
Institut für Parallele und Verteilte Systeme

Universitätsstraße 38

D-70569 Stuttgart

Bachelorarbeit Nr. 2350

Analysis of Methods for
Segmentation and Representation

of Time Series for the
Recognition of Motion Pattern

Felix Brucker

Course of Study: Technische Kybernetik

Examiner: Prof. Dr. rer. nat. habil. Paul Levi

Supervisor: Dipl.-Inf. Kai Häussermann

Commenced: 22.08.2011

Completed: 30.03.2012

CR-Classification: I.2.1, I.2.4, I.2.6, I.2.11, I.5.1, I.5.3

Abstract

In the context of the EU project RoboEarth robots shall exchange their knowledge, in

the form of platform independent information, in a worldwide network. The goal is

that robots get access to knowledge and experience other robots collected to solve so

far unknown problems. To provide complex motion sequences in order to solve such

problems, it is necessary to represent them in a platform independent way. Therefore,

in a pre-process, the movement records have to be divided into different segments and

labelled clearly. In this thesis such a technique for performing this task is analysed and

tested. Based on multidimensional continuous sensor signals using Microsofts Kinect,

motion sequences are divided into single, recurring movement primitives. For this pur-

pose, time series of the positions of different body parts are discretised and represented

and later recognised with the help of Hidden Markov Models.

Deutsche Zusammenfassung

Im Rahmen des EU-Projekts RoboEarth soll erlerntes Wissen einzelner Roboter in

Form von Plattform-unabhängigen Informationen, innerhalb eines weltweiten Netzw-

erks, anderen Robotern zur Verfügung gestellt werden. Ziel ist es, dass Roboter für

bisher unbekannte Aufgaben vom Wissen und gesammelten Erfahrung anderer Roboter

profitieren. Um komplexe Bewegungsabläufe zur Lösung bestimmter Aufgaben an-

deren Robotern zur Verfügung zu stellen, müssen diese in Plattform-unabhängiger Form

repräsentiert werden. Dazu müssen Bewegungsaufzeichnungen zunächst in einer Vorver-

arbeitung in einzelne Segmente aufgeteilt und anschließend eindeutig bezeichnet werden.

In dieser Thesis werden hierfür Bewegungen in Form von Zeitreihen aus mehrdimen-

sionalen Sensorsignalen in zwei Stufen diskretisiert. Bewegungsabläufe werden dabei

in kleinere eindeutige Bewegungsprimitive aufgeteilt, welche wiederum mit Hilfe einer

Zeitreihenrepräsentation Plattform-unabhängig gemacht werden. Als Sensor dient die

Spielkonsole-Erweiterung Kinect von Microsoft. Mit Hilfe von Abstandsberechnungen

der Zeitreihenrepräsentationen sowie Hidden Markov Modellen erfolgt anschließend die

Erkennung der Bewegungen.

Contents i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Outline . 2

2 The Microsoft Kinect System 4

3 Representing Time Series 7

3.1 Normalisation . 8

3.2 PAA - Piecewise Aggregate Approximation 8

3.3 SAX - Symbolic Aggregate Approximation 10

4 Measuring Distances 14

5 Markov Models 18

5.1 Markov Chains . 19

5.2 Hidden Markov Models . 22

5.3 The Forward-Backward Algorithm . 24

5.3.1 The Forward Procedure . 24

5.3.2 The Backward Procedure . 25

5.4 The Baum-Welch-Algorithm . 26

5.5 Zero Entries and Training Sets . 30

5.6 Left-Right Models . 32

6 Experimental Results 34

6.1 Experiment procedure . 34

6.2 The motion primitives and complex gestures 36

6.3 Results . 37

Contents ii

6.4 Conclusion . 40

List of Figures 41

List of Tables 42

Bibliography 43

1 Introduction 1

1 Introduction

1.1 Motivation

So far, most robots were created to manage one specific task. But the problems robots

are supposed to solve are becoming more and more complex and therefore robots need to

be more versatile. For example, some robots have been created in order to to make them

walk or grab objects as best as possible while others have been made to test methods

for image, speech or motion recognition. As all the methods and solutions for those

problems become better and more stable, one is interested in combining them in a single

robot. However it is still very complex and time-consuming to teach a robot a solution

for every single problem. An idea to avoid this issue is RoboEarth [1][2]. The goal is that

robots worldwide share their knowledge and experience. Each robot which is confronted

with an unknown task should be able to check if other robots already solved the problem

and then use their experience to accomplish the task. Because every robot is built and

equipped differently, it is of course necessary to provide the information in an abstract

and universal way.

One kind of information that could be shared through RoboEarth are recognized motion

sequences. Again it is necessary to provide the information about those motion sequences

in an abstract and platform independent form, so robots with, for example, different kind

of sensors are still able to use it. One way to fulfil this condition is to divide these motion

sequences into several different parts. The idea is that every motion consists of several

specifiable movement primitives, which are transformed into an abstract and platform

independent way.

In this thesis this task shall be accomplished with the discretisation and representation of

time series. Multidimensional continuous sensor signals are used for time series, which

1 Introduction 2

are then discretised and represented in a symbolic domain. These clearly indicated

movement primitives can then be recognized and assembled to complete gestures. The

idea of the whole procedure is shown in Figure 1.1.

Figure 1.1: The whole procedure from the movement records to the time series discreti-

sation up to the recognition of the complete gesture. The dashed boxes are

the saved platform independent samples, which can be shared between the

robots.

The procedure is split into two parts and provides two kinds of platform independent

movement samples. On the one hand are the motion primitives and on the other hand

are the complex gestures, which are sequences of the former. Both of them can be shared

between robots and used differently. It is possible to let a robot only access the abstract

samples of the gestures and define the motion primitives on its own. But it is also

possible to access only the samples of the primitives and create new complex gesture out

of them.

1.2 Thesis Outline

This thesis shall show, analyse and test a process as described above. The used time

series are based on the positions of different body parts in space. These positions are

recorded using the Microsoft Kinect system. It is introduced in Chapter 2. Chapter 3

deals with the representation and discretisation of the time series in order to produce the

1 Introduction 3

motion primitives. The algorithm which is used for this purpose in this work is called

SAX [11][12] and is explained in Section 3.3. Chapter 4 covers the distance measurement,

which is necessary for comparing the discretised time series and hence for recognising

the motion primitives.

The second part of the described procedure is covered by Chapter 5. It explains Markov

Models, especially Hidden Markov Models [14], which are used to recognize the complete

gestures out of the sequence of motion primitives. It also handles the Baum-Welch

algorithm [13] in Section 5.4, which is used to train the models.

Finally, in Chapter 6 the whole procedure is tested and the results are analysed.

2 The Microsoft Kinect System 4

2 The Microsoft Kinect System

There are many different ways to obtain time series. But in most cases they come from

some kind of sensor. For gesture recognition in particular, the most used ones are video

cameras, accelerator sensors, wired gloves and time-of-flight cameras. This thesis uses

the Kinect system from Microsoft shown in Figure 2.1.

Figure 2.1: The Kinect system from Microsoft.

