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Abstract

This thesis deals with possibility to provide a robot organism, consisting of an
amount of single smaller robots, with the ability of locomotion. It is integrated
into the SYMBRION project which is funded by the European Union. The used
robots and the simulation environment are a product from this major project for
swarm robotics.

The presented locomotion approach uses artificial neural networks which are com-
posed of third generation neurons called “Spiking Neurons”. For evaluating the
generated motion patterns the artificial neural networks are evolutionary adapted
which was realized by using “Evolutionary Acquisition of Neural Topologies”. In
this thesis the evolutionary engine “EvoRoF”, launched by Florian Schlachter of
the University of Stuttgart, was used. The findings of this scientific work were in-
cluded directly in the adjustment process of this evolutionary engine.

Specially the focus of this thesis is on distributed online evolution. Meaning that
each robot of the whole organism has its own population of individuals and thus
its own set of artificial neural networks.

In the course of the evolutionary process the artificial neural networks start from
scratch on directly on the robotic system. There are no networks which were pre-
calculated on a desktop computer.
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1 Introduction

1.1 Motivation

This thesis is embedded in the SYMBRION project. The SYMBRION project is
funded by the European Union and has the goal to develop novel principles for
multi-robot organisms. These principles are biological inspired and based on mod-
ern computing paradigms. The peculiarity of the project is that the robots are able
to dock to each other with the help of specific docking elements. Accordingly the
individual robots are able to form different types of organisms.

One of the key questions that will be answered in this thesis is the question of
common movement of an organism. In single mode the individual robot can move
around with the help of its screws, wheels or chains. These types of drives have
inherent limits, for example with climbing of stairs. Furthermore, the distributed
synchronized control of locomotion of organism is much more difficult than for a
single robot.

A possible approach is to have a look to biology to find potential solutions. Lo-
comotion of animals or human beings is an important skill for their survival. It is
the only way to find food and sexual partners or to escape from predators. The abil-
ity to change position is evolutionarily adapted over millions of years to different
environmental conditions. In spite to this huge relevance this area is only slightly
researched and understood.

For this thesis the already discovered biological approaches will be used. So Cen-
tral Pattern Generators (CPG) represent a starting point to get the organisms into
action.

1.2 The Symbrion Project

Funded by the European Union the SYMBRION project has its focus on investi-
gating and developing novel principles of adaptation and evolution for symbiotic
multi-robot organisms. All the different approaches of the project are bio-inspired
and are based on modern computer paradigms. The robot organisms consist of
super-large scale swarms of robots with the peculiarity that the individual robot is
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1 Introduction

able to dock to each other. With the help of specific docking elements the robots can
configure different structured organisms by their own. The dynamical aggregated
organisms collectively interact with the physical world with the help of their sen-
sors and actuators. In this way, artificial robotic organisms become self-configuring,
self-healing, self-optimizing and self-protecting. The robots are able to reprogram
themselves without human supervision and form new functionality.

Figure 1.1: A multi-robot organism consisting of 24 single robots which are
connected to one big organism called hexapod. This organism can
move with the help of his six legs. For example this hexapod is
able to go up a stairway. A task a single robot can not cope.

1.3 Related Work

This thesis alludes to a topic which is already described in [Bar10] by Barth. Barth
was engaged in designing Central Pattern Generators (CPG) for the modular robotic
system of the SYMBRION project. In his thesis, Barth compares different widely
used modules of CPGs. To derive multiple advantages of the different modules
a hybrid approach was used for implementation. The basic idea was to evolve a
neural network that drives different oscillators. Barth used GeNeralized Acquisi-
tion of Recurrent Links (GNARL) algorithm for the engineering of the networks.
For more information about GNARL, see [SAP94]. Robotic sensor data as input for
the neural network was only discussed, but not used. Thus, the approach of Barth
is not able to react to environmental changes, like obstacles. This is a significant
disadvantage in real life.

18



1.3 Related Work

Another discourse that deals with the topic of Central Pattern Generators of modu-
lar robots is explained by Haasdijk, Rusu and Eiben in [HRE10]. The scientific work
of Haasdijk et al. is also embedded in the SYMBRION project. Like in [Bar10] the
CPGs are designed for modular robotic organisms. Haasdijk et al. uses the Hyper-
NEAT (NeuroEvolution of Augmented Topologies) technique to evolve the large-
scale artificial neural networks (ANNs). For more information about HyperNEAT,
see [BKv09]. A big advantage over the scientific paper of Barth is the integration
of the sensor feedback that makes it possible to react to obstacles. In this theoret-
ical approach the evolutionary process does not create an ANN, which produces
the signals for the motors of the robots. The output of the artificial neural net are
the base angle, amplitude and phase difference for a sine wave - as in most similar
work. This defined sine wave is used as control input for the motors. An approach
that makes the evolutionary process much faster because it substantially reduces
the parameter space. However it has the disadvantage that only sine waves can be
generated. Additional Haasdijk et al. did not develop a higher control mechanism
to control for example direction and speed of the organism.

Another scholarly piece that is noteworthy at this point is [LFS92]. In the scien-
tific statement of Lewis et al. already artificial neural networks were used to con-
trol motor pattern generators for a six legged robot. Staged evolution is utilized
to accomplish this goal which is defined implicit by a fitness function. Thus, the
evolved artificial neural network is getting more complex over time continuously.
Algorithmic a single oscillator is evolved initially. In a second step evolution itera-
tively adapts the motion pattern generator of the robot.

An alternative to the output of the artificial neural network of the already men-
tioned papers, is shown in [MNSI04] by Mori, Naamura, Sato and Ishii . Mori et
al. designed a Central Pattern Generator for a monolithic bipedal robot. The dif-
ference with other scholarly pieces is that they interpret the output of the artificial
neural network as torque for the actuators. However, this approach has been devel-
oped for a monolithic robot, which contrasts to the modular approach of this thesis.

In the scientific work [KKY+03] and [KKY+05] by Kurokawa and Kamimura et
al. automatic generation of motion patterns for modular robots are represented.
Kurokawa and Kamimura et al. used the M-TRAN II robot to show their results.
Especially in [KKY+05] the Central Pattern Generators are implemented as dis-
tributed neural oscillators. It must be noted that only the parameters for the os-
cillators are evolved. As part of the disclosure locomotion has been evolved for
different types of organisms. [KKY+05] only uses the current state of the oscilla-
tors as sensory input. There is no higher information about the environment that
can be used for motion generation. This leads again to the previously mentioned
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hitch of avoiding collision with obstacles. An interesting result of the two publi-
cations is, that it would make sense to prohibit global communication. Kurokawa
and Kamimura et al. approved only communication between directly connected
modules. A fact, that would correspond to the aspect of distributed and autonomy
of the distinct modules.

