
Institute of Parallel and Distributed Systems
University of Stuttgart
Universitätsstraße 38
D–7 05 69 Stuttgart

Diplomarbeit Nr. 32 68

Implementierung eines
Peridynamik–Verfahrens auf GPU

Patrick Diehl

Course of Study: Software Engineering

Examiner: Prof. Dr. Marc Alexander Schweitzer

Supervisor: M. Sc. Sa Wu

Commenced: November 14 2011

Completed: May 15 2012

CR-Classification: J.2, G.4

A computer will do what you tell it
to do, but that may be much differ-
ent from what you had in mind.

(Joseph Weizenbaum)

Contents

1 Introduction 1

2 Related work 3

3 Peridynamics 5

3.1 Peridynamic theory . 5

3.2 Inner forces for the Peridynamic theory 8

3.2.1 Prototype Microelastic Brittle Model 8

3.2.2 Short range forces . 9

3.3 Discretization . 10

3.3.1 Computation of the position at time t 12

4 Implementation 13

4.1 Compute Unified Device Architecture . 13

4.2 Program flow . 16

4.2.1 Neighborhood search . 17

4.2.2 Update Positions . 18

4.2.2.1 Parallelization of the discrete Peridynamic equation of
motion . 19

4.2.2.2 Maximal amount of particles 20

4.3 Measurement of the computation time . 22

4.4 Challenges with the Compute Unified Device Architecture 23

5 Combination with the Partition of Unity Method 27

6 Results 29

6.1 Experiment 1 . 29

6.2 Experiment 2 . 37

7 Conclusion and outlook 45

Index ix

Bibliography ix

i

List of Symbols

α
The scaling parameter in the Prototype Microelastic Brittle material.

c
The stiffness constant in the Prototype Microelastic Brittle model in kg

m3 .

δ
The radius of the horizon of a particle P in m.

η
The relative displacement of two particles Pi and Pj.

Hi
The horizon of a particle Pi.

k
The bulk modulus in the Prototype Microelastic Brittle material in GPa.

Ω
The reference configuration of the body.

R
The body.

ρ

The mass density of the material in the reference configuration Ω in kg
m3 .

rs
The radius of a particle in m.

s00
The critical stretch for bond failure for the Prototype Microelastic Brittle material.

ii

V
The volume of a particle in m3.

x
The initial position of a particle P relating to the reference configuration Ω.

ξ
The relative position of two particles Pi and Pj in the reference configuration Ω.

iii

List of Figures

3.1 Body R with particles P1···n and the horizon Hi of particle Pi. 6

3.2 Bond force in the PMB model visualized as a function f (s). 9

3.3 Discretization of the body R in N particles on an equidistant n × m
lattice. 10

4.1 Processing flow on CUDA . 14

4.2 Layers of CUDA . 14

4.3 Memory access model of CUDA . 16

4.4 Program flow chart of the simulation. 17

4.5 Example of morton order / z order. 18

4.6 Run time of the STANN library on a equidistant two dimensional lattice. 19

4.7 Data structures on the CUDA device. 20

4.8 Run time of the different implementations for one particle per time step. 23

4.9 Run time with and without the update of neighbors step. 24

4.10 Global memory and caching . 25

5.1 Combination with the Partition of Unity Method 28

6.1 Blueprint and reference configuration Ω of the body R (experiment 1). 30

6.2 Forces on the horizontal edges (experiment 1). 30

6.3 Growing of the crack (1µs–5µs) and delay of the crack (6µs–10µs) 36

6.4 Blueprint of the cylinder (experiment 2). 37

6.5 Model of the projectile (experiment 2). 37

6.6 Reference configuration and the impact of the projectile. 39

6.7 Top layer of the body R during the impact. 43

iv

List of Tables

6.1 Simulation parameters for experiment 1 31

6.2 Simulation parameters for experiment 2 38

List of Listings

4.1 The parallel computation of the equation of motion and the estimation
of the new positions on the CUDA device 21

List of Acronyms

CUDA Compute Unified Device Architecture

CPU Central processing unit

FEM Finite Element Method

FLOPS Floating Point Operations Per Second

GPU Graphics processing unit

HPC High Performance Computing

MD Molecular Dynamics

MP Multiprocessor

v

MPI Message Passing Interface

OCL Open Computing Language

ODE Ordinary differential equation

PDE Partial differential equation

PMB Prototype Microelastic Brittle

PUM Partition of Unity Method

RAM Random-Access Memory

SIMT Single Instruction Multiple Threads

SPH Smoothed Particle Hydrodynamics

vi

1 Introduction

This thesis examines the use of the Compute Unified Device Architecture (CUDA) the
implementation of a Peridynamic technique on a Graphics processing unit (GPU).
CUDA is a parallel computing architecture for NVIDIA GPUs. The NVIDIA GPUs
are programmable through different industry standard programming languages.
In this thesis the programming language “C for CUDA” is used to implement the
Peridynamic technique. “C for CUDA” is similar to the programming language C with
some restrictions. The software was executed on a NVIDIA GeForce GTX 560 Ti.

The Peridynamic theory is a non local theory in continuum mechanic, with a
focus on discontinuous functions as they arrive in fracture mechanics. The word
“Peridynamic” is the syncrisis of the two Greek words πε$ι (peri = near) and δύναµη
(dynami = force). The principle of this theory is that particles in a continuum interact
with other particles in a finite distance by exchanging forces.

Outline

The chapters cover following topics:

Chapter 2 – Related work: This chapter contains information about other implemen-
tations of the Peridynamic technique, which use different kinds of massively
parallel architectures.

Chapter 3 – Peridynamics: This chapter contains the basics of the Peridynamic and
the discrete Peridynamic equation of motion (equation 3.18).

Chapter 4 – Implementation: This chapter contains a short introduction to Compute
Unified Device Architecture (CUDA) and the program flow chart (figure 4.4) of
the simulation. For each activity of the program flow chart the used algorithms
are introduced.

Chapter 5 – Combination with the Partition of Unity Method: This chapter contains
an approach to the combination of the the Peridynamic technique with the
Partition of Unity Method (PUM).

1

1 Introduction

Chapter 6 – Results: This chapter contains the results of two simulations: In the 2D
case a thick square plate with a initial crack. In the 3D case the impact of a
projectile in a cylinder.

Chapter 7 – Conclusion and outlook: This chapter summarizes the results of this the-
sis and gives an overview of potential improvements and features of the software.

2

2 Related work

“EMU is the first code based on the Peridynamic theory of solid mechanics”

According to the quote [Sana] EMU is the first implementation of the Peridynamic
theory, which is implemented in FORTRAN 90 and provided from the Sandia National
Laboratories. Developers implemented EMU variants to add extended features to
the standard version. In the aviation industry Dr. Abe Askari works on modeling of
fatigue cracks and composite material failure for Boeing Corporation.

In research Peridynamics PDLAMMPS and SIERRA/SM are the most common
tools, which realizing the Peridynamic technique.
Peridynamics PDLAMMPS [PSP+

11] is a realization of the Peridynamics in LAMMPS.
LAMMPS [Pli95, Sanb] is a classical molecular dynamics code and the integration
of the Peridynamic technique is possible, because the Peridynamic technique is in
some sections similar to a molecular dynamics (MD). Sierra/Solid Mechanics [SIE11] is
based on the Sierra Framework [Edw02] and provides a realization of the Peridynamic
theory too. Because it is based on the Sierra Framework a coupling with other SIERRA
mechanics codes is possible.