The Kinect is an add-on device for Microsofts XBox360, mainly developed by Microsoft

itself and PrimeSense [4]. Its purpose is to enable playing video games without any

kind of controller by recognising the players movements. While Microsofts competitors

Nintendos Wii and Sonys PlayStation Move are using accelerator sensors installed in

their controllers, the Kinect mainly uses a depth mapping camera. Altogether, the

Kinect consists of a RGB camera, infra-red laser projector, monochrome CMOS sensor,

four microphones and a motor, which enables small turns to follow the players.

The most interesting part is of course the IR projector and sensor. The Projector is more

precisely a near-infra-red laser [3]. It speckles a grid of dots over the whole room and

2 The Microsoft Kinect System 5

the players by shining through a micro-patterned plastic lens. The reflected light from

all those single spots is recorded by the CMOS sensor. The way the pattern changed

reveals the distance of the corresponding part of the grid. With this information a depth

map is created as you can see in figure 2.2. The resolution in depth as well as x and y

direction is around one centimetre.

Figure 2.2: This picture shows a coloured version of the depth map the Kinect is creat-

ing.

Using a near-infra-red laser has the great advantage, that the depth-mapping system

is independent of the ambient light situation. Of course, this isn’t true for the RGB

camera, which is also a CMOS sensor. Both sensors are read out at 30 Hz and provide

images with a resolution of 480 × 640. It is basically used for facial and hand recognition.

The microphones enable voice recognition. They are aligned as an array to localise the

sound source and to make noise reduction easier. The Kinect can easily be connected

via USB.

The software detects every person entering the covered area. By performing a defined

pose you get recognized as an active player. According to PrimeSense the software can

follow up to 64 persons. Actually, because of computing efficiency, only two persons

can be active players. Once a person is recognized as active, a skeleton representing

the persons body is calculated, shown in figure 2.3. The skeleton consists of 15 joints

like Head, Hands, Knees etc. For each joint the three coordinates are recorded leading

to an three dimensional representation of the player. The high resolution of the depth

map and noise reduction enable very good results in obtaining time series of these joint

positions.

2 The Microsoft Kinect System 6

Figure 2.3: The Kinect detects any person and tracks it. The position of several joints

form every active player are calculated resulting in a skeleton.

The Kinect was first released in the USA on November 4, 2010, followed by Europe and

Japan. After 60 days, 8 million units have been sold. According to Guinness World

Records its the fastest-selling consumer electronics device, even beating Apples iPhone

[5]. On release its price has been around USD 150$ in the USA. Because of this low price

and the possibilities its offering, the Kinect is used for many non-playing experiments,

often called ’Kinect Hacks’, and is quite popular among scientists and engineers (e.g.

[3][7][10][8]). At first, different developers created open source drivers. Later, PrimeSense

itself published a driver together with its middle-ware ’NITE’ which includes the person

tracking and skeleton creating functions. In February 2012 Microsoft released a SDK

for Windows OS, which also includes the skeleton tracking [6].

This thesis uses the official drivers by PrimeSense as well as an open source C++ wrapper

to obtain time series of the different body joints.

3 Representing Time Series 7

3 Representing Time Series

As explained previously in this thesis motion sequences are made platform independent

by discretisation and representation of time series. There are many different ways to

represent time series. Most of them try to represent the time series as combination

of simple functions. The best known are the Discrete Fourier Transformation (DFT),

Piecewise Linear Transformation, Discrete Wavelet Transformation (DWT) and Singular

Value Decomposition (SVD). Each of those representations has its advantages but also

its drawbacks.

Another attempt to represent time series is to use a symbolic strings domain. Their

goal is to transform the time series into a string of symbols. A big advantage of these

representations is the possibility to extremely reduce the amount of data. Then besides

handling just the actual input of the sensor comes the stored data you want to compare

with. Comparing time series means in most cases to calculate a distance between them as

explained in Chapter 4, or rather between every single point of them. Therefore dealing

directly with raw data is very expensive in computing and storing. For this reason one

task of working with time series is to reduce the amount of data or the dimensionality

without losing its characteristics.

A quite unknown representation is SAX. It stands for ’Symbolic Aggregate Approxi-

mation’ and was invented by Eamonn Keogh and Jessica Lin in 2002 at the Riverside

University of California [11] [12]. It converts the time series into a string of symbols

according to intervals of values given by an algorithm called PAA - Piecewise Aggregate

Approximation. It was chosen for this thesis because of the said advantages of symbolic

representations and its simpleness, which also is a big advantage when working with

different systems or differently equipped robots. The following sections are based on the

work of Eamonn Keogh and Jessica Lin.

3 Representing Time Series 8

3.1 Normalisation

Comparing time series or parts of it only makes sense if they are in the same range. In

Figure 3.1, for example, two time series are shown, which both describe the movement of

a hand. Although they represent the same movement, in this case waving, their values

seem to be very different according to scale. The reason for this is that the Kinect sensor

provides absolute data for positions. So by waving in two different positions results in

time series useless to compare.

Figure 3.1: Two time series, which show a similar hand waving, but were recorded in

different positions.

To make time series comparable it is necessary to normalise them. This is done in two

steps:

• Subtract the mean of the time series from every value.

• Divide every value by the standard deviation of the resulting time series.

This produces a series with a mean of zero and a standard deviation of one. So both,

offsets and amplitudes are aligned as demonstrated in Figure 3.2.

3.2 PAA - Piecewise Aggregate Approximation

To represent a time series via SAX it needs to be approximated by PAA after it was

normalised.

3 Representing Time Series 9

Figure 3.2: The same time series as in Figure 3.1, but both of them are normalised

hence comparable.

Therefore a time series T = t1, . . . , tn of size n is transformed into a series T which

consists of w windows t1, ..., tw. The value for each window ti is given by

ti =
w

n

iw
n∑

j= n
w
(i+1)−1

tj (3.1)

This means you transform a time series of length n into a time series of length w, while

the values of the new time series is the means of the corresponding windows. You can

think of this transformation also as a representation where each segment is represented

as a constant, the mean value, as you can see in Figure 3.3.

Figure 3.3: A time series T of length 280 divided into 5 windows with PAA.

3 Representing Time Series 10

The above shown algorithm creates windows of size n
w

. This requires n to be divisible

by w, otherwise there will an untreated rest. Of course, mostly this will not be the case.

There are several ways to handle this problem.

One way is to just cut off all remaining points. While this is obviously the easiest way,

it always results in a loss of information. If, for example, a time series with a length of

100 should be represented with 13 segments, 9 points of information are cut off and lost.

When avoiding any loss, there will be windows of different lengths. Apparently, the

difference should never be greater than one point as not to falsify the information too

much. The following algorithm fulfils the condition and is the one used in this thesis:

for i = 1 to w do

Length of ti = n
w

(cutting the decimal places)

n = n− Length of ti

w = w − 1

end for

When dividing a time series of 100 points into 3 windows this way the window sizes are

33, 33, 34 and no information got lost.

3.3 SAX - Symbolic Aggregate Approximation

After applying the PAA transformation the time series are approximated by a step

function consisting of w mean values. The next step is to discretise these mean values

to a given set of symbols called alphabet with a alphabet size a. This thesis uses the first

10 letters of the classical Latin alphabet.