Based on the biological model Auke Jan Ijspeert uses connectionist oscillators in
[IHW99]. As a template for the salamander and lamprey locomotion pattern, Eke-
bergs Central Pattern Generator model was used. This is described in [Eke93].
Ijspeert et al. tried to copy the movement of real animals what does not necessarily
lead to distributed approaches, as it would essential for modular robotics. More on
this topic can be found in [Ijs01] and [Ijs08] explained by Jispeert.

In [MI05] are important notes to mention. Marbach et al. evolve Central Pattern
Generators for locomotion control of modular robots, which are similar to the task
of this thesis. By using YaMoR (Yet another Modular Robot) Marbach includes mor-
phology in the self-organizing process. The announcement assumes symmetrical
organisms and movements. This limits the search space considerably and contra-
dicts a compilation of a random organism. In this scientific paper the parameters
of a sine oscillator are determined by a genetic algorithm.

Furthermore, Izhikevich et al. plays an important role for this thesis. In [Izh03]
and [Izh04] the third generation of neural network models, the Spiking Neural Net-
works (SNN), are introduced. A model that combines the biologically plausibility
of Hodgkin-Huxley-type dynamics and the computational efficiency of integrate-
and-fire neurons. For additional information see [Maa97] by Wolfgang Maass et al.
A more detailed explanation about the Spiking Neurons can be found in Chapter
2.2.1

Kassahun et al. explains in [KS05] the Evolutionary Acquisition of Neural Topolo-
gies (EANT). With the help of this method it is possible to evolve the structures and
weights of neural networks. A more detailed explanation, about the Evolutionary
Acquisition of Neural Topologies, can be found in Chapter 2.2.2

A new biological approach to control modular robotics are represented in [HSSC10].
Hamann et al. control the modular robots of the SYMBRION project with the help
of virtual hormones. These hormones are represented as a mathematic model in
the robot. It might be a new approach that could be taken up and used in future
work. The functionality is briefly described in Chapter 2.3.
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Figure 1.2: Number of articles per year whose abstract contains the terms
“robot” and “central pattern generator” or “CPG” in the IEEE Ex-
plore database, from 1990 to 2006. Taken from [Ijs08]

1.4 Goals

In contrast to [Bar10] and [HRE10], this thesis will incorporate the identified facts.
Any type of oscillations will be produced, so as not to restrict the degrees of free-
dom. The consequence of doing that is a much bigger search space and a slower
evolutionary process. Sensor feedback is a fact which can not be waived because
obstacle avoidance is an ability that the robots need to survive in real world.

In contrast to the referred works, this thesis tries to ensure the following points
of implementation:

• There will be no restriction to the organisms shape or movement.

• The artificial neural networks will evolutionarily adapted with the help of a
fitness function.

• The artificial neural network will be distributed over all modules of the or-
ganism.

• Spiking Neural Networks will be used and modified with the help of EANT.
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1.5 Structure

The thesis is structured in the following way:

Chapter 1 – Introduction:
Gives a motivation for the thesis and briefly presents the Symbrion project and re-
lated scientific work of other authors.

Chapter 2 – Basics:
Explains the basic aspects of robotics especially a focus is set to modular robotics
and swarm robotics. Methods of artificial intelligence, like neural networks and
evolutionary algorithms, are introduced.

Chapter 3 – Implementation:
Gives an introduction to the used software environment. The implementation of
the fitness functions and the evolved controller of this thesis are introduced.

Chapter 4 – Experiments:
Presents the performed experiments and their results.

Chapter 5 – Summary:
There is a summary of the results and an outlook on possible future work.
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2.1 Robotics

The word “robotics” was derived from the word robot, which was first introduced
by Czech writer Karel Čapek in his play R.U.R (Rossum’s Universal Robots - 1921)
[Zun11]. Even before the introduction of the word there were already various types
of robots. In the first century and earlier there have been the first descriptions of
robot-like automata that were described, for example by Heron of Alexandria. The
engineers and inventors were attempted to build self-operating machines which
were powered by air pressure, steam and water. The first designs were made for
humanoid robots.

As a pioneer, Leonardo da Vinci already put some sketches out in 1495. The design
was probably based on anatomical research recorded in his Vitruvian Man. Jacques
de Vaucanson exhibited between 1738 and 1739 several life-sized automatons like
a flute player, a pipe player and a duck. In 1898 Nikola Tesla demonstrates the first
radio-controlled torpedo based on the patents of Teleautomation. 27 years after
Karel Čapek published his play the first simple robots were developed with exhib-
ited complex biological behavior. They were named Elmer and Elsie and were cre-
ated by William Grey Walter of the Burden Neurological Institute at Bristol [Sab11].
Elmer and Elsie could sense light and contact with external objects. With the help of
the sensor stimuli they navigate through the environment. In the second half of the
20th century the first autonomous commercial industrial robots were introduced.
The name of the first robot was “Unimate” which was developed by George De-
vol in the 1950s. The development of these digitally operated and programmable
robots have evolved over the years up to today’s PUMA - Programmable Univer-
sal Manipulation Arm. Furthermore, new robots have been designed for different
tasks and environments.

Today, robotics is a rapidly growing field in different research directions. The
researchers design and build new robots that serve various practical purposes.
Robots are used to perform jobs more cheaply or with greater accuracy and reli-
ability than humans. In addition, they are also employed for jobs which are too
dirty, dangerous, or dull to be suitable for humans.
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2.1.1 Modular Robotics

“Modular robotics” is one of the newer research direction in the field of robotics.
A modular robot is a new breed of robot that is designed to increase the utilization
of the robots by modularizing the robot. The functionality and effectiveness of a
modular robot is easier to increase compared to conventional robots. One of the
main advantage is the variable morphology. This kind of robot typically uses the
same conventional actuators and sensors found in fixed-morphology robots, but
these robots are able to deliberately change their own shape. In order to do this
they are equipped with special connectors. With the help of these connectors they
can form organisms which consists of multiple modules.

Butler and Rizzi show some advantages of this modular approach in [BR]. One
of the positive aspects which are explained in their work is the modularity used
for locomotion. For example a snake-shaped robot is better optimized for narrow
tubes while a wheeled robot should be better to overcome long distances with less
energy. So the modular robots are able to deliberately change their own shape de-
pending on the current situation and are adapting to the new circumstances and
tasks.

An other aspect is the modularity for manipulation. Different tasks require differ-
ent kind of manipulation tools. The idea of the modular robotics is that the robots
can cooperate to solve these tasks. The robots can connect together to form a new
manipulator like an arm without the intervention of humans.

A third aspect is the modularity for geometric reconfiguration. Modular robots
can be adjusted to fit different production tasks in manufacturing systems.

A fourth and final important aspect that will be discussed here is the modular-
ity for robustness. Defective robots can easily eject from organism and be replaced
by functional robots. This is probably the biggest advantage of modular about
traditional robotics. Previously the whole defective robot has to be replaced and
repaired. Under these circumstances it was not available for a relatively long time.
This is especially important in production scenarios, as well as scenarios where a
robot can not easily be accessed, for example in space travel. In the latter case, au-
tomatic reconfiguration is highly desirable.