Nowadays most simulations are executed on massively parallel distributed sys-
tems. Therefore frameworks like the Message Passing Interface (MPI) to distributed
the simulation on different Central processing units exist. It is possible to build
PDLAMMPS with MPI support.

Another approach for massively parallel programming is to execute the simula-
tion on GPUs. For this exist Open Computing Language (OCL) and Compute Unified
Device Architecture (CUDA). This thesis studies the use of CUDA to realize a
massively parallel implementation of the Peridynamic technique.

3

3 Peridynamics

The Peridynamic theory is a non local theory in continuum mechanics. As described
in [ELP] the Partial differential equation (PDE) (3.1) defines linear elastic behavior of
solids, according to Newton’s second law: f orce = mass× acceleration.

$(x)∂2
t u(x, t) = (Lu)(x, t) + b(x, t), (x, t) ∈ Ω× (0, T) (3.1)

with (Lu)(x, t) := (λ + µ) grad div u(x, t) + µ div grad u(x, t)

PDE (3.1) contains information about the material with $(x) as the density of the body.
The inner tensions and macroscopic forces are described with the Lamé parameters
µ and λ. The term b(x, t) defines the extern force at position x at time t. The
displacement field is described with u : Ω× [0, T] → Rd with d ∈ {1, 2, 3}.

PDE (3.1) implies that the displacement of the body is twice continuously dif-
ferentiable. With this assumption it is not possible to model cracks or fracture, because
a crack or fracture implies discontinuities in the displacement field u. Discontinuities
conflict with the assumption that u is twice continuously differentiable.

An alternative theory to model solid mechanics is the Peridynamic theory, which was
introduced by Silling [Sil00] in 2000. The Peridynamic theory formulates the problem
with an integro-differential equation. This solves the conflict of the discontinuities and
the twice continuously differentiability.

3.1 Peridynamic theory

The word “Peridynamic” is the syncrisis of the two Greek words πε$ι (peri = near)
and δύναµη (dynami = force). The principle of this theory is that particles in a
continuum interact with other particles in a finite distance by exchanging forces. Some
of this concepts are similar to a selection of a Molecular Dynamics (MD).

Figure 3.1 shows the body R in the reference configuration with particles P1···n.
Each particle has a initial position x relating to the reference configuration Ω. To

5

3 Peridynamics

define which other particles interact with a particle each particle has a horizon Hi
with the radius δ. All other particles in this horizon Hi have a bond with the particle
Pi and interact with this particle by forces. Metaphorically speaking the particle does
not “see” particles outside his own horizon Hi and is not influenced by them.

R

δ

ξ

x

x
′

Hi

Figure 3.1: The body R of the continuum with particles P1···n and
the horizon Hi of particle Pi.

To compute the acceleration of a particle Pi in the reference configuration Ω at time t
following definitions are made:

ξ(t) = x
′
(0)− x(0) (3.2)

The relative position of two particles Pi and P
′
, with coordinates x and xi, in the

reference configuration Ω is defined as ξ(t).

η(t) = u(x
′
, t)− u(x, t) (3.3)

The relative displacement of two particles Pi and P
′

is defined as η(t), with
u(x, t) = x(t) − x(0). The current relative position is defined as η + ξ.

With this two definitions the acceleration of a particle Pi in the reference configuration
Ω at time t is defined by the integral equation (3.4).

$(x)ÿ(x, t) =
∫

Hi

f ((u(x
′
, t)− u(x, t), x

′ − x)dVx′ + b(x, t) (3.4)

Equation (3.4) contains at the left hand side the function $(x). This function $(x)
returns the mass density ρ of the material at position x in the reference configuration Ω.

6

3.1 Peridynamic theory

At the right side u is the displacement vector field, b(x, t) returns the external force at
position x at time t and f is the pairwise force function. The pairwise force function
f returns the force vector (per unit volume squared) which particle P

′
exerts on the

particle Pi.
For the horizon Hi exists, for a given material, a positive number δ such that:

|ξ| > δ ⇒ f (η, ξ) = 0 | ∀η (3.5)

This means that an spherical neighborhood Hi of particle Pi in R exists and there
are particles outside the neighborhood, which have no influence on particle P. To
assure the conservation of linear momentum p = m · v and angular momentum
L = r× p = r×m · v the pairwise force function f is required to have the following
properties:

∀η, ξ : f (−η,−ξ) = f (η, ξ) (3.6)

Property (3.6) assures the conservation of linear momentum, which means, that the
momentum of the closed system is constant, if no external force acts on the closed
system.

∀η, ξ : (η + ξ)× f (η, ξ) = 0 (3.7)

The property (3.7) assures the conversation of angular momentum. In closed systems
the angular momentum is constant. The meaning of the equation (3.7) is, that the force
vector between particle Pi and P

′
is parallel to their current relative position vector

η + ξ.
For a micro elastic material the pairwise force function has to be derivable from a
scalar micro potential w:

∀η, ξ : f (η, ξ) =
∂w
∂η

(η, ξ) (3.8)

The micro potential has the unit of energy per unit volume and holds the energy
for a single bond. A bond between a particle Pi and P

′
exists, if particle P

′
is in the

neighborhood Hi. The local strain energy density per unit volume in the body R is
defined as:

W =
1
2

∫
Hi

w(η, ξ)dVξ (3.9)

The factor 1/2 results because each particle of the bond holds half of the energy of the
bond.

7

3 Peridynamics

3.2 Inner forces for the Peridynamic theory

In section 3.1 the theory of Peridynamic is described, but there is no description of the
pairwise force function f . The subsection 3.2.1 gives a definition for a pairwise force
function f for a Prototype Microelastic Brittle material. In the subsection 3.2.2 is an
approach for a pairwise force function for short range forces.

3.2.1 Prototype Microelastic Brittle Model

To model cracks and fractures in a Prototype Microelastic Brittle (PMB) material the
assumption, that the pairwise force function for inner forces f depends only on the
bond stretch, is made. The bond stretch is defined by:

s(η, ξ, t) =
‖η + ξ‖ − ‖ξ‖

‖ξ‖ (3.10)

The easiest way to model failure in a model is to let bonds break when they are
stretched beyond a predefined constant value. The function s(η, ξ, t) (3.10) returns
positive values, if the bond is under tension. An isotropic material has the property,
that its properties behave the same in all directions. So the bond stretch is independent
of the direction of ξ.