To reflect the time series characteristics at the best it is desirable to discretise them

in such a way, that each symbol has the same probability to occur. After normalising

a time series it has a Gaussian distribution, which makes it easy to set up the right

intervals for discretisation. These intervals are defined by breakpoints B = β1, . . . , βa−1.

The area under a Gaussian curve between βi and βi+1 must be 1
a
. The first interval is

3 Representing Time Series 11

obviously from −∞ to β1 and the last one from βa−1 to +∞. The exact values according

to the alphabet size a can be looked up in a statistical table. Table 3.1 shows the values

of all breakpoints for alphabet sizes from 3 to 10.

3 4 5 6 7 8 9 10

β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28

β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84

β3 - 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52

β4 - - 0.84 0.43 0.18 0 -0.14 -0.25

β5 - - - 0.97 0.57 0.32 0.14 0

β6 - - - - 1.07 0.67 0.43 0.25

β7 - - - - - 1.15 0.76 0.52

β8 - - - - - - 1.22 0.84

β9 - - - - - - - 1.28

Table 3.1: The breakpoints which define the intervals for the discretisation of the differ-

ent mean values for alphabet sizes from 3 to 10.

Now all the mean values given by the PAA transformation are converted to the symbol

corresponding to the interval they are lying in. So all points of the original time series,

whose windows mean value is below β1 are now represented by the first symbol in the

alphabet, here a. All points, which were represented by mean values from β1 to β2

are now represented by the second symbol, here b, and so on. The resulting list of

symbols is called word, which is, obviously, of length w. Figures 3.4, 3.5 and 3.6 show

the whole process from the original time series, over normalisation and PAA to the final

representation by SAX.

Most motions consist of movements from different body parts. Consequently, recording

motions leads to more than one time series. Furthermore every movement is made in

the three dimensional space. So, for example, if a motion is recorded by observing the

movements of both hands and both elbows you get a total amount of 12 time series. For

easier demonstration and computing, the SAX representations of these time series, the

word so to speak, are bundled in to a matrix.

3 Representing Time Series 12

Figure 3.4: The originally recorded time series.

Figure 3.5: The time series of Figure 3.4 normalised and represented by PAA with w = 8

windows.

Here is an example of such a matrix. It represents the movements of the right hand and

elbow while waving, with w = 8 and a = 5:



a a b e d e e c

d c d d b b d a

c c c b b a c c

a b e e b b b c

a c d c c a e d

e c a d e e d a



3 Representing Time Series 13

Figure 3.6: This plot shows the breakpoints and the discretisation by SAX of the time

series in Figure 3.5. As a result the time series is represented by the word

’cbabdeeb’ using an alphabet size of a = 5.

4 Measuring Distances 14

4 Measuring Distances

When attempting to recognise motions the currently observed movements and therefore

their time series are compared to the saved motion primitives and their corresponding

time series. Regardless of whether the time series are represented or transformed in any

way or not, in order to compare them, it is necessary to measure a distance between

them. The lower the distance between two time series, the more they are alike, and

so are the motions they stand for. Thus, analysing the observed movements means to

calculate the distance between them and the saved time series.

There are different ways to use the distance in order to check if a motion is recognised.

One way is to take the saved motion with the smallest distance as the recognised one.

The problem here is obviously that it will always recognise a motion, no matter if the

observed motion is represented by the saved motion primitives or not. To avoid this

problem it is necessary to define a limit. As soon as the distance falls below this limit

the motion is counted as recognized. This is probably the most common way. It is also

possible to set a limit between the different distances. A motion is then regarded as

recognized when it is has the smallest distance of all motions and the difference to the

second smallest distance is greater than the set limit.

The most common distance measure is the Euclidean distance, also known as Euclidean

metric. Given two time series T1 = (t11, . . . , t1n) and T2 = (t21, . . . , t2n) with length n

in its original status, the Euclidean distance between them is defined by the following

equation (4.1) [11].

EuclDist(T1, T2) =

√√√√ n∑
i=1

(t1i − t2i)2 (4.1)

4 Measuring Distances 15

In the experiments of this thesis the time series are represented with the PAA and SAX

algorithms as explained in the Sections 3.2 and 3.3. When representing a time series

T1 = (t11, . . . , t1n) with PAA, resulting in T1 = (t11, . . . , t1w), the Euclidean distance of

Equation (4.1) is easily adjusted.

EuclDist(T1, T2) =

√
n

w
·

√√√√ w∑
i=1

(t1i − t2i)2 (4.2)

This time it is only necessary to sum up the differences between the mean values of the

windows, in which the time series are segmented. To balance the reduction, the size of

the windows n
w

is taken account of.

The next step is to find a way to measure the distance after the time series are represented

by the SAX algorithm. Actually, the calculation for the overall distance stays the same.

The question is how the distances between the symbols are defined.

Jessica Lin and Eamonn Keogh, the developers of SAX, defined a distance measure called

MINDIST function [11]. As before the major calculation is still the same as in Equation

(4.2). The distances between each of the symbols are stored in look-up tables. For each

alphabet size a a look-up table has to be made once and can then be stored and used

easily. Figure 4.1 shows the look-up table for alphabet size 5. The distance between,

e.g. ’a’ and ’d ’ is stored in cell (1,4). The distance values depend on the breakpoints

explained in Section 3.3. Equation (4.3) shows how the value for each cell is calculated

by Lin and Keogh.

distance(i, j) =

0, |i− j| ≤ 1

βmax(i,j)−1 − βmin(i,j), else
(4.3)

4 Measuring Distances 16

1 2 3 4 5

1 0 0 0.59 1.09 1.68

2 0 0 0 0.5 1.09

3 0.59 0 0 0 0.59

4 1.09 0.5 0 0 0

5 1.68 1.09 0.59 0 0

Table 4.1: The look-up table used by the MINDIST function for alphabet size a = 5.

The distance between two symbols can easily be read off at the corresponding

row and column. For example, the distance between ’a’ and ’d’, using the

Latin alphabet, is 1.09.

Altogether, Equation (4.4) shows the MINDIST function for two represented time series

T̂1 and T̂2.

MINDIST (T̂1, T̂2) =

√
n

w
·

√√√√ w∑
i=1

(distance(t̂1i, t̂2i))2 (4.4)

The advantage of the MINDIST function is the fact that it approximates and lower

bounds the original Euclidean distance as in Equation (4.1), which is proven by Jessica

Lin in [12]. This means, that the distance calculated by the MINDIST function is

always smaller than the Euclidean distance of the original time series. While this is

generally an important feature, because it allows applying many data mining algorithms

to the represented time series producing the same results as the algorithms would for

the original time series, it is no advantage in this work.

On the other hand, there are two problems working with the MINDIST function as in

Equation (4.4). First of all, it assumes that the compared time series are both of the

same length n. As described later in Chapter 6, the saved time series are cut to the

essential, thus they are of different lengths. Furthermore the distance received from the

MINDIST function depends on the alphabet size a and the length of the time series n.