In the SYMBRION project the modularity for robustness and modularity for loco-
motion are the focused aspects. This work contributes both of them by providing
an efficient way to achieve locomotion with an arbitrary number of modules and
shapes of the robotic organism.
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2.1.2 Swarm Robotics

Swarm robotics is a new approach to the coordination of multi robot systems. This
robot systems consist of a large number of mostly simple physical robots. The idea
of this approach is that the desired collective behavior emerges from the interaction
between the robots and interaction of robots with the environment. Template for
these approaches are biological studies of insects, ants and sphere in nature where
swarm behavior occurs. Results of the research are considered in the design and
behavior of the robots. The robotic behavior is inspired but not limited by the emer-
gent behavior observed in social insects and is called “swarm intelligence”. Even
simple rules can produce complex swarm behavior of the robots.

One example in nature that can be a template for robotics and will be shown here
are the so-called ant colony optimization (ACO) algorithms. ACO algorithms were
conceived to find the shortest route in traveling salesman problem, see [DS04] and
[FM08] for a more detailed explanation. The ants optimize the path between their
nest and a food source by using pheromones. On ways that are often gone, the
pheromone concentration will increase. The pheromones which were distributed
away from this paths will fade with the time. Following ants try to follow the traces
of odorous and thus increase the track again - positive feedback loop. The result
will be a trace represents the shortest path. This only works if a critical certain
number of ants are involved. If there are not enough ants, the pheromone trail dis-
appears too quickly and the ants are not able to follow the trace again.

Unlike distributed robotic systems in general, swarm robotics emphasizes a large
number of robots and promotes scalability. A key-component is the direct or in-
direct communication between the individuals, e.g. with the help of pheromones
(ants) or by wireless transmission systems like infrared (robots) etc.

Also, the SYMBRION project deals with the issue of swarm robotics. This work
does not focus directly on the swarm aspect of modular robotics. The main aspect
will be the locomotion of the robotic organisms.

2.2 Artificial Intelligence

Artificial Intelligence (AI) is a subsection of computer science. Poole et al. described
Artificial Intelligence as “the study and design of intelligent agents” in [PMG98].
The focus of research is the automation of intelligent behavior. While the “strong”
artificial intelligence concerned with the imitation of human behavior, the focus of
the “weak” artificial intelligence is solving problems of practical use. Meant here
are the problems that require a certain amount of intelligence to solve. Ultimately it
is about the simulation of intelligent behavior by means of mathematics and com-
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puter science. Rather, various methods of science, like neurology or psychology,
are used to produce intelligent behavior. In the field of robotics the basic idea is to
create systems that can understand the behavior of intelligent beings.

2.2.1 Artificial Neural Networks

In the course of 50 years of research, Artificial Intelligence has developed a large
number of tools to solve the most difficult problems in computer science. Based on
the field of neurology one of these tools is the Artificial Neural Networks (ANNs).
An Artificial Neural Network is a mathematical model that is inspired by the struc-
ture of biological neural networks. The ANNs consists of a group of interconnected
artificial neurons. The interconnections have specific weights and correspond to the
synapses known from biology. Neurons have an intrinsic activation function. That
function determine for which activation from its input links, the neuron activates
its output links. Often this is specified by a threshold value Θ.

Learning algorithms can be used to train this neural networks. This algorithms,
such as EANT (see 2.2.2), modify the structure or the link weights of the ANN.
After a training phase, they are able to recognize patterns, classify input data or
control robots. For robotics the advantage of ANNs are the possibility to directly
link the sensors with the actuators. A nice simple example of this is the Braitenberg
vehicle, see Figure 2.1.

Spiking Neural Networks

A specific type of artificial neural network is the Spiking Neural Network (SNN).
They form the third generation of neural networks. The model that produces
spiking and bursting behavior combines the biologically plausibility of Hodgkin-
Huxley-type dynamics and the computational efficiency of integrate-and-fire neu-
rons. Using the accurate Hodgkin-Huxley-type model is computational prohibitive.
There were only a handful of neurons to simulate possible in real time. In contrast,
using integrate-and-fire model is computational effective. But this model is unre-
alistically simple and not good enough for simulating rich spiking and bursting
dynamics.

In [Izh03] a simple mathematical spiking model is represented, that efficiently com-
bines these two models. Depending on four parameters the explained model repro-
duces spiking and bursting behavior, shown in Figure 2.2.
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Figure 2.1: Braitenberg vehicle with two light sensors in the front. The sen-
sors are directly linked to the motors of the wheels. A higher sen-
sor value leads to a faster rotating motor. In Fig. (a) the vehicle
moves away from light sources, in Fig. (b) the vehicle moves to
the light sources. Picture taken from [Bra86].

Central Pattern Generators

The Central Pattern Generators (CPG) are neural networks producing rhythmic
patterned output without sensory feedback. Biological researches have shown that
the networks responsible for rhythmic locomotion are distributed throughout the
lower thoracic and lumber regions of the spinal cord. Examples of movements
whose unconscious automatic process made possible by CPGs are walking, run-
ning or swimming. The rhythmic movements are based on the alternating acti-
vation of flexors and extensors of the corresponding areas of the body. These ac-
tions are triggered by an excitatory stimulus from the brain stem called tonic drive.
The responsible center of the brain is known as Mesencephalic Locomotor Region
(MLR). A weak tonic drive leads to an oscillation with low frequency, while a strong
tonic drive increases the oscillations frequency.

2.2.2 Evolutionary Algorithms

An Evolutionary Algorithm (EA) is an optimization method which is inspired by
the biological evolution. An initial population P of individuals p is characterized by
different properties. The characteristic of the individuals have to maintain against
different selection factors. A fitness function rates how well a individual is opti-
mized for a specific task. Rated as well adjusted individuals may reproduce and
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Figure 2.2: Simple spiking neural network model that can reproduce firing
patterns of neurons. Picture taken from [Izh03].

pass their traits to the next generation. The next generation receives a part of the
genome of both parents. This leads to a recombination of genetic material. In addi-
tion to recombination is a certain chance of a mutation. By the mutation individual
properties can be changed randomly. As a result, over several runs, the population
is more and more adapted to the specific task. For a more detailed explanation to
Evolutionary Algorithms, see [ES08].

Common Genetic Encoding

An important recent achievement has presented Kassahun et al. In [KEM+07] Com-
mon Genetic Encoding (CGE) is described. This is a method to encode artificial
neural networks with significant advantages over previously known procedures.
An important step if one has the desire to use artificial neural networks with evolu-
tion, because these networks must be encoded there before. CGE has useful proper-
ties that makes it suitable for evolving this neural networks. The known methods
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of encoding neural networks does not allow a direct evaluation. These methods
always need to decode the phenotype from the genotype first. In contrast, CGE
allows the implicit evaluation of an encoded phenotype. On the other hand, it is
easily possible to decode the CGE encoded phenotype structure of a network. Be-
cause the topology is implicitly encoded in the genotype’s gene-order. Kassahun
et al. show that all major operation of the evolutionary algorithms, as for example
mutation and crossing-over, are possible with CGEs. Thus, this method provides
the basis for Evolutionary Acquisition of Neural Topologies (EANT). Additional
information about CGE can be found in [KMEK09].

