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Tag der mündlichen Prüfung: 22. Oktober 2007

Institut für Mechanik (Bauwesen) der Universität Stuttgart

2007



Herausgeber:

Prof. Dr.-Ing. habil. C. Miehe

Organisation und Verwaltung:

Institut für Mechanik (Bauwesen)
Lehrstuhl I
Universität Stuttgart
Pfaffenwaldring 7
70550 Stuttgart
Tel.: ++49(0)711/685-66378
Fax: ++49(0)711/685-66347

c© Serdar Göktepe
Institut für Mechanik (Bauwesen)
Lehrstuhl I
Universität Stuttgart
Pfaffenwaldring 7
70550 Stuttgart
Tel.: ++49(0)711/685-66377
Fax: ++49(0)711/685-66347
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Entwicklung von physikalisch motivierten Mod-
ellen für die Beschreibung des Materialverhaltens von gummi- und glasartigen Polymeren.
Ein besonderer Fokus dieser Arbeit liegt auf der Elastizität, finiten Viskoelastizität, de-
formationsinduzierten Mullins-Typ Schädigung in gummiartigen Polymeren sowie auf der
Viskoplastizität amorpher glasartiger Polymere bei finiten Deformationen. Die entwickel-
ten Modelle besitzen intrinsische mikro-makro Übergangseigenschaften die uns erlauben
Mechanismen der Mikrostruktur zu berücksichtigen. Physikalisch motivierte Material-
parameter folgen aus der geometrischen Betrachtung diese Mechanismen. Vorgeschlagen
wird eine Mikrostruktur, die durch eine sogenannte Mikrokugel charakterisiert ist. Die
Oberfläche der Mikrokugel stellt die stetige Verteilung der räumlichen Orientierung der
Polymerketten dar. Die Hauptidee des vorgeschlagenen konstitutiven Rahmens beruht auf
zwei Schritten: der Entwicklung eines mikromechanisch motivierten konstitutiven Mod-
ells einer einzelnen Polymerkette und der Definition der makroskopischen Spannungen die
aus einem Homogenisierungsverfahren der Zustandesvariablen folgen. Die Verteilung und
die räumliche Orientierung der mikroskopischen Zustandsvariablen werden in diskreter
Weise auf der Mikrokugel definiert. Die diskutierten Modelle werden weiter mit den
zugehörigen algorithmischen Verfahren ausgestattet, die einerseits die Aktualisierung der
internen Variablen durchführt und andererseits die Berechnung von Spannungen und kon-
sistenten Tangentenmodulen bereitstellt. Die Leistungsfähigkeit der Modelle wird anhand
zahlreicher Vergleiche homogener und inhomogener Experimente mit den entsprechenden
Simulationen gezeigt.

Abstract

This work is concerned with the development of physically motivated constitutive models
for the description of the material behavior of rubbery and glassy polymers. The partic-
ular focus of the thesis is placed on elasticity, finite viscoelasticity, deformation-induced
Mullins-type damage in rubbery polymers, and finite viscoplasticity of amorphous glassy
polymers. The models developed possess the intrinsic character of a micro-macro tran-
sition that, in turn, allows us to incorporate the physical mechanisms stemming from
a micro-structure of the material through geometrically well defined kinematic measures
and in terms of physically motivated material parameters. The proposed approaches make
use of a micro-structure that is symbolized by a unit sphere, the so-called micro-sphere.
The surface of the micro-sphere represents a continuous distribution of chain orientations
in space. A key idea of the proposed constitutive framework may be considered as a
two-step procedure that incorporates the set up of micromechanically-based constitutive
models for a single chain orientation and the definition of the macroscopic stress response
through a directly evaluated homogenization of state variables. The disribution of micro-
state variables are defined on the micro-sphere of space orientations in a discrete manner.
The proposed models are further furnished with the associated algorithmic procedures
that perform the update of internal variables and computation of stresses and tangent
moduli in a way consistent with the employed integration scheme. The modeling perfor-
mance of the models is tested against broad range of homogeneous and inhomogeneous
experimental data with particular regard to their predictive simulation capabilities.
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Stuttgart, October 2007 Serdar Göktepe





Contents i

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Motivation and State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Finite Elasticity and Inelasticity of Rubber-like Materials . . . . . . . 1

1.1.2. Finite Viscoplasticity of Amorphous Glassy Polymers . . . . . . . . . . 8

1.2. Scope and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Fundamentals of Continuum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1. The Motion, Fundamental Geometric Maps and Deformation Measures . . 15

2.2. Cauchy’s Stress Theorem and the Fundamental Stress Measures . . . . . . . . 20

2.3. Balance Principles of Continuum Thermomechanics . . . . . . . . . . . . . . . . 22

2.4. Dissipation and Thermomechanics with Internal Variables . . . . . . . . . . . . 26

3. The Non-Affine Micro-Sphere Model of Rubber Elasticity . . . . . . . . . . 29

3.1. Macroscopic Spatial Elasticity of a Polymer Network . . . . . . . . . . . . . . . 31

3.2. Micromechanics of a Single Polymer Chain in a Tube . . . . . . . . . . . . . . . 32

3.2.1. Definition of Micro-Kinematic Variables of the Chain . . . . . . . . . . 32

3.2.2. Free Energy of a Single Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3. The Free Energy of an Unconstrained Single Chain . . . . . . . . . . . . 34

3.2.4. Free Energy Due to the Tube-Like Constraint of the Chain . . . . . . 36

3.3. Network Models for Affine and Non-Affine Stretches . . . . . . . . . . . . . . . . 36

3.3.1. Split of the Macroscopic Free Energy of the Network . . . . . . . . . . . 36

3.3.2. The Affine Full Network Model for Unconstrained Chains . . . . . . . 37

3.3.3. A Non-Affine Network Model for Unconstrained Chains . . . . . . . . . 40

3.3.4. A Non-Affine Network Model for the Tube Constraint . . . . . . . . . . 42

3.4. Algorithmic Setting of the Constitutive Model . . . . . . . . . . . . . . . . . . . . 43

3.4.1. Summary of the Effective Material Parameters . . . . . . . . . . . . . . . 43

3.4.2. Discretization of Fields on the Micro-Sphere . . . . . . . . . . . . . . . . . 44

3.5. Assessment of the Modeling Capacity of the Model . . . . . . . . . . . . . . . . . 47

3.5.1. Performance of the Proposed Algorithmic Implementation . . . . . . . 49

3.5.2. Comparison of Affine Network Models with the Eight-Chain Model 49

3.5.3. Characteristics of the Proposed Non-Affine Micro-Sphere Model . . . 53

3.5.4. Modeling Capacity of the Non-Affine Micro-Sphere Model . . . . . . . 55

3.5.5. Three-Dimensional Analysis of a Non-Homogeneous Shear Test . . . 58

4. The Micro-Sphere Model of Finite Rubber Viscoelasticity . . . . . . . . . . 63

4.1. Macroscopic Spatial Viscoelasticity of a Polymer Network . . . . . . . . . . . . 64

4.2. Micromechanics of Chains in a Constrained Environment . . . . . . . . . . . . 66

4.2.1. Definition of Micro-Kinematic Variables of the Chain . . . . . . . . . . 66

4.2.2. Free Energy of the Elastic Ground State Response . . . . . . . . . . . . 66

4.2.3. Free Energy and Dissipation of Viscoelastic Overstress Response . . 66

4.2.4. Algorithmic Representation of the Overstress Response . . . . . . . . . 68



ii Contents

4.3. Network Model for Finite Rubber Viscoelasticity . . . . . . . . . . . . . . . . . . 69

4.3.1. Definition of Macroscopic Stretch and Area Deformation . . . . . . . . 69

4.3.2. Non-Affine Network Model for Elastic Equilibrium Response . . . . . 70

4.3.3. Affine Network Model for Viscoelastic Overstress Response . . . . . . 71

4.3.4. Discretization of Fields on the Micro-Sphere . . . . . . . . . . . . . . . . . 72

4.4. Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1. Simulation of Homogeneous Experiments . . . . . . . . . . . . . . . . . . . 73

4.4.2. 3-D Analyses of a Non-Homogeneous Shear Test . . . . . . . . . . . . . . 78

5. The Micro-Sphere Model of Anisotropic Mullins-Type Damage . . . . . 81

5.1. Macroscopic Finite Elasticity with Damage . . . . . . . . . . . . . . . . . . . . . . 82

5.2. Micromechanics of Chains in a Constrained Environment . . . . . . . . . . . . 83

5.2.1. Free Energy of the Crosslink-to-Crosslink Response . . . . . . . . . . . . 83

5.2.2. Free Energy and Dissipation of the Particle-to-Particle Response . . 84

5.2.3. Algorithmic Representation of the PP Micro-Stresses . . . . . . . . . . 86

5.3. Anisotropic Network Model of Mullins-Type Damage . . . . . . . . . . . . . . . 87

5.3.1. Definition of Macro-Kinematic Variables of the Continuum . . . . . . 87

5.3.2. Non-Affine Network Model for Crosslink-to-Crosslink Response . . . 87

5.3.3. Affine Network Model for Particle-to-Particle Response . . . . . . . . . 88

5.3.4. Discretization of Fields on the Micro-Sphere . . . . . . . . . . . . . . . . . 89

5.4. Representative Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1. Numerical Investigations on Homogeneous Tests . . . . . . . . . . . . . . 90

5.4.2. A Cube Subjected to Combined Tension and Shear . . . . . . . . . . . . 93

6. Finite Viscoplasticity of Amorphous Glassy Polymers . . . . . . . . . . . . . 95

6.1. Additive Finite Plasticity in the Logarithmic Strain Space . . . . . . . . . . . . 95

6.1.1. Additive Kinematic Approach Based on Logarithmic Strains . . . . . 96

6.1.2. Modular Structure of the Constitutive Equations . . . . . . . . . . . . . 97

6.2. Constitutive Model for Viscoplasticity of Glassy Polymers . . . . . . . . . . . . 101

6.2.1. Overall Constitutive Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.2. Specific Forms of the Constitutive Equations . . . . . . . . . . . . . . . . 101

6.2.3. Algorithmic Setting of the Model . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3. Illustrative Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.1. Investigations on Homogeneous Deformation States . . . . . . . . . . . . 109

6.3.2. Cold Drawing of a Dumbbell-Shaped PC Specimen . . . . . . . . . . . . 112

7. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

A. Spectral Representation of the Right Cauchy-Green Tensor . . . . . . . .119

B. Decoupled Volumetric-Isochoric Finite Elasticity . . . . . . . . . . . . . . . . .123

C. Statistics of the Freely Jointed Chain . . . . . . . . . . . . . . . . . . . . . . . . . .127



1

1. Introduction

The goal of this thesis is to develop new physically motivated constitutive models
for the description of material behavior of rubbery and glassy polymers. The particu-
lar emphases are laid on the finite elasticity, finite viscoelasticity, deformation-induced
Mullins-type damage in rubbery polymers, and the finite viscoplasticity of amorphous
glassy polymers. The developed models possess the intrinsic character of micro-macro
transition that allows us to incorporate the physical mechanisms stemming from a micro-
structure of the material through geometrically clear deformation measures and in terms of
physically motivated material parameters. The proposed models furnished with associated
algorithmic settings are tested against broad range of homogeneous and inhomogeneous
experimental data with particular regard to their predictive simulation capabilities.

1.1. Motivation and State of the Art

1.1.1. Finite Elasticity and Inelasticity of Rubber-like Materials. Since the
beginning of the last century the mechanics of rubber-like materials has been a very
active field of research due to their wide range of industrial applications. Recently devel-
oped production techniques have led to a broad use of rubbery polymer products in di-
verse industrial applications, which include tire technology, automotive industry, conveyor
belts, membranes, base isolations, seals, to name a few. The predictive three-dimensional
analyses of the rubbery products that possess complex geometry and are subjected to
various loading conditions are of great importance for their efficient use and functional
design. This can only be achieved by the sound constitutive models accounting for the
time-dependent inelastic material behavior at finite deformations. The various effects ob-
served in the material response are prevailed by its chemical and structural composition
as well as the loading program to which the material is subjected. The dominating highly
non-linear elasticity, characterized by the typical S-shaped uniaxial nominal stress-stretch
curve, Figure 3.14, is generally accompanied by complicated inelastic effects such as visco-
elastic-plastic phenomena coupled with the so-called Mullins effect of strain-softening, see
Figure 1.2. The combined inelastic effects may be accounted for through their superposi-
tion onto a non-linear ground-elastic response, see e.g. Miehe & Keck [150].

Elasticity of Rubber-like Materials. The elastic response of rubber-like materials
is characterized by its extreme deformability and an almost full recovery upon unloading,
see for example Treloar [196] or Mark & Erman [129] for an introduction. Rubbery
polymer networks are formed by vulcanization of their basic constituents, the long chain
molecules. Rubber-like elasticity can be achieved through two fundamental microstruc-
tural requirements. These demand the existence of very flexible and mobile (thermally
agitated) chain molecules and a three-dimensional network structure that is formed by
sparsely separated cross-links where chains are connected. Although rubber is commonly
classified as a solid material, it resembles the three states –solid, liquid and gas– of a
matter with regard to different aspects. Its ability to undergo elastic deformations, i.e.
almost full recovery of its initial shape upon unloading, indicates that it has a certain
structure that is commonly observed in conventional solid materials. Practically rubbery
polymers are incompressible materials possessing the volumetric stiffness nearly four or-
ders of ten larger than the shear modulus while they are readily deformable in shear.
This is a typical property of a liquid material. Their striking thermoelastic properties
resemble a gaseous material whose pressure is also chiefly entropically derived. That is,
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the internal energy practically does not change under isothermal deformations. There-
fore, it is widely accepted that the dominant contribution to the high elastic response
of rubber-like materials is due to changes in conformations of network constituents com-
monly referred to as the entropy elasticity theory. Entropic elasticity of chain molecules
is well established in the context of statistical mechanics, see e.g. Kuhn [112], Kuhn
& Grün [114], James & Guth [101], Treloar [196], Flory [64] and references
therein. The key challenge in the micromechanically-based modeling of rubber-like ma-
terials, however, is the construction of a micro-macro transition that provides a bridge
between microscopic kinematic variables of a single chain and macroscopic deformation
measures of a continuum.

There is a large body of literature on the constitutive modeling of macroscopic elastic
response of rubbery polymers. These models can roughly be classified into two types:
purely phenomenological models and micromechanically-based models. For an excellent
overview, the reader is referred to the recent papers of Boyce & Arruda [25] and
Marckmann & Verron [127]. The latter critically compares twenty hyperelasticity
models of rubber-like materials and provides a ranking list based chiefly on the two sets of
celebrated experimental data reported by Treloar [193] and Kawabata et al. [107].

Traditionally the elasticity of rubber-like materials has been considered as an ideal area
of application of isotropic elasticity theory. This has apparently given rise to the phe-
nomenological models that are formulated in the form of polynomial strain energy func-
tions in terms of principal invariants or principal stretches. These phenomenological
constitutive models generally lack a connection to the molecular structure of the ma-
terial. Owing to their polynomial form, these models may result in unrealistic results
beyond the deformation range within which their material parameters are determined.
The Mooney-Rivlin model, which has originally been proposed by Mooney [153], can
be considered as one of the simplest form of the invariant-based models. It is gener-
ally recalled with a straight line representation of its uniaxial response in the so-called
Mooney plot, i.e. f ∗ := P11/(λ − λ−2) = 2(C10 + C01/λ) vs 1/λ. Its generalized form
Ψ(I1, I2) =

∑∞
i,j=0Cij(I1−3)i(I2−3)j was introduced by Rivlin & Saunders [175]. One

of the well-known models belonging to this class has been suggested by Yeoh [210] in the
form of a third-order polynomial of the first invariant I1 of the right Cauchy-Green tensor.
The Ogden model proposed in Ogden [160, 161] is probably the best known example for
the principal stretch-based constitutive formulations consistent with the Valanis-Landel
hypothesis. Its free energy is of the form Ψ(λ1, λ2, λ3) =

∑

n
µn

αn
(λαn

1 +λαn

2 +λαn

3 ). Appar-
ently, all the invariant-based free energy functions can readily be recast into the forms in
terms of principal stretches. The reverse, however, generally does not hold. As mentioned
above, rubber-like materials deform under nearly constant volume, i.e. incompressible
with J =

√
I3 = λ1λ2λ3 ≈ 1. For this reason, a general deformation state at a material

point can completely be described in terms of two independent measures of deforma-
tion such as {λ1, λ2} or {I1, I2}. For a plane-stress biaxial deformation, for instance, the
derivatives of a free energy function ∂I1

Ψ(I1, I2), ∂I2
Ψ(I1, I2) can be acquired in terms of

the nominal stresses and stretches measured during an experiment. This set of experi-
mental curves can then be used as guidelines for estimating the functional form of these
derivatives, see e.g. Jones & Treloar [102], Kawabata et al. [107].

Besides the purely phenomenological models, there have been various micromechanically-
based idealized network models proposed in the literature. These include the three-chain,
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the four-chain, the eight-chain and the full network models. The three-chain model of
James & Guth [101] and Wang & Guth [203] assumes that the polymer network
can be represented by three sets of chains oriented in the principal directions of defor-
mation. The macroscopic free energy of the network is assumed to be determined by
multiplication of the number of chains in the network with the arithmetic mean of the
non-Gaussian chain free energies consistently computed through the affinity assumption
in principal directions; that is, Ψ(λ1, λ2, λ3) = n

3

∑3
i=1 ψL(λi) where n denotes the network

chain density. The four-chain model of Flory & Rehner [66], Treloar [194] simpli-
fies the complex polymer network with four chains, which are connected to the corners of
a tetrahedron. The tetrahedron deforms in accordance with the macroscopic deformation
while the displacement of the central junction point of chains is iteratively determined
through an equilibrium condition. In this sense, the chain deformations are non-affine.
The eight-chain model, proposed by Arruda & Boyce [8], defines a single non-affine
network stretch λ := ((λ2

1 + λ2
2 + λ2

3)/3)1/2 that is assumed to be representative for all
chains constituting the network. The macroscopic free energy of the network is simply
given by Ψ(λ) = nψL(λ). Recently, Boyce [24] compared the eight-chain model to the
first invariant-based Gent model, Gent [68], and demonstrated the almost equivalence
of these two models in the sense of their set-up and fitting qualities of test data. The
affine full network model has been originally proposed by Treloar [195] only for the
uniaxial deformation case. In this model, the chain orientations are assumed to be equally
distributed in space. Later, Treloar & Riding [197] advanced the affine full network
model to the biaxial deformation and provided a numerical implementation. Its gener-
alized three-dimensional form applicable to complex non-homogeneous deformations was
recently formulated by Wu & van der Giessen [206]. In addition, Lulei & Miehe
[125] suggested an efficient algorithmic setting for the affine full network model. How-
ever, it is a well-known fact that the affinity assumption yields model response that is not
completely in agreement with experimental observations, especially in the range of large
deformations. Owing to this fact, it was argued in Boyce & Arruda [25] and Wu &
van der Giessen [206] that the eight-chain model yields more realistic results than the
seemingly more precise affine full network models.

The above mentioned micromechanically-based models consider idealized polymer net-
works to be composed of chains which are assumed to pass through each other freely and
no intermolecular forces among them are taken into account. In real networks, however,
topological constraint effects arise due to entanglement-like formations. Molecular-based
statistical approaches that incorporate these effects can be classified into two main groups:
the constrained junction theories which formulate the topological constraints around the
junctions and the constrained segment theories which define interaction effects along the
chain length. The former approach has been independently proposed by Ronca & Al-
legra [177] and Flory [62] and further developed in a series of papers by Flory [63],
Erman & Flory [56] and Flory & Erman [65]. The constraint part of the model
proposed by Flory and Erman was already considered as a remedy to improve the per-
formance of the eight-chain model in Boyce & Arruda [25]. The constraint segment
approach is consistent with the so-called tube model of rubber elasticity, see for example
Deam & Edwards [40], Edwards & Vilgis [53], Heinrich & Straube [93, 94]
and references cited therein. Agreement between the tube model approach and small-angle
neutron scattering (SANS) patterns in the two-dimensional detector plane was reported
by Straube et al. [188, 189]. The extended tube model proposed by Kaliske &
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Figure 1.1: Nominal stress-stretch response of a viscoelastic HNBR50 material subjected
to a uniaxial cyclic deformation at constant stretch-rate (thin line). A full relaxation from
a non-equilibrium point A to an equilibrium point B identifies an elastic equilibrium curve

without hysteresis (thick line). The two experimentally obtained curves justify a separate
constitutive modeling of the elastic equilibrium and viscous overstress response.

Heinrich [104] can be looked upon as the successful three-dimensional extension of the
constrained segment ideas. Furthermore, similarities of the physics employed in the con-
strained junction and constrained segment approaches have been shown by Vilgis &
Erman [200], albeit the different viewpoints in the treatment of topological constraints.

Finite Viscoelasticity of Rubber-like Materials. In context of the phenomeno-
logical material modeling on a macroscopic continuum level, dissipative inelastic phenom-
ena observed in rubbery polymers are generally referred to as finite elasto-visco-plasticity
coupled with deformation-induced softening. The overall behavior of rubbery polymer
aggregates exhibits highly non-linear finite elasticity combined with time-dependent in-
elastic effects. The uniaxial nominal stress-stretch response a cylindrical hydrogenated
nitrile butadiene rubber HNBR50 specimen under cyclic loading at room temperature is
shown in Figure 1.1. In order to exclude the Mullins effect due to a partial breakdown
of the microstructure, a pre-conditioning (deformation-induced pre-damaging) was per-
formed as described for example in James & Green [99], Lion [118], Bergström
& Boyce [14], Miehe & Keck [150] and Méndez [135]. Following Haupt [86],
the dissipative hysteresis in Figure 1.1 can be explained either by elasto-visco-plasticity
(response with equilibrium hysteresis) or by viscoelasticity (response without equilibrium
hysteresis). In order to investigate the existence of a possible equilibrium hysteresis, pre-
conditioned specimens were subjected to cyclic uniaxial tests including holding periods
of relaxation, as depicted in Figure 4.6. A convergence of the relaxation processes to the
same stress value at the same stretch value and at the end of a long holding period was
observed as shown in Figure 1.1, indicating that the pre-conditioned material exhibits
almost no equilibrium hysteresis, see also Méndez [135] and Zecha [211]. This ob-
servation is in accord with the experimental results reported by Bergström & Boyce
[14] and Haupt & Sedlan [88] on similar materials. In the light of this investigation,
we consider the inelastic behavior of the pre-conditioned material to be viscoelastic.

The challenges faced in the modeling of finite rubber viscoelasticity have been tackled
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by many researchers from different disciplines. Approaches of the engineering community
possess a more macroscopic viewpoint, while the scientists from physical chemistry have
addressed the problem on a molecular level. Comprehensive reviews are outlined in the
textbooks Ferry [58], Tanner [191], Doi & Edwards [45], Findley, Lai & Onaran
[59] and Drozdov [49]. Purely phenomenological approaches to finite viscoelasticity
usually introduce tensorial stress- or strain-like internal variables. The formulations pro-
posed, for example, in Simó [183], Govindjee & Simó [73], Holzapfel & Simó
[97], Lion [118] and Kaliske & Rothert [106] use internal variables of the stress-
type. Most of them exploit the structure of linear viscoelastic standard solids and can
be looked upon as special cases of the general theory of simple materials with fading
memory as outlined in Truesdell & Noll [198] and Coleman & Noll [36]. In
addition, the celebrated K-BKZ model of Kaye [108] and Bernstein, Kearsley &
Zapas [17] represents a class of optimal single-integral models of viscoelasticity. Besides
the theories employing stress-like internal variables in the form of convolution integrals,
the formulations of Sidoroff [181], Lubliner [122], Lion [119], Keck & Miehe
[109], Bergström & Boyce [14], Reese & Govindjee [171], Haupt & Sedlan
[88] and Reese [170] use the multiplicative split of the deformation gradient into elastic
and inelastic parts. The inelastic part enters the formulation as a strain-like tensorial
internal state variable in the sense of Coleman & Gurtin [35]. An alternate kine-
matic approach to viscoelasticity based on the introduction of evolving viscous metric
tensors as internal variables was outlined by Miehe & Keck [150]. This framework
a priori avoids difficulties of the above mentioned intermediate configuration theories, in
particular doubts concerning a separate modeling of viscous rotations.

Some of the above mentioned approaches are purely phenomenological while some others
are motivated from micromechanical considerations. Several molecular theories for the
modeling of viscous behavior of molten polymers and physically cross-linked concentrated
polymer networks were proposed in the last decades. Following Wientjes et al. [204],
these molecular approaches can roughly be classified in three groups. The first group
consists of bead-spring models conceptually in line with Rouse [178] and Zimm [212],
see Bird et al. [19] for a review. The reptation-type tube models proposed by de
Gennes [41] and Doi & Edwards [45] can be considered to define a second group of
more advanced versions of bead-spring models. Ideas of the reptation model has already
been utilized in the above mentioned macroscopic model of Bergström & Boyce [14],
see also Lulei & Miehe [125]. The transient network model was originally proposed by
Green & Tobolsky [76] and further developed and revised by Lodge [120], Tanaka
& Edwards [190]. In this third group of micromechanical approaches, polymer segments
located between junction points are assumed to be reformed and destroyed during the
deformation process. The effect of the chain breakage and formation on the network
distribution was investigated in Scott & Stein [180] and Furukawa [67]. Basic ideas
of transient network models have been employed in the macroscopic models of Lubliner
[122], Drozdov & Dorfmann [51], Reese [170], among others.

Deformation-Induced Softening in Rubbery Polymers. Investigations on the
effect of stress softening in cyclic tensile stretching of rubber specimens can be traced back
to the beginning of the last century starting with the works of Bouasse & Carrière [20]
and Holt [96]. The observed deformation-induced softening phenomenon has often been
referred to as the Mullins effect due to his detailed investigations starting from the late
1940s. Mullins [155, 156] reported the following basic phenomenological observations:
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Figure 1.2: The Mullins effect. a) Cyclic uniaxial experiment on a fresh cylindrical rubber
specimen HNBR50 at room temperature, Méndez [135]. Six cycles at progressively increas-
ing stretch values λ ∈ [1, 2.5] were applied at very slow loading rate |λ̇| = 4 × 10−2 1/min.
The unloading-reloading curves do not coincide due to the rate dependency of the material.
The stress-free state is recovered at a permanent set of non-vanishing strain. b) An idealized
description considers the Mullins effect as a rate-independent phenomenon by neglecting the
hystereses of unloading-reloading curves as well as the permanent set.

i) A substantial softening only occurs in rubbers at stretch values greater than a maximum
obtained in the previous deformation history. ii) The degree of softening increases with
the initial volume fraction of the filler, characterizing the softening effect as the breakdown
of the stiffening microstructure due to fillers. iii) An anisotropic directional dependence
of the softening was observed and supported by swelling experiments. iv) The healing of
softening observed was very slow and complete recovery was never achieved. v) A softening
behavior was also observed in compression tests, as also reported by Bergström &
Boyce [14]. An idealized description of the Mullins effect in a quasi-static cyclic uniaxial
tensile test with successively increasing stretches is schematically shown in Figure 1.2b.
This idealization neglects viscous hystereses of the unloading-reloading curves depicted in
Figure 1.2a. A common procedure is to interpret either retraction or reloading curves in
Figure 1.2a as the idealized softened response of Figure 1.2b, see for example Mullins &
Tobin [157], James & Green [99] or Marckmann et al. [128] for recent treatment.
Furthermore, it was observed that the retraction curves attain zero stress value at non-
zero strain levels. It has commonly been attributed to intrinsic plasticity in the material
behavior. This permanent set phenomenon, however, can also be considered as a basic
indication of a characteristic anisotropy due to the strain-induced softening response. It
has often been eliminated in context of isotropic damage models as shown in Figure 1.2b
by shifting the unloading curves to the left by the amount of the permanent set, see for
example the procedure explained in Mullins & Tobin [157].

A typical microstructure of a carbon-black filled rubber is depicted in Figure 5.1. The
complex inelastic overall response of the material may be explained through various mi-
cromechanical mechanisms which simultaneously take place between the polymer matrix
and the filler particles, see for example the reviews Aksel & Hübner [2], Drozdov &
Dorfmann [50] and Dannenberg [39]. However, there is no common agreement in
the literature on a unique micromechanical mechanism leading to the Mullins-type stress
softening. A rather phenomenological approach to the description of softening behavior of
filled vulcanizates was proposed by Mullins & Tobin [157]. They considered the ma-
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terial to be composed of soft and hard regions of rubber where most of the straining takes
place in the soft regions. During deformation, the fraction of the hard regions decreases
continously and is transformed into the soft phase. In unloading-reloading up to a previ-
ous maximum deformation, the fractions of the individual phases are assumed to remain
constant and upon extension beyond the previous maximum, the micro-stretch trans-
formation continues. In a follow-up work, Mullins & Tobin [158] employed a strain
amplification factor in order to describe the homogenized overall response of the two-phase
composite. A similar approach was recently elaborated by Klüppel & Schramm [110].
A comparison of different approaches involving strain amplifications was carried out by
Govindjee [71] and Bergström & Boyce [15].

A rather molecular approach was suggested by Bueche [31]. His theory of softening is
based on the breaking of bonds between chains and the fillers. Considering three different
chains of different contour lengths as depicted in Figure 5.1c, he argued that for appre-
ciable amount of stretching, the shortest chain must rupture. Subsequently, the chain of
intermediate length might rupture when it is subjected to moderate stretch values. Very
large extension values are required for a breakdown of the longest chain. Owing to the
different lengths of chains, the breakdown of chains takes place at any level of maximum
extension. The chains torn off from the particles are considered as elastically inactive,
because they do not contribute to entropy alteration of the network due to an externally
imposed deformation. Hence, in case of reloading after retraction, the behavior of the
rubber will be softer. He also explained the softening in the unfilled network at very large
deformations on the basis of a non-affine deformation of the chains. As discussed in [149],
short chains start to carry large forces at moderate deformations. At larger deformations
a redistribution takes place and these chains elongate smaller than values dictated by
an affine deformation. As a consequence, the network will not fail until such large de-
formations where redistributions are no longer possible. Hence, at small and moderate
deformations relative to the limiting stretch values of the chains, the softening observed
in pure gum vulcanizates is much smaller than in filled vulcanizates.

The explanation of the softening of unfilled rubbers by Bueche [31] has been experimen-
tally approved in a series of papers by Harwood et al. [81, 82, 83]. They contended
that the softening should take place not at the interface between rubber and particles
but solely in the rubber matrix. Possible mechanisms involving breaking and reforming
of crosslinks during extension, residual local orientations after retraction and breaking of
constituent chains were proposed. However, their conclusions that were drawn based on
a normalization of data by using strain amplification factors were severely criticized by
Rigbi [173], p.31 and Medalia [134]. Especially the claim that softening mechanisms
should take place solely in the rubber matrix did not find common acceptance.

As mentioned above, a microstructural alteration scenario based on the destruction and
reformation of the junction points, known as the transient network theory, was originally
proposed by Green & Tobolsky [76] to account for the rate-dependent viscoelastic
behavior of the polymeric networks. This idea was further exploited by Rajagopal &
Wineman [169] in their so-called two network theory. The activation conditions for the
new junction points are formulated similar to the yield criterion in plasticity theory but
evolution of the activation surface was not allowed. Further studies within this framework
were conducted by Beatty & Krishnaswammy [12, 11] and Markmann et al.
[128].
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In addition to the above mentioned mechanisms, the molecular slippage mechanism dis-
cussed in the review papers Dannenberg [39] and Rigbi [173] may be considered
as generalizations of the breakage scenario of Bueche. It accounts for both viscoelastic
and stress softening effects. Upon loading, chains slip relative to filler particles without
rupturing. During this slippage a stress redistribution takes place and upon unloading
the network attains a random distribution with chains of longer contour length. More
advanced ideas in this direction as discussed in Hamed & Hatfield [80] involve de-
tangling mechanisms based on a bound layer and its interaction to the rubber phase.
Even the healing phenomenon can be connected to a bound rubber layer formed on the
particle surface. Govindjee & Simó [72] advanced the molecular ideas of Bueche [31]
to three-dimensional deformations by an averaging approach in a statistically represen-
tative sample volume. An important feature of their theory is the additive split of the
free energy into CC- and PP-contributions motivated by the micromechanical structure,
shown also in Figure 5.1. They were able to simulate large hysteresis effects very well. In
their follow-up work, Govindjee & Simó [74] recast their former approach into a rather
phenomenological framework based on the introduction of a normalized stress function
which governs the unloading-reloading paths at a given level of stress softening.

Besides the micromechanically motivated theories mentioned above, many purely macro-
scopic models have been developed in the context of classical continuum damage mechan-
ics. We refer to the works Gurtin & Francis [79], Simó [183], De Souza Neto,
Perić & Owen [43], Miehe [139], Lion [118, 119], Miehe & Keck [150], Kaliske,
Nasdala & Rothert [105] which model macroscopically isotropic damage in line with
general treatments of Kachanov [103] and Lemaitre [116]. Furthermore, the notion of
pseudo elasticity was employed for the modeling of the Mullins effect by Ogden & Rox-
burg [162]. Very recently, Dorfmann & Ogden [46, 47] investigated the behavior of
rubber for unloading-reloading and permanent set effects.

1.1.2. Finite Viscoplasticity of Amorphous Glassy Polymers. Amorphous
glassy polymers have widely been employed in various practical application areas that
cover automotive and construction industry, electronics, optical devices and medical tech-
nology, to mention a few. The broad spectrum of application is due to their good pro-
cessing features, high energy absorption capacity under impact loadings, lower weight
relative to glass, excellent optical properties. Geometry of the products used in the above
mentioned practical applications is generally three-dimensional and has varying aspect
ratios. Apart from the geometrical challenge, amorphous glassy polymers exhibit rate-
dependent finite elastic-plastic material behavior. The elasto-viscoplastic response stems
from the inherent disordered micro-structure of the material that is formed by linear poly-
mer chains existing in the “frozen-in” state below the glass transition temperature. That
is, in contrast to the chains constituting the rubber-like materials, the macromolecules of
glassy polymers are not thermally agitated. Furthermore, being different from rubber-like
materials and thermosets, they are generally not cross-linked by chemical bonds but their
network structure is rather formed by physical junctions, the so-called entanglements.
This intrinsic micro-structure gives rise to the rate and temperature effects prevailing
in the material behavior. The finite elasto-viscoplastic behavior is not specific only to
tough glassy polymers but is also observed in brittle glassy polymers on a much smaller
scale, especially in the course of crazing. For this reason, both a sound three-dimensional
constitutive model accounting for the complicated material behavior and an associated
effective numerical algorithm for finite element simulations are of great importance.
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Figure 1.3: Load-displacement diagram and the snapshots of a dumbbell-shaped polycar-
bonate (PC) specimen subjected to extension at a constant cross-head speed u̇=2 mm/min
and room temperature. The selected stages of deformation labeled from a) to h) depict the
process of initiation, stabilization and propagation (cold drawing) of neck.

Probably the most illustrative example for the finite viscoplastic behavior of ductile glassy
polymers is the cold drawing process. A tensile load-displacement curve of a dumbbell-
shaped polycarbonate (Makrolon 2607) test piece (ISO 527-Type 1B) undergoing cold
drawing is depicted in Figure 1.3. The experiment was conducted at a constant cross-head
speed u̇=2 mm/min and room temperature. The representative stages of the deformation
are labeled from a) to h) on both the load-displacement diagram and the snapshots of
the deformed specimen in Figure 1.3. Combined the load-displacement diagram with the
associated images shows the initiation, stabilization and propagation of the neck. Apart
from these images, the quantitative principal stretch contours corresponding to the stages
a)-f) of the experiment are presented in Figure 1.4. The contours were obtained by post-
processing the recognized part of each associated image whose periphery is highlighted
with the solid line in Figure 1.4. The commercial application Aramis was used to cap-
ture the three-dimensional strain field evolving on the surface of the dumbbell-shaped
specimens during deformation, see also Méndez, Göktepe & Miehe [136].

In Figure 1.3, the initial linearly elastic part of the load-displacement curve bounded by
the level a) falls into the range of small deformations. In the succeeding interval, between
the stages a) and b), the curve becomes gradually non-linear and exhibits viscoelastic
characteristics as shown in Figure 1.3. At these stages of the extension, the strain field
along the specimen is measured to be uniform, see Figures 1.4a and 1.4b. The highest
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Figure 1.4: Major principal stretch measurements carried out by means of the optical mea-
surement facility during the extension of the dumbbell-shaped of polycarbonate specimen
described in Figure 1.3. Each set of a speckled snapshot of the specimen and a correspond-
ing principal stretch contour plot labeled from a) to f) corresponds to a deformation state
labeled with the same letter in Figure 1.3. The solid line drawn on the speckled specimen
denotes the periphery of the active measurement region.

load level b) attained at the end of the non-linear viscoelastic part is generally called the
macro yield point. Any unloading below this point does not result in significant hystereses
or permanent strains, see also Lu & Ravi-Chandar [123]. It has been shown that the
pre-yield viscoelastic behavior is essential to elucidate the non-linear unloading and creep
response of the material. For more detailed discussions concerning the phenomenon, the
reader is referred to the recent works of Hasan & Boyce [84] and Anand & Ames
[3]. Further extension beyond the yield point b) leads to inelastic strain localization
regions that generally appear in the form of micro shear bands causing a softening in the
load-displacement response, see also [123]. These bands then very rapidly multiply and
combine between the load levels b) and d) initiating a macroscopic plastic localization
zone, commonly called necking, compare Figures 1.3d and 1.4d. The contour plot in
Figure 1.4c corresponding to an intermediate step during the process of neck stabilization
clearly exhibits the nature of this process. As depicted in Figure 1.3, the thickness of the
neck reaches an almost stationary state and stabilizes around the lowest post-yield load
level at the stage d). This is the point where the chains in the active necking zone start to
align plastically along the extension direction. The alignment of the molecules gives rise
to the local strain hardening and causes the neck front to propagate through the test piece
at an almost constant load level between the stages d) and h). This process is commonly
called cold drawing and yields a highly anisotropic deformed state as a result of large
inelastic alignment of chains. During this process, the contour plots corresponding to the
stages d)-f) indicate some further extension in the already plasticized regions. This is
also reflected in the gradual hardening in the load-displacement diagram, albeit its slight
slope. As the neck shoulders reach the grip zone about point h), the curve starts to stiffen
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again and climbs up till the ultimate failure.

In the above described cold drawing experiment, as the contour plots in Figure 1.4 clearly
illustrate, beyond the macroscopic yield point b) the stress/strain field along the specimen
is not homogeneous anymore. Besides, the rate of deformation at different material points
considerably differs from each other. Since the material response is rate-dependent, any
stress-strain relation obtained from such type of experiment without special measuring
techniques equipped with specific control devices would not reflect the true local material
response, see for example Hope, Ward & Gibson [98], G’Sell & Jonas [78] and
G’Sell et al. [77]. In order to circumvent the difficulties associated with the inhomo-
geneous strain distribution in tensile experiments, uniaxial and plane strain compression
experiments have been carried out to investigate the local stress-strain response. In these
compressive tests a macroscopically homogeneous strain state can be achieved provided
that the friction between the specimen and platens is eliminated by employing an ap-
propriate lubrication technique. For instance, Bowden & Raha [23, 168] reported
the results of plane strain compression tests on polymethylmethacrylate (PMMA) and
polystyrene (PS). The uniaxial and plane strain compression stress-strain data of PMMA
and PC up to the true strain value lnλ ≈ −1 have been presented in Arruda & Boyce
[7], Boyce, Arruda & Jayachandran [26]. In Figure 6.4b the true stress-true strain
response of PC under uniaxial and plane strain compression is depicted. As can be im-
mediately noticed, the stress-strain response exhibits a true strain softening followed by
strain hardening at large deformations. The softening is believed to be resulted from a
localized shear band formation accompanied by the evolution of local free-volume, see
Argon [5], Hasan et al. [85], Hasan & Boyce [84] and Anand & Gurtin [4]. It
has also been observed in Figure 6.4b that the yield stress in glassy polymers exhibits both
the deformation state and the pressure dependency, see Spitzig & Richmond [187].

During the transition from a rubbery to a glassy state, the random micro-structure of the
material is generally conserved, see Treloar [196]. The mobility of the chains, however,
is greatly affected by a decrease in temperature. At temperatures well below the glass
transition temperature, the mobility of the molecules declines substantially and they exist
in a “frozen-in” state. As commonly accepted, two types of physical resistance govern the
energy barrier that must be overcome to yield the material and to deform it up to large
plastic strains. These are associated with the intermolecular and intramolecular mecha-
nisms, respectively. The plastic flow of glassy polymers is a thermally activated, statisti-
cal process whose rate is proportional to the celebrated Boltzmann factor exp(−∆G/kθ),
where ∆G, k, θ are the energy barrier to be surmounted, the Boltzmann constant, and
the absolute temperature, respectively. To achieve the macroscopic yielding, the stress
state in the material must be brought to a level at which the necessary thermal energy
state for the segment rotation can be attained. This barrier is proven to be closely related
to the intermolecular resistance, and thus depends on the pressure, which increases the
degree of packing in the material micro-structure. After yielding, the material flows and
molecules align in the flow direction. During the orientation of chains, conformational
entropy of chains decreases. Similar to the elasticity of rubbery polymers, finite plastic
deformations accompanied by strain hardening can only be attained by overcoming the
entropic resistance, see Haward & Thackray [91], Argon [5] and references therein.

Early theories on glassy polymers, e.g. Marshall & Thompson [132], endeavored to
account for the plastic deformation through an increase in chain mobility due to either a
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deformation-induced dissipative heating leading to higher temperature or a deformation-
induced increase in free volume providing more room for the motion. Although these
factors facilitate the plastic flow below the glass transition temperature, they cannot be
justified as the sole reasons yielding the active motion of molecules, see Vincent [201].
Owing to the above arguments, first, viscoelasticity theories have been employed for the
description of the phenomena. These theories, being essentially based on Eyring-type
[57] rate equations, are restricted to limited range of temperature and deformation rates.
Besides, the physical significance of the phenomenological parameters appearing in the
theory remains dubious, see Bowden [21], Crist [38] for a review. These theories have
been followed by physically-based plasticity models motivated from the experimentally
observed permanent residual deformation remaining after unloading. Probably the most
significant molecular theories for the rate-dependent inelastic behavior of amorphous poly-
mers have been proposed by Robertson [176] and Argon [5]. In the Robertson model,
plasticity is attributed to a thermally activated transition of molecular chains from flexed
to extended configurations by rotation of its segments. This scenario is based on the over-
coming of only the intramolecular resistance by externally applied stress. The celebrated
double-kink theory of Argon [5] is also based on the thermally activated process but the
resistance to the flow is primarily attributed to the intermolecular interactions via the so-
called wedge disclinations, see Li & Gilman [117]. Compared to the former, the latter
yields better agreement with the experiments conducted at temperatures well below the
glass transition temperature θg. This indicates the importance of intermolecular interac-
tions in the yield mechanism of glassy polymers. On the other hand, the former has been
shown to be relatively better at temperatures close to θg, see Argon & Bessonov [6].