The pairwise force function f for a PMB material is defined as

f (η, ξ, t) = g(η, ξ, t)
η + ξ

‖η + ξ‖ (3.11)

with g(η, ξ, t) as a linear scalar valued function, which implements the behavior of the
material and the decision if the bond is broken or “alive”

g(η, ξ, t) =

{
c · s(η, ξ, t) · µ(η, ξ, t), ‖ξ‖ ≤ δ

0, ‖ξ‖ > δ.
(3.12)

with c as the material dependent stiffness constant of the PMB model, s(η, ξ, t) as bond
stretch (3.10) and µ(η, ξ, t) as history dependent scalar valued function. The function
µ(η, ξ, t) is history dependent, because in the PMB model no “healing” of bonds is
allowed, and it is defined as:

µ(η, ξ, t) =

{
1, if s(η, ξ, t

′
) < s00 ∀ 0 ≤ t

′ ≤ t

0, otherwise
(3.13)

8

3.2 Inner forces for the Peridynamic theory

s00 as the critical stretch for bond failure for the PMB material. For a PMB material
exist only two material constants: the stiffness constant c and the critical stretch for
bond failure s00.
Figure 3.2 visualizes the pairwise force function f with s(η, ξ, t) as the argument. If
the bond between this two particles is not broken, the history dependent scalar valued
function returns the constant value 1. After the break the function value jumps to zero
and discontinuity exists.

µ = 0

f (s)

c

s0 s

c · s(η, ξ, t)

µ = 1

Figure 3.2: Bond force in the PMB model visualized as a function f (s).

In [P+
08] an alternative history dependent scalar valued function µ(η, ξ, t) is presented:

µ(η, ξ, t) =

1,

s(η, ξ, t
′
) < min{s0(η, ξ, t

′
), s0(η

′
, ξ
′
, t
′
)}, 0 ≤ t

′ ≤ t,
s0(η, ξ, t) = s00 − α · smin(η, ξ, t), smin = min

η
s(η, ξ, t)

0, otherwise.

(3.14)

With α as a material dependent scaling factor. The stiffness constant c depends on the
bulk modulus k. The stiffness constant c is defined in [P+

08] as:

c =
18 · k
π · δ4 (3.15)

3.2.2 Short range forces

In the subsection before, particles interact with each other in the horizon Hi, over
inner forces, if a bond between this two particles exists. Sometimes it is possible that

9

3 Peridynamics

all bonds of particle Pi in the horizon Hi are broken. In this case particle Pi is a “free”
particle and does not interact with any other particles. In a solid continuum it is not
possible that a particle overlaps another particle. To avoid the overlapping of particles a
additional chosen pairwise force function fs can be added to the Peridynamic model:

fs(η, ξ) =
η + ξ

‖η + ξ‖ min
{

0,
cs

δ
(‖η + ξ‖ − ds)

}
(3.16)

with ds = min{0, 9‖x− x
′‖, 1, 35(rs + r

′
s)}

The parameter rs is defined as the node radius. If the particles lie on a regular grid in
the reference configuration Ω the node radius is chosen as half of the lattice constant.
The short force ranges are always repulsive and never attractive. According to [P+

08]
the pairwise force function fs may also be replaced with a constant potential. A
suggestion is the repulsive part of the Lennard-Jones potential, i.e. ‖ η + ξ ‖−12.

3.3 Discretization

R

4x
4z

4y

Figure 3.3: Discretization in particles N = {ni,j | 0 < i < n, 0 < j < m} with an
surrounding volume V = 4x · 4y · 4z on an equidistant n × m lattice.

Figure 3.3 shows the discretization of the body R in N particles on a equidistant n × m
lattice. Each particle has a surrounding volume V = 4x · 4y · 4z. In this case a two
dimensional lattice is used for the discretization, but it is also possible to use a cubic lat-
tice for the discretization in the three dimensional case. In both cases the surrounding
volume of a particle should not intersect with volumes of other particles in the reference
configuration Ω.

To discretize the equation of motion (3.4) to get rid of the integral
∫

Hi
the set

Fi is defined for each particle Pi as:

Fi = {j | ‖xj(0)− xi(0)‖ ≤ δ, j 6= i} (3.17)

10

3.3 Discretization

The set Fi contains the indices of all particles, which are in the horizon Hi of particle
Pi.

($(xi)Vi)ÿt
i = ∑

j∈Fi

f (u(xj, t)− u(xi, t)︸ ︷︷ ︸
η

, xj − xi︸ ︷︷ ︸
ξ

)ṼjVi + b(xi, t)Vi (3.18)

The equation (3.18) is the discrete Peridynamic equation of motion. With $(xi) as the
mass density function, Vi as the surrounding volume V of particle Pi, f as the pairwise
force function and b(xi, t) as the function for the extern force at position x at time t at
the body R.
The volume Ṽj is the scaled volume ν(x− x

′
) ·Vj of particle Pj with the linear dimen-

sionless scaling function:

ν(x− x
′
) =

− 1

2rs
‖xj − xi‖+ (δ

2rs
+ 1

2), δ− rs ≤ ‖xj − xi‖ ≤ δ

1, ‖xj − xi‖ ≤ δ− rs

0, otherwise.

(3.19)

The function (3.19) is needed, for particles, which are bond to particle Pi but very close
to the horizon Hi. A part of the volume of this particle is outside the sphere around
particle Pi. The influence of this particle is not the same, as of a particle, which is with
the volume totally inside the sphere of the horizon Hi. If the distance ‖ xj − xi ‖= δ
the volume Vj is scaled with the factor 0.5, because nearly one half of the volume is
inside and one half of the volume is outside the horizon Hi.

Chapter 3.2.2 introduced the additional optional pairwise force function fs (3.17). To
add the pairwise force function fs to the discrete Peridynamic equation of motion the
following set F S

i is defined:

F S
i = {j | ‖xj(t)− xi(t)‖ ≤ ds, j 6= i} (3.20)

The difference to the set Fi is that the set F S
i uses the actual positions of the particle Pi

and Pj at time t. So the set F S
i may change every time step. The use of the short range

forces depends on the problem and should be chosen wisely. The equation (3.21) is
the discrete Peridynamic equation of motion with support of short range forces.

($(xi)Vi)ÿt
i = ∑

j∈Fi

f (u(xj, t)− u(xi, t)︸ ︷︷ ︸
η

, xj − xi︸ ︷︷ ︸
ξ

)ṼjVi (3.21)

+ ∑
j∈FS

i

f (u(xj, t)− u(xi, t)︸ ︷︷ ︸
η

, xj − xi︸ ︷︷ ︸
ξ

)ṼjVi + b(x, t)Vi

11

3 Peridynamics

3.3.1 Computation of the position at time t

The discrete Peridynamic equation of motion (3.18) returns the acceleration ÿt
i of a

particle i at the time step t. In most cases of simulation results the position xt
i of a

particle i at the time step t is interesting. To estimate the position xt
i the Störmer–Verlet

method [HLW03] is used. From a historical view this method is interesting, because
the description of this method was first given by Isaac Newton’s Principia in 1687. To
estimate the position xt

i the two–step formulation is used:

xt+1
i = 2 · xt

i − xt−1
i + ÿt

i · 4t2 (3.22)

In the first step are xt−1
i = xt

i and ÿt
i = 0. The Störmer–Verlet method (3.22) has the

error term of O(4t4).

12

4 Implementation

In section 4.1 the Compute Unified Device Architecture (CUDA), developed from
NVIDIA, is introduced. Section 4.2 shows the program flow chart (figure 4.4) and
describes the used algorithms during the program flow.