Evolutionary Acquisition of Neural Topologies

Evolutionary Acquisition of Neural Topologies (EANT) is an evolutionary rein-
forcement learning system. It is suitable for learning and adaptation to the envi-
ronment through interaction. The system evolves both the structures and weights
of artificial neural networks. EANT starts the evolutionary process with an ar-
tificial neural network of minimal structure. Through the evolutionary path the
network increases its complexity. EANT uses the above mentioned CGEs. The evo-
lutionary operations are performed on the encoded linear genome. In comparison
to other methods EANT shows remarkably good results for standard benchmark
problems. With fewer iterations it achieves considerable results. More information
about EANT can be found in [KS05].

2.3 Hormone-Based Controller

In [HSSC10] an artificial homeostatic hormone system is introduced. Hamann et
al. explain a bio-inspired control mechanism for robotic systems. The approach is
inspired by chemical signal-processing and hormone control in animals. With the
help of hormones, the single robot, as well as the whole organism can be controlled.
This is precisely in the field of modular robotics very useful as a kind of messaging
system. In addition, the controllers can be evolved, what makes them adaptive to
different tasks.
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Figure 2.3: Salamander CPG model tested with a amphibious salamander-
like robot (Ijspeert, Crespi, Ryzcko, and Cabelguen 2007). The
20 amplitude-controlled phaseoscillators receive a drive d signal.
This signal represents the descending stimulation from the Mesen-
cephalic Locomotor Region (MLR) in the brain stem. The outputs
of the CPG are desired joint angle positions ϕi. Picture taken from
[Ijs08].
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Figure 2.4: An example of encoding an artificial neural network using a lin-
ear genome. Fig. (a) An example artificial neural network to be
encoded. Fig. (b) The artificial neural network interpreted as a
tree structure. Fig. (c) The linear genome encoding the artificial
neural network shown in (a). Pictures taken from [KMEK09]. The
abbreviations are explained in the scientific paper.

Figure 2.5: Sketch of the hormone dynamics and diffusion processes in a
robotic organism. Each module holds different hormones with
different concentrations and hormones diffuse through the whole
organism. Picture taken from [HSSC10].
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3.1 Software Environment

3.1.1 Robot3D

For simulation purpose the Robot3D simulator was used. Robot3D is a free 3D
robot simulator built on top of the open-source game engine Delta3D which is
available on the launchpad site. The Robot3D simulator is created within the Eu-
ropean REPLICATOR and SYMBRION projects. Prime developer is Lutz Winkler
from the “Karlsruhe Institute of Technology”. The simulator makes use of Open-
SceneGraph, ODE, OpenGL, OpenAL, CEGUI and YARP. The simulator can run
multiple robots in parallel and is especially tailored toward modular robots. See
[Rob10].

3.1.2 Evolutionary Robotic Framework

The controller of this thesis uses the Evolutionary Robotic Framework (EvoRoF).
EvoRoF is a framework that provides the evolutionary process for robotic systems
on the basis of EANT. The prime developer is Florian Schlachter from the Univer-
sity of Stuttgart, who was supported by Katja Deuschl and this thesis. The frame-
work was developed, adapted and adjusted continuously parallel to this work.
EvoRoF makes it possible to use neural networks combined with evolution. By the
time it is possible to use Artificial Neural Networks or Spiking Neural Networks.
During the evolutionary process the framework changes the network structure au-
tomatically with the help of parametric and structural mutations. The evolutionary
process is directed by integrated selectable fitness functions which are responsible
for the selection mechanism on population. In addition, integrated loggers make it
possible to document the results.

3.1.3 Behavior of Spiking Neurons

The implemented Spiking Neurons have a characteristic behavior by producing
spikes. For demonstration purpose an input neuron of a simple Spiking Neuron
Network was activated with different input values. In Figure 3.1 (b) can been seen
that the count of output spikes increase with the input value.
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(a) The neural network for testing the spike activity
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(b) Different activation values give a different number of spikes as output.

Figure 3.1: Behavior of the implemented Spiking Neurons.

X-axis: time steps [0, +∞].
Y-axis: input into the I0 neuron of the ANN [0, +∞].
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3.1.4 Implemented Fitness Functions

At this point, the fitness functions will be presented because these are essential to
the outcome of the following experiments. In this thesis three fitness functions have
been implemented, which will be described below in more detail.

Sine Wave Function

This fitness function is used to evaluate a neural network which is able to produce
sinusoidal output signals. The implementation of this function is presented in Al-
gorithm 3.1. Algorithmically first the correct sine value is calculated and saved
in variable a. In a second step, the output value of the neural network it deter-
mined and saved to variable b. The subtraction of the two values a and b yields
the distance of the true value to the calculated one. The fitness value is defined by
the mathematical function shown in Figure 3.2. If the distance is small the fitness
function rated it high. Otherwise the valuation tends to zero.
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fitness function

Figure 3.2: This pictures shows the fitness function for the evaluation of a
sine wave. If the evaluated value of the neural network is close to
the real sine value the fitness function rated it high.

X-axis: distance to the desired value [0, +2].
Y-axis: return value as a parameter of quality [0, +10].
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void FitnessSineWave::updateFitness( void ){
fitness += - 5.0 * sqrt(pow((sin(((*worldmodel->getVariableData())[2]

* PI) / 180.0) - (*worldmodel->getVariableData())[1]), 2.0)) +
10.0;

}
}

Algorithms 3.1: Fitness Function - Sine Wave Function

void FitnessDistance::updateFitness( void )
{
curPos = worldmodel->getCurrentPosition();
float distance = sqrt((curPos[0]-lastPos[0]) * (curPos[0]-lastPos[0]) +

(curPos[1]-lastPos[1]) * (curPos[1]-lastPos[1]));
fitness += distance;
lastPos = curPos;

}

Algorithms 3.2: Fitness Function - Distance Function

Distance Function

This distance fitness function is used to teach an artificial neural network loco-
motion implicitly. The implementation of this function can be shown in Algo-
rithm 3.2 The fitness value is determined using the absolute value function in a
2-dimensional space. A mathematical representation of this function can be seen in
Figure 3.3. The fitness function rewards a vast progress of the organism with the
corresponding higher fitness values. It would be possible to extend this function to
the third dimension. With the disadvantage that up- and downward movements
of a leg will also lead to a positive evaluation without locomotion of the robot.