Over the past decades, considerable effort was made to develop three-dimensional consti-
tutive models that account for the finite viscoplastic behavior of glassy polymers. The
pioneering works of Boyce, Argon, Parks and co-workers [28, 8, 9, 84] have been fol-
lowed, for instance, by Wu & van der Giessen [206, 207, 208], Tomita & Tanaka
[192], Govaert, Timmermans & Brekelmans [70] and Anand & Gurtin [4]. The
molecular double-kink theory [5] was extended to the three-dimensional formulation by
Boyce, Parks & Argon [28] where they also incorporated the strain softening by a
phenomenological evolution equation for the athermal shear strength. In this work, they
applied the double-kink theory to the rate-dependent evolution of finite plastic flow. Kine-
matics of the plastic deformation is based on the multiplicative split of the deformation
gradient into elastic and plastic parts. The immediate outgrowth of this multiplicative
split is the hypothetical intermediate configuration, in contrast to metals, the rotation
of which is not unique and is not well understood in the case of amorphous materials.
Therefore, in this context one needs to make an additional assumption concerning the
rotation tensor or the plastic spin. Motivating from the results of Boyce, Weber &
Parks [29], they assumed that the elastic part of the deformation gradient is symmetric.
For modeling the strain hardening in the post-yield regime, the entropic network mod-
els borrowed from the statistical rubber elasticity theories have been employed. As the
temperature of a plastically deformed material is risen above the glass transition temper-
ature without any restraint, it is observed to regain its original shape as well as isotropic
molecular structure, see Haward & Mann [89], Haward, Murphy & White [90].
Therefore, the recovery of the original shape at θ>θg suggests the existence of internal
forces, commonly referred to as back stresses at θ<θg. These may be considered as ex-
ternal forces at θ>θg required to keep the material in the deformed state. Moreover, the



1.2 Scope and Outline 13

existence of memory effect necessitates an sparsely connected network structure. In the
case of linear glassy polymers possessing high molecular weight, this network structure
is provided by entanglements. Owing to the similarity between rubber-like and plastic
post-yield response, as originally suggested by Haward & Thackray [91], the post-
yield strain hardening response has conventionally been modeled by the network models
proposed in [101, 203, 8, 206].

1.2. Scope and Outline

Chapter 2 is devoted to the principal kinematic and balance relations of continuum ther-
momechanics. These involve the fundamental geometric mappings, basic deformation and
stress measures, and balance equations of a solid body undergoing finite deformations.
Apart from the reiteration of the basic relations, it is also aimed to introduce the nomen-
clature employed in the subsequent chapters. This chapter is further supplemented by
Appendix A where the spectral representation of the right Cauchy-Green tensor along
with the derivatives of its eigenvalues and eigenvectors is addressed.

In Chapter 3, we develop a micro-mechanically based non-affine network model incor-
porating topological constraints on a single chain. The proposed approach to rubber-like
elasticity is based on a micro-structure symbolized by a micro-sphere whose surface repre-
sents a continuous distribution of chain orientations in space. Core of the model is a new
two-dimensional constitutive setting of the micro-mechanical response of a single polymer
chain in a constrained environment defined by two micro-kinematic variables: the stretch
of the chain and the contraction of the cross-section of a micro-tube surrounding the chain
under consideration. The second key feature is a new non-affine micro-macro transition
that defines the three-dimensional overall response of the polymer network based on a
characteristic homogenization procedure of micro-variables defined on the micro-sphere
of space orientations. The micro-macro procedure determines a stretch fluctuation field
on the micro-sphere through a variational principle of minimum averaged free energy and
links the two micro-kinematic variables in a non-affine manner to the line-stretch and the
area-stretch of the macro-continuum. Therefore, the model describes two superimposed
contributions resulting from free chain motions and their topological constraints in an
attractive dual geometric structure on both the micro- and the macro-level. Averaging
operations on the micro-sphere are directly evaluated through an efficient numerical in-
tegration scheme. The overall model contains five effective material parameters obtained
from the single chain statistics and properties of the network with clearly identifiable
relationships to characteristic phenomena observed in homogeneous experiments. The
proposed approach substantially advances features of the affine full network and the
eight-chain models with regard to their modeling capability. The excellent quantita-
tive performance of the model is illustrated through comparative studies with previously
developed network models and by fitting experimental benchmark data acquired from ho-
mogeneous and non-homogeneous tests. Complementary Appendices B and C provide
details of the employed decoupled volumetric-isochoric framework and the Gaussian and
non-Gaussian statistics of the freely jointed chain, respectively.

Chapter 4 is concerned with an extension of the non-affine micro-sphere model to-
wards the description of time-dependent finite viscoelastic effects. The viscoelastic net-
work model is constructed through an additive split of the overall response into elastic
equilibrium-stress and viscous overstress contributions. The equilibrium response of the
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network is understood to be related to results obtained from an infinite relaxation process
and modeled via the elasticity formulation outlined in Chapter 3. Inspiring from our elas-
tic network model, the rate-dependent overstress response is assumed to be driven by two
micro-kinematical mechanisms related to the stretch and the area contraction of a tube
containing a prototype chain. Firstly, a retraction of fictitiously unconstrained dangling
chains is described by diffusive reptile motions. Secondly, a release of constraint effects
due to surrounding chains is modeled by a time-dependent alteration of tube cross-section
area. The latter contribution is considered to be a result of the retraction of constrain-
ing forest chains. We outline a distinct micromechanically-based model for the viscous
overstress in terms of the above outlined two micro-kinematic mechanisms and discuss its
numerical implementation in context of an affine homogenization procedure of space orien-
tations. The characteristics and modeling capabilities of the proposed micro-sphere model
of finite rubber viscoelasticity are reported for a broad spectrum of experimentally-based
benchmark simulations, which involve rate and hystereses effects of rubbery polymers.

Chapter 5 provides a further extension of the micro-sphere network model towards to
the deformation-induced softening commonly referred to as the Mullins effect. To this
end, a continuum formulation is constructed by a superimposed modeling of a crosslink-
to-crosslink (CC) and a particle-to-particle (PP) network. The former is described by
the non-affine elastic network model outlined in Chapter 3. The Mullins-type damage
phenomenon is embedded into the PP network and micromechanically motivated by a
breakdown of bonds between chains and filler particles. Key idea of the constitutive ap-
proach is a two-step procedure that includes i) the set up of micromechanically-based
constitutive models for a single chain orientation and ii) the definition of the macro-
scopic stress response by a directly evaluated homogenization of state variables defined
on a micro-sphere of space orientations. In contrast to previous works on the Mullins
effect, our formulation inherently describes a deformation-induced anisotropy of the dam-
age as observed in experiments. We show that the experimentally observed permanent
set in stress-strain diagrams is automatically attained by the proposed model as a natural
outgrowth of the anisotropic distribution of damage. The performance of the model is
demonstrated by means of several numerical experiments.

Chapter 6 addresses the constitutive modeling of rate-dependent finite elastic-plastic be-
havior of amorphous glassy polymers. The kinematical formulation of the present model
is based on the framework in the logarithmic strain space. In contrast to the existing
kinematical approaches to the finite viscoplasticity of glassy polymers, the modular kine-
matic setting of the proposed framework is based on the a priori six-dimensional plastic
metric. Therefore, it avoids inherent difficulties concerning the uniqueness of plastic rota-
tion in the intermediate space. The analogy between the formulation of finite plasticity in
the logarithmic strain space and the geometrically linear theory of plasticity makes this
framework very attractive, in particular regarding the algorithmic implementation. The
micromechanically motivated flow rule for viscoplastic strains in the logarithmic strain
space is adopted from the celebrated double-kink theory. The post-yield kinematic hard-
ening response is modeled through the eight-chain model and our non-affine micro-sphere
model. The models are compared against homogeneous experimental data acquired from
uniaxial and plane strain compression tests on polycarbonate. Besides the simulation of
the true stress-strain curves obtained from homogeneous experiments, a load-displacement
diagram of a dumbbell-shaped polycarbonate specimen undergoing cold-drawing along
with three-dimensional optical measurements of the surface strain fields is simulated.
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2. Fundamentals of Continuum Mechanics

This chapter outlines the principal equations of non-linear continuum mechanics that
describe the fundamental geometric mappings, basic stress measures, balance equations of
a solid body undergoing finite, possibly inelastic, deformations. Apart from the reiteration
of the basic relations in continuum mechanics, it is also aimed to introduce the notation
used in the forthcoming chapters. Most of the material treated here is based on the
lecture notes of Miehe [143, 145] and also well documented in the literature. For more
comprehensive treatment the reader is referred to the monographs and books, for example,
by Eringen [54], Truesdell & Noll [198], Chadwick [33], Marsden & Hughes
[131], Ogden [161], Haupt [87], Miehe [141, 142] among others.

2.1. The Motion, Fundamental Geometric Maps and Deformation Measures

A material body B is composed of infinitely many material points P ∈ B that are
identified with geometrical points in the three-dimensional Euclidean metric space R3.
The configuration of the body B in R3 at time t is described by a one-to-one relation

χt :=

{

B → Bt ∈ R3 ,
P ∈ B 7→ xt = χt(P ) ∈ Bt .

(2.1)

R3

P

B

X x

v(x, t)

B S

χt(P )χt0(P )

ϕX(t)

ϕt(X) := χt ◦ χ−1
t0 (X)

Figure 2.1: Mathematical description of the motion of a solid body in R3.

While describing the motion of a solid body, it is common practice to name its placement
at time t0 as the reference configuration that generally possesses an undistorted stress-free
state and is henceforth denoted as B ≡ χt0(B). Likewise, the configuration of the body at
current time t is hereafter denoted as S ≡ χt(B). The reference and the spatial positions
occupied by a material point P within the Euclidean space are labeled by the reference
coordinates X := χt0(P ) ∈ B and the spatial coordinates x := χt(P ) ∈ S, respectively.
In order to describe the motion of the solid body in the Euclidean space, we introduce a
non-linear deformation map ϕt(X) between χt0(P ) and χt(P )

ϕt(X) :=

{

B → S ,
X 7→ x = ϕt(X) := χt ◦ χ−1

0 (X)
(2.2)

that maps the material points X ∈ B onto their deformed spatial positions x = ϕt(X) ∈
S at time t ∈ R+, see Figure 2.1.
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Having the motion (2.2) defined, we are now in a position to introduce the material
velocity

V t(X) := ∂tϕ(X, t) =
d

dt
ϕX(t) , (2.3)

and the material acceleration of the motion

At(X) := ∂tV (X, t) =
d

dt
V X(t) . (2.4)

The spatial velocity is then expressed as

vt(x, t) := V t(X) ◦ϕ−1
t (x) , (2.5)

and the spatial acceleration is defined as the material time derivative of the spatial velocity

at(x, t) := At(X) ◦ϕ−1
t (x) = ∂tv +∇xv · v . (2.6)

where ∇xv =: l stands for the spatial velocity gradient. The path ϕX(t) is then called the
integral curve of v as shown in Figure 2.1.

The reference B and spatial S configurations of a body can be considered as continuous
three-dimensional manifolds which are locally furnished by charts in the neighborhoods
NX and Nx of the reference coordinates {XA}A=1,2,3 and spatial coordinates {xa}a=1,2,3,
respectively. For the computation of norm quantities such as scalar products, length mea-
sures, invariants, these local coordinate systems are further equipped with the covariant
reference G = GAB and spatial g = gab metrics, respectively. The both metric tensors,
however, reduce to the Kronecker deltas, G = δAB and g = δab, in the case of Cartesian
coordinate systems, which we devise in the subsequent treatment. It is important to note
that both metrics are symmetric and positive definite due to their basic function.

Probably the most fundamental deformation measure used in kinematics of finite de-
formation is the deformation gradient. It can be considered as a linear map of the ref-
erential tangent vectors onto the spatial counterparts. To this end, let C(Θ) and c(Θ)
be the material and spatial curves parameterized by a common variable Θ ∈ R on B
and S, respectively. Furthermore, we consider that the spatial curve is related to the
reference curve by the non-linear deformation map c(Θ) = ϕt(C(Θ)) due to (2.2). Tan-
gents of the curves belonging to the respective tangent spaces defined as the derivatives
T := dC(Θ)/dΘ ∈ TXB and t := dc(Θ)/dΘ ∈ Tx S as depicted in Figure 2.2. Through
the chain rule, the spatial tangent t can be expressed in terms of the material tangent T

t =
d

dΘ
c(Θ) = ∇Xϕt(X)

d

dΘ
C(Θ) = FT with ta = F a

AT
A . (2.7)

This already introduces the deformation gradient F := ∇Xϕt(X) with components F a
A :=

∂ϕa/∂XA as the tangent map

F t :=

{

TXB → Tx S ,
T 7→ t = F tT ,

(2.8)

between the tangent spaces TXB and Tx S of the manifolds B and S, respectively.

Once the deformation gradient has been defined, we can proceed with the other two
fundamental maps. For this purpose, let dV and dv denote the infinitesimal volumes of
parallelepipeds

dV := dX1 · (dX2 × dX3) and dv := dx1 · (dx2 × dx3) (2.9)
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X
x

B S

ϕt(X)

F := ∇Xϕt(X)
T

t

TXB Tx S

Θ
R

C(Θ) c(Θ)

Figure 2.2: The deformation gradient F defined as a tangent map linearly transforming
the material vector T ∈ TXB tangent to the material curve C(Θ) at X onto the the spatial
vector t ∈ Tx S tangent to the spatial curve c(Θ) at x.

defined as the scalar triple product of vectors dX i=1,2,3 ∈ TXB and dxi=1,2,3 ∈ Tx S,
respectively. Each spatial tangent vector dxi is defined as a tangential map of its material
counterpart, i.e. dxi := F dX i for i = 1, 2, 3. This then leads to the definition of the
volume map

dv = (F dX1) · ((F dX2)× (F dX3)) = detF dV =: J dV (2.10)

following the conventional coordinate-free definition of the determinant of a second order
tensor, see e.g. Šilhavý [182]. The value of the Jacobian J is restricted to positive real
numbers R+, i.e. J > 0, in order to ensure the one-to-one relation between x and X and
the impenetrability of a material. Then, we say that the volume map, detF , maps the
reference volume elements onto their spatial counterparts

J = detF :=

{

R+ → R+ ,
dV 7→ dv = detF dV .

(2.11)

The co-factor of the deformation gradient cof F is defined as the derivative of the volume
map J := detF with respect to deformation gradient F . In order to derive the explicit
form of cof F , we begin by taking the derivative of both sides of (2.10) with respect to F

∂Fdv = ∂FdetF dV = (dx2 × dx3)⊗ dX1 + (dx3 × dx1)⊗ dX2 + (dx1 × dx2)⊗ dX3 .

Contraction of the both sides of this equality from left by one of the spatial tangent
vectors dxi and division of the result by dV lead us to

(F dXi) · ∂FdetF = detF dX i , (2.12)

where the orthogonality condition dxi · (dxi × dxj) = dxi · (dxj × dxi) = 0 (no sum over
i) and the definition (2.11) have been incorporated. Finally, the solution of (2.12) for
∂FdetF by eliminating dX i yields the sought explicit form the co-factor

cof F := ∂FdetF = (det F )F−T . (2.13)

In order to make the geometrical meaning of cof F more transparent, let us define the
reference and spatial area co-vectors NdA := dX2× dX3 and nda := dx2× dx3, respec-
tively. With these definitions at hand, we can recast (2.11) into the following from

dx1 ·nda = JdX1 ·NdA . (2.14)
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If we incorporate the identity dx1 = F dX1 in (2.14) and solve this equality for nda for
an arbitrary tangent vector dX1, we end up with the interpretation of co-factor as the
area map

nda = JF−T NdA = (cof F )NdA (2.15)

transforming the co-vectors (one-forms) of the material surfaces onto the normal vectors
of spatial surfaces. Furthermore, we observe that the tensorial quantity carrying out
the mapping operation in (2.15) is none other than F−T . Thus, we consider F−T as
the normal map transforming the reference co-vectors N onto the spatial co-vectors n

belonging to the respective co-tangent spaces T ∗
XB and T ∗

x S. The normal map is then
defined as

F−T :=

{

T ∗
XB → T ∗

x S ,
N 7→ n = F−T N .

(2.16)

Having the tangent and the co-tangent spaces defined, we can now interpret the covariant
reference G and the spatial g metrics

G : TXB → T ∗
XB , g : Tx S → T ∗

x S , (2.17)

as the mappings from the tangent spaces TXB and Tx S to the co-tangent spaces T ∗
XB and

T ∗
x S, respectively. That is, G and g map tangents onto co-vectors by the index lowering

operation
T ♭ = GT , TA = GABT

B ,
t♭ = gt , ta = gabt

b .
(2.18)

Analogously, we can further consider the inverse metrics G−1 and g−1

T = G−1T ♭ , TA = GABTB ,
t = g−1t♭ , ta = gabtb ,

(2.19)

as the mappings from the co-tangent spaces T ∗
XB and T ∗

x S to the tangent spaces TXB
and Tx S through the index raising. With the definitions (2.17)-(2.19) at hand, we are
ready to construct the commutative diagrams, Figure 2.3, illustrating the pull-back and
the push-forward operations on G and g and their contravariant inverse metrics G−1 and
g−1, separately. As shown in Figure 2.3a, the push-forward of the inverse of the reference
metric b := ϕ∗(G

−1) and itself c := ϕ∗(G) are defined by

b := ϕ∗(G
−1) = FG−1F T , bab = F a

AG
ABF b

B ,

c = b−1 := ϕ∗(G) = F−T GF−1 , cab = (F−1)A
aGAB(F−1)B

b

(2.20)

and called the left Cauchy-Green tensor (Finger deformation tensor) and the inverse
left Cauchy-Green tensor, respectively. Similarly, based on the commutative diagram
depicted in Figure 2.20b, the pull-back of the spatial metric C := ϕ∗(g) and its inverse
C−1 := ϕ∗(g−1) are defined by

C := ϕ∗(g) = F T gF , CAB = F a
AgabF

b
B ,

C−1 := ϕ∗(g−1) = F−1g−1F−T , (C−1)AB = (F−1)A
ag

ab(F−1)B
b

(2.21)

and denoted as the right Cauchy-Green tensor (convected spatial metric) and the inverse
right Cauchy-Green tensor, respectively.
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T ∗
XBT ∗

XB
T ∗

x ST ∗
x S

G G−1 c b g g−1C C−1

a) b)

Figure 2.3: The push-forward and pull-back of the reference G and spatial g metrics and

their contravariant inverse forms G−1 and g−1, separately.

As mentioned above, the both metric tensors and their inverse tensors are symmet-
ric and positive definite and therefore so do their respective push-forwards (2.20) and
pull-backs (2.21). The above introduced deformation tensors play a fundamental role
in measuring the basic deformations. To illustrate this, let us consider tangent vectors
T ∈ TXB and t := FT ∈ Tx S, and define the stretch, λ̄, as the ratio of the length
of the deformed tangent vector t to the length of the reference tangent vector T , i.e.
λ̄ := |t|g / |T |G =

√
t · gt/

√
T ·GT > 0. Setting |T |G = 1 as the reference value, the

stretch can be expressed as

λ̄ =
√

t · gt =
√

FT · gFT =

√

T · F T gFT =
√

T ·CT =: |T |C
in the so-called Lagrangean (material) description of the length deformation, compare
with (3.30). This justifies the name convected spatial metric coined to the right Cauchy-
Green tensor C. On the other hand, we can also set |t|g = 1 in the so-called Eulerian
(spatial) description of the deformation and express the inverse stretch

λ̄−1 =
√

T ·GT =
√

F−1t ·GF−1t =
√

t · F−T GF−1t =
√

t · ct =: |t|c
in terms of the inverse left Cauchy-Green tensor c = b−1. We observe that C and c

act as metric tensors in the respective Lagrangean and Eulerian description of the length
deformation. Analogous to the length stretch λ̄, we can also introduce the area stretch, ν̄,
as the ratio of the length of the deformed normal n = F−T N ∈ T ∗

x S to the length of the

reference normal N ∈ T ∗
XB; that is, ν̄ := |n|g−1 / |N |G−1 =

√

n · g−1n/
√

N ·G−1N > 0.
Fixing the value |N |G−1 = 1, we obtain the Lagrangean description of the area stretch

ν̄ =
√

n · g−1n =

√

F−T N · g−1F−T N =

√

N · F−1g−1F−T N =: |N |C−1

as a norm of the material normal N with respect to the inverse right Cauchy-Green tensor
C−1, compare with (3.55). In the spatial description, we set |n|g−1 = 1 and express the

inverse area stretch ν̄−1 in terms of the Finger tensor

ν̄−1 =
√

N ·G−1N =
√

F T n ·G−1F T n =
√

n · FG−1F T n =
√

n · bn =: |n|b .

The foregoing examples concerning the elongation and area changes give a clear geometri-
cal interpretation of the fundamental deformation tensors introduced by the pull-back and
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push-forward operations of the metrics. These deformation measures enter the various
constitutive formulations of non-linear material theories. The isotropic finite elasticity
theory, especially in modeling of rubber-like materials, is conceivably the most fundamen-
tal class of these theories where the invariants and the principal values of these deformation
tensors are widely employed. The models formulated in terms of the principal stretches
necessitate the knowledge of eigenvalues, eigenvectors and their derivatives with respect
to an associated deformation tensor. Appendix A is, therefore, dedicated to the spectral
representation of the right Cauchy-Green tensor as a representative example.

X x

B S

PB PS∂PB
∂PS

dA

da

F

F−T

T̃

tN
n

Figure 2.4: The material T̃ (X, t; N) ∈ TXB and spatial t(x, t; n) ∈ Tx S traction (stress)
vectors representing the force action of the rest of the body at the vicinity, on the surfaces
of the cut parts ∂PB and ∂PS , respectively.

2.2. Cauchy’s Stress Theorem and the Fundamental Stress Measures

Consider a part PB ⊂ B cut off from the reference body B and its spatial counterpart
PS ⊂ S closed by the respective boundaries ∂PB and ∂PS as depicted in Figure 2.4. In the
deformed configuration, we introduce the stress vector t that acts on the surface element
da of ∂PS and represents the force action of the rest of the body at the vicinity PS \S on
∂PS . The Cauchy stress theorem states that the spatial traction vector t ∈ Tx S linearly
depends on the spatial normal n ∈ T ∗

x S of the surface ∂PS , i.e.

t(x, t; n) := σ(x, t) n , (2.22)

through the Cauchy (true) stress tensor σ. Cauchy’s stress theorem can be proven based
on the force equilibrium on a tetrahedron, see e.g. Haupt [87], p.91. In the geometrical
framework outlined so far, the Cauchy stress tensor can be understood as a contravariant
mapping transforming normals n ∈ T ∗

x S onto tangent vectors t ∈ Tx S

σ :=

{

T ∗
x S → Tx S ,
n 7→ t = σ n .

(2.23)

Another spatial stress measure, the Kirchhoff stress tensor, also known as the weighted
Cauchy stress tensor, is defined as

τ := Jσ (2.24)

and widely used in the spatial description of stress power terms in the reference volume.
Owing to the scalar scaling by the Jacobian J , the Kirchhoff stresses retain the geometrical
transformation characteristics of the Cauchy stress, i.e. τ : T ∗

x S → Tx S. Now let us
consider another spatial traction vector T ∈ Tx S defined through the force equality
T dA := t da by scaling the spatial force term (t da) through the reference area element
dA. Based on this definition, we introduce the first Piola-Kirchhoff stress tensor by the
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reference Cauchy theorem T := PN leading to PN dA = σn da. Using the area map
(2.15), we obtain the relation P = τF−T = JσF−T between the first Piola-Kirchhoff
stress tensor and the spatial stress measures introduced in (2.23) and (2.24). Notice that
P is a two-point tensor possessing the geometrical mapping properties

P :=

{

T ∗
XB → Tx S ,
N 7→ T = P N .

(2.25)

The transformation (�) = J(•)F−T devised in obtaining the first Piola-Kirchhoff stress
tensor from the Cauchy stress tensor is called the Piola transformation. It is widely
employed in transforming the objects acting on a spatial surface onto their material coun-
terparts. The immediate outcome of the Piola transformation is the Piola Identity

J div(•) = DIV(�) = DIV(J(•)F−T ) (2.26)

that also implies the equality DIV(JF−T ) = 0. In order to show this identity, we consider
a spatial vector field t. The surface integral of its scalar product with a spatial normal
n over a sufficiently smooth spatial surface ∂PS can be converted to the volume integral
through the Gauss integral theorem, i.e.

∫

∂PS

t · nda =

∫

PS

div(t)dv . (2.27)

The domain of the surface integral in (2.27) can be changed to the material surface ∂PB

by the area map (2.15) and then again converted to the volume integral in the reference
volume PB by the Gauss integral theorem in material coordinates; that is,

∫

∂PB

t·JF−T NdA =

∫

PB

DIV(JtF−T )dV =

∫

PS

div(t)dv+

∫

PB

t·DIV(JF−T )dV . (2.28)

Comparison of (2.27) and (2.28) necessitates
∫

PB

t ·DIV(JF−T )dV = 0 that in turn leads
us to the Piola Identity

DIV(JF−T ) = 0

for infinitely small PB and an arbitrary spatial vector field t. For a sufficiently smooth
surface ∂PB this result of the Piola identity also implies that

∫

PB

DIV(JF−T )dV =

∫

∂PB

JF−T NdA =

∫

∂PS

nda = 0 .

Following analogous steps, it can also be readily shown that

div(JF T ) = 0 and

∫

∂PB

NdA = 0 .

The Lagrangean stress vector T̃ ∈ TXB may be defined through the pull-back of the
spatial stress vector T ∈ Tx S

T̃ = ϕ∗(t) = F−1T ∈ TXB , T̃A = (F−1)A
aT

a ,
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as depicted in Figure 2.4. The third fundamental stress measure, the second Piola-
Kirchhoff stress tensor S, is then defined by T̃ := SN yielding

S :=

{

T ∗
XB → TXB ,
N 7→ T̃ = S N .

(2.29)

Incorporating the definitions (2.23)-(2.25) in (2.29), we can express the second Piola-
Kirchhoff stress tensor in terms of the other stress tensors

S := ϕ∗(P ) = F−1P , SAB = (F−1)A
aP

aB ,

S := ϕ∗(τ ) = F−1τF−T , SAB = (F−1)A
aτ

ab(F−1)B
b

as the pull-back of the contravariant two-point and spatial objects. Apparently the con-
verse push-forward relations do also hold for the spatial stress tensors

τ = Jσ = ϕ∗(P ) = PF T and τ = ϕ∗(S) = FSF T ,

as shown in the commutative diagram, Figure 2.5.

X

X

x

x

F

F−T

TXB

Tx S

T ∗
XB

T ∗
x S

S P τ = Jσ

t

N

T̃

n

Figure 2.5: Commutative diagram illustrating the push-forward and pull-back operations
among the stress measures.

2.3. Balance Principles of Continuum Thermomechanics

The balance laws of continuum mechanics serve as a basic set of equations required
to solve an initial boundary value problem of thermomechanics for the primary variables.
This section is devoted to derivation of the fundamental balance laws of continuum ther-
momechanics. In what follows, we consider a certain spatial volume PS closed by the
boundary ∂PS as shown in Figure 2.4. For this part of the body, we write a balance equa-
tion where we will often have the volumetric source and the surface flux terms contributing
a temporal change of the quantity for which the balance principle is constructed. In order
to derive the local forms of the balance laws, we follow the following basic steps. First,
we carry the surface flux terms into the body through the Gauss integral theorem (2.27).
Once the balance equation is completely recast into a volume integral, the expression can
be localized to its local form by stating that integrand must also fulfill the equality for
an infinitely small part PS provided that the continuity conditions are met. This spatial
balance equation is then recast into its reference form.
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Balance of Mass. Total mass of a closed system, the part of a body PS under
consideration, remains constant; that is, the system is free of agencies that produce or
destroy mass within the volume PS or is not subjected to flux terms that transfer mass
over the surface ∂PS . To this end, we define the spatial mass density ρ(x, t) and its
material counterpart the reference mass density ρ0(X) and require

d

dt
M :=

d

dt

∫

PS

ρ(x, t)dv =
d

dt

∫

PB

Jρ(x, t)dV =
d

dt

∫

PB

ρ0(X)dV = 0 . (2.30)

Making use of the identity J̇ := dJ/dt = cof F : Ḟ = J tr(l) = J div(v) in (2.30)3 and
equating the integrands of (2.30)2 and (2.30)3, we end up with the spatial and material
forms of the local mass balance equations

ρ̇+ ρ div(v) = 0 and Jρ(x, t) = ρ0(X) . (2.31)

Balance of Linear Momentum. Being analogous to classical discrete mechanics,
the time rate of linear momentum of the volume PS is equal to the sum of the forces acting
on the body. Two types of forces are considered: the mass specific body forces γ(x, t)
due to the action of other bodies at a distance and the surface forces (stress vectors) t

due to the action at a vicinity. These can also be regarded as a momentum source and a
momentum flux terms, respectively. The balance of linear momentum then requires

d

dt
L :=

d

dt

∫

PS

ρv(x, t)dv =

∫

PS

ργ(x, t)dv +

∫

∂PS

t(x, t; n)da . (2.32)

Incorporation of the mass balance (2.31) in the time derivative and the Cauchy stress
theorem (2.22) through the integral theorem (2.27) in the surface integral, we obtain the
local form of the spatial linear momentum balance

ρa = ργ + div(σ) . (2.33)

Multiplication of the spatial form (2.33) with the Jacobian J , and incorporation of the
mass balance (2.31)1 and the Piola identity (2.26) yields the material form of the local
linear momentum balance

ρ0A = ρ0Γ + DIV(P ) (2.34)

where A(X, t) denotes the material acceleration defined in (2.4) and Γ(X, t) := γ(x, t) ◦
ϕt(X) stands for the material body force defined per unit mass.

It is believed to be illustrative that the integration of the product of spatial linear mo-
mentum balance (2.33) with the spatial velocity co-vector v♭=gv over the body PS yields

d

dt

∫

PS

1
2
ρv · v♭dv =

∫

PS

ργ · v♭dv +

∫

PS

div(σ) · v♭dv .

Insertion of the equality
∫

PS

div(σ) · v♭dv =
∫

∂PS

(σn) · v♭da−
∫

PS

σ : (gl)dv for the last
term yields the so-called theorem of expended power

K̇ + Ẇ = P

d

dt

∫

PS

1

2
ρv · v♭dv +

∫

PS

σ : (gl)dv =

∫

PS

ργ · v♭dv +

∫

∂PS

t · v♭da











(2.35)

stating that the total power due to the externally applied forces P is equal to the sum-
mation of the temporal change of the kinetic energy K̇ and the internal stress power Ẇ.
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Balance of Angular Momentum. The time derivative of the moment of linear
momentum of PS is required to be equal to the sum of the moments of the forces acting
on the body with respect to the same point. Without loss of generality, taking the moment
with respect to the origin yields

d

dt

∫

PS

x× ρvdv =

∫

PS

x× ργ dv +

∫

∂PS

x× t da . (2.36)

Exploiting the mass balance (2.31), the equality v × v = 0 in (2.36)1 and the Cauchy
stress theorem (2.22) through the integral theorem (2.27) in the surface integral (2.36)3,
we obtain

∫

PS

x× (ρa− ργ − div(σ)) dv =

∫

PS

ιdv = 0 (2.37)

where we demand ιa := ǫabcσ
cb = 0. Since the permutation symbol ǫabc is skew symmetric

with respect to two indices, e.g. ǫabc = −ǫacb, the equality (2.37) is fulfilled only for the
symmetric Cauchy stresses. Thus, the balance of angular momentum results in

σ = σT , σab = σba . (2.38)

Owing to the push-forward and pull-back relations derived in Section 2.2, the other two
stress measures τ and S are required to satisfy the following symmetry relations

τ = τ T , PF T = FP T , S = ST (2.39)

as well. Observe that the first Piola-Kirchhoff stresses are generally non-symmetric.

X x

B S

PB PS∂PB
∂PS

dA

da

F

F−T

Q

qN
n

Figure 2.6: The material Q(X, t) ∈ TXB and spatial q(x, t) ∈ Tx S heat flux vectors
representing the counduction of heat through the rest of the body over the surfaces of the
cut parts ∂PB and ∂PS , respectively.

Balance of Energy (The First Law of Thermodynamics). The first law of
thermodynamics states that temporal change of total energy is equal to the sum of the
mechanical and thermal power. The total energy is defined as a summation of the kinetic
energy K, see (2.35), and the internal energy E :=

∫

PS

ρe(x, t)dv where e(x, t) denotes
the mass specific internal energy density. The external mechanical power P has already
been introduced in (2.35). The thermal power Q =

∫

PS

ρrdv −
∫

∂PS

q · nda is composed

of the specific heat source r(x, t) and the surface heat flux vector q(x, t), see Figure 2.6.
The balance of energy has then the following global form

d

dt
(K + E) = P + Q (2.40)
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where we immediately observe that K̇− P = −Ẇ due to the theorem of power expended
introduced in (2.35). Incorporating this result in (2.40), we obtain Ė = Ẇ+Q, localization
of which through the integral theorem leads us to the spatial local from

ρė = σ : (gl) + ρr − div(q) . (2.41)

Analogous to the definition of the first Piola-Kirchhoff stress tensor, we introduce the
reference heat flux vector Q that fulfills the equality q ·nda = Q ·NdA through the area
map Q := JqF−T as introduced in (2.15) and depicted in Figure 2.6. This immediately
implies that Q is none other than the Piola transform of the spatial heat flux vector q

and therefore the equality J div(q) = DIV(Q) is satisfied identically. Having defined the
reference heat flux vector Q, the spatial energy balance equation (2.41) can be recast into
the reference local form by following the obvious steps

ρ0ė = τ : (gl) + ρ0R− DIV(Q) (2.42)

with R(X, t) := r(x, t) ◦ϕt(X).

For the forthcoming developments, it is important to note that the volume specific
stress power term P := Jσ : (gl) = τ : (gl) appears as a scalar product the stress
measures and their work conjugate variable the spatial velocity gradient gl. Since τ

or σ is symmetric, the stress power term P can be rewritten as P = τ : d with
d := sym(gl) = 1

2
(gl + lT g) denoting the rate of deformation tensor, which is equivalent

to the half of the Lie derivative of the spatial metric g. The Lie derivative of a spatial
object is geometrically defined as the push-forward of the material time derivative of its
pull-back; that is,

£v(•) := ϕ∗(
d

dt
ϕ∗(•)) . (2.43)

With this definition at hand, the rate of deformation gradient d can be obtained as

1

2
£v(g) =

1

2
ϕ∗(

d

dt
ϕ∗(g)) =

1

2
ϕ∗(

d

dt
C) =

1

2
F−T ĊF−1 =

1

2
(gl + lT g) , (2.44)

where l := ∇xv = ḞF−1 denotes the spatial velocity gradient. Therefore, the analogous
representations of the stress power P can also be derived in terms of P

P := τ : (gl) = PF T : gḞF−1 = gP : Ḟ (2.45)

and also for S

P := τ : d = τ : 1
2
£v(g) = FSF T : 1

2
F−T ĊF−1 = S : 1

2
Ċ . (2.46)

The alternative representations of the stress power P = τ : d = gP : Ḟ = S : 1
2
Ċ

manifest the distinct work conjugate couples

(τ ; d) , (gP ; Ḟ ) and (S; 1
2
Ċ) . (2.47)
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Balance of Entropy (The Second Law of Thermodynamics). The second
law of thermodynamics, which is in fact an inequality unlike the other balance principles,
serves as a major mathematical restriction on the constitutive equations governing, for in-
stance, heat conduction or evolution of internal variables describing an internal dissipative
mechanism. The concept of entropy may be conceived as a measure of disorder providing
a bridge between thermomechanics with the treatments of statistical mechanics. For the
part of the body PS under consideration, we define the total entropy H by integrating
the specific entropy η over the volume, i.e. H :=

∫

PS
ρη(x, t)dv. The temporal change of

the entropy has two contributions, namely the reversible and the irreversible parts, see
e.g. de Groot & Mazur [42]. The reversible change of the entropy is due to external
heat sources. The irreversible part of the entropy change, however, stems from internal
dissipative mechanisms such as plastic deformations, damage etc. The second law of ther-
modynamics states that the irreversible part of the entropy rate is always positive. For
this purpose, we introduce the specific rate of entropy production γ(x, t) whose integration
over the volume leads us to the total rate of entropy production Γ=

∫

PS

ργ(x, t)dv ≥ 0. 1

The balance of entropy can then be expressed as

∫

PS

ργdv :=
d

dt

∫

PS

ρηdv −
(
∫

PS

ρr

θ
dv −

∫

∂PS

q · n
θ

da

)

≥ 0 (2.48)

where θ stands for the absolute temperature restricted to the positive values θ > 0. Fol-
lowing the conventional steps, we end up with the local spatial entropy balance

ργ = ρη̇ − ρr
θ

+ div
(q

θ

)

= ρη̇ − ρr
θ

+
1

θ
div(q)− 1

θ2
q · ∇xθ ≥ 0 . (2.49)

Apparently the inequality (2.49)3 can also be written in the form commonly referred to
as the Clausius-Duhem inequality

ρη̇ ≥ ρ
r

θ
− 1

θ
div(q) +

1

θ2
q · ∇xθ . (2.50)

The material version of (2.50) then reads as

ρ0η̇ ≥ ρ0
R

θ
− 1

θ
DIV(Q) +

1

θ2
Q · ∇Xθ . (2.51)

2.4. Dissipation and Thermomechanics with Internal Variables

The spatial dissipation is defined as the product of the rate of entropy production
in (2.49) with the absolute temperature θ, i.e. D := ργθ ≥ 0. Owing to the nature of
the terms in (2.49), it is common practice to additively split the dissipation into the local
(intrinsic) Dloc and the conductive (thermal) Dcon parts, D = Dloc+Dcon. We then require
a more strict condition than (2.49) by demanding the positiveness of the both terms Dloc

and Dcon separately. To this end, we introduce the Clausius-Planck inequality

Dloc := ρη̇θ − (ρr − div(q)) ≥ 0 , (2.52)

1The Greek letters γ(x, t) and Γ(X, t) standing for the rate of entropy production should not be
confused with γ(x, t) and Γ(X, t) printed in bold to denote the specific body forces in the preceding
sections.
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and the Fourier inequality

Dcon := −1

θ
q · ∇xθ ≥ 0 (2.53)

that can also be expressed in the following Lagrangean form

JDcon := −1

θ
Jq · ∇xθ = −1

θ
Q · ∇Xθ ≥ 0 . (2.54)

Incorporation of the spatial energy balance equation (2.41) in the first version of the
Clausius-Planck inequality (2.52) leads to the equation formulated in terms of the internal
energy density

Dloc := ρη̇θ − ρė+ σ : (gl) ≥ 0 . (2.55)

This form can be rewritten per unit reference volume by multiplying (2.55) with the
Jacobian J . For the sake of brevity, we re-define the quantities η ← Jρη = ρ0η, e ←
Jρe = ρ0e and obtain

JDloc := η̇θ − ė+ gP : Ḟ ≥ 0 . (2.56)

There are four basic thermomechanical potentials widely encountered in the thermo-
mechanics literature. The choice of an appropriate potential is generally made according
to circumstances of experiments or properties of the material at hand. In the context of
continuum thermomechanics, these potentials generally depend on a set of variables which
is formed through a mutual combination between the sets {gP ,F } and {η, θ}. The first
set can, of course, be replaced with any of the work conjugate pairs given in (2.47). For
inelastic materials, these sets are supplemented by additional internal variables, say {I},
employed for the description of inelastic dissipative processes. The concept of internal
variables has widely been used in the constitutive formulation of dissipative materials
through the initial value problems governing their temporal evolution. The set {I} may
have scalar, tensorial or n-vector character. The internal variables may be observable
but generally cannot be externally controlled, see Maugin [133] for an excellent review.
The thermodynamical forces, say {F}, conjugate to the set {I} on the bases of dissipa-
tion, generally are not externally defined. Thus, it should also be noted that the internal
variables do not explicitly appear up to the energy balance equation (2.41).