4.1 Compute Unified Device Architecture

NVIDIA introduced with the Compute Unified Device Architecture (CUDA) a
parallel computing architecture for Graphics processing units (GPU). With CUDA1

as computing engine for NVIDIA GPUs, the access for developers through standard
programming languages is provided.
The computing engine is accessible with the programming language “C for CUDA”.
This programming language is similar to the programming language C, but has some
special keywords and certain restrictions [cud11b]. The source files are compiled with
a Path Scale Open642 C compiler (nvcc) for the execution on the GPU. The utils for
developers are provided for Microsoft Windows, Linux and Mac OS X.

Figure 4.1 shows the processing flow on CUDA. At the beginning memory for
the data structures has to be allocated on the host and filled with data. Step 1 copy
the data from the host to the device. For this step the memory on the device has to be
allocated from the host side. In step 2 the CPU instructs the GPU with the processing
of the device code. In step 3 the device code is executed parallel on each core. To use
the result of the computation on the host side, the data is copied on back to the host 4 .

To describe the processing flow of CUDA it is enough to talk from one kind
memory. To understand the Compute Unified Device Architecture it is necessary
to introduce more kinds of memory: global memory, constant memory, texture memory,
shared memory and per-thread local memory. To differentiate between the different kinds
of memory we need to talk about: threads, blocks and grids.

1CUDA is a unregistered trade mark of NVIDIA
2An open source compiler with optimization for Itanium and x86-64 microprocessor architectures.

13

4 Implementation

Host Memory

Device Memory

CPU

GPU

3

1 4 2

Figure 4.1: Processing flow on CUDA

The figure 4.2 shows the layers of CUDA. The atomic unit in CUDA is a single thread.
Each thread has its own per-thread local memory. Not visualized in this figure are the
registers of the threads. In the next layer blocks of threads are defined by the developer.

Thread

Per−thread local
 memory

Shared memory

Block

Grid

Global memory

Block (0,0) Block (1,0)

Figure 4.2: Layers of CUDA

Therefore the attribute blockSize as an extension of the “C for CUDA” programming
language exists. All threads in a block are executed together with the Single Instruction
Multiple Threads (SIMT) architecture. The blocks are distributed to different scalar
processors within the same multiprocessor (MP). All threads in one block have access to
the same shared memory.
In the last layer several blocks are combined as a grid. To define the amount of blocks

14

4.1 Compute Unified Device Architecture

in all grids the attribute gridSize exists. One grid of blocks is executed independently in
serial or parallel and is distributed to different multiprocessors. All grids share the
same global memory.

The attributes blockSize and gridSize are organized in one, two or three dimen-
sions. The blockSize and gridSize are defined before the execution of the kernel and
so the blockSize and gridSize are the same for each multiprocessor in this execution.
The size of each kind of memory is limited by the specification of the NVIDIA device.
To get the values the NVIDIA CUDA LIBRARY provides the struct cudaDeviceProp.
All significant attributes are listed in the CUDA API REFERENCE MANUAL [cud11a].

Lastly there are constant memory and texture memory, which not exist as physi-
cal memory on the device. These kinds of memory reside in the global memory
and their maximal size is restricted by the device attributes. The constant memory
is read-only and not dynamically allocable. This kind of memory can be accessed
directly from the device. From the host side it has to be copied as an symbol and
is only indirectly accessible. The texture memory is also read-only, but it is possible
to bind data from the host to a texture. Applications for this kind of memory is
heavily read-only data with irregular access patterns. A disadvantage of the texture
memory is that no double precision support is provided. NVIDIA devices with support
of CUDA ≥ 3.1 provide additional surface memory, which allows read and write access.

The figure 4.3 shows an overview of the different layers: threads, blocks and grids and
the different kinds of memory: global memory, constant memory, texture memory, shared
memory and per-thread local memory, which are accessible from the different layers.

An important extension of the “C for CUDA” programming language are the
function type qualifiers. The function type qualifiers specify where the function is
executed and where the function is callable. For the execution on the device the
qualifiers __global__ and __device__ exist.

A kernel is the entry point to start an execution on the CUDA device. A ker-
nel is the only possibility to start an execution on the device and it is callable only
from the host. A CUDA kernel has to be declared with the function type qualifier
__global__. A restriction for the return type is, that a kernel allows no return type
and must have a void return type. A kernel call is asynchronous and returns
before the device has completed the execution.

To provide functions with a non void return type on the device, the function
type qualifier __device__ is provided.

15

4 Implementation

Texture Memory

Constant Memory

Global Memory

Grid (0,0)

Register Register

Shared Memory

Thread (0,0) Thread (1,0)

Per-thread
local
memory

Per-thread
local
memory

Shared Memory

Register Register

Thread (0,0) Thread (1,0)

Per-thread
local
memory

Per-thread
local
memory

Block (0,0) Block (1,0)

Surface Memory

Figure 4.3: Memory access model of CUDA

The function is executed on the device and only callable from a kernel or a
other device function. To call a function from the host the function type qualifier
__host__ is provided.

4.2 Program flow

Figure 4.4 shows the program flow chart of the simulation. The state “Update positions”
is executed on the CUDA device. The other states are executed on the CPU. In the first
state the particles in the reference configuration Ω are generated. After the generation
of the particles in the reference configuration Ω the set Fi (3.17) for all particles are
engendered. The state “Search the neighborhood of each particle” is divided in two
sub states. These sub states are described in subsection 4.2.1. In the last state the main

16

4.2 Program flow

Generate particles

Sort particles with the morton order

Find neighbors

Update positions

t < t_max

Search neighborhood of each particle

Figure 4.4: Program flow chart of the simulation. The green state of the diagram is
executed on the CUDA device.

part of the Peridynamic is implemented. These states are executed on the NVIDIA
device in parallel with CUDA. To boost up the computation time, the other states of
the simulation should be ported to CUDA, but this is not part of this thesis.

4.2.1 Neighborhood search

For the discrete Peridynamic equation of motion the set Fi (3.17) has to be computed
for all particles. The naïve algorithm constructs the sets Fi in O(n2). A simple
optimization for a equidistant lattice is to stop if the next length to the next particle is
≥ δ. In this special case the algorithm is in O(n).
To use a non equidistant lattice for the reference configuration Ω of the particles
another algorithm is needed. In [Mic09] Connor and Kumar introduced an algo-
rithm for the “construction of k-Nearest Neighbor Graphs for Point Clouds” in
O(d n

pe · k · log(k)). The advantage of this algorithm is that randomly generated point

17

4 Implementation

clouds are supported. This means there is no restriction of the order of the particles in
the reference configuration Ω.

The algorithm [Mic09] uses the merge sort [Knu73] in combination with the
morton order [TH81] to prepare the point cloud for an efficient search of the neighbors.
The morton order or z order is a method to map multilevel data to one dimension.
This method originally invented for databases and the approach is the concatenation
of keys to generate a one dimensional code.

Figure 4.5: This figure illustrates the space filling curve for the morton order / z order
in the upper part. The lower part shows an example for the z values for
0 ≤ x, y ≤ 3.

The figure 4.5 illustrates the space filling curve for the z order in the upper part. In the
upper part the one dimensional code (z values) for the two dimensional point cloud
0 ≤ x, y ≤ 3 is computed. The curve between the z values is named z curve.
The library STANN [STA] is the C++ implementation of the algorithm “Fast construc-
tion of k-Nearest Neighbor Graphs for Point Clouds” described in [Mic09]. This
library is used for the neighbor search in the simulation. To verify the scaling of the
run time of the STANN library the run time with a equidistant lattice was measured
and plotted in figure 4.6.