The highest possible distance increases with the length of the original time series and

the size of the alphabet. In general, this does not have to be a problem, but the fact that

4 Measuring Distances 17

the highest possible distance varies makes it impossible to set a fix recognition limit.

As a comparison another algorithm will also be used in the experiments in Chapter 6.

It can be considered as the average euclidean distance between two motions. There is

also a slight difference at the discretisation into the symbols. Instead of working with

breakpoints according to the Gaussian distribution as used in the normal SAX algorithm,

this time the symbols are assigned using equal steps. After the normalisation the range

between the lowest and the highest value of the time series is split into a equal sized

sections as it is done with the time axis by dividing it into the windows. According to

the interval its mean value lies in, each window is assigned a whole number between 1

and a.

As said previously, a motion often consists of the movements from more than one part of

the body and therefore of several time series. They are now seen as one time series in a

s+1 dimensional space. Hence, every window and its s assigned values stands for a point

in this space. When comparing two motions and their time series with the alternative

way, the euclidean distance between each of those points is calculated. The mean value

of these single distances is then taken as the distance between the two motions. The

complete calculation is shown in (4.5).

MeanEuclDist(T̃ , Ũ) =
1

(a− 1) · w ·
√
s
·

w∑
j=1

√√√√ s∑
i=1

(t̃ij − ũij)2 (4.5)

The alphabet size a and the number of time series s are taken account of, always resulting

in distances between 0 and 1, where 0 means the transformed time series are identical.

5 Markov Models 18

5 Markov Models

As explained in the Introduction, a gesture can be seen as a sequences of several smaller

movements. For example, a simple waving with one hand could consist of three move-

ments: first the hand is raised above the head. Then the hand is moved to the left and

to the right. At the end it is moved back down to the initial position.

To clarify which kind of movement is meant, two different words are selected and used

from now on. The complete ’bigger’ movement is referred to as gesture. In the example

the whole hand waving thus is a gesture. The ’smaller’ movements are referred to as

motions or motion primitives. The hand raising and the left-right movements would

be motions. So every gesture consists of several motions. A set of motions is recorded,

which can then be combined to different gestures. Hence, it is possible that two gestures

consist of the same motions, but in a different order.

Most procedures in nature, technology or economy are not deterministic or at least

have some non-deterministic parts in it. One way to describe these systems are Markov

Models, statistical models named after the Russian mathematician Andrey Markov [14].

There are mainly two Markov Models, Markov Chains and Hidden Markov Models, both

are explained in the following sections. Hidden Markov Models are a extension of the

Markov Chains and are a very popular instrument for pattern recognition, especially

for speech recognition. The following sections are based on the work of Lawrence R.

Rabiner [14].

5 Markov Models 19

5.1 Markov Chains

Markov Chains are discrete models to describe stochastic processes. It is assumed that

the process proceeds in discrete time steps ti, i = 1, . . . , T . In each of these time steps,

the process is in a state xi ∈ S, where S = s1, . . . , sN is the finite set of all states

resulting in a series of state transitions X = (x1, . . . , xT). The transitions from one state

to another are described using probabilities. One important rule for all Markov Models

is that the probability that the system will be in a certain state at the next time step

only depends on the present state:

P (xt+1 = si | xt = sj, xt−1 = sk, . . .) = P (xt+1 = si | xt = sj) (5.1)

This attribute of a stochastic process to not have a memory is also known as Markov

Property.

Another rule of Markov Models is that they are time invariant. This means the proba-

bility to change from one state to another is the same for all time steps:

P (xt+1 = si | xt = sj) = P (xt = si | xt−1 = sj) ∀ t (5.2)

With these rules you get a N×N state transition matrix A with the following coefficients:

aij = P (xt+1 = sj | xt = si), 1 ≤ i, j ≤ n (5.3)

The following rules must apply for all of them:

0 ≤ aij ≤ 1 (5.4)

N∑
j=1

aij = 1 (5.5)

5 Markov Models 20

So this matrix describes all the probabilities with which the system will change its state

independent of time and previous states. As you can see in Equation (5.4), it can also

be impossible to change from one specific state to another. In that case, aij is zero. The

question remains which state the system is in at the beginning. For this purpose you

declare a N × 1 vector Π with the probabilities for every state to be the initial state:

πi = P (x0 = si) (5.6)

0 ≤ πi ≤ 1 (5.7)

N∑
i=1

πi = 1 (5.8)

Given such a system you can observe the sequence of state transitions. Let’s say your

Markov Chain describes the movements of a person and every state stands for a certain

position. For example the state s1 means the person is standing normally with both

arms hanging down. s2 means both arms are raised to the top and s3 that the arms are

stretched out to the side. This results in a set of possible states S = {s1, s2, s3}. In this

scenario A and Π could be as follows:

A =

0.6 0.3 0.1

0.5 0.3 0.2

0.6 0.1 0.3



Π =

0.8

0.1

0.1



5 Markov Models 21

Figure 5.1: The whole chain with its three states, the transition and initial probabilities.

Hence, in this example, it is more likely that the person starts and moves to the normal

position with no arm raised. The whole chain is shown in Figure 5.1.

In such scenarios one is often interested in the probability that the positions follow

in a certain order like arms down, arms raised, arms raised, arms down, arms raised,

arms to the side. Formally we want to compute the probability for the sequence X =

(s1, s2, s2, s1, s2, s3).

P (X) = P (s1, s2, s2, s1, s2, s3 | A,Π)

= P (s1) · P (s2 | s1) · P (s2 | s2) · P (s1 | s2) · P (s2 | s1) · P (s3 | s2)

= π1 · a12 · a22 · a21 · a12 · a23

= 0.8 · 0.3 · 0.3 · 0.5 · 0.3 · 0.2

= 0.00216

5 Markov Models 22

5.2 Hidden Markov Models

The Markov Chain from the previous section assumes that you can always observe the

current state. In Hidden Markov Models (HMM), as the name implies, the states are

hidden. This means that you never know in which state the system is or was. Instead of

following directly the states and the transitions between them, the system produces an

observable output ot at every time step t. The series of outputs over a time T is called

the observation O = (o1, . . . , oT). These outputs are again linked to a stochastic process.

Each state has a probability to produce a certain output. One task is to estimate the

current state with the help of a given observation and the probabilities to produce it,

which will be explained later. You can think of the Hidden Markov Model as a stochastic

model with two linked layers, in which one is hidden and therefore not observable.

Each HMM λ is defined by a 5-tuple (S,A,Π, K,B). Like before, S is the set of states,

A is the transition matrix giving the probabilities how to change the states and Π is

the set of probabilities for each state to be the initial one. K is the set of all possible

outputs {k1, . . . , kM} the system can produce. B is a N ×M matrix, which contains the

probabilities for each state si to produce a certain output kj ∈ K.

bij = P (ot = kj | xt = si), ∀t, 1 ≤ i ≤ N, 1 ≤ j ≤M

= bi(kj)

(5.9)

The second notation is sometimes used for the sake of clarity. The coefficients of B are

subject to the following conditions:

0 ≤ bij ≤ 1 (5.10)

M∑
j=1

bij = 1 (5.11)

5 Markov Models 23

Back to the example from Section 5.1, again the movements of a person are recorded.

