the bee."
(Marcus Aurelius Meditations, book VI. 167 AD)

Even in early history, man gained inspiration from nature. A growing number of
disciplines in the area of computer science take nature as a role model, when coping
with challenges in an ever more complex world. Nature amazes scientists over and
over when it comes to the highly complex behavior of animals in huge groups or
swarms. For example swarms of birds can help calculating the optimization of air
resistance in the field of aerodynamics. Another common example are ants, helping
to solve the Traveling Salesman Problem (TSP)1 [JM97].

Figure 3.1: A colony of ants [The].

Therefore scientists are using the rules every single member of a swarm simply
follows. To illustrate this fact, let’s consider birds searching for a place to rest.
Let’s further assume that every bird is following one animal, which receives the
highest air resistance. If one individual slightly alters its trajectory - because of
detecting a resting place - all the other birds in the swarm will change their direction
accordingly. Therefore, the swarm of birds reaches the two goals: they found a
place to rest and they experienced as little as possible air resistance and hereby
saved energy.

Ants are also a perfect example to illustrate how in the evolution of insects ants
manage to survive even in great confusion or chaos by adapting to their environ-
ment. The ants’ high level of self-organization ensures, that the complete colony

1TSP focuses on the problem of finding the shortest path between a set of cities, without visiting one
of the cities twice.

7

3 Nature as a Role Model

continues to function in a stable way even if several participants of the colony (fig-
ure 3.1) have been removed.

In this context, self-organization means there exist no central point or leading
member, which will be used to control the entire group. [Scia] Or in keeping with
Bonabeau et al.:

Self-organization "[...] is a set of dynamical mechanisms whereby structures ap-
pear at the global level of a system from interactions of its lower-level com-
ponents." [BDT99]

During forage, ants leave their marks in form of pheromones along the search
paths. Succeeding members of the swarm are using those marks on the ground for
orientation. If there is more than one possible path between the anthill and the food
source the highest pheromone concentration will indicate the shortest path. Sub-
sequent ants do not automatically follow the attractant, there is just an increased
likelihood for the ants to follow the more highlighted route. However, it is impor-
tant to note, that yet those statistical outliers are very important because without
them, the ant colony would only take one standard route which might not be the
most efficient path. It is the outlier which makes it possible to find a shortest path.
Mathematicians and computer scientists are trying to map these biological func-
tions to mathematical formulas and that way model the problem of the traveling
salesman. [Scia]

This chapter covers the motivation behind the approach to replicate models in
nature and biology. Techniques are discussed how to transfer biologically swarms
to artificially developed swarms of robots. In other words, the attempt to supply
natural behavior to artificial organisms. The last sections concentrate on further
nature models such as the human brain or the nervous system and introduce into
the existing approaches teaching a computer of how to "think".

3.1 Swarm Behavior

Nature thereby offers many samples showing that animals in a group are able
to achieve performance a single animal is not capable of. First and foremost the
swarm solves survival problems of an individual such as foraging, timely detection
of enemies and reproduction. Interesting insights can be drawn from cohabitation
of animals in a swarm. Scientists study how members in a swarm-like organism
collect, share and process data to mutually reach their most important objective to
pass on as much live as possible to the next generation. [Scib]

Such a conduct is referred to as swarm intelligence.

Swarm intelligence: "The emergent collective intelligence of groups of simple agents."
(Bonabeau et al, 1999)

8

3.1 Swarm Behavior

As an example for the swarm intelligence of ants see figure 3.2. As reported by
Miller in [Nat] a "single ant or bee isn’t smart, but their colonies are. As individuals,
ants might be tiny dummies, but as colonies they respond quickly and effectively
to their environment."

Swarm intelligent organisms are characterized by the following features:

• adaptability

• self-organization

• robustness2

In this context "intelligence" does not mean the ability to conceive facts and co-
herences or the competences to acquire knowledge for problem solving. Rather, the
term "intelligence" is used to reveal the ability to establish a group memory and to
mutually figure out problems within a group where every member contributes to
the solution. Contrary to humans, the cooperation within the group is of essentially
importance to achieve the common purpose.

Figure 3.2: An example of the swarm intelligence of ants [Tec].

So far, swarm intelligence applies in computer science and related technical fields
in terms of swarm robotics. Swarms are of special interest because they comprise of
simple components which are relatively easy to program and to be manufactured

2Here, "robustness" means the fulfillment of a task despite the failure of one or more individuals
within an organism[Nat]

9

3 Nature as a Role Model

but are capable of coping with complex tasks. If one part of the organism fails or
even drops out does not lead to a complete breakdown of the mission or a failure to
perform. The rest continues to fulfill the tasks and replaces the members no longer
functioning.

3.1.1 Swarm Robotics

Swarm robotics is the approach of employing swarm behavior in the field of robotics.
A large group of relatively simple robots are able to move, perceive environmen-
tal information and communicate with other swarm members. They collaborate
and interact with each other for the purpose of jointly solve tasks that a single
robot cannot cope with because of physical constraints or limited behavioral abili-
ties [DCP+11]. Figure 3.3 depicts an exemplary scenario where several robots of a
swarm self-assembled to overcome an obstacle.

Figure 3.3: Several swarm robots self-assembled to overcome an obstacle in the
arena [Sym].

Moreover, swarm robotics emphasizes aspects such as distribution of data, de-
centralization of control, local communication among robots and the emergence of
global behavior. [BTB+07]

"Everything regarding swarm robots is very distributed: They don’t all talk to
each other. They act on local information. And they’re all anonymous. I don’t care
who moves the chair, as long as somebody moves the chair. To go from one robot
to multiple robots, you need all three of those ideas." [Nat]

10

3.2 Biological Neural Network

Figure 3.4: Nature versus technology [Sim].

In evolutionary robotics, the design of the robot controller is driven by bio-inspired
approaches such as Artificial Neural Networks (ANNs). ANNs play an important
role hence their close relationship to natural systems. The next chapter gives a de-
tailed overview of how a neural network works and how it can be mapped onto
Artificial Neural Networks.

3.2 Biological Neural Network

3.2.1 Motivation

In the human brain myriads of various neuronal cells are connected in a network
processing information in parallel.

When trying to replicate the human brain using a computer, there are certain
features which have to be taken into account. Here we have to solve the question
of which characteristics of neural information processing are important and how
they can be implemented by an artificial system.

Regarding the hardware, there is a need of very well networked neurons with a
extreme packing density, slow but highly parallel components without a shared
clocking and a low energy consumption. In addition, several tasks have to be
achieved simultaneously with a very high fault tolerance. The system needs a high
level of adaptivity and thorough design (in nature this design has evolved over the
past 500 million years). Regarding the software, a pattern recognition should be
considered as well as a complex coordination performance, good real-time features
and low precision and computation accuracy for everyday accomplishments. Pro-
gramming is replaced by learning and the system should be able to process vague
data.[DBH01].

According to [Scia] researches are not yet able to totally imitate the human brain,

11

3 Nature as a Role Model

Figure 3.5: Exemplary illustration of the human Neural Network [All].

more precisely, a creatures neurons. Human intelligence with its high form of par-
allelism can still not be recreated by a computer. If one compares computers with
the human brain, the latter processes many data simultaneously while computers
handle information consecutively and sequentially. Indeed, individual nerve cells
can be understood at the lowest level and simple chemical processes can be visual-
ized by modern imaging techniques. However, to comprehend the concepts lying
in-between and to intrinsically clarify networking and activation patterns are still
open challenges.

3.2.2 Neural Networks

Neural networks form the information architecture and the structure of the human
brain and the nervous system. A population of up to 1011 physically interconnected
and electrically excitable nerve cells are combined in such a network. The main
constituents of such a nerve cell, also called neuron ("neuron" is derived from the
Greek νεuρoν meaning "nerve"), are its soma (the cell body), its axon, its synapses
and its dendrites as depicted in figure 3.6. Additionally to the functionalities every
cell provides, a nerve cell is able to transmit and process information via chemical
and electrical signaling. As a receiver element, the neuron collects signals from
other neurons converts those signals into electrical activity and forwards them to
another place where it transfers them as a transmitter element to other neurons.
[Rei00]

Soma The cell body or soma contains the cell nucleus. The dendrites and the axon
arise from the soma.

12

3.2 Biological Neural Network

Figure 3.6: Schematic representation of nerve cell (neuron) following [Liv11].

Axon An axon is a particular cellular extension that arises from the soma and
serves as electrical conduction. Every neuron has exactly one axon. Close to
its target cells an axon splits up into smaller ramifications ending in synapses
with other cells.

Axon hillock The axon hillock is situated between the soma and the cell’s axon
and is responsible for summating all inputs arriving from the dendrites. If
a specific threshold value is exceeded, the axon hillock produces the action
potential that is transmitted via axon to the recipient cell. This transmission
is also called ’firing’ of the neuron.

Dendrite Such as the axon the dendrites arise from the cell body, giving rise to a
complex dendritic tree. Multiple dendrites are attached to the soma but never
more than one axon.

Synapse Synapses are specialized connections to other cells that handle the chemi-
cal signaling and therefore the destination to which the neurons transfer their
information. In other words, the synapse serves as a chemical contact which
receives the axon. In the majority of cases, signals are sent from one neuron’s
axon to a dendrite of another.

13

3 Nature as a Role Model

3.2.3 Information Transfer in Neural Networks

A neuron collects signals via synapses from other neurons, which dock to the neu-
ron, its axon or its dendrites. When a voltage variation occurs in a specific area of
the dendritic tree the dendrites collect the excitations and transfer them to the cell’s
axon hillock. Every input alters the cell’s membrane potential. Almost simulta-
neously incoming stimuli add up and establish a potential at the axon hillock that
decides whether or not the action potential being triggered or not. In the case of
exceeding a particular activation threshold the neuron "fires", that is, the neuron
sends out impulses via the axon to the target cells it is connected to. After firing
the cell requires time to rebuild its membrane potential and to be able to fire again.
This is called repolarization. [Rei00]

3.2.4 Types of Neurons

Between thousand and ten thousand different types of neurons exist in a human
brain thereof about a hundred types in the eye alone. Neuron types are classi-
fied by shape, location, range of ramification (their dendrites), kind of used neu-
rotransmitter and more. As an example figure 3.7 shows a human Purkinje cell
with its dendritic tree. Irrespective of the huge diversity of types, what all neuron

Figure 3.7: Schematic representation of human Purkinje cell following [Rei00].

types have in common is the soma, the synapses and the axon. Generally, a neuron

14

3.3 Artificial Model of Neural Network

is physically interconnected with about thousand to ten thousand other neurons.
[Rei00]

3.3 Artificial Model of Neural Network

One evolutionary approach for the replication of the human brain is the develop-
ment of an Artificial Neural Network (ANN). It interconnects artificial neurons and
transmits information between them as in biological neural networks. It takes an
input vector, processes them inside the network and outputs the corresponding re-
sult. With regard to robotics, sensor values are entered into the network as input
and the output values are transferred to the existing actuators.

3.3.1 Artificial Neurons

As its biological role model an artificial neuron consists of input connections which
collect signals from other neurons, a unit for adding up the incoming stimuli thus
serving as synaptic summation, another unit responsible for the ’firing’ conforming
to a specific activation threshold and finally the output which is at the same time
the activation for other neurons. Figure 3.8 depicts a schematic representation of
an artificial nerve cell. [Liv11]
x1...xn describe the input to the neuron j, yj its output. The weights wji determine

Figure 3.8: Schematic representation of Artificial Neuron j following [Liv11].

15

3 Nature as a Role Model

the grade of influence that the inputs adopt in later computations of the output.
A different sign of a weight effects a different impact. So a positive signed weight
+wji means an exhibitory connection between neuron j and i and a negative signed
weight −wji means an inhibitory connection, respectively. If a weight has zero
value, there is no connection between the corresponding neurons. By means of
weighting the input values, the transfer function calculates the input for the activa-
tion function netj by

netj =
n

∑
i=1

xiwji. (3.1)

Commonly used activation functions include the step function, the linear func-
tion, the sigmoid function as well as the hyperbolic tangent as listed in figure 3.9
and given by table 3.1.

Figure 3.9: Selection of existing activation functions.

Table 3.1: Equations according to the activation functions of figure 3.9.
step function linear function sigmoid function hyperbolic tangent

f (x) =

{
−1 if x < 0,
1 if x = 0

f (x) = x f (x) = 1
1+e−x f (x) = ex−e−x

ex+e−x

A neuron’s output is determined by f j and derives from netj and the threshold
value of Θj by

yj = f j(netj −Θj) (3.2)

By assigning random values to the connection weights and the threshold and ad-
justing these values afterwards via learning algorithm the neuron learns the func-
tion to be represented. [Yao99]

16

3.3 Artificial Model of Neural Network

3.3.2 Artificial Neural Network

Artificial Neural Networks (ANNs) are useful in evolving the control systems of
robots, because they provide a straightforward mapping between the motors and
the sensors of the robot, enabling them to represent directly the function to be
learned.

Figure 3.10: Schematic representation of a two-layer Artificial Neural Network con-
sisting of two neurons j and k.

Figure 3.10 represents the network topology called "feedforward". Neurons are
grouped into different layers as follows: The input layer contains every input neu-
ron, the output layer is composed of the output nodes, respectively. There exists
one more layer that is referred to as the hidden layer. All neurons in a neural net-
work except the inputs and outputs result in being hidden neurons, that arise in
the corresponding hidden layer. In a feedforward network each node of a specific
layer has only directed connections to the nodes of the following layer towards the
output layer. In contrast to another type of network topology called "recurrent net-
work", a feedforward topology must not include any recurrent connection between
two neurons. That is for instance a link combining an output neuron with a neuron
of a hidden layer. More information about network topologies a neural network
can be classified in can be found in [CŁ00].

3.3.3 Learning in Artificial Neural Networks

Learning in ANNs is achieved by adjusting the connection weights iteratively so
that a trained ANN can perform a specific task. In most cases, synaptic strengths
are initially set to small random values. By repeatedly presenting pairs of input and
the corresponding output patterns to the network, learning takes place. After the
presentation of each pattern or after the presentation of the entire training set, the
modification of weight ∆wji is calculated. The first modality is referred to as "online
learning", while the second procedure is designated "offline learning". Updating
the old weights wt−1

ji is made by adding the newly computed change of weight

17

3 Nature as a Role Model

∆wt
ji by means of equation 3.3.

wt
ji = wt−1

ji + ∆wt
ji (3.3)

t is a certain time step, η corresponds to the learning rate and prevents wide
oscillations of the weights between consecutive modification steps.

Therefore, learning algorithms focus on the determination of the modification
term ∆wt

ji as you can see below. [NF00]
In accordance with [Yao99] there exist three common types of learning as follows.

Supervised Learning

Supervised learning is learning from examples provided by an external supervisor.
The training set consists of input patterns x with its corresponding correct answer
o so that after the output an precise error vector E can be presented to the network.

Reinforcement Learning

Reinforcement learning comprises of input patterns as well, but receives only a
rating as answer instead of the correct solution. After passing a run a value is
passed back to the network whether the result was right or wrong and how right
or wrong. Hence, there is less information to deliver than in supervised learning.

Unsupervised Learning

In unsupervised learning the training set only consists of the input patterns. The
network itself attempts to find similarities or categories. The learning objective is
implicitly included in the learning rule, thus unsupervised learning requires the
least amount of information.

After the training has taken place an ANN is able to find plausible solutions to
similar problems of the same class without having explicitly trained them. Thus,
an ANN implements the desired adaption derived from biological sources like

• learning ability,

• fault tolerance, and

• generalization ability.

Essential for learning is the learning rule. Frequently used examples of learning
rules are the Delta Rule or the Hebbian Rule. The psychologist D. Hebb hypothe-
sizes in 1949 that "the laws of classical conditioning reflected the functioning of the

18

3.3 Artificial Model of Neural Network

nervous system" [NF00]. Classical or respondent conditioning is a form of behav-
ioral learning. It is based on the combination between response and the inbound
stimulus. From this it follows that the Hebb Rule reveals that when linked neurons
are stimulated at the same time, their connecting weight is strengthened. Both, the
Delta Rule as well as the Hebbian Rule, are weight updating rules which determine
how connection weights are adapted.