4.2.2 Update Positions

The last state of the program flow chart (4.4) is implemented with the “C for CUDA”
programming language. In the first part of this section the CUDA kernel is described.

18

4.2 Program flow

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1e+06 2e+06 3e+06 4e+06

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

#Particle

STANN Library (0.74) [Intel i7-2600 @ 3.4GHz (1 Core), 15.6 GiB, Scientific Linux 6.1, Kernel 2.6.32, gcc 4.4.5]

Figure 4.6: Run time of the STANN library on a equidistant two dimensional lattice.

The part of the code of the “C for CUDA” programming language, which is executed
on the CUDA device, is called a CUDA kernel.
The second part of this section contains the restrictions for the theoretical maximal
amount of particles. The theoretical maximal amount of particles depends on the
specification of the CUDA device. An equation (4.2) for the theoretical maximal
amount and some examples for the NVIDIA GeForce GTX 560 Ti, the used CUDA
device in this thesis, are provided.

4.2.2.1 Parallelization of the discrete Peridynamic equation of motion

The implementation of the discrete Peridynamic equation of motion (3.18) with the “C
for CUDA” programming language is shown in the listing 4.1. The kernel contains
four steps, but the last one is optional for improved visualization of the simulation
results.
The step 0 initialize the vectors for the inner force fi in the first time step. In all other
time steps the vectors have to need to be reset, because the inner force fi is not history
dependent. In 1 the discrete Peridynamic equation of motion (3.18) is computed
for each particle. So the information about the acceleration ÿt

i on each particle Pi at
time t is there. To compute the position of each particle Pi at time t the Störmer–Verlet
method (3.22) is used in 2 .

19

4 Implementation

The step 3 contains not really to the Peridynamic, but is needed to produce the
figures in section 6.2. To measure the computation time of the CUDA kernel the
computation time with step 3 and without step 3 is behold.

4.2.2.2 Maximal amount of particles

The figure 4.7 shows the data structures on the CUDA device. The lower data structure
has the size of n · k, with n as the amount of particles and k as the maximal amount
of neighbors.

xActxInit

xBefore

neighbours N

#neighbor

fi

R3

R3

R3

R3

R

Figure 4.7: This figure shows the data structures on the CUDA device. The upper data
structures are linear in the size of n. The lower data structure has the size
of n · k, with n as the amount of particles and k as the maximal amount of
neighbors.

The equation 4.1 shows the usage of memory on the CUDA device. The number n is
the amount of particles and k the maximal number of neighbors per particle.

[4 · 3 · sizeo f (double) + sizeo f (int) + (k + 1) · sizeo f (int)] · n (4.1)

The size of the global memory on a device restricts the maximal number of particles
per computation. In C++ and in “C for CUDA” the size of a double is 8 bytes and the
size of an integer is 4 Bytes. We assume that N is the size of the global memory on
our CUDA device. Equation 4.2 defines the maximal amount of particle on the CUDA
device.

n =

⌊
N

4 · 3 · 8 + 4 + (k + 1) · 4

⌋
=

⌊
N

104 + 4 · k

⌋
(4.2)

The NVIDIA GeForce GTX 560 Ti, the used CUDA device in this thesis, provides
2.146.631.680 bytes as global memory.

20

4.2 Program flow

Listing 4.1 The parallel computation of the equation of motion and the estimation of
the new positions on the CUDA device

1 __global__ UpdatePositions(...)
{

for all time steps
4 {

// 0 Initialize the inner forces
7

for all particles
{

10 fi index = {0, 0, 0};
}
__syncthreads();

13

// 1 Compute the acceleration for each particle
for all particles

16 {

ÿn
i =

∑
j∈Fi

f (un
j −un

i ,xj−xi)ṼjVi

p(xi)Vi

}
19 __syncthreads();

// 2 Compute the new position of each particle
22 for all particles

{
xn+1

i = 2 · xn
i − xn−1

i + ÿn
i · 4t2

25 }
__syncthreads();

28 // 3 Compute the updated amount of neighbors for each particle
for all particles
{

31 for all neighbors
{

//Update the amount of neighbors for each particle
34 }

}
37 __syncthreads();

}
}

21

4 Implementation

4.3 Measurement of the computation time

There exist several implementations of the Peridynamic technique [Sana, PSP+
11,

SIE11], but none of them has no native support of CUDA. All of them are implemented
in FORTRAN or C++ and executed on single core CPU or multi core CPU’s.
Another possibility is to use a GPU to implement the Peridynamic technique. An
important attribute for a simulation is the computation time, especially for large entities.
So the computation time for following two implementations of the Peridynamic
technique are compared:

1. CUDA (NVIDIA GeForce GTX 560 Ti)

• Host: Scientific Linux (6.1) with Kernel 2.6.32.1

• gcc 4.4.5 (-O3 -m64)

• nvcc 4.0 V.2.1221 (-m64 -arch=sm_21 -use_fast_math)

2. Single core (Intel i7-2600 @ 3.4GHz)

• Host: Scientific Linux (6.1) with Kernel 2.6.32.1 and 16 GiB RAM

• gcc 4.4.5 −O3

To compare different implementations or algorithms a measurement for the compara-
tive property is needed:

“A software metric is any measurement which relates to a software system,
process or related documentation.” [Iva89]

The software engineering provides software metrics for objective, reproducible and
quantifiable measurements . Software metrics are classified in two classes: control
metrics and predictor metrics. Predictor metrics are measurements to compare the
quality of to software products. To compare the two implementations the following
metric (4.3) is defined:

m1 =
computation time

#particles
(4.3)

Figure 4.8 shows the computation time of the Peridynamic technique for on particle
per time step. The first aspect is that the computation time on the GPU is articulately
faster per particle and the difference is medial 3.0.
This value is feasible, because the processing power for NVIDIA GeForce GTX 560 Ti
[Har] in double precision is 105 GFLOPS and the processing power for the Intel i7-2600
@ 3.4GHz [Mar] is 83 GFLOPS. For a single thread the processing power for the Intel

22

4.4 Challenges with the Compute Unified Device Architecture

i7-2600 @ 3.4GHz sinks to ≈ 21 GFLOPS. The theoretical value for the difference in the
computation time between the GPU and CPU is 105 GFLOPS

21 GFLOPS = 5.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

C
om

pu
ta

tio
n

tim
e

/ #
Pa

rti
cl

e
(m

s)

#Particle

NVIDIA GeForce GTX 560 Ti [1] vs. Intel i7-2600 @ 3.4GHz (1 Core) [2]

GPU [1]
i7 core [2]

Figure 4.8: Run time of the different implementations for one particle per time step.

Figure 4.9 shows the run time of the CUDA kernel (4.1) with step 3 and without 3 .
The step 3 is not part of the Peridynamic, but delivers additional information for the
visualization.