Straight On Function

The straight fitness function is an alternative to the distance fitness function. The
difference to the previously described function is that this one is direction-specific.
The Algorithm 3.2 evaluates a locomotion of the organism in X-direction positive.
A mathematical representation of this evaluation process is shown in Figure 3.4.
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float FitnessStraightOn::getFinalFitness( void )
{
curPos = worldmodel->getCurrentPosition();
float fitness = (curPos[0] - lastPos[0]);
lastPos = curPos;
if (fitness > 0.0) {
return 10 * fitness;

} else {
return 0.0;

}
}

Algorithms 3.3: Fitness Function - Straight On Function

3.1.5 Implemented Selection Functions

In EvoRoF (see Chapter 3.1.2) are different selection functions implemented. This
functions select the best individuals in population which are allowed to come to
thenext generation. There are different approaches to find this specific individuals.
In this thesis are only two different selection functions are used and implemented.

Elitism

The Elitism Selection Function copies a defined percentage of the best individuals
and overwrites the worse individuals of the population. Good and worse individu-
als are evaluated by the fitness functions. After the replacing process all individuals
were mutated to generate diversity.

Elitism and Remain

Elitism and Remain Selection Function is an advantage of the Elitism Selection
Function. The selection function copies a defined number of the best individu-
als and overwrites the worse individuals, as the Elitism Selection. Alternative to
the Elitism Selection Function in this one the best individuals are not structural
mutated, because this mutation could destroy the evaluated knowledge of this in-
dividuals. The idea is that only the parametric mutation adapts this individuals to
the task.
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3.2 Development

3.2.1 Development of a “Sine Wave Generator”

First a neural network should be evaluated that represents an sine wave generator
as it is known from electrical engineering. Because in many scientific works about
Central Pattern Generators sine wave generators are used. In most cases of these
approaches, only the parameters are evaluated with the help of the artificial neural
networks. Especially for snake-like organisms this sinusoidal motion is an advan-
tage. In the experiment, see Chapter 4.1 - Evolving a Sine Wave Generator, will be
shown that this kind of motion can also be generated. So this approach is at least
as powerful as the approaches which are using the sine-generators.

3.2.2 Development of a “Variable - Sine Wave Generator”

In a second step after a sine-generator has been engendered, an artificial neural
network should be evaluated that can also generate variable sine wave frequen-
cies. Different frequencies of the sine waves would make it possible to move the
organism with different speeds. This would be the point of application for a higher
control mechanism which controls the organism. For the results of this experiment,
see Chapter 4.2 - Evolving a Variable Frequency Sine Wave Generator.

3.2.3 Development of a Central Pattern Generator

In the first approach for evolving locomotion, see Chapter 4.3 - Evolving Locomo-
tion, a controller is designed that runs separate on each robot of the organism. So
each robot has its own artificial neural network which is individually evaluated.
This represents a fundamental approach to swarm robotics in which it is desired to
have an autonomous robot. The controller uses the Evolutionary Robotic Frame-
work (see Chapter 3.1.2 - EvoRoF) which has already been described. Within the
framework, Spiking Neural Networks were used. The network gets a so-called
tonic drive (see Chapter 2.2.1 - Central Pattern Generator) and the four actuator
positions of the connected surrounding robots as input. The actuator positions of
the neighboring robots serve as an interface between the modules of the organism
and will be zero if there is no robot connected. These values are shared using the
internal messaging system. The idea is that the evaluated network provides out-
puts that can be mapped to specific actuator position. It would be expected that
the resulting networks depends on the position of the robot in the organism. Indi-
vidual modules would possibly take over different functions, for example, that of
a joint.
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3.3 Implementation

This section will shortly introduce the two algorithms that were used in subsequent
experiments to generate the sine wave generator signals and the locomotion control
signals.

3.3.1 Sine Wave Generator

Algorithm 3.4 shows the implementation of the controller that should generate a
sinusoidal signal. At the beginning the world model and the evolutionary engine
are initialized. Two float arrays are filled with potential output values of the ar-
tificial neural network. This was done in order to reduce the search space of the
problem which makes the evolution 20 times faster. Each individual of the pop-
ulation gets a certain time to generate the output signals. By calling the update
function of the evolutionary engine the neural network mutates and the signals at
the output neurons are calculated. If a spike was generated from the network the
corresponding counter variable is incremented. Is the counter greater than one,
after five time steps, the corresponding output signal is assumed to be true. The re-
sulting bit vector is interpreted as a binary number that leads to the selection of the
above-mentioned array values. This calculated value is compared with a normal
sinusoidal signal and rated by the implemented fitness function.
The illustrated version shows the algorithm to generate a variable frequency. The
input values of the artificial neural network change during evaluation. For the con-
tinuous sine wave signal controller the input signal does not change.

3.3.2 Locomotion Controller

Algorithm 3.5 shows the implementation of the controller for organism locomotion.
The used artificial neural network receives a so-called tonic drive for stimulating
the network. As in the algorithm for the sine generator this one works with a prede-
fined array. In addition, the associated robots are communicating with each other
and share their angular positions. These angular positions are fed into the respec-
tive local neural network. Also in this approach, the output neurons of the artificial
neural network are counted and interpreted as a binary value. This binary value
represents the position and hence the associated value in the predefined array. Us-
ing this value, the hinge element is driven.
The evolutionary engine rated how well the robot moves with the help of the an-
gular positions. This drives the evolution in the preferred direction - to locomotion
of the robot.
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int main(int argc, char *argv[]) {
WorldModel * wm = new WorldModel(0,2);
EvoEngine *evo = new EvoEngine();
float val[2] = {0.7, 1.0};
float sig[4] = {0.0, -1.0, 1.0 , 0.0};
std::vector<float> inputVector;
std::vector<float> outputVector;
evo->initEvoEngine((char*) "/home/alschbpk/projects/sinewave/island.cfg",

1, wm, &inputVector, &outputVector);
wm->setVariableData(&outputVector);

int steps = evo->getNumberOfSteps();
int spike0 = 0;
int spike1 = 0;
int spike2 = 0;

inputVector[0] = 0.0;

for (int i=0; i < steps; i++) {
evo->update();
if (outputVector[0] > 0.0) { spike0++; }
if (outputVector[1] > 0.0) { spike1++; }
if (outputVector[2] > 0.0) { spike2++; }
if (i%5 == 0) {
if(i%240 > 139) {
if(i%240 > 200) {
inputVector[0] = 14.0; outputVector[4] += 45.0;
} else {
inputVector[0] = 0.0; outputVector[4] = 0.0;
}

} else {
if (i%240 > 59) {
inputVector[0] = 7.0; outputVector[4] += 45.0/2.0;
} else {
inputVector[0] = 0.0; outputVector[4] = 0.0;
}

}
if (spike0 > 1) { spike0 = 1; }
if (spike1 > 1) { spike1 = 1; }
if (spike2 > 1) { spike2 = 1; }

float a = (sig[spike0 + (2 * spike1)]);
float b = (val[spike2]);
outputVector[3] = a*b;
spike0 = spike1 = spike2 = 0;