By looking at the time derivatives of the fields in the Clausius-Planck inequality (2.56)
one can readily conclude that the internal energy e can be considered as a thermody-
namical potential depending primarily upon the deformation F and the entropy η, i.e.
e = ê(F , η, . . .). We then define the Helmholtz free energy through the partial Legendre
transformation Ψ := e− θη implying the functional dependency Ψ = Ψ̂(F , θ, . . .). Simi-
larly, we can also introduce the Gibbs free energy g = ĝ(gP , θ, . . .) := Ψ−gP : F and the
enthalpy h = ĥ(gP , η, . . .) := e− gP : F . Use of the Gibbs free energy can be preferred
to the others, for example, in modeling of gaseous materials on which some experiments
under constant pressure or temperature conditions are carried out. Throughout this the-
sis, however, we will be concerned with the modeling solid polymers where we mostly
utilize the Helmholtz free energy. Hence, the version of the Clausius-Planck inequality
in terms of the Helmholtz free energy, or simply free energy, is of interest. Inserting its
definition Ψ = e− θη into (2.56), we end up with

JDloc := gP : Ḟ − Ψ̇− ηθ̇ ≥ 0 . (2.57)
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To fix the ideas, let us focus on a problem of thermoelasticity for a homogeneous material
where the free energy does not depend on the internal variables. Being consistent with
the principle of equipresence, we assume that the constitutive equations, the free energy
Ψ and the heat flux vector Q, depend upon the same set of field variables

Ψ = Ψ̂(g; F , θ,G) and Q = Q̂(g; F , θ,G) (2.58)

where G := ∇Xθ denotes the material gradient of the temperature field and the spatial
metric g is needed to compute the deformation measures in the reference configuration.
Based on this assumption, we can include the time derivative of the free energy Ψ̇ = ∂FΨ :
Ḟ + ∂θΨ : θ̇ + ∂GΨ : Ġ in the Clausius-Planck inequality given in (2.57). Gathering the
coefficients of the time rates of the common terms, we obtain

JDloc := (gP − ∂FΨ) : Ḟ − (η + ∂θΨ) θ̇ − ∂GΨ · Ġ ≥ 0 . (2.59)

Following the celebrated reasoning of Coleman & Noll [37] and Coleman & Gurtin
[35] within the framework of thermodynamics with internal variables, we contend that
the thermodynamic restriction should be fulfilled for an arbitrary rate of the deformation
gradient, temperature and temperature gradient. Therefore, (2.59) implies a particular
form of constitutive equations such that

gP := ∂FΨ , η := −∂θΨ and ∂GΨ = 0 . (2.60)

The first two equations of (2.60) state that the free energy acts as a potential for the
stresses and the entropy while (2.60)3 implies that the free energy does not depend on the
temperature gradient G, i.e. Ψ = Ψ̂(g; F , θ). From the results (2.60), it is also clear that
the local dissipation Dloc vanishes identically for thermoelastic problems. In a general
problem of thermoinelasticity, however, the free energy is also a function of the internal
variables {I}. With the results obtained in (2.60), the Clausius-Planck inequality can be
recast into its reduced form

JDloc := F : İ ≥ 0 with F := −∂IΨ . (2.61)

The principle of material frame invariance requires the invariance of the energy stored
under rigid body rotations superimposed on the current spatial configuration. Therefore,
we locally demand Ψ(g; F , θ) = Ψ(g̃; F̃ , θ) where F̃ := Q∗(F ) := QF and g̃ := Q∗(g) :=
Q−T gQ−1 for all Q ∈ SO(3). Observe that the right Cauchy-Green tensor C := F T gF =

F̃
T
g̃F̃ automatically satisfies this condition. Therefore, the storage function Ψ̂ in terms

of C = F T gF is a priori objective and the form Ψ̂(C, θ) = Ψ(F T gF , θ) represents its
reduced form. Based on this restriction, we can rewrite the term (gP − ∂FΨ) : Ḟ in
(2.59) as (S − 2∂CΨ̂) : 1

2
Ċ due to the stress power equalities (2.45), (2.46). This yields

the functional definition of the second Piola-Kirchhoff stress tensor

S = 2∂CΨ̂(C, θ) . (2.62)

Starting from this equality, we can further continue to obtain
(

S − 2∂CΨ̂
)

: 1
2
Ċ = τ : 1

2
£vg − 2∂CΨ : 1

2
F T£vgF =

(

τ − 2F ∂CΨF T
)

: 1
2
£vg

where it can be shown through the chain rule that 2F ∂CΨ̂F T = 2∂gΨ, see Marsden &
Hughes [131], p.197. This equality leads us to the Doyle-Ericksen formula

τ = 2∂gΨ(g; F , θ) (2.63)

originally derived by Doyle & Ericksen [48].
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3. The Non-Affine Micro-Sphere Model of Rubber Elasticity

This chapter presents the recently developed non-affine network model of finite rubber
elasticity. The exposition set out in the current chapter follows the notions of the recent
work by Miehe, Göktepe & Lulei [149]. This approach, henceforth denoted as the
non-affine micro-sphere model, advances characteristics of the full network model and
the eight-chain model through a substantial improvement of their modeling capabilities.
This chapter lays the basis for the subsequent developments in this thesis concerning the
inelasticity of rubbery and glassy polymers. Key underlying concept is the construction
of a micro-macro approach to elasticity governed by the following two features. Core
of the model is a two-dimensional constitutive setting of the micromechanical response
of a single polymer chain in a constrained environment defined by two micro-kinematic
variables: the stretch λ of the chain and the contraction ν of the cross section of a micro-
tube that surrounds the chain under consideration. The second feature of the model is a
new non-affine micro-macro transition that defines the three-dimensional overall response
of the polymer network based on a characteristic homogenization procedure of micro-state
variables defined on the micro-sphere of space orientations. This micro-macro transition
links the two micro-kinematic variables λ and ν in a non-affine format to the line-stretch λ̄
and the area-stretch ν̄ of the macro-continuum. The successive build up of the constitutive
model may be subdivided into three steps. The first two steps are concerned with the
partial modeling of the above mentioned two kinematic mechanisms, i.e. the non-affine
stretch part and the non-affine tube part. We describe these two parts by kinematically
decoupled free energies, yielding superimposed contributions to the overall stress response.
The third step deals with an effective numerical evaluation of the micro-macro transition
by a discretization of state variables on the micro-sphere.

i) Non-Affine Stretch Part. The response of an unconstrained prototype chain of the
network is assumed to be governed by the classical non-Gaussian statistics in terms of
the micro-stretch λ. The basic idea of the proposed non-affine stretch part for an ide-
alized network, free of conformation constraints, is the introduction of a field of stretch
fluctuations f defined on the micro-sphere S of space orientations. This fluctuation field
links the micro-stretch λ of the single chain to the line-stretch λ̄ of the continuum in
the multiplicative format λ = λ̄f . The fluctuation field f is determined by a variational
principle of minimum averaged free energy conceptually in line with homogenization con-
cepts for composites as outlined for example in Ponte Castañeda & Suquet [166],
Miehe, Schotte & Lambrecht [152] or Miehe [144]. The minimization principle is
assumed to be constrained through a p-root averaging condition, yielding the closed-form
result of a non-affine constant micro-stretch λ = (

∫

S
λ̄pdA/|S|)1/p. Here, p > 0 is con-

sidered as a material parameter that describes the non-affine stretch characteristics. For
p = 2, the proposed model recovers the eight-chain model as a special case. As shown
in the numerical examples, the new non-affine stretch model substantially enhances the
performance of the eight-chain model when the non-affine stretch parameter p is used
in addition to the two effective parameters µ and N of the non-Gaussian free energy of
the single chain. It provides considerable flexibility with respect to independent model-
ing of locking characteristics for different deformation modes such as simple tension and
equi-biaxial deformations.

ii) Non-Affine Tube Part. The basic idea of the proposed non-affine tube part for topolog-
ical constraints of the network is the introduction of a fictitious straight micro-tube that
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contains the single chain and constrains its free movement. For this elementary scenario, a
constrained free energy contribution is available in Doi & Edwards [45] from elementary
statistical mechanics, governed by the cross-section of the straight tube. Based on this
observation, we introduce the tube-area-contraction ν as a second micro-kinematic vari-
able of the single chain. In order to link this micro-kinematic variable to the macroscopic
deformation as a micro-mechanical mechanism, we assume the existence of forest chains
located transversally to the prototype chain under consideration. An increase of stretch
of these forest chains is then considered to increase the conformation constraint on the
prototype chain by reducing the cross section of the fictitious tube. In an affine setting,
the stretch of the forest chains is governed by the macroscopic area-stretch ν̄ of an area
element with a normal aligned to the orientation of the prototype chain. We generalize
this affine assumption to the non-affine relationship ν = ν̄q between the tube contraction
ν and the area-stretch ν̄ of the continuum where q > 0 is an additional non-affine tube
parameter besides the effective stiffness parameter U of the tube statistics. The macro-
scopic contribution to the free energy is obtained by a homogenization of the associated
state variables on the sphere of space orientations. The proposed new geometric approach
to a tube contribution yields the desired increase of stiffness at moderate stretches.

iii) Field discretizations on the Micro-Sphere. The third key contribution is the computa-
tional exploitation of averaging operations on the micro-sphere. In contrast to the eight-
chain model, the above outlined generalized non-affine stretch and tube contributions do
not have closed-form macroscopic representations in terms of conventional macroscopic
strain measures. As a consequence, the homogenization procedure is performed via a di-
rect numerical evaluation of the averaging integrals

∫

S
vdA/|S| ≈∑m

i=1 v
iwi by replacing

the continuous orientation manifold on the micro-sphere by a discrete set of m orienta-
tions. A comparative study of numerical examples shows that anm = 21-point integration
as outlined in Bažant & Oh [10] yields sufficient accuracy. The numerical integration of
state variables on the micro-sphere results in simple algebraic expressions and is compu-
tationally very efficient. The computational effort is absolutely competitive with purely
macroscopic models of rubber elasticity formulated in terms of spectral decompositions
of macroscopic strain measures. Furthermore, the approach inherently provides the visu-
alization of local micro-states via stereographic pole figure plots at typical Gauss points
of finite element meshes. We develop separate algorithms for the decoupled contributions
due to the non-affine stretch and tube parts, which are finally superimposed to obtain
the overall response of the model. This framework is very attractive with regard to an
extension to inelasticity in order to incorporate visco-elastic overstress phenomena and
the Mullins effect of strain-softening.

The current chapter is organized as follows. In Section 3.1, we briefly outline a spatial
geometric setting of decoupled volumetric-isochoric finite elasticity. Section 3.2 is devoted
to discussion on the micro-mechanics of a single chain constrained in a straight tube-like
environment. Here, we introduce two micro-kinematic variables for the chain stretch and
the tube area contraction, point out the associated mechanism of statistical mechanics and
summarize their decoupled contributions to the free energy of the single chain. Having this
statistically-based constitutive modeling at hand, in Section 3.3 we further proceed with
the construction of the non-affine network contributions associated with the two micro-
mechanical mechanisms. To this end, we first introduce the micro-macro transition as a
homogenization of state variables on the micro-sphere of space orientations. Then, the
two non-affine network models associated with the free motion part and the constrained
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tube part of the chains are established. We derive explicit representations of the free and
constraint network contributions to the macroscopic free energy, and the Eulerian stresses
and tangent moduli. Section 3.4 is concerned with the algorithmic aspects of the consti-
tutive model. The performance of the proposed micro-sphere model is assessed in Section
3.5. The evaluation of the model is carried out with respect to several aspects of the
formulation. These involve the accuracy of the algorithmic formulation, comparison with
some other network models, parameter sensitivity analysis and simulation of benchmark
data obtained from homogeneous and inhomogeneous experiments.

3.1. Macroscopic Spatial Elasticity of a Polymer Network

Let ϕ : X 7→ x be the nonlinear deformation map at time t ∈ R+ of an elastic
body undergoing finite deformation, see Figure 2.1. The boundary-value problem of
macroscopic finite elasticity is governed by the principle of minimum potential energy

I = inf
ϕ∈W

[

∫

B

Ψ dV − Πload ] (3.1)

that is subjected to ϕ ∈ W := {ϕ ∈ W1,p(B)|ϕ = ϕ̄(X) on ∂Bϕ} associated with
prescribed deformations ϕ̄ at X ∈ ∂Bϕ on the boundary. The term Πload(ϕ) =

∫

B
ϕ ·

γ dV +
∫

∂Bt
ϕ · T dA is an assumed global load potential of dead body forces γ(X, t)

in B and surface tractions T (X, t) on ∂Bt. The minimum principle (3.1) contains the
macroscopic free energy Ψ stored in a unit reference volume. It is a function of the spatial
metric g and the deformation gradient F

Ψ = Ψ(g; F ) . (3.2)

The free energy function is assumed to be normalized to a zero energy level and a stress-
free state at the reference configuration, i.e. Ψ(g; 1) = 0 and ∂F ψ(g; 1) = 0. The
function must satisfy the principle of material frame invariance Ψ(g; QF ) = Ψ(g; F )
for all rotations Q ∈ SO(3). Following the standard argument of zero dissipation in an
elastic solid, the free energy function determines the Eulerian Kirchhoff stresses and the
associated spatial elasticity moduli by the Doyle-Ericksen formulae (2.63)

τ = 2∂gΨ(g; F ) and C = 4∂2
ggΨ(g; F ) . (3.3)

The spatial elasticity moduli link the Lie derivative or Oldroyd rate £vτ := τ̇ − lτ −τ lT

of the Kirchhoff stresses via £vτ = C :£vg/2 to the Lie derivative of the spatial metric
£vg/2 := (gl+lT g)/2, often denoted as the Eulerian rate of deformation tensor as defined
in (2.44). The evaluation of the tensors defined in (3.3) is required in typical finite element
implementations of finite elasticity. In particular, the moduli (3.3)2 play a central role in
Newton-type methods applied to an iterative solution of the nonlinear variational problem
(3.1), see for example Simó & Taylor [185] or Miehe [137, 140].

As discussed in Chapter 1, rubber-like materials undergo nearly incompressible de-
formations. To this end, we consider a decoupled volumetric-isochoric formulation of
elasticity based on the introduction of the unimodular part

F̄ := J−1/3F (3.4)

of the deformation gradient. This tensor is assumed to govern the deviatoric stresses. The
decoupled volumetric-isochoric framework of finite elasticity is obtained by considering the
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specific form
Ψ = U(J) + Ψ̄(g; F̄ ) (3.5)

of the stored energy. This additive split of the free energy leads to analogous form for the
stresses (3.3)1 that additively decompose into spherical and deviatoric contributions

τ = pg−1 + τ̄ : P . (3.6)

The elasticity moduli (3.3)2 also assume the decoupled representation

C = (p+κ)g−1⊗g−1 − 2pI+P
T :
[

C̄ + 2
3
(τ̄ : g)I

]

: P− 2
3
(PT : τ̄⊗g−1+g−1⊗τ̄ : P) (3.7)

where Iabcd := [δacδbd + δadδbc]/2 and Pab
cd := [δa

cδ
b
d + δa

dδ
b
c]/2− 1

3
δabδcd are the fourth-

order identity tensor and deviatoric projection operator, respectively. The volumetric
stresses and moduli in (3.6) and (3.7) are defined by

p := JU ′(J) and κ := J2U ′′(J) (3.8)

as derivatives of the volumetric part U of the free energy function (3.5). For an almost
incompressible response of the polymer network, the volumetric free energy U can be
considered as a penalty function which approximatively enforces the incompressibility
constraint. The stresses and moduli in (3.6) and (3.7) associated with the isochoric
deformation space are defined as

τ̄ := 2∂gΨ̄(g; F̄ ) and C̄ := 4∂2
ggΨ̄(g; F̄ ) (3.9)

the derivatives of the isochoric part Ψ̄ of the free energy function (3.5). The derivation
of the expressions for the Kirchhoff stresses (3.6) and the associated moduli (3.7) in
the context of the decoupled volumetric-isochoric formulation of elasticity are set out in
Appendix B. In the forthcoming part of this chapter we construct macroscopic free energy
functions Ψ̄ for exactly incompressible polymer networks and derive explicit formulae for
the above defined spatial stresses τ̄ and moduli C̄.

3.2. Micromechanics of a Single Polymer Chain in a Tube

The elementary entropic molecular theory of polymer networks rests on the postula-
tion that the entropic elastic free energy of a network is equal to the sum of the elastic
free energies of the individual chains. Hence, the setting up of a micromechanically-based
theory for polymer networks in a first step requires a precise description of the mechanical
response of an individual polymer chain. To this end, in this section we summarize classi-
cal results of the Gaussian and non-Gaussian statistical mechanics of unconstrained single
polymer chains. In order to model interactions of chains in a real network, we consider
the single chain to be constrained by a straight tube. The key aspect of the subsequent
development is to assume the free energy of the single chain in a cross-linked network to
be governed by two micro-kinematic variables: the stretch and the tube contraction.

3.2.1. Definition of Micro-Kinematic Variables of the Chain. In the statistical
treatment of a single polymer chain, its geometrical structure is idealized to be composed
of N segments of equal length l, the so-called Kuhn segment length. The contour length
L of the chain is L := Nl. In the classical statistical treatments of a single polymer chain
as outlined in Kuhn [112, 113], Kuhn & Grün [114] and James & Guth [101], the
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single chain is unconstrained and has an entirely random orientation in space as visualized
in Figure 3.1, which a priori ignores a dependency on the motion of neighboring chains.
The key phenomenological kinematic variable of the single chain is the current end-to-end
distance r depicted in Figure 3.1a. For an unstrained free chain this distance assumes
the random walk-type root-mean-square value r0 :=

√
Nl as also discussed in Appendix

C. Alternative dimensionless kinematic variables to measure the deformation of the chain
are the stretch λ or the relative stretch λr defined as

λ :=
r

r0
and λr :=

r

L
=

λ√
N
, (3.10)

with λ ∈ [0,
√
N) and λr ∈ [0, 1), respectively. The maximum values of these measures

are obtained for the situation where the end-to-end distance r approaches the contour
length L.

RRRR

rr

L = Nl
l

a) b)

d

Figure 3.1: Geometry of a single polymer chain. a) Free single chain consisting of N
segments with length l, end–to–end distance r and contour length L = Nl. b) Chain
topology constrained by a straight tube of diameter d.

Classical treatments of polymers consider a free motion of the single chain in the
cross-linked network. These theories do not account for the interaction between different
molecules which form the network. Concepts from molecular statistics that incorporate
these effects are the so-called constrained junction and constrained segment theories. A
recent development associated with the latter group is the so-called tube model of rub-
ber elasticity, see Deam & Edwards [40], Edwards & Vilgis [53] and Heinrich,
Straube & Helmis [95] for an overview. The tube model characterizes the cross-links
and entanglement topology of a polymer network by a set of worm-like network-chain
paths. The basic physical argument for the tube approach is the large degree of coil
interpenetrations of network chains. These can be viewed as obstacles that constrain the
free motion of the chain of interest. An important aspect of this paper is to define a
tube-like constraint to a single chain in a new elementary simple format. To this end, we
assume the polymer chain to be confined by a tube of constant diameter d as visualized
in Figure 3.1b, with both ends fixed at the center of the end cross sections. This sim-
plified geometry restricts the number of accessible conformations of the chain to the free
space inside of the tube. We then assume that the network constraint to the single chain
under consideration can be described by the dimensionless kinematic variable tube area
contraction

ν := (
d0

d
)2 (3.11)

with ν ∈ (0,∞). Here, d0 is the initial diameter of the tube, which can be considered as
a material parameter of the undeformed network. Estimates of d0 in terms of the Kuhn
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segment length l and the number of segments per unit volume are given in Heinrich &
Straube [93, 94], Heinrich, Straube & Helmis [95] and Heinrich & Kaliske [92].
In our model of a single chain in a straight tube, Figure 3.1, the allowed conformations
of the single chain are assumed to be determined by the two micro-kinematic variables λ
and ν defined (3.10) and (3.11), respectively.

3.2.2. Free Energy of a Single Chain. The key problem in the statistical me-
chanics of a polymer chain is the determination of its entropy. The entropy essentially
describes the number of allowed conformations available to the chain. Now consider the
above outlined model of a single chain in a straight micro-tube governed by the micro-
kinematic variables λ and ν. The infinitesimal probability dP that the conformation of
the chain falls between the micro-tube geometries (λ, ν) and (λ+ dλ, ν + dν) is

dP (λ, ν) = p(λ, ν)dλdν (3.12)

with the joint probability density

p(λ, ν) = pf(λ)pc(ν) . (3.13)

Here, pf and pc are probability densities which independently describe the free chain
response (index f) and the tube constraint (index c). Then the entropy η of the single
chain is governed by Boltzmann’s equation η = k ln p in terms of the Boltzmann constant
k. For purely entropic response we then obtain the free energy ψ of the chain

ψ = −θη , (3.14)

where θ > 0 denotes the absolute temperature. The assumed joint probabilities immea-
diately leads to the additive split

ψ(λ, ν) = ψf (λ) + ψc(ν) (3.15)

of the free energy of the chain into a contribution ψf associated with the free motion of
the chain and a contribution ψc due to the tube-like network constraint, respectively. In
(3.15), for the sake of brevity, the explicit dependence of the free energy on the tempera-
ture θ is suppressed. The part ψf is the classical contribution to the free energy for the
unconstrained motion of the chain between the cross-link positions shown in Figure 3.1a.
The additional part ψc characterizes the constraint action of the tube depicted in Fig-
ure 3.1b. In the decoupled representation (3.15), the forces dual to the kinematic variables
stretch λ and tube-contraction ν are given per definition by

Ff :=
∂ψf (λ)

∂λ
and Fc :=

∂ψc(ν)

∂ν
, (3.16)

where Ff may be considered as an axial force and Fc as a radial force acting on the single
chain.

3.2.3. The Free Energy of an Unconstrained Single Chain. The free energy
of a chain for an unconstrained motion between two fixed cross-link positions has been
outlined in the classical works by Kuhn [112, 113] and Kuhn & Grün [114]. The
simplest statistical treatment yields a Gaussian distribution of the end-to-end distance of
the chain. The more advanced non-Gaussian model accounts for the finite extensibility of
the chain. The more detailed discussion of these theories is outlined in Appendix C along
with some basics of statistical mechanics.
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F̃f F̃c

non-Gaussian

Gaussian

L

d

r

a) b)

Figure 3.2: a) Axial force F̃f (r) := ∂ψf (r)/∂r in terms of end-to-end distance r acting on

a free chain for Gaussian and non-Gaussian statistics. b) Additional radial force F̃c(d) :=
∂ψc(d)/∂d in terms of the tube diameter d acting on a constrained chain.

The Gaussian Statistics. The classical Gaussian statistics of a single polymer chain
was derived by Kuhn [112, 113]. It considers an unconstrained freely jointed chain with
end-to-end distance r ≪ L much smaller than the contour length L, i.e. for moderate
deformations of the chain. The free energy of a free Gaussian chain has the following
quadratic form

ψf (λ) =
3

2
kθλ2 + ψ0 (3.17)

in terms of the stretch λ defined in (3.10) with constant ψ0, see Treloar [196] p.47 and
(C.11) in Appendix C. Thus the force (3.16)1 acting on a chain with assumed Gaussian
statistics is a linear function of the stretch

Ff = 3kθλ (3.18)

as depicted in Figure 3.2a. Therefore, application of the model is restricted to moderate
deformations of the chain with λ≪

√
N .

The Non-Gaussian Statistics. Owing to its quadratic form, the Gaussian model
does not account for the finite extensibility of the chain. A theory that is valid for large
stretches up to the limiting end-to-end distance governed by the contour length L is
provided by the non-Gaussian model introduced by Kuhn & Grün [114] and James &
Guth [101]. The non-Gaussian free energy whose canonical derivation is also discussed
in Appendix C (C.30) has the form

ψf (λ) = Nkθ

(

λrL−1(λr) + ln
L−1(λr)

sinhL−1(λr)

)

+ ψ0 (3.19)

in terms of the relative stretch λr defined in (3.10)2, see also Treloar [196] p.104.
Here, L(β) = cothβ − 1/β is the well-known Langevin function and ψ0 a constant. The
associated force (3.16)1 acting on a chain with assumed non-Gaussian statistics

Ff = kθ
√
NL−1(λr) (3.20)

has the nonlinear asymptotic property for the limiting end-to-end distance as depicted in
Figure 3.2a. The force acting is directly proportional to the inverse Langevin function
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L−1(λr) and has the realistic singular behavior as relative stretch λr approaches the limit-
ing value one. The inverse Langevin function can be evaluated by a Padé approximation

L−1(λr) ≈ λr(3− λ2
r)/(1− λ2

r) (3.21)

as outlined in Cohen [34]. It should also be observed that the first term of the Taylor
series expansion of the non-Gaussian model reproduces the Gaussian model for small
deformations.

3.2.4. Free Energy Due to the Tube-Like Constraint of the Chain. The
contribution to the free energy due to the tube constraint can be based on the hypothesis
that the polymer takes a random walk confined by the tube. The probability of the
straight tube constraint has the simple form

pc(ν) = p0 exp[−α(
r0
d0

)2ν] , (3.22)

where p0 denotes a normalization constant, see Doi & Edwards [45], p.205. The variable
ν is the tube-contraction defined in (3.11). The kinematic variable r0 :=

√
Nl denotes

the end-to-end distance of an unconstrained chain and d0 is a given tube diameter in the
undeformed configuration. The factor α depends on the shape of the cross section of the
tube. Incorporation of (3.11) and (3.22) in Boltzmann’s equation leads us to the free
energy due to the tube constraint

ψc(ν) = αkθN(
l

d0

)2ν + ψ0 (3.23)

with constant ψ0. The associated additional force (3.16)2 acting on a chain

Fc = αkθN(
l

d0
)2 (3.24)

is independent of the tube contraction measure. Variation of its version conjugate to the
the tube diameter d is depicted in Figure 3.2b.

3.3. Network Models for Affine and Non-Affine Stretches

Having the free energy functions of the single chain at hand, we now develop new
network models for an aggregate of cross-linked polymer chains. To this end, we link the
above introduced kinematic micro-variables λ and ν through characteristic affine and non-
affine approaches to suitably defined kinematic macro-variables λ̄ and ν̄. The resulting
new network models are isotropically defined by equally-distributed orientations of the
chains in space. The associated micro-macro transition is interpreted as a homogenization
of state variables on a micro-sphere with unit radius.

3.3.1. Split of the Macroscopic Free Energy of the Network. Goal of this
section is to construct full network models which define the macroscopic free energy Ψ̄,
stresses τ̄ and elasticity moduli C̄ of the polymer network. The macroscopic free energy
Ψ̄ of a network is related to the sum of the elastic free energies of the individual chains
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in a unit volume. Then the split (3.15) of the free energy of a single chain induces the
additive split of the macroscopic free energy

Ψ̄ = Ψ̄f(g; F̄ ) + Ψ̄c(g; F̄ ) . (3.25)

The first part describes the contribution to the free energy for an idealized network with
free fluctuations of the chains between junctions of the cross-linked network. The second
part represents the additional free energy due to the interactions among the chains. Then
the overall stresses and moduli (3.9) split into two contributions

τ̄ = τ̄ f + τ̄ c and C̄ = C̄f + C̄c . (3.26)

These contributions are obtained by inserting the split (3.25) into (3.9), yielding

τ̄ f := 2∂gΨ̄f(g; F̄ ) and C̄f := 4∂2
ggΨ̄f(g; F̄ ) (3.27)

for the unconstrained contributions to the stresses and moduli, and

τ̄ c := 2∂gΨ̄c(g; F̄ ) and C̄c := 4∂2
ggΨ̄c(g; F̄ ) (3.28)

for the additional contributions due to the constrained motion of the single chains. In the
subsequent part of this section, we successively develop details of full network theories
which define these two contributions to the free energy, the stresses and the elasticity
moduli. Firstly, we focus on approaches to the unconstrained contributions and in the
last subsection treat the additional constrained parts.

3.3.2. The Affine Full Network Model for Unconstrained Chains.

The Affine Stretch Assumption. The key aspect of network theories is to link the
deformation of a single chain to the macroscopic isochoric deformation F̄ of the continuum
defined in (3.4) that represents the network aggregate. Let r be a Lagrangian orientation
unit vector with |r|G :=

√
r♭ · r = 1, where r♭ := Gr is the co-vector of r obtained

by a mapping with the standard metric G = δAB (Kronecker symbol) of the reference
configuration. A mapping of the orientation vector r by the isochoric deformation of the
continuum gives the isochoric stretch vector

t = F̄ r . (3.29)

Then the macro-stretch of a material line element with orientation r in the reference
configuration is

λ̄ = |t|g :=
√

t♭ · t with t♭ := gt , (3.30)

evaluated with the metric g = δab (Kronecker symbol) of the current configuration. For
an affine stretch model, we assume the relationships

λ = λ̄ (3.31)

between the micro-stretch λ of a single chain defined in (3.10) and the above defined
macro-stretch λ̄. This assumption is in line with classical affine network models which
consider a single polymer chain between junctions of the cross-linked network. These
models postulate the junctions to be embedded in the network structure without showing
fluctuations over the time. As a consequence, the micro-stretch of an individual chain
introduced in (3.10) is assumed to be identical to the isochoric stretch of the continuum
defined in (3.30). This standard assumption reflects the classical approach to polymer
networks as outlined in Treloar & Riding [197]. A descriptive explanation of this
assumption is illustrated in Figure 3.3b.
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Figure 3.3: Conceptual link of kinematic micro-variables λ and ν to isochoric macro-
variables λ̄ and ν̄ of the continuum. a) Undeformed macroscopic volume element. b) The
chain-stretch λ := r/r0 in the affine deformation assumption is identical with the macro-

line-stretch λ̄ := |F̄ r| = r/r0 of a continuum line element with direction r. c) We assume
the tube-area-contraction ν := (d0/d)

2 related to the macro-area-stretch ν̄ := |F̄−T r| = a/a0

of a continuum area element with normal n, because an increase of ν̄ extends forest chains

which determine the tube diameter as obstacles.

Contribution to the Macroscopic Free Energy. With the above definitions at
hand, we are now in a position to define the macroscopic energy of the network. It is
assumed that the undeformed network is homogeneous and isotropic from the macroscopic
viewpoint, consisting of n chains per unit volume. Then the macroscopic free energy is the
sum of the n chain energies ψi

f which are present in a unit volume, i.e Ψ̄f =
∑n

i=1 ψ
i
f (λ̄

i).

The micro-energies are evaluated in terms of the isochoric macro-deformation F̄ through
(3.30) based on the affinity assumptions (3.31). An isotropic overall response of the net-
work is associated with an equal space distribution of the chains in the three-dimensional
space. This equal space orientation is obtained by replacing the above discrete sum by
the continuous representation

Ψ̄f(g; F̄ ) = 〈 nψf (λ̄) 〉 (3.32)

where 〈v〉 denotes the continuous averaging for an equal orientation distribution of the
variable v in space. This equal orientation distribution can be based on the parametriza-



3.3 Network Models for Affine and Non-Affine Stretches 39

tion of the above introduced Lagrangian unit vectos r in terms of spherical coordinates

r(ϕ, ϑ) = cosϕ sinϑe1 + sinϕ sinϑe2 + cosϑe3 (3.33)

in a fixed standard Cartesian frame {ei}i=1,2,3 with ϕ ∈ Dϕ := [0, 2π] and ϑ ∈ Dϑ := [0, π],
see Figure 3.4. Associated with an equipartitioning of the orientation in space are the
probability densities p(ϕ) = 1/2π and p(ϑ) = sinϑ/2 of the spherical angles ϕ and ϑ.
While ϕ is equally distributed, ϑ is not due to its nonlinear relationship to the projection
l3 := cosϑ of the vector t on the e3-direction that is equally distributed. Then the
infinitesimal probability that the orientation vector t falls between the position (ϕ, ϑ) and
(ϕ+ dϕ, ϑ+ dϑ) is

dP (ϕ, ϑ) = p(ϕ)p(ϑ)dϕdϑ =
1

4π
sinϑdϕdϑ (3.34)

In this equation dA = sin ϑdϕdϑ is the infinitesimal area element of the unit sphere S
with total area |S| = 4π. Thus when introducing the area variable A :=

∫ ϑ

0

∫ ϕ

0
sinϑdϕdϑ

with A ∈ S, the probability density for the equal distribution of area on the unit sphere
S reads

p(A) =
1

|S| . (3.35)

Then the infinitesimal probability that the orientation vector t falls between the position
A and A + dA on the unit sphere is

dP (A) = p(A)dA =
1

|S|dA . (3.36)

This expression being equivalent to the representations (3.34) is used in the subsequent
development. With this formulation at hand, we define the average of the microscopic
free energies for continuous space distribution via

〈v〉 =

∫

S

v(A)dP (A) =
1

|S|

∫

S

v(A)dA . (3.37)

This average is interpreted as a homogenization of the state variable v(A) on a micro-
sphere with unit radius. The numerical evaluation of this mean value is based on the
discretization of the continuous integral over the unit sphere, see Section 3.4.

Contribution to Macroscopic Stresses and Moduli. With the macro-energy at
hand, we compute the Eulerian stresses and elasticity moduli based on a straightforward
exploitation of formulae (3.27). To this end, we first compute the derivatives of the
macro-stretch (3.30) by the Eulerian metric

2∂gλ̄ = λ̄−1t⊗ t . (3.38)

Its insertion into (3.27)1 gives the representation of the macroscopic Kirchhoff stresses

τ̄ f = 〈 nψ′
f λ̄

−1t⊗ t 〉 . (3.39)

Further derivation of the stresses with respect to the Eulerian metric yields the spatial
elasticity moduli defined in (3.27)2. Using the results (3.38) and 2∂g(t⊗t) = 0, we obtain

C̄f = 〈 (nψ′′
f − nψ′

f λ̄
−1)λ̄−2t⊗ t⊗ t⊗ t 〉 . (3.40)

The numerical implementation of the macro-stresses (3.39) and -moduli (3.40) is based
on the discretization of the continuous integral (3.37) over the unit sphere. It is further
set out in Section 3.4.
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Figure 3.4: Unit sphere micro-structure. The orientation unit vector t can be parametrized

by the spherical angles (ϕ, ϑ) or the area variable A :=
∫ ϑ

0

∫ ϕ

0
sinϑdϕdϑ. For equally dis-

tributed orientations in space, the infinitesimal probability that the vector t falls in the
infinitesimal surface area dA of the sphere S is dP = dA/|S| with |S| = 4π.

3.3.3. A Non-Affine Network Model for Unconstrained Chains.

A Non-Affine Stretch Assumption. As clearly pointed out by Arruda & Boyce
[8, 25] the assumption of the affine stretch of the polymer chains made in equation (3.31)
is not appropiate in the non-Gaussian region at large strains. In real networks, chains
which lie along the maximum principle stretch direction would begin to stretch less with
continuing deformation once they begin to approach their maximum extensibility. At
that moment, other chains in the network will stretch more than predicted by the affine
deformation in order to accomodate the applied total stretches. Therefore, the affinity of
chain deformation will be lost. The affine network model outlined above, therefore at large
strains overestimates the stress-stretch behavior of chains along the principal directions.
This observation motivated Arruda & Boyce [8] to construct the eight-chain model.

In this section we develop a generalization of the eight-chain model that opens up the
possibility to scale observations made in uniaxial and equi-biaxial tension experiments
through the introduction of an additional material parameter. The key underlying concept
is to allow the micro-stretches λ to fluctuate arround the macro-stretches λ̄ defined in
(3.30). To this end, we relax equation (3.31) by writing

λ = λ̄f . (3.41)

The multiplier f is a stretch-fluctuation field on the unit sphere that in a multiplicative
format acting on the affine stretch. The fluctuation field is assumed to be defined on
the unit sphere of space orientations introduced above. The non-affine micro-stretch is
assumed to be constrained by the condition

〈λ〉p = 〈λ̄〉p (3.42)

in terms of the p-root averaging operator

〈v〉p := p
√

〈 vp 〉 = (
1

|S|

∫

S

vpdA)1/p (3.43)

of a scalar micro-variable v > 0 defined on the unit sphere. The constraint (3.42) states
that the p-root average of the non-affine stretch λ of the single polymer chain is identical
to the p-root average of the macroscopic stretch λ̄. In the forthcoming treatment we
consider the parameter p in (3.42) as an additional material parameter of the network.
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Contribution to Macroscopic Free Energy. The fluctuation field f on the unit
sphere of spatial orientations is determined by a principle of minimum averaged free energy
conceptually in line with homogenization principles for composites. This minimization
principle determines the macroscopic free energy by the expression

Ψ̄f (g; F̄ ) = sup
κ

inf
f
{ 〈 nψf (λ̄f) 〉 − κ(〈λ̄f〉p − 〈λ̄〉p) } (3.44)

where the Lagrange multiplier κ enforces the constraint (3.42). The minimization problem
defines the overall macroscopic free energy of the non-affine stretch model. The necessary
conditions of the minimization problem (3.44) are met by

nψ′
f (λ̄f)− κ(〈λ̄f〉p)(1−p)(λ̄f)(p−1) = 0 (3.45)

defined locally at A ∈ S, and the global constraint (3.42). The above local condition can
be recast into the instructive form

nψ′
f (λ̄f)(〈λ̄f〉p)(p−1)(λ̄f)(1−p) = κ , (3.46)

where κ = constant on the sphere. For particular free energy functions with derivatives
of the form ψ′

f (λ̄f) = c(λ̄f)(p−1), a trivial solution is obtained for zero fluctuations on the

sphere f = 1 at A ∈ S, which recovers the affine network model (3.32) with λ = λ̄. A
non-trivial solution of (3.46) with non-zero fluctuations f 6= 0 on the sphere for arbritrary
nonlinear energy functions ψf can be derived only if the argument λ = λ̄f is constant.
Then from (3.42) we conclude the simple closed-form result of the minimization problem
(3.44) that defines the non-affine micro-stretch

λ = 〈λ̄〉p . (3.47)

This condition identifies the micro-stretch on the sphere with the constant p-root average
of the macro-stretches. This non-affine relation relaxes the conditions (3.31) of the affine
model. The associated micro-stretch fluctuation field is then defined by (3.41). The
insertion of the non-trival solution (3.47) into (3.44) gives the simple representation

Ψ̄f(g; F̄ ) = nψf (〈λ̄〉p) (3.48)

as the contribution to the macroscopic free energy of the non-affine network model for
unconstrained chains. It is important to note that the eight-chain model of Arruda &
Boyce [8] can be obtained from the above outlined formulation as a special case for
p = 2 where the micro-stretch (3.47) assumes the explicit form

λ = 〈λ̄〉2 =
√

I1/3 with I1 := tr[F̄ T gF̄ ] (3.49)

in terms of the isochoric macroscopic deformation F̄ .

Contribution to Macroscopic Stresses and Moduli. Having the macro-energy
of the non-affine network model determined, we can proceed with computation of the
Eulerian stresses and elasticity moduli based on a straightforward exploitation of formulae
(3.27). To this end, we first compute the derivatives of the non-affine stretch (3.47) with
respect to the current metric. Using the result (3.38), we obtain

2∂gλ = λ1−ph with h := 〈 λ̄p−2t⊗ t 〉 . (3.50)
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Insertion of (3.48) into (3.27)1 yields the representation of the macroscopic Kirchhoff
stresses

τ̄ f = nψ′
fλ

1−ph . (3.51)

A further derivative of the stresses by the Eulerian metric yields the spatial elasticity
moduli defined in (3.27)2. In a first step, starting from (3.38), we compute the derivatives
of the tensor h introduced in (3.50)

H := 2∂gh = 〈 (p− 2)λ̄p−4t⊗ t⊗ t⊗ t 〉 . (3.52)

Then the contribution to the Eulerian tangent moduli appears in the form

C̄f = (nψ′′
fλ

2(1−p) − (p− 1)nψ′
fλ

(1−2p) )h⊗ h + nψ′
fλ

1−p
H . (3.53)

The numerical evaluation of the tensors h and H defined in (3.50), (3.52) is based on the
discretization of the continuous integral over the unit sphere, see Section 3.4.

3.3.4. A Non-Affine Network Model for the Tube Constraint.

Deformation Assumption for Tube Contraction. Consider the isochoric defor-
mation of an area element with normal r♭ in the reference configuration, yielding the area
vector

n♭ = F̄−T r♭ . (3.54)

Then the macro-area-stretch of a material area element with normal r♭ in the reference
configuration is

ν̄ = |n|g :=
√

n♭ · n with n := g−1n♭ , (3.55)

where n is the vector associated with the co-vector n♭. We propose the relationship

ν = (ν̄)q (3.56)

between the micro-tube contraction ν defined in (3.11) and the macro-area-stretch defined
in (3.55). This equation relates the tube contraction to the area change of a cross section
with normal r♭ in the reference configuration. The additional material parameter q governs
a nonlinearity between the microscopic tube contraction and the macroscopic area change.
A descriptive interpretation of the above assumption is given in Figure 3.3c. In the case of
a macroscopic area extension of the cross section, chains in a direction perpendicular to the
prototype chain under consideration are stretched. The perpendicular chains, which we
referred to as forest chains, are assumed to be obstacles for the extension of the prototype
chain. Up on their stretch they assume a straighter topology that decreases the diameter
of the fluctuation of the cross section projection as indicated by the shaded circle in Figure
3.3c. This diameter of the fluctuations of the perpendicular obstacle chain is interpreted
as the diameter of the tube that constrains the prototype chain. Hence, our proposed
model constitutes an inverse relationship between the microscopic tube diameter and the
macroscopic area change: the diameter of the tube decreases with increasing area stretch.
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Contribution to Macroscopic Free Energy. With the above link of the tube
contraction to the macro deformation at hand, we are able to define the macroscopic
energy associated with the tube constraint. In analogy to (3.32) we write

Ψ̄c(g; F̄ ) = 〈 nψc(ν̄
q) 〉 (3.57)

where 〈v〉 denotes the continuous averaging for an equal orientation distribution of the
variable v in the space as defined in (3.37).

Contribution to Macroscopic Stresses and Moduli. We first compute the deriva-
tives of the macroscopic area stretch ν̄ defined in (3.55) by the Eulerian metric, yielding

2∂g ν̄ = −ν̄−1n⊗ n . (3.58)

The insertion of this result into (3.28)1 gives the contribution to the macroscopic Kirchhoff
stresses

τ̄ c = −〈 nψ′
cqν̄

(q−2)n⊗ n 〉 . (3.59)

Further derivation of the stresses with respect to the Eulerian metric yields the contribu-
tion to the spatial elasticity moduli defined in (3.28)2. They are computed from (3.59)
by using the result (3.58) and

2∂g(n⊗ n) = −2 sym[g−1 ⊙ (n⊗ n) + (n⊗ n)⊙ g−1] . (3.60)

Here, the introduced direct notation is associated with the index representation sym[g−1⊙
(n⊗n)]abcd := (δacnbnd + δbcnand)/2. With these definitions at hand, the contribution to
the Eulerian tangent moduli appear in the form

C̄c = 〈 (nψ′′
c q

2ν̄q + nψ′
cq(q − 2))ν̄(q−4)n⊗ n⊗ n⊗ n

+ 2nψ′
cqν̄

(q−2) sym[g−1 ⊙ (n⊗ n) + (n⊗ n)⊙ g−1] 〉 .
(3.61)

The numerical implementation of the macro-stresses (3.59) and macro-moduli (3.61) based
on the discretization of the continuous integral is commented on below.

3.4. Algorithmic Setting of the Constitutive Model

This section summarizes the key constitutive equations of the proposed non-affine
network model and introduces effective material parameters. Furthermore, we comment
on details of the numerical implementation by a suitable discretization of the orientation
space associated with the micro-sphere.

3.4.1. Summary of the Effective Material Parameters. The proposed model is
governed by the local constitutive equations for a prototype single chain in a tube and
the non-affine network assumptions outlined in Sections 3.2 and 3.3, respectively. For
the non-Gaussian stretch model of the unconstrained chain, from (3.19) and by using the
Padé approximation (3.21) we obtain the approximative expressions

nψ′
f (λ) = µ

3N − λ2

N − λ2
λ and nψ′′

f (λ) = µ
λ4 + 3N2

(N − λ2)2
(3.62)
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for the derivatives of the micro-energy required in expressions (3.39) and (3.40) of the
stresses and tangent moduli. Here, we made use of the classical definition of the effective
shear modulus

µ := nkθ (3.63)

in terms of the n chains per volume, Boltzmann’s constant k and the absolute temperature
θ. For the proposed tube model that describes the interactions of the chains, we obtain
the derivatives

nψ′
c(ν) = µNU and nψ′′

c (ν) = 0 (3.64)

of the micro-energy (3.23) required in the expressions (3.59) and (3.61) for the stresses
and tangent moduli. Here, we introduced the effective tube geometry parameter

U := α(
l

d0
)2 (3.65)

as a function of Kuhn’s segment length l and the initial tube diameter d0. The two
equations (3.62) and (3.64) govern, with the three effective material parameters µ, N and
U , the micromechanical response of a prototype chain in a tube. The characteristics of the
non-affine network model for the stretch and tube-contraction are determined by further
two material parameters p and q introduced in (3.47) and (3.56), respectively. Thus the
model in total contains five material parameters, which we again summarize in Table 3.1.
As shown in the numerical studies of Section 3.5, all these parameters may directly be
associated with particular phenomenological effects and characteristics visuable in stress-
stretch experiments of rubbery polymer aggregates. A rough statement concerning these
qualitative influences is given in Table 3.1.