4.4 Challenges with the Compute Unified Device Architecture

This section contains a summary of challenges with the Compute Unified Device
Architecture. The test [Har] of the processing power for NVIDIA GeForce GTX 560
Ti results 1.263 GFLOPS for single precision. In the Peridynamic theory small time
steps in the range of 10−9 − 10−6 are the standard for most simulations. This causes
small changes in the values during the simulation and it is necessary to use double
recession. For double precision the processing power NVIDIA GeForce GTX 560 Ti
sinks to 105 GFLOPS. Compared to the test [Mar] of the CPU Intel Core i7 2600K 3.40
GHz with 83 GFLOPS the benefit of the GPU shrinks.

23

4 Implementation

 0.006

 0.0065

 0.007

 0.0075

 0.008

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

C
om

pu
ta

tio
n

tim
e

/ #
Pa

rti
cl

e
(m

s)

#Particle

NVIDIA GeForce GTX 560 Ti [1] vs. Intel i7-2600 @ 3.4GHz (1 Core) [2]

without step 3
with step 3

Figure 4.9: Run time with and without the update of neighbors step.

In section 4.1 the levels of CUDA were introduced. All threads in a block are
executed SIMT. Therefore all threads in a block are grouped to groups of 32 threads.
These groups of threads are called wraps. Some operations are per half-warp and either
the first or second 16 threads of the wrap are executed. Control flow divergence is
possible, but all other threads of the wrap have to wait, because of the SIMT, until
the other threads finished the execution. The developer should try to avoid complex
conditional branches for one or only few threads in a wrap. The ideal number of
threads in a block is a multiple of 32. The number of registers per multiprocessor
is also limited: Register per thread · threads per block ≤ registers per block. For the
NVIDIA GeForce GTX 560 Ti 32.768 registers per block are specified.

The global memory resides in the device memory. The device memory is ac-
cessed via 32−, 64−, or 128−byte memory transactions. So only 32−, 64−, or
128−byte segments can be read or written by memory transactions. The instruction
throughput depends on the amount of memory transactions. The more transactions
are necessary, the more unused memory is transferred. Padding unused data and
align the size of the data type to 1, 2, 4, 8, or 16 bytes can solve this problem.

Figure 4.10 shows the global memory and the cache line. Data is transferred to/from
L1/L2 cache in blocks of 128 bytes. To one cache line belongs 128 bytes in the global

24

4.4 Challenges with the Compute Unified Device Architecture

Figure 4.10: Global memory and caching

memory. To improve the performance the access to the global memory should be
coalesced. If multiple threads of a wrap access the same cache line the accesses are
combined into one memory transfer.

The last advice for improvement of performance is to use fast mathematical
operations, e. g __sprt(. . .), if it is possible. These functions are less accurate, but
executed faster. The compile flags -use_fast_math has been set to get correct results of
the fast mathematical operations.

25

5 Combination with the Partition of Unity
Method

The Partition of Unity Method (PUM) is introduced in [MB96, pum97]. In [Sch03] the
abstract ingredients are:

• A Partition of the unity {ϕi | i = 1, . . . , N} with ϕi ∈ Cr(RD, R) and patches
ωi := supp◦(ϕi),

• a collection of local approximation spaces

Vi(ωi, R) := span〈ϑn
i 〉 (5.1)

defined on the patches ωi , i = 1, . . . , N.

The combination of these two ingredients is the following:

VPU :=
N

∑
i=1

ϕiVi = span〈ϕiϑ
n
i 〉 (5.2)

A property of the PUM is that the approximation spaces Vi can be chosen independent
of each other. So it is possible to combine the Peridynamic theory with a Finite
Element Method (FEM), e. g. PUM. The figure 5.1 shows an approach to combine
these two methods. The body R in the reference configuration Ω is divided in two
areas ΩPUM and ΩPeridynamic. The area ΩPeridynamic in the reference configuration Ω
is placed at the position with an initial crack or at the place where a fracture is
presumably. In the figure 5.1 there is a initial crack with the color magenta. The
remaining area in the reference configuration Ω is simulated with the PUM.
First several time steps with the PUM are simulated and then the boundary force
fbound is exchanged over the boundary of the two areas ΩPUM and ΩPeridynamic. The
exchange of the boundary force fbound is done with the discrete Peridynamic equation
of motion (3.18, 3.21). The discrete Peridynamic equation of motion has the additive
term b(xi, t) on the right side. This term is used to model extern forces on particle at
position x at time t.

Secondly several time steps of the Peridynamic are simulated. After the simu-
lation the displacement field u = {Xi | i = 1, . . . , N} with Xi as the position of all

27

5 Combination with the Partition of Unity Method

Boundary Forces Enrichment Functions

ΩPeridynamic

ΩPUM

Figure 5.1: Combination with the Partition of Unity Method

particles at time step i exists. With the displacement field u it is possible to generate
enrichment functions, which can be used to simulate the next time steps of the PUM.

The generation of the enrichment functions is not part of this thesis. More in-
formation about their generation of the enrichment functions can be found in the
special research field 716, sub project D.7 [Col12].

28

6 Results

In this Chapter are two different possibilities to use the Peridynamic model on solid
mechanics. In the first experiment an thick square plate with an initial crack were
used for the geometry. In this scenario the growing of the crack is interesting. The
second experiment simulates the impact of an projectile into an cylinder. In this case
the interest is in the appearance of cracks.

6.1 Experiment 1

This experiment was inspired from the publication “A mesh-free method based on the
Peridynamic model of solid mechanics” [SA05]. The experiment in the publication
uses velocity boundary conditions. Velocity boundary conditions are not available in
the Peridynamic technique introduced in [Sil00]. In [Sil98] in section 13 and section 14
a formulation of the Peridynamic technique with boundary conditions is presented.
The figure 6.1 shows the geometry of the thick square plate. In the center of the slim
square plate in an horizontal initial crack with the length of 10 mm.

In this experiment the thick square plate receives an first pulse, which generates tensile
stress waves. This waves move towards the crack and start the growing of the crack.
The second pulse is an compressive pulse and stops the growing of the crack. The
figure 6.2 shows the forces on the thick square plate. The forces are applied on each
half of the thick square plate.

The table 6.1 contains the simulation parameters for this experiment.

Figure 6.3 shows the growing of the crack and the waves moving to the crack in the
first 5 time steps. Figure 6.3 shows the compressive pulse and the delay of the crack in
the last 5 time steps. This experiment is not the same as in the publication, because
velocity boundary conditions are not available in the Peridynamic technique used in
this thesis. This result shows that it is possible to simulate growing and delay of cracks
with the Peridynamic technique described in [Sil00].

29

6 Results

(a) Blueprint of the thick square plate. (b) Reference configuration Ω of the body R.
Particles are colored by the amount of neighbors.

Figure 6.1: Blueprint and reference configuration Ω of the body R (experiment 1).

free
free

5 10

-20 00
t(ns)

b(t)
b(t)

−b(t)

20 00

Figure 6.2: Forces on the horizontal edges on the thick square plate.