A generalization of the Delta Rule is Backpropagation. Backpropagation is a
supervised learning method and means as much as the propagation of errors back
into the net. The Backpropagation algorithm transcribes the following steps [Tok]:

Step 1: the input x is fed into the network, is forward propagated through the
network to calculate the output y

Step 2: by means of the expected set values o the error E is computed as follows:

• in the case where neuron j is an output node:

Ej = f ′(xj)(oj − yj) (3.4)

• in the case where neuron j is a hidden node (where m is in the range of
every neuron downstream of j):

Ej = f ′(xj)∑
m
(Em − wmj) (3.5)

Step 3: compute the modification of weights with learning rate η by

∆wji = ηEjyj (3.6)

Step 4: repeat steps 1 to 3 until E is less than a specified value ε

Consider the activation function f (x) to be sigmoid, that leads to equation 3.7.

f ′(x) = f (x)(1− f (x)) (3.7)

Thus, the calculation of E for an output neuron j can be simplified by equation 3.8
and for a hidden neuron through equation 3.9, respectively.

Ej = (1− yj)(oj − yj) (3.8)

Ej = yj(1− yj)∑
m
(Em − wmj) (3.9)

19

3 Nature as a Role Model

3.3.4 Mutation of Artificial Neural Networks

Mutation of a neural network is performed by either of the three methods:

Parametric mutation By parametric mutation the weights of the network are per-
turbed usually randomly.

Structural mutation Mutation of the structure refers to the topology of the net-
work, so to the nodes and interconnections. By structural mutation links may
be added or deleted or the genome is extended by new neurons.

Crossover Crossover consults two different genomes and merges them into a new
one. The so called special crossover remains the common parts of two networks
and extends the resulting genome by the particular disparate parts. A more
detailed description follows in chapter 4.2.4.

3.3.5 Reinforcement Learning vs. Other Kinds of Learning

Considering a goal-oriented agent in interaction with its changing environment re-
inforcement learning is learning how to map situations to actions so as to maximize
its reward. In doing so it explicitly considers the whole problem instead of focus-
ing on subproblems what can lead to considerable limitations. As in other kinds of
learning the agent is told which actions to carry out, however, in this case the agent
must observe which actions result in the most reward by trying them. Another dif-
ference is the trade-off between exploration and exploitation. Simultaneously, the
agent has to exploit what it has already learned so far so as to gain reward and to
explore a diversity of actions and incrementally favor those that appear to be best
so as to perform better selections in future. Obviously, the actions an agent tries
may include failures as well. [SB98]

Note that in the following chapters the term "evolution" refers to artificial evolu-
tion.

20

4 Evolutionary Approaches

This chapter introduces the basics of evolutionary robotics and points out the state
of research in this topic up to now. Then a selection of related work is presented.

Today’s Modern Evolutionary Synthesis is based on the following three pillars
[Nis97]:

• Darwinian idea of an interplay between variation and selection

• classical genetics

• population genetics

Here we can identify the following three evolutionary factors: mutation, selec-
tion and recombination. Mutations serve as a material supplier for evolution and
effect spontaneous changes in the genetic material what sometimes causes the oc-
currence of different phenotypical variants of the basic type of a kind. At this point
natural selection takes place. Functionally most suitable individuals are preferred,
which have the best chances in passing their hereditary dispositions. Selection is a
stochastic process that also takes less well adapted individuals with low reproduc-
tion probability into account. During recombination the genetic material is newly
shuffled. By means of the mixture of paternal and maternal chromosomes, more
advantageous alleles1 can be combined in an individual achieving a selective ad-
vantage. Therefore, new phenotypes2 not only arise from genotypes3 through mu-
tation, but through recombination as well. [Nis97]

4.1 EA - Evolutionary Algorithms

Evolutionary Algorithms (EA) correspond to a class of stochastic search algorithms
that were developed from ideas and principles of natural evolution. [Yao99] The
main trends in Evolutionary Algorithms are Evolutionary Strategy (ES), Genetic Al-
gorithms (GA) and Evolutionary Programming (EP). One important feature of all

1the form or manifestation, a gene can take on (from the Greek αλληλων (allélon) meaning " each
other, mutual ")

2phenotype is the collection of observable traits of an individual [Les07]
3genotype means the complement of genes of an individual [Les07]

21

4 Evolutionary Approaches

three is the population-based search strategy instead of a point-based search strat-
egy. Intelligent search processes use stochastic procedural elements that create and
evaluate new solutions over and over again. The target-oriented search is focused
on adequate solutions that are searched for from different points simultaneously
and only needs the fitness value of the considered solutions.

Fitness The fitness of an individual considers not only survival of the best individ-
ual but also its success with regard to producing offspring compared to other
members of the same species. Combination of the features of an individual
determines its fitness. Therefore, the fitness function is used to evaluate the
performance of individuals and to select the fittest. The form of a fitness func-
tion affects the result of an evolutionary sequence significantly [NF00].

Entering the features of the individuals into a coordinate system leads to a fitness
landscape which contains the individuals of a population at different points. An
example of a fitness landscape for two features is shown in figure 4.1. This fitness

Figure 4.1: Exemplary representation of a fitness landscape.

landscape alters with a changing environment. Artificial evolution is considered to
be a hill climbing in this landscape.

By parametric or structural mutation an individual reaches the optimum in the
fitness landscape. Mutation can lead to jumps in the landscape. Thus an individual
which is stuck in a local optimum has the chance to advance to the global maxi-
mum. Additionally the evolutionary based approach has the following advantages
compared to the gradient-based approach [Yao99]:

• can handle global search problems better in vast, complex and non-differentiable
surface

22

4.1 EA - Evolutionary Algorithms

• does not depend on gradient info that is sometimes unavailable or costly to
obtain

• generally much less sensitive to initial conditions

• always search for global optimum solution - the gradient descent algorithm
can only find a local optimum in a neighborhood of the initial solution

Algorithm 4.1 and figure 4.2 show the common flow diagram of an EA and its ba-
sic cycle, respectively following [Nis97]. The starting population P(0) is generated
stochastically. A possible break condition is a maximum time tmax or the variance
between the fitness of two consecutive populations is less than a specified value ε.
Step 5 to 11 describes one generation cycle.

1 choose strategy parameters
2 initialize starting population P(0)
3 t = 0
4 evaluate the individuals of population P(0)
5 while a break conditions is not fulfilled
6 t = t + 1
7 selection (choosing the parents)
8 replication and variation (producing offspring)
9 evaluate the offspring

10 create new population P(t)
11 loop
12 show the results
13 stop

Algorithms 4.1: Common scheme of an EA [Nis97].

EA’s basic operators are variation and selection, which are the driving forces of
the evolutionary process.

Variation In this context variation means stochastic deviation causing offspring to
receive different fitness/suitability. Variation includes mutation and crossover.

Selection Selection denotes natural selection, which is one of the main forces driv-
ing evolutionary change. Members of a population that are better suited to
their environmental conditions due to their features have an increased chance
of producing offspring and of passing on their genetic material.

Advantages of EA as an optimization method are:

• wide-scale application of the basic procedures

• adaptation to problem definitions

23

4 Evolutionary Approaches

Figure 4.2: Basic EA cycle [Nis97].

• useful for managing large and complex problems that generate many local
optima

• objective function does not have to be differentiable or continuous

• well combinable with other approaches

• less likely to be trapped in a local minima than a traditional gradient-based
search algorithm

• does not need gradient information, therefore suitable for problems, where
gradient information is not available or costly to obtain

• is able to handle problems where no exact objective function is available

Regarding these advantages, EA is shown to be much more robust than many other
search algorithms.

4.2 Related Work

This section covers existing and topic-related work, which has a major influence on
the further development of the existing framework.

4.2.1 CGE - Common Genetic Encoding

The Common Genetic Encoding approach is used to encode a linear genome, that
represents the genotype of a neural network.

24

4.2 Related Work

Encoding Schemes of Architectures

There exist two different schemes of encoding the architecture of a neural network.
The indirect approach encodes only the most important parameters as for example
the number of hidden nodes. In the direct encoding, every link and every node can
be specified by it’s chromosome.

As in [Yao99], an indirect encoding is biologically more plausible than the direct
version, "because it is impossible for genetic information encoded in chromosomes
to specify independently the whole nervous system according to the discoveries of
neuroscience."

Encoding with CGE

"As a direct encoding method, CGE allows the implicit evaluation of an encoded
phenotype without the need to decode the phenotype from the genotype."[KSE+07]
That implies an easier implementation using only float datatypes when computing
the network’s output. Also less complex operations are necessary when evaluating
the linear genome because there is no need to work on tree structures or graphs.

There exists a competing convention problem caused by many-to-one mapping
from the genotype representation to the actual phenotype (neural network) [Yao99].
The same artificial neural networks with the same functionality but different order
of hidden neurons have varying chromosomes. This makes the use of crossover
operators inefficient as well as the production of good offspring when using the
indirect encoding method. For these reasons, the direct encoding scheme is used in
this thesis.

In CGE, a genotype corresponds to a string of genes also called a linear genome.

Linear genome
In a linear genome, the topology of a neural network encoded by it is implicitly
represented by the ordering of the genes in the genome. In the array-like represen-
tation, neuron nodes come before the input nodes and the jumper connections (see
table 4.1 as an example). In CGE a linear genome is defined to be complete, compact
and closed. Complete in the way that it can be used to represent any type of neural
network, compact in that the length of the linear genome is equal to the number
of synaptic weights of the network and closed since all genotypes produced can be
mapped into a valid set of phenotype networks.[KSE+07]

Each gene can take on a specific allele. That is either a vertex gene (N), an input
gene (I), a forward jumper gene (JF) or a recurrent jumper gene (JR). The depth of
a node in a network is defined as the minimal number of connections to be tra-
versed from a given output to the node itself. In addition, the path must contain no
explicitly defined connections.

N Vertex genes encode a node of the network and are either a hidden or an out-

25

4 Evolutionary Approaches

put neuron. An identification number, a weight, as well as the number of
incoming connections are assigned to each vertex gene.

I Sensory signals are introduced into the network by means of the input genes.
Every input node gets a specific label, therefore input genes with the same
label refer to the same input.

JF Forward jumpers can be implicitly or explicitly encoded in the linear genome.
Implicitly in the way a forward jumper gene is ordered in the genotype, then
the forward jumper is not explicitly visible in the genotype but would be
displayed as an edge in the corresponding phenotype. As well as the vertex
genes the explicit representation of forward jumpers contains a unique ID,
the number of input connections and additionally the global identification
number of its source gene. A forward jumper starts from a node with higher
depth and ends at a vertex with a lower depth.

JR The only difference between a recurrent and a forward jumper gene being the
kind of the starting and ending vertex. Thus, the recurrent jumper starts and
ends at vertices with the same depth or starts at a node with a lower depth
and ends at a node with a higher depth.

Table 4.1 shows an example of a genotype that encodes the corresponding valid
phenotype in figure 4.3. In addition to parameters like allele, label, id, weight and
depth of a gene the table contains information about a gene’s parent, the source of
a jumper gene as well as the amount of incoming links din. v computes the number
of produced outputs minus the number of expected inputs (1 - din). It should be
noted, that each node in the network must have exactly one output (corresponding
to the blue edges in figure 4.3). In the special cases of an vertex node being an
input node, a recurrent or a forward jumper, the integer assigned to its value for v
is 1. Since every vertex gene must have at least one input (one criterion, a genotype
in CGE has to fulfill to be considered a valid genotype according to [KS05a]), the
maximum value of v of a neuron node is zero, which is true for all vertex genes
with one input. "One important property of a linear genome is that the sum of the
integer values assigned to each of the nodes in a linear genome encoding a neural
network is the same as the number of outputs of the neural network." [KS05a]

With the values of v it is possible to detect a subgenome of the linear genome in
that starting from a vertex gene i and summing up the integer values assigned to
the genes following i in the linear genome until the sum of all considered genes is
calculated to one. The identification of subgenomes might be a very useful feature
when applying genetic operators to a genotype.

Genetic operators
An example of genetic operators to be used in CGE are the parametric mutation,

26

4.2 Related Work

Table 4.1: Table containing the genotype, that encodes the phenotype in figure 4.3.
allele N N N I I I N JF I I JR
label - - - x y y - - x y -
id 0 1 3 - - - 2 - - - -
weight 0.5 0.5 0.3 0.2 0.6 0.3 0.4 0.1 0.4 0.1 0.7
source - - - - - - - 3 - - 0
din 2 2 2 - - - 4 - - - -
v -1 -1 -1 1 1 1 -3 1 1 1 1
parent ∅ 0 1 3 3 1 0 2 2 2 2
depth 0 1 2 - - - 1 - - - -

Figure 4.3: Example of a valid phenotype.

the structural mutation as well as a special crossover. Parametric and structural
mutation is used by GNARL and is presented in the following subsection. All three
search operators are used and described in the Evolutionary Acquisition of Neural
Network Topologies (EANT) at the end of this chapter.

4.2.2 GNARL - GeNeralized Acquisition of Recurrent Links

In [ASP94] Angeline et al. describe an approach of simultaneously training a recur-
rent network structurally and parametrically by means of evolutionary program-
ming (EP). GNARL (acronym for GeNeralized Acquisition of Recurrent Links) is an
evolutionary algorithm that creates recurrent neural networks non-monotonically
to solve a given task.

27

4 Evolutionary Approaches

Genetic operators

When using genetic algorithms (GA) the main evolutionary operator is crossover.
To apply crossover as valid search operator the interpretation function has to be ex-
tremely complex to avoid any misleading that happen to appear in neural network
when using crossover. Thus, the interpretation function’s complexity competes
with the real learning problem. In comparison, EP searches in space of neural net-
works by using structural and parametric mutation and therefore manipulates the
network directly. Offspring resemble their parents to a certain extent, hence, the
parent’s functionality will not get completely lost. For this reason, Angeline et al.
have chosen to use EP instead of GA and no crossing over at all.

Parametric mutation Each weight w is mutated parametrically by perturbing it
with gaussian noise and the application of a so called instantaneous tempera-
ture T̂ (see equation X). T̂ compensates undesirable side effects, that may hap-
pen during large parametric mutations. η represents the network, N(µ, σ2) is
a gaussian random variable and α is a user-defined proportionality constant.

w = w + N(0, αT̂(η)) ∀w ∈ η (4.1)

Structural mutation The connectivity between nodes and the number of hidden
nodes are altered through structural mutation used by GNARL. To avoid rad-
ical changes from parent to child, new links are initialized with zero and hid-
den nodes are added without any connection. "Links must be added by future
structural mutations to determine how to incorporate the new computational
unit." [ASP94] In GNARL it is possible to remove a node with all it’s incident
links as well as to delete a link or links, respectively.

Algorithm of GNARL

Construction of networks
The number of inputs min and outputs mout is determined by the task and therefore
set by the user and are not changed by the algorithm. Additionally the maximum
number of hidden nodes hmax is set by the user as well. Every input node applies
the sigmoid function as activation. All links between two nodes are represented by
real numbers and must observe the following rules R1 to R3:

R1: there can be no links to an input node

R2: there can be no links from an output node

R3: given two nodes x and y, there is at most one link from x to y

28

4.2 Related Work

The networks created can have no connections, can be partially connected or
fully connected. Formula S shows the search space of GNARL.

S = { η : η is network with w ∈ R

η follows R1 − R3

η has min input nodes
η has mout output nodes
η has i ≤ hmax hidden nodes (0 ≤ i ≤ hmax) }

Initialization
In the beginning, the population is initialized with randomly generated networks.
An example of such a network created by GNARL is illustrated in figure 4.4. The
number of initial links and the number of hidden nodes is chosen from uniform
distributions over two different user-supplied ranges. Every link’s starting and ter-
minal node are chosen in compliance with the structural mutation used by GNARL.
In the example below nodes with identifier I are input neurons, H stands for "hid-
den" node and N corresponds to a output neuron.