Table 3.1: Material Parameters of the Non–Affine Micro–Sphere Model

No. Parameter Name Eq. Effect
1 µ := nkθ shear modulus (3.19) ground state stiffness
2 N number of chain segments (3.19) chain locking response
3 p non–affine stretch parameter (3.47) 3D locking characteristics
4 U := α(l/d0)

2 tube geometry parameter (3.23) additional constraint stiffness
5 q non–affine tube parameter (3.56) shape of constraint stress

3.4.2. Discretization of Fields on the Micro-Sphere. The implementation of the
affine and non-affine network models outlined in the preceding two sections into computer
codes requires a numerical evaluation of the integral over the continuous space orienta-
tions. This is carried out by discretizing the continuous orientation distribution of the
unit sphere S by m discrete Lagrangian orientation vectors {ri}i=1...m and weight factors
{wi}i=1...m. Then the continuous averaging (3.37) of a micro-variable v defined on the
sphere is transformed into the discrete sum

〈v〉 :=
1

|S|

∫

S

v(A)dA ≈
m
∑

i=1

viwi (3.66)

Here, {vi}i=1...m are the micro-variables on the sphere evaluated at the discrete points
Ai with orientation vector ri. In order to preserve properties of isotropy and a stress-
free state of the reference configuration in the discrete setting, the numerical integration
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scheme is required to fulfill some constraints. Consider the continuous averaging of the
orientation vector and its dyadic product

〈r〉 = 0 and 〈r ⊗ r〉 =
1

3
1 , (3.67)

which can easily be proven through the Gauss theorem. The latter constraint is necessary
in order to ensure a stress-free state of the macro-continuum in the reference configuration.
Preservation of the above properties in the discrete setting yields the constraints

m
∑

i=1

ri wi = 0 and

m
∑

i=1

ri ⊗ ri wi =
1

3
1 (3.68)

on the integration scheme. Sets of orientation vectors {ri}i=1...m and associated weight
factors {wi}i=1...m which satisfy these constraints are given in Bažant & Oh [10].

Table 3.2: Integration Points and Weights on Unit Sphere

No. ri
1 ri

2 ri
3 wi/2

1 0.0 0.0 1.0 0.0265214244093
2 0.0 1.0 0.0 0.0265214244093
3 1.0 0.0 0.0 0.0265214244093
4 0.0 0.707106781187 0.707106781187 0.0199301476312
5 0.0 -0.707106781187 0.707106781187 0.0199301476312

6 0.707106781187 0.0 0.707106781187 0.0199301476312
7 -0.707106781187 0.0 0.707106781187 0.0199301476312
8 0.707106781187 0.707106781187 0.0 0.0199301476312
9 -0.707106781187 0.707106781187 0.0 0.0199301476312
10 0.836095596749 0.387907304067 0.387907304067 0.0250712367487

11 -0.836095596749 0.387907304067 0.387907304067 0.0250712367487
12 0.836095596749 -0.387907304067 0.387907304067 0.0250712367487
13 -0.836095596749 -0.387907304067 0.387907304067 0.0250712367487
14 0.387907304067 0.836095596749 0.387907304067 0.0250712367487
15 -0.387907304067 0.836095596749 0.387907304067 0.0250712367487

16 0.387907304067 -0.836095596749 0.387907304067 0.0250712367487
17 -0.387907304067 -0.836095596749 0.387907304067 0.0250712367487
18 0.387907304067 0.387907304067 0.836095596749 0.0250712367487
19 -0.387907304067 0.387907304067 0.836095596749 0.0250712367487
20 0.387907304067 -0.387907304067 0.836095596749 0.0250712367487

21 -0.387907304067 -0.387907304067 0.836095596749 0.0250712367487

The integration schemes exploit the symmetry of the unit sphere by defining discrete
points only for the half-sphere. A set of m = 21 integration points for the half sphere

ri = ri
1e1 + ri

2e2 + ri
3e3 (3.69)

and associated weights wi are summarized in Table 3.2 for a cartesian standard base.
In Section 3.5 we show that the selected 21-point integration scheme provides sufficient
accuracy for all numerical investigations considered. Thus all the above outlined contin-
uous average operations in the discrete setting appear as a simple algebraic sum over 21
discrete space orientations. The numerical implementation of the affine and non-affine
micro-sphere models are summarized in Tables 3.3 and 3.4, respectively.
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Figure 3.5: Stereographic pole projection of the unit sphere describing the microstructure
of the network model. The proposed numerical setting uses m = 21 integration points with
cartesian coordinates defined in Table 3.3 for the discrete micro-state evaluation on the
sphere. The points 22-25 are introduced by symmetry conditions for plotting purposes.

The discrete space orientations of the half space are visualized in Figure 3.5 by the
labeled points of a stereographic pole projection. The pole plots allow a visualization of the
discretized micromechanical fields on the micro-sphere. This descriptive representations
of the micromechanical state is considered to be an important advantage of the proposed
network model. As an example, Figure 3.6 visualizes the affine micro-stretches λ̄ and
the affine area-stretch ν̄ for typical homogeneous deformation modes. The figure also
indicates the quality of the plot interpolation for the m = 21-point discretization scheme.

Table 3.3: Implementation of the Affine-Stretch Micro-Sphere Model.

1. Initialization. Get unimodular part F̄ ∈ SL(3) of deformation gradient from
equation (3.4). Set discrete orientation vectors ri and weights wi for the
m = 21-point integration scheme summarized in Table 3.2.

2. Affine Stretch Model. Compute deformed tangents ti = F̄ ri and affine micro-
stretches λ̄i = |ti| for i = 1...m. Calculate the macro-stresses

τ̄ f = µ

m
∑

i=1

3N − λ̄i2

N − λ̄i2
ti ⊗ tiwi ,

the macro-moduli

C̄f = µ

m
∑

i=1

[

λ̄i4 + 3N2

(N − λ̄i2)2
λ̄i−2 − 3N − λ̄i2

N − λ̄i2
λ̄i−2

]

ti ⊗ ti ⊗ ti ⊗ tiwi

and proceed with deviatoric projections defined in equations (3.6) and (3.7).
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Table 3.4: Implementation of the Non-Affine Micro-Sphere Model.

1. Initialization. Get unimodular part F̄ ∈ SL(3) of deformation gradient from
equation (3.4). Set discrete orientation vectors ri and weights wi for the
m = 21-point integration scheme summarized in Table 3.2.

2. Non-Affine Stretch Part. Compute deformed tangents ti = F̄ ri and affine
micro-stretches λ̄i = |ti| for i = 1...m. Compute non-affine stretches and their
derivatives

λ = [
∑m

i=1(λ̄
i)pwi ]1/p ,

h =
∑m

i=1(λ̄
i)p−2ti ⊗ tiwi ,

H = (p− 2)
∑m

i=1(λ̄
i)p−4ti ⊗ ti ⊗ ti ⊗ tiwi .

Calculate micro-stresses and micro-moduli

τf = µ(3N − λ2)/(N − λ2)λ and cf = µ(λ4 + 3N2)/(N − λ2)2

and compute the macro-stresses and macro-moduli

τ̄ f = τfλ
1−ph and C̄f = ( cfλ

2−2p − (p− 1)τfλ
1−2p )h⊗ h + τfλ

1−p
H

3. Non-Affine Tube Part. Compute deformed normals ni = F̄−T ri and affine
area-stretches ν̄i = |ni| for i = 1...m. Compute derivatives

k = q
∑m

i=1(ν̄
i)q−2ni ⊗ niwi ,

K = q(q − 2)
∑m

i=1(ν̄
i)q−4ni ⊗ ni ⊗ ni ⊗ niwi ,

G = 2q
∑m

i=1(ν̄
i)q−2 sym[g−1 ⊙ (ni ⊗ ni) + (ni ⊗ ni)⊙ g−1]wi

and compute the macro-stresses and macro-moduli

τ̄ c = −µNUk and C̄c = µNU(K + G)

4. Superimposed Stress Response. Add macroscopic contributions of stretch and
tube deformation part

τ̄ = τ̄ f + τ̄ c and C̄ = C̄f + C̄c

and proceed with deviatoric projections defined in equatons (3.6) and (3.7).

3.5. Assessment of the Modeling Capacity of the Model

In the foregoing sections, the network models for rubber elasticity incorporating con-
straint effects for both affine and non-affine kinematic measures have been introduced.
This covers explicit constitutive expressions for the Eulerian Kirchhoff stresses and moduli
outlined in Section 3.3 and their algorithmic counterparts developed in Section 3.4 based
on the discretization of mean value operations on the micro-sphere. The algorithms for
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Figure 3.6: Stereographic projection plots of affine micro-stretches λ = λ̄ := |F̄ r| and

affine tube-contractions ν = ν̄ := |F̄−T r| for homogeneous macro–deformation modes a)
simple uniaxial tension, b) equibiaxial tension and c) pure shear. The figure demonstrates
the plot interpolation quality of the m = 21-point integration on the micro–sphere.

the affine and non-affine micro-sphere models summarized in Tables 3.3 and 3.4 represent
constitutive network processors suitable for the implementation into finite element codes.
Objective of this section is to assess the modeling capacity of the new non-affine network
model summarized in Table 3.4. The subsequent five subsections are intended to discuss
the following aspects of the proposed formulation:

1. Investigation of the accuracy of the numerical approximations due to (i) Padè’s approx-
imation (3.21) of the inverse Langevin function and (ii) the discrete integration (3.66)
over the micro-sphere where we compare the present formulation with the previously
developed full network models of Treloar [195] and Treloar & Riding [197].

2. Comparison of affine network models with the eight-chain model of Arruda & Boyce
[8] with regard to locking stretch values in uniaxial and equi-biaxial tension.

3. Investigation of the stress sensitivity of the proposed non-affine micro-sphere model
with respect to the five material parameters summarized in Table 3.1.

4. Demonstration of the excellent performance of the proposed non-affine micro-sphere
model against representative benchmark experimental data.
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5. Application of the new non-affine micro-sphere model to a typical finite element sim-
ulation of a three-dimensional inhomogeneous shear test.

In the subsequent investigations, the identification of the material parameters based on
experimental data is carried out through SQP gradient-type solution methods of least-
square-type optimization problems as outlined in Miehe & Keck [150], Scheday [179].

3.5.1. Performance of the Proposed Algorithmic Implementation. The nu-
merical formulations of the micro-sphere models summarized in Tables 3.3 and 3.4 are
based on two approximations. First, we use the computationally efficient discrete inte-
gration scheme (3.66) for the averaging of state functions defined on the sphere. We then
apply Padé’s approximation (3.21) for the computation of the inverse Langevin function.
In what follows we compare these proposed formulations with previously developed full
network models, the so-called “uniaxial full network model” and the “biaxial full network
model” introduced by Treloar [195] and Treloar & Riding [197], respectively.
They used discontinuous power series approximation for the computation of the inverse
Langevin function for different ranges of its argument and employed an adaptive grid
integration for micro-macro transition. In the latter paper the normalized Cauchy stress
values σ11/µ for uniaxial and biaxial deformation processes are reported for different val-
ues of the material parameter N , see Tables A4, A2 and A3 in [197].

The numerical performance of the affine micro-sphere model, summarized in Table 3.3,
for a m = 37-point integration is compared in Figures 3.7a-d to the results of Treloar
& Riding [197] for tensile uniaxial and biaxial deformations. With these high-resolution
integrations, both affine network models are in good agreement for all types of deforma-
tions and for all values of N . The numerical accuracy of the m = 21-point integration
scheme for uniaxial and biaxial deformations are illustrated in Figures 3.8a-d. This com-
parison shows that the m = 21-point integration used in the proposed models of Tables
3.3 and 3.4 is precise enough. The observed minor accuracy error due to the numerical ap-
proximation in the neighborhood of limiting stretch value is assumed to be circumvented
by the appropriate use of material parameters. In other words, we consider the discrete
m = 21-point computation of state variables on the sphere as a part of the constitutive
model. All subsequent computations use the m = 21-point integration scheme and their
corresponding weighting factors provided in Table 3.2.

3.5.2. Comparison of Affine Network Models with the Eight-Chain Model.
It has already been pointed out in several contributions that the affine network models
yield results that are not in agreement with experimental data, in particular for the
simultaneous simulation of equi-biaxial and uniaxial test data. In the excellent review
paper Boyce & Arruda [25], it was argued that at the instant when the limited
extension is reached among chains a redistribution takes place and other chains in the
network experience more extension than the one predicted by the affine kinematics.

In the light of this discussion, we compare the response of three affine network mod-
els (the three-chain model of James & Guth [101], the three dimensional full network
model of Wu & van der Giessen [206] and the proposed affine micro-sphere model
summarized in Table 3.3) with the eight-chain model of Arruda & Boyce [8] in Figures
3.9a and 3.9b for simple tension and equi-biaxial deformations, respectively. In this inves-
tigation, the two material parameters are chosen to be µ = 0.25 MPa, N = 64. In Figure
3.9, it can easily be observed that the affine network models show asymptotic behavior at
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Figure 3.7: Comparison of the Affine Micro–Sphere model with the affine biaxial full
network model of Treloar & Riding [197] for m = 37–point integration scheme on micro–

sphere. a) Simple tension and b) equi–biaxial tension for different values of the material
parameter N . Plots c) and d) compare the models in case of biaxial tension at different
values of the macro–stretch λ2 for N = 25 and N = 100, respectively.

the same values of stretch, corresponding to the value of
√
N , for both uniaxial and equi-

biaxial deformations. This behavior can also be observed in Figures 3.7a,b or in Figures
3.8a,b by the affine full network model of Treloar & Riding [197]. As expected, the
response exhibited by proposed affine micro-sphere model in Table 3.3 closely resembles
that of the three-dimensional full network model of Wu & van der Giessen [206]. In
contrast to the affine network models, the eight chain model shows singular behavior at
different values of stretch for uniaxial and equi-biaxial deformations.

Recalling the formulation of the eight chain model, we make the following phenomeno-
logical observation. As pointed out in equation (3.49), the free energy of the eight-chain
model is a function of the non-affine network stretch λ =

√

I1/3, where I1 is the first
principal invariant of the isochoric right Cauchy-Green tensor. The derivative of this free
energy with respect to an appropriate deformation measure yields the function for the
stresses which comes out to be proportional to the inverse Langevin function L−1(λ), see
also equation (3.20). The replacement of the inverse Langevin function by Padé’s approx-
imation (3.21) yields L−1(λ) ≈ λ(3N − λ2)/

√
N(N − λ2). Apparently, the source of the

finite extensibility is the value of λ making the denominator of this expression vanishing.
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Figure 3.8: Comparison of the affine micro–sphere model with the affine biaxial full network
model of Treloar & Riding [197] for m = 21–point intergration scheme on micro–sphere.
a) Simple tension and b) equi–biaxial tension for different values of the material parameter
N . Plots c) and d) compare the models in case of biaxial tension at different values of the
macro–stretch λ2 for N = 25 and N = 100, respectively.

This is achieved by λ =
√
N . Hence, we obtain the locking criterion

λlock,8−chain ≈ arg{I1(λ) = 3N} (3.70)

of the eight-chain model. For a constant value of N , we can compute the value of what
we call the locking stretch for different kinds of isochoric deformations. For uniaxial
deformation with I1 = λ2 + 2λ−1 and N = 64, we get λuni

lock = 13.86. Likewise, for equi-
biaxial deformation with I1 = 2λ2 + λ−4 and N = 64, we obtain λeqb

lock = 9.8. These
estimated values are none other than the assymptotes observed in Figure 3.9.

The celebrated experimental benchmark data reported by Treloar [193] on rubber un-
dergoing simple tension, tensile equi-biaxial and pure shear deformations, see Figure 3.10,
have singular behavior similar to that exhibited by the eight-chain model. Using the
value of N = 26.5 in the eight-chain model, we obtain the different locking stretches
λuni

lock = 8.9 and λeqb
lock = 6.31, which reflect the trend of the experimental data depicted in

Figure 3.10. Similar investigations on locking stretch values of successful models such as
Kaliske & Heinrich [104] yield similar results for representative values. As already
shown in Figure 3.9, the affine network models cannot achieve this characteristic material
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Figure 3.9: Comparison of the different affine network models with the eight-chain
model for a) simple tension and b) equi-biaxial tension for the material parameters µ =
0.25MPa, N = 64.

behavior of rubbers showing different locking stretches for different deformation modes.
This handicap of the affine models is the key motivation for the introduction of non-affine
network models.
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Figure 3.10: Performance of the eight-chain model with the material parameters µ =
0.27 MPa, N = 26.5 in comparison with the well known Treloar [193] data.

The first attempt in this direction was the development of the eight-chain model by
Arruda & Boyce [8]. Though the response of this model with respect to the number
of just two material parameters is excellent, it still seems to have restrictions due to
its inherent fixed relationship between locking stretches for different deformation modes
characterized by the locking criterion (3.70). Furthermore, it underestimates the data
of Treloar [193] for the equi-biaxial and the pure shear deformations especially at
moderate deformations, see Figure 3.10. These two aspects motivated us to develop the
non-affine micro-sphere model summarized in Table 3.4. The introduction of the non-
affinity parameter p in the proposed non-affine micro-sphere model, which reproduces the
eight-chain model for p = 2, significantly improves the flexibility of the locking stretch
behavior in particular for equi-biaxial deformation, see Figure 3.11 and compare it with
Figure 3.10. The necessary additional contribution to the stress at moderate deformations



3.5 Assessment of the Modeling Capacity of the Model 53

is obtained by the tube contribution to the free energy governed by the tube parameters
U and q, which model constraint effects on the conformation of a chain, see Figure 3.14.
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Figure 3.11: Performance of the non-affine micro-sphere model without tube–like con-
straint contribution with the material parameters µ = 0.325 MPa, N = 22.263, p = 1.39 in
comparison to the well-known Treloar [193] data.

3.5.3. Characteristics of the Proposed Non-Affine Micro-Sphere Model. In
this section, we investigate the stress sensitivity of the proposed non-affine micro-sphere
model with respect to the five material parameters, summarized in Table 3.1, by per-
forming uniaxial and equi-biaxial deformations tests. Firstly, the contribution to the free
energy from the constraint effects on its conformation is ignored. That is, the sensitiv-
ity of the model to only the parameters µ, N, p is investigated in the left and the right
columns of Figure 3.12 for uniaxial and equi-biaxial deformations, respectively. In Figures
3.12a,b the values of the parameters N = 25 and p = 1.5 are fixed and different values to
the µ = 0.1, 1, 3, 5 MPa are assigned. The stress response of the model for the different
loading schemes are plotted for each value of µ. The increase in the parameter µ causes
the stress ordinate of the curve to be scaled for both cases of deformation. The sensitivity
of the stress-stretch curves to the parameter N = 10, 20, 30, 50 at fixed µ = 0.3 MPa
and p = 1.5 for uniaxial and equi-biaxial deformations are depicted in Figures 3.12c,d.
As it can be seen, the larger the value of N , the greater the locking stretch value gets.
In other words, a change of N shifts the value of λlock, leaving the compressive behavior
almost untouched. Furthermore, the amount of λlock-shift in the uniaxial case is greater
than the one in the equi-biaxial deformation for the same amount of increase in N . In
Figure 3.12e,f the values of the parameters µ = 0.3 MPa and N = 25 are kept constant
and different values of p = 1, 1.5, 2, 4 are assigned. The qualitative effect of altering p is
similar to that of the sensitivity of the model response to the parameter N . The smaller
the value of p, the greater the locking stretch. Within the scale considered, compressive
response again is almost unaltered. The amount of λlock-shift in equi-biaxial deformation
is, however, much less than the shift in the uniaxial case. This property of the model
provides the desired flexibility in the fitting of the experimental data, see e.g. Figure 3.11.

As already mentioned above, the non-affine formulation of a free chain network alone is
not completely adequate especially in the simultaneous simulation of different deformation
processes, see Figure 3.11. The effect of the additional contribution to the free energy due
to the proposed tube-like constraint is investigated for uniaxial and equi-biaxial deforma-
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Figure 3.12: Sensitivity investigation of the model contribution to material parame-
ters a) & b) µ = [0.1, 1, 3, 5] MPa, N = 25, p = 1.5, (U = 0, q = 0), c) & d)
µ = 0.3 MPa, N = [10, 20, 30, 50], p = 1.5, (U = 0, q = 0) e) & f) µ = 0.3 MPa, N =
25, p = [1, 1.5, 2, 4], (U = 0, q = 0). The figures in the left column denote the uniaxial
response of the material, and the ones in right column show equi–biaxial response.

tions in Figure 3.13. The contribution is governed by two additional material parameters
U and q. In this study, the values of µ = 0.3 MPa, N = 25, p = 1.5 are fixed and
different values of U and q are prescribed. The stress-stretch curves in Figures 3.13a,b are
obtained for the different values of U = 0.5, 2, 5, 10, whereas q = 1 is kept frozen. In both
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Figure 3.13: Sensitivity investigation of the model contribution to material parameters a)
& b) µ = 0.3 MPa, N = 25, p = 1.5, U = [0.5, 2, 5, 10], q = 1, c) & d) µ = 0.3 MPa, N =
25, p = 1.5, U = 0.5, q = [0.1, 1, 1.5, 2, 3]. The figures in the left column denote the
uniaxial response of the material, and the ones in right column show equi–biaxial response.

deformation cases, the desired additional contribution to the stress response at small and
moderate stretch values is obtained in the both compressive and tensile regions. Observe
that the value of λlock remains unchanged. The diagrams shown in Figures 3.13c,d exhibit
the effect of the change in q = 0.1, 1, 1.5, 2, 3 for a constant U = 0.5. The increase in the
parameter q results in a scaling of the stress ordinate similar to a change of µ. Moreover,
it can be seen that the equi-biaxial response of the model is much more sensitive to the
parameters U and q than the uni-axial curves.

3.5.4. Modeling Capacity of the Non-Affine Micro-Sphere Model. In this
section, the modeling capacity of the proposed non-affine micro-sphere model is investi-
gated regarding the fitting of some well-known experimental data of finite rubber elasticity.
These data have already been extensively used for testing of previously proposed network
models, see e.g. Arruda & Boyce [8, 25], Wu & van der Giessen [206], Kaliske
& Heinrich [104], Lulei & Miehe [125], Marckmann & Verron [127].

The first set of experimental data considered was reported by Treloar [193] for the
cases of tensile uniaxial, pure shear and equi-biaxial deformation on 8% sulphur-vulcanized
unfilled natural rubber. These celebrated data are well accepted in the literature as repre-
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Figure 3.14: Performance of the proposed model with the set of material parameters
µ = 0.292 MPa, N = 22.01, p = 1.472, U = 0.744, q = 0.1086 in comparison with the well
known data from Treloar [193].

sentative benchmarks of rubber-like material behavior. The data have already been used
in Section 3.5.2 to motivate the development of the non-affine network model incorpo-
rating constraint effects. In Figure 3.14 the performance of the model against the data
is illustrated. The material parameters are obtained by a parameter identification tool
simultaneously employed for all available data. The comparison of the simulation given
in Figure 3.14 with Figures 3.11 and 3.10 clearly indicates that the incorporation of both
the tube-like constraint and the non-affinity makes the model response excellent. The
material response is very well traced by the proposed five-parameter model.
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Figure 3.15: Simulation of the biaxial data reported by Kawabata et al. [107] with the
model parameters identified based on the data of Treloar [193] illustrated in Figure 3.14.

Secondly, we consider the set of data reported by Kawabata et al. [107] for series
of tensile biaxial deformations on vulcanized unfilled polyisoprene sheets. This material
exhibits similiar behavior to the vulcanized natural rubber considered in Figure 3.14. For
specified constant values of λ1 ∈ [1.04, 3.7], the stretch in the perpendicular direction
λ2 is increased from the value corresponding to a stress-free (uniaxial) state in that di-
rection to the state corresponding to the equi-biaxial (λ1 = λ2) deformation. During
each biaxial experiment, the nominal stresses P11 and P22 in the both directions were
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recorded. A partial set of these data (only P22 vs. λ2) combined with Treloar’s data
have recently been utilized by Marckmann & Verron [127] to assess the modeling
performance of twenty hyperelasticity models. They have also considered the non-affine
micro-sphere model and tested its performance against these data with the material pa-
rameters identified for Treloar’s data, see Figure 3.14. We also illustrate the outstanding
performance of our model in Figure 3.15 for complete range of deformations. The close-up
in Figure 3.15b provides a detailed representation of nominal stress-stretch diagram at
moderate stages of deformation. Apart from the comparison based on the direct nominal
stress measurements in the deformation direction, the nominal stresses P11 corresponding
to the perpendicular direction are also compared to the measured data in Figure 3.16
which is again supplemented by the detailed diagram corresponding to relatively small
deformation stages. It has been shown by Marckmann & Verron [127] that there are
few constitutive models able to simultaneously simulate the both multi-dimensional data
with a unique set of material parameters. The celebrated models such as the eight-chain
model, the Ogden model fail to simulate these data with a unique set of model parameters,
the reader is referred to [127] for further details.
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Figure 3.16: Simulation of the biaxial data reported by Kawabata et al. [107] with the
model parameters identified based on the data of Treloar [193] illustrated in Figure 3.14.

The third set of experimental data is taken from Table 2 of James, Green & Simp-
son. [100]. The λ1 and P11 values corresponding to λ2=1 were employed as pure shear
data and those corresponding to λ1=λ2 are used as equi-biaxial data. Following an iden-
tification procedure similar to the one above, the proposed model successfully captures
the material response over all stages of deformation as depicted in Figure 3.17a. The per-
formance of the three-chain model, the eight-chain model and the so-called “full-network
model” of Wu & van der Giessen [206] in fitting the data are presented in Figure 8 of
the latter paper. In addition, the proposed model is compared with experimental data of
Arruda & Boyce [8] in Figure 3.17b. Silicone rubber specimens were subjected to the
compressive monotonic uniaxial and plane strain loading at a deformation rate −1 mm/s.
Actually this set of data does not exhibit the characteristics of non-affine and constraint
effects. As illustrated in Figure 9 of Wu & van der Giessen [206] or in Lulei [124],
even affine models are able to describe these data with sufficient accuracy. However, for
the sake of completeness we also include these data.

The last homogeneous experimental data of interest have been reported by Lulei &
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Figure 3.17: Simulation of the data from a) James et al. [100] with the model param-
eters µ = 0.289 MPa, N = 14.44, p = 1.742, U = 0.176, q = 0.692 and from b) Arruda &
Boyce [8] with the parameter values µ = 0.314 MPa, N = 7.214, p = 3.04, U = 9.383, q =
0.017.
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Figure 3.18: Simulation of data from Lulei & Miehe [125] a) by the proposed model
with parameters µ = 0.153 MPa, N = 2.903, p = 8.56, U = 13.227, q = 0.838, and b) by the
eight-chain model with µ = 1.278 MPa, N = 5.536 (solid line) and with µ = 1.674 MPa, N =
5.52 (dashed line).

Miehe [125], see Figure 3.18. The uniaxial data are important in the sense that they
include both tensile and compressive response. In Figure 3.18a, the excellent fitting of the
current model is reported. In order to compare the flexibility of the proposed non-affine
micro-sphere model, the eight-chain model is also tested against these data by identifying
its parameters at tensile and compressive regions, see Figure 3.18b.

3.5.5. Three-Dimensional Analysis of a Non-Homogeneous Shear Test. The
last numerical example is concerned with the simulation of a three dimensional inhomoge-
neous shear experiment on vulcanized rubber. The experimental data are reported in van
den Bogert & de Borst [199]. In their experiment four prismatic rubber specimens
with dimensions 20 mm×10 mm×20 mm are rigidly connected to the steel frame members
at their upper and lower faces during the cross-linking process, as shown in Figure 3.19.
Internal steel members were displaced in the x- and the opposite directions by 15 mm,
respectively. During shearing, no vertical restraint was imposed, i.e. the lower specimens
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were allowed to translate in the vertical direction freely. The experiment was conducted
cyclicly in order to eliminate the Mullins effect and to obtain a reproducable response.
For the same material, a homogeneous simple tension test was also carried out.

x

x

yy

y

z

a) b)

c)

20

10

10

uxux

Figure 3.19: Schematic description of the boundary-value problem. The darker shaded
specimens are discretized with 16×20×8 eight-node Q1P0 elements in x, y and z directions,
respectively. a) Side view of the experimental set-up denotes the symmetry boundary con-
ditions on the xy-plane. b)-c) Front view of the test set-up at undeformed and deformed
states, respectively. It illustrates the top and bottom plane boundary conditions.

In the finite element model of the problem, only one half of the specimen that is
depicted by the darker shaded parts in Figure 3.19 is discretized by exploiting the apparent
symmetry conditions. The spatial discretization is carried out with 16×20×8 mixed Q1P0
eight-node brick elements. While the bottom face of the specimen is clamped and fixed
in all directions, its top surface is clamped in all directions and fixed in z- direction such
that all nodes on this face deform equally in x- and y-directions. The symmetry face in
xy-plane is restrained in z-direction, see Figure 3.19.

An ideal identification procedure of the material parameters should be based on homo-
geneous test results such as uniaxial tension and equi-biaxial tests. However, as mentioned
before, the parameter optimization process may yield several minimizing sets of param-
eters with an adequate quality of fitting for all. For example, for the simulation of the
inhomogeneous shear test, Kaliske & Heinrich [104] and van den Bogert & de
Borst [199] obtained several sets of material parameters from the simple tension data.
These parameters were then employed for the simulation of the inhomogeneous shear test.
It was observed that some sets of material parameters, which perform quite well in uniax-
ial test, resulted in unexpected expansions of the specimen in transverse direction during
shearing in lateral direction. These observations once more emphasize that a simple ten-
sion experiment does not provide sufficient information for an accurate simulation of a
boundary value problem where the deformation field is not homogeneous any more.
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Figure 3.20: Homogeneous shear test with stress boundary conditions P22 = 0, P33 = 0
used for fitting of pseudo experimental data. a) Schematic form of the homogeneous shear
test with corresponding deformation gradient. The stereographic projection plots of affine
micro-kinematic variables b) stretch λ̄ := |F̄ r| and c) tube contraction ν̄ := |F̄−T r♭| are
plotted for the homogeneous shear test at deformation level δ = 1.50, λ2 = 0.79, λ3 = 1.27.

In the light of this experience, we utilize the results obtained form the non-homogeneous
shear test as pseudo data for a fictitious homogeneous shear test depicted in Figure 3.20
besides the simple tension data available. For exploitation of the pseudo homogeneous
shear data, we use the non-homogeneous data reported in van den Bogert & de
Borst [199], given also in Figure 3.22. Here, the total lateral force Fx is divided by
the undeformed area of the top surface of the specimen (A0 = 200 mm2). The value
obtained is then utilized as a component of the first Piola-Kirchhoff stress P21 in the
fictitious homogeneous shear test visualized in Figure 3.20. The displacement ux/h with
h = 10 mm is assigned to the driving coordinate of the deformation gradient F 12 = δ.
The values of λ2 and λ3 are computed in an iterative manner from the assumed stress
boundary conditions of the problem, i.e. P22 = 0 and P33 = 0. With these pseudo shear
data at hand, a second set of material parameters is obtained by solving the parameter
optimization problem simultaneously with the uniaxial tension data. The performance
of the two sets of material parameters is illustrated in Figure 3.21. As expected, both
material sets obtained from fitting of only the simple tension data and the simultaneous
identification of simple tension and pseudo shear data are able to simulate the uniaxial
data of nearly the same quality, see Figure 3.21a. However, the curves in Figure 3.21b
show that the model with the parameters obtained from simple tension overestimates the
pseudo shear data. In contrast, the performance of the parameters obtained from both
experimental data is also in good agreement with the pseudo shear data.

With this pre-study at hand, for the both sets of material parameters we carry out the
finite element simulation of the boundary value problem. The resultant diagrams of Fx

vs. ux and Fx vs. uy are shown in Figures 3.22a,b in comparison with the experimental
results. Comparison of the response pattern in Figure 3.22a with Figure 3.21b justifies
the procedure of using pseudo shear data in parameter identification. The model response
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Figure 3.21: Performance of the two sets of material parameters in a) simple tension test
and b) homogeneous shear test. The parameters of the model obtained from identification
of a uniaxial test only are µ = 0.1475 MPa, N = 3.273, p = 9.31, U = 9.94, q = 0.567 and
the ones determined by simultaneous identification of uniaxial and pseudo shear data are
µ = 0.207 MPa, N = 4.31, p = 16.76, U = 6.22, q = 0.1.
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Figure 3.22: Performance of the two sets of material parameters in finite element simula-
tions of a three-dimensional non-homogeneous shear test.

with the parameters identified from only uniaxial data behaves stiffer in non-homogeneous
test, whereas the inclusion of analogous pseudo shear data in the identification process
apparently improves the estimation capability of the model particularly in the simulation
of the direct interest Fx vs. ux diagram. Likewise, the model with the uniaxial data
fitted-parameters behaves stiffer also in the lateral direction, see Figure 3.22b. On the
other hand, the behavior of the model with the “successful” set of parameters comes out
to be softer in the transversal deformation case. The shape of the experimental curve
is, however, captured adequately. In the experimental data plotted in Figure 3.22b, it
should be observed that the second data point corresponds to a state where the vertical
deformation is almost zero uy ≈ 0 while the value of force (Fx) has a finite value, which
equals nearly one sixth of the total force attained. This is somewhat questionable.

The deformed shape of the inhomogeneously sheared specimen is depicted in Fig-
ure 3.23. The deformation in the elements at the upper left and the lower right corners is
highly inhomogeneous. The zone on the outer face of the specimen, particularly around
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Figure 3.23: Stereographic projection plots of affine micro-kinematic variables a) stretch
λ=λ̄ and b) tube contraction ν=ν̄ are plotted at different points of the fully deformed
(ux=15mm) specimen. Comparison of these plots with those in Figure 3.20 indicates that the
middle part of the front surface deforms almost homogeneously. Highly non-homogeneous
deformations are observed at the upper left and lower right corners.

the diagonal direction opposite to the shearing direction, expands in lateral direction.
A contraction in lateral direction is observed on the both off-sides of this diagonal. The
overall deformation pattern mimics the incompressible material behavior. To visualize the
type of micro-macro transitions inherent in the proposed non-affine micro-sphere model,
we magnify some micro-states of the inhomoheneous problem by the stereographic plots
introduced in Figure 3.5. Stereographic affine stretch contours on the xy-plane are de-
picted in Figure 3.23a at the selected material points. These plots also indicate the highly
inhomogeneous deformation at the upper left and lower right corners, whereas the defor-
mation at the middle points and the other corners remains almost homogeneous. Similar
conclusions may be drawn from Figure 3.23b that shows pole plots of affine area-stretches.
The inhomogeneous deformation characteristics become more transparent when we com-
pare the plots presented here with those of the fictitious shear test depicted in Figure 3.20.
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4. The Micro-Sphere Model of Finite Rubber Viscoelasticity

The micromechanically-based non-affine model of elasticity incorporating topological
constraints was discussed in Chapter 3. The present chapter extends the micro-sphere
model of finite rubber elasticity towards the description of finite rubber viscoelasticity.
The material presented in this chapter is based on the ideas outlined in the recent work by
Miehe & Göktepe [148]. In the preceding chapter on rubber elasticity, we introduced
two basic micro-kinematic variables related to the deformation of a single chain: the end-
to-end distance r and the tube diameter d as visualized in Figure 3.1. The tube diameter
reflects the severity of constraints due to neighboring entangled chains: the smaller d, the
more appreciable the constraints are. In our elasticity formulation we primarily focused
on an idealized cross-linked ground-state network without any detanglement mechanisms.
Following conceptually the work of Bergström & Boyce [14], we now consider a
hierarchy of superimposed chains as schematically indicated in Figure 4.1. These super-
imposed chains are related to the ground-state network by entanglement mechanisms. We
associate the ground-state network with the macroscopically observed equilibrium curve
and the superimposed chains with the viscous overstress response of Figure 1.1. The latter
effect is micromechanically motivated by a motion of the superimposed chains relative to
the ground-state network. In this work, we are inspired from the ideas of the reptation
model of de Gennes [41], Doi & Edwards [45], and from the notions of constraint
release effects, Marucci [130], see also Peters [165] for a recent excellent review.

a) b)

Figure 4.1: Micromechanical mechanism of viscoelasticity. A spectrum of superimposed
non-equilibrium networks is indicated by the grey chains extending between two entangle-
ments with the equilibrium network. At a deformation a) to b), the dangling ends of the
chains retract by Brownian motion yielding the relaxation of the non-equilibrium stresses.
Different lengths of the grey chains motivate the utilization of the relaxation spectrum.

Our assumed micromechanical mechanism of viscoelasticity visualized in Figures 4.1 and
4.2 extends the two-variable mechanism of elasticity suggested in [149] to the time-
dependent motion of the superimposed entangled chains. Consider a prototype chain,
in Figure 4.2a, superimposed onto the ground-state network. This prototype chain and
the one perpendicular to it are assumed to be extending between physical entanglements.
During the deformation, both the chain of interest and surrounding chains accompany
the ground-state equilibrium network but also experience contour length fluctuations.
The overall relaxation process is a combination of both processes. Upon an instantaneous
increase of end-to-end distance as shown in Figure 4.2b, the prototype chain retracts
towards the interior of the tube by Brownian motion. Consequently, the force applied
at the ends of the chain relaxes. In addition, a sudden stretch of a transversally located
entangling chain at frozen end-to-end distance of the prototype chain is depicted in Figure
4.2c. This sudden extension of the forest chain is assumed to decrease the tube diameter.
Similar to the previous picture, for a constant deformation, surrounding chains retract
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and the degree of constraints gradually decreases. This relaxation mechanism results in
an increase of tube diameter. The assumed two molecular scenarios depicted in Figures
4.2b and 4.2c provide the underlying key micromechanical motivation of our formula-
tion. According to molecular dynamics theory of reptation outlined in Doi & Edwards
[45], the rate of the relaxation process differ with the elapsed time in the relaxation pro-
cess. This result of molecular dynamics theory is phenomenologically taken into account
through a discrete spectrum of relaxation times in the both mechanisms: chain retraction
and constraint release.

In contrast to the purely macroscopic approaches to finite viscoelasticity cited in Chap-
ter 1, we avoid in our model a kinematical assumption concerning the definition of tensorial
internal variables for a viscous strain or overstress. Macroscopic free energy and dissipa-
tion of the network are defined by a homogenization of scalar internal variable fields on
the micro-sphere of space orientations. The effective constitutive modeling is essentially
one-dimensional and related to a prototype space orientation of a chain associated with
a local point on the micro-sphere. We outline a distinct physical model for the viscous
overstress in terms of the above outlined two micro-kinematic variables and consider its
numerical implementation in terms of a micro-stress update algorithm. Next, we propose
an affine network model for the definition of the macroscopic overstress. The homoge-
nization procedure is performed via a direct numerical evaluation of averaging integrals
by replacing the continuous orientation space on the micro-sphere by a discrete set of
directors. As already shown in Chapter 3, the model provides an outstanding fitting of
the elastic equilibrium response in multi-dimensional applications. In this chapter, we
further show that its viscoelastic extension also leads to predictive results in modeling of
rate effects and hysteresis phenomena of rubbery polymers. After pointing out in Section
4.1 the macroscopic structure of the model, we focus on the micromechanical constitu-
tive formulation with respect to a single chain orientation in Section 4.2. Then Section
4.3 introduces the viscoelastic network model that defines the homogenized overall re-
sponse. The performance of the viscoelastic micro-sphere model is analyzed in Section
4.4, where we carry out several experimentally-based simulations of monotonous, cyclic
and relaxation tests associated with both homogeneous and inhomogeneous deformations.

4.1. Macroscopic Spatial Viscoelasticity of a Polymer Network

This section summarizes the constitutive equations of macroscopic finite viscoelastic-
ity for decoupled volumetric-isochoric and equilibrium-overstress response in a compact
spatial setting, see e.g. Miehe [141] for a comprehensive treatment of geometric settings
of finite inelasticity. Let ϕ : X 7→ x be the nonlinear deformation map (2.2) at time
t ∈ R+ of a viscoelastic body undergoing finite strains. A boundary value problem of
macroscopic finite viscoelasticity is governed by the balance of linear momentum

ρ0ϕ̈ = Div[τF−T ] + γ̄ in B (4.1)

along with prescribed displacement boundary conditions ϕ = ϕ̄(X; t) on ∂Bϕ and the
traction boundary conditions [τF−T ]N = T̄ (X; t) on ∂Bt with outward normal N , see
Figure 2.4. In (4.1), ρ0 denotes the reference density and γ̄ stands for a prescribed body
force field with respect to unit volume of the reference configuration. The Kirchhoff stress
tensor τ is a function of the local deformation F and some internal variables I which
describe viscous structural changes. We assume the constitutive structure

τ = 2∂gΨ(g,I; F ) (4.2)
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that generalizes the so-called Doyle-Ericksen formula (2.63), see also Miehe [141] for its
applications in finite inelasticity. In (4.2), Ψ denotes the macroscopic free energy per unit
reference volume that is locally stored in a deformed polymer network. This stress po-
tential must satisfy the principle of material frame invariance Ψ(g,I; QF ) = Ψ(g,I; F )
for all rotations Q ∈ SO(3). Analogous to the purely elastic response, we consider a
class of weakly compressible polymers where the bulk response is assumed to be elastic
and viscosity effects are exclusively restricted to the isochoric part of the deformation. A
decoupling of the stress response into volumetric and isochoric contributions is based on
the unimodular part F̄ := J−1/3F of the deformation gradient that is assumed to govern
the deviatoric stresses. A decoupled volumetric-isochoric structure of finite viscoelasticity
is obtained by considering the specific form

Ψ = U(J) + Ψ̄(g,I; F̄ ) (4.3)

of the stored energy. Consequently the stresses (4.2) additively decompose into spherical
and deviatoric contributions

τ = pg−1 + τ̄ : P with p := JU ′(J) and τ̄ := 2∂gΨ̄(g,I; F̄ ) , (4.4)

where P is the deviatoric projection tensor. For an almost incompressible response of
the polymer network, the potential U can be considered as a penalty function which
approximatively enforces the incompressibility constraint.