}
if (outputVector[4] == 360.0) { outputVector[4] = 0.0; }
evo->evaluateFitness();

}
}

Algorithms 3.4: Implementation SineWave Generator
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void LocomotionAgent::onTickMessage() {
inputVector[4] = 50.0; // TONIC
float f[8] = {-0.3,0.3,0.0,0.6,-0.6,0.0,1.0,-1.0};
ticks++;

updateWorldModel(); //UPDATE WORLDMODEL

//INPUT NN[1..4]: OUTPUTS FROM THE SURROUNDING NEURAL NETWORKS
Message *msg;
while ((msg = receiveNextOrgMessage()) != NULL){
Msg *m = (Msg *)msg->getData();
float x = (25.0 * (m->val)) + 25.0;

if (!(msg->getSender().compare("0"))) {
inputVector[0] = x;

} else if (!(msg->getSender().compare("1"))) {
inputVector[1] = x;

} else if (!(msg->getSender().compare("2"))) {
inputVector[2] = x;

} else if (!(msg->getSender().compare("3"))) {
inputVector[3] = x;

}
}
evoEngine->update();

//COUNT SPIKES IN ONE FRAME (10 TICKS)
if (outputVector[0] > 0.0) { spikes0++; }
if (outputVector[1] > 0.0) { spikes1++; }
if (outputVector[2] > 0.0) { spikes2++; }

if (ticks % 10 == 0 ) {
if (spikes0 > 0) { spikes0 = 1; } else { spikes0 = 0; }
if (spikes1 > 0) { spikes1 = 1; } else { spikes1 = 0; }
if (spikes2 > 0) { spikes2 = 1; } else { spikes2 = 0; }

float v = f[spikes0 + (2*spikes1) + (4*spikes2)];
moveActuator(0, v);
spikes0 = spikes1 = spikes2 = 0;

//SEND MESSAGE WITH OUTPUT DATA
Msg m;
m.val = v;

inputVector[0] = inputVector[1] = inputVector[2] = inputVector[3] =
0.0;

sendOrgMessage("A", &m, sizeof(m));
sendOrgMessage("B", &m, sizeof(m));
sendOrgMessage("C", &m, sizeof(m));
sendOrgMessage("D", &m, sizeof(m));

}
evoEngine->evaluateFitness();

}

Algorithms 3.5: Implementation Locomotion Controller
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Figure 3.3: This pictures shows the distance fitness function for the eval-
uation of locomotion. The fitness function evaluates a wide
progressing with higher values, regardless in which direction.

X-axis: movement of the robot in X direction [-∞, +∞].
Y-axis: movement of the robot in Y direction [-∞, +∞].
Z-axis: return value as a parameter of quality [0, +∞].
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Figure 3.4: This pictures shows the “straight on” fitness function for the
evaluation of locomotion in a specific direction. The fitness
function evaluates a wide progressing in X-direction with higher
values.

X-axis: movement of the robot in X direction [-∞, +∞].
Y-axis: movement of the robot in Y direction [-∞, +∞].
Z-axis: return value as a parameter of quality [0, +∞].
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4.1 Evolving a Sine Wave Generator

4.1.1 Fitness Function

For the first experiment “Evolving a Sine Wave Generator” the specifically for this
experiment implemented sine wave fitness function was used. More information
about the algorithmic realization of this function can be found in Chapter 3.1.4 -
Implemented Fitness Functions.

4.1.2 Parameters

The parameters which were set in the config file can be seen in Table 4.1.

The used artificial neural network has only one input neuron which is a “bias”
neuron that is necessary for the activation of the network. Normally one output
neuron would be enough for the evaluated signal output. However, in this experi-
ment were three output neurons elected because of performance reasons. For more
information about the basements see subchapter “Results - From Spike to Numeric
Value”.

The population size was set to 100 individuals. All individuals were evaluated
for 100 time steps and parametric mutated after each generation. After every tenth
generation a structural mutation was performed instead of a parametric one.

For selecting the well adapted individuals the selection function “Elitism and Re-
main” was taken. More information about that selection mechanism can be found
in Chapter 3.1.5.

4.1.3 Simulation

For this kind of experiment no simulation environment was needed. Because of
performance reasons the simulation was dispensed and the evaluated values of the
artificial neural network were written directly in to a log file.
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Parameter Value Description
Evolutionary Algorithm Type SNN defines the type of network

Using Phenotype Mapping 1 activates phenotype map-
ping, note CGE can operate
directly on genome

Population Size of Island 100 size of the start population of
an island

Number of Input Neurons 1 number of input neurons
Number of Output Neurons 3 number of output neurons
Number of Initial Mutations 10 number of mutations which

should be performed to a ran-
dom start genome

Number of Steps for Evaluation 100 number of steps a genome
will be evaluated before
switching to the next one

Number Of Generations 200 total number of generations
Number of Exploitation Steps 10 number of exploitation steps

to perform before a explo-
ration step follows

Default Learning Rate 0.3 Default learning rate for neu-
ron if genome is generated
randomly

Default Mutation Probability 0.3 Default mutation probability
for a neuron if genome is gen-
erated randomly

Fitness Function Type SINEWAVE defines the type of fitness
function to use

SelectionMode ELITISMaREMAIN defines the type of selection
mechanism

Selection Parameter 20.0 parameter to pass to the se-
lection function

EnableParametricMutation ON enables parametric mutation
EnableStructuralMutation ON enables structural mutation
NewNeuronToLinkRatio 0.5 0.4 means during structural

mutation, 40% probability for
new neurons and 60% proba-
bility of a new link

Table 4.1: Parameters for Evolving Sine Wave.
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4.1.4 Result

The result of the experiment shows that it is possible to produce sinusoidal signals
with the help of the implemented artificial neural networks which are using the
spiking neurons. Consequently it can be assumed that the SNN approach is equal
powerful as the other approaches with the already frequently used sine wave gen-
erators.

One of the computed output signals of a generated artificial neural network can
be seen in Figure 4.1 (b). It reflects the result of an evolutionary process for a period
of 200 generations with 100 individuals. The best evaluated artificial neural net-
work produces rhythmic signals nearly corresponding to the discretized shape of a
sine wave. This represents an almost perfect illustration of the desired signal. It can
be assumed that it also would be possible to produce the requested signal absolute
correctly with the assignment of additional time respectively more generations.

The relatively simple artificial neural network appertaining to the specified output
signal can be seen in Figure 4.1 (a). The reason for this simplicity is the manner of
implementation and the mapping of the generated spiking neuron output signals.
A fact that should be explained in the following subsection:

From Spike to Numeric Value

To get from the representation by spikes to a numeric value the spikes have to be
counted over a period of time. The implemented spiking neurons have to regen-
erate themselves after each firing before a new spike can be produced. This is the
reason, not in every time step a spike can be generated, which should be clarified
in Figure 3.1 - Behavior of the implemented Spiking Neurons.