But this time it is impossible to know the whole position of the body or the gesture

the person is doing. Instead, the position of single bodyparts like hands or elbows are

the only information. The, now hidden, states S are still ’standing normally with arms

down’, ’arms raised ’ and ’arms stretched to the sides ’. The possible outputs K are

k1: ’hands are down’, k2: ’hands are raised ’, k3: ’elbows are down’ and k4: ’elbows are

raised ’. In Figure 5.2 you can see an illustration of the whole HMM with its three hidden

states, four possible outputs and all probabilities. For this example, the matrix B looks

like this:

Figure 5.2: The complete HMM with its three hidden states, four possible outputs and

probabilities for transition, output and initial state.

B =

0.5 0.0 0.5 0.0

0.0 0.4 0.1 0.5

0.3 0.1 0.1 0.5


So the probability that the system will produce the output k2 ’hands are raised ’ while

at state s2 ’arms are raised ’ is 0.4. Also, it is impossible that the elbows are raised when

in state ’arms hanging down’.

To use HMMs for gesture recognition in praxis, each known gesture is represented by a

5 Markov Models 24

certain HMM λi. Recording the movements of a person results in an observation O as

described above. The object is then to calculate which HMM has the highest possibility

to produce these series of outputs. Another task is to train the HMMs to maximize their

probabilities for relevant observations. Solutions to these problems are given in the next

sections.

5.3 The Forward-Backward Algorithm

Because the states in a HMM are unknown, one important task is to get the probability

to be in a certain state at a certain time step, given only the observation. Another

important information is the probability an observation O will be made given the current

state. For the first problem the solution is the Forward Procedure. For the second one

you can use the Backward Procedure. Together they are used in the Baum-Welch-

Algorithm to train HMMs.

5.3.1 The Forward Procedure

The Forward Procedure calculates the probability with which the system will produce

an observation O and is in a certain state xt = si afterwards. This probability is called

the forward variable αt(O, i):

αt(O, i) = P (O = (o1, . . . , ot) | λ, xt = si) (5.12)

The forward variable can be calculated recursively.

• Initialization:

α1(O, i) = πi · bi(o1) (5.13)

5 Markov Models 25

• Induction:

αt(O, i) =
N∑
j=1

αt−1(O, j) · aji · bi(ot−1) (5.14)

The forwards variable is used to get the overall probability that a HMM produces a

certain observation, which is one of the main tasks when working with HMMs for pattern

recognition. It is the sum over the forward variables of the current time step for all states:

P (O = (o1, . . . , ot) | λ) =
N∑
i=1

αt(O, i) (5.15)

5.3.2 The Backward Procedure

The Backward Procedure is the counterpart to the Forward Algorithm. Instead of

calculating the probability that the HMM has produced a certain observation O when

ending in state si, it leads to the probability the HMM will produce O after it has been

in si. This time it is called backward variable βt(O, i).

βt(O, i) = P (O = (ot+1, . . . , oT) | λ, xt = si) (5.16)

Again it’s calculated by recursion.

• Initialization:

βT (O, i) = 1 (5.17)

• Induction:

βt(O, i) =
N∑
j=1

βt+1(O, j) · aij · bj(ot+1) (5.18)

5 Markov Models 26

5.4 The Baum-Welch-Algorithm

One important object when dealing with HMMs is to train them. This means to ad-

just the HMM to a given observation so it is more likely to produce it. Say, you have

five movements you want to be represented by HMMs. First you create five (identical)

HMMs. You then train each HMM with a set of versions of the corresponding move-

ment and their resulting observations. For example, using the same movement done

by different persons. After the training each HMM should be more likely to produce

these observations, formally P (O, λi) ≤ P (O, λi+1), and is ready to be used for ges-

ture recognition. For this task, the Baum-Welch algorithm is used and explained below

[13][14].

The forward and backward variables are used to calculate more useful variables. One

is the probability that the system is in a specific state at a certain point of time and is

called γt(O, i).

γt(O, i) = P (xt = si | O, λ)

=
αt(O, i) · βt(O, i)

P (O | λ)
=

αt(O, i) · βt(O, i)∑N
j=1 αt(O, j) · βt(O, j)

(5.19)

One step further, you need to know how likely it is that the transition between two

specific states happens at a certain time step. In other words, you want to know the

probability, called δt(O, i, j) that xt = si and xt+1 = sj for a given observation O =

(o1, . . . , oT).

δt(O, i, j) = P (xt = si, xt+1 = sj | O = (o1, . . . , oT), λ)

=
αt(O, i) · aij · bi(ot+1) · βt+1(O, j)∑N

u=1

∑N
v=1 αt(O, u) · auv · bv(ot+1) · βt+1(O, v)

(5.20)

With these formulas, it is possible to calculate the estimated numbers of transitions be-

tween the states for a given observation O. γt{O, i} has been declared as the probability

5 Markov Models 27

to be in state si at the time step t when the model produces the observation O. Sum-

ming up the probability to be in a state over the whole time T gives the estimation how

often the model will be in that state. Leaving out T − 1 therefore gives the estimated

number of transitions from that state:

T−1∑
t=1

γt(O, i) (5.21)

When doing the same with δt(O, i, j) instead of γt(O, i, j) you get an even more specific

estimation. Not only do you get the estimated number of any transition from that state

si, but the number of transitions to a certain state sj:

T−1∑
t=1

δt(O, i, j) (5.22)

The task to train a HMM means nothing else than to redefine or optimize the values for

A,Π and B. The idea is to re-estimate them with their probabilities for a given training

observation. For πi, representing the starting probability, this means, its new value is

the probability that state si will be at the beginning of the state series when producing

O.

πi = γ1(O, i) (5.23)

A holds the probabilities for the state transitions. Hence, the re-estimation for each

coefficient aij is the expected number of that transition regarding O divided by the

expected number of any transition from si. This makes sure that 0 ≤ aij ≤ 1 is still

true.

aij =

∑T−1
t=1 δt(O, i, j)∑T−1
t=1 γt(O, i)

(5.24)

5 Markov Models 28

It is nearly the same for B. The new value for bij is the expected number of times the

model will be in state si producing the output kj divided by the expected number of

times the model actually will be in that state.

bij =

∑T
t=1 γt(O, i) · κ(ot, kj)∑T

t=1 γt(O, i)
(5.25a)

κ(ot, kj) =

1, ot = kj

0, else
(5.25b)

Continuing on the example from the sections before, the following calculations show the

Baum-Welch-Algorithm in praxis and its effects on the HMM. The sets of states S and

possible outputs K are the same. For A, Π and B random values were chosen to create

the first version λ1 of the HMM:

A1 =

0.42 0.17 0.41

0.04 0.71 0.25

0.44 0.03 0.53



Π1 =

0.05

0.77

0.18



B1 =

0.04 0.45 0.41 0.1

0.09 0.14 0.65 0.12

0.34 0.22 0.11 0.33


The represented motion shall be: ’hands down’, ’elbows raised’, ’hands raised’, ’elbows

raised’, ’hands down’. So the training observation O is (k1, k4, k2, k4, k1) and T = 5. The

probability to produce this observation with the untrained HMM is

5 Markov Models 29

P (O | λ1) =
3∑

i=1

α5(O, i)