Based on the experimental arguments in rubber viscoelasticity outlined in Chapter 1,
we further decompose the isochoric free energy into elastic equilibrium and viscoelastic
overstress response through the additive split of the isochoric stress potential

Ψ̄ = Ψ̄e(g; F̄ ) + Ψ̄v(g,I; F̄ ) . (4.5)

This induces a further split of the stresses τ̄ defined in (4.4)3 according to

τ̄ = τ̄ e + τ̄ v with τ̄ e := 2∂gΨ̄e(g; F̄ ) and τ̄ v := 2∂gΨ̄v(g,I; F̄ ) (4.6)

related to the two experimental curves in Figure 1.1. The dissipative viscoelastic over-
stresses τ̄ v of the network provide a deformation–induced anisotropy in the non-equilibrium
state that is described by the evolution of the internal variables I in time. This evolution
must be consistent with the second axiom of thermodynamics that demands a positive
macroscopic dissipation

Dmac := F · İ ≥ 0 with F := −∂IΨ̄v(g,I; F̄ ) (4.7)

with respect to unit volume of the reference configuration. Typical form of this evolution
system is provided by the constitutive initial value problem

∂IΨ̄v(g,I; F̄ ) + ∂
İ
Φ̄v(İ) = 0 with I(0) = I0 (4.8)

in terms of a macroscopic dissipation function Φ̄v that depends smoothly on the evolution
İ of the internal variables with normalization condition Φ̄v(0) = 0. Assuming Φ̄v to be
convex and positive, we observe that (4.7) is automatically satisfied. The above equation
is a generalization of the so–called Biot equation, see Biot [18] and the recent treatment
Miehe, Schotte & Lambrecht [152] on standard dissipative materials. Observe that
the macroscopic constitutive model of isochoric viscoelasticity is governed by the three
constitutive functions Ψ̄e, Ψ̄v and Φ̄v for the equilibrium energy, the non-equilibrium free
energy and the viscous dissipation potential, respectively. In the forthcoming part of this
chapter we construct these functions for an exactly incompressible polymer network based
on the distinct micro-macro transition.
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4.2. Micromechanics of Chains in a Constrained Environment

In this section we briefly reiterate the micromechanical elasticity formulation for single
polymer chains outlined in Section 3.2 and extend it to viscous overstress contributions.

4.2.1. Definition of Micro-Kinematic Variables of the Chain. The key aspect
of the micro-sphere model of elasticity outlined in the preceding chapter was the introduc-
tion of two micro-kinematic variables associated with a single polymer chain. The first
micro-kinematic variable measures the length stretch λf or the relative length stretch λfr

of a single chain defined as

λf :=
r

r0
and λfr :=

r

L
=

λf√
N
, (4.9)

respectively, with λf ∈ [0,
√
N) and λfr ∈ [0, 1), defined in terms of the current end-to-end

distance r, the unperturbed distance r0 := l
√
N and the number N of chain segments as

visualized in Figure 3.1a. The second micro-kinematic variable measures a tube stretch in
form of the area contraction

λc :=

(

d0

d

)2

, (4.10)

with λc ∈ (0,∞), defined in terms of a tube diameter d that is assumed to be constant
along the tube as depicted in Figure 3.1b.

4.2.2. Free Energy of the Elastic Ground State Response. The free energy of
the elastic equilibrium response is assumed to be split up into a part due to the free chain
motion and a contribution due to the tube constraint

ψe = ψe
f (λf) + ψe

c(λc) . (4.11)

As we set out in Section 3.2, the first unconstrained elastic part is governed by the non-
Gaussian model introduced by Kuhn & Grün [114] with

ψe
f (λf) = Nkθ

(

λfrL−1(λfr) + ln
L−1(λfr)

sinhL−1(λfr)

)

(4.12)

in terms of the length stretch λf defined in (4.9). The second contribution is based on a
probability of a straight tube constraint outlined in Doi & Edwards [45], yielding the
expression

ψe
c(λc) = αkθN

(

l

d0

)2

λc (4.13)

in terms of the tube stretch λc defined in (4.10).

4.2.3. Free Energy and Dissipation of Viscoelastic Overstress Response.
The micromechanical mechanism of viscoelasticity is considered as a hierarchical length-
spectrum of chains entangled with the ground state network, see Figure 4.1 for a schematic
visualization. The phenomenological modeling is assumed to be governed by a spectrum of
a = 1 . . . s of prototype chains superimposed onto the ground state that produces discrete
length stretches and tube stretches in a typical space direction. We denote this discrete
spectrum as a hierarchy of non-equilibrium stretches. It is described by the two sets of
internal strain-like variables {εa

f}a=1...s and {εa
c}a=1...s, respectively. These micro-variables
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are assumed to prevail the viscoelastic overstress in a typical space orientation. Owing
to these time-dependent fluctuations of the superimposed hierarchical mechanism, we
assume an additional micro-contribution to the free energy of the form

ψv = ψv
f (λf , ε

1
f . . . ε

s
f) + ψv

c (λc, ε
1
c . . . ε

s
c) (4.14)

in analogy to (4.11). This additional free energy describes dynamic mechanisms of entan-
gled chains relative to the ground state network as schematically indicated in Figure 4.1.
The two contributions are assumed to be of the simple phenomenological form

ψv
y =

1

2

s
∑

a=1

µa
y(lnλy − εa

y)
2 for y = f, c (4.15)

in terms of 2s phenomenological parameters {µa
y}a=1...s

y=f,c . Observe that the equilibrium
state is recovered for the case when the fluctuations of the superimposed entangled chains
relative to the ground state network vanish, i.e. for

εa
y = lnλy for a = 1 . . . s and y = f, c (4.16)

the additional energy storage vanishes.

The hierarchy of 2s fluctuations {εa
y}a=1...s

y=f,c plays the role of kinematic internal variables
of the micromechanical overstress model that describes viscous effects due to frictional-
type entanglement mechanisms between the superimposed network and the ground-state
network. The micro-dissipation due to the internal variables is

Dmic :=

s
∑

a=1

[ βa
f ε̇

a
f + βa

c ε̇
a
c ] ≥ 0 , (4.17)

where we introduced per definition the 2s micro-forces

βa
y := −∂εa

y
ψv

y = µa
y(lnλy − εa

y) (4.18)

which drive the fluctuations {εa
y}a=1...s

y=f,c . Note that these micro-forces become zero for the
equilibrium state (4.16). In analogy to (4.14) we assume a decoupled structure of the
micro-dissipation function

φv = φv
f(ε̇

1
f ...ε̇

s
f) + φv

c(ε̇
1
c ...ε̇

s
c) (4.19)

that governs the evolution of the internal variables in terms of the 2s decoupled evolution
equations

∂εa
y
ψv

y + ∂ε̇a
y
φv

y = 0 with εa
y(0) = 0 . (4.20)

We observe that equations (4.20) provide the counterpart of macroscopic equation (4.8)
on the microscale of chain orientations. We assume dissipation functions of the form

φv
y =

s
∑

a=1

δa
y

ηa
y(1 + δa

y)
(ηa

y |ε̇a
y|)(1+δa

y )/δa
y (4.21)

governed by 4s material parameters {ηa
y}a=1...s

y=f,c and {δa
y}a=1...s

y=f,c . The insertion of these
constitutive functions into (4.20) gives 2s evolution equations for the strain fluctuations
driven by the stress fluctuations (4.18), i.e.

ε̇a
y =

1

ηa
y

|βa
y |δ

a
y−1βa

y with εa
y(0) = 0 . (4.22)
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Here, |(·)| := {[(·)/unit(·)]2}1/2 is the norm operator coupled with a neutralization of
the units. Insertion of (4.22) into (4.17) shows the thermodynamic consistency of the
evolution equations for ηa

y > 0 and δa
y > 0 when the dissipation functions (4.21) become

convex. Taking the time derivatives of (4.18), we obtain through (4.22) the 2s nonlinear
differential equations

β̇a
y +

1

τa
y

|βa
y |δ

a
y−1βa

y = µa
y

d

dt
(lnλy) with βa

y (0) = 0 (4.23)

for the spectrum of micro-forces {βa
y}a=1...s

y=y,c in terms of the spectrum τa
y := ηa

y/µ
a
y of re-

laxation times. Here, the micro-strains εa
y have been eliminated based on equation (4.22).

Thus we may use the micro–forces βa
y as internal variables instead of εa

f . Clearly, both
are related by equation (4.18). The above system (4.23) exclusively governs the evolu-
tion of the over-stresses on the microlevel for a typical space orientation of superimposed
prototype chains in terms of 2× 3 s = 6 s material parameters summarized in Table 4.1
additional to the elastic equilibrium response.

Table 4.1: Parameters of the Micro-Sphere Model of Rubber Viscoelasticty

Set Parameter Name Eq. Effect
e µ := nkθ shear modulus (3.19) ground state stiffness

N number of chain segments (3.19) chain locking response
p non–affine stretch parameter (3.46) 3D locking characteristics
U := α(l/d0)

2 tube geometry parameter (3.23) additional constraint stiffness
q non-affine tube parameter (3.56) shape of constraint stress

v {µa
y}a=1...s

y=f,c overstress moduli (4.23) overstress stiffness

{τa
y }a=1...s

y=f,c relaxation times (4.23) relaxation spectrum

{δa
y}a=1...s

y=f,c relaxation exponents (4.23) rate sensitivity

4.2.4. Algorithmic Representation of the Overstress Response. In the al-
gorithmic setting one considers a time-incremental formulation at discrete time steps
∆t := tn+1 − tn within a typical time interval [tn, tn+1]. All state variables at time tn
are given and henceforth indicated by the subscript n. The update of the micro-forces
is then obtained from an algorithm that integrates the evolution equations (4.23) in the
time interval. The simplest possibility is the explicit Euler-forward update

βa
y = µa

yln
λy

λyn
+ (1− ∆t

τa
y

|βa
yn|δ

a
y−1)βa

yn . (4.24)

These algorithms provide closed-form expressions for the current micro-forces in terms
of the current stretches and the micro-forces at time tn which form the history database
of the model. All variables without subscript are associated with the current time tn+1.
With the micro–force spectra at hand, one computes the current effective overstresss by
function evaluation of the free energy function (4.15)

βy :=
d

dλy
ψv

y =
1

λy

s
∑

a=1

βa
y for y = f, c . (4.25)

A further derivation with respect to the micro–stretches gives the algorithmic tangent
moduli consistent with the algorithm (4.24)

cy :=
d

dλy
βy =

1

λ2
y

s
∑

a=1

µa
y −

1

λy
βy for y = f, c . (4.26)
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In a typical time step the equations (4.24), (4.25) and (4.26) provide a closed-form update
of the viscous overstress above an equilibrium state.

In contrast to the explicit updates (4.24) of the micro-forces, an implicit integration of
the evolution system (4.23) yields non-linear equations. For example, utilization of the
backward Euler scheme leads us to the non-linear residual expression of βa

y

ra
y(β

a
y ) := (1 +

∆t

τa
y

|βa
y |δ

a
y−1)βa

y − βa
yn − µa

yln
λy

λyn
= 0 . (4.27)

Starting with βa
y = βa

yn, these equations can be solved iteratively by Newton iterations
with updates

βa
y ⇐ βa

y − ra
y(β

a
y )/ra′

y (βa
y ) (4.28)

until convergence is obtained in the sense |ra
y | ≤ tol. The effective over-stress is then

computed via (4.25). The algorithmic tangent moduli (4.26) are replaced by the expres-
sions

cy =
1

λ2
y

s
∑

a=1

µa
y/r

a′
y (βa

y )− 1

λy
βy , (4.29)

which is obtained from (4.27) by using the implicit function theorem. All of the simula-
tions in Section 4.4 were run with this unconditionally stable scheme, which replaces the
formulations outlined in Step 3 of Table 4.2.

4.3. Network Model for Finite Rubber Viscoelasticity

In this section, we develop a homogenization procedure that averages the micro-stresses
with respect to the space orientations. To this end, we link the above introduced micro-
kinematic variables {λy}y=f,c through characteristic network assumptions to suitably de-
fined macro-kinematic variables {λ̄y}y=f,c. Following the treatment outlined in Chapter 3,
the associated micro-macro transition is interpreted as a homogenization of state variables
on a micro-sphere with unit radius.

4.3.1. Definition of Macroscopic Stretch and Area Deformation. The key
aspect of network theories is to link the deformation of a single chain to the macroscopic
isochoric deformation F̄ (3.4) of the continuum that represents the homogenized network
aggregate. Let r be a Lagrangian orientation unit vector with |r|G :=

√
r♭ · r = 1, where

r♭ := Gr. Mappings of r and r♭ by the isochoric deformation results in the isochoric
stretch vector and area co-vector

t = F̄ r and n♭ = F̄−Tr♭ , (4.30)

respectively. Then the macro-length-stretch λ̄f of a material line element with orientation
r in the reference configuration and the macro-area-stretch λ̄c of a material area element
with normal r♭ in the reference configuration are

λ̄f = |t|g :=
√

t♭ · t and λ̄c = |n♭|g−1 :=
√

n♭ · n , (4.31)

with t♭ := gt and n := g−1n♭ evaluated with the current metric g. The affine relationship
of the micro-length-stretch λf to the macro-length-stretch λ̄f is in line with the affine net-
work model of Treloar & Riding [197]. The conceptual link of the micro-tube-stretch
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λc to the macro-area-stretch λ̄c has been suggested in (3.56). A descriptive interpretation
of this assumption for superimposed prototype chains entangled with the ground state
network is visualized in Figure 4.2c. In the case of a instantaneous macroscopic area
extension of the cross section, chains in a direction perpendicular to the prototype chain
under consideration are stretched. The perpendicular chains, denoted in the preceding
part as the forest chains, are assumed to be obstacles to the extension of the prototype
chain. As a consequence of their sudden stretch they assume a straighter topology that
decreases the diameter of the fluctuation of the cross section projection as indicated by
the shaded circle in Figure 4.2c. The diameter of the fluctuations of the perpendicular
obstacle chain is interpreted as the diameter of the tube that constrains the prototype
chain, which decreases with increasing macro-area-stretch.

R0 R0 R1 R1 R2R2

r0

r0 r>r0

d0 d0 d<d0a0 a0 a>a0

Prototype Chain Forest Chain

a) b) c)

Figure 4.2: Link of micro- to macro-kinematic variables of an overstress producing chain
entangled with the ground–state network. a) Undeformed macroscopic volume element. b)
Instantaneous chain-stretch λf := r/r0 in the affine deformation assumption is identical
with the macro-line-stretch λ̄f := |F̄ r| = r/r0 of a continuum line element with direction r.
c) Sudden tube-stretch λc := (d0/d)

2 is related to the macro-area-stretch λ̄c := |F̄−T r♭| =
a/a0 of a continuum area element with normal r♭. Contour length fluctuations due to
detanglements relax both processes by chain retraction mechanisms.

4.3.2. Non-Affine Network Model for Elastic Equilibrium Response. The
non–affine equilibrium network model set out in Chapter 3 defines the equilibrium part
Ψ̄e of the macroscopic free energy in (4.5) for the polymer aggregate. Clearly, these
overall properties must be related to their micromechanical counterparts ψe in (4.11). The
additive split of this micro-contribution also induces an additive split of the associated
macro-contributions

Ψ̄e = Ψ̄e
f(g; F̄ ) + Ψ̄e

c(g; F̄ ) . (4.32)

A key result was the derivation of non-affine relationships between the micro- and macro-
kinematic variables

λ = 〈λ̄f〉p and ν = (λ̄c)
q (4.33)

in terms of two material parameters p and q of the ground state network. Here, 〈v〉p :=
p
√

〈 vp 〉 is the p-root averaging operator of a scalar micro–variable v > 0. The notation 〈v〉
denotes the continuous averaging for an uniform orientation distribution of the variable
v in space. We defined the average of the microscopic free energies for continuous space
distribution via

〈v〉 :=
1

|S|

∫

S

v(r; t)dA . (4.34)

This averaging is interpreted as a homogenization of the state variable v(r; t) at position r

and time t on a micro-sphere S with unit radius as depicted in Figure 3.4. The macroscopic
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free energy of the equilibrium state is obtained by summarizing the micro–energies (4.12)
and (4.13) of the unconstrained and constrained chain motion parts for n chains, yielding

Ψ̄e(g; F̄ ) = nψf (〈λ̄f〉p) + 〈 nψc((λ̄c)
q) 〉 . (4.35)

Note that the dependence on g and F̄ is due to the definitions (4.31). Further details of
the non-affine model of rubber elasticity and its numerical implementation are outlined
in Chapter 3.

4.3.3. Affine Network Model for Viscoelastic Overstress Response. We now
develop a network model which defines the non-equilibrium part Ψ̄v of the macroscopic
free energy in (4.5) and the macroscopic dissipation function Φ̄v in (4.8) for the polymer
aggregate. Clearly, these overall properties must be related to their micromechanical
counterparts ψv and φv in (4.14) and (4.19), respectively. Then the additive split of these
micro-contributions also induces an additive split of the associated macro-contributions

Ψ̄v = Ψ̄v
f (g,If ; F̄ ) + Ψ̄v

c(g,Ic; F̄ ) and Φ̄v = Φ̄v
f(İf ) + Φ̄v

c(İc) . (4.36)

The first parts describe the overstress contributions to the free energy and the dissipation
function for an idealized network with free fluctuations of superimposed chains entangled
with the ground state network. The second parts represent the additional contributions
due to the interactions of the chains. In the above expressions, the macroscopic internal
state may alternatively be described by

I := {ε1
y(r; t) . . . εs

y(r; t)}y=f,c or F := {β1
y(r; t) . . . βs

y(r; t)}y=f,c (4.37)

in terms of 2s fields on the micro-sphere, representing viscous micro-strains and micro-
forces, respectively. Here, r is the spatial variable that parametrizes the fields on the
micro-sphere as depicted in Figure 3.4.

In contrast to the basic network assumption (4.33) for the equilibrium response, we
assume for the viscous overstresses the affine relationships

λf = λ̄f and λc = λ̄c (4.38)

between the micro-kinematic variables and their continuum counterparts. With these
relationships at hand, we define the non-equilibrium part of the macroscopic energy by
homogenizing the orientation contributions over the micro-sphere

Ψ̄v(g,I; F̄ ) = 〈 ψv
f (λ̄f , ε

1
f . . . ε

s
f) 〉+ 〈 ψv

c (λ̄c, ε
1
c . . . ε

s
c) 〉 . (4.39)

Similarly, the macroscopic dissipation function is obtained by the homogenization proce-
dure

Φ̄v(İ) = 〈 φv
f(ε̇

1
f . . . ε̇

s
f) 〉+ 〈 φv

c(ε̇
1
c . . . ε̇

s
c) 〉 . (4.40)

Insertion of the two above functions Ψ̄v and Φ̄v into the macroscopic evolution system
(4.8) identifies the microscopic evolution system (4.20) pointwise at r ∈ S on the mi-
crosphere S. Owing to the convexity of the micro-dissipation functions φv

y in (4.21), the
macro-dissipation function Φ̄v is also convex. Thus the overall macroscopic model of
viscoelasticity satisfies the thermodynamic consistency condition (4.7) through the rela-
tionship

Dmac = 〈 Dmic 〉 ≥ 0 (4.41)
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to the positive micro–dissipation (6.24).

Having the macro-energy defined, we compute the Eulerian stresses based on a straight-
forward exploitation of (4.6)3. To this end, at first we compute the derivatives of the
macro-length-stretch and the macro-area-stretch in (4.31) with respect to the Eulerian
metric, yielding 2∂gλ̄f = λ̄−1

f t⊗ t and 2∂g λ̄c = −λ̄−1
c n⊗n, respectively. Then we obtain

from (4.39) the representation of the macroscopic Kirchhoff stresses

τ̄ v
algo = 〈 βf λ̄

−1
f t⊗ t − βcλ̄

−1
c n⊗ n 〉 (4.42)

in terms of the algorithmic overstresses on the micro-sphere defined in (4.25). Note that
this representation includes the update algorithms (4.24) and (4.27) of the micro-forces.
Then a further derivation of the above stress expression with respect to the Eulerian metric
yields the spatial algorithmic tangent moduli consistent with the update algorithms

C̄
v
algo := 2∂gτ̄

v
algo(g,F , F̄ ; F̄ n,Fn) . (4.43)

Using the results 2∂g(t⊗t) = 0 and 2∂g(n⊗n) = −2 sym[g−1⊙ (n⊗n)+(n⊗n)⊙g−1]
with the definition sym[g−1 ⊙ (n⊗ n)]abcd := (δacnbnd + δbcnand)/2, we obtain

C̄v
algo = 〈 (cf − βf λ̄

−1
f )λ̄−2

f t⊗ t⊗ t⊗ t

+ (cc − βcλ̄
−1
c )λ̄−2

c n⊗ n⊗ n⊗ n

+ 2βcλ̄
−1
c sym[g−1 ⊙ (n⊗ n) + (n⊗ n)⊙ g−1] 〉

(4.44)

with the algorithmic contributions outlined in (4.25)-(4.29).

4.3.4. Discretization of Fields on the Micro-Sphere. The implementation of the
viscoelastic network model outlined above in computer codes needs a numerical evaluation
of the integral over the continuous space orientations. As outlined in Section 3.4.2, this
is achieved by discretizing the continuous orientation distribution of the unit sphere S by
m discrete Lagrangian orientation vectors {ri}i=1...m and weight factors {wi}i=1...m. Then
the continuous averaging (4.34) of a micro-variable v defined on the sphere is transformed
into the discrete sum

〈v〉 ≈
m
∑

i=1

vi wi , (4.45)

where {vi}i=1...m are the micro-variables on the sphere evaluated at the discrete points
ri. Suitable sets of orientation vectors {ri}i=1...m and associated weight factors {wi}i=1...m

are discussed in Bažant & Oh [10]. The integration schemes exploit the symmetry of
the unit sphere by defining discrete points only for the half–sphere. It has been shown in
the foregoing chapter that a 21-point integration scheme provides sufficient accuracy for
numerical investigations of rubber elasticity. Hence, we use for all subsequent numerical
examples the 21-point integration scheme for the half-sphere, see Table 3.2 for further
details. Then the discretization of the internal variable fields (4.37) on the micro-sphere
yields the effective history storage of 2 s×m = 42 s scalar variables

Fn = {β1
y(r

i; tn)...βs
y(r

i; tn)}i=1...m=21
y=f,c (4.46)

for the discrete spectrum of micro-forces at time tn. All the above outlined continuous
average operations in the discrete setting appear as a simple algebraic sum over 21 discrete
space orientations. Table 4.2 summarizes the numerical implementations of the affine
overstress model.
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Table 4.2: Stress Update of Viscoelastic Overstresses on Micro–Sphere.

1. Data Base. Given are history data {λ̄yn, β
1
yn...β

s
yn}i=1...m

y=f,c of stretches and over-
stress spectrum at time tn at m = 21 discrete points on the micro–sphere. Get
discrete orientation vectors ri and weights wi from Table 3.2.

2. Current Micro-Stretches. Given is the unimodular deformation map F̄ at time
tn+1. Get the i = 1...m deformed tangents ti = F̄ ri and normals ni = F̄−T ri

and compute the affine micro-stretches and micro-area-stretches

λ̄i
f = |ti| and λ̄i

c = |ni|

3. Current Micro-Stresses and Micro-Moduli. Update overstress fluctuations for
the spectrum a = 1...s at i = 1...m discrete points of the micro–sphere

βai
y = µa

yln
λ̄i

y

λ̄i
yn

+ (1− ∆t

τa
y

|βai
yn|δ

a
y−1)βai

yn for y = f, c

compute the algorithmic overstresses βi
y = (

∑s
a=1 β

ai
y )/λ̄i

y and moduli ciy =
(
∑s

a=1 µ
a
y)/λ̄

i2
y − βi

y/λ̄
i
y for y = f, c.

4. Current Macro–Stresses and Macro–Moduli. Get homogenized overstresses

τ̄ v
algo =

m
∑

i=1

[ βi
f λ̄

i−1
f ti ⊗ ti − βi

cλ̄
i−1
c ni ⊗ ni ]wi

and algorithmic tangent moduli

C̄
v
algo =

∑m
i=1[ (cif − βi

f λ̄
i−1
f )λ̄i−2

f ti ⊗ ti ⊗ ti ⊗ ti

+ (cic − βi
cλ̄

i−1
c )λ̄i−2

c ni ⊗ ni ⊗ ni ⊗ ni

+ 2βi
cλ̄

i−1
c sym[g−1 ⊙ (ni ⊗ ni) + (ni ⊗ ni)⊙ g−1] ]wi

and proceed with deviatoric projections as outlined in (4.4) and (3.7).

4.4. Numerical Examples

We now assess the modeling capacity of the proposed model by comparing its sim-
ulations against new and already published experimental data. The experimental data
considered here were obtained through different types of loading programs, which include
both monotonous and cyclic processes at different loading rates involving relaxation tests.
Apart from homogeneous experiments, finite element analyses of three-dimensional inho-
mogeneous experiments under different loading conditions are conducted.

4.4.1. Simulation of Homogeneous Experiments. The stress-stretch response
of a pre-conditioned cylindrical highly saturated nitrile rubber HNBR50 specimen under
cyclic uniaxial loading with a relaxation period has already been presented in Figure 1.1.
Results of our experimental investigations justify the absence of an equilibrium hysteresis
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due to convergence of the relaxation curves to the same stress ordinate at the end of
very long relaxation periods on both loading and unloading paths. Having concluded
that the elastic equilibrium response can be extracted from the experiments on a pre-
damaged material, uniaxial and equi-biaxial tensile tests with several relaxation periods
were carried out. An arithmetic average of the stress values attained at the end of the
two hours relaxation periods at the same deformations on loading and unloading paths
are assigned as an elastic response of the material. Results of uniaxial and equi-biaxial
experiments are depicted in Figure 4.3. The five parameters µ N, p, U, q in Table 4.1 of
the non-affine micro-sphere model of elasticity were identified with respect to these data
of HNBR50 material. As can be seen in Figure 4.3, the elastic response of the material in
both uniaxial and equi-biaxial tests is traced very well. For the sensitivity of the elastic
stress-stretch response of the model with regard to the individual material parameters in
both uniaxial and equi-biaxial deformations we refer to Figures 3.12 and 3.13.
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Figure 4.3: Uniaxial and equi-biaxial experiments of a cylindrical HNBR50 rubber speci-
men at room temperature. The data points are obtained by relaxation periods during the
cyclic loading in both the loading and unloading paths. The parameters of the non-affine
elasticity model are identified as µ = 0.139 MPa, N = 5.18, p = 1.166, U = 11.2, q = 0.126 .

In order to investigate the dependence of the stress response on the loading rate, pre-
conditioned cylindrical specimens of the same material are subjected to cyclic uniaxial
loading between the stretch values λ1 = 2 and λ1 = 0.75 at three different absolute load-
ing rates d|λ1|/dt = 5 · 10−2 1/min, 5 · 10−1 1/min, 5 1/min. The uniaxial nominal
stress-stretch response of the three specimens to the first two loading cycles is illustrated
in Figure 4.4a, see also Méndez [135]. As can be clearly noticed, when the loading rate
is increased the material response becomes stiffer; that is, at the same value of stretch one
attains larger value of the absolute stress in faster experiments. This is expected rate-
dependent response of any viscoelastic material. Furthermore, the area in the hysteresis,
which is proportional to the integrated dissipation, becomes larger as the loading rate
increases. An additional conclusion which might be drawn from the cyclic experiments is
that the difference between the first and the second stress-stretch curves becomes more
pronounced when the loading rate is increased. In order to determine the material pa-
rameters of the viscous overstress part of the network model, tension-compression cyclic
uniaxial tests performed at the loading rates d|λ1|/dt = 5 · 10−2 1/min, 5 1/min are uti-
lized. We model the observed response with a spectrum of s = 3 overstress on the micro-
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sphere. During the identification process, the 6 relaxation times of the unconstrained and
tube parts are a priori assigned to the values {τa

y }a=1,2,3
y=f,c = {0.1, 10, 1000}y=f,c and kept

frozen during the identification process. Identified values of the remaining 12 material
parameters are given in the caption of Figure 4.4. Simulation of all three experiments are
depicted in Figures 4.4b-d in comparison with the experiments. They clearly show a capa-
bility of the proposed approach in capturing the real material response. The experimental
observations regarding viscous stiffening, hysteresis thickness changes and the apparent
difference between the first two cycles at relatively faster experiments are incorporated
very well.
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Figure 4.4: Cyclic experiments and their simulations. a) Cyclic experiments performed at

different loading rates λ̇1 = 5 · 10−2, 5 · 10−1, 5 1/min . The larger the loading rate, the
stiffer the material response and the larger the hysteresis. Simulations of the experiments
are depicted in b), c) and d) for the loading rates λ̇1 = 5 · 10−2, 5 · 10−1 and 5, respectively.
The viscous material parameters identified for the experiments plotted in b) and d) are
µf = {6.16, 1.35, 1.76} MPa, µc = {7.19, 1.13, 1.63} MPa, δf = {2.97, 2.46, 24.46}, δc =
{1.02, 2.05, 16.47}, τf,c = {0.1, 10, 1000} .

Further investigation on the validity of the identified material parameters and the
modeling capabilities of the proposed constitutive approach is conducted against purely
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compressive uniaxial cyclic experiments depicted in Figure 4.5a. These experiments were
conducted between the stretch values λ1 = 1 and λ1 = 0.75 at three different absolute
loading rates d|λ1|/dt = 5 · 10−2 1/min, 5 · 10−1 1/min, 5 1/min on pre-conditioned
specimens with the same geometry as those used in the cyclic tests, see Méndez [135].
The above mentioned observations for the tension-compression cyclic experiments related
to rate–dependent stiffening, hysteresis enlargement and difference between the first and
the second cycles are also valid for the compressive cyclic uniaxial tests. These data
are simulated by using the same material parameters previously identified with the two
sets of tension-compression cyclic uniaxial data. Comparison of the simulations with the
experiments is presented in Figures 4.5b-d for different loading rates. The simulation
captures the experiments adequately, in particular the ones with slower loading rates, in
an excellent manner. For the fastest experiment, the quality of the simulation can be
considered as sufficiently adequate. The overall compressive time dependent viscoelastic
material behavior in cyclic tests can be said to be captured very well.
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Figure 4.5: Compressive cyclic experiments and simulations. a) Cyclic experiments carried

out at different loading rates λ̇1 = 5 · 10−2, 5 · 10−1, 5 1/min. Respective simulations of the
experiments at the three different rates are depicted in b), c) and d). For the simulation
the same parameters as those in Figure 4.4 were used.
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The last homogeneous experiment on HNBR50 investigates the relaxation behavior in
tension-compression cyclic tests in both loading and unloading paths of both tensile and
compressive stretch intervals. A total twelve relaxation tests, one hour each, were con-
ducted at the stretch values λ1 = 0.75, 0.875, 1, 1.25, 1.50, 1.75, 2. Figure 4.6 depicts the
material response to the discontinuous cyclic loading between the stretch values λ1 = 0.75
and λ1 = 2 at an absolute loading rate d|λ1|/dt = 3 1/min. Simulation of this relaxation
experiment is performed again by using the previously identified material parameters
given in Figure 4.4. A plot of the simulation against the experiment in Figure 4.6 shows
that the proposed constitutive model captures the relaxation behavior very well, too. Es-
pecially the thickness of the hysteresis agrees excellently. The assumed separation of the
material response into equilibrium and viscous non-equilibrium parts is justified by the
overall quantitative agreement between experiments and simulations for the loading cases
illustrated in Figures 4.3-4.6.
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Figure 4.6: a) Stress vs. stretch and b) stress vs. time plots in a cyclic tension-compression

uniaxial experiment performed at an absolute loading rate |λ̇1| = 3 1/min with relaxation
breaks. The cyclic experiment was performed between the stretch values λ1 = 0.75 and
λ1 = 2. During the experiment twelve one hour relaxation breaks were performed. For the
simulation the same material parameters as those of Figure 4.4 were employed.

As a last numerical example of homogeneous experiments, besides the preceding
study on the HNBR50 rubber, we now consider the data acquired from another rub-
bery polymer B186 produced by the Continental AG. This study aims to show that
the predictive capabilities of the proposed model are not restricted to a single type
of rubber. The experimental data on B186 originally reported by Miehe & Keck
[150] involve monotonous tensile and compressive tests performed at three loading rates
d|λ1|/dt = 5.4 · 10−4 1/s, 5.4 · 10−3 1/s, 5.4 · 10−1 1/s, presented in Figures 4.7a and 4.7b.
For the simulations of both elastic and viscous effects, the parameters were simultaneously
identified by monotonous tensile and compressive uniaxial experiments, see Figures 4.7a
and 4.7b together with the corresponding simulations. The identified model parameters
are given in Figure 4.7. With these material parameters at hand, relaxation tests are
simulated both for the tensile and the compressive loadings. Comparison of the simula-
tions and the experiments are depicted in Figures 4.7c and 4.7d, respectively. Clearly, the
simulations capture the material behavior quite well.
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Figure 4.7: Monotonous tensile and compressive uniaxial experiments, reported by Miehe
& Keck [150], and their simulations with the proposed model. a, b) Monotonous uni-
axial experiments performed at loading rates |λ̇1| = 5.4 · 10−4, 5.4 · 10−3, 5.4 · 10−1 1/s.
and corresponding fittings. The material parameters identified using the data in a,b) are
µ = 0.34 MPa, N = 1.96, p = 1.56, U = 11.62, q = 0.22, µf = {25.58, 2.44, 0.47} MPa,
µc = {10.84, 4.02, 2.93} MPa, δf = {14.93, 8.57, 24.46}, δc = {0.79, 7.29, 16.38}, τf,c =
{0.1, 10, 1000} . These parameters are employed for simulating tensile and compressive re-
laxation experiments shown in c) and d) performed at the loading rate |λ̇1| = 5.4 ·10−2 1/s
with five equally spaced one hour relaxation periods.

The simulations of the experiments carried out hitherto show that the proposed model
captures the material behavior for the both materials exhibiting rubber-like response
successfully. Therefore, our approach to model finite viscoelasticity can be concluded to
be very suitable for rate-dependent rubber-like materials.

4.4.2. 3-D Analyses of a Non-Homogeneous Shear Test. In addition to the
evaluation of the proposed approach based on the homogeneous experiments presented
in the preceding subsection, we further present the capabilities of the proposed model in
simulating the non-homogeneous three-dimensional experiment. The specimen is made
up of highly saturated nitrile rubber HNBR50 and was produced by the Robert Bosch
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GmbH. The three-dimensional geometry of the specimen, having a varying hyperbolic
transversal and a circular planar cross-section together with its dimensions, is depicted
in Figure 4.8. The specimen is discretized into 1152 eight-node Q1P0 mixed brick finite
elements. The bottom face of the specimen is fixed in all three directions. The degrees of
freedom on its top surface in y- and z- directions are restrained and the deformation in
x- direction is prescribed, see Figure 4.8.
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22.5 29.3

11.8

19.3

Figure 4.8: Three dimensional view and dimensions of the specimen. Spatial finite element
discretization and boundary conditions of the problem are illustrated. All dimensions are in
millimeters.

The finite element analyses of the boundary value problem were carried out for three
different loading functions ui(t) for i=1, 2, 3 depicted in Figure 4.9a. The first two loading
processes u1(t) and u2(t) correspond to cyclic deformations applied between −10 and
10 mm at loading rates |u̇1(t)| = 40 mm/min and |u̇2(t)| = 4 mm/min, respectively. The
third loading u3(t) is designed for a relaxation process, in which the top surface of the
specimen is deformed up to u3 = 20 mm at the loading rate u̇(t) = 40 mm/min and
thereafter the deformation is kept constant until t = 90 s.
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Figure 4.9: Loading processes and the load–deflection diagrams. a) Three different loading
functions ui(t) for i = 1, 2, 3 used in the finite element analyses of the boundary value prob-
lem. The first two loading processes u1(t) and u2(t) are also used in the three–dimensional
experiments. b) Comparison of the load–deflection diagrams with the experimental ones for
the loading processes u1(t) and u2(t).

For the loading processes u1(t) and u2(t), non-homogeneous three-dimensional ex-
periments were carried out on the pre-conditioned specimens, see also Méndez [135].
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Load-deflection diagrams of the specimens are compared with the FE simulations in Fig-
ure 4.9b. In the FE analyses the material parameters identified from the homogenous
experiments on HNBR50 are used, see Figure 4.4. The predictive capabilities of the put
forward approach is once more illustrated in Figure 4.9b. They concern not only captur-
ing the maximal load value attained but also the shape and thickness of the hysteresis of
the load-deflection curves. If the followed systematic procedure is considered, the results
obtained in the simulation of the three-dimensional inhomogeneous experiment is promis-
ing in the context of quantitative simulations of the three-dimensional non-homogeneous
experiments which are of great interest in practical engineering applications.
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Figure 4.10: Total macroscopic shear stress and unconstrained viscous micro-stress βf :=
∑s=3

a=1
βa

f contours zoomed out at selected Gauss points are depicted in a) at the begining
(t = 30 s) and in b) at the end (t = 90 s) of the relaxation loading u3(t).

The results depicted in Figures 4.10a and 4.10b present the total shear stress contours
τ12 at the beginning and at the end of the relaxation period of the loading u3(t), see
Figure 4.9a. Besides the macroscopic shear stress distributions, pole figure contours of
the effective unconstrained viscous overstress βf defined in (4.25) are magnified at the
selected material points. Comparison of the macroscopic shear stress contours in Figures
4.10a and 4.10b clearly indicates a difference between fully evolved and relaxed non-
equilibrium stresses and their distribution over the specimen. Owing to the fixed boundary
conditions at the upper and the lower faces of the specimen, shear stresses concentrate
in the middle region of the mesh. Also the pole contours of summed unconstrained
viscous chain stresses plotted at representative points support this conclusion. The micro-
stress contours in Figure 4.10b indicate that the viscous non-equilibrium stresses in the
unconstrained network are almost totally relaxed out.
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5. The Micro-Sphere Model of Anisotropic Mullins-Type Damage

In the preceding Chapters 3 and 4 we outlined the micro-sphere models for the finite
elasticity and viscoelasticity of rubber-like materials, respectively. In this chapter we fur-
ther advance the micro-sphere model of finite rubber elasticity towards the incorporation
of the deformation-induced softening commonly referred to as the Mullins effect. The
description of the Mullins effect and the main approaches put forward in the literature
have been outlined in Section 1.1. The formulation and results presented in this chap-
ter are based on the ideas outlined in the recent work by Göktepe & Miehe [69].
We construct a continuum formulation through a superimposed modeling of a crosslink-
to-crosslink (CC) and a particle-to-particle (PP) network, see Figure 5.1. The former is
described by the non-affine elastic network model outlined in Chapter 3. The Mullins-type
damage phenomenon is incorporated in the PP network and micromechanically motivated
by a breakdown of bonds between chains and filler particles. In contrast to the previous
works on the Mullins effect, our formulation inherently describes a deformation-induced
anisotropy of the damage as observed in experiments. We show that the experimentally
observed permanent set in stress-strain diagrams is achieved by this model automatically
as an anisotropy effect. The performance of the model is demonstrated by means of several
numerical examples that include fitting of homogeneous experimental benchmarks.

CC-Network PP-Network

Real Microstructure

a)

b)

c)

Figure 5.1: A TEM micrograph of real carbon-black filled (9%) natural rubber microstruc-
ture taken from Figure 1b of Bergström & Boyce [16]. The overall network behaviour
is considered to be a superimposed response of a crosslink-to-crosslink (CC) network and
a particle-to-particle (PP) network. Schematic pictures of representative CC- and PP-
networks are depicted on the left and the right sides of the microstructure, respectively.

Although all of the continuum formulations cited in Chapter 1 model the damage in
rubbers isotropically, Mullins [155] (p.289) gave experimental evidence on deformation-
induced anisotropic properties in stretching and swelling experiments. Similar observa-
tions were also reported by James & Green [99] on the investigations on the tear
strength. In this work we propose an anisotropic constitutive model for the description of
the Mullins effect that extends the non-affine formulation of rubber elasticity in Chapter
3. The overall network model is constructed by additively dividing the total network
structure into the crosslink-to-crosslink (CC) and the particle-to-particle (PP) parts as
motivated in Figure 5.1 schematically. The response of the CC network is described by
the non-affine elastic network model proposed in Chapter 3. The anisotropic damage phe-
nomenon is embedded into the PP network. Here, we conceptually follow formulations of
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Bueche [31] and Govindjee & Simó [74] to a typical space orientation of a prototype
chain mechanism. The key steps of our formulation are i) the set up micromechanically-
based constitutive models for a single chain orientation and ii) the definition of the
macroscopic stress response of the polymer network by a directly evaluated micro-macro
transition based on homogenization of the orientation contributions. Owing to the intrin-
sic orientation distribution of the micro-variables, the model avoids the introduction of a
tensorial damage variable and allows us to formulate an anisotropic damage evolution in
terms of a one-dimensional inelastic model associated with a prototype chain orientation.
Hence, the formulation inherently includes a deformation-induced anisotropy since differ-
ent loading histories are experienced by different chain orientations. We show that the
permanent set is achieved by our model in a natural way as an outcome of the anisotropic
damage distribution. After pointing out in Section 5.1 the macroscopic structure of the
model, we focus in Section 5.2 on the micromechanical constitutive formulation with re-
spect to a single chain orientation. Then Section 5.3 treats the modeling of the CC and
PP networks which define the homogenized overall response. The performance of the
micro-sphere model of anisotropic Mullins-type damage is analyzed in Section 5.4, where
we investigate several representative numerical examples.