For example with a bias activation of 20.0 course of 100 time steps approximately
10 spikes are generated. This leads in the case of the sinusoidal signal i.e. to the
following mathematical representation:

f : {n ε ℵ | 0 ≤ n ≤ 10 : n count o f spikes} → [−1.0,+1.0]

i.e. f (n) = 1/5 ∗ n− 1

A discretization with ten equidistant interpolation points would require one hun-
dred time steps. For more accuracy more spikes have to be counted over a longer
time which would slow down the evolutionary process considerably. Because of
that time problem a different type of representation has been used in this thesis.
This kind of representation reduces the search space dramatically. However, it re-
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quires more output neurons and hence more physical memory.
The approach is to start with an array of length 2n with potential output values
of the artificial neural network. The length of the array directly determines the
accuracy of the discretization. To select an appropriate value of the array n out-
put neurons are needed. This n spiking neurons produce or produce not a spike
in a given time window which is many times smaller than 100 time steps. In this
elaboration the window is adjusted to 5 time steps which leads to a 20 times faster
run time. If there are more than one spike produced by the spiking output neuron
during this period of five steps this output signal is interpreted as being present.
This kind of output of the artificial neural network can be interpreted as bit vec-
tor which represents a binary number. Transferred to the decimal number system
represents the binary number one position in the predefined array and thus the as-
sociated output value. This approach makes it possible to evaluate a larger number
of generations and individuals in less time.

As already mentioned a high accuracy demands many output neurons. But at this
point it has to be also noted that for many cases 100% accuracy is not required.
Hence, even small predefined arrays are enough to obtain acceptable results, as
shown in this and the following experiments. It is always a compromise between
speed and accuracy. For that reason, in this study the decision was made to speed.
It can be seen in Figure 4.2 that the fitness values of the individuals increase quickly
and lead to good and acceptable results.

Due to the decision of this type of representation the resulting artificial neural net-
works are less complex, see Figure 4.1 (a). Depending on how the predefined ar-
rays are chosen it is the ability to select the right values from the array that has to
be learned from the ANN. In this experiment it could be demonstrated that for this
task no hidden layer is needed. The artificial neural network is able to select the
corresponding values from the predefines array directly. The fitness values which
are documented in Figure 4.2 suggest that an acceptable fitness level is reached
already after a short time of 30 generations.

4.1.5 Averages over 40 runs

In order to exclude individual random results the experiment was repeated 40
times. In Figure 4.2 the recorded average fitness values are presented. The X-axis
correspond to the individual generations while the Y-axis represents the fitness
value which is determined by the implemented fitness function. It is noticeable
that the averaged fitness value titled “average average” (dashed line) is reduced
depending on each structural mutation after every tenth generation. A drop of fit-
ness is perceived as bad, but these structural mutations are required to make the
artificial neural networks more diverse. Structural mutations make it possible that
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(a) The best evaluated network after 200 generations.
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(b) The evaluated output signal of the evolved artificial neural network.

Figure 4.1: An evolved artificial neural network and its sinusoidal output signal
generated after an evolutionary process for a period of 200 generations.

49



4 Experiments

 840

 860

 880

 900

 920

 940

 960

 980

 0  20  40  60  80  100  120  140  160  180  200

average_best
average_average

Figure 4.2: The diagram of the averaged fitness values of the entire popula-
tion (dashed line) and the averaged fitness of the best in the re-
spective population (solid line). Both are averaged over 40 runs.

the network optimization function escapes from local minima in search space. Ad-
ditional the subsequent parametric mutations generate again an increase in fitness.
It is very difficult to get a evidence of an optimal ratio between parametric and
structural mutation. Under certain circumstances this ratio can vary addicted to
the task. Looking at the trend of the best individuals, titled “average best” (solid
line), the chosen ratio should be sufficient.

For example the evaluated sample artificial neural network (4.1 - First Experiment)
has an evaluated fitness value of 991,79 of 1000.0 possible. This is an acceptable
good result that was already reached after 200 generations.
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4.2 Evolving a Variable - Sine Wave Generator

4.2.1 Fitness Function

For the second experiment "Evolving a Variable - Sine Wave Generator" the same
fitness function as in the first experiment was used, because the reference signal is
equal. More information about the implementation of this function can be found in
Chapter 3.1.4 - Implemented Fitness Functions.

4.2.2 Parameters

The parameters which were set in the config file can be seen in Table 4.2.

In this experiment the used artificial neural network has again only one input neu-
ron. But the difference to the previous experiment is that the input value is mod-
ified during the evolutionary process. The number of output neurons is similar
to the experiment before on the basis of equal performance arguments. For more
information about that basements see subchapter 4.1.4 “Results - From Spike to
Numeric Value” of the first experiment.

The population size was set to 100 individuals. All individuals were evaluated
for 100 time steps and parametric mutated after each generation. After every tenth
generation a structural mutation was performed instead of a parametric one.

For selecting the well adapted individuals the selection function “Elitism and Re-
main” was taken. More information about that selection mechanism can be found
in Chapter 3.1.5.

4.2.3 Simulation

For this kind of experiment no simulation environment was needed. Because for
performance reasons the simulation was dispensed and the evaluated values of the
artificial neural network were written directly to a log file.

4.2.4 Results

The result of the second experiment shows that it is possible to produce sinusoidal
signals with different frequencies with the help of the implemented artificial neu-
ral networks with the particularity that these networks are using spiking neurons.
Consequently now it should be possible to evaluate Central Pattern Generator with
this kind of artificial neural networks. In the first experiment is demonstrated that
this approach is equal powerful as the approaches with the sine wave generators.
The results of the second experiment extends the functionality of the demonstrated
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Parameter Value Description
Evolutionary Algorithm Type SNN defines the type of network

Using Phenotype Mapping 1 activates phenotype map-
ping, note CGE can operate
directly on genome

Population Size of Island 100 size of the start population of
an island

Number of Input Neurons 1 number of input neurons
Number of Output Neurons 3 number of output neurons
Number of Initial Mutations 10 number of mutations which

should be performed to a ran-
dom start genome

Number of Steps for Evaluation 240 number of steps a genome
will be evaluated before
switching to the next one

Number Of Generations 200 total number of generations
Number of Exploitation Steps 10 number of exploitation steps

to perform before a explo-
ration step follows

Default Learning Rate 0.3 Default learning rate for neu-
ron if genome is generated
randomly

Default Mutation Probability 0.3 Default mutation probability
for a neuron if genome is gen-
erated randomly

Fitness Function Type SINEWAVE defines the type of fitness
function to use

SelectionMode ELITISMaREMAIN defines the type of selection
mechanism

Selection Parameter 20.0 parameter to pass to the se-
lection function

EnableParametricMutation ON enables parametric mutation
EnableStructuralMutation ON enables structural mutation
NewNeuronToLinkRatio 0.5 0.4 means during structural

mutation, 40% probability for
new neurons and 60% proba-
bility of a new link

Table 4.2: Parameters for Evolving Sine Wave with Variable Frequency.
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Figure 4.3: An evolved artificial neural network after an evolutionary process
for a period of 200 generations. This network is able to produce
two different frequencies of sine waves depending on the input
signal which is applied to input I0. It should be noted that this
network is associated with a predefined array to make this behav-
ior possible with its simple structure.

spiking neural networks with additional frequency variability. This variability
makes it possible to control various parts of the robotic organism in different ways.
A steering movement should be possible and different speeds of locomotion would
be generable.