= 2.35 · 10−5 + 1.71 · 10−5 + 24.20 · 10−5

= 2.83 · 10−4

After one training cycle the new values for A, Π and B are:

A2 =

 0.235447 0.0798623 0.68469

0.0420446 0.379709 0.578246

0.276272 0.0109724 0.712756



Π2 =

0.0163737

0.391732

0.591895



B2 =

0.107455 0.570599 0 0.321946

0.605507 0.107608 0 0.286885

0.435321 0.117557 0 0.447122


The probabilities to output k3 is now zero for all states, which is obvious, because it

does not appear in the training observation. The new probability to produce the training

observation is now:

P (O | λ2) =
3∑

i=1

α5(O, i)

= 5.00 · 10−4 + 4.50 · 10−4 + 5.50 · 10−3

= 6.45 · 10−3

5 Markov Models 30

Apparently, the HMM represents the observation much better. Below the probabilities

after more training cycles.

P (O | λ3) = 7.73 · 10−3

P (O | λ4) = 0.0106

P (O | λ5) = 0.0165

P (O | λ6) = 0.0270

P (O | λ7) = 0.0481

P (O | λ8) = 0.0953

P (O | λ9) = 0.182

P (O | λ10) = 0.243

P (O | λ100) = 0.25

5.5 Zero Entries and Training Sets

An important property of the Baum-Welch algorithm is that every transition probability

or output probability that once is set to zero remains zero. While this can be an useful

feature as described in the next section, it can also produce problems with the training of

the model. In the previously used example it has three states and four possible outputs.

Initially every entry in the matrices A and B has been greater than zero. When the

HMM has been trained in section 5.4, one possible output, ’Elbows down’, didn’t appear

in the training observation. This led to the fact that the probability to produce this

output was set to zero for every state and it was impossible for the output to occur after

the training. This effect can cause problems when working with the HMMs as it is done

in this thesis. Once created and saved it should be possible to train the model whenever

wanted. For example, a person is doing the gesture the HMM stands for and thus creates

5 Markov Models 31

an observation sequence using it as a training observation to train the HMM. Afterwards

the person does the gesture again, but this time produces a different observation, which is

then used for the training. This procedure is then done several times or, for example, by

different people to increase the probability to detect a gesture when it’s done with minor

changes. Assuming the first training observation doesn’t contain a certain output and its

probability to occur is therefore set to zero, as described above, it is then impossible to

’reactivate’ this ouput, no matter if the following training observations contain it or not.

This can obviously result in a poorly trained HMM, thus in a bad gesture recognition.

To avoid this problem all L training observations are bundled to a set V = O1, . . . , OL.

Instead of training the HMM with different observations one after another, it is trained

with the complete set V at once. Whenever the model should be trained, it is first reset

its initial status, as it was before it has been trained the first time. After adding the

new observation to the training set, the HMM is then trained. Training with the set

is very similiar to the single training process. Every training observation Ol ∈ V has

a weighting cl. In this thesis all weightings are first 1. Instead of adding observations

to training set, when they are already included, their weighting is increased by 1. This

leads to the same results, but has lower computational costs. Below are the formulas of

the Baum-Welch algorithm adapted for the work with a training set.

πi =

∑L
l=1 γ1(Ol, i) · cl∑L

l=1 cl
(5.26)

aij =

∑L
l=1(

∑T−1
t=1 δt(Ol, i, j)) · cl∑L

l=1(
∑T−1

t=1 γt(Ol, i)) · cl
(5.27)

bij =

∑L
l=1(

∑T
t=1 γt(Ol, i) · κ(ol,t, kj)) · cl∑L
l=1(

∑T
t=1 γt(Ol, i)) · cl

(5.28a)

κ(ol,t, kj) =

1, ol,t = kj

0, else
(5.28b)

5 Markov Models 32

The new values for A, B and π still fulfil the conditions. Another advantage of using a

training set is that it doesn’t matter in which order the observations have been made.

5.6 Left-Right Models

In the Hidden Markov Model described until now, it has been assumed that transitions

can be made from every state to any other state. HMMs in which every state can be

reached by any other state in a finite number of transitions are called fully connected or

ergodic. Conditions (5.4) and (5.7) show that transition probabilities can also be zero,

so the transition doesn’t exist or can’t be taken. Hence, it is possible to set certain

entries in A or π initially to zero. As described in the previous section, zero entries will

remain zero when working with the Baum-Welch algorithm. This allows to create special

variants of HMMs. The most used one, besides the fully connected, is the Left-Right

Model. In this HMM transitions can only be made from states with lower indices to

states with higher indices. Ensured by condition (5.29), it results in upper-triangular

transition probability matrices such as the following one with N = 5:

A =


a11 a12 a13 a14 a15

0 a22 a23 a24 a25

0 0 a33 a34 a35

0 0 0 a44 a45

0 0 0 0 a55



aij = 0, i ≥ j (5.29)

Since the purpose of the Left-Right Model is a state sequence through all states, it is

necessary to start in s1.

π(i) =

1, i = 1

0, i > 1
(5.30)

5 Markov Models 33

The conditions can even be stricter. For example, aij = 0, i = j, i 6= N , so it is impossible

for the HMM to stay in the current state if it is not the last one. Another popular one

is to set a maximum step range ∆, shown in (5.31). The following A matrix shows this

with N = 5 and ∆ = 2.

A =


a11 a12 a13 0 0

0 a22 a23 a24 0

0 0 a33 a34 a35

0 0 0 a44 a45

0 0 0 0 a55



aij = 0, i+ ∆ ≤ j (5.31)

Right-Left Models often reach the training target faster than fully connected HMMs,

thus they are in many cases the better solution. Those cases can often be recognised,

when a fully connected HMM tends to the Right-Left form after some training iterations.

Starting with a Right-Left Model right from the beginning can then save some of those

iterations.

6 Experimental Results 34

6 Experimental Results

6.1 Experiment procedure

In this chapter the results of the experiments for time series representation and gesture

recognition will be shown and analysed. As said before, the whole process is split into

two parts.

The procedure for the experiments was always the same. First the motion primitives

were recorded and saved. Second the active movements were compared to the saved

motions to check the persons movements for known primitives. All recognized motions

were stored in a list. After performing a complete gesture, consisting of several saved

motion primitives, the resulting list of detected motions were used as an observation

sequence to create a Hidden Markov Model representing the gesture.

Each motion primitive was recorded and saved separately. At all recordings and exper-

iments the three-dimensional positions of the following body parts were used:

• Head

• Neck

• Right Shoulder

• Right Elbow

• Right Hand

• Left Shoulder

• Left Elbow

6 Experimental Results 35

• Left Hand

• Torso (Centre of the upper body)

With three time series per joint the algorithms worked with a total of 27 time series.

These time series were cut leaving only the essential part, which represents the motion.