5.1. Macroscopic Finite Elasticity with Damage

The fundamental formulae governing the momentum balance and the constitutive re-
lations of macroscopic spatial finite inelasticity for decoupled volumetric-isochoric have
been given in equations (4.1)-(4.4) of Section 4.1. Here, these equations describe a class of
weakly compressible polymers where the bulk response is assumed to be elastic and dam-
age effects are exclusively restricted to the isochoric part of the deformation. Following
conceptually the works Govindjee & Simó [72, 74], we further decompose the isochoric
free energy into a crosslink-to-crosslink and a particle-to-particle response

Ψ̄ = Ψ̄cc(g; F̄ ) + Ψ̄pp(g,I; F̄ ) (5.1)

associated with the CC and PP networks schematically depicted in Figure 5.1. The
Mullins-type damage phenomenon is exclusively embedded into the particle-to-particle
contribution. It includes the softening phenomena due to the breakdown of bonds between
particles, which is phenomenologically described by a set I of internal variables specified
below. The above decomposition induces a split of the stresses τ̄ defined in (4.4)3

τ̄ = τ̄ cc + τ̄ pp with τ̄ cc := 2∂gΨ̄cc(g; F̄ ) and τ̄ pp := 2∂gΨ̄pp(g,I; F̄ ) (5.2)

into crosslink-to-crosslink and particle-to-particle response contributions. The PP net-
work part τ̄ pp provides a deformation-induced anisotropy that is described by the evolu-
tion of the damage variables I in time. This evolution must be consistent with the second
axiom of thermodynamics that demands a positive macroscopic dissipation

Dmac := F · İ ≥ 0 with F := −∂IΨ̄pp(g,I; F̄ ) (5.3)

with respect to unit volume of the reference configuration. A typical constitutive evolution
system is provided by the initial-value problem

0 ∈ ∂IΨ̄pp(g,I; F̄ ) + ∂İΦ̄pp(İ,I) with I(0) = I0 (5.4)
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in terms of a macroscopic dissipation function Φ̄pp that depends on the internal state I

and its evolution İ. Assuming Φ̄pp to be convex with Φ̄pp(0 ,I) = 0, we observe that
(5.3) is automatically satisfied. The Mullins-type damage phenomenon in filled polymers
is idealized to be a rate-independent dissipative effect. As a consequence, the macroscopic
dissipation function is positively homogeneous of degree one Φ̄pp(αİ,I) = αΦ̄pp(İ,I)
for α > 0, enforcing Φ̄pp to be non-smooth at İ = 0. Then the derivative ∂İΦ̄pp in
(5.4) is understood to be a set-like sub-gradient of Φ̄pp. Equation (5.4) generalizes Biot’s
equation of smooth dissipative systems in Biot [18] to non-smooth applications. For
further details we refer to the recent work Miehe, Schotte & Lambrecht [152]
on standard dissipative materials. Observe that the macroscopic constitutive model of
isochoric elasticity with damage is governed by the three constitutive functions Ψ̄cc, Ψ̄pp

and Φ̄pp for the crosslink-to-crosslink free energy, the particle-to-particle free energy and
the damage dissipation potential, respectively. In the subsequent part of this paper we
construct these functions based on a distinct micro-macro transition.

5.2. Micromechanics of Chains in a Constrained Environment

In this section we briefly reiterate the micromechanical elasticity formulation for single
polymer chains outlined in Section 3.2 and extend it towards damage effects. The key
aspect of the micro-sphere model of elasticity outlined in Chapter 3 was the introduction
of two micro-kinematic variables associated with a single polymer chain. The first micro-
kinematic variable measures the stretch λ of a single chain λ := r/r0 with λ ∈ [0,

√
N),

defined in terms of the current end-to-end distance r of the chain. The second micro-
kinematic variable measures a tube contraction in form of the area deformation ν :=
(d0/d)

2 with ν ∈ (0,∞), defined in terms of a tube diameter d that is assumed to be
constant along the tube that contains the chain.

5.2.1. Free Energy of the Crosslink-to-Crosslink Response. The free energy
of the CC network is assumed to be split into a part due to the free chain motion and a
part due to the tube constraint

ψcc = ψcc
f (λ) + ψcc

c (ν) . (5.5)

Here, the first unconstrained part is governed by the classical non-Gaussian model intro-
duced by Kuhn & Grün [114]

ψcc
f (λ) = N cckθχ(λ) with χ(λ) = λcc

r L−1(λcc
r ) + ln

L−1(λcc
r )

sinhL−1(λcc
r )

(5.6)

in terms of the relative stretch λcc
r := λ/

√
N cc , where N cc is the number of chain segments

of the prototype chain in the CC network. In (5.6), L−1(λcc
r ) denotes the inverse Langevin

function defined by L(λcc
r ) := coth(λcc

r )− 1/λcc
r . Henceforth, we call χ a normalized free

energy function. The second contribution is based on a probability of a straight tube
constraint outlined in Doi & Edwards [45], yielding the expression

ψcc
c (ν) = αkθN cc(

l

d0
)2ν (5.7)

in terms of the tube stretch ν defined in (3.11). Further details of the assumed CC network
response are outlined in Section 3.2.
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5.2.2. Free Energy and Dissipation of the Particle-to-Particle Response.
The micromechanical mechanism of the particle-to-particle response is considered to stem
from the breakdown of bonds between particles and chains as outlined in Bueche [31]
and Dannenberg [39]. This idea have been extensively exploited in Govindjee &
Simó [72, 74] where they derived in their latter work the so-called normalized stress
function for the description of the Mullins effect. As expressed in equation (5.20) below,
this function represents the ratio of the stress in the damaged network to the stress in
the undamaged network and serves as the key constitutive equation of the particle-to-
particle response. We here conceptually apply notions of the macroscopic formulation
of Govindjee & Simó [74] to the micromechanical response of a chain in a typical
space orientation. In order to keep the formulation as compact as possible, we restrict
the damage response to an unconstrained formulation of a chain in the PP network. The
additional micro-contribution to the free energy is assumed to be of the form

ψpp = ψpp(ϕ(λ), ζ) with ϕ(λ) = λpp
r L−1(λpp

r ) + ln
L−1(λpp

r )

sinhL−1(λpp
r )

(5.8)

dual to (5.6) in terms of a relative stretch λpp
r := λ/

√
Npp, where Npp is the number

of chain segments of the prototype chain in the PP network. It is a function of the
stretch λ defined in (3.10) and a scalar internal variable ζ that describes the state of
damage. The dependence of the particle-to-particle free energy on λ is assumed to enter
the function through the above defined normalized energy function ϕ. We assume the
concrete phenomenological form

ψpp(ϕ(λ), ζ) = kθNpp

∫ ϕ(λ)

0

ξ(ϕ̃, ζ)dϕ̃+ ψpp
ζ (ζ) . (5.9)

Here, ψpp
ζ (ζ) is a non-specified function that depends exclusively on the damage variable

ζ . The key constitutive function is the normalized stress function ξ, see also equation
(5.20) below, that depends on the normalized energy ϕ and the internal damage variable
ζ . At frozen damage variable ζ , this function essentially governs the unloading-reloading
paths of the damaged material in a typical space orientation. We assume the quadratic
dependence

ξ(ϕ, ζ) = c1(ζ)[ϕ− c2(ζ)]2 + c3(ζ) (5.10)

on the normalized free energy ϕ. The change in the function with respect to accumulated
damage is described by the three functions

ca(ζ) := ka exp[(−1)aϑaζ ] for a = 1, 2, 3 (5.11)

in terms of the six material parameters {ka, ϑa} for a = 1, 2, 3. These functions are similar
to those proposed by Govindjee & Simó [74], see Figure 5.2 for visualization.

With the above explicit form of the particle-to-particle free energy at hand, we compute
by standard arguments the micro-dissipation

Dmic := f ζ̇ ≥ 0 with f(ϕ, ζ) := −∂ζψ
pp(ϕ(λ), ζ) . (5.12)

Here, f is the internal force that drives the damage evolution. In order to specify the
evolution ζ̇ of the damage, we assume a micro-dissipation-function

φpp = φpp(ζ̇ , ζ) (5.13)
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Figure 5.2: Schematic description of the normalized stress function ξ(λ, ζ) = c1(ζ)[λ −
c2(ζ)]

2+c3(ζ). For a continuously damaging material, the function ξ decreases monotonously
with increasing λ value as depicted by the dashed line. In this case ζ is equal to λ. The solid
iso-damage lines corresponding to different constant values of ζ have a parabolic form. The
abscissa of minimum points of these iso-damage surfaces are gives by the values of c2(ζ).
Similarly, the ordinates of these minima are c3(ζ) for a given value of ζ.

depending on the state ζ of damage and its rate ζ̇. We assume the concrete form

φpp(ζ̇ , ζ) =

{

f(ζ, ζ)ζ̇ for ζ̇ > 0 ,
∞ otherwise

(5.14)

which is non-smooth and positively homogeneous of degree-one with respect to ζ̇. Having
this function defined, the evolution of damage is assumed to be governed by the equation

0 ∈ ∂ζψ
pp(ϕ(λ), ζ) + ∂ζ̇φ

pp(ζ̇ , ζ) with ζ(0) = 0 . (5.15)

Observe that this equation provides the counterpart to the macroscopic equation (5.4)
on the level of chain orientations. With the definition (5.11), note that (5.15) gives the
set-like equation

f(ϕ, ζ) ∈
{

f(ζ, ζ) for ζ̇ > 0 ,
(−∞, f(ζ, ζ)) otherwise

(5.16)

for the internal forces. Thus the damage evolution ζ̇ > 0 occurs only in the case when
the micro-force reaches the current maximum value f(ζ, ζ); that is, as the normalized
free energy ϕ reaches the current damage state ζ . As a consequence, the evolution of the
damage can be written in the simple form

ζ̇ =

{

ϕ̇ for ϕ = ϕ(ζ) and ϕ̇ > 0 ,
0 otherwise .

(5.17)

Hence, the internal damage state ζ represents the maximum normalized free energy of the
PP network that was obtained in the history of deformation. Owing to ζ̇ ≥ 0 from the
specific evolution system (5.17), the dissipation inequality (5.12) is satisfied for positive
internal forces

f(ζ, ζ) = −∂ζψ
pp(ϕ, ζ)|ϕ=ζ ≥ 0 . (5.18)
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Then the dissipation function φpp defined in (5.14) is convex. It can easily be shown that
this condition is satisfied for positive material parameters ka > 0 and ϑa > 0 of the nor-
malized stress function ξ in (5.10) and a suitable choice of the function ψpp

ζ in (5.9). Hence,
the constitutive model of damage evolution associated with a chain-orientation outlined
above is thermodynamically admissible. The above system of constitutive equations gov-
erns the particle-to-particle response for a typical space orientation of a prototype chain
in terms of the eight material parameters as summarized in Table 5.1.

Table 5.1: Parameters of the Micro–Sphere Damage Model for Filled Rubbers

Set Parameter Name Eq. Effect
CC µcc := ncckθ shear modulus (3.19) CC network stiffness

N cc segments in CC chain (3.19) CC chain locking response
p non-affine parameter (3.46) 3D locking characteristics
U := α(l/d0)

2 tube geometry parameter (3.23) additional CC constraint stiffness
q non-affine tube parameter (3.56) shape of constraint stress

PP µpp := nppkθ shear modulus (5.9) PP network stiffness
Npp segments in PP chain (5.9) PP chain locking response
{ka}a=1,2,3 damage evolution (5.10) hysteresis response
{ϑa}a=1,2,3 damage evolution (5.10) hysteresis response

5.2.3. Algorithmic Representation of the PP Micro-Stresses. In the algorith-
mic setting of the damage model one considers an incremental formulation at discrete
steps ∆t := tn+1 − tn within a typical time interval [tn, tn+1]. The damage variable ζn
at time tn is given and in what follows indicated by the subscript n. The update of the
damage variable is then obtained from an algorithm that integrates the evolution equation
(5.17) in the time interval. We use the update

ζ = Max[ϕ(λ), ζn] (5.19)

which provides a simple closed-form expression in terms of the current stretch λ. All
variables without subscript are associated with the current time tn+1. With the updated
damage variable at hand, we compute the micro-stress associated with the particle-to-
particle mechanism by evaluation of the free energy function (5.9)

βpp = ∂λψ
pp(ϕ(λ), ζ) = ξ(ϕ, ζ)βpp

0 with βpp
0 := kθNppϕ′(λ) . (5.20)

Here, ϕ′ is proportional to the inverse Langevin function with the singular behavior
as the stretch λ approaches the limiting value. In the above equations, the inverse
Langevin function can be evaluated by a Padé approximation yielding the approxima-
tion

√
Nppϕ′(λ) = L−1(λpp

r ) ≈ λpp
r (3− λpp2

r )/(1− λpp2
r ), see for example Cohen [34]. A

further derivative of the micro-stress βpp gives the algorithmic tangent moduli consistent
with the algorithm (5.19)

cpp :=
d

dλ
βpp = kθNpp[ ξϕ′′ + (ξ,ϕ + sζξ,ζ)ϕ

′2 ] , (5.21)

where we have introducted per definition the damage-loading flag

sζ :=

{

1 for ζ > ζn ,
0 otherwise .

(5.22)

In a typical time step, equations (5.19), (5.20) and (5.21) provide a closed-form update
of the stress due to particle-to-particle interaction.
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5.3. Anisotropic Network Model of Mullins-Type Damage

Now we develop a homogenization procedure that averages the micro-stresses with
respect to the space orientations. To this end, we link the above introduced micro-
kinematic variables λ and ν by characteristic network assumptions to suitably defined
macro-kinematic variables λ̄ and ν̄. Following our treatment in Chapter 3, the associated
micro-macro transition is interpreted as a homogenization of state variables on a micro–
sphere with unit radius.

5.3.1. Definition of Macro-Kinematic Variables of the Continuum. The key
aspect of network theories is to link the deformation of a single chain to the macroscopic
isochoric deformation F̄ defined in (3.4) of the continuum that represents the homogenized
network aggregate. Let r be a Lagrangian orientation unit vector with |r|G :=

√
r♭ · r =

1 where r♭ := Gr is the co–vector of r. As introduced in (4.30) and (4.31), mappings of
r and r♭ by the isochoric deformation give the isochoric stretch vector and area co-vector

t = F̄ r and n♭ = F̄−Tr♭ , (5.23)

respectively. Then the macro-stretch of a material line element with orientation r in the
reference configuration and the macro-deformation of a material area element with normal
r♭ in the reference configuration are defined as

λ̄ = |t|g :=
√

t♭ · t and ν̄ = |n♭|g−1 :=
√

n♭ ·n , (5.24)

where t♭ := gt and n := g−1n♭ evaluated with the current metric g.

5.3.2. Non-Affine Network Model for Crosslink-to-Crosslink Response. The
non-affine network model outlined in Chapter 3 defines the crosslink-to-crosslink part
Ψ̄cc of the macroscopic free energy in (5.1) for the polymer aggregate. Clearly, this
overall quantity must be related to their micromechanical counterparts ψcc in (5.5). The
additive split of this micro-contribution induces an additive split of the associated macro-
contributions

Ψ̄cc = Ψ̄cc
f (g; F̄ ) + Ψ̄cc

c (g; F̄ ) . (5.25)

A key result of the work [149] was the derivation of non-affine relationships between the
micro- and macro-kinematic variables

λ = 〈λ̄〉p and ν = (ν̄)q (5.26)

in terms of two material parameters p and q of the ground state network. Here, 〈v〉p :=
p
√

〈 vp 〉 is the p-root averaging operator of a scalar micro-variable v > 0. 〈v〉 denotes the
continuous averaging for an equal orientation distribution of the variable v in space. We
define the average of the microscopic free energies for a continuous space distribution via

〈v〉 :=
1

|S|

∫

S

v(r; t)dA . (5.27)

This averaging is interpreted as a homogenization of the state variable v(r; t) at posi-
tion r and time t on a micro-sphere S with unit radius as depicted in Figure 3.4. The
macroscopic free energy is obtained by summarizing the micro-energies (5.6) and (5.7) of
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the unconstrained and constrained chain motion parts for ncc chains in a representative
volume of the CC network, yielding

Ψ̄cc(g; F̄ ) = nccψcc
f (〈λ̄〉p) + 〈 nccψcc

c ((ν̄)q) 〉 . (5.28)

The dependence on g and F̄ is due to the definitions (5.24). Details of the non-affine
model of rubber elasticity and its numerical implementation are outlined in Chapter 3.

5.3.3. Affine Network Model for Particle-to-Particle Response. We now de-
velop a network model which defines the particle-to-particle contribution Ψ̄pp to the macro-
scopic free energy in (5.1) and the macroscopic dissipation function Φ̄pp in (5.4) for the
polymer aggregate. Clearly, these overall properties must be related to their microme-
chanical counterparts ψpp and φpp in (5.6) and (5.13), respectively. In these expressions,
the anisotropic macroscopic internal state is described by

I := {ζ(r; t)} (5.29)

in terms of the field ζ of damage on the micro-sphere. Here, r is the spatial variable that
parametrizes the field on the micro-sphere as depicted in Figure 3.4. In contrast to the
basic network assumption (5.26) for the crosslink-to-crosslink response, we assume for the
particle-to-particle response the affine relationship

λ = λ̄ (5.30)

between the micro-stretch and their continuum counterpart. With this relationship at
hand, we define the particle-to-particle contribution to the macroscopic energy and dissi-
pation functions by the sum of all orientation contributions

Ψ̄pp(g,I; F̄ ) = 〈 nppψpp(ϕ(λ̄), ζ) 〉 and Φ̄pp(İ,I) = 〈 nppφpp(ζ̇ , ζ) 〉 , (5.31)

where npp is the number of particle-to-particle chains in the representative volume under
consideration. Insertion of the two above functions Ψ̄pp and Φ̄pp into the macroscopic
evolution system (5.4) identifies the microscopic evolution system (5.15) in a pointwise
manner at r ∈ S on the microsphere S. Owing to the convexity of the micro-dissipation
function φpp in (5.14), the macro-dissipation function Φ̄pp is also convex. Thus the overall
macroscopic model of damage satisfies the thermodynamic consistency condition (5.3)
through the relationship

Dmac = 〈 nppDmic 〉 ≥ 0 (5.32)

to the positive micro–dissipation (5.12).

With the macro-energy at hand, we compute the Eulerian stresses based on a straight-
forward exploitation of (5.2)3. To this end, at first we compute the derivatives of the
macro-stretch in (5.24) with respect to the Eulerian metric, yielding 2∂gλ̄ = λ̄−1t ⊗ t.
Then we obtain from (5.31) the representation of the macroscopic Kirchhoff stresses

τ̄
pp
algo = 〈 nppβppλ̄−1t⊗ t 〉 (5.33)

in terms of the micro-stress βpp defined in (5.20). Note that this representation includes
the update algorithm (5.19) of the damage variable. A further derivation of the above
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stress expression with respect to the Eulerian metric yields the spatial algorithmic tangent
moduli consistent with the update algorithm

C̄
pp
algo := 2∂gτ̄

pp
algo(g,I, F̄ ; In) . (5.34)

Using the result 2∂g(t⊗ t) = 0, we obtain the closed-form representation

C̄
pp
algo = 〈 npp(cpp − βppλ̄−1)λ̄−2t⊗ t⊗ t⊗ t 〉 (5.35)

with the algorithmic micro-contributions defined in (5.20) and (5.21).

5.3.4. Discretization of Fields on the Micro-Sphere. The implementation of
the Mullins-type damage network model outlined above into computer codes requires a
numerical evaluation of the integral over the continuous space orientations. As outlined in
Chapter 3, this is achieved by discretizing the continuous orientation distribution of the
unit sphere S by m discrete Lagrangian orientation vectors {ri}i=1...m and weight factors
{wi}i=1...m. Then the continuous averaging (5.27) of a micro-variable v defined on the
sphere is transformed into the discrete sum

〈v〉 ≈
m
∑

i=1

vi wi , (5.36)

where {vi}i=1...m are the micro-variables on the sphere evaluated at the discrete points
ri. Suitable sets of orientation vectors {ri}i=1...m and associated weight factors {wi}i=1...m

are given in Bažant & Oh [10]. The integration schemes exploit the symmetry of the
unit sphere by defining discrete points only for the half-sphere. It has been shown in
Chapter 3 that a 21-point integration scheme provides sufficient accuracy for numerical
investigations of rubber elasticity. Hence, we use for all subsequent numerical examples
the 21-point integration scheme for the half-sphere, see Table 3.2 for further details.
Then the discretization of the internal variable fields (5.29) on the micro-sphere yields an
effective history storage of 21 scalar variables

In = {ζ(ri; tn)}i=1...m=21 (5.37)

for the discrete damage variables at time tn. All the above outlined continuous aver-
age operations in the discrete setting appear as a simple algebraic sum over 21 discrete
space orientations. Table 5.2 summarizes the numerical implementation of the anisotropic
damage model.

5.4. Representative Numerical Examples

This section is devoted to illustrations that assess the modeling capacity and exhibit
the main features of the proposed model. To this end, we consider first simulations
of homogeneous benchmark experiments from the literature. Next, additional examples
essentially focus on the illustration of softening-induced anisotropy during homogenous
uniaxial and simple shear deformations. In addition, we perform an inhomogeneous finite
element analysis of a cube subjected to combined longitudinal and lateral deformations.
The orientational distributions of the damage at selected Gauss points are shown.



90 The Micro-Sphere Model of Anisotropic Mullins-Type Damage

Table 5.2: Stress Update of PP Overstress Response on Micro-Sphere.

1. Data Base. Given are history data {ζ i
n}i=1...m of internal damage variables at

time tn at m = 21 discrete points on the micro-sphere. Get discrete orientation
vectors ri and weights wi from Table 3.2.

2. Current Micro-Stretches. Given is the unimodular deformation map F̄ at
time tn+1. Compute the i = 1...m deformed tangents ti = F̄ ri and the affine
micro-stretches λ̄i = |ti|.

3. Current Micro-Stresses and Micro-Moduli. Update the damage variables
ζ i = Max[ϕ(λ̄i), ζ i

n]. Evaluate the normalized stress function ξ(ϕ(λ̄i), ζ i) =
c1(ζ

i)[ϕ(λ̄i)− c2(ζ i)]2 + c3(ζ
i) with ca(ζ

i) := ka exp[(−1)aϑaζ
i]. Compute the

micro-stresses

βppi = ξ(ϕ(λ̄i), ζ i)βppi
0 with βppi

0 := µppNppϕ′(λ̄i)

and the consistent micro–moduli with damage loading flag sζ ∈ {0, 1}

cppi = µppNpp[ ξ(ϕ(λ̄i), ζ i)ϕ′′(λ̄i) + (ξ,ϕ(ϕ(λ̄i), ζ i) + sζξ,ζ(ϕ(λ̄i), ζ i))ϕ′2(λ̄i) ]

4. Current Macro–Stresses and Macro–Moduli. Get homogenized overstresses

τ̄
pp
algo =

m
∑

i=1

[ βpp iλ̄i−1ti ⊗ ti ]wi ,

the macroscopic algorithmic tangent moduli

C̄
pp
algo =

m
∑

i=1

[ (cpp i − βpp iλ̄i−1)λ̄i−2ti ⊗ ti ⊗ ti ⊗ ti ]wi

and proceed with deviatoric projections as outlined in (4.4) and (3.7).

5.4.1. Numerical Investigations on Homogeneous Tests. The first two exam-
ples are concerned with two-cycle uniaxial tensile tests. In these experiments the am-
plitude of the cycles is increased progressively. One of the earliest set of experimental
data illustrating the Mullins-type softening on carbon-black filled rubber was recorded
by Mullins & Tobin [157], see Figure 5.3a. Although these data were obtained by
subtracting the appreciable permanent set from measurements, they were used by many
researchers as an experimental benchmark. For this reason, the proposed model is also
tested against these data. The quite good agreement between the experiment and the
proposed model is depicted in Figure 5.3a. In contrast to the idealized data, it should be
noted that the residual deformation, the so-called permanent set, is attained at the zero
stress level as is observed by Mullins and Tobin. The amount of permanent set gradually
increases with increasing deformation. This is in agreement with the experimental obser-
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vations, see for example Figure 1.2a. Apart from the data considered above, we further
test our model in a simulation of another set of data of HAF black filled SBR reported by
Bueche [32]. The comparative study in Figure 5.3b illustrates that the proposed model
captures these data very well. Fittings of the both experiments in Figure 5.3 indicate that
the proposed model is able to trace the experimental behavior satisfactorily. The residual
deformation attained at the zero stress level is considered as a natural consequence of
anisotropic evolution of the damage internal variables.
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Figure 5.3: Simulations of experimental data. a) Mullins & Tobin [157] (Fig.4
p.559) data are simulated with the material parameters of the non-affine CC network
µcc = 0.41 MPa, N cc = 26.5, U = 0.53, q = 0.1, p = 1.7 and the affine PP network
µpp = 1.46 MPa, Npp = 18, ka = {5.1, 0.15, 0.33}, ϑa = {1.9, 0.8, 2.6} . b) Simulation of
data reported by Bueche [32](Fig. 3 p.273) is carried out with the material parameters of
the respective network parts µcc = 0.11 MPa, N cc = 12.8, U = 2.03, q = 0.55, p = 1.95,
µpp = 1.21 MPa, Npp = 14.5. Owing to the similarities of the hystereses, for the sake of
simplicity the same values of ka’s and ϑa’s with the ones used in Figure 5.3a are employed.

The first experimental evidence on the anisotropic nature of the Mullins effect in
stretching and swelling experiments was given by Mullins [155], p.289. He reported
the observations on the stress-stretch response of dumbbell-shaped specimens cut from a
pre-stretched sheet. These were subjected to post-deformation in the same direction with
the previous one and in the direction perpendicular to it. The stress-stretch behavior
in the latter case came out to be stiffer than the one having the same direction with
pre-extension. Moreover, swelling experiments conducted on these specimens indicated
that the amount of swelling is greater in the direction of the pre-stretch. Similar observa-
tions were also reported by James & Green [99] from their investigations on the tear
strength. Reduction in the tear strength in the direction of pre-stretching and increased
tear strength in the perpendicular direction were observed.

In order to qualitatively reproduce the experimental observations previously made by
Mullins [155], we carried out a numerical experiment. A virgin specimen is subjected to
the two-cycle stretching in the e1 direction up to the stretch values λ1 = 3, 4, respectively.
After unloading to the undeformed state the same material is deformed in an analogous
manner in the e2 direction up to the stretch values λ3 = 3, 4, see the loading function
in Figure 5.4a. Corresponding stress-stretch curves are plotted in Figure 5.4b. During
the deformation in e1 direction the nominal stress response P11 softens as observed in
the experiments. After changing the deformation direction from e1 to e2, the stress
response P22 of the material to the deformation in direction e2 becomes softer than the
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Figure 5.4: Anisotropic evolution of the damage field ζ in the cyclic simple tension test.
a) The material is cyclicly subjected to stretches λ1 = 3 and λ1 = 4 and from the totally
undeformed state it is further deformed in the same manner in e2 direction. b) Corre-
sponding stress-stretch curves. c) Deformed shapes and the evolution of the damage field ζ

corresponding to the loading stages enumerated from (i) to (v).

virgin material but stiffer than its response in e1 direction. Furthermore, as can be seen in
Figure 5.4b, the amount of permanent set attained at the end of the deformation in the e1

direction decreases during stretching in the e2 direction. This indicates that deformation
in other directions reduces the anisotropic distribution of softening.

In addition to the stress-stretch curves, the deformed shapes of the specimen and the
stereographic projection of the damage distribution are depicted in Figure 5.4c for the
five stages of deformation labeled as (i)− (v) in Figures 5.4a and 5.4b. The scale of the
ζ contours in the stereographic pole projection plots is increasing from the red zone to
the blue one. Evolution of the softening during the deformation process supports the
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Figure 5.5: Evolution of the damage field ζ in the simple shear test. a) One-cycle simple
shear deformation between the F12 = [0, 3.5]. Shear stress vs. shear deformation behavior is
presented. b) ζ contours are illustrated at six stages of the loading path in the stereographic
pole figures. At each level of the deformation, the amount of damage at blue and red zones
corresponds to the maximum and the minimum values of the associated deformation level.
In this illustration the material parameters given in Figure 5.3b are used.

above idea of reduction in the induced-anisotropy, and consequently in the permanent
set, through the successive deformation in the perpendicular direction. In this study the
material parameters are taken to be the same as the ones used in Figure 5.3a.

The last homogeneous deformation example illustrates the evolution of deformation-
induced anisotropy in a simple shear test. Cyclic shear deformation is defined by assigning
the values for the component of deformation gradient F12 = [0, 3.5]. A schematic picture
of the deformation mode and the stress-deformation curve are shown in Figure 5.5a.
The evolution of the softening at the different loading stages F12 = 0.1, 1, 1.5, 2, 2.5, 3.5
is plotted in the pole projections in Figure 5.5b. A rotation of the maximum damage
direction in the counterclockwise direction during the deformation is observed.

5.4.2. A Cube Subjected to Combined Tension and Shear. Additional to the
above homogeneous problems, in what follows we investigate an inhomogeneous boundary
value problem of a cube subjected to combined tension and shear. The benchmark is taken
from Govindjee & Simó [74]. A cube of 10 mm edge is simultaneously subjected to the
combined deformation in longitudinal e1 and lateral direction e2, see Figure 5.6a. The
finite element model exploits symmetry properties of the structure. Therefore, only one
half of it is discretized. The analysis domain is meshed into 10, 10 and 5 equal parts in
the directions e1, e2 and e3, respectively. Consequently, in the analysis 500 eight-node
Q1P0 brick elements are employed. The bottom face of the specimen is fixed in all three
directions. The degrees of freedom on its top surface in e1 and e2 directions are prescribed
and the deformation in e3 direction is restrained, see Figure 5.6a. In both directions e1

and e2 maximum deformation values u1 = u2 = 10 mm are attained. The material
parameters given in Figure 5.3b are used.

At two stages of deformation u1 = u2 = 5 mm and u1 = u2 = 10 mm, averaged damage
contours 〈ζ〉 :=

∑m
i=1 ζiwi on the deformed shapes and the orientational distribution of

damage ζ on pole figures at selected material points on a symmetry face are depicted in
Figures 5.6b and 5.6c, respectively. The contour plots of the averaged softening and pole
figures show that the softening concentrates on the diagonal yielding an asymmetric soft-
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Figure 5.6: Finite element analysis of a cube subjected to combined longitudinal and
lateral deformations. a) Geometry, boundary conditions and finite element dicretization of
the cube used in the FE analysis. Distribution of an equivalent damage 〈ζ〉 over the body
at the two levels of deformation, b) u1 = u2 = 5 mm and c) u1 = u2 = 10 mm, respectively.
The pole figures illustrate the anisotropic distribution of damage at different at different
Gauss points for both stages of deformation.21

ening distribution. Furthermore, the pole figures illustrate the orientation of anisotropic
damage at several material points for different stages of deformation.
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6. Finite Viscoplasticity of Amorphous Glassy Polymers

The primary focus of this chapter is laid on the modeling of rate-dependent finite
elastoplastic behavior of ductile amorphous glassy polymers under isothermal conditions,
at temperatures well below the glass transition temperature θg. The characteristics of
the intrinsic material behavior and the fundamental micromechanical and macroscopic
constitutive approaches suggested in the literature have been discussed in Section 1.1.2.
In contrast to the kinematic approaches to the finite elastoplasticity of amorphous poly-
mers put forward so far, we adopt the kinematical framework of finite elasto-plasticity
recently proposed by Miehe, Apel & Lambrecht [147]. This framework makes use of
the ideas of the so-called additive metric plasticity akin to the geometrically linear theory
of elastoplasticity. The constitutive framework is constructed in the logarithmic strain
space where the elastic part εe of the Lagrangian Hencky strain ε := ln[C]/2 is defined
as εe : =ε − ln[Gp]/2 = ε − εp where C denotes the right Cauchy-Green tensor defined
in (2.21) and Gp is the reference plastic metric. This additive form allows us to formu-
late finite plasticity in a framework analogous to the geometrically linear theory which in
turn leads to a very attractive algorithmic setting. Within this framework the evolution
of viscoplastic strains εp is adopted from the celebrated double kink model of Argon
[5]. As conventionally accepted in the literature, the kinematical hardening mechanism
due to the plastic alignment of the chains may be modeled by network models of rubber
elasticity, such as the eight-chain model of Arruda & Boyce [8] and our non-affine
micro-sphere model outlined in the foregoing chapters. The modeling capacity of the pro-
posed approach is assessed by comparing the simulation results with experimental data.
For this purpose, we consider macroscopically homogeneous uniaxial and plane strain
compression experiments on PC specimens under isothermal conditions. These data are
used to identify the limited material parameters. The performance of the model with the
identified material parameters is tested in the three-dimensional finite element simulation
of the cold drawing experiment described in Figures 1.3 and 1.4. The simulation is not
limited only to the load-displacement diagram but also the three-dimensional strain fields
are considered. Comparison of the simulations with the experimental results indicate the
quantitative modeling capability of the proposed approach. This chapter is organized as
follows. Section 6.1 briefly outlines the additive kinematic approach to finite inelasticity
in the logarithmic strain space and points out the model-independent modular algorithmic
structure. Section 6.2 is devoted to the elasto-viscoplastic constitutive model in the loga-
rithmic strain space and the details of its algorithmic implementation. In Section 6.3, the
representative numerical examples illustrating the modeling capabilities of the proposed
approach in comparison with the experimental results obtained from the homogenous and
non-homogeneous tests are presented.

6.1. Additive Finite Plasticity in the Logarithmic Strain Space

Despite the intensive work carried out over the last four decades, the development
of a canonical kinematic framework for finite elastoplasticity is still a topic of active re-
search. An exhaustive review of the existing literature on kinematics of finite plasticity
is not aimed here but only a few key references will be addressed. For a comprehensive
review, the reader is referred to the critical state-of-art manuscripts by Naghdi [159]
and Xiao, Bruhns & Meyers [209], among others. Apart from the rate formulations
(hypoelasticity), the kinematical approaches to finite plasticity may roughly be classified
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into two main categories: i) The formulations based on the multiplicative decomposi-
tion of the deformation gradient into the elastic and inelastic parts, i.e. F=F eF p. ii)
The framework constructed on the notion of an additional primitive Lagrangean plastic
strain Ep. The former has been motivated from the micromechanical plasticity theory
of crystalline materials and applied also to the phenomenological framework of plasticity.
The multiplicative split of the deformation gradient, commonly referred to as Kröner-Lee
decomposition, can be traced back to the seminal works of Kröner [111], Lee [115]
and Mandel [126]. The latter is based on the introduction of the Lagrangean plastic
deformation measure Ep as a primitive variable proposed by Green & Naghdi [75].
This framework, the so-called Green-Naghdi theory, has been further extended by Miehe
[141, 142] based on the notion of the evolving reference plastic metric Gp. Motivating
from the notion of Lagrangean plastic metric, an additive framework for the finite plas-
ticity has been recently proposed within a framework of the logarithmic strain space by
Miehe, Apel & Lambrecht [147], Papadopoulos & Lu [163, 164], and Miehe
& Apel [146]. In [147], they have compared the results of the additive finite plastic-
ity in the logarithmic strain space with the results obtained from classical multiplicative
plasticity for both isotropic and anisotropic materials. This comparative study indicates
the closeness of the results obtained by the distinct formulations for a broad range of
boundary value problems. The similarity between the formulation of finite plasticity in
the logarithmic strain space and the geometrically linear theory of plasticity makes this
formulation highly attractive, especially with regard to the algorithmic implementation.

The kinematic setting of almost all of the proposed approaches to the finite viscoplas-
ticity of glassy polymers make use of the Kröner-Lee multiplicative decomposition of the
deformation gradient. The immediate outcome of this approach is a stress-free relaxed
intermediate configuration which is physically well-justified in the case of crystal plastic-
ity. In the case of non-crystalline materials, however, some additional assumptions for
the properties of the elastic part of the deformation gradient [28] or for the plastic spin
[4] are required. Being distinct from the former, we here extend the recently proposed al-
ternative additive kinematical approach in the logarithmic strain space by Miehe, Apel
& Lambrecht [147] to the finite viscoplasticity of glassy polymers. This framework a
priori avoids the difficulties and assumptions associated with the fictitious intermediate
configuration and serves as a key advantageous kinematical setting leading to an efficient
algorithmic formulation in the six-dimensional symmetric strain space.

T ∗
xS T ∗

xST ∗
xS

Tx S Tx STx STXB TXBTXB

T ∗

XB T ∗

XBT ∗

XB

F FF

F−T F−TF−T

C g Gp cp S P τ

a) b) c)

Figure 6.1: Definition of metric and stress tensors as mappings. a) Current metric: g,

in Lagrangean configuration C := F T gF . b) Plastic metric: Gp, in Eulerian configuration
cp := F−T GpF T . c) Nominal stress : P , Eulerian Kirchhoff stress τ := PF T , Lagrangean
second Piola-Kirchhoff stress S := F−1P .

6.1.1. Additive Kinematic Approach Based on Logarithmic Strains. Being
consistent with the Kröner-Lee decomposition, a multiplicatively defined objective strain
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variable of the form

ε̄e
m := fm(F p−T CF p−1) (6.1)

enters an elastic energy storage function of the constitutive model. The convected current
metric C := F T gF is a function of the deformation F of the material, see Figure 6.1a.
The plastic map F p is considered as an internal variable that describes the plastic flow
through the crystal by multiple shearing on crystallographic slip planes in crystalline
materials. For isotropic as well as anisotropic materials with preferred structural directors
which deform with the material it can be shown that the plastic map enters stored energy
functions through the metric Gp := F pT G̃F p, see Figure 6.1b. This justifies a framework
of finite plasticity based on a plastic metric Gp that is a priori considered as an internal
variable. A particular additive dependence of the Lagrangean elastic strain variable on
C and Gp is provided through

εe
m := fm(C)− fm(Gp) . (6.2)

Here the tensor-valued isotropic tensor function fm characterizes the Seth-Hill family of
generalized strain measures defined by

fm(A) =

{

1
m

(Am/2 − 1) if m 6= 0
1
2

ln A if m = 0
, (6.3)

where all m ∈ R and A ∈ Sym(3)+. The specific choices of m = 0, 1, 2 defines the
Hencky strain, the Biot strain and the Green strain, respectively, in the Lagrangean
geometric setting of finite elasticity. For the Green-Lagrangean strains with m=2 it is
readily observed that the basic invariants of (6.1) coincide with those of (6.2) when the
latter invariants are computed with respect to the plastic metric. This already makes
clear for an isotropic integrity basis that the use of the Lagrangean elastic strain measure
(6.2) is in general consistent with the approach (6.1) only if the energy storage function
depends on εe

m and Gp. However choosing m = 0 in (6.1) and (6.2), we observe εe
0 = εe

0

for the special case of co-axial total and plastic deformations where C and Gp commute
and the plastic map is identified by F p = Gp1/2. In this case, the logarithmic Lagrangean
elastic strain measure defined by

εe :=
1

2
ln C − εp (6.4)

yields the additive split (6.2), which is at least closer to multiplicative form (6.1). The log-
arithmic plastic strain εp := 1

2
ln Gp defined in (6.4) with Gp(t0) = G may be considered

as the internal variable that enters the constitutive formulation.

6.1.2. Modular Structure of the Constitutive Equations. The additive de-
composition of the total strains into elastic and plastic parts is a typical feature of the
geometrically linear theory of plasticity. Thus the form (6.4) provides a natural basis for
a material-independent extension of constitutive structures from the geometrically linear
theory to the non-linear theory at finite strains. The point of departure for this extension
is an a priori six-dimensional approach to finite plasticity based on the notion of a plastic
metric. Within this general framework, we consider three modules which define a class of
finite plasticity models consistent with (6.4):
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• Geometric pre-processor defines the total and plastic logarithmic strain mea-
sures, which are obtained from the current and plastic metric, respectively.

• Constitutive model describes the constitutive equations for elasto-visco-plasticity
in the logarithmic strain space in a structure identical to geometrically linear theory.

• Geometric post-processor maps the objects obtained in the logarithmic strain
space to their nominal, Lagrangean or Eulerian counterparts.

The attractive feature of the above outlined modular structure of finite plasticity is the
possibility to adopt known constitutive models of the infinitesimal theory as a module in
the logarithmic space. We apply this framework to a model of rate-dependent elastoplas-
ticity for modeling of glassy polymers by taking into account the orientation hardening,
which can be modeled by the network models of rubber elasticity. Now, we outline the
fundamental steps of the Lagrangean geometric approach to finite plasticity with reference
to a constitutive module in the logarithmic strain space framed by geometric the pre- and
post-processing steps.

Geometric Pre-processing of the Logarithmic Strain Space. A key point in
constructing a framework of finite plasticity is the definition of an elastic strain measure εe.
This measure enters as a variable the constitutive function that describes the macroscopic
elastic energy storage. We assume this strain measure to be a function of the above
introduced Lagrangean current and plastic metric tensors, i.e.

εe = εe(C,Gp) . (6.5)

The elastic strain can be conceptually defined based on the notion of additive form as

εe := ε− εp (6.6)

being consistent with (6.4) in terms of the logarithmic Lagrangean total and plastic strains

ε :=
1

2
lnC and εp =

1

2
ln Gp , (6.7)

respectively. The logarithmic tensor function f0 maps the multiplicative characteristics
of large-strain elasto-plasticity to the additive structure of the geometrically linear theory.
In particular, we note the relationship

Jp :=
√

det[Gp] = exp[tr[εp]] (6.8)

for the plastic Jacobian that governs the change of volume during plastic deformation.
Recall that the plastic incompressibility condition demands

det[Gp] = 1 ⇐⇒ tr[εp] = 0 . (6.9)

Thus, the incompressibility constraint on the plastic metric Gp in the context of an
isochoric plastic flow is described by the additive constraint on the trace of the logarithmic
plastic strain εp. As already mentioned above, this is the key property that motivates
the choice of the logarithmic strain measures (6.7). Owing to the one-to-one relationship
between Gp and εp in (6.7)2, we may consider the logarithmic plastic strain measure εp

as an internal variable alternative to Gp. The evolution of εp is then exclusively defined
in the constitutive box associated with the logarithmic strain space defined below.
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Derivation of the transformation tensors of the logarithmic strain space is a purely
geometrical operation that is based on the stress power (2.45)

P(t) := gP (t) : Ḟ (t) (6.10)

defined per unit reference volume of the material. The power expression in (6.10) is
represented in terms of the non-symmetric nominal stress tensor P depicted in Figure 6.1c.
This tensor is said to be work-conjugate to the rate Ḟ of deformation. The non-symmetric
tensors gP and F are considered as the work pair of dual external variables of the local
elastic-plastic material element. The logarithmic strain measure ε defined in (6.7)1 is a
function of the current metric C, which in turn depends also on the deformation F and
the Eulerian standard metric g due to the pull-back operation on g illustrated in Figure
6.1a. The key intrinsic feature of the subsequent treatment is the computation of the
sensitivity of this strain measure with respect to a change of the deformation. To this
end, we introduce the relationships

ε̇ = Q : Ḟ and Q̇ = L : Ḟ (6.11)

in terms of the fourth and sixth order nominal transformation tensors defined byQ := ∂Fε and L := ∂2
FFε , (6.12)

respectively. These transformation tensors play a central role in the forthcoming treat-
ment. Insertion of the inverse form of (6.11)1 into (6.10) leads us to an alternative de-
scription of the stress power

P(t) := σ(t) : ε̇(t) (6.13)

where σ:=gP :Q−1 stands for the Lagrangean stress tensor work-conjugate to the logarith-
mic strain measure ε. The symmetric Lagrangean tensors σ and ε provide a convenient
pair of dual external variables of the local material element associated with the logarith-
mic strain space. It is worth remarking on that for an isotropic hyperelastic material, the
stress tensor σ := ∂εW (ε) coincides with the so-called rotated stress tensor obtained by
the pull-back of the Kirchhoff stress tensor τ with the rotational part R of the deforma-
tion gradient F , i.e. σ = RT τR . For a different interpretation and a derivation of the
rotated stress tensor σ, the reader is referred to Simó & Marsden [184].