Figure 4.4: Example of initial network created by GNARL algorithm.

Note, that there is nothing in that initialization forcing a node to have any in-
coming or outgoing link, let alone for a path to be present between the input and
output nodes.

Search operation
In each generation of search, the new parents are chosen in accordance to the fol-
lowing two steps:

Step 1: evaluate networks by means of a user-supplied fitness function

29

4 Evolutionary Approaches

Step 2: networks achieving results in the top 50% are marked as the parents
of the next generation (all remaining networks are rejected)

In evolving networks, all that GNARL needs is the feedback given by the fitness
function. By exploring the space of networks by selection and mutation, the choice
of fitness function does not change the mechanics of the GNARL algorithm.

Generating offspring
GNARL executes three steps for generating the offspring:

Step 1: copy the parents

Step 2: define severity of mutation to be performed

Step 3: mutate the copy according to one of the mutations described earlier

4.2.3 NEAT - Neuroevolution of Augmenting Topologies

In [SM02] Stanley and Mikkulainen represent a novel method of Neuroevolution
(NE), that is artificial evolution of artificial neural networks using genetic algo-
rithms. Their NeuroEvolution of Augmenting Topologies aims to demonstrate that
evolving both, structure and connection weights of a neural network instead of just
evolving the weigths and using a fixed topology, can significantly enhance the per-
formance of NE. NEAT is assigned to address the three following issues, that may
arise when evolving structure incrementally:

Issue 1: "Is there a genetic representation that allows disparate topologies to
crossover in a meaningful way?"

Issue 2: "How can topological innovation that needs a few generations to
optimize be protected so that it does not disappear from the population pre-
maturely?"

Issue 3: "How can topologies be minimized throughout evolution without the
need for a specially contrived fitness function that measures complexity?"

Initialization

NEAT starts out with a uniform population of networks with zero hidden nodes
where all inputs are connected directly to the outputs. New structures are intro-
duced incrementally as structural mutation occurs. By doing so only those struc-
tures survive that are considered to be useful through fitness evaluations.

30

4.2 Related Work

Genetic encoding

The encoding scheme of NEAT is similar to the CGE, described earlier in subsec-
tion 4.2.1. Thus, genes are listed in an array-like representation of connection genes.
Each of the genes refers to two nodes being connected specifying the source and the
target node and the weight of the connection. In contrast to CGE, every connection
gene stores information about the connection being enabled or disabled and a so
called innovation number. "The innovation numbers are historical markers that
identify the original historical ancestor of each gene. New genes are assigned new
increasingly higher numbers." [SM02] By means of the innovation number, NEAT
is able to crossover genomes in a sensible way (as will be explained below).

Genetic operators

Parametric mutation
As parametric mutation NEAT uses the common approach in NE systems meaning
the connection weights to be perturbed or not at each generation by means of a
previously determined mutation probability.

Structural mutation
There exist two kinds of structural mutation in NEAT, adding a node or adding
a connection. An example of the latter is shown in tables 4.2 and 4.3. As can be
seen in the example, each mutation step increases the size of the genome by adding
one or more genes. When adding a new node between to nodes to the existing
network the old connection gets disabled and two new connections are added to
the genome. Thereby, new nodes are integrated into the network immediately.

Table 4.2: Table containing the genotype before adding a new node.
innov 1 innov 2 innov 3 innov 4 innov 5 innov 6
in 1 in 2 in 3 in 2 in 5 in 1
out 4 out 4 out 4 out 5 out 4 out 5
enabled disabled enabled enabled enabled enabled

Table 4.3: Table containing the mutated genotype after adding a new node.
innov 1 innov 2 innov 3 innov 4 innov 5 innov 6 innov 8 innov 9
in 1 in 2 in 3 in 2 in 5 in 1 in 3 in 6
out 4 out 4 out 4 out 5 out 4 out 5 out 6 out 4
enabled disabled disabled enabled enabled enabled enabled enabled

31

4 Evolutionary Approaches

Figure 4.5: According phenotype to tables 4.2 and 4.3 before and after adding a new
node.

Special crossover
The special crossover operator is already introduced in subsection 4.2.4 of the EANT
section. This time, the innovation number is used to line up the common parts of
two linear genomes. Genes having the same innovation number are called match-
ing genes. With the help of the innovation number it is easy to track the historical
origins, because the system knows exactly which genes match up.

Speciation

"Because smaller structures optimize faster than larger structures, and adding nodes
and connections usually initially decreases the fitness of the network, recently aug-
mented structures have little hope of surviving more than one generation even
though the innovations they represent might be crucial towards solving the task
in the long run." [SM02] To clarify this last open issue NEAT protects innovation by
speciation of the population.

"Speciation allows organisms to compete primarily within their own niches in-
stead of with the population at large. This way, topological innovations are pro-
tected in a new niche where they have time to optimize their structure through
competition within the niche. The idea is to divide the population into species
such that similar topologies are in the same species." [SM02]

Because the experiments in this thesis are conducted with a population size of
two robots the approach of NEAT can not be applied. For future experiments or
evaluations with a greater population size NEAT is considered to be a promising
approach.

4.2.4 EANT - Evolutionary Acquisition of Neural Network Topologies

With EANT (acronym for Evolutionary Acquisition of Neural Network Topologies)
Kassahun et al. [KS05b] show a method to learn neural networks by evolutionary
reinforcement learning. The most important characteristics of EANT are described
as follows:

32

4.2 Related Work

• applies evolutionary reinforcement learning

• evolve structures and weights of neural networks

• compact and efficient encoding by means of Common Genetic Encoding (CGE)

• exploitation of existing structures and automatic exploration of new ones

Evolutionary reinforcement learning means a combination of neural networks, re-
inforcement learning and evolutionary algorithms. Neural networks are used to
represent an approach and evolutionary methods are applied to search for the op-
timal approach directly in space of approaches. EANT starts with a minimal struc-
ture of a network and complexifies it along the evolutionary path by exploiting
existing structures on a lower time-scale and exploring new structures on a larger
time-scale. A further interesting aspect of EANT is it’s genetic encoding of a net-
work onto a linear genome using the Common Genetic Encoding described earlier.
This allows the evaluation of a given network encoded by a genome without de-
coding it. It has been shown, that EANT is consistent in finding minimal neural
structures for solving a given task.

Initializing the linear genome

Like Angeline et al. in [ASP94] the input and output nodes are fixed and previously
determined by the user. When initializing the linear genome it only consists of
input and output neurons I and N respectively. Recurrent jumpers and forward
jumpers are introduced in later steps by structural mutation and added to the linear
genome along the evolution path.

Kassahuan et al.[KMEK09] describe two kinds of methods for initializing the ini-
tial genome, the full method and the grow method. Both approaches remain some
problems in that the full method leads to symmetric structures or the grow method
generates repeated input. Those issues can be solved by editing the genome after-
wards.

Evaluating the linear genome

The evaluation of a linear genome is realized by a first in last out stack and imple-
mented as follows:

• start from right most node of the linear genome and move to the left

• in case the current node is

I push current value and weight on stack

33

4 Evolutionary Approaches

N pop n values with weights from stack (n = number inputs to neuron N)
compute result according to neuron’s activation function
push result with weight

JR get last value of N where ID(N) = ID(JR)
push value and weight

JF copy sub-network starting from N where ID(N) = ID(JF)
compute response of sub-network
push result and weight

• after traversing completely pop resulting value or values (number of outputs
determines the number of resulting values)

Genetic operators

Structural mutation on the topology and parametric mutation on the weights serve
as search operators. Additionally EANT employs a special crossover operation.

Structural mutation
New forward or recurrent jumpers and new subnetworks are added with initial
weight of zero to remain the performance or the behavior of the network, respec-
tively. EANT only allows the deletion of jumpers. Nodes can not be removed by
mutation. Structural mutation operates only on neuron nodes as follows:

• Step 1: test for each neuron, if it is going to be mutated

• Step 2: determine the kind of structural mutation

The first step is to check, whether a randomly generated number ∈ [0, 1] is lower
than the structural mutation probability pm. If so, the neuron is going to be mutated
in the next step. Step two determines the kind of structural mutation by drawing
another random number also in the range of [0, 1]. Forward jumpers, recurrent
jumpers as well as subgenomes receive equal mutation probabilities.

Parametric mutation
EANT’s parametric mutation perturbs the synaptic weights w according to uncor-
related mutation. Additionally, every node obtains an associated mutation step
size also called learning rate σ. The learning rate and the weight of each neuron are
updated by equations 4.2 and 4.3.

σ′i = σi ∗ eτ′N(0,1)+τNi(0,1) where τ′ =
1√
2n

and τ =
1√
2
√

n
(4.2)

w′i = wi + σi ∗ Ni(0, 1) (4.3)

34

4.2 Related Work

σ′i < ε0 ⇒ σ′i = ε0 (4.4)

N(0, 1) results in a random number drawn from Gaussian distribution of unity
standard deviation and zero mean. Equation 4.4 forces the learning rate σ not to be
lower than a given threshold value ε0.

Special crossover
The crossover operator is said to contradict the basic ideas behind artificial neural
networks, because crossover works best when there are kind of blocks in the net-
work. Since neural networks emphasize distributed representation it is not clear
what such a block might be in a neural network. Therefore, recombining a part of a
network with another part of the other network is likely to destruct both networks.

EANT employs a special crossover, that is first introduced by Stanley [Sta09].
This approach exploits the fact that structures which are formed from the same ini-
tial and minimal structures have some common parts. For example if two randomly
selected structures S1 and S2 have a part called P1 in common and the disjoint parts
of structure one and two (here called D1 and D2, respectively), by aligning the com-
mon part P1 it is possible to generate a third structure consisting of the common and
the disjoint parts of S1 and S2. For better visualization see figure 4.6.

Figure 4.6: Example of special crossover of structure.

The input nodes of the newly created structure S12 are updated by

n(S12) = n(S1) + n(S2)− n(S1 ∩ S2) (4.5)

where n(X) is the number of input nodes to the neuron node X. Weights of the
nodes of the resulting structure S12 are inherited randomly from both parents S1

35

4 Evolutionary Approaches

and S1.

This section covered four topic related approaches for the artificial evolution of
artificial neural networks. The CGE encodes a linear genome, which represents the
genotype of a neural network. Its direct encoding method allows the evaluation of
the corresponding phenotype without the need to decode the phenotype from its
genotype. GNARL, NEAT and EANT are evolutionary approaches of simultane-
ously training neural networks by parametric and structural mutation. Note that,
compared to EANT, GNARL does not offer cross over as search operator. NEAT
introduces speciation, that allows organisms to compete within their own niches
instead of with the population at large. Thus, NEAT requires a large population
size and can not be applied to the experiment in this thesis. Regarding this sum-
mary, EANT is the most promising approach and thus is applied in the following.

36

5 Implementation

5.1 Applied Software

5.1.1 Simulation Tool

For the simulation of the robots’ behavior and the execution of the task in a simu-
lated environment there were two approaches to choose from. Firstly Player/Stage,
a robot simulation tool, that consists of the program Player, a Hardware Abstrac-
tion Layer and the corresponding Plugin Stage that listens to what Player is telling
it to do and turns these instructions into a simulation of the robot. And secondly
Robot3D, a robot simulator as well built on top of the open-source game engine
Delta3D. Because the simulation of the tasks used in this thesis is less complex and
simpler to implement by means of Player/Stage and does not necessarily need a
representation in full 3D, all the experiments are carried out by using Player and
Stage.

Player/Stage

"The Player Project creates Free Software that enables research in robot and sensor
systems. The Player robot server is probably the most widely used robot control
interface in the world. Its simulation backends, Stage and Gazebo, are also very
widely used. Released under the GNU General Public License, all code from the
Player/Stage project is free to use, distribute and modify. Player is developed by
an international team of robotics researchers and used at labs around the world."
[Pla]

Player "Player provides a network interface to a variety of robot and sensor hard-
ware. Player’s client/server model allows robot control programs to be writ-
ten in any programming language and to run on any computer with a net-
work connection to the robot. Player supports multiple concurrent client con-
nections to devices, creating new possibilities for distributed and collabora-
tive sensing and control. Player supports a wide variety of mobile robots and
accessories. Look here for a list of currently supported components." [Pla]

Stage "Stage simulates a population of mobile robots moving in and sensing a two-
dimensional bitmapped environment. Various sensor models are provided,

37

5 Implementation

including sonar, scanning laser rangefinder, pan-tilt-zoom camera with color
blob detection and odometry. Stage devices present a standard Player in-
terface so few or no changes are required to move between simulation and
hardware. Many controllers designed in Stage have been demonstrated to
work on real robots." [Pla]

Simulation with Player/Stage

The simulation using Player/Stage is composed of three parts as follows:

• Part 1: The code, that talks to Player.

• Part 2: Player, that processes the code and forwards instructions to the robots.
It gets sensor data from the robots and sends it back to the code.

• Part 3: Stage, which receives instructions from Player and moves the robots
in the simulation. All the sensor data it gets from the simulated robots it
transmits to Player.

5.1.2 Documentation and Visualization Tool

Doxygen

Doxygen is a tool for generating documentation for multiple programming lan-
guages directly from the source code, which makes it easier to keep the documen-
tation consistent with the code. It is free software, released under the terms of
the GNU General Public License. It can cross reference code and documentation,
therefore when reading a documentation it is easy referring to the actual code.

Doxygen has a built-in support to create inheritance diagrams for C++ classes.
Additionally, it can use the "dot" tool from Graphviz (see subsection 5.1.2) to auto-
matically output more sophisticated dependency graphs and inheritance or collab-
oration diagrams.

In this thesis, Doxygen is used to generate an on-line documentation browser in
HTML and for visualization of the relations between several elements.

For further information please see http://www.stack.nl/ dimitri/doxygen/.

Graphviz

"Graphviz is open source graph visualization software. Graph visualization is a
way of representing structural information as diagrams of abstract graphs and net-
works. It has important applications in networking, bioinformatics, software en-
gineering, database and web design, machine learning, and in visual interfaces for
other technical domains." [Gra]

38

5.1 Applied Software

By reading every necessary instruction from a simple text file containing a de-
scription of the graph’s vertices and edges, Graphviz can not only be used by peo-
ple but by automatic processes as well to easily visualize objects and the relations
among them. The specification of the graph to be displayed follows the rules of
the DOT markup language. Often the structure definition by itself is sufficient for
a reasonable output. Existing graphs may easily be extended or modified, that is
not straightforward for standard graphics program. For further information see
http://www.graphviz.org/.

Figure 5.1: Simple example of a graph visualized via Graphviz.

In this thesis Graphviz is applied to display neural networks. Figure 5.1 shows a
simple example of a graph visualized by means of Graphviz. I0 and N1 represent
input and output nodes, respectively. The hidden node N2 is connected to the out-
put neuron N1 via the forward jumper FJ colored in green. As shown in figure 5.2
edges displaying recurrent links are colored in red and labeled with RJ. Implicit
links are represented in blue. For a more transparent and clear presentation every
input and output node is displayed with a border.

Listing 5.1 demonstrates the corresponding DOT file for the simple graph.

1 digraph G {
2 graph [rankdir=LR]
3 node [fontname=Verdana,fontsize=12]
4 node [style=filled]
5 node [fillcolor="#EEEEEE"]
6 node [color="#EEEEEE"]
7 edge [color="#31CEF0"]
8 edge [fontname=Verdana,fontsize=10]
9 N1 [color="#000000"]

10 N2->N1 [style="bold", color="green", label="FJ"]
11 I0[color="#000000"]
12 I0->N1 [label="1"]
13 I0[color="#000000"]
14 I0->N2 [label="−0.35"]
15 }

Algorithms 5.1: Corresponding DOT file to the simple graph example.

Line 2-8 determines the graphical representation of every node and edge occur-
ring in the graph like font style and size and or background and border color of

39

5 Implementation

each node. "rankdir=LR" provides the graph to be laid out from left to right. The
lines 9-14 set the connectivity or the interrelations among the nodes and addition-
ally handle special guidelines for selected nodes or edges, for example the input
and output nodes have black borders compared to every other node. For further
details and descriptions please visit the Graphviz website.