30

6.1 Experiment 1

Parameter Value

Density $ 8000
kg
m2

Young’s modulus k 192 Pa
Length of horizon δ 1.6 mm
Critical stretch for bound failure s00 0.02
∆x 0.25 mm
∆y 0.25 mm
∆z 0.25 mm
#Particles 39920
time step 1µs
step size 10

Table 6.1: Simulation parameters for experiment 1

31

6 Results

(a) 1µs

(b) 2µs

32

6.1 Experiment 1

(c) 3µs

(d) 4µs

33

6 Results

(e) 5µs

(f) 6µs

34

6.1 Experiment 1

(g) 7µs

(h) 8µs

35

6 Results

(i) 9µs

(j) 10µs

Figure 6.3: Growing of the crack (1µs–5µs) and delay of the crack (6µs–10µs).
Particles are colored by the acceleration in x–direction.

36

6.2 Experiment 2

6.2 Experiment 2

The Experiment 2 was adapted from the publication “Implementing Peridynamic
within a molecular dynamics code” [P+

08]. The figure 6.4 shows the geometry of the
cylinder. In this experiment the impact of an projectile was simulated. The projectile is
modeled as an rigid sphere with the diameter 0.01m and an indenter, exerting force
F(r) = −1 · 1017(r− R)2. The scenario of the impact is shown in figure 6.5.

Figure 6.4: Blueprint of the cylinder.

0.0205m

r=0.005m

v = 100m
s

F(r) = −1 · 1017(r− R)2

Figure 6.5: Model, measurements and forces of the projectile.

37

6 Results

Parameter Value

Density $ 2200
kg
m2

Young’s modulus k 14.9 GPa
Length of horizon δ 0.0005 m
Critical stretch for bound failure s00 0.0005
∆x 0.0005 m
∆y 0.0005 m
∆z 0.0005 m
#Particles 83250
time step 1ns
step size 100000

Table 6.2: Simulation parameters for experiment 2

38

6.2 Experiment 2

(a) The reference configuration of the body R.

(b) The impact of the projectile into the top layer of body R. Particles are
colored with the amount of neighbors.

Figure 6.6: This series of picture shows the body R in the reference configuration Ω
and the cross section of the top layer R during the impact of the projectile.

39

6 Results

(a) 10ns

(b) 50ns40

6.2 Experiment 2

(c) 150ns

(d) 225ns 41

6 Results

(e) 275ns

(f) 30ns42

6.2 Experiment 2

(g) 375ns

(h) 400ns

Figure 6.7: Top layer of the body R during the impact. Particles are colored by the
amount of neighbors.

43

7 Conclusion and outlook

This thesis proves that it is possible to use the Compute Unified Device Architecture
for the implementation of a Peridynamic technique on a GPU. In chapter 6 the results
of the two experiments described in [SA05, P+

08] are showing that it was possible
to reproduce the two numerical experiments on the GPU with similar results. This
proves that the Peridynamic technique was correctly implemented on the GPU with
CUDA and it is possible to use the fast mathematical operations which are executed
faster, but which are therefore less accurate.

In chapter 4.3 the implementation on the GPU is compared with the CPU im-
plementation. To compare the two implementations a software metrics for objective,
reproducible and quantifiable measurements has been defined. The results of
the comparison with the metric presented in chapter 4.3 are plotted in figure 4.8.
Considering metric presented in chapter 4.3 the GPU implementation is a factor ≈ 3
faster in the computation time for one step of the Peridynamic technique for one
particle. Consider the theoretical factor by comparing the double precision floating
point performance (PEAK) of the two devices is ≈ 5.0. In this case the measured
difference in the computation time for one step of the Peridynamic technique for one
particle is appropriate.

Outlook

Following improvements of the software are recommended:

1. Running the software on a High Performance Computing GPU.

2. Porting the other states to CUDA.

3. Boundary conditions as described in [Sil98].

The first improvement for the computation time is to use a High Performance
Computing (HPC) GPU for the simulation. NVIDIA provides GPUs for different
application areas and the NVIDIA GeForce GTX 560 Ti is designed for the gaming
application area. For the application area HPC the NVIDIA Tesla 20 Serie is provided.

45

7 Conclusion and outlook

The advantage of NVIDIA Tesla 20 Serie for simulations is the accession of processing
power in double precision. For example, the double precision floating point perfor-
mance (PEAK) for the NVIDIA TESLA1 C2075 is specified with 515 GFLOP’s [NVI12].
The double precision floating point performance (PEAK) for the NVIDIA GeForce GTX
560 Ti is measured with 105 GFLOP’s [Har]. It is theoretically possible to reduce the
computation time by a factor 5 by using the NVIDIA TESLA C2075. The source code
in the “C for CUDA” programming language can be compiled for different device
architectures, but in most cases some customizing because of other device features has
to be done.

The second improvement is to port the other states of the program flow chart
(figure 4.4) to CUDA. The first state “Generate particles” can be easily ported to
CUDA because the initial position of the particles in the reference configuration Ω has
to be generated. In order to port the state “Search neighborhood of each particle” to
CUDA, a parallel sorting algorithm with the morton order has to be implemented in
CUDA first. In [SHG09] efficient sorting algorithms for many core GPUs are presented.
Secondly the neighbor search has to be implemented into CUDA. In [GSSP10] an
alternative algorithm for the neighbor search in CUDA is presented.

The third improvement is the implementation of the boundary conditions as
described in [Sil98]. Boundary conditions are important in the conventional theory of
continuum mechanics for specific solutions in equilibrium problems.

1TESLA is a unregistered trade mark of NVIDIA

46

Index

Symbols
α, 9

c, 8

δ, 6

η, 6

Hi, 6

k, 9

Ω, 5

ρ, 6

rs, 10

R, 5

s00, 9

ξ, 6

x, 5

B
block, 14

body, 5

bond, 6

critical stretch for bond failure, 9

stretch, 8

C
Compute Unified Device Architecture,

13

configuration
reference, 5

D
density, 5, 11

discretization, 10

E

equation
discrete Peridynamic equation of

motion, 11

partial differential, 5

F
Finite Element Method, 27

force
inner, 8, 9

short range, 8, 9, 11

function
pairwise force, 7

G
grid, 14

H
horizon, 6

I
isotropic, 8

L
Lennard-Jones potential, 10

M
material

Prototype Microelastic Brittle, 8

micro elastic, 7

micro potential, 7

Molecular Dynamics, 5

momentum
angular, 7

linear, 7

vii

Index

P
Partition of Unity Method, 27

position
current relative, 6

initial, 5

relative, 6

processing flow on CUDA, 13

processor
multi, 14

scalar, 14

S
Störmer–Verlet method, 12

strain
energy density, 7

T
thread, 14

V
volume, 10

unit, 7

viii

Bibliography

[Col12] Collaborative Research Center (SFB) 716. Meshfree Multiscale Methods
for Solids, 2012. URL http://www.sfb716.uni-stuttgart.de/forschung/
teilprojekte/projektbereich-d/d7.html. (Quoted on page 28)

[cud11a] CUDA API REFERENCE MANUAL. 4.0. NVIDIA, 2011. (Quoted on page 15)

[cud11b] NVIDIA CUDA C Programming Guide. 4.0. NVIDIA, 2011. (Quoted on
page 13)

[Edw02] H. C. Edwards. SIERRA Framework Version 3: Core Services Theory and
Design. Technical report, Sandia National Laboratories, 2002. (Quoted on
page 3)

[ELP] E. Emmrich, R. B. Lehoucq, D. Puhst. "Peridynamics: a nonlocal continuum
theory". (Quoted on page 5)