Although it is normally the aim to save the primitives in their abstract form, their time

series were saved in their raw status. This simplified the comparison between the actual

movements and the saved motions with, for example, different number of windows or

different alphabet sizes. Keeping the time series saved in their original status made it

possible to reuse them with different settings. Before an experiment started, the saved

time series were, of course, discretised, hence saving them in their raw status did not

effect the results.

With all required motions saved, the actual recognition process could begin. While the

person moved in front of the Kinect, its movements were compared to the saved motions.

Therefore only the last parts of the time series of the active movements were used. These

parts were of the same length, regarding to time, as the currently reviewed saved motion.

The frequency with which the comparison was taking place depends on the length of

one window. An example shall clarify this. The movements of a person shall be checked

for a motion primitive. This motion is 1 second long. The number of windows, in this

example, is 5, so one window of the motion is 0.2 seconds long. Now with a frequency of

0.2 seconds the last 1 second of the active time series are represented via SAX and then

compared to the transformed time series of the saved motion. Hence, the movements of

a person are compared to a quick motion more often than to a slow, long taking motion.

The comparison was done by calculating the distance as described in chapter 4. A motion

counted as recognised when its distance to the current movements fell below a set limit

and no other motion did as well. Thus, it was possible that a motion was recognised

more than one time for the same movement, which can effect the overall process.

Every saved motion primitive was performed 50 times for every setting, noting the

number of correct recognitions resulting in a recognition rate. Also, every motion was

tested with both ways of discretisation. The SAX algorithm with the MINDIST function

on the one hand and the alternative more simple way of the average euclidean distance

on the other hand. The variant of the average euclidean distance was tested with each

6 Experimental Results 36

combination of 5, 10 and 15 windows and an alphabet size of 5, 10 and 15. The same

applied to the SAX algorithm but without the alphabet size of 15, because it is not

declared for alphabet sizes greater than 10 [12].

Afterwards 15 Hidden Markov Models have been created for each complex gesture. There

were three groups of five HMMs, in the first group all models got trained with only one

training observation, in the second the training set consisted of five observations and in

the last group of ten. In each group the models are trained either 1,2,5,10 or 20 times.

Again every gesture was performed 50 times. Whenever the probability of an HMM to

produce the current observation was above a set limit and no HMM of another gesture

did as well, the gesture counted as recognised.

6.2 The motion primitives and complex gestures

To get the best possibilities to analyse the algorithms the choice of the primitives should

cover rather easy and rather hard ones to recognise. Also there should be short and

longer ones and some should be similar to see if the algorithms can differ between them.

All motions are about the handling of a bottle. Trying to cover all the said aspects in a

small set of motions resulted in the primitives in Table 6.1.

The complex gestures are obviously sequences of the described motion primitives:

• Grab a bottle and a glass, fill the glass and put the bottle back:

Grab - Pour - Put Down

• Pick up a bottle, open it and put it away:

Pick Up - Open - Put Down

• Pick up a bottle, open it, get a glass, fill it and put the bottle away:

Pick Up - Open - Pour - Put Down

6 Experimental Results 37

Name Description Length

(time)

Length

(points)

Pick

Up

The person picks up a bottle off the floor with

its right hand.

2.12 s 140

Open The person holds a bottle in its right hand

and opens it.

3.12 s 205

Put

Down

The person holds the bottle in its right hand.

It is then put down on a table to the right.

2.93 s 194

Grab The person reaches to its right to grab a bot-

tle standing on a table.

1.95 s 130

Pour The person holds a bottle in its right hand.

It gets a glass from the left and pours the

content of the bottle into it.

4.60 s 304

Table 6.1: The five different motion primitives, with which the algorithms have been

tested.

6.3 Results

The results for the first part of the process are shown in Table 6.2.

First of all, the results for both algorithms are surprisingly good, considering that they

are both quite simple. The Kinect and its software probably made a significant contri-

bution, creating noiseless time series.

The only values that stand out are those for the ’Open’ motion for both algorithms.

There are two reasons for this: firstly, the movements of opening a bottle are very small

and therefore the resulting time series were not very characteristic. Secondly, while

opening a bottle the arms are in front of the body, sometimes even on top of each other

from the point of view of the Kinect. This can lead to misinterpretations by the Kinect

software and therewith to wrong time series with irregularly occurring extrema. Greater

alphabets and higher number of windows appear to decrease these problems but can’t

eliminate them.

Although, the two motions ’Put Down’ and ’Grab’ are very similar, both algorithms

6 Experimental Results 38

a w Pick Up Open Put

Down

Grab Pour

5 5 50 / 80 32 / 44 60 / 90 80 / 94 32 / 96

5 10 96 / 86 60 / 42 88 / 86 92 / 94 68 / 96

5 15 94 / 80 66 / 56 96 / 86 86 / 92 84 / 90

10 5 74 / 76 56 / 34 70 / 88 90 / 98 32 / 94

10 10 98 / 86 80 / 50 96 / 94 100 / 100 96 / 98

10 15 96 / 90 86 / 66 96 / 90 100 / 98 94 / 96

15 5 - / 74 - / 46 - / 90 - / 98 - / 96

15 10 - / 90 - / 50 - / 96 - / 96 - / 100

15 15 - / 86 - / 60 - / 94 - / 96 - / 96

Table 6.2: The recognition rates of the five motion primitives in percent with different

number of windows and different alphabet sizes. The blue entries are the

results of the MINDIST function and the brown entries are the results of the

average euclidean distance variant.

could distinguish between them well. Especially the ’Grab’ movement was recognised

constantly very well. Also noticeable are the good rates of the ’Pour’ motion, even

though it is the longest and most complex motion of all. While this is true for the

average euclidean distance for all settings, the MINDIST function only produces good

recognition rates with a great alphabet and a higher number of windows. This fact also

applies to the other motions. With 5 symbols and 5 windows, the MINDIST function is

inferior to the average euclidean distance for all motions. The average euclidean distance

is less dependent on the alphabet size and the number of windows, but doesn’t produce

as good and consistent results as the MINDIST function. Even greater alphabet sizes

than 10 doesn’t seem to make a difference.

Not shown in Table 6.2 are the effects of the window sizes. The higher the number of

windows, the more often the recognition process takes place. For 15 windows the motion

primitives nearly always were recognised more than one once at the same time. Obvi-

ously, this happens more often the shorter the motion primitives are. This also affects

the overall procedure including the Hidden Markov Models. To get high recognition

rates, but as few multiple recognitions as possible, for the second part of the tests the

6 Experimental Results 39

MINDIST function with an alphabet size of 10 and 10 windows was chosen. The results

for these experiments are shown in Table 6.3.

Training

Set Size

Training

Itera-

tions

Grab - Pour -

Put Down

Pick Up -

Open - Put

Down

Pick Up -

Open - Pour -

Put Down

1 1 30 4 18

1 2 62 8 22

1 5 24 0 36

1 10 18 0 4

1 20 8 0 0

5 1 34 12 20

5 2 58 8 32

5 5 88 8 80

5 10 94 52 42

5 20 94 38 34

10 1 52 10 28

10 2 66 12 48

10 5 100 10 90

10 10 100 68 96

10 20 100 40 96

Table 6.3: The results for the complete procedure with different number of training ob-

servations and iterations.