A more complex graph is shown in figure 5.2. It’s representation is still very
clearly arranged, but for further visualizations and even more complicated neural
networks all outputs and all inputs, respectively, are displayed in one column or
line to improve clarity.

Figure 5.2: Example of a more complex graph representing a neural network.

40

5.2 The Framework

5.2 The Framework

5.2.1 EvoRoF

Figure 5.3: Overview of the classes the EvoRoF framework consists of.

Evolutionary Robotics Framework is an existing framework created and devel-
oped by Schlachter et al. [SADL12] that is extended by this diploma thesis. Its most
important components are listed in the following:

Genes

Derived from the class Genes is on the one hand the class Links and on the other
hand the class of neurons AbstractNeuron. The inherited classes are further divided
as depicted in figure 5.4. The class Links is made up of input links, recurrent jumper
and forward jumper. There exist two types of neurons, the artificial neurons and the
spiking neurons. In this diploma thesis the former kind of neurons will be applied.
The NetFactory builds the linear genome out of genes.

Figure 5.4: Inheritance diagram for the class Genes.

41

5 Implementation

An artificial neuron comprises the parameters listed below:

• Identifier:
As in EANT the identifier of an artificial neuron is the letter N.

• ID:
The ID corresponds to a consecutive number starting with zero

• Weight:
Weight of the neuron. Note that output nodes always have a weight of 1.0.

• Learning rate:
In this thesis the learning rate of a neuron is constantly set to a value of 0.3.

• Depth:
Every neuron is located in a specific layer in the network. Output neurons for
example are in the output layer with a depth of zero.

• Number of inputs:
For a valid genotype to phenotype mapping and for the evaluation of the
linear genome the number of inputs a neuron has got is important.

• Mutation probability:
The mutation probability determines how often or whether a neuron is going
to be mutated at all.

Input links, recurrent jumper as well as forward jumper consist of the same pa-
rameters as an artificial neuron except the depth, the mutation probability and the
number of inputs. As an example the following subsection depicts a genome file
that represents a linear genome with nine input links and two output nodes.

The genome file .gen

A genome file such as listing 5.2 is structured to the pattern of the gene class and
its derivatives. In this example the corresponding neural network includes two
output neurons N0 and N1 and nine input nodes from I0 up to I8.

1 N 0 1 0.3 0 9 0.1
2 I 0 0.583091 0.3 --
3 I 1 -0.246647 0.3 --
4 I 2 0.588356 0.3 --
5 I 3 0.704877 0.3 --
6 I 4 0.749209 0.3 --
7 I 5 -0.992314 0.3 --
8 I 6 0.928373 0.3 --
9 I 7 1.042293 0.3 --

42

5.2 The Framework

10 I 8 0.134652 0.3 --
11 N 1 1 0.3 0 9 0.1
12 I 0 0.659219 0.3 --
13 I 1 0.201941 0.3 --
14 I 2 0.894955 0.3 --
15 I 3 -1.014724 0.3 --
16 I 4 -0.018947 0.3 --
17 I 5 0.270701 0.3 --
18 I 6 -0.059452 0.3 --
19 I 7 -0.380017 0.3 --
20 I 8 -0.717569 0.3 --

Algorithms 5.2: An example of a genome file (.gen).

The configuration file .cfg

The configuration file sets several parameters which are read in and processed by
the EvoEngine. The first parameter defines the type of the network that is used.
There are two types to choose from: ANN - Artificial Neural Network or SNN
- Spiking Neural Network. This diploma thesis examines the implementation of
ANN. The second parameter determines the amount of members in a population
of an island that will be evaluated. You can choose to load genomes from files by
means of the variable LoadGenomesFromFiles. If set to "NO" the genomes are cre-
ated randomly with random initial weights and fully connected from the inputs
to the output nodes. NumberOfInputNeurons and NumberOfOutputNeurons are self-
explanatory, such as the default learning rate and the default mutation probability.
NumberOfStepsForEvaluation defines how many steps each controller is evaluated
in simulation before switching to the next population member. The evaluation can
be stopped automatically when reaching the number of generations by NumberOf-
Generations. Artificial evolution is implemented following EANT. Thus, NumberO-
fExploitationSteps specifies the number of exploitation steps to perform before an
exploration step follows. The last three parameters describe the kind of fitness and
selection function to be applied. So far there is a choice for the fitness functions
between DIST (distance), DISTaCOLL (distance and collision) and COLLECTIVE.
The latter function is presented in subsection 6.1.1. Two slightly different modes for
the selection can be set by SelectionMode and the SelectionParameter. ELITISM and
ELITISMaREMAIN (elitism with a remaining part) are introduced in section 6.1.2.

1 EvolutionaryAlgorithmType ANN
2 PopulationSizeOfIsland 10
3 LoadGenomesFromFiles NO
4 GenomeDirectory data/
5 GenomePrefix genome
6

43

5 Implementation

7 NumberOfInputNeurons 9
8 NumberOfOutputNeurons 2
9

10 NumberOfStepsForEvaluation 100
11 NumberOfGenerations 200
12 NumberOfExploitationSteps 100
13
14 DefaultLearningRate 0.3
15 DefaultMutationProbability 0.1
16
17 FitnessFunctionType DISTaCOLL
18 SelectionMode ELITISMaREMAIN
19 SelectionParameter 30.0
20
21 EnableParametricMutation ON
22 EnableStructuralMutation ON

Algorithms 5.3: The configuration file (.cfg).

EvoEngine

The evolutionary engine is a central component in the EvoRoF framework that links
all the classes. All data in the simulation is provided by the WorldModel the Evo-
Engine accesses. The Controller initializes the EvoEngine and forces the next steps
which trigger artificial evolution.

The main tasks of the EvoEngine result in the following:

• read the configuration file and store the parameters in a list

• create the initial neural networks or linear genomes using the NetFactory

• initiate the evolutionary step

• generate the next generation

• carry out the parametrically and structurally mutation using NetCon

• calculate the fitness of an individual through a specified fitness function in
Fitness

• determine the individuals of the next generation by means of the Selection
function

Thus, the evolutionary engine is responsible for the artificial evolution.

44

5.2 The Framework

NetFactory

The network factory creates the genomes either randomly or reads the necessary
information from the configuration file. A parameter in the configuration file de-
termines the kind of genes the genome is going to consist of. When randomly cre-
ating a genome, every input node is connected to every output node. There exist
no jumpers and all the weights are initially set to a random value. The code frag-
ment below illustrates how an artificial neural network is created randomly with
numberOfInputs input nodes, numberOfOutputs output neurons and given default
values for the learning rate and the mutation probability.

1 NetCon* NetFactory::createRandomANN(int id, int numberOfInputs,
int numberOfOutputs, float defaultLearningRate, float
defaultMutationProbability) {

2 std::vector<Genes*> genome;
3 int numNeurons = 0;
4 float learningRate = defaultLearningRate;
5 float mutProb = defaultMutationProbability;
6
7 // create outputs
8 for (int i = 0; i < numberOfOutputs; i++) {
9 ArtificialNeuron * an = new ArtificialNeuron("N", i, 1.0,

learningRate, 0.0, numberOfInputs, mutProb);
10 an->initNeuron();
11 genome.push_back(an);
12 numNeurons++;
13
14 // create fully connected random network
15 int k = 0;
16 for (k = 0; k < numberOfInputs; k++) {
17 // initialize weights with random values between -1..1
18 InputLink * l = new InputLink("I", k, (2.0*rng.rand()-1.0),

learningRate);
19 genome.push_back(l);
20 }
21 }
22 NetCon *net = new NetCon(id, numberOfInputs, numberOfOutputs,

genome, numNeurons, defaultLearningRate,
defaultMutationProbability);

23 return net;
24 }

Algorithms 5.4: Randomly creating an ANN in the NetFactory.

45

5 Implementation

Netcon

Netcon contains the class for the network controllers. All evolutionary operators
such as parametric and structural mutation are part of the tasks of the network con-
troller. In addition, it implements the stack operations according to EANT and CGE
such as push, pop and evaluate the sub-genome. The code fragment below imple-
ments the parametric mutation introduced in subsection 4.2.4. Note that weights of
output neurons are not mutated by the parametric mutation. Those weights keep a
value of 1.0. In this thesis the learning rate sigma remains constant at a value of 0.3.

1 void NetCon::parametricMutation() {
2 ...
3 N_it = rng.randNorm(0, 1.0);
4 tau = 1 / sqrt(2 * sqrt(genome.size()))
5 tau_tick = 1 / sqrt(2 * genome.size());
6 sigma = (*it)->getLearningRate();
7 weight = (*it)->getWeight();
8
9 // compute and set new weight

10 weight_tick = weight + sigma * N_it;
11 (*it)->setWeight(weight_tick);
12 }

Algorithms 5.5: Implementation of parametric mutation in NetCon.

According to the formula of the parametric mutation in EANT the variables used
in listing 5.5 denote the following:

• N_it: random number drawn from Gaussian distribution with zero mean and
unity standard deviation, newly calculated in every iteration

• tau: 1/
√

2n with n equals to the size of the genome

• tau_tick: 1/
√

2
√

n with n equals to the size of the genome

• weight: weight that is going to be mutated

• weight_tick: new weight after mutation

• sigma: learning rate

• sigma_tick: new learning rate after calculation

Fitness

The fitness of a robot corresponds to its weighting function and determines the
reward the robot receives for it’s actions taken. By means of the values of the fitness
function the Selection function elects the individuals for the next generation. The

46

5.2 The Framework

distance of the current position to the starting position is one exemplary fitness
function depending only on the robot’s position. Furthermore the fitness can be
calculated by a combination of several parameters.

In this thesis the fitness function denoted as COLLECTIVE is applied and intro-
duced in subsection 6.1.1.

Selection

After an evolutionary cycle has happened the Selection function determines the in-
dividuals of the next generation according to a certain schema. One of the easiest
ways of selection is to replace the half of the population that performed the worst
with the other half that performed the best.

This thesis uses the selection function named ELITISMaREMAIN meaning elitism
selection with a part of the population that remains and is not replaced by elite in-
dividuals. Section 6.1.2 demonstrates the applied selection mechanism.

Logger

The logger class allows visualization of the generated neural networks or logged
data such as the fitness or the position. A linear genome is either presented in
table format in the console or in the form of a graph in a dot file. The latter is con-
verted into a png file via Graphviz representing the associated graph or phenotype
to the linear genome. Input and output nodes are displayed with black borders,
whereas hidden neurons are illustrated without a border. Recurrent as well as for-
ward jumper are differentiated by color from implicit links. Moreover, edges are
labeled with the appropriate weights and neurons with its IDs. An example of such
generated phenotypes is depicted in chapter 5.1.2 and in the chapter presenting the
results (chapter 7).

Figure 5.5: Overview of the files the logger can creates.

47

5 Implementation

WorldModel

The WorldModel manages the current sensor values, the actual position of the robot,
the fitness values and the starting position. Thus, all the data is stored centrally
and is accessible through the WorldModel. The parameters of the WorldModel and
their according data types are presented in table 5.1. Additionally, the WorldModel
provides a function for resetting the robot to it’s initial position. This can be useful
for offline evaluation or the synchronous start of the robots in simulation. After
a controller is evaluated the EvoEngine calls the function resetRobotPosition(). The
Controller retrieves the doRobotPositionReset() and initiates the action to put the robot
back to the start position.

Table 5.1: Table showing the variables of the WorldModel.
variable description data type
numberOfIrSensors contains the number of sensors the

robot is assembled with
integer

ir here, contains all the sensor values
of a robot

float vector

startPosition stores the x, y, and z coordinate of
the robot’s initial position

float vector

currentPosition stores the x, y and z coordinate of
the current position of the robot in
each simulation step

float vector

variableData this vector can take variable data of
type float

float vector

doReset setting this flag to true effects the
reset of the robot to the start posi-
tion

boolean

Current infrared sensor values are stored in the vector IR, the current position of
the robot in currentPosition and the start position in emphstartPosition, respectively.
Because the task of this thesis requires fiducial sensor in addition to the infrared
sensors the IR vector stores the fiducial sensor data as well. The combining of the
IR vector takes place in the PlayerWrapper as described in the next subsection.

PlayerWrapper

The wrapper class for the simulators Player and Robot3D is derived from the supe-
rior class Wrapper as illustrated in figure 5.6. The PlayerWrapper class inherits from
Wrapper which interacts as an interface between the Controller and the simulator.
Thus, the PlayerWrapper realizes the interface between the Controller and Player.
Additional tasks of the PlayerWrapper are as follows:

48

5.2 The Framework

Figure 5.6: Inheritance diagram for the Wrapper class.

• set up the connection to Player and initialize the Stage proxies as well as the
actuators and sensors defined in Stage

• receive all sensor values and the current position of the robot from the simu-
lation

• transmit all data obtained to the WorldModel

1 void PlayerWrapper::init(unsigned int portNumber, unsigned int
numberOfSensors, unsigned int fidRangeTop, unsigned int
fidRangeBottom)

2 {
3 port = portNumber;
4 numberSensors = numberOfSensors;
5 fiducialRangeTop = fidRangeTop;
6 fiducialRangeBottom = fidRangeBottom;
7 robot = new PlayerClient("localhost", port);
8 robotPos = new Position2dProxy(robot,0);
9 robotFidBottom = new FiducialProxy(robot,0);

10 robotFidTop = new FiducialProxy(robot,1);
11
12 //enable motors
13 robotPos->SetMotorEnable(1);
14 moved = false;
15
16 // read current sensor data
17 robot->Read();
18
19 // update all sensor data
20 updateSensorInput();
21 ...
22 }

Algorithms 5.6: Implementation of initialization of the PlayerWrapper.

When updating the sensor data the IR vector that is transmitted to the World-
Model is combined from IR data as well as fiducial sensor values such as the dis-
tance to another robot or the target object and also the angle to the target object.

49

5 Implementation

Every robot possesses two fiducial sensors. One on the top of the robot and the
other one at the bottom. Both fiducial sensors detect all objects which have the
fiducial_return flag set to 1 and return an array containing the IDs of the perceived
fiducial.

To obtain the position of a certain fiducial, for example the position of the other
robot with ID 1 which is detected by the top fiducial sensor, one have to verify
the array containing the particular ID. In the case the other robot is within range
it’s current position is returned, otherwise the maximum distance is assumed. The
maximum distance corresponds to the maximum range of the fiducial sensor. If
no fiducial is detected the maximum distance is returned as well. Note that the
distance to a fiducial is given relative to the robot’s position.

The distance between the robot and a fiducial is computed by the Euclidean dis-
tance with formula 5.1 where A is the position of the robot and B refers to the
position of the detected fiducial.

d(A, B) =
√
(xB − xA)2 + (yB − yA)2 (5.1)

Because the position of the fiducial is returned relative to the robot’s location the
values given back can directly be used for the calculation of the Euclidean distance.
Afterwards the result is subtracted from and divided by the maximum distance to
invert the value and receive a result in the range of 0 and 1. The reason for the
inverting is the activation of the neuron in the underlying network. If no fiducial is
within range, the neuron should not perceive any activation thus a value of zero is
returned to the input of the neuron. In the contrary case the input should activate
the neuron proportional to the distance to the fiducial. From this it follows that the
closer a fiducial is the more activation a neuron obtains and that way the stronger
the behavior turns out. Another consequence of the inverting of the sensor values
is the need of a bias input neuron. Otherwise in the case of no fiducial is detected
all the inputs receive a zero value resulting in no movement or turning of the robot
at all.

The computation of the angle between a robot and a fiducial is carried out using
polar coordinates in the interval of (−π, π] and equation 5.2.

φ = (signum(y) + 1− |signum(y)|) arccos
x
r

(5.2)

As mentioned earlier the PlayerWrapper performs the task of resetting a robot to
it’s initial position. Because setting a robot directly to a given position is not yet
implemented in the Stage driver the GoTo command is used to put a robot back
to the start position. By means of the GoTo instruction the robot moves with a
constant speed back to the specified position (startPosX, startPosY). Depending on
the robot’s actual position this can take more or less time.