[GSSP10] P. Goswami, P. Schlegel, B. Solenthaler, R. Pajarola. Interactive SPH Sim-
ulation and Rendering on the GPU. In M. Otaduy, Z. Popovic, editors,
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation. 2010.
(Quoted on page 46)

[Har] HardTecs4U. NVIDIA GeForce GTX 560 TI im Test. URL
http://ht4u.net/reviews/2011/nvidia_geforce_gtx_560_ti_msi_
n560ti_twin_frozr_2/index2.php. (Quoted on the sides 22, 23 and 46)

[HLW03] E. Hairer, C. Lubich, G. Wanner. Geometric numerical integration illustrated
by the Störmer/Verlet method. Acta Numerica, 12:399–450, 2003. (Quoted on
page 12)

[Iva89] Ivan Summerville. Software Engineering. 3. Addision Wesley, 1989. (Quoted
on page 22)

[Knu73] D. E. Knuth. THE ART OF COMPUTER PROGRAMMING, volume 3. Addi-
sion Wesley, Stanford University, 1973. (Quoted on page 18)

[Mar] Marc Büchel. Sandy Bridge: Core i7 2600K und Core i5 2500K.
URL http://www.ocaholic.ch/xoops/html/modules/smartsection/item.
php?itemid=452&page=6. (Quoted on the sides 22 and 23)

ix

http://www.sfb716.uni-stuttgart.de/forschung/teilprojekte/projektbereich-d/d7.html
http://www.sfb716.uni-stuttgart.de/forschung/teilprojekte/projektbereich-d/d7.html
http://ht4u.net/reviews/2011/nvidia_geforce_gtx_560_ti_msi_n560ti_twin_frozr_2/index2.php
http://ht4u.net/reviews/2011/nvidia_geforce_gtx_560_ti_msi_n560ti_twin_frozr_2/index2.php
http://www.ocaholic.ch/xoops/html/modules/smartsection/item.php?itemid=452&page=6
http://www.ocaholic.ch/xoops/html/modules/smartsection/item.php?itemid=452&page=6

Bibliography

[MB96] J. Melenk, I. Babuška. The Partition of Unity Finite Element Method: Ba-
sictheory and applications. Computer Methods in Applied Mechanics and
Engineering, 139:289–314, 1996. (Quoted on page 27)

[Mic09] Michael Connor and Piyush Kumar. Fast construction of k-Nearest Neighbor
Graphs for Point Clouds. In IEEE TRANSACTIONS ON VISUALIZATION
AND COMPUTER GRAPHICS. 2009. (Quoted on the sides 17 and 18)

[NVI12] NVIDIA. NVIDIA TESLA C2075 COMPANION PROCESSOR CALCULATE
RESULTS EXPONENTIALLY FASTER, 2012. URL http://www.nvidia.com/
docs/IO/43395/NV-DS-Tesla-C2075.pdf. (Quoted on page 46)

[P+
08] M. L. Parks, et al. Implementing peridynamics within a molecular dynam-

ics code. In Computer Physics Communications, volume 179, pp. 777–783.
ELSEVIER, 2008. (Quoted on the sides 9, 10, 37 and 45)

[Pli95] S. Plimpton. Fast Parallel Algorithms for Short–Range Molecular Dynamics.
In Journal of Computational Physics, volume 117, pp. 1 – 19. 1995. (Quoted on
page 3)

[PSP+
11] M. L. Parks, P. Seleson, S. J. Plimpton, S. A. Silling, R. B. Lehoucq. Peridy-

namics with LAMMPS: A User Guide v0.3 Beta. SANDIA REPORT, Sandia
National Laboratories, 2011. (Quoted on the sides 3 and 22)

[pum97] The Partion of Unity Method. International Journal for Numerical Methods in
Engineering, 40:727–758, 1997. (Quoted on page 27)

[SA05] S. A. Silling, E. Askari. A meshfree method based on the peridynamic model
of solid mechanics. In Computer & Structures, volume 83, pp. 1526–1535.
ELSEVIER, 2005. (Quoted on the sides 29 and 45)

[Sana] Sandia National Laboratories. EMU. URL http://www.sandia.gov/emu/
emu.htm. (Quoted on the sides 3 and 22)

[Sanb] Sandia National Laboratories. LAMMPS Molecular Dynamics Simulator.
URL http://lammps.sandia.gov/. (Quoted on page 3)

[Sch03] M. A. Schweitzer. Parallel Multilevel Partition of Unity Method for Elliptic
Partial Differential Equations, volume 29. Springer, 2003. (Quoted on page 27)

[SHG09] N. Satish, M. Harris, M. Garland. Designing Efficient Sorting Algorithms for
Manycore GPUs, 2009. To Appear in Proc. 23rd IEEE International Parallel
and Distributed Processing Symposium. (Quoted on page 46)

x

http://www.nvidia.com/docs/IO/43395/NV-DS-Tesla-C2075.pdf
http://www.nvidia.com/docs/IO/43395/NV-DS-Tesla-C2075.pdf
http://www.sandia.gov/emu/emu.htm
http://www.sandia.gov/emu/emu.htm
http://lammps.sandia.gov/

Bibliography

[SIE11] SIERRA Solid Mechanics Team. Sierra/SolidMechanics 4.22 User’s Guide.
Technical report, Computational Solid Mechanics and Structural Dynamics
Department (Sandia National Laboratories), 2011. (Quoted on the sides 3

and 22)

[Sil98] S. A. Silling. Reformulation of elasticity theory for discontinuities and long-
range forces. Technical report, Sandia National Laboratories, 1998. (Quoted
on the sides 29, 45 and 46)

[Sil00] S. A. Silling. Reformulation of elasticity theory for discontinuities and long-
range forces. In Journal of the Mechanics and Physics of Solids, volume 48, pp.
175–209. Pergamon, 2000. (Quoted on the sides 5 and 29)

[STA] STANN. URL https://sites.google.com/a/compgeom.com/stann/Home.
(Quoted on page 18)

[TH81] H. Tropf, H. Herzog. Multidimensional Range Search in Dynamically
Balanced Trees. In Angewandte Informatik (Applied Informatics), pp. 71–77.
Vieweg Verlag, 1981. (Quoted on page 18)

All links were last followed on March 12, 2012.

xi

https://sites.google.com/a/compgeom.com/stann/Home

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Patrick Diehl)

	1 Introduction
	2 Related work
	3 Peridynamics
	3.1 Peridynamic theory
	3.2 Inner forces for the Peridynamic theory
	3.2.1 Prototype Microelastic Brittle Model
	3.2.2 Short range forces

	3.3 Discretization
	3.3.1 Computation of the position at time t

	4 Implementation
	4.1 Compute Unified Device Architecture
	4.2 Program flow
	4.2.1 Neighborhood search
	4.2.2 Update Positions
	4.2.2.1 Parallelization of the discrete Peridynamic equation of motion
	4.2.2.2 Maximal amount of particles

	4.3 Measurement of the computation time
	4.4 Challenges with the Compute Unified Device Architecture

	5 Combination with the Partition of Unity Method
	6 Results
	6.1 Experiment 1
	6.2 Experiment 2

	7 Conclusion and outlook
	Index
	Bibliography