The results for the complete procedure are very diverse. Apparently, the number of

training observations is very important. A low training set size and a high number

of iterations produce poor results, because in that case, the HMM is not sensitive for

observations that differ from the few training observations. Also noticeable are the

constantly poor results for the second gesture. All three contained motion primitives

are also part of the third gesture, which led to wrong recognitions between these two

gestures. The poor recognition rate of the motion ’Open’ is relevant at this as well.

6 Experimental Results 40

6.4 Conclusion

The results showed, that time series representations are a good possibility to transform

motion sequence information into platform independent information. It was possible

to represent the multi-dimensional sensor signal with very little information and still

maintain its particular characteristic. The simple SAX algorithm provided good results

in recognition while keeping the computation costs and the needed storage low. It is,

however, necessary to adjust its ’settings’, the alphabet size and the number of windows,

to the attributes, for example the length, of the used motion primitives. The differences

between the MINDIST function and the average euclidean distance are small, whereby

the former is more recommended, because it achieves slightly better and more secure

results. The Hidden Markov Model is a good solution to recognise the sequences of

the motion primitives, although it is very important to provide it with enough training

observations. The Kinect sensor and its software creates reliable and noiseless signals as

long as body parts do not overlap.

List of Figures 41

List of Figures

1.1 Complete Procedure of Discretisation and Recognition. 2

2.1 Kinect . 4

2.2 Depthmap created by Kinect Software 5

2.3 Skeleton, created by Kinect Software . 6

3.1 Time Series of same movement from different positions 8

3.2 Normalised Time Series . 9

3.3 Time Series represented with PAA . 9

3.4 Original Time Series . 12

3.5 Time Series normalised and represented with PAA 12

3.6 Final representation by SAX. 13

5.1 Example of a Markov Chain . 21

5.2 Example of a Hidden Markov Model . 23

List of Tables 42

List of Tables

3.1 The breakpoints which define the intervals for the discretisation of the

different mean values for alphabet sizes from 3 to 10. 11

4.1 The look-up table used by the MINDIST function for alphabet size a = 5.

The distance between two symbols can easily be read off at the corre-

sponding row and column. For example, the distance between ’a’ and ’d’,

using the Latin alphabet, is 1.09. 16

6.1 The five different motion primitives, with which the algorithms have been

tested. 37

6.2 The recognition rates of the five motion primitives in percent with dif-

ferent number of windows and different alphabet sizes. The blue entries

are the results of the MINDIST function and the brown entries are the

results of the average euclidean distance variant. 38

6.3 The results for the complete procedure with different number of training

observations and iterations. 39

Bibliography 43

Bibliography

[1] http://www.roboearth.org/ , Last checked on March 2012.

[2] Waibel M.; Beetz M.; Civera J.; D’Andrea R.; Elfring J.; Galvez-Lopez

D.; Haussermann K.; Janssen R.; Montiel J.M.M.; Perzylo A.; Schiessle

B.; Tenorth M.; Zweigle O.; van de Molengraft R.: RoboEarth - A

World Wide Web for Robots. IN: Robotics and Automation Magazine,

IEEE, 2011.

[3] Wujanz, D.; Weisbrich, S.; Neitzel, F.: 3D-Mapping mit dem

Microsoft R© Kinect Sensor - erste Untersuchungsergebnisse. IN: Pro-

ceedings 10.Oldenburger 3D-Tage, 2011.

[4] http://www.microsoft.com/presspass/press/2010/mar10/

03-31primesensepr.mspx , Last checked on March 2012.

[5] http://community.guinnessworldrecords.com/

_Kinect-Confirmed-As-Fastest-Selling-Consumer-Electronics-Device/

blog/3376939/7691.html , Last checked on March 2012.

[6] http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/

31/kinect-for-windows-is-now-available.aspx , Last checked on

March 2012.

[7] Stowers, J.; Hayes, M.; Bainbridge-Smith, A.: Altitude control of a

quadrotor helicopter using depth map from Microsoft Kinect sensor.

IN: Mechatronics (ICM), IEEE International Conference, 2011.

[8] Lu Xia, Chia-Chih Chen, J. K. Aggarwal: Human Detection Using

Depth Information by Kinect. 2011.

http://www.roboearth.org/
http://www.microsoft.com/presspass/press/2010/mar10/03-31primesensepr.mspx
http://www.microsoft.com/presspass/press/2010/mar10/03-31primesensepr.mspx
http://community.guinnessworldrecords.com/_Kinect-Confirmed-As-Fastest-Selling-Consumer-Electronics-Device/blog/3376939/7691.html
http://community.guinnessworldrecords.com/_Kinect-Confirmed-As-Fastest-Selling-Consumer-Electronics-Device/blog/3376939/7691.html
http://community.guinnessworldrecords.com/_Kinect-Confirmed-As-Fastest-Selling-Consumer-Electronics-Device/blog/3376939/7691.html
http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/31/kinect-for-windows-is-now-available.aspx
http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/31/kinect-for-windows-is-now-available.aspx

[9] http://openni.org/ , Last checked on March 2012.

[10] Matthias Greuter, Michael Rosenfelder, Michael Blaich, Oliver Bittel:

Object Detection with the 3D-Sensor Kinect. IN: International Confer-

ence on Research and Education in Robotics, 2011.

[11] Jessica Lin, Eamonn Keogh, Stefano Lonardi and Bill Chiu: Symbolic

Representation of Time Series, with Implications for Streaming Algo-

rithms. IN: 8th ACM SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery, 2003.

[12] Jessica Lin, Eamonn Keogh, Stefano Lonardi, Li Wei: Experiencing

SAX: a Novel Symbolic Representation of Time Series. 2007.

[13] Leonard E. Baum, Ted Petrie, George Soules, Norman Weiss: A Maxi-

mization Technique occuring in the Statistical Analysis of Probabilistic

Functions of Markov Chains. IN: The Annals of Mathematical Statis-

tics, Vol. 41, No. 1, 1970.

[14] Lawrence R. Rabiner: A Tutorial on Hidden Markov Models and

Selected Applications in Speech Recognition. IN: Proceedings of the

IEEE, Vol. 77, No. 2, 1989.

http://openni.org/

Declaration

All the work contained within this thesis,

except where otherwise acknowledged, was

solely the effort of the author. At no

stage was any collaboration entered into

with any other party.

(Felix Brucker)

	Introduction
	Motivation
	Thesis Outline

	The Microsoft Kinect System
	Representing Time Series
	Normalisation
	PAA - Piecewise Aggregate Approximation
	SAX - Symbolic Aggregate Approximation

	Measuring Distances
	Markov Models
	Markov Chains
	Hidden Markov Models
	The Forward-Backward Algorithm
	The Forward Procedure
	The Backward Procedure

	The Baum-Welch-Algorithm
	Zero Entries and Training Sets
	Left-Right Models

	Experimental Results
	Experiment procedure
	The motion primitives and complex gestures
	Results
	Conclusion

	List of Figures
	List of Tables
	Bibliography