A differential steering model is realized in the PlayerWrapper by means of a alter-
nate moving and turning as illustrated in listing 5.7.

50

5.2 The Framework

1 void PlayerWrapper::setActuatorOutput(float speed, float
turnRate)

2 {
3 if (moved) {
4 robotPos->SetSpeed(0, turn);
5 moved = false;
6 }
7 else
8 {
9 robotPos->SetSpeed(drive_forward, 0);

10 moved = true;
11 }
12 }

Algorithms 5.7: Implementation of differential steering

Controller

Firstly, the Controller initializes the PlayerWrapper passing the port number, the
amount of the sensors, and the ranges of the fiducial sensors (see code fragment 5.8).
The initial sensor data is stored in the inputVector. Then, the EvoEngine is initial-
ized.

1 void Controller::initialize(int port, int numberOfSensors)
2 {
3 // initalizes the PlayerWrapper
4 init(port, numberOfSensors, fidRangeTop, fidRangeBottom);
5
6 // write sensor data into input vector
7 inputVector = sensorData;
8
9 ...

10
11 // initialize the evolutionary engine
12 evo->initEvoEngine((char*)"config/island.cfg", port, worldModel, &

inputVector, &outputVector);
13 }

Algorithms 5.8: Initialization of the Controller.

After the initialization steps, the Controller initiates the evolutionary step by call-
ing nextStep() of the EvoEngine in line 7 of listing 5.9. In a final step, the Controller
transmits the calculated actuator values to the simulation by means of the Player-
Wrapper (see line 18). Line 10-17 implement the scenario of a light barrier that can
only be overcome if another robot is within a certain range. This is put into action
by the logical implication (inLight⇒ robotNearby).

51

5 Implementation

1 void FirstController::run() {
2 for (;;)
3 {
4 updateSensorInput();
5 evo->nextStep();
6
7 check if robot reached the light barrier;
8 check if other robot is near;
9

10 if (!inLight || robotNearby) {
11 drive_forward = outputVector[0]*2;
12 turn = dtor(outputVector[1]*30);
13 }
14 else {
15 drive_forward = 0.0;
16 turn = 0.0;
17 }
18 setActuatorOutput(drive_forward, turn);
19 }
20 }

Algorithms 5.9: Looping the execution in simulation.

5.3 Execution in Simulation

A Player/Stage project fundamentally consists of a inc file, a world file and a con-
figuration file (cfg). The implementation in simulation via Player/Stage comprises
the subsequent files. The according implementations can be found in the appendix:

karobot.inc contains a detailed description of the KA robot as set out in the ap-
pendix in listing 9.1. The robot’s size, shape and its initial position are deter-
mined, as well as the number of sensors the robot is assembled with. Play-
er/Stage provides two steering modes, the differential drive and the omnidi-
rectional drive.

simple.world This file (see appendix, listing 9.2) describes the floor plan, the size of
the arena and determines all boundaries given by the according png file. By
including karobot.inc additional robot features can be set in this world file.
Furthermore, all objects such as the robots or obstacles are set into the arena
by a given name and position.

fiducialfinder.cfg includes the world file. In this configuration file (see appendix,
listing 9.3), all applied drivers are listed and adjusted accordingly. The start-
ing port in Player/Stage is 6665 and is continued in ascending order for each
further robot.

52

5.3 Execution in Simulation

obstacleRectangle.png Every black pixel in this exemplary image file (see fig-
ure 5.7) is considered as obstacle or boundary by the world file. This allows
to easily change the boundaries of the arena by including another image file.

Figure 5.7: Image file for the boundaries.

5.3.1 Mapping the Scene

Arena

The arena in Stage is determined by the world file. Figure 5.9 and 5.8 show the asso-
ciated arena with the bounding box, obstacles, fiducials and robots as created from
the simple.world file described earlier. The bounding rectangle measures 120x80cm.
The height of the walls measures 3cm. The small green object with an elongated
shape in the centre of the yellow circle corresponds to the target object. The yellow
circle serves as a "light barrier" surrounding the target object.

Figure 5.8: Perspective view of the arena of figure 5.9.

53

5 Implementation

Figure 5.9: Exemplary initial state of the arena.

Lightsource

A fiducial object in Stage is detected by a robot, if the robot provides a fiducial sen-
sor and whether the fiducial’s flag fiducial_return is set to a value greater than zero.
In this thesis, the fiducial_return value of the light object is set to 2, the value of the
other robot is set to 1 and the value of the target object is set to 3. There exist two
ranges for the fiducial sensor, namely range_min and range_max. The former deter-
mines the minimal range a robot’s fiducial sensor detects the fiducial. If set to zero
it is the distance between the fiducial’s centre and the robot’s sensor. The latter,
range_max, specifies the distance from which downwards the robot’s sensor is able
to detect the fiducial. If the actual distance lies between range_min and range_max
the robot’s sensor receives two different values. Either a zero value, when the dis-
tance is less than the value set by range_max_id or the specified fiducial ID (here for
example 1, 2 or 3) if the sensor value is greater than range_max_id. For the following
experiments both range_max and range_max_id are given a value of 40.

Robots

Size and Shape
In simulation the robot is depicted in abstract as a 1x1x1cm cube with a bevel on
the front edges as shown in figure 5.10. By means of the bevels one can distinguish
if the robot moves forwards or backwards. By way of distinction the robots are

54

5.3 Execution in Simulation

visualized in different colors. However, this does not effect the robot’s behavior or
the execution of the task.

Figure 5.10: Shape of the robots in simulation.

The shape of the robots derives from their real role model or the hardware the
evolved controller should be applied on in further experiments. As an example fig-
ure 5.11 depicts the SCOUT Robot (PISA Robot) of the Symbrion Replicator project.

Figure 5.11: SCOUT Robot (PISA Robot)

Sensors and Actors
The robot is mounted with eight range sensors and two fiducial sensors. Two range
sensors are attached on each of the robot’s four sides. The range sensors allow the
robot to detect obstacles in near distance with an angle of 30 degrees. One of the
two fiducial sensors is located centrally on the top of the robot, the other one at
the bottom. Thereby the robot is able to recognize fiducials on the floor as well as
fiducials that are situated in the height of the robot.

As illustrated in figure 5.12 and 5.13 range sensors are displayed in green and
the range of the fiducial sensors is shown by a red circle. The red dotted line cor-
responds to the distance between the robot’s fiducial sensor and the fiducial, in
this case the light source or the target object. If the fiducial is within the sensor

55

5 Implementation

Figure 5.12: Range and fiducial sensors of the robot.

range and the distance is less than a predefined value the fiducial sensor receives
the fiducial ID as in figure 5.13. Otherwise the response is zero.

Figure 5.13: Range and fiducial sensors of the robot in perspective view.

56

6 Experiments

6.1 Preliminary Considerations

6.1.1 Choice of Fitness Function

The fitness function is used to determine the behavior of an individual or the ac-
tions to be performed preferably.

When developing a fitness function one important question which should be con-
sidered is how to avoid the design of specific behavior, but still evolve individuals
that are able to successfully achieve a desired goal. [CN10].

The following sections describe several fitness functions according to different
scenarios. It is shown that varying functions may lead to the same goal. The choice
of the fitness function has a significant influence on the results and/or the behavior
of the robot.

Collision Avoidance with Random Walk

A preliminary stage of the fitness function applied in this thesis is the function for
the so called collision avoidance scenario. A usual task of a robot is to randomly
move through the arena without hitting any obstacle or, in other words, reliably
avoid collisions. There exist many approaches in developing the fitness function for
collision avoidance. In this approach, the basic procedure is to reward individuals
that never collided during a run and punish those, that hit at least one obstacle.
Punishing can take place by resetting the individual’s fitness value to zero at the
time of a collision. Or the entirely fitness is set to zero. A reward can be given by
adding those time steps in which an individual was free from clashes.

Note that avoiding walls can also be implicitly contained in a fitness function
such as covering the longest distance in a specific period of time. An individual
getting stuck when hitting a wall cannot move along and thus does not cover much
meters. What leads to a lower fitness compared to other individuals which success-
fully avoided any obstacle.

In the following, we consider both approaches and also combinations of them
and present a possible implementation that is applied during development in this
diploma thesis.

57

6 Experiments

Approach 1

The code fragment in listing 6.1 illustrates an exemplary fitness function for colli-
sion avoidance. Each update step in the method updateFitness refreshes the robot’s
position as well as it’s sensor data, calculates the distance the robot moved during
the last step and examines whether the sensor values reveal a collision. The dis-
tance is added up to the tracks of the last steps and thus specifies the fitness. In
doing so, the robot is forced to increase it’s distance in every step, which is equiva-
lent with moving along.

The method getFinalFitness punishes or rewards the individual whether a colli-
sion has happened or not. In the first case the fitness value is reduced by a factor
of 10 whereas in the latter case an individual is rewarded by doubling it’s fitness.
Consequently, the robot is told that it is good to avoid obstacles.

1 void FitnessCollision::updateFitness(void)
2 {
3 // counter for the simulation steps
4 count++;
5 // get current position and current sensor values of robot
6 curPos = getCurrentPosition();
7 iRData = getIR();
8 // calculate distance the robot covered during one

simulation step and set fitness value
9 float distance = sqrt((curPos[0]-lastPos[0]) * (curPos[0]-

lastPos[0]) + (curPos[1]-lastPos[1]) * (curPos[1]-
lastPos[1]));

10 fitness += distance;
11
12 // reset lastPos for next calculation step
13 lastPos = curPos;
14
15 // if last controller gets stuck at a wall, give next

controller a few steps to move away from the wall
16 if (count > 10){
17 for (unsigned int it=0; it<iRData.size(); it++) {
18 // check all sensors if distance to an obstacle is too

close
19 if (iRData[it] < 0.1)
20 collision = true;
21 }
22 }
23 }
24
25 float FitnessCollision::getFinalFitness(void)
26 {

58

6.1 Preliminary Considerations

27 if (!collision){
28 // if the individual never collided, extra reward it’s

fitness by doubling the fitness
29 fitness += (2*fitness);
30 }
31 else {
32 // if a collision took place, reduce the fitness by a

factor of 10
33 fitness = fitness/10;
34 }
35 collision = false;
36 return fitness;
37 }

Algorithms 6.1: Exemplary fitness function for collision avoidance.

Approach 2

The second approach aims at the same objective: avoid obstacles and move through
the arena. Following another modality there is no explicit testing for a collision but
two approaches measuring the fitness of an individual and thus telling it what the
preferred actions are. Instead of predicating the fitness on the distance, the robot is
rewarded or punished by constant values. A slow motion is rewarded by a value
of 0.1 whereas a faster movement is rewarded by 0.5. If the robot stops or hardly
moves it gets penalized by a value of -1.0 as depicted by line 19 in listing 6.2. Again,
by this means the robot is forced to move constantly.

The lines 23 to 28 describe the obstacle detection within a certain range. If there
is no obstacle the sensor values transmit a zero value. In case of a collision the
corresponding sensor sends a value of 1.0. The robot is penalized by 0.1 within a
distance value starting from 0.1 to 0.5 and by 0.5 if an obstacle becomes too close
(distance > 0.5).

1 void FitnessCollision::updateFitness(void)
2 {
3 // get current position and current sensor values of robot
4 curPos = getCurrentPosition();
5 iRData = getIR();
6 // calculate distance the robot covered during one

simulation step
7 float distance = sqrt((curPos[0]-lastPos[0]) * (curPos[0]-

lastPos[0]) + (curPos[1]-lastPos[1]) * (curPos[1]-
lastPos[1]));

8 // reset lastPos for next calculation step
9 lastPos = curPos;

10
11 // reward intermediate movement with +0.1 and faster

movement additionally with +0.5

59

6 Experiments

12 // punish with a value of -1.0 if there is (nearly) no
movement

13 if (distance >= 0.02)
14 {
15 fitness += 0.1;
16 if (distance >= 0.2)
17 fitness += 0.5;
18 }
19 else fitness -= 1.0;
20
21 // punish, if obstacles are detected within a range of 0.1

and 0.5 with -0.1
22 // if an obstacle is close (sensor value > 0.5) punish with

-0.5
23 for (unsigned int it=1; it<iRData.size(); it++) {
24 if (iRData[it] <= 0.5 and iRData[it] > 0.1)
25 fitness -= 0.1;
26 else if (iRData[it] > 0.5)
27 fitness -= 0.5;
28 }
29 }
30
31 float FitnessCollision::getFinalFitness(void)
32 {
33 return fitness;
34 }

Algorithms 6.2: Varying fitness function for collision avoidance.

Remain Close

In many swarms spatial proximity plays an important role. For example in a swarm
of birds those members save energy that fly behind another bird because in this po-
sition they experience less aerodynamic resistance. Considering a school of fishes,
by remaining close to each other the nearness serves as protection against preda-
tors. The following fitness function forces the robots to remain as close as possible.

1 void FitnessDist::updateFitness(void)
2 {
3 // get current position of robot and current sensor values
4 curPos = getCurrentPosition();
5 sensorData = getSensorData();
6
7 // calculate distance the robot covered during one

simulation step and set fitness value

60

6.1 Preliminary Considerations

8 float distance = sqrt((curPos[0]-lastPos[0]) * (curPos[0]-
lastPos[0]) + (curPos[1]-lastPos[1]) * (curPos[1]-
lastPos[1]));

9 fitness += distance;
10
11 // reset lastPos for next calculation step
12 lastPos = curPos;
13
14 // maxDistance is the range of the fiducial sensor set in

Stage and determines the maximum distance a robot is
able to detect another robot

15 fitness += (maxDistance - currentDistanceToRobot)/10;
16 }

Algorithms 6.3: Fitness function for the distance to another robot.

As in the previous example, the robot is told by the fitness function to move
through the arena (listing 6.3 line 8). The instruction in line 15 rewards close prox-
imity to other robots by adding the difference of the maximum measurable distance
and the distance to the other robot to the current fitness value.

Moving to a Reference Point

Regarding the scenario of the ants moving back and forth between the ant hill and a
food source, the swarm robots should have the same behavior. The corresponding
fitness function for this scenario needs a reference point the robot should navigate
to. If the distance between the robot and the reference point decreases the robot is
rewarded, otherwise the robots is penalized. The implementation for this fitness
function is illustrated in the listing 6.4 below.

1 void FitnessFiducial::updateFitness(void)
2 {
3 // reward, if distance to fiducial decreases
4 fitness += curDistanceToFiducial - lastDistanceToFiducial;
5
6 // give extra reward if robot is very close to the fiducial
7 if (curDistanceToFiducial < 0.1) {
8 fitness += 2;
9 }

10
11 // reset lastDistanceToFiducial for next calculation step
12 lastDistanceToFiducial = curDistanceToFiducial;
13 }

Algorithms 6.4: Fitness function for navigation to a fiducial.

61

6 Experiments

Collective Behavior

Topic of this diploma thesis is to show coordinated behavior within a swarm of
robots. For simplification in the following the robot swarm consists of two robots,
which have to fulfill a task they can only solve cooperatively. For this purpose,
the robots should move to a target object that is surrounded by a barrier. A robot
is only able to overcome the barrier if another robot is within a certain distance.
The corresponding fitness function for this task is a combination of some of the
functions listed above and is shown in listing 6.5. For the implementation of the
barrier the robot controller queries the robot position and the position of the barrier.
If the positions match the robot’s speed and turning are set to zero and will not be
changed before the distance to the other robot is reduced to a certain value.

The fitness function for the evaluation of cooperative behavior is an extension of
the fitness function in listing 6.4 and is depicted in listing 6.5.

1 void FitnessCollective::updateFitness(void)
2 {
3 // get current sensor data
4 sensorData = getSensorData();
5
6 // reward, if distance to fiducial decreases
7 fitness += curDistanceToFiducial - lastDistanceToFiducial;
8
9 // give extra reward if robot is very close to the fiducial

10 if (curDistanceToFiducial < 0.1) {
11 fitness += 2;
12 }
13
14 // reset lastDistanceToFiducial for next calculation step
15 lastDistanceToFiducial = curDistanceToFiducial;
16
17 // reward with inverted distance value
18 fitness += (maxDistance - currentDistanceToRobot)/10;
19 }

Algorithms 6.5: Fitness function for collective behavior with one reference point.