Constitutive Model in the Logarithmic Strain Space. Now we consider a con-
stitutive model of rate-dependent elastoplasticity that is exclusively restricted to the log-
arithmic strain space. This model is considered as a constitutive box, its input is being
given by the logarithmic strain measure ε and a set I := {εp, . . .} of internal variables
consisting of the logarithmic plastic strain tensor εp and some additional internal variables.
What comes out of the constitutive box is the current stress σ dual to the logarithmic
strain ε and the associated algorithmic elastic-plastic tangent moduli Ealgo

{ε,I } =⇒ MODEL =⇒ {σ,Ealgo} . (6.14)

The attractive feature of the constitutive model is that it can preserve the structure of
plasticity model of geometrically linear theory and thus the model can adopt standard
constitutive structures of the small strain theory. The details of the specific constitutive
model for viscoplasticity of glassy polymers are elucidated in Section 6.2.
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Geometric Post-processing of Nominal Stresses and Moduli. Once the stresses
and consistent tangent moduli in the logarithmic strain space have been obtained from the
constitutive model in (6.14), we map them to the nominal stresses and nominal moduli
based on the straight forward application of the transformation rules introduced in Section
6.1.2. Taking into account (6.13)2 and (6.11), we obtain

gP = σ : Q and Aalgo = QT : Ealgo : Q + σ : L (6.15)

in terms of the transformation tensors introduced in (6.12) with respect to the rate of
deformation. Clearly, the recovery of the plastic metric from the logarithmic strain space
is obtained by the exponential map Gp = exp[2εp] as an inverse to the logarithmic map
(6.7)2. The equations (6.7), (6.14) and (6.15) represent the three key steps of the modular
constitutive structure of finite plasticity in the continuous setting.

Geometric Post-processing of Lagrangean and Eulerian Objects. The sym-
metric Lagrangean stresses S := F−1P considered in Figure 6.1c and their associated
elasto-plastic tangent moduli CL

algo are obtained analogously to the above derivation of
the nominal tensors. We get the representations

S = σ : QL and CL
algo = Qep

L : Ealgo : QL + σ : LL (6.16)

in terms of the fourth and sixth order Lagrangean transformation tensors QL and LL,
respectively. They are defined as the derivatives of the logarithmic strain measure with
respect to the convected current metric C.QL := 2∂cε and LL := 4∂2

ccε . (6.17)

The Lagrangean consistent tangent moduli CL
algo govern the sensitivity of the symmetric

Piola-Kirchhoff stress with respect to the Lagrangean rate Ċ of deformation by

Ṡ = CL
algo :

1

2
Ċ . (6.18)

For the sake of completeness, we also consider the Eulerian Kirchoff stresses τ := PF T

and their associated tangent moduli 
algo. Being analogous to (6.15) and (6.16), we get

τ = σ : QE and 
E
algo = QT

E : Eep : QE + σ : LE . (6.19)

in terms of the Eulerian transformation tensors QE and LE that are defined as derivatives
of the logarithmic strain measure with respect to the Eulerian standard metric g in the
form QE := 2∂gε and LE := 4∂2

ggε . (6.20)

The Eulerian algorithmic tangent 
E
algo governs the objective rate equation for the Lie

derivative £vτ = F ṠF T of the Kirchhoff stresses

£vτ = 
E
algo :

1

2
£v g . (6.21)

For the explicit forms of the transformation tensors of the stresses and tangent in the
logarihtmic strain space to their nominal, Lagrangian or Eulerian counterparts we refer
to Miehe & Lambrecht [151].
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6.2. Constitutive Model for Viscoplasticity of Glassy Polymers

In the preceding section, the modular overall kinematic framework of the proposed
model was outlined in the logarithmic strain space. In this section, we first introduce the
overall constitutive equations and then specify the constitutive functions in the logarith-
mic strain space analogous to the geometrically linear theory.

6.2.1. Overall Constitutive Structure. The state of the material a local material
point is assumed to be described by the total Hencky strain ε and the plastic strain εp

that have been introduced in (6.7). The selected thermomechanical potential, Helmholtz
free energy, is then formulated in terms of the state variables

ψ = ψ̂(ε, εp) = ψe(ε− εp) + ψp(εp) (6.22)

per unit reference volume. The free energy is additively split into an elastic part and a
plastic part. The former represents the stored energy due to the elastic deformations, the
latter, on the other hand, describes the transformational energy stored in the plastically
deformed regions. This part acts as a potential for back stresses that drive essentially
thermal recovery from the plastically deformed state to the undeformed state upon an
increase in ambient temperature above the glass transition temperature θg. The total
stresses σ and the back stresses β are then determined directly from the free energy by
following the celebrated methodology in Coleman & Gurtin [35],

σ := ∂εψ(ε− εp) and β := ∂εpψp(εp) (6.23)

respectively. With these definitions at hand, we can now express the local dissipation per
unit reference volume in the form

D := σ⋆ : ε̇p ≥ 0 (6.24)

where σ⋆ := −∂εpψ = σ − β denotes the thermodynamic driving stress tensor conjugate
to the plastic strains εp . In order to complete the overall constitutive framework what
remains to be defined is the evolution rule for the plastic strains εp. To this end, we
consider the following viscoplastic flow rule

ε̇p := γ̇p dev[σ⋆]

|| dev[σ⋆]|| (6.25)

where γ̇p ≥ 0 and dev[σ⋆] := σ⋆ − 1
3
tr[σ⋆]1 with tr[•] := (•):1 . Notice that for the

initial value of the plastic strain tensor εp(t0)=0, the plastic deformation remains volume
conserving, i.e. tr[εp(t)] =0 . This is in accordance with the finite viscoplastic behavior of
ductile glassy polymers that undergo plastic deformations chiefly through shear yielding
without exhibiting dilative plastic flow, such as crazing. The only restriction dictated by
the second law of thermodynamics (6.24) on the model is the positiveness of the amount
of plastic strain rate γ̇p. That is, the model is said to be thermodynamically consistent
if the viscoplastic evolution rule fulfills the condition γ̇p ≥ 0 . As will be shown in the
subsequent part, this requirement is satisfied identically due to the exponential form of
the Arrhenius-type flow rule.

6.2.2. Specific Forms of the Constitutive Equations. The above outlined model
of viscoplasticity is basically governed by the three constitutive functions: The elastic
ψ̂e(ε − εp) and the plastic ψ̂p(εp) parts of the free energy, and the viscoplastic flow rule
γ̇p. In this section, the specific forms of these constitutive functions shall be introduced.



102 Finite Viscoplasticity of Amorphous Glassy Polymers

The Elastic Free Energy. As discussed in Section 1.1.2, the experimental obser-
vations presented in Figures 1.3 and 6.4 as well as in the literature indicate that the
deformation in the pre-yield branch is limited to small values compared to large plastic
strains attained. In spite of the viscoelastic effects leading to a non-linearity prior to the
macroscopic yield, we left them off the present formulation. For this reason, linear elastic-
ity in the logarithmic strain space is considered to be sufficient for the current scope. To
this end, we choose a quadratic form for the elastic free energy in terms of elastic strains
εe := ε− εp

ψe = ψ̂e(ε− εp) =
κ

2
tr 2[ε− εp] + µ dev[ε− εp] : dev[ε− εp] (6.26)

where κ and µ are the bulk modulus and the shear modulus, respectively. This particular
from of ψ̂e immediately yields the stress expression through (6.23)1

σ := −p1 + 2µ dev[ε− εp] with p := −κ tr[ε− εp] . (6.27)

It is worth noting that the ellipticity of the elastic free energy ψ̂e given in (6.26) is restricted
to a certain interval of elastic strains εe, see e.g. Miehe & Lambrecht [151], Bruhns,
Xiao & Meyers [30]. For instance, it can readily be shown that the maximum value
of the stretch λ in a uniaxial test is bounded by λ = exp[1] in the case of incompressible
elasticity. For most of glassy polymers undergoing finite deformations well below the glass
transition temperature, however, the range of elastic deformations is far below this limit.
Therefore, the present formulation at hand does not run any practical risk of contradicting
the ellipticity requirements.

The Plastic Free Energy Accounting for the Post-Yield Hardening. The
second constitutive function to be specified is the plastic part of the free energy ψ̂p.
It describes the viscoplastic kinematical hardening through the back stresses that have
been introduced in (6.23)2. As originally proposed by Haward & Thackray [91],
the form of the plastic free energy has conventionally been adopted from the theory of
entropic rubber elasticity based on finite extensibility of the polymer chains. This part
essentially models the intramolecular resistance to the plastic flow due to the alignment
of the chains in the principal deformation direction. The key physical motivation is due to
the celebrated experiment which demonstrates that a plastically deformed glassy polymer
test piece recovers its original undeformed shape upon heating above the glass transition
temperature, see Haward & Mann [89], Boyce & Haward [27]. The thermal energy
input activates plastically stored energy in the material possessing an entangled network
structure. For this reason, it is common practice to model the post-yield strain hardening
via network models that provide a bridge between micro and macro deformations through
particular kinematical assumptions. To this end, we consider two network models, the
eight-chain model of Arruda & Boyce [8] and the non-affine micro-sphere model of
Miehe, Göktepe & Lulei [149], see also [148, 69] for its extensions to finite rubber
inelasticity. In contrast to the affine network models, such as the three-chain model of
James & Guth [101] and Wang & Guth [203], and the affine full network model
of Treloar & Riding [195, 197], these non-affine network models define a single
deformation measure for the whole polymer network. The advantage of the non-affine
models compared to the models based on affine kinematics becomes more transparent as
the plane strain and biaxial deformation states are considered besides the uniaxial stress
state, see Arruda & Boyce [7], Wu & van der Giessen [206], Miehe, Göktepe
& Lulei [149], Boyce & Arruda [25], Marckmann & Verron [127] for a review.
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The plastic network free energy modeling the post-yield hardening is specified in the
non-Gaussian form in terms of the network plastic stretch λp = λ̂p(εp)

ψp = ψ̂p(λp) = µpNp

(

λp
rL−1(λp

r) + ln
L−1(λp

r)

sinhL−1(λp
r)

)

(6.28)

where µp, Np are the material parameters standing for the plastic shear modulus and the
number of segments in a polymer chain, respectively. The function L−1 denotes the inverse
of the well-known Langevin function defined by L(·) := coth(·) − 1/(·) . The parameter
Np controls the limited extensibility range of chains through the relative plastic network

stretch defined by λp
r := λp/

√

Np . For the particular form of ψ̂p in (6.28), the back
stresses can readily be computed through (6.23)2

β := ∂εpψp(λp) = ψp′∂εpλ̂p (6.29)

where ψp′ := ∂λpψp = µpλp(3Np−λp2)/(Np−λp2). In the derivation of ψp′, we employed the
Padè approximation of the inverse Langevin function L−1(λp

r) ≈ λp
r (3Np−λp2)/(Np−λp2)

as proposed by Cohen [34]. Before specifying the functional dependency of the plastic
network stretch on the plastic strain tensor εp for the respective network models, we
introduce the reference plastic metric in the inverse form of (6.7)2

Gp := exp[2εp] =

3
∑

A=1

(λp
A)2 n

p
A ⊗ n

p
A (6.30)

being co-axial to the plastic strain tensor εp =
∑3

A=1 ǫ
p
A n

p
A ⊗ n

p
A with ǫpA := lnλp

A .
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Figure 6.2: Polymer network models employed for modeling the post-yield kinematic hard-
ening. a) The eight-chain model of Arruda & Boyce [7] and b) the non-affine micro-sphere
model of Miehe, Göktepe & Lulei [149].

In the eight-chain model, the plastic stretch of a chain extending from the center of a
plastically deformed rectangular prism having the edges oriented in the principal plastic
directions n

p
A is assumed to be representative for the whole polymer network, see Figure

6.2a. Thus, the plastic network stretch of the eight chain model λp
ec is obtained in terms

of the first invariant of the reference plastic metric Gp

λp
ec :=

√

1

3
tr[Gp] =

√

1

3
[(λp

1)
2 + (λp

2)
2 + (λp

3)
2] . (6.31)

One of the basic ideas proposed in the non-affine micro-sphere model was the introduction
of a field of stretch fluctuations f defined on the micro-sphere S of space orientations, see



104 Finite Viscoplasticity of Amorphous Glassy Polymers

Figure 6.2b. This fluctuation field multiplicatively links the micro-stretch λ of the single
chain to the line-stretch λ̄ of the continuum in the format λ = λ̄f . The fluctuation field
f was determined by a principle of minimum averaged free energy as dicussed in Section
3.3.3. The minimization principle is assumed to be constrained by a m-root averaging
condition, yielding a closed-form result for the non-affine network stretch

λp
ms :=

(

1

|S|

∫

S

(λ̄p)mdA

)
1
m

=
〈

(λ̄p)m
〉

1
m (6.32)

where m > 0 is considered as an additional material parameter that describes the non-
affine stretch characteristics. The affine plastic stretches λ̄p in the direction of the La-
grangean unit vectors r are determined by

λ̄p :=
√

r ·Gpr (6.33)

where the orientation of the Lagrangean unit vectors is governed by spherical coordi-
nates r(ϕ, ϑ) = cosϕ sinϑe1 + sinϕ sinϑe2 + cosϑe3 in a fixed standard Cartesian frame
{ei}i=1,2,3 with ϕ ∈ Dϕ := [0, 2π] and ϑ ∈ Dϑ := [0, π], see Figure 6.2b. Notice that a
special choice of m = 2, this model recovers the eight chain model as a special case due
to the identity 〈r ⊗ r〉 = 1

3
1.

Having the respective plastic network stretches defined in (6.31) and (6.32), we can
proceed with the determination of the tensorial part of the back stresses ∂εpλ̂p introduced
in (6.29). For the eight chain model, we have λp2

ec = 1
3
tr[Gp] =

∑3
A=1

1
3

exp[2ǫpA]. Making
use of the result ∂εpǫ

p
A = n

p
A ⊗ n

p
A, we obtain

∂εpλp
ec =

3
∑

A=1

exp[2ǫpA]

3λp
ec

n
p
A ⊗ n

p
A = (3λp

ec)
−1Gp (6.34)

that yields the closed-form expression for the back stresses

βec = µ̂p
ec(λ

p
ec) Gp (6.35)

where µ̂p
ec(λ

p
ec) := µp (3Np − λp2

ec )/(3(Np − λp2
ec )). In order to compute the explicit form

of the back stresses for the micro-sphere model, we determine ∂Gpλ̄p = r ⊗ r/(2λ̄p) and

∂Gpλp
ms = (λp

ms)1−m

2
〈(λ̄p)m−2r ⊗ r〉 . Incorporation of these results in (6.29) leads us to

βms = µ̂p
ms(λ

p
ms)〈(λ̄p)m−2r ⊗ r〉 : P

p (6.36)

where µ̂p
ms(λ

p
ms) := µpλ

p(2−m)
ms (3Np − λp2

ms)/(2(Np − λp2
ms)) and Pp := ∂εpG

p .

The flow rule based on the double-kink theory. As discussed in Section 1.1.2,
the viscoplastic flow of amorphous glassy polymers is a thermally activated stochastic
process the rate of which γ̇p is conventionally described by the Arrhenius-type equation
γ̇p = γ̇o exp(−∆Gf/k θ) being proportional to the Boltzmann factor exp(−∆Gf/k θ) . In
the present model, we conceptually follow the well-accepted double-kink theory of Argon
[5] based on the wedge disclinations, see Figure 6.3a. In this approach, the plastic flow is
considered as a rotation of small polymer molecule segments from their initial randomly
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Figure 6.3: Double-kink theory of Argon [5]. a) Formation of a molecular double-kink
by a pair of wedge disclination loops. b) Reverse plastic flow mechanism by formation of a
pair of kinks in a polymer molecule embedded in a surrounding elastic matrix, see also Li
& Gilman [117].

oriented, flexed state to the principal deformation direction. In order to compute the
activation energy, the reverse process is modeled by the formation of a kink pair resisted
both by intra- and intermolecular oppositions. At temperatures, well below the glass tran-
sition temperature, the intermolecular resistance due to the elastic interaction between a
disclination loop and neighboring chains governs the major part of the overall activation
energy necessary for the formation of a double kink.

The activation energy to be surmounted is determined by subtracting the amount of
work ∆W done by externally applied effective shear stress τ from the the free energy ∆F
stored during formation of a pair of disclination loops in the surrounding medium, see
Figure 6.3b. The total micro-free energy ∆F was already computed in Li & Gilman
[117] where they employed the Volterra’s method, Love [121], for the determination of
the displacement field. The linear elasticity constitutive equations have then been used
for determining the far stress field over the domain. The strain energy could be estimated
by integrating the stress field σzz outside the disclination loop. This yields a free energy
∆Fsing = 3πa3µω2/(32(1 − ν)) for a single disclination loop. Apparently, there exists a
negative interaction energy due to the integration of the stress field of one disclination
loop over another. The interaction energy between two disclination loops having the
same strength ω and cylinder radius a gets the form ∆Finte = 9πω2a8/(8(1− ν)z5). The
overall free energy stored due to the two wedge disclinations surrounded by the elastic
medium with the shear modulus µ and the Poisson’s ratio ν is then ∆F = 2 ∆Fsing −
∆Finte = 3πa3µω2/(16(1− ν)) − 9πω2a3/(8(1− ν))(a/z)5 . When a pair of dislination
loops is formed, the rotation ω yields a compressive strain field proportional to z (1−cosω).
The amount of work done by the externally applied constant shear stress is determined
via incompressibility assumption ∆W = πa3ω2τ(z/a). The amount of the activation free
enthalpy can then be expressed by combining these results

∆Gf = ∆F −∆W =
3πa3µω2

16(1− ν) −
9πω2a3

8(1− ν)
(a

z

)5

− πa3µω2

(

τ

µ

)

(z

a

)

. (6.37)

It can be immediately seen that ∆Gf does not contain any extremum in ω, but in the z
coordinate due to the assumption that intermolecular interactions are dominating com-
pared to the intramolecular ones. Setting the derivative of the activation free enthalpy
with respect to the ratio z/a to zero yields (z/a)∗ = [45µ/(8τ(1− ν))]1/6 , and its insertion
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into (6.37) gives

∆G∗
f =

3µπa3ω2

16(1− ν)

[

1−
(

τ

s0

)
5
6

]

(6.38)

where the athermal shear strength defined by s0 := 0.077µ/(1− ν) . Use of this result in
the Arrhenius equation γ̇p = γ̇o exp(−∆G∗

f/k θ) leads us to the flow rule

γ̇p := γ̇o exp

[

−As
θ

(

1−
{τ

s̃

}
5
6

)]

(6.39)

where τ :=
√

J2(dev[σ⋆]) =
√

dev[σ⋆] : dev[σ⋆]/2 and γ̇o, A = 39πω2a3/16k are the
material parameters. In (6.39), the athermal shear strength is taken to be different from
s0 in the original theory [5]. In order to account for the the pressure dependency of
yielding as well as the succeeding true stress softening, we replace the original athermal
shear strength s0 with s̃ := s + αp where α is a new material parameter controlling the
pressure sensitivity of the yield stress. Its value ranges from 0.1 to 0.2 for most of glassy
polymers, see e.g. Rabinowitz, Ward & Parry [167], Bowden & Jukes [22]. The
stress softening is incorporated by employing the phenomenological evolution rule for s
proposed by Boyce, Parks & Argon [28]

ṡ = h (1− s/sss) γ̇
p with s(0) = s0 (6.40)

where h, s0 an sss denote the additional material parameters describing the slope of the
softening, initial and steady state values of the athermal shear strength s, respectively.

6.2.3. Algorithmic Setting of the Model. In the algorithmic treatment of the
evolution equations, we consider an incremental formulation at discrete time steps ∆t :=
tn+1 − tn within a typical time interval [tn, tn+1]. All state variables at time tn are given
and in what follows indicated by the subscript n.

Update of internal variables. The update of the plastic strain tensor εp and the
athermal shear strength s is carried out by means of an algorithm that integrates the
evolution equations (6.25) and (6.40) in the time interval. Here we employ a fully explicit
numerical integration scheme for the update of s through (6.40) and a fully implicit update
scheme for εp via (6.25). The update of the athermal shear strength then gets the form

s = sn + ∆t ṡn = sn + ∆t h (1− sn/sss) γ̇
p
n and s̃ = s+ α pn . (6.41)

Owing to the explicit update of the athermal shear strength s̃, hereafter it can be treated
as a constant in the expressions containing s̃. Use of the backward Euler update for εp

leads us to the form

εp = εp
n + ∆t γ̇pN with N :=

dev[σ⋆]

‖dev[σ⋆]‖ . (6.42)

This update equation of the plastic strains is non-linear due to implicit dependencies of γ̇p

and N on the current value of εp. For this reason, a local Newton-type iterative update
scheme has to be devised.
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In order to start with the iterative scheme, we first introduce a non-linear residual
function r of the plastic strain tensor for a frozen deformation state ε at time tn+1

r(εp) := εp − εp
n −∆t γ̇p N = 0 . (6.43)

The linearization of the residuum r is carried out at the kth step of the Newton-Raphson
iteration about ε

p
k

Lin r(εp)|εp

k
= r(εp

k) + ak : ∆εp = 0 (6.44)

where the local tangent of the Newton iteration is defined asak :=
∂r(εp

k)

∂εp
. (6.45)

The update equation for εp at the kth step is then obtained by solving (6.44) for εp

εp ← ε
p
k − a−1 : r(εp

k) . (6.46)

The local tangent a is computed by inserting the residual (6.43) into (6.45)a = I−∆t h : ∂εpdev[σ⋆] (6.47)

where we introduced the forth-order tensor h defined byh :=
∂ (γ̇p N)

∂ dev[σ⋆]
= α1I + α2N ⊗N (6.48)

with the coefficients

α1 :=
γ̇p

‖dev[σ⋆]‖ and α2 := α1

(

5

6

As

θ

{τ

s̃

}
5
6 − 1

)

.

For a frozen state of the total strain tensor ε, we have

∂εpdev[σ⋆] = ∂εpdev[σ]− ∂εpdev[β] = −(
e + 
p) (6.49)

where 
e := ∂εdev[σ]|εp = −∂εpdev[σ]|ε = 2µP and 
p := ∂εpdev[β]. Insertion of these
results into (6.47) yields a = I + ∆t h : (
e + 
p) . (6.50)

The explicit form of 
p directly depends on the network model employed for modeling the
back stresses β. For the sake of brevity, here we consider 
p corresponding only to the
eight-chain model. To this end, we retrieve the definition of back stresses in (6.35) and
recast it into the spectral form of a tensor-valued isotropic function of the plastic strains

dev[βec] =

3
∑

A=1

β ′
An

p
A ⊗ n

p
A (6.51)

where β ′
A := βA − 1

3

∑3
B=1 βB denote the eigenvalues of the deviatoric back stress tensor

with βA = µ̂p
ec(λ

p
ec) exp(2ǫpA) and n

p
A stand for its eigenvectors. Having introduced the

spectral form of dev[βec], its derivative with respect to εp can be obtained by
p := ∂εpdev[βec] =
3
∑

A=1

3
∑

B=1

c′ABm
p
A ⊗m

p
B +

3
∑

A=1

3
∑

B 6=A

1

2

β ′
A − β ′

B

ǫpA − ǫpB
(gAB + gBA) (6.52)
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where m
p
A := n

p
A⊗n

p
A , gijkl

AB := mik
A mjl

B +mil
A mjk

B , see also Appendix A. In the spectral
form of 
p, the coefficients c′AB under the first summation are defined by c′AB := cAB −
1
3

∑3
K=1 cKB where cAB stand for the derivatives of the principal backstresses βA with

respect to the plastic eigenstrains ǫpB. Their explicit form is readily determined from the
definition of the principal backstresses βK

cKL := ∂ǫp
L
βK =

µ̂p′
ec(λ

p
ec)

3 λp
ec

exp(2ǫpK) exp(2ǫpL) + 2 µ̂p
ec(λ

p
ec) exp(2ǫpK) δKL (6.53)

where µ̂p′
ec(λ

p
ec) := ∂

λp
ec
µ̂p

ec = 4µp(λ
p
ec −Np)/(3(Np − λp2

ec )
2) and δAB denotes the Kronecker

delta. Observe that the spectral form of 
p does not incorporate the cases where the
equal eigenvalues lead to singularities in the second term of (6.52). For the treatment
of these cases by limits and further details concerning representations in the eigen-space,
the reader is referred to Ogden [161], Šilhavý [182], Miehe & Lambrecht [151]
among others.

Algorithmic Tangent Moduli. In a typical implicit finite element analysis of a
non-linear boundary value problem, global Newton-type iterative schemes necessitate the
computation of the tangent moduli Ealgo being consistent with the numerical scheme used
for the update of the internal variables. Use of a stable implicit scheme for the update of
internal variables allows one to use larger time steps. The consistent tangent moduli are
defined as the sensitivity of the stress tensor to the conjugate logarithmic strain tensorEalgo = dεσ = Ee − 2µ∂εε

p (6.54)

where Ee := ∂εσ = κ1⊗1 + 2µP , P := I− 1
3
(1⊗ 1) and I denotes the symmetric forth-

order identity tensor. Computation of the consistent tangent moduli, however, requires
the sensitivity of strain-like internal variables to a total strain measure. For the present
case, the sensitivity of εp to ε can be computed from the persistency condition implying the
steady fulfillment of vanishing residuum defined in (6.43). Therefore, the total derivative
of the residuum must also be zero at any instant of the deformation, i.e.

dεr = ∂εr|εp + ∂εpr|ε : ∂εε
p = 0 . (6.55)

The left contractor of the second term is the local tangent ∂εpr|ε = a that has been
already computed in the last local Newton iteration step in (6.50). The sought derivative
can then be obtained from the condition (6.55) as

∂εε
p = −a−1 : ∂εr|εp . (6.56)

Recalling the definition of the residuum in (6.43), the derivative ∂εr|εp can be expressed
in the form analogous to (6.47)

∂εr|εp = −∆t h : 
e (6.57)

where the tensor h has been defined in (6.48). Finally, the insertion of (6.57) into (6.56)
leads us to the desired sensitivity

∂εε
p = ∆t a−1 : h : 
e . (6.58)

Incorporation of the result (6.58) in (6.54) yieldsEalgo = Ee − 2∆t µa−1 : h : 
e . (6.59)

Basic steps of the algorithmic treatment of the model are also summarized in Table 6.1.
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Table 6.1: Algorithmic Update of the Plastic Strains

1. Data Base. The history data {εp
n, sn, γ̇

p
n, pn} and the current total strain ε are given.

2. Explicit Update of the Athermal Shear Strength.

s̃ = sn + ∆t h (1− sn/sss) γ̇
p
n + α pn .

3. Implicit Update of the Plastic Strains.

i) Set k = 0 and initialize εp |k=0← ε
p
n

ii) Compute the dependent variables

γ̇p (6.39), σ (6.23)1, β (6.23)2, σ⋆ (6.24), τ (6.39)2 and N (6.42)2

iii) Compute the residual and its norm

r := εp − ε
p
n −∆t γ̇pN , ‖r‖ :=

√
r : r (6.43)

iv) Compute the local tangent a := ∂εpr (6.52)

v) Update plastic strains εp ← εp − a−1 : r

vi) Convergence check:
If ‖r‖ ≥ tol, k ← k + 1 goto ii)
else continue with 4.

4. Store the history variables and proceed with the Consistent Moduli.

6.3. Illustrative Numerical Examples

This section is devoted to the assessment of the modeling capacity of the proposed
approach by comparing its results to homogeneous as well as inhomogeneous experimen-
tal data. The homogeneous test data involve the true stress-true strain curves obtained
from the experiments conducted under different deformation rates and states on PMMA
(Polymethylmethacrylate) and PC (Polycarbonate). While the tensile stress–strain di-
agrams of the former are taken from the literature, [98], the compressive uniaxial and
plane strain experiments on PC have been newly carried out. The results of both are
then used for the identification of the adjustable material parameters. In addition to
the homogeneous experiments on PC, a three-dimensional cold drawing of a dumbbell-
shaped test piece, already depicted Figure 1.3, was carried out. The data acquired from
the inhomogeneous experiment contain not only the load-displacement diagram but also
the three-dimensional surface strain fields. These results are compared with the finite
element analysis of the cold drawing problem with the model parameters identified from
the homogeneous experiments.

6.3.1. Investigations on Homogeneous Deformation States. As discussed in
Section 1.1.2, the mechanical behavior of glassy polymers depends on many factors that
involve loading rate, temperature, deformation state. In this section, we focus on the
examples that particularly illustrate the rate and deformation state dependence of the
stress-strain response of PMMA and PC, respectively. These are the two representative
kinds of tough, high-density amorphous glassy polymers that are capable of undergoing
large plastic deformations without exhibiting brittle failure at room temperature.



110 Finite Viscoplasticity of Amorphous Glassy Polymers

The first set of experimental data, presented in Figure 6.4a, was reported by Hope,
Ward & Gibson [98]. The data exhibit the rate-dependent tensile true stress-strain
behavior of polymethylmethacrylate (PMMA) under different loading rates at θ=90◦C.
In order to investigate the rate-dependent behavior of PMMA, they employed waisted
specimens with 5 mm waist width. These test pieces were then subjected to extension
at different constant cross-head speeds. During the deformation, the lateral contraction
of each specimen was recorded so that they were able to compute the true stress-strain
curves for each constant crosshead speed but with varying true strain rate. Employing
the numerical differentiation and the interpolation techniques on these data, they could
extract the true stress-strain diagrams for the different true strain rates. Although it is a

well known fact that the deformation of PMMA at hight strain rates, e.g. ˙lnλ=11/s, leads
to an appreciable heating resulting in around 20◦C temperature increase, see Arruda,
Boyce & Jayachandran [9], these thermal changes and consequently softening in
the post yield behavior of the material are not reflected in these data. Nevertheless,
since the data clearly exhibit the rate dependence of the material response, they were
already employed in the literature, e.g. [27, 28]. Here, we also tested the model response
against these data. The simulations at three different rates of true strain are plotted
together with the corresponding test results in Figure 6.4a. In the simulation of these
data, the back-stress response is modeled by the eight-chain model. The values of the
material parameters used in the simulations are given in the caption of Figure 6.4. The
elastic material parameters κ, µ and the values of A, γ̇0 and α were taken be close to the
values reported in the literature, [28, 9], and kept frozen during the identification. The
parameters governing the yield stress and the stress softening behavior s0, sss, h, and the
post-yield hardening µp, Np, however, were adjusted by fitting the experimental curves.
The comparison shows the fairly good predictive capabilities of the proposed formulation
in simulating the tensile stress-strain response of PMMA at different strain rates.

The uniaxial and plane strain compression experiments on polycarbonate (PC) sam-
ples depicted in Figure 6.4b aim at presenting the deformation state dependence of the
material response. The ductile PC is produced by Bayer AG in Leverkursen under a
commercial name Makrolon 2607. Both experiments were conducted at a constant true

strain rate ˙lnλ= − 1 · 10−4 1/s on a MTS servohydraulic uniaxial testing machine at
room temperature. The rate of deformation was purposely selected to be slow enough to
suppress the temperature increase due to dissipative heating. For the compressive uniax-
ial experiments, cylindrical PC specimens having a 8 mm diameter and a 8 mm height
were employed. In the case of plane strain compression tests, however, cubic test pieces
with an edge length of 8 mm were used. In both experiments particular attention has
been paid to the appropriate lubrication between the contact surfaces of the specimen
and the steel platens of the test machine in order to avoid the severe barreling appearing
due to the friction developing under compression, Méndez, Göktepe & Miehe [136].
For this purpose, a combination of Teflon film (solid lubricant) and commercial oil-based
lubricant, WD-40, was employed as recently suggested in Dupaix & Boyce [52].

Experimental results presented in Figure 6.4b illustrate the typical yielding, stress
softening and post-yield strain hardening behavior of glassy polymers. As is commonly
applied, the value of true stress was determined based on the incompressibility assump-
tion. The deformation state dependence of the material response especially with regard
to the yield stress and the post-yield strain hardening is in agreement with the obser-
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Figure 6.4: Rate and deformation state dependencies in mechanical response of
PMMA and PC. a) True stress–true strain diagrams corresponding to the uniaxial ten-
sile tests conducted at three different rates at θ=90◦C. The set of material parame-
ters used in the simulations are κ=2633 MPa, µ=1003 MPa, µp=4.7 MPa, Np=3.5, γ̇0=1.13 ·
1011 1/s, A=167 K/MPa, h=250 MPa, s0=90 MPa, sss=76 MPa, α=0.2 . b) True stress–true
strain diagrams of the uniaxial and the plane strain compression experiments carried out

at true strain rate ˙lnλ= − 1 · 10−4 s−1 at room temperature. The set of material parame-
ters used in the simulations are κ=2000MPa, µ=900MPa, µp=11.5MPa, Np=2.35, γ̇0=6.24 ·
107 1/s, A=140 K/MPa, h=500 MPa, s0=102 MPa, sss=82 MPa, α=0.11 .

vations reported in the literature, see for example Arruda & Boyce [7]. The higher
value of the yield stress encountered in the plane strain compression compared to the uni-
axial compression is due to the excessive constraining boundary conditions in the plane
strain deformation state and the pressure dependency of the yield stress, see Spitzig
& Richmond [187]. In the case of plane strain compression chain molecules have a
freedom to plastically align in only one direction. In the uniaxial compression, however,
they can freely orient themselves symmetrically in the plane perpendicular to a loading
axis. If we consider those as nearly incompressible deformations, the chains aligning in
a single direction in the plane strain compression state have to elongate more than the
macromolecules stretch symmetrically in the uniaxial state. This leads to the apparent
deformation state-dependent post-yield response and consequently evolution of different
kinds of anisotropy.

Another aim of the homogeneous tests on PC samples was the determination of the
material parameters to be used in finite elements analysis of the cold drawing example on
the same material partially presented in Sections 1.1.2 and 6.3.2. During the identifica-
tion of the model parameters, we followed a way analogous to the one employed for the
parameters of the data in Figure 6.4a. The values of the model parameters given in the
caption of Figure 6.4 were first determined for the model based on the eight chain model
kinematics, i.e. m=2 for the micro-sphere model. The comparison of the simulations
against the experimental results in Figure 6.4b clearly shows that the proposed approach
in the logarithmic strain space is able to capture the deformation state dependence of the
yield stress and the post-yield hardening very well. Apart from the fittings based on the
eight chain model (solid line), the effect of the non-affinity parameter m of the micro-
sphere model on the post-yield response is also investigated. The value of m is varied
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from m=2 to m=1.5, 2.5. The larger the value of m, the stiffer the post-yield material
behavior gets, see Figure 6.4b. This provides an additional degree of freedom that serves
to improve the post-yield fittings. Observe that the quality of the post-yield hardening
simulation in the both uniaxial and plane strain cases has been slightly improved for the
values of the non-affinity parameter m greater than 2.
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60108

Figure 6.5: Geometry, boundary conditions and finite element discretization of the
dumbbell-shaped polycarbonate test piece subjected to extension in the x-direction at the
deformation rate ˙̄u=2 mm/min. All dimensions are given in millimeters.

6.3.2. Cold Drawing of a Dumbbell-Shaped PC Specimen. In additional to
the evaluation of the proposed approach with respect to the homogeneous experiments
presented in the preceding section, we further test the capabilities of the proposed model
with the parameters determined based on the homogeneous experiments against a three-
dimensional cold drawing experiment. To this end, we consider a dumbbell-shaped PC
test piece whose geometry is specified according to ISO 527 and also depicted in Figure 6.5.
The compressive uniaxial and plane strain stress-strain response of the material of interest
is presented in Figure 6.4b. The inhomogeneous tension experiment were carried out
at a cross-head speed ˙̄u=2 mm/min and analyzed with the optical measuring system
called Aramis. The load-displacement diagram and the characteristics of the deformation
process have been discussed in detail in Section 1.1.2. For the successful recognition of the
three-dimensional surface of the specimen and its deformation via the grating method,
the specimen must be coated in a specific manner depending on the kind of material to
be tested. In the case of the transparent PC under the current investigation a suitable
treatment for the surface is the dense-spraying of standard white glossy coating first, and
next, while the former is still fresh, a more sparsely sprayed layer of matte graphite-based
paint is superimposed. This provides the contrast over the surface that the grating method
requires for determining the deformation and hereby calculating the inhomogeneous three-
dimensional strain field on the material, Méndez, Göktepe & Miehe [136]. This is
achieved by the use of a measuring arrangement with two CCD cameras. During the
experiment the software acquires images with both cameras simultaneously allocating
coordinates to every pixel on them. As a post-process the pixels of the recorded images
are matched via mathematical transformations, see Ritter [174]. Once this has been
done for the initial set of images, the process is repeated for the rest of the recorded
stages of the deformation. From the difference of the coordinates of the pixels from the
reference measurement to the others the displacement vectors are obtained. For further
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details on the grating method and the system Aramis, the reader is referred to Winter
[205], Bergmann & Ritter [13], Gom [1].
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Figure 6.6: Simulation of the load-displacement curve of a dumbbell-shaped PC specimen
subjected to extension at a cross–head speed ˙̄u=2 mm/min . The set of material parameters
were determined based on the homogeneous uniaxial and plane strain compresion experi-
ments shown in Figure 6.4b.

Apart from the dimensions of the dumbbell-shaped specimen, the boundary conditions
and the finite element (FE) discretization of its geometry are depicted in Figure 6.5.
Owing to the apparent symmetries in its geometry, in the FE model of the specimen
only its one quarter is discretized by 3750 eight-node Q1P0 mixed brick elements. While
the end of the specimen at x = 0 mm is being fixed in all three directions, the degrees
of freedom in y- and z-directions on its other end are restrained and the deformation
in x-direction ū(t) is prescribed, see Figure 6.5. Boundary conditions on the common
facets with other quarters are governed by apparent geometrical symmetry conditions.
The whole test piece is subjected to an extension at a cross-head speed ˙̄u = 2 mm/min
at room temperature. In order to attain the neck initiating at the same place with the
experiments, a slight geometrical imperfection at the end of the gauge section is imposed.
The simulation of the global load-displacement response of the flat coupon extension is
depicted in Figure 6.6 in comparison with the experimental curve. Characteristic features
of the experimental load-displacement curve, which are discussed in detail in Section 1.1.2,
are traced very well by the proposed model in the logarithmic strain space. Observe
that the proposed model captures not only the load-level where the macro-yield occurs
but also the amount of softening and the location of stress hardening where the neck
reaches the end of the gauge section with the parameters determined from homogeneous
compression experiments. This clearly justifies the procedure followed in identifying the
model parameters and shows the multi-dimensional characteristics of the model.

In addition to the load-displacement diagram depicted in Figure 6.6, contour plots in
Figure 6.7 compare the field of thickness change during the cold drawing. The results
obtained from the FE analysis (first and second columns) are compared with the mea-
surements conducted by the optical measurement facility (third column). The labels of
the rows a)-f) in Figure 6.7 indicate the deformation stages corresponding to the levels
labeled with the same letters as in Figures 1.3 and 1.4. The field of thickness change
up to the macro-yield, stages a) and b), is homogeneous throughout the test piece. The
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a)

b)

c)

d)

e)

f)

δt [%]
0 6.25 12.5 18.75 25

Figure 6.7: Thickness change computations obtained by the three-dimensional finite ele-
ment analysis (first and second columns) are compared with their corresponding inhomo-
geneous experimental results (third column). The labels of the rows a)-f) indicate the
deformation stages labeled with the same letters in Figures 1.3 and 1.4. In the FE analysis,
the same material parameters as those given in Figure 1.3b have been used.

thickness change starts to localize in the softening branch between the load levels b) and
d). It reaches the maximum value 25% at stage e) and is driven by the neck front along
the gauge section. The computational results of the thickness change at almost all de-
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Figure 6.8: Contour plots of the equivalent plastic strain ‖εp‖ [−] (left column) and the
amount of plastic flow γ̇p [1/s] (right column) at the stages a)-h) as denoted in Figure 1.3.



116 Finite Viscoplasticity of Amorphous Glassy Polymers

formation stages agree with the optical measurements quantitatively. These predictive
results obtained from the simulation of the multi-axial inhomogeneous experiment once
more indicate the validity of the proposed model.
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Figure 6.9: Stereographic projection plots of the plastic stretch λ̄p (6.33) corresponding
to the three stages c), d) and e) of the deformation are plotted along with the macroscopic
equivalent plastic strain contours at the depicted material points.

The contour plots in Figure 6.8 present the distributions of the equivalent plastic strain
‖εp‖ and the amount of plastic flow γ̇p on the left and the right columns, respectively. The
labels of the rows a)-f) indicate the deformation stages corresponding to the levels labeled
with the same letters as in Figure 1.3. Although there is no geometrically apparent neck at
the maximum load level b), plastic flow starts to localize at the succeeding stage c) at the
location where the slight initial geometrical imperfection has been assigned. The stage d)
with the lowest post-yield load value corresponds to the stabilized state of the neck where
the maximum plastic flow rate has been already achieved. At this stage the localized zone
starts to separate at opposite directions drawing the shoulders of the neck towards grips.
The states e),f) and g) illustrate the different degrees of the neck propagation where the
progressive drawing of the material has been clearly exhibited. Owing to the unsymmetric
initiation of the neck along the specimen, its propagation towards right grip did not last as
long as in the case of movement to the left end. When the neck shoulder reaches the end
of the gauge section, load deflection curve gets stiffer, stage h). The contour plots of the
equivalent plastic strain field for the deformation stages c)-e) are repeated in Figure 6.9
together with the stereographic projection plots of the plastic stretch λ̄p introduced in
(6.33). The close-up pole figures of the plastic stretch corresponding to the indicated
material points clearly depict the variation of its distribution and also the evolution of its
intensity during the stages of neck stabilization and its propagation.
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7. Concluding Remarks

This thesis is concerned with the development of new micromechanically motivated
models for rubbery and glassy polymers. The particular types of material response con-
sidered cover the finite elasticity, viscoelasticity, Mullins effect in rubbery polymers,
and the viscoplasticity of amorphous glassy polymers at large strains. The intrinsic
micro-macro quality of the proposed approaches facilitates the incorporation of inherent
microstructure-originated mechanisms. Despite the complicated phenomena embodied,
the models equipped with associated algorithmic treatments are shown to be applicable
to finite element analyses of three-dimensional boundary value problems.