In the following experiments two fiducials are placed in the arena as depicted
in figure 6.1 and 6.2. The robots should move to the fiducials one after the other.
Again, this scenario is motivated by the foraging of ants or the navigating back and
forth between two food sources. If the first food source is reached the supply is ex-
hausted and the robot should set out to the next food source. Both food sources are
surrounded by a barrier which can only be overcome in twos. The corresponding
fitness function for this approach, that is applied in the following experiments, is
listed in listing 6.6.

62

6.1 Preliminary Considerations

1 if bias neuron has positive value
2 reward if distance to reference point 1 decreases
3 and robot is moving
4
5 if bias neuron has negative value
6 reward if distance to reference point 2 decreases
7 and robot is moving
8
9 if a fiducial is reached

10 reward with double fitness and an extra value of 50
11
12 reward if other robot is close

Algorithms 6.6: Pseudo code of fitness function for collective behavior.

Figure 6.1: The arena containing two reference points surrounded by a light barrier.

6.1.2 Choice of Selection Function

Another challenge in order to gain successfully individuals is to apply an appro-
priate selection process. Selection is the moving power behind evolution. After an
evolutionary cycle all individuals obtain a fitness according to their achieved per-
formance. The selection mechanism keeps those individuals alive, that performed
best, regarding a task which has to be fulfilled, and discards the contrary case.

63

6 Experiments

Figure 6.2: Perspective view of the arena.

Elitism

The probably simplest way to execute selection is to order all individuals of a pop-
ulation in ascending order, drop out the bottom half and replace it by the other 50
percent of the population which performed better. In this diploma thesis we call
such kind of screening elitism selection.

A variant of the elitism selection is to choose a percentage of the population less
than 50 percent that will be declared as elite. The, for example, 10 percent of indi-
viduals of a population that performed best (the elite) replace the 10 percent that
performed the poorest. The remaining 80 percent of the population survive and,
as well as the elite, get another chance to gain better fitness in the next generation.
Algortihm 6.7 shows the implementation of the elitism selection that remains a part
of the population.

1 void ElitismRemainSelection::performSelection
2 (std::vector< NetCon* > & population)
3 {
4 evoplog(’’Select next generation’’);
5
6 unsigned int discardNumber =
7 ceil((population.size() * percentageOfElite) / 100);
8
9 std::vector<NetCon*>::iterator eliter = population.begin();

10 std::vector<NetCon*>::reverse_iterator discarder =
11 population.rbegin();
12
13 for (unsigned int i=0; i <= discardNumber; i++){
14 delete *discarder;
15 *discarder = (*eliter)->clone();
16 discarder++;

64

6.1 Preliminary Considerations

17 eliter++;
18 }
19 }

Algorithms 6.7: Elitist selection function that remains individuals with a moderate
performance.

At first, the variable discardNumber stores the amount of individuals that are go-
ing to be discarded or, in other words, the part of the population which is going to
be replaced by the elite. The percentage of the elite in the population is set by the
parameter percentageOfElite. In the for loop from line 13 to line 18 one individual
with a low fitness after another is deleted and replaced by an elitist member.

Additionally the elite can be excluded from mutation and thus is able to perform
in the following cycle at another position again to demonstrate that it belongs to
the elite group.

6.1.3 Choice of Team Composition and Level of Selection

"The design of control rules for multi-agent systems is challenging because agent
behavior depends not only on interactions with the environment, but also on the
behavior of other agents. As the number of interacting agents in a team grows, or
when agent behaviors become more sophisticated, the design of suitable control
rules rapidly becomes very complex. This is especially true when agents are ex-
pected to coordinate or cooperate to collectively achieve a desired task." [WKF09]

Thus the artificial evolution of a team of robots must address the following two
major issues:

• Selection may either operate on robot teams or on individuals.

• Individuals of a population may either employ different control rules or share
their control rules.

As in [WKF09] teams with identical control rules are referred to as genetically
homogeneous. They share the same genes. Genetically heterogeneous individuals have
different control rules. Waibel et al. concluded that heterogeneous teams with
team selection performed inefficient and cannot be recommended for cooperative
tasks. It follows the application of heterogeneous teams evolved with individual
level selection for the experiments in this thesis. "Team heterogeneity allowed to
evaluate a high number of different genomes in parallel, and individual selection
allowed efficient selection of good genomes." [WKF09].

6.1.4 Online and Onboard Evolution

The task of this thesis requires online and onboard evolution of robot controllers.
As Bredeche states in [Bre04] evolutionary algorithms are usually applied offline,

65

6 Experiments

meaning that evolutionary processes develop one or several possible solutions to
the given problem and after that one solution is selected for further deployment
and application. In situations where the optimization process must be run on-
board, and self-adaptation is performed online during the actual exploitation of
the robot, for example when there is no possibility to retrieve the robot for further
training, offline evolution cannot be applied. Another example for the application
of online learning or optimization: "the supervisor may not be able to re-initialize
the environment and robot location inbetween evaluations, it may not be possible
to identify a priori what is the structure of the environment prior to development
or it may be possible that the environment may change during the course of exper-
iment. In such cases, a "self-adaptation" mechanism is required to ensure survival
and task-fulfilling in the long term. [Bre04]"

In [BHE09] Bredeche et al. show the viability of online, onboard evolution in
autonomous robots. "We have presented the (1+1)-ONLINE evolutionary algo-
rithm to provide continuous adaptation in autonomous robots in unknown and/or
changing environments, without help from any supervisor [...]" [BHE09]. Further
information about the (1+1)-ONLINE evolutionary algorithm is provided in [MB11].
Further on, they present two categories of related work on the online and onboard
evolution of robot controllers as follows:

Distributed online onboard evolution approach "Each robot carries one genotype
and is controlled by the corresponding phenotype. Robots can reproduce au-
tonomously and asynchronously and create offspring controllers by recombi-
nation and/or mutation." [BHE09]

Encapsulated online onboard evolution approach "A robot has an EA implemented
on-board, maintaining a population of controllers inside itself. The EA is run-
ning on a local basis and perform the fitness evaluations autonomously. This
is typically done in a time-sharing system, where one member of the inner
population is activated (i.e., decoded into a controller) at a time and is used
for a while to gather feedback on its quality." [BHE09]

Both approaches employ heterogeneous populations of robot controllers.

Summarizing the previous considerations, online and onboard evolution is mo-
tivated by the fact that it is not always possible to train the robot from the start in a
controlled environment because of several constraints or to provide adaptation in
autonomous robots in changing environments, without the help from a supervisor.

Regarding the results of Karafotias et al. in [KHE11], online and onboard evolu-
tion of robot controller is successful with small population and within short times.
Additionally, Karafotias emphasizes the advantages of distributed and of encap-
sulated evolution as follows: "a distributed evolutionary algorithm exploits the
presence of multiple robots by effectively implementing concurrent evaluation of

66

6.1 Preliminary Considerations

the population, allowing evolution to progress rapidly in real time" [KHE11], on
the other hand the "encapsulated approach can offer an advantage when dealing
with tasks or environments that involve competition or require various skills: here,
the separate evolutionary algorithms of robots can promote co-evolution, specia-
tion and/or specialisation" [KHE11]. They concluded that a combination of both
approaches, leading into an island model algorithm, may be the most promising
approach.

Consequently, this thesis is running an island consisting of several controllers
one after the other on one robot, thus applying the encapsulated approach within
each robot and the distributed approach between the two robots.

6.1.5 Execution of the Task in Simulation

Different test cases require various conditions such as the size of the arena, the
number of obstacles, the start position of the robots and many more. For the task
of this thesis the arena is chosen to be relatively large compared to the size of the
robots. The reference points are placed approximately in the centre of the arena
and in the middle of the surrounding barrier as shown in figure 6.3.

Figure 6.3: Representation of the fiducial sensors.

The green target object, the yellow barrier as well as the other robot are recog-
nized by the robot’s fiducial sensor. One fiducial sensor detects objects, that are
located on the floor, the other sensor detects all objects, that have at least the size of
the robot. It had to be taken into account here, that an object being placed between
the robots hinders the view of one robot to the other. In the case of both robots hav-
ing reached the target object at the same time, the target object should not inhibit
the detection of the other robot. Thus, the shape of the reference object is narrow
and elongated. In addition, the height of the target object must have at least the
height of a robot to be detected by it’s fiducial sensor as object and not as barrier.

67

6 Experiments

Another challenge was the influence of the object to the barrier, because in Stage
both items share the same reference point. The solution is a lift of the target object
by a few centimeters.

Another characteristic of Stage is the uncertainty in the measured pose of a fidu-
cial. As illustrated in figure 6.4 the bounding box of a fiducial sometimes flips from
its original position, thus injecting noise into the simulation.

Figure 6.4: Illustration of the uncertainty in the measured fiducial pose in Stage.

During the execution in simulation the Controller controls the barriers surround-
ing the green target objects by activating and deactivating the function of the bar-
riers. In the beginning the robots should drive to reference point 1 with fiducial ID
3 (see figure 6.4), then start out to the second reference point with fiducial ID 5 and
afterwards move back and forth between the two green goals. In the initial state,
only the barrier around reference point 1 is activated, thus the robots are able to
reach the second reference point. Anyway, the robot only gains a reward if moving
to the right object, regarding the correct order. In this case, the right object means
the object with an activated light barrier. If a robot reaches an object the corre-
sponding light barrier is deactivated and the barrier of the other object is activated.
Thus a robot cannot get stuck at a barrier of an object it should not head out to.

6.2 Experimental Setups

The next subsections describe the setups of the four experiments carried out in this
thesis. Evolution is executed online and onboard on two robots following a com-
bination ot the encapsulated and the distributed approach of Bredeche [BHE09]
introduced above. Every robot maintains an island of individuals with the size
of 10 inside itself. Every such individual is activated one after the other for 160
evaluation steps in simulation to gather fitness for its performance. After a popula-

68

6.2 Experimental Setups

tion is evaluated completely the robot controller resets the robot to its start position
and switches to the next generation. The robot reset is forced by reproducibility
and simplifies the comparison of different parameter values. Neither individuals
of the same population nor individuals from different populations share any kind
of information such as their fitness or current state.

So, all experiments work on two populations of size 10 with linear genomes con-
sisting of 12 input neurons and two output neurons. In all four experiments 60
generations are executed in one run and the fitness value of the best individual and
the average fitness are printed into a file in every generation. Forced by computa-
tional limitations we only tested 10 runs in every experiment. In experiment 1 to 3
structural mutation is carried out once after 50 generations. The fitness function as
well as the selection function stay the same in all four setups. For the computation
of the fitness, the fitness function for collective behavior illustrated in listing 6.6 is
applied. Selection is carried out by the selection function 6.7 which remains that
part of the population that performed best.

Table 6.1: Table showing the mapping of sensor values to input neurons.
input corresponding sensor type value range
I0 bias neuron

initial state is 1.0; when a robot reached the first fiducal the
input to the bias neuron switches to -1.0 and vice versa when
a robot reached the second fiducial

[-1.0, 1.0]

I1 front range sensor left [0, 1.0]
I2 front range sensor right [0, 1.0]
I3 rear range sensor left [0, 1.0]
I4 rear range sensor right [0, 1.0]
I5 fiducial sensor for distance to fiducial with ID 1

(other robot)
[0, 1.0]

I6 fiducial sensor for distance to fiducial with ID 3
(reference point 1)

[0, 1.0]

I7 fiducial sensor for distance to fiducial with ID 2
(barrier 1)

[0, 1.0]

I8 fiducial sensor for angle between robot and fiducial with ID 3
(reference point 1)

[0, 1.0]

I9 fiducial sensor for distance to fiducial with ID 5
(reference point 2)

[0, 1.0]

I10 fiducial sensor for distance to fiducial with ID 4
(barrier 2)

[0, 1.0]

I11 fiducial sensor for angle between robot and fiducial with ID 5
(reference point 1)

[0, 1.0]

69

6 Experiments

Table 6.1 describes the meaning of each input neuron of the artificial neural net-
works used in the following experiments. The distance sensors deliver a value of
0, if the measured object is not within range. The closer an object, the greater the
value the input receives. The two output neurons N0 and N1 correspond to the
speed and the turn angle of the robot, respectively.

6.2.1 Setup 1 - Simple Neural Network

The first experiment starts with a randomly created fully connected artificial neural
network with randomly generated weights. An example initial network is depicted
in figure 6.5. This simple neural network has no hidden nodes. Input node I0 serves
as a bias neuron. The initial value of the bias neuron is 1.0. When a robot reached
the first fiducial the robot controller flips the bias value to -1.0. Reaching the second
fiducial the bias input switches back to 1.0. Thus, the bias acts like a switch. The
corresponding configuration file is shown in listing 6.8.

1 EvolutionaryAlgorithmType ANN
2 PopulationSizeOfIsland 10
3 LoadGenomesFromFiles NO
4
5 NumberOfInputNeurons 12
6 NumberOfOutputNeurons 2
7
8 NumberOfStepsForEvaluation 160
9 NumberOfGenerations 60

10 NumberOfExploitationSteps 50
11
12 DefaultLearningRate 0.3
13 DefaultMutationProbability 0.1
14
15 FitnessFunctionType DISTaCOLL
16 SelectionMode ELITISMaREMAIN
17 SelectionParameter 30.0

Algorithms 6.8: Main parameters of the configuration file for experiment 1.

6.2.2 Setup 2 - Network with Hidden Neurons

In the second experiment a user generated artificial neural network is applied. As
in experiment 1 the weights are generated randomly in the range of -1 to 1. As
illustrated in figure 6.6 the network contains four hidden neurons. The first hidden
node N2 builds a sub-genome with the bias neuron I0, input nodes I6 and I7 as
inputs and N0 as output. Thus, the hidden neuron N2 influences the speed of the
robot according to the distance to reference point 1 and the surrounding barrier.

70

6.2 Experimental Setups

Figure 6.5: Example of initial fully con-
nected graph with random
weights.

Figure 6.6: Initial graph with zero
weights.

Hidden node N4 has the same functionality regarding the second reference point.
N3 and N5 receive the values of the angle between the robot and reference point 1
or 2, respectively, as well as the bias input and transmit their values to output neu-
ron N1, thus adjusting the angle of the robot. Listing 6.9 shows the corresponding
configuration file for the setup of experiment 2.

1 EvolutionaryAlgorithmType ANN
2 PopulationSizeOfIsland 10
3 LoadGenomesFromFiles YES
4
5 NumberOfInputNeurons 12
6 NumberOfOutputNeurons 2

71

6 Experiments

7
8 NumberOfStepsForEvaluation 160
9 NumberOfGenerations 60

10 NumberOfExploitationSteps 50
11
12 DefaultLearningRate 0.3
13 DefaultMutationProbability 0.1
14
15 FitnessFunctionType DISTaCOLL
16 SelectionMode ELITISMaREMAIN
17 SelectionParameter 30.0

Algorithms 6.9: Main parameters of the configuration file for experiment 2.

6.2.3 Setup 3 - Trained Network with Hidden Neurons

The applied network of experiment 3 is the most developed network regarding the
desired task. The topology of the network is the same as of the previous experi-
ment. However, this initial networks are already trained in moving to a reference
point, which means that the initial individuals are capable of solving the given task.
It is particularly interesting here to examine whether the initial genotypes remain
along the evolutionary path.

6.2.4 Setup 4 - Simple Network with Structural Mutation

Because the experiments 1-3 do not investigate the influence and effect of structural
mutation, the fourth experiment applies structural mutation every fifth generation
starting with the same neural network as of the first experiment. Listing 6.10 shows
the main part of the corresponding configuration file for this setup. The rest of the
configuration file remains the same as in the previous listings.

1 EvolutionaryAlgorithmType ANN
2 PopulationSizeOfIsland 10
3 LoadGenomesFromFiles NO
4
5 NumberOfInputNeurons 12
6 NumberOfOutputNeurons 2
7
8 NumberOfStepsForEvaluation 160
9 NumberOfGenerations 60

10 NumberOfExploitationSteps 5

Algorithms 6.10: Main parameters of the configuration file for experiment 4.

72

7 Results and Evaluation

This chapter covers the results of the conducted experiments introduced in chap-
ter 6.2. In the following results and diagrams a fitness value exceeding the value
of 50 corresponds to collectively reaching the first of two reference points. A fit-
ness value greater than 200 meets the achievement of navigating to both fiducials
one after the other within the predefined, available 160 evaluation steps. Also, the
solid lines show the average of the best individuals over all 10 runs. The dotted
lines show the average of the average of all 10 individuals of the population over
all 10 runs. Red lines correspond to the red robot on port 6665 and analogue the
blue lines to the blue robots on port 6666. At the end of each experiment, we ex-
tract the linear genome of the individual of an island which gained the best fitness
value over all 10 runs. These two genomes (the best individual of the island on the
red robot and the best individual of the island on the blue robot) are evaluated in
simulation one more time. However, this time there is no restriction of evaluation
steps and the population size of the island on each robot is one. Herewith, we ex-
amine the evolved behavior more detailed by repositioning the fiducials and their
light barriers to find out if the evolved controllers are able to adapt to the changing
environment.

7.1 Result of Simple Neural Network

Figure 7.1 shows the results of the first experiment. The individuals starting with a
simple fully connected and randomly created initial network increase their fitness
continuously, regardless of the fitness value corresponding to the best individuals
or the average of all 10 individuals of the population. On average, after about 40
generations all the island members accomplished to reach the first reference point
successively. In the best case, the robots succeeded to reach the first fiducial after
about 15 generations. Considering the mean value, within the 60 generations of a
run no individual achieved the goal of moving back and forth between reference
point one and two. An impact of the structural mutation that was carried out after
50 generations cannot be detected in the results of experiment 1.

Figure 7.2 shows the best individuals of the run that contains the highest fitness
value of all 10 runs for the red and the blue robot, respectively. Here and in the
following experiments the term "best" means the individual with the highest fitness
value, not the individual that reached one or two fiducials most often. In this run,

73

7 Results and Evaluation

Figure 7.1: Results of experiment 1.

Figure 7.2: Run that contains the individuals with the highest fitness value of ex-
periment 1.

the best individuals on the red robot almost reached both fiducials one after the
other once, the best individuals on the blue robot twice. During evaluation, it was
observed that either there was not enough time and thus the robot was reset before
reaching fiducial number two or the robot with the lower fitness value passed by

74

7.1 Result of Simple Neural Network

the second barrier (and thus the second reference point) while the other robot was
stuck at the barrier being too far away from the passing robot to be able to overcome
the barrier.

The graphs in figure 7.3 and 7.4 show the artificial neural networks of the indi-
viduals which gained the highest fitness values of their population.

Figure 7.3: Graph of the individual
with the highest fitness of
the island on the red robot.

Figure 7.4: Graph of the individual
with the highest fitness of
the island on the blue robot.

The picture sequences of table 7.1 and 7.2 illustrate the trajectories of the evolved
robots according to their linear genomes depicted in figure 7.3 and 7.4. Pictures a-h
show the common movement to reference point 1 in the right upper corner of the
arena. Picture i of table 7.2 shows the red robot setting out to the second reference

75

7 Results and Evaluation

point on the left. The blue robot moves to reference point 2 as well (picture k and
l) and get stuck at the barrier of fiducial 2 (picture m and n) until the red robot is
within reach. Then both robots drive back to reference point 1.

Instead of moving on together to the second reference point both robots make a
U-turn in front of the second barrier and drive back to object 1. Thus, the evolved
robots of this experiment only fulfilled the subtask of jointly moving to reference
point 1.

Table 7.1: First part of the picture sequence illustrating evolved robots of experi-
ment 1.

a e

b f

c g

d h

76

7.2 Result of Network with Hidden Neurons

Table 7.2: Second part of the picture sequence illustrating evolved robots of experi-
ment 1.

i m

j n

k o

l p

7.2 Result of Network with Hidden Neurons

Compared with the first experiment, the fitness in experiment 2 (see figure 7.5)
starts to increase a little later after about 20 generations. However, the fitness value
then rises more steeply to a higher value at the end of the 60 generations. Regarding

77

7 Results and Evaluation

the average fitness, this time an effect of the structural mutation at generation 50
can be noticed by a short decline of the fitness for a few generations.

Figure 7.5: Results of experiment 2.

Figure 7.6: Run that contains the individuals with the highest fitness value of ex-
periment 2.

In this experiment using artificial neural networks which contain hidden nodes,

78

7.2 Result of Network with Hidden Neurons

after about 20 generations the best individuals of the population reached the first
reference point in common. The average achieved that subtask after about 40 gen-
erations.

In the second experiment also the fitness of the best individuals in figure 7.6
exceeded those of experiment 1. The best individual on the red robot almost suc-
ceeded in reaching both fiducials for the first time after approximately 25 genera-
tions with a fitness value of 175, the second time after about 37 generation and then
even a few generations in a row. After about 55 generation the red robot reached
the second reference point with a fitness value of 240. The best individual on the
blue robot succeeded once at the end of the run in moving to both fiducials.

Figure 7.7: Graph of the individual
with the highest fitness of
the island on the red robot.

Figure 7.8: Graph of the individual
with the highest fitness of
the island on the blue robot.

79

7 Results and Evaluation

Note that in this example the both robots did not reach the second reference point
together and/or simultaneously in the given 160 evaluation steps. Also note that
in experiment 1 as well as in experiment 2 the fitness of the best individuals of each
population is leveling off at a value of about 100 in the first third of the whole run
of 60 generations. That corresponds to the joint achievement of the robots subgoal
to move to the first reference point. Consequently, the controller which is able to
solve the first subtask remains in the population further on.

Figure 7.7 and figure 7.8 show the graphs of the individuals which gained the
highest fitness in the second experiment.

Table 7.3: Picture sequence illustrating evolved robots of experiment 2.

a f k

b g l

c h m

d i n

e j

80

7.3 Result of Trained Network with Hidden Neurons

Table 7.3 demonstrates the trajectory of two evolved robots of the second exper-
iment. At the beginning both robots make a turn and then drive backwards as can
be seen in picture a. The blue robot sets out directly in the direction of reference
point 1, whereas for the moment the red robot is attracted by the second reference
point (picture b and c). After circling around the second target object for a few steps
the red robot starts out to reference point 1 where the blue robot is already waiting,
or in other words, the blue robot is stuck at the light barrier of fiducial 1 (see pic-
ture d). In picture e and f both robots reach the first fiducial and start moving to
reference point 2. The remaining pictures g to n show the robots moving back and
forth between both fiducials.

7.3 Result of Trained Network with Hidden Neurons

As depicted in figure 7.9 the individuals started with a higher fitness compared to
the population members of the previous experiments. As well as in experiment 1
and 2 the average of the best and the average fitness increased continuously. How-
ever, in experiment 3 the increase turned out to be significantly smaller and would
at best stagnate, if not decline, regarding the average of the best individuals. Addi-
tionally, the fitness range of figure 7.9 is much lower compared to the fitness range
of the first two experiments. Thus, all in all, the average fitness of the individuals
which initially were able to perform well turns out to be lower compared to the
experiments with the untrained artificial neural networks.

Figure 7.9: Results of experiment 3.

81

7 Results and Evaluation

On the other hand, regarding the run containing the individual with the highest
fitness value of all runs, figure 7.10 reveals the two individuals with the maximum
fitness of all 4 experiments with a fitness value greater than 250. In addition, those
two individuals reached the second fiducial simultaneously. Otherwise, as well as
in the experiments before, the fitness leveled off at a fitness value of about 100. But
this time, there was no such kind of jump in the first third of the generations but a
fluctuation up to generation 18.

Figure 7.10: Run that contains the individuals with the highest fitness value of ex-
periment 3.

Considering the average fitness functions at generation 50, structural mutation
caused a slight and short decline of the fitness. In conclusion, the results of exper-
iment 3 show that the initial 10 individuals of a population did not remain in no
run, although they performed quite well.

Figure 7.11 and 7.12 show the phenotypes of the linear genomes of the individ-
uals with the highest fitness. When one examines the two graphs, it can be ascer-
tained that the sign of the edge weights of both graphs match. Also the size of the
weights are proportionally very similar.

The picture sequence of table 7.4 depicts the trajectories of evolved robots by
experiment 3. Picture a shows the initial position whereas the pictures b, c and
d illustrate the trajectories of the red and the blue robot from the start position to
reference point 1. After reaching the first object both robots move straight to the
second target object (see picture e-i). Pictures j-p show another cycling between
reference point 1 and 2. This time both robots take another route when moving to

82

7.3 Result of Trained Network with Hidden Neurons

Figure 7.11: Graph of the individual
with the highest fitness on
the red robot for experi-
ment 3.

Figure 7.12: Graph of the individual
with the highest fitness on
the blue robot for experi-
ment 3.

reference point 1 than in the beginning. In particular the red robot drives a bend
before setting out straight to the centre of the barrier around reference point 1.

The second table of picture sequences demonstrate another experiment with the
same individuals as of the previous experiment. This time the initial positions of

83

7 Results and Evaluation

Table 7.4: Picture sequence illustrating evolved robots of experiment 3.

a g m

b h n

c i o

d j p

e k

f l

the target objects and their surrounding barriers are changed (see picture a in ta-
ble 7.4). Reference point 1 and the barrier are shifted upwards in the arena by 20cm
from coordinate (30,10) to (30,30). The second reference point and the barrier are
repositioned from (0,-20) to (-30,30). The start position of the robots remains the
same as before.

84

7.3 Result of Trained Network with Hidden Neurons

Table 7.5: Second picture sequence illustrating evolved robots of experiment 3 with
repositioned fiducials.

a g m

b h n

c i o

d j p

e k q

f l

Table 7.4 shows the corresponding trajectories of the robots. Both robots drive
a right-hand bend in the direction of reference point 1 as depicted in the pictures

85

7 Results and Evaluation

b-f. They reach the first object from the east. The blue robot directly starts out
to reference point 2 (picture g) while the red robot firstly circles around object 1
before setting out straight to object 2 as well (pictures h-j). The remaining figures
k-q illustrate the further commute back and forth between object 1 and 2. It will be
noted that the blue robot is a few steps ahead. But still the two individuals manage
to reach the reference points one after the other.

7.4 Result of Simple Network with Structural Mutation

The fourth experiment is oriented on the investigation of structural mutation. Thus,
structural mutation is carried out after every fifth generation, hence 10 times more
frequent than in the previous experiments.

Figure 7.13: Results of experiment 4.

When comparing the results of the average fitness of experiment 4 in figure 7.13
with the results of experiment 1 shown in figure 7.1, it is noticeable that the curves
of the fitness functions resemble each other regarding the first third. However, the
fitness values of experiment 4 fluctuate more strongly and increase slower. Note
that experiment 1 and 4 start with the same initial parameters (except the frequency
of structural mutation) and the same artificial neural network, randomly created

86

7.4 Result of Simple Network with Structural Mutation

Figure 7.14: Run that contains the individuals with the highest fitness value of ex-
periment 4.

and with a full connection between the input and output neurons of the net. As a
result of the comparison one can say, that the structural mutation is responsible for
the slightly stronger fluctuation in the fitness curves of experiment 4.

Figure 7.14 illustrates the best individual of a generation for all 60 generations
for the red and the blue robot, respectively. The blue robot achieved the subtask
of moving to the first reference point within the first 20 generations a few times
and almost reached the second reference point after about 50 generations. The best
individuals on the red robot performed worse in this run. However, over all 10
runs, no individual, neither on the red robot nor on the blue robot, reached the
second fiducial.

The graphs in figure 7.15 and figure 7.16 show the artificial neural networks of
evolved individuals of experiment 4. Although the linear genomes of graph 7.15
and graph 7.15 appeared in the last third of the run (in generation 50) there are
almost no changes regarding structural mutation except a recurrent jumper and
one hidden node in the network of the red robot. Remember that this experiment
started with randomly created and fully connected networks with no hidden nodes,
recurrent jumper or forward jumper.

However, the graph of figure 7.17 illustrates a more complex network with some

87

7 Results and Evaluation

Figure 7.15: Graph of an individual of
the red robot of experi-
ment 4.

Figure 7.16: Graph of an individual of
the blue robot of experi-
ment 4.

hidden nodes and a recurrent jumper at output neuron N1. This net appeared in
generation 55 of experiment 4, but - regarding 60 generations - could not reach a
fitness value as high as the fitness of the individuals corresponding to the graphs of
experiment 4 introduced above. Even so structural mutation was carried out after
every fifth generation most of the generated graphs show almost no change.

Note that, although weights are perturbed by parametric mutation only with
small values, nevertheless weights with a value greater than 5 had occurred in the
artificial neural network shown in figure 7.15. For example, the edge from input
node I6 to output neuron N0 is weighted by a value of -5.51.

The trajectories of two evolved robots of the last experiment can be seen in ta-
ble 7.6 Both robots start out driving backwards in picture b. The blue robot moves

88

7.4 Result of Simple Network with Structural Mutation

Figure 7.17: Results of experiment 4

straight to the first reference point until it get stuck at the barrier as shown in the
figures c-f. The red robot turns in a few circles before moving to object 1 (picture
c-g). After both robots reached reference point 1 they circle around the first green
object. They continue doing so and do not commute to the second target object.

89

7 Results and Evaluation

Table 7.6: Picture sequence illustrating evolved robots corresponding to the graphs
of figure 7.15 and 7.16 of experiment 4.

a f

b g

c h

d i

e j

90

8 Conclusion

In this thesis, it was examined whether members of a swarm of robots are able to
develop cooperative or coordinated behavior to collectively solve a common task.
For this purpose our implementations were build on the EvoRoF framework. Ex-
isting functionalities were enhanced to facilitate the evaluation of robots online and
onboard in the simulation. In order to test the framework after the implementation,
smaller experiments with two robots were executed such as collision avoidance
with random walk and jointly moving to a reference point. Afterwards, 4 exper-
iments were carried out to share the common goal but start with different initial
starting conditions. This can be seen as an increase of the appropriateness or the
power of the underlying artificial neural networks. Thus, in experiment 1 a simple
net was chosen which simply connects the inputs and the output neurons whereas
experiment 2 is based on a predefined user generated network and experiment 3
is based on the same predefined network, which was, trained by previous exper-
iments to be able to solve the task. The fourth experiment investigated the effect
of structural mutation on the development of swarm robotics. Comparing the re-
sults of these experiments revealed, that the robots of experiment 2 have developed
to become the most efficient individuals. Contrary to our expectations, the robots
of experiment 3 have the worst record regarding the average of all runs. But on
the other hand the individuals that gained the best fitness over all experiments ap-
peared relatively early in this experiment. The results of experiment 4 are showing
that networks generated through structural mutation improve as well, but not as
fast as the networks of the previous experiments. This shows the importance of the
right balance between parametric and structural mutation. Furthermore we can
say that completely untrained networks develop faster and perform better at the
end as predefined and partly trained networks.

All in all, it has been shown that the existing framework this thesis is based on
works well, meets all requirements and provides a promising approach for further
investigations in the field of evolutionary approaches. The task of this thesis to
develop coordinated behavior could be solved by using the EvoRoF framework.
For future work it might be interesting to investigate more complex scenarios such
as moving to several reference points using a larger population or more than two
robots in the simulation. When the associated hardware is available, it will be very
interesting to observe how the evolved simulated robots in this thesis perform on
their real counterpart.