An essential aspect of this work is the construction of a theoretical and algorithmic setting
of a new network model for finite elasticity of rubber-like materials, which has been re-
ferred to as the non-affine micro-sphere model. This elasticity model acts as a cornerstone
for all the subsequent development concerning the finite inelasticity of rubbery and glassy
polymers. The motivating key phenomenological evidence for the necessity of non-affine
network models is due to shortcomings of the affinity assumption with respect to locking
stretch characteristics. Furthermore, the underestimation of experimental equi-biaxial
elasticity data, especially within the moderate ranges of deformation, by network mod-
els of unconstrained chains has motivated the inclusion of topological constraint effects.
Core of the proposed model is a new two-dimensional constitutive setting of the micro-
mechanical response of a single polymer chain in a constrained environment that is defined
by two micro-kinematic variables: the stretch of the chain and the contraction of the cross
section of a micro-tube containing the chain. The second key feature is a new non-affine
micro-macro transition that defines the three-dimensional overall response of the polymer
network based on a characteristic homogenization procedure of micro-variables defined
on the micro-sphere of space orientations. It determines a stretch fluctuation field on the
micro-sphere by a principle of minimum averaged free energy and links the two micro-
kinematic variables in a non-affine format to the line-stretch and the area-stretch of the
macro-continuum. The elementary kinematic definition of topological constraints through
a straight tube with a link to the macroscopic area deformation is based on the assumed
mechanism of forest chains, which is a new aspect of rubber elasticity. The proposed
model describes two superimposed contributions resulting from free chain motions and
topological constraints in an attractive dual geometric structure on both the micro- and
the macro-level. Averaging operations on the micro-sphere are carried out directly by an
efficient numerical integration scheme. The computational effort is absolutely competi-
tive with purely macroscopic models of rubber elasticity formulated in terms of spectral
decompositions of macroscopic strain measures. The overall model contains five effective
material parameters, which are obtained from the single chain statistics and properties of
the network, with clearly identifiable relationships to characteristic phenomena observed
in experimental stress-stretch curves. This allows a priori estimates of initial values for the
parameter identification process by means of nonlinear programming tools. The approach
advances features of the affine full network and the eight-chain models by a substantial
improvement of their modeling capabilities. Interestingly, the eight chain model turns out
to be a special case of the proposed model for a specific choice of material parameters.
The truly predictive performance of the elasticity model was illustrated via compara-
tive studies with previously developed network models and by fitting various available
experimental data obtained from homogeneous and non-homogeneous tests.
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The immediate extension of the non-affine micro-sphere model was made towards the fi-
nite viscoelastic constitutive framework of rubber-like materials. The formulation makes
use of the intrinsic features of the original elasticity model. In contrast to purely phe-
nomenological approaches to finite viscoelasticity formulated in terms tensorial internal
variables, scalar fields of internal variables are introduced over a micro-sphere of space
orientations. The macroscopic overstress response is defined by a distinct affine homog-
enization procedure of these internal variable fields. The proposed micromechanically-
based model of viscous overstresses is formulated in terms of two key micro-kinematic
mechanisms associated with the free chain retraction and the constraint release phenom-
ena. The numerical implementation is achieved through a discretized averaging of the
micro-fields on the unit-sphere of space orientations. The characteristics and modeling
capabilities of the proposed micro-sphere model of finite viscoelasticity were reported for
a broad spectrum of experimentally-based benchmark. They demonstrate the excellent
performance of the model in simulations of rate and hysteresis effects of rubbery polymers.
As outlined in the algorithmic boxes, the proposed overstress model is easy to implement
into typical non-linear finite element codes. The framework of the micro-sphere model
was further extended to the description of the Mullins-type stress softening effect due to
the breakdown of chain-particle-bonds. The model is very attractive due to its constitu-
tive formulation of damage mechanisms on an essentially one-dimensional micro-level of
space orientations. The numerically evaluated homogenization with respect to the space
orientations describes the experimentally observed deformation-induced anisotropy of the
damage. The permanent set in stress-stretch diagrams is achieved by our model in a
natural way as an anisotropy effect. The comparison of the proposed model with avail-
able experimental data indicate very good agreement. Owing to its simple algorithmic
structure, the model is very suitable for the implementation into finite element codes.

In the final part of the thesis, a constitutive model for the finite viscoplastic deformation
of ductile glassy polymers was developed. The kinematical setting of finite viscoplas-
ticity was laid out in the logarithmic strain space framed by purely geometric, model-
independent pre- and post-processing steps. This allowed us to construct the complete
model within the framework akin to the geometrically linear theory. This framework
leads us to an extremely attractive algorithmic structure for the implementation of fi-
nite viscoplasticity of amorphous glassy polymers. The micromechanically motivated
Arrhenius-type flow rule for viscoplastic strains in the logarithmic strain space has been
borrowed from the celebrated double-kink theory. The details of the implicit algorithm
for the update of plastic strains were discussed. For the modeling of post-yield hardening
both the eight chain and the non-affine micro-sphere models were employed and com-
pared with respect to experimental data. The developed model has been tested against
new experimental data based on homogeneous and inhomogeneous deformations. Besides
the true stress-true strain curves obtained from the homogeneous experiments on poly-
carbonate specimens, the load-displacement diagram and the three-dimensional optical
surface strain field measurements were also considered. The proposed model was shown
to be able to successfully capture various phenomena exhibited by glassy polymers. The
obtained results indicate the predictive performance of the proposed model and its high
suitability for the FE analyses of boundary value problems.
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A. Spectral Representation of the Right Cauchy-Green Tensor

We retrieve that the right Cauchy-Green tensor C defined in (2.21) is a symmetric
and positive definite (covariant) Lagrangean tensor of rank-two. The eigenvalue (principal
value) problem of C is defined as

CNα = λ2
αNα , CIJN

αJ = λ2
αNαI (A.1)

where Nα ∈ TXB, Nα ∈ T ∗
XB denote the unit eigenvector triads that belong to the

tangent TXB and co-tangent spaces T ∗
XB of the reference configuration, respectively. As

introduced in (2.17), the eigenvectors are related to each other through the reference
metric Nα = GNα for G : TXB → T ∗

XB, see also Figure 2.3. It can be shown that
eigenvalues of a symmetric tensor are real-valued and so do its eigenvectors. The symmetry
of a tensor also assures the mutual orthogonality of its eigenvectors, i.e. Nα ·Nβ = δα

β .
Moreover, it can be further shown that the following identities hold

G =

3
∑

α=1

Nα ⊗Nα , G−1 =

3
∑

α=1

Nα ⊗Nα and

3
∑

α=1

Nα ⊗Nα = 1 . (A.2)

A sum of a dyadic product of the identity (A.1) with Nα over α by incorporating the
result (A.2)3 yields the spectral representation of C

C =

3
∑

α=1

λ2
αNα ⊗Nα . (A.3)

This representation requires knowledge of the eigenvalues and the eigenvectors of C. The
eigenvalue problem introduced in (A.1) indeed seeks for these three mutually perpen-
dicular material principal directions Nα that remain perpendicular but scaled by the
eigenvalues λ2

α under the transformation by C. The non-trivial solutions of the eigen-
value problem satisfy the equality det(C − λ2

αG) = 0 which can be expanded to the
characteristic equation

Λ3 − I1(C)Λ2 + I2(C)Λ− I3(C) = 0 (A.4)

satisfied for each Λ := λ2
α for α ∈ {1, 2, 3}. The coefficients of the third order polynomial

(A.4) of Λ are the principal invariants of C defined as

I1(C) := tr(C) , I2(C) := 1
2

(

I2
1 (C)− tr(C2)

)

and I3(C) := det(C) (A.5)

where the trace operator tr is defined as tr(C) := C:G−1. As their name imply, the
principal invariants remain unchanged under the change of the coordinate system. Con-
sequently, they can also be expressed as symmetric functions of the principal values λ2

α

I1(C) := λ2
1 + λ2

2 + λ2
3 , I2(C) := λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 and I3(C) := λ2

1λ
2
2λ

2
3 . (A.6)

It is worth noting that a repeated use of the definition (A.1) for any positive integer n
leads to

CnNα := (CG−1)n−1CNα = (λ2
α)nNα . (A.7)
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Insertion of this result into (A.4) for Λn = (λ2
α)n with n = 1, 2, 3 yields the well-known

Cayley-Hamilton theorem

C3 − I1C2 + I2C − I3G = 0 , (A.8)

which states that every tensor fulfills its own characteristic equation, Ogden [161].

In the context of isotropic finite elasticity, the functional dependency of a stored energy
is restricted to the rotation invariant eigenvalues or the principal invariants due to the
material symmetry constraint on the free energy Ψ(QCQT ) = Ψ(C) with respect to
the rotations Q ∈ SO(3). That is, the free energy can either be formulated in terms
of the principal values Ψ = Ψ̂(λ2

1, λ
2
2, λ

2
3) or the invariants Ψ = Ψ̂(I1, I2, I3). These

representations cover almost all the phenomenological hyperelasticity models of rubber
elasticity. Derivation of the stresses and fourth order elasticity tensors (moduli) from a
free energy function constructed in terms of the principal stretches requires the explicit
derivatives of eigenvalues and eigenvectors with respect to the tensor itself. Hence, in
what follows, we address the determination of these results for the case restricted to the
distinct principal stretches, i.e. λ2

1 6= λ2
2 6= λ2

3.

Derivative of the eigenvalues. Recalling the definition in (2.13), the co-factor of
C can be determined by

cof C := ∂CdetC = I3C
−1 , (A.9)

or from the definition of I3 in (A.6)3 we obtain

cof C := ∂CI3 =
3
∑

α=1

∂λ2
α
I3 ∂Cλ

2
α = I3

3
∑

α=1

λ−2
α ∂Cλ

2
α . (A.10)

Extending (A.3) for the inverse right Cauchy-Green tensor C−1 through (A.7) for n = −1,
we end up with the identity

C−1 =

3
∑

α=1

λ−2
α Nα ⊗Nα .

Incorporation this result in (A.9) and its comparison with (A.10) yield the sought deriva-
tive of eigenvalues

∂Cλ
2
α = Nα ⊗Nα , ∂CIJ

(λ2
α) = NαINαJ . (A.11)

A corollary of this key result can be shown by taking the derivative of (A.1) with respect
to C in indicial notation

∂CKL

(

CIJN
αJ = λ2

αNαI ) ,

I KL
IJ NαJ + CIJ ∂CKL

NαJ = ∂CKL
(λ2

α) NαI + λ2
α∂CKL

NαI ,
(A.12)

and contracting this result by Nα from the left

NαINαJ
I

KL
IJ +NαICIJ ∂CKL

NαJ = ∂CKL
(λ2

α) NαINαI + λ2
αN

αI∂CKL
NαI ,

NαKNαL + λ2
αNαJ ∂CKL

NαJ = ∂CKL
(λ2

α) + λ2
αN

αI∂CKL
NαI ,

Nα ⊗Nα + λ2
αNα · ∂CNα = ∂Cλ

2
α + λ2

αNα · ∂CNα ,

Nα · ∂CNα (A.11)
= Nα · ∂CNα .



























(A.13)
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Furthermore, we have Nα ·Nα = 1 which implies Nα · ∂CNα + Nα · ∂CNα = 0 and
further reduces the result (A.13)4 to

Nα · ∂CNα = Nα · ∂CNα = 0 .

Derivative of the tangential eigenvectors. Utilization of the result (A.11) to-
gether with (A.13) in (A.12)2 results in

I KL
IJ NαJ + CIJ ∂CKL

NαJ = NαKNαL NαI + λ2
α∂CKL

NαI ,

CIJ ∂CKL
NαJ − λ2

α∂CKL
NαI = NαKNαL NαI − I KL

IJ NαJ ,

(CIJ − λ2
αGIJ)∂CKL

NαJ = NαKNαL NαI − I
KL

IJ NαJ .











(A.14)

Denoting the underlined term by A := C − λ2
αG =

∑3
β 6=α(λ2

β − λ2
α)Nβ ⊗Nβ , we have

AIJ∂CKL
NαJ = NαKNαL NαI − I

KL
IJ NαJ . (A.15)

Multiplication of (A.15) from the left by A−1 =
∑3

β 6=α(λ2
β − λ2

α)−1Nβ ⊗Nβ leaves the
sought derivative alone on the left-hand side

A−1PIAIJ∂CKL
NαJ = A−1PI

(

NαKNαL NαI − I KL
IJ NαJ

)

,

∂CKL
NαP = −A−1PI I KL

IJ NαJ .

}

(A.16)

Owing to the orthogonality of eigenvectors, the first term in the parentheses in (A.16)1

vanishes identically. Expanding A−1 again in the spectral form in (A.16)2, we obtain

∂CKL
NαP =

3
∑

β 6=α

(λ2
α − λ2

β)−1NβP
NβI

I
KL

IJ NαJ . (A.17)

Employing the definition of fourth order identity tensor I KL
IJ = (δ K

I δ L
J + δ L

I δ K
J )/2, we

can recast (A.17) into a tensorial expression

∂CNα =
3
∑

β 6=α

1

2

1

(λ2
α − λ2

β)
Nβ ⊗ (Nα ⊗Nβ + Nβ ⊗Nα) . (A.18)

Having the result (A.18) at hand, the derivative ∂C(Nα ⊗Nα) can also be obtained as

∂CKL
(NαONαP ) = ∂CKL

(NαO)NαP +NαO∂CKL
(NαP ) ,

(A.18)
=

∑3
β 6=α

1
2

1
(λ2

α−λ2
β
)

{

NβO
NαP (NβK

NαL +NβL
NαK)

+NαONβP
(NβK

NαL +NβL
NαK)

}

.



















(A.19)

Introducing the second order tensor Mα and the fourth order tensor Gαβ

Mα := Nα ⊗Nα , (Mα)KL := NαKNαL ,

(Gαβ)OPKL := (Mα)OK(Mβ)PL + (Mα)OL(Mβ)PK ,

}

(A.20)
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(A.19) can be recast into the following compact form

∂CMα =
3
∑

β 6=α

1

2

1

(λ2
α − λ2

β)
(Gαβ + G

βα) . (A.21)

We immediately observe that computation of the results (A.11), (A.18) and (A.21) ne-
cessitates the knowledge of the tensor Mα for α = 1, 2, 3. Following Morman [154],
Simo & Taylor [185], Miehe [138], the tensor Mα can be obtained without explicity
computing the eigenvectors. For this purpose, we consider the following equalities for the
distinct eigenvalues λ2

α 6= λ2
β 6= λ2

γ

C − λ2
αG = (λ2

β − λ2
α)Mβ + (λ2

γ − λ2
α)M γ ,

C − λ2
βG = (λ2

α − λ2
β)Mα + (λ2

γ − λ2
β)M γ .

Multiplication of these equations by exploiting the orthogonality of eigenvectors, we obtain

M γ =
(C − λ2

αG)G−1
(

C − λ2
βG
)

(λ2
γ − λ2

α)(λ2
γ − λ2

β)
=

3
∏

α6=γ

(C − λ2
αG)

(λ2
γ − λ2

α)
(A.22)

and thus M γ = G−1M γG
−1. For the cases where the equal eigenvalues are to be ac-

counted for, the reader is referred to Simo & Taylor [185], Miehe [140], Miehe &
Lambrecht [151] and the references therein.
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B. Decoupled Volumetric-Isochoric Finite Elasticity

Many engineering materials exhibit distinct behavior under volumetric and isochoric
deformations. Common examples include the nearly incompressible elasticity of rubber-
like materials, shear-dominated ductile viscoplasticity of amorphous glassy polymers and
volume conserving plasticity of metals. Although this appendix is specifically devoted to
the spatial formulation of decoupled volumetric-isochoric hyperelasticity, its generalization
to inelasticity may readily be carried out. Following the works of Flory [61], Simo,
Taylor & Pister [186], Miehe [137], the deformation gradient F is multiplicatively
split into the volumetric (spherical) F vol and isochoric (unimodular) F̄ parts

F = F̄ F vol with F vol := J1/31 and F̄ := J−1/3F . (B.1)

This immediately implies that the volume map introduced in (2.11) is solely described by
the volumetric part F vol, i.e. detF vol=J , and therefore, the deformation under the uni-
modular part F̄ with detF̄ = 1 does not include any volume change but purely isochoric
deformations. Having this multiplicative kinematic split at hand, as already introduced
in (3.5), the free energy of a hyperelastic material can be additively decomposed into the
volumetric U(J) and isochoric Ψ̄ parts

Ψ = U(J) + Ψ̄(g; F̄ ) . (B.2)

Owing to the material frame objectivity requirement, the isochoric part of the free energy

can also be considered as Ψ̄ = ˆ̄Ψ(F̄
T
gF̄ ) = ˆ̄Ψ(C̄). In isothermal hyperelasticity, the

dissipation vanishes identically JD = JDloc = P − Ψ̇ = 0 and thus the equality P = Ψ̇
holds. The additive decomposition of the free energy (B.2) leads to analogous form for
the stress power P = Pvol + P̄ that are defined as

Pvol := U̇(J) and P̄ := ˙̄Ψ(F̄
T
gF̄ ) . (B.3)

This split automatically induces the stress expression where the total stresses are also
expressed as a summation of the spherical and deviatoric kinds. We first consider the
volumetric part (B.3)1

Pvol = 2∂CU(J) : 1
2
Ċ = 2∂CU(J) : F T 1

2
£vgF

= F 2∂CU(J)F T : 1
2
£vg = 2∂gU(J) : 1

2
£vg

=: p g−1 : 1
2
£vg

(B.4)

where we used the definition J := detF = det(F a
A)
√

det(gab)/det(GAB) yielding

2∂gJ = Jg−1 and 2∂gU(J) = p g−1 (B.5)

with p := JU ′(J) as in (3.8)1. Likewise the isochoric stress power in P̄ can be recast
into the form of a product of the deviatoric Kirchhoff stresses and the Lie derivative of
the current metric g by taking (B.3)2 as a departure point

P̄ = 2∂
C̄

Ψ̄ : 1
2

˙̄C = 2∂
C̄

Ψ̄ : F̄
T 1

2
£̄vgF̄

= F̄ 2∂
C̄

Ψ̄F̄
T

: 1
2
£̄vg = 2∂gΨ̄ : 1

2
£̄vg

=: τ̄ : 1
2
£̄vg

(B.6)



124 Decoupled Volumetric-Isochoric Finite Elasticity

where we introduced τ̄ := 2∂gΨ̄ and the isochoric Lie derivative £̄vg of the current metric

£̄vg := F̄
−T d

dt

(

F̄
T
gF̄
)

F̄
−1

= gl̄ + l̄
T
g (B.7)

analogous to (2.43). The deviatoric spatial velocity gradient is defined as l̄ := ˙̄F F̄
−1

and
it can be shown that

gl̄ = gl− 1
3

tr(l)g = gl − 1
3
( 1

2
£vg : g−1)g . (B.8)

Incorporation of this result in (B.7) yields

£̄vg = £vg − 1
3
£vg : g−1g = £vg : P

T (B.9)

where the major transpose PT of the deviatoric projection tensor P := I− 1
3
g ⊗ g−1 has

been used. Having the identity (B.9) at hand, we can rewrite (B.6) as

P̄ = τ̄ : 1
2
£̄vg = τ̄ : ( 1

2
£vg : P

T ) = (τ̄ : P) : 1
2
£vg (B.10)

Insertion of the results (B.4) and (B.10) into P = τ : 1
2
£vg = Pvol + P̄ yields the

overall Kirchhoff stress tensor

τ = pg−1 + τ̄ : P (B.11)

in additively decomposed form of spherical and deviatoric contributions as in (3.6).

The objective rate sensitivities of the Kirchhoff stresses τ and τ̄ to the associated Lie
derivatives of the spatial metric g

£vτ = C : 1
2
£vg and £̄vτ̄ = C̄ : 1

2
£̄vg , (B.12)

are related through the the spatial elasticity moduli C and C̄ defined as

C = 4∂2
ggΨ(g; F ) and C̄ := 4∂2

ggΨ̄(g; F̄ ) , (B.13)

respectively. The objective Lie derivatives of the contravariant stress tensors £vτ and
£̄vτ̄ can be obtained through the definition (2.43)

£vτ = τ̇ − lτ − τ lT and £̄vτ̄ = ˙̄τ − l̄τ̄ − τ̄ l̄
T
. (B.14)

We first treat the volumetric part

£v(pg−1) = ṗg−1 − p
(

lg−1 + g−1lT
)

= (p+ κ) g−1 ⊗ g−1 : 1
2
£vg − pg−1£vgg−1

= ((p+ κ) g−1 ⊗ g−1 − 2pIg−1) : 1
2
£vg

(B.15)

where κ := J2U ′′(J) as in (3.8)2 and we employed the following results

J̇ = Jg−1 : 1
2
£vg ,

g−1£vgg−1 ≡ Ig−1 : £vg with (Ig−1)abcd = 1
2
(gacgbd + gadgbc) .

(B.16)
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For the determination of the isochoric part of the moduli we start with

£v(τ̄ : P) = £v(τ̄ ) : P + τ̄ : £v(P) . (B.17)

By using the results (B.8), (B.9) and the definitions (B.14)2, (B.12)2, the Lie derivative
of τ̄ appearing in the first term on the right-hand side of (B.17) can be recast into the
form

£v(τ̄ ) = ˙̄τ − lτ̄ − τ̄ lT

= £̄vτ̄ − 2
3
(τ̄ ⊗ g−1) : 1

2
£vg

= C̄ : 1
2
£̄vg − 2

3
(τ̄ ⊗ g−1) : 1

2
£vg

=
(

C̄ : P− 2
3
(τ̄ ⊗ g−1)

)

: 1
2
£vg .

(B.18)

Contraction of this result with the deviatoric projection tensor yields the first term of
(B.17)

£v(τ̄ ) : P =
(

C̄ : P− 2
3
(τ̄ ⊗ g−1)

)

: 1
2
£vg : P

= P
T :
(

C̄ : P− 2
3
(τ̄ ⊗ g−1)

)

: 1
2
£vg

=
(

PT : C̄ : P− 2
3
(PT : τ̄ ⊗ g−1)

)

: 1
2
£vg .

(B.19)

Computation of the second term on the right-hand side of (B.17) necessitates the Lie
derivative of P

£v(P) = − 1
3

(£vg ⊗ g−1 + g ⊗£vg
−1)

= − 1
3

(£vg ⊗ g−1 − g ⊗ [g−1£vgg−1])

(B.16)2
= − 1

3
(£vg ⊗ g−1 − g ⊗ [Ig−1 : £vg]) .

(B.20)

With this result at hand, we can rewrite the term τ̄ : £v(P) in (B.17) as

τ̄ : £v(P) = − 2
3

(g−1 ⊗ τ̄ − (τ̄ : g) Ig−1) : 1
2
£vg

= − 2
3

(

g−1 ⊗ τ̄ : P− (τ̄ : g) (Ig−1 − 1
3
g−1 ⊗ g−1)

)

: 1
2
£vg

= − 2
3

(g−1 ⊗ τ̄ : P− (τ̄ : g) Pg−1) : 1
2
£vg

(B.21)

where Pg−1 := Ig−1 − 1
3
g−1 ⊗ g−1 = PT : Ig−1 : P. Merging the results (B.19), (B.21) and

inserting it into (B.17), we obtain

£v(τ̄ : P) =
[

P
T : (C̄ + 2

3
(τ̄ : g)Ig−1) : P− 2

3
(PT : τ̄ ⊗ g−1 + g−1 ⊗ τ̄ : P)

]

: 1
2
£vg .

(B.22)
Combination of the underlined results obtained in (B.15) and (B.22) leads us to the sought
expression for the total spatial moduli C

C = (p+ κ) g−1 ⊗ g−1 − 2p Ig−1

+ P
T :
[

C̄ + 2
3
(τ̄ : g)Ig−1

]

: P− 2
3
(PT : τ̄ ⊗ g−1 + g−1 ⊗ τ̄ : P) . (B.23)

This is none other than the overall moduli expression we used in (3.7). The main results
given in (B.11) and (B.23) complete the derivation. Clearly, these formulae can also be
obtained by starting from the purely Lagrangean setting and performing corresponding
push-forward operations on the Lagrangean stress and moduli expressions.
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C. Statistics of the Freely Jointed Chain

Almost all of the network models of rubber elasticity proposed in the literature are
based on the results of the statistical theory of an idealized chain of freely rotating links,
commonly referred to as the freely jointed chain. It may be considered as the most
simplified representation of a real polymer molecule that can randomly fluctuate under
sufficiently high thermal energy in the absence of kinematic constraints. The freely jointed
chain is composed of N bonds each of a fixed equal length l, see Figure 3.1. Its end-
to-end distance denoted by r is the primary kinematic variable. The angle between
any two adjacent bonds, the bond angle, is free to assume an arbitrary value, each of
equal probability, so do the rotations about each bond. That is, no mutual correlation
exists between adjacent bonds. This uncorrelated state immediately implies that at the
unperturbed load-free state, the mean-square value of the distance r is identical to r2

0 =
Nl2. This is one of the celebrated characteristics of freely jointed chains of finite length
N . It has often erroneously been attributed to the special case, a Gaussian chain, of
freely jointed chains, as noted by Flory [64], p.11. In fact, bond angles of real chains
such as polymethylene are limited to a pre-defined interval. The high deformability of
a flexible real polymer chain is chiefly achieved through the rotations about the bonds,
i.e. torsion angle variations. According to the isomeric state theory, see for example
Volkenstein [202], Mark & Erman [129], Erman [55], a molecule with fixed end
points experiences many isomeric configurations at which torsional angles assume average
values, which are characterized by the energy minima called trans, gauge+ and gauge−

for an elementary case. This is, however, beyond the scope of the current appendix. For
comprehensive treatment of the subject and more general polymer chains, the reader is
referred to the classical texts by Flory [60, 64], Volkenstein [202], Treloar [196].

The micro-free energy of the unconstrained part of the micro-sphere model outlined in
Chapter 3 hinges also on the the freely jointed chain. For this reason, this appendix is
devoted to the statistical elasticity of the idealized molecule. Despite the idealization of
real chains through the freely jointed chain assumption, calculation of a computationally
feasible, exact closed-form expression for an idealized chain of any length N is still a
challenging task. To this end, in the subsequent part we construct two approximate free
energy functions ψ(λ) for the idealized chain. One of them, the Gaussian theory, assumes
that a chain is composed of infinitely many modules and extensions are much less than
the contour length L := Nl, i.e. r ≪ L. This results in non-physical non-vanishing
probability as the chain is fully stretched, i.e. r ≈ L. The latter, the non-Gaussian
treatment overcomes this deficiency of non-vanishing probability at fully extended state
through some approximations and incorporates the finite chain extensibility.

The Gaussian Chain. Let us consider a freely jointed chain with one end fixed at the
origin and its other end P freely occupies a position in the three-dimensional space, see
Figure C.1. Provided that the number of chain segments N large enough, the distribution
of the end-to-end distance p(r) approaches to the celebrated Gaussian from

p(r) =
1

σ
√

2π
exp

[

−(r − 〈r〉)2

2σ2

]

. (C.1)

As mentioned above, another key assumption made within the context of Gaussian statis-
tics of a freely jointed chain is concerned with the small extensions compared to the
contour length r ≪ L. If this condition is fulfilled, the probability p(r) can be ob-
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x

y

z

rx

ry

rz
r

P (x, y, z)

O

Figure C.1: The freely jointed chain with one end fixed at the origin O.

tained by multiplying the probability of joint events taking place independently, i.e.
p(rx, ry, rz) = p(rx)p(ry)p(rz). These separate events are none other than the projec-
tions rx, ry, rz of the end-to-end distance r on the Cartesian axes, see Figure C.1. The
distribution of each projection p(ri) for i = x, y, z has then the following Gaussian from

p(ri) =
1

σi

√
2π

exp

[

−(ri − 〈ri〉)2

2σ2
i

]

, (C.2)

as well. This approximation reduces the three-dimensional random walk problem to the
one-dimensional one. Now, let li stand for the length projection of a module of the chain
on the i-axis. Since any direction that a segment may sample is random, the probability
density p(li) is uniform. The normality condition

∫ l

−l
p(li)dli = 1 leads to p(li) = 1/(2l).

Then, the mean value 〈li〉 and the variance σ2
li

:= 〈l2i 〉 − 〈li〉2 can then be determined as

〈li〉 =

∫ l

−l

li p(li)dli = 0 and σ2
li

=

∫ l

−l

l2i p(li)dli =
l2

3
. (C.3)

Finding the coordinate of a single chain of N bonds on i-axis is analogous to the problem
of the one-dimensional random walk, see e.g. Reif [172], p.4. To this end, let n1 and
n2 denote the number of steps in the respective directions satisfying n1 + n2 = N . If the
probability of stepping in the positive direction p and the corresponding probability in
the negative sense q are equal, i.e. p = q = 1/2, the problem is symmetric. We then have
〈n1〉 = N/2 and σn1 =

√
N/2. According to the definition of variance σ2

n1
:= 〈n2

1〉−〈n1〉2,
we obtain 〈n2

1〉 = σ2
n1

+ 〈n1〉2 = N/4 +N2/4. The i-coordinate of the chain end, its mean
value and standard deviation are computed by starting from relation ri = σli(2n1 −N) ,

〈ri〉 = σli(2〈n1〉 −N) = 0 , (C.4)

σ2
i := 〈r2

i 〉 − 〈ri〉2 = 〈r2
i 〉=σ2

li
· (4 · 〈n1〉2 − 4〈n1〉 ·N +N2) = N · σ2

li
, (C.5)

 σi = σli

√
N=

l
√
N√
3
. (C.6)

Insertion of these results into (C.2) yields

p(ri) =

(

3

2πr2
0

)1/2

exp

[

−3 r2
i

2 r2
0

]

. (C.7)
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Since we assumed that all coordinates of the end point of the chain are independent from
each other, multiplication rule yields

p(rx, ry, rz) =

(

3

2πr2
0

)3/2

exp

[

−3 (r2
x + r2

y + r2
z)

2 r2
0

]

=

(

3

2πr2
0

)3/2

exp

[

−3 r2

2 r2
0

]

. (C.8)

According to the distribution density of r, given in (C.8), the mean value of r, coinciding
with its most probable value, is zero. But if one considers the target analogy given in
Treloar [196], p.52 where the distribution of the coordinates of the shots on a target
is given by two dimensional Gaussian distribution. It would not be wrong to say that the
most probable position is at r = 0 but the most probable distance of any shot is not zero.
Since r does not have negative value physically, we can determine the second moment
of r. Its square-root gives a realistic representative end-to-end distance for the unloaded
state of a chain, which is denoted as r0 = l

√
N . Use of the definition (3.10)1 for the micro

stretch in Section 3.2.1 in (C.8) yields

p(λ) =

(

3

2πr2
0

)3/2

exp

[

−3

2
λ2

]

. (C.9)

Having the probability distribution in terms of the stretch λ, the entropy of the Gaussian
chain can readily be determined through Boltzmann’s equation

η = k ln p(λ) = η0 −
3

2
kλ2 (C.10)

where k denotes the Boltzmann constant. As mentioned in Chapter 1, it is established
that the deformation of a rubber chain is chiefly governed by entropy changes. This is one
of the celebrated features of rubber elasticity, commonly referred to as entropic elasticity.
That is, internal energy e variations are merely governed by temperature changes. The
Helmholtz free energy of the Gaussian chain under isothermal conditions is then obtained

ψ(λ) = −θη(λ) = ψ0 +
3

2
kθλ2 , (C.11)

as given in (3.17). The force energy conjugate to the stretch then comes out to be a linear
function of the stretch

FGauss := ∂λψ(λ, θ) = 3kθλ , (C.12)

proportional to temperature θ, as already given in (3.18). At this point, it is important to
observe that the Gaussian force assumes a finite value as the stretch λ = r/r0 approaches
to its limiting value λ =

√
N corresponding to the fully extented state of the chain r = lN ,

as depicted in Figure 3.2a. This is in contrast to the reality which suggest a divergent
force response at this limiting case. It may also seem to odd that force (C.12) does not
vanish at λ = 1. This is, however, only valid for a single chain. If the three-dimensional
incompressible macroscopic response of a network considered, the stress-free undeformed
configuration is readily available.

The Non-Gaussian Chain. A systematic derivation of thermodynamical quantities
for the non-Gaussian chain can be achieved through one of the well-established ensemble
theories of equilibrium statistical mechanics. Entropy, a key concept linking statistical
mechanics to thermodynamics, has more clear interpretation in the statistical theory of
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information as a measure of disorder. The Boltzmann equation η = k ln Ω serves as a key
equation of statistical mechanics, a version of which has already been used in (C.10) for the
computation of entropy of a Gaussian chain. In statistical mechanics, a system of interest
is macroscopically constraint to a priori prescribed set of external variables concerning
one or some of the quantities such as energy, volume, temperature, pressure, number
of constituents. For the prescribed macrostate, there are many accessible microstates Ω
compatible with the prescribed macrostate. Each of these microstates may be virtually
imagined as a “snap shot” of a system. Instead of trying to understand the behavior
of each microstate of the constituents in detail, mean behavior of the overall system is
aimed to be described. Probability methods are devised to understand the mean behavior
of the system in equilibrium. An ensemble can be looked upon as a collection of all
admissible microstates of a system. Depending on the severity of constraints imposed on
a system, three fundamental types of ensembles, namely microcanonical, canonical and
grand canonical ensembles, have been introduced. In microcanonical ensemble, the system
is fully isolated; that is, no energy exchange is allowed. Thus, all accessible microstates
of the system is forced to be compatible with the externally imposed constant energy
state, say e. The fundamental postulate of statistical mechanics states that in an isolated
system in macroscopic equilibrium, all accessible microstates are equally probable. This
means, if the system has total Ω(e) microstates, the probability of finding a microstate
with an energy ei ∈ [e, e + δe] is a priori set to Pi = 1/Ω. Other states with larger or
smaller amount of energies are a priori excluded, i.e. Pi = 0 for ei /∈ [e, e + δe]. This
uniform probability is commonly referred to as the microcanonical distribution. All of the
other classes of ensembles are actually based on the microcanonical ensemble. If a system
under consideration is placed in a reservoir that is assumed to be much larger than the
system, the union of the system and the reservoir then forms again the microcanonical
ensemble. In canonical ensemble, the rigid system is located in a large heat reservoir
so that its temperature, volume and number of constituents are kept constant but the
energy exchange between the system and the heat reservoir is allowed. In grand canonical
ensemble, on the other hand, external constraints are further relaxed such that the system
is allowed to exchange constituents with the the reservoir beside energy. Selection of a
particular class of ensemble depends upon the macro-constraints imposed on the real
system under consideration.

In the forthcoming part, we consider the freely jointed chain as a system composed of
fixed N number of segments and subjected to a constant tip force f at constant temper-
ature. This system can be interpreted as an isothermal-isobaric version of the canonical
ensemble, the so-called θ−p ensemble of statistical mechanics. In this case, the system of
interest is considered to be located in a reservoir that keeps the temperature and pressure
constant. The system is neither insulated nor rigid such that an energy exchange between
the system and the reservoir in the form of both heat and work is allowed. Before going
into details of the isothermal-isobaric ensemble, let us first consider the canonical (isother-
mal) ensemble in which only heat form of energy exchange is allowed. The probability of
finding the system in a state with energy ei in the canonical ensemble is described by the
canonical distribution

pi =
1

Z
exp(−βei) (C.13)
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where β := 1/kθ and Z denotes the partition function (“Zustandssumme”) defined as

Z(θ) =
∑

i

exp(−βei) . (C.14)

Once the partition function is computed, mean values of the thermodynamical quantities
that shall be considered as almost fixed at thermodynamic limit can be computed, see
Diu et al. [44]. We first consider the energy

e = 〈e〉 =
∑

i

eipi = Z−1
∑

i

ei exp(−βei) = −∂β lnZ . (C.15)

Multiplication of the mean energy e with dβ can be considered as the differential of
− lnZ, i.e. edβ = −∂β lnZdβ = −d(lnZ). Through the product rule, the left hand side
of this expression can be rewritten as edβ = d(eβ) − βde. Since the system is rigid, the
energy change de is solely due to the heat exchange, i.e. de = dq = θdη, and therefore
edβ = d(eβ) − βθdη. Use of this result in the expression for −d(lnZ) leads us to the
mean value of entropy for the canonical ensemble

η = k(lnZ + βe) , (C.16)

and the average free energy through ψ := e− θη

ψ = −kθ lnZ . (C.17)

It should be noted that in the derivation of the expressions for the entropy (C.16) and the
free energy (C.17), the integration constants are suppressed for brevity. The derivations
carried out so far can readily be extended to a system of the isothermal-isobaric ensemble,
see e.g. Diu et al. [44], p.501 and Lulei [124], p.43. Since the system of interest
considered here is a polymer chain under constant tip force in lieu of a box of gas under
constant pressure, hereafter we denote this ensemble as θ−F ensemble with F standing for
the tip force. Analogous to (C.14), the partition function of θ−F ensemble characterized
by the external variables temperature θ and force F

Z(θ, F ) =

∫

Dr

∑

i

exp(−βhi(r))dr . (C.18)

where the end-to-end distance r is an internal variable continously changing within the
domain Dr and hi(r) := ei(r) − Fr denotes enthalpy of the microstate (i) characterized
by the energy state ei and end-to-end distance r. Then, the probability of finding the
system at energy ei(r) and the end-to-end distance r is given by

pi(r) =
1

Z
exp(−βhi(r)) . (C.19)

Analogous to the canonical energy (C.15), we determine the mean enthalpy h

h = −∂β lnZ , (C.20)

and the average end-to-end distance r

r = β−1∂F lnZ (C.21)
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of the θ−F ensemble. If steps analogous to the ones used for deriving (C.16) are followed
by taking into account dh = −rdF + θdη , we obtain the expression for the entropy

η = k(lnZ + βh) = k lnZ + (e− Fr)/θ (C.22)

and the free energy
ψ = −kθ lnZ + Fr , (C.23)

respectively. That is; once the partition function Z(θ, F ) is computed, all thermodynamics
quantities are readily determined through the relations (C.20)-(C.23).

x

y

z

lz,i

i

r

O

Figure C.2: Polymer chain lying on z-axis.

We are now ready to apply the above outlined formulation to the freely jointed chain.
Let an idealized chain of freely rotating links lie on z-axis and be subjected to prescribed
constant load F , see Figure C.2. A configuration of the chain is described through the
set x which contains the projection lengths of each module on the z-axis, i.e. x :=
{lz,1, lz,2, . . . , lz,N} with each lz,i ∈ [−l; l] satisfying the condition

D :=

{

x
∣

∣

∣

N
∑

i=1

lz,i = r(x)

}

. (C.24)

Since orientation of each segment is a priori uniform, probability density in all directions
is p(lz,i) = 1

2l
and the accessible states of the chain are defined by equation (C.24). Since

the direction of each module is assumed to be independent from others, the multiplication
rule is utilized to compute an infinitesimal probability dP (x) in equation

dP (x) = dP (lz,1) · dP (lz,2) · . . . · dP (lz,N) =

(

1

2l

)N N
∏

i=1

dlz,i (C.25)

Then the partition function of a freely jointed chain which deform under constant energy
state can be written as

Z(θ, F ) =

∫

D

exp(β r(x)F )dP (x) . (C.26)

Incorporation of the results (C.24) and (C.25) in (C.26) then leads us to the following
form

Z(θ, F ) =







1

2l

l
∫

−l

dlz · exp (β F lz)







N

=

{

sinhχ

χ

}N

. (C.27)
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with χ := βF l. Insertion of this result into (C.21) yields the expression for the end-to-end
distance r

r = NlL(χ) (C.28)

where L(χ) denotes the well-known Langevin function defined as

L(χ) := cothχ− 1/χ . (C.29)

In the present context, the conventional approximation is concerned with inversion of
(C.28) for χ = L−1(λr) where λr := r/Nl. The error introduced through this approx-
imation vanishes as the number of chain segments N approaches to infinity. For finite
values of N , the treatment remains inexact, see Flory [64] p.321. Having this result
with F = kθL−1(λr)/l at hand, the free energy function can readily be obtained through
(C.23)

ψ(λr) = kθN

(

λrL−1(λr) + ln
L−1(λr)

sinhL−1(λr)

)

. (C.30)

as already been introduced in (3.19).
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[21] Bowden, P. B. [1973]: Introduction. In Haward, R. N. (Editor): The Physics of
Glassy Polymers, Chapter 5, pp. 279–339. Applied Science Publishers Ltd, London,
1st Edition.

[22] Bowden, P. B.; Jukes, J. A. [1972]: The Plastic Flow of Isotropic Polymers.
Journal of Materials Science, 7: 52–63.

[23] Bowden, P. B.; Raha, S. [1970]: The formation of Micro Shear Bands in
Polystyrene and Polymethylmethacrylate. The Philosophical Magazine, 22: 463–
482.

[24] Boyce, M. C. [1996]: Direct Comparison of the Gent and the Arruda–Boyce Con-
stitutive Models of Rubber Elastictiy. Rubber Chemistry and Technology, 69: 781–
785.

[25] Boyce, M. C.; Arruda, E. M. [2000]: Constitutive Models of Rubber Elasticity:
A Review. Rubber Chemistry and Technology, 73: 504–523.

[26] Boyce, M. C.; Arruda, E. M.; Jayachandran, R. [1994]: The Large Strain
Compression, Tension, and Simple Shear of Polycarbonate. Polymer Engineering
and Science, 34: 716–725.

[27] Boyce, M. C.; Haward, R. N. [1997]: The Post–Yield Deformation of Glassy
Polymers. In Haward, R. N.; Young, R. J. (Editors): The Physics of Glassy
Polymers, Chapter 5, pp. 213–293. Chapman & Hall, London, 2nd Edition.

[28] Boyce, M. C.; Parks, D. M.; Argon, A. S. [1988]: Large Inelastic Deforma-
tion of Glassy Polymers. Part I: Rate Dependent Constitutive Model. Mechanics of
Materials, 7: 15–33.

[29] Boyce, M. C.; Weber, G. G.; Parks, D. M. [1989]: On the Kinematics of
Finite Strain Plasticity. Journal of the Mechanics and Physics of Solids, 37: 647–
665.

[30] Bruhns, O. T.; Xiao, H.; Meyers, A. [2001]: Constitutive Inequalities for
an Isotropic Elastic Strain Energy Function Based on Hencky’s Logarithmic Strain
Tensor. Proceedings of the Royal Society London A, 457: 2207–2226.

[31] Bueche, F. [1960]: Molecular Basis for the Mullins Effect. Journal of Applied
Polymer Science, 4: 107–114.

[32] Bueche, F. [1961]: Mullins Effect and Rubber–Filler Interaction. Journal of Ap-
plied Polymer Science, 5: 271–281.

[33] Chadwick, P. [1999]: Continuum Mechanics. Dover Publications, Inc., Mineola.



References 137
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[183] Simó, J. C. [1987]: On A Fully Three–Dimensional Finite–Strain Viscoelastic Dam-
age Model: Formulation and Computational Aspects. Computer Methods in Applied
Mechanics and Engineering, 60: 153–173.

[184] Simo, J. C.; Marsden, J. [1984]: On the Rotated Stress Tensor and the Mate-
rial Version of the Doyle–Ericksen Formula. Archive for Rational Mechanics and
Analysis, 86: 213–231.
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