91

9 Appendix

karobot.inc

1 define karobot_ir ranger (
2 # number of ir sensors
3 scount 8
4
5 # define the pose of each transducer
6 # [xpos ypos heading]
7 spose[0] [0.5 0.4 0]
8 spose[1] [0.5 -0.4 0]
9 spose[2] [0.4 -0.5 270]

10 spose[3] [-0.4 -0.5 270]
11 spose[4] [-0.5 -0.4 180]
12 spose[5] [-0.5 0.4 180]
13 spose[6] [-0.4 0.5 90]
14 spose[7] [0.4 0.5 90]
15
16 # define the field of view of each transducer
17 # [range_min range_max view_angle]
18 sview [0.05 2.0 30]
19
20 # define the size of each transducer
21 # [xsize ysize] in meters
22 ssize [0.01 0.05]
23)
24 define karobot position (
25 # actual size
26 size [1 1 1]
27
28 block(
29 points 6
30 point[0] [0.75 0]
31 point[1] [1 0.25]
32 point[2] [1 0.75]
33 point[3] [0.75 1]
34 point[4] [0 1]
35 point[5] [0 0]
36)
37

93

9 Appendix

38 drive "diff" # differential steering model
39
40 # sensors attached to karobot
41 karobot_ir()
42 karobot_bl()
43 obstacle_return 1 # can hit things
44 laser_return 1 # reflects laser beams
45 ranger_return 1 # reflects sonar beams
46 blob_return 0 # seen by blobfinders
47)

Algorithms 9.1: The Stage file karobot.inc.

simple.world

1 include "karobot.inc"
2
3 # milliseconds per update step
4 interval_sim 100
5
6 # real-time milliseconds per update step
7 interval_real 100
8
9 window (

10 size [700.000 600.00]
11 scale 20
12 show_data 1
13 show_flags 1
14)
15 define floorplan model (
16 color "gray30"
17 boundary 1 # enable the bounding box
18
19 gui_nose 0
20 gui_grid 0
21 gui_move 0
22 gui_outline 0
23 gripper_return 0
24 fiducial_return 0
25 laser_return 1
26)
27 floorplan (
28 bitmap "empty_ellipse.png"
29 size [120 80 3]
30)
31 define beacon model(
32 size [0.200 0.200 1.000]
33 gui_movemask 0

94

34 gui_nose 0
35 obstacle_return 0
36 laser_return 0
37 ranger_return 1
38)
39
40 # the target objects
41 beacon(pose [30.0 10.0 0.1 0] color "green" fiducial_return

3)
42 beacon(pose [0.0 -20.0 0.1 0] color "green" fiducial_return

5)
43 #beacon(pose [30.0 30.0 0.1 0] color "green" fiducial_return

3)
44 #beacon(pose [-30.0 30.0 0.1 0] color "green"

fiducial_return 5)
45
46 define barrier position (
47 size [10 10 0]
48 sorigin [0 0 0]
49 boundary 0
50
51 # coordinates for a circle serving as barrier around the

target object
52 block(
53 points 24
54 point[0] [1 0]
55 point[1] [0.97 0.25]
56 point[2] [0.85 0.55]
57 point[3] [0.75 0.675]
58 point[4] [0.55 0.85]
59 point[5] [0.25 0.97]
60 point[6] [0 1]
61 point[7] [-0.25 0.97]
62 point[8] [-0.55 0.85]
63 point[9] [-0.75 0.675]
64 point[10] [-0.85 0.55]
65 point[11] [-0.97 0.25]
66 point[12] [-1.0 0]
67 point[13] [-0.97 -0.25]
68 point[14] [-0.85 -0.55]
69 point[15] [-0.75 -0.675]
70 point[16] [-0.55 -0.85]
71 point[17] [-0.25 -0.97]
72 point[18] [0 -1]
73 point[19] [0.25 -0.97]
74 point[20] [0.55 -0.85]
75 point[21] [0.75 -0.675]

95

9 Appendix

76 point[22] [0.85 -0.55]
77 point[23] [0.97 -0.25]
78)
79 gui_movemask 0
80 gui_nose 0
81 gui_outline 0
82 obstacle_return 0
83 laser_return 0
84 ranger_return 0
85)
86
87 # the light barriers around the target objects
88 barrier(pose [30.0 10.0 0 0] color "yellow" fiducial_return

2)
89 barrier(pose [0.0 -20.0 0 0] color "yellow" fiducial_return

4)
90 #barrier(pose [30.0 30.0 0 0] color "yellow" fiducial_return

2)
91 #barrier(pose [-30.0 30.0 0 0] color "yellow"

fiducial_return 4)
92
93 # define the two fiducial sensors for the robot
94 define myBot karobot (
95 fiducial (
96 pose [0.000 0.000 -1.000 0.000]
97 range_min 0
98 range_max 100
99 range_max_id 100

100 fov 360 # sensor range in degrees
101)
102 fiducial (
103 pose [0.000 0.000 0.000 0.000]
104 range_min 0
105 range_max 100
106 range_max_id 100
107 fov 360 # sensor range in degrees
108)
109 localization "gps"
110 localization_origin [0 0 0 0]
111)
112
113 # position the red robot in the arena
114 myBot (
115 name "myrobot1"
116 pose [-20 6 0 0] # initial position
117 color "red"
118 fiducial_return 1

96

119)
120
121 # position the blue robot in the arena
122 myBot (
123 name "myrobot2"
124 pose [-20 -7 0 0] # initial position
125 color "blue"
126 fiducial_return 1
127)

Algorithms 9.2: The Stage world file simple.world.

fiducialfinder.cfg

1 driver (
2 name "stage"
3 plugin "stageplugin"
4 provides ["6665:simulation:0"]
5 # load the named file into the simulator
6 worldfile "simple.world"
7)
8 driver (
9 name "stage"

10 provides ["6666:simulation:0"]
11)
12
13 # driver for the red robot
14 driver (
15 name "stage"
16 provides ["6665:position2d:0" "6665:sonar:0" "6665:fiducial:0" "6665:fiducial

:1"]
17 model "myrobot1"
18)
19
20 # driver for the blue robot
21 driver (
22 name "stage"
23 provides ["6666:position2d:0" "6666:sonar:0" "6666:fiducial:0" "6666:fiducial

:1"]
24 model "myrobot2"
25)

Algorithms 9.3: The Stage configuration file fiducialfinder.cfg.

97

Bibliography

[All] allmystery. http://www.allmystery.de/themen/gw59952. Ac-
cessed: 01/08/2012.

[ASP94] Peter J. Angeline, Gregory M. Saunders, and Jordan B. Pollack. An
evolutionary algorithm that constructs recurrent neural networks. IEEE
Transactions on Neural Networks, 5:54–65, 1994.

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence:
From Natural to Articial Systems. Oxford University Press, Inc., 1999.

[BHE09] N. Bredeche, E. Haasdijk, and A.E. Eiben. On-line, on-board evolution
of robot controllers. In Proceedings of the 9th international conference on
Artificial Evolution (Evolution Artificielle - EA’09), 2009.

[Bre04] Nicholas Bredeche. Contributions to Evolutionary Design of Embodied
Agents. PhD thesis, Univ. Paris-Sud XI, INRIA, CNRS, 2004.

[BTB+07] Gianluca Baldassarre, Vito Trianni, Michael Bonani, Francesco Mon-
dada, Marco Dorigo, and Stefano Nolfi. Self-Organized Coordinated
Motion in Groups of Physically Connected Robots. Systems, Man and
Cybernetics, Part B, IEEE Transactions on, 37(1):224–239, 2007.

[CŁ00] Ernest Czogała and Jacek Łȩski. Fuzzy and neuro-fuzzy intelligent sys-
tems. Heidelberg: Physica-Verlag, 2000.

[CN10] Sarah Chasins and Ivana Ng. Fitness functions in neat-evolved maze
solving robots, 2010.

[DBH01] Georg Dorffner, Horst Bischof, and Kurt Hornik, editors. Artificial Neu-
ral Networks - ICANN 2001, International Conference Vienna, Austria, Au-
gust 21-25, 2001 Proceedings, volume 2130 of Lecture Notes in Computer
Science. Springer, 2001.

[DCP+11] Frederick Ducatelle, Gianni A. Di Caro, Carlo Pinciroli, Francesco Mon-
dada, and Luca Maria Gambardella. Communication assisted naviga-
tion in robotic swarms: Self-organization and cooperation. In IROS,
pages 4981–4988. IEEE, 2011.

A

http://www.allmystery.de/themen/gw59952

Bibliography

[Gra] Graphviz - graph visualization software. http://www.graphviz.
org/. Accessed: 12/15/2011.

[JM97] David S. Johnson and Lyle A. Mcgeoch. The Traveling Salesman Problem:
A Case Study in Local Optimization. 1997.

[KHE11] Giorgos Karafotias, Evert Haasdijk, and Agoston Endre Eiben. An al-
gorithm for distributed on-line, on-board evolutionary robotics. In Pro-
ceedings of the 13th annual conference on Genetic and evolutionary computa-
tion, GECCO ’11, pages 171–178, New York, NY, USA, 2011. ACM.

[KMEK09] Yohannes Kassahun, Jan Hendrik Metzen, Mark Edgington, and Frank
Kirchner. Incremental acquisition of neural structures through evolu-
tion. In Design and Control of Intelligent Robotic Systems, pages 187–208.
2009.

[KS05a] Y. Kassahun and G. Sommer. Evolution of neural networks through in-
cremental acquisition of neural structures. Technical Report Number
0508, Christian-Albrechts-Universität zu Kiel, Institut für Informatik
und Praktische Mathematik, Juni 2005.

[KS05b] Yohannes Kassahun and Gerald Sommer. Efficient reinforcement
learning through evolutionary acquisition of neural topologies. In
ESANN’05, pages 259–266, 2005.

[KSE+07] Yohannes Kassahun, Gerald Sommer, Mark Edgington, Jan Hendrik
Metzen, and Frank Kirchner. Common genetic encoding for both di-
rect and indirect encodings of networks. In In Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO 2007, pages 1029–
1036. ACM Press, 2007.

[Les07] Arthur M Lesk. Introduction to Genomics. Oxford University Press, Ox-
ford, 2007.

[Liv11] D.J. Livingstone. Artificial Neural Networks: Methods and Applications.
Methods in Molecular Biology. Humana Press, 2011.

[MB11] Jean-Marc Montanier and Nicolas Bredeche. Embedded Evolutionary
Robotics: The (1+1)-Restart-Online Adaptation Algorithm. In Springer
Series: Studies in Computational Intelligence, editor, New Horizons in
Evolutionary Robotics, pages 155–169. Springer, 2011.

[Nat] National geographic - "the genius of swarms" by peter miller.
http://ngm.nationalgeographic.com/2007/07/swarms/
miller-text/7. Accessed: 01/06/2012.

B

http://www.graphviz.org/
http://www.graphviz.org/
http://ngm.nationalgeographic.com/2007/07/swarms/miller-text/7
http://ngm.nationalgeographic.com/2007/07/swarms/miller-text/7

Bibliography

[NF00] Stefano Nolfi and Dario Floreano. Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cam-
bridge, MA, USA, 2000.

[Nis97] Volker Nissen. Einführung in evolutionäre Algorithmen: Optimierung nach
dem Vorbild der Evolution. Vieweg, 1997.

[Pla] Player/stage. http://playerstage.sourceforge.net/. Ac-
cessed: 01/03/2012.

[Rei00] Heinrich Reichert. Neurobiologie. Thieme, Stuttgart, 2000.

[Rep] Replicator - robotic evolutionary self-programming and self-
assembling organisms. http://www.replicators.eu/
tiki-index.php. Accessed: 01/07/2012.

[SADL12] Florian Schlachter, Patrick Alschbach, Katja Deuschl, and Paul Levi.
Evorof - a framework for evolutionary robotics, 2012. to be published.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement learning i: In-
troduction, 1998.

[Scia] Sciencegarden. http://www.sciencegarden.de/content/
2008-08/die-natur-als-vorbild-fuer-die-wissenschaft.
Accessed: 01/06/2012.

[Scib] Sciencegarden. http://www.sciencegarden.de/content/
2008-08/schwaermen-und-schwaermen-lassen-gemeinsam-ans-ziel.
Accessed: 01/06/2012.

[Sim] Simon Garnier swarm behaviours in natural and ar-
tificial systems. http://www.simongarnier.com/
swarm-intelligence-journal/. Accessed: 01/08/2012.

[SM02] Kenneth O. Stanley and Risto Miikkulainen. Efficient reinforcement
learning through evolving neural network topologies. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2002),
page 9, San Francisco, 2002. Morgan Kaufmann.

[Sta09] Kenneth O. Stanley. Efficient Evolution of Neural Networks Through Com-
plexification. PhD thesis, Department of Computer Sciences, The Uni-
versity of Texas at Austin, 2009.

[Sym] Symbrion - symbiotic evolutionary robot organisms. http://
symbrion.org/tiki-index.php. Accessed: 01/07/2012.

C

http://playerstage.sourceforge.net/
http://www.replicators.eu/tiki-index.php
http://www.replicators.eu/tiki-index.php
http://www.sciencegarden.de/content/2008-08/die-natur-als-vorbild-fuer-die-wissenschaft
http://www.sciencegarden.de/content/2008-08/die-natur-als-vorbild-fuer-die-wissenschaft
http://www.sciencegarden.de/content/2008-08/schwaermen-und-schwaermen-lassen-gemeinsam-ans-ziel
http://www.sciencegarden.de/content/2008-08/schwaermen-und-schwaermen-lassen-gemeinsam-ans-ziel
http://www.simongarnier.com/swarm-intelligence-journal/
http://www.simongarnier.com/swarm-intelligence-journal/
http://symbrion.org/tiki-index.php
http://symbrion.org/tiki-index.php

Bibliography

[Tec] Tech-faq. http://www.tech-faq.com/swarm-intelligence.
html. Accessed: 01/08/2012.

[The] The guardian. http://www.guardian.co.uk/technology/
2009/sep/30/anti-virus-software-ants. Accessed:
01/08/2012.

[Tok] Milan Paris Tokyo. Raul rojas neural networks a systematic introduc-
tion.

[WKF09] Markus Waibel, Laurent Keller, and Dario Floreano. Genetic Team
Composition and Level of Selection in the Evolution of Cooperation.
IEEE Transactions on Evolutionary Computation, 13(3):648–660, 2009.

[Yao99] Xin Yao. Evolving artificial neural networks, 1999.

D

http://www.tech-faq.com/swarm-intelligence.html
http://www.tech-faq.com/swarm-intelligence.html
http://www.guardian.co.uk/technology/2009/sep/30/anti-virus-software-ants
http://www.guardian.co.uk/technology/2009/sep/30/anti-virus-software-ants

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Katja Deuschl)

	List of Figures
	List of Tables
	Introduction
	Symbrion Replicator
	Outline

	Problem Statement
	Nature as a Role Model
	Swarm Behavior
	Swarm Robotics

	Biological Neural Network
	Motivation
	Neural Networks
	Information Transfer in Neural Networks
	Types of Neurons

	Artificial Model of Neural Network
	Artificial Neurons
	Artificial Neural Network
	Learning in Artificial Neural Networks
	Mutation of Artificial Neural Networks
	Reinforcement Learning vs. Other Kinds of Learning

	Evolutionary Approaches
	EA - Evolutionary Algorithms
	Related Work
	CGE - Common Genetic Encoding
	GNARL - GeNeralized Acquisition of Recurrent Links
	NEAT - Neuroevolution of Augmenting Topologies
	EANT - Evolutionary Acquisition of Neural Network Topologies

	Implementation
	Applied Software
	Simulation Tool
	Documentation and Visualization Tool

	The Framework
	EvoRoF

	Execution in Simulation
	Mapping the Scene

	Experiments
	Preliminary Considerations
	Choice of Fitness Function
	Choice of Selection Function
	Choice of Team Composition and Level of Selection
	Online and Onboard Evolution
	Execution of the Task in Simulation

	Experimental Setups
	Setup 1 - Simple Neural Network
	Setup 2 - Network with Hidden Neurons
	Setup 3 - Trained Network with Hidden Neurons
	Setup 4 - Simple Network with Structural Mutation

	Results and Evaluation
	Result of Simple Neural Network
	Result of Network with Hidden Neurons
	Result of Trained Network with Hidden Neurons
	Result of Simple Network with Structural Mutation

	Conclusion
	Appendix
	Bibliography