In Figure 4.4 (b) the result of the evolutionary process after 200 generations is ex-
posed. The calculated fitness value for this network is 2151.62 of 2400.0 possible.
This is an acceptable good result reached already after that short time looking to
the numerical dump of the network and the real sinus. The evolved artificial neu-
ral network in Figure 4.3 produces rhythmic sinusoidal output signals according to
the injected input signal which can be seen in Figure 4.4 (a).

4.2.5 Averages over 40 runs

As in the previous experiment also in this one 40 runs were performed in order to
exclude random results.

Figure 4.5 shows the averaged fitness values of the best individuals (solid line) and
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(a) The injected input signal of the artificial neural network.
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(b) The evaluated output signal of the artificial neural network.

Figure 4.4: The input-dependent (a) sinusoidal output signal (b) generated by the
best artificial neural network after an evolutionary process for a period
of 200 generations.
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Figure 4.5: The diagram of the averaged fitness values of the entire popula-
tion (dashed line) and the averaged fitness of the best in the re-
spective population (solid line). Both are averaged over 40 runs.

the averaged averages (dashed line) of the 40 runs for a period of 200 generations.
The X-axis correspond to the individual generations while the Y-axis represents the
fitness value which is determined by the implemented fitness function. As well
as in the first experiment it could be shown that the fitness values of the best in-
dividuals increase continuously. These fitness values will slowly approximate the
maximum which supports the evolutionary approach.

Just as before the characteristics of the averaged averages (dashed line) is the same.
That calculate fitness is reduced depending on each structural mutation after every
tenth generation. This can be explained by the same argument of the structural
mutation as before, see Chapter 4.1.5 - Average over 40 runs.
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In conclusion of the two realized experiments can be said that the artificial neural
networks produce acceptable good results after a short time within 200 generations.
These networks are able to generate sinusoidal signals with different frequencies
depending on the input signals.

This makes the presented approach powerful enough to use it for organism lo-
comotion with the help of Central Pattern Generators (CPG).
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4.3 Evolving Locomotion

4.3.1 Fitness Function

The following experiments deal with the topic of locomotion with the help of CPGs.
For this reason a fitness function for all experiments was used which is able to
rate the advancement of the organism in a virtual arena. The previous described
“Straight On” fitness function was used for all of these experiments. For more infor-
mation about the implementation of that function, see Chapter 3.1.4 - Implemented
Fitness Functions.

4.3.2 Simulation

For simulation purpose the Robot3D (Chapter 3.1.1) environment was used all the
time. This kind of simulator makes it possible to simulate the physical conditions
and the interaction between the robot and its surrounding. The different robot plat-
forms of the Symbrion project and their installed sensors and actuators are directly
available in simulation environment. Furthermore it is possible to dock and un-
dock the single robots to an organism like in an authentic scenario in real world. A
fact this simulator has abundantly clear advantages over comparable simulators.

4.3.3 Results of the Snake-Shaped Organism

Figure 4.6: A snake-shaped robot organism consisting of five individual au-
tonomous robots from the University of Karlsruhe.

1 2 3 4 5

Table 4.3: The distributed identification numbers for each robot of the organism.
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(a) Kabot from the University of Karl-
sruhe.

(b) Scout robot from SSSA - Italy.

(c) Active Wheel from the University of Stuttgart.

Figure 4.7: An overview of the three robot platforms of the Symbrion project.
Pictures taken from [KLM+11].

With the snake-shaped organism pictured in Figure 4.6 were two documented runs
performed and analyzed in the following section.

The used robot organism consisted of five individual autonomous robots from the
University of Karlsruhe (Figure 4.7 a) that are fixed docked to each other. This kind
of robot is one of the three available robot platforms developed during the Sym-
brion project. In Figure 4.7 the remaining robots of the project can be appraised.

At this point it must be emphasized that each robot has its own population of indi-
viduals. The size of that population is defined in the configuration file. Thus, each
robot will evaluate its own artificial neural network. This represents a distributed
heterogeneous approach with hard on-board evolution.
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The idea behind this structure is not to be dependent on a control module. Each
robot will keep its own artificial neural network which will be rated for each robot
by the respective fitness function. Only the angular positions of the directly con-
nected neighbors are fed into its own artificial neural network. This is achieved via
the internal implemented messaging system.

On the basis of this approach the position of each robot in the organism is of rele-
vance. It is assumed that the evolutionary process emerges certain functions of the
individual robot depending on its own position in the entire organism. For exam-
ple a robot accepts a responsibility to be a knee element or a part of the backbone.

First Run: Locomotion for a Snake-Shaped Organism

For sake of completeness, each run the list of parameters were added because only
little changes would lead to different results. The results were not reproducible
without this parameter listing.

Parameters

For the first experimental run for evolving locomotion the parameters in Table 4.4
were set. The parameters were chosen as in the previous experiment.
All robots of the entire organism are “equipped” with a population of 10 individu-
als. Each individual is evaluated and has the chance to show how well the current
used artificial neural network is adapted to the task of locomotion during this set
time period of 800 time steps. Because the evolutionary process is not terminating
the “Number Of Generations” parameter is set to undefined but in real the simula-
tion was aborted after 30 generations.

The individuals which are rated high by the already mentioned “Straight On” fit-
ness function were selected by the “Elitism” selection mechanism. For more in-
formation about that kind of selection see Chapter 3.1.5 - Implemented Selection
Functions.

Morphologically the ANNs consist of five input neurons and three output neu-
rons. One of that five neurons has the function of the “bias” neuron and gets an
uniform input signal to stimulate the network. The remaining four are acting as
input neurons for the angle positions of the neighboring robots. These angles are
transmitted via the implemented internal messaging system.
As before only one output neuron is enough to control the hinge of the robot. In
this approach three neurons were elected because of the already mentioned perfor-
mance reasons.
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The ratio between parametric and structural mutation were chosen as in the first
two experiments. Every tenth generation a structural instead of a parametric mu-
tation is arranged. However, there is a small difference in the starting condition.
In this experiment initially five structural mutations were performed to start with
a greater diversity of artificial neural networks.

Discussion

This section should briefly presents the results of the evolutionary process respec-
tively the success of snake-like locomotion.

At the beginning of the experiment the robot organism consist of five individual
robots is lying flat on the floor in the virtual arena. Accompanying photos of the
initial starting generation and its behavior can be seen in Figure 4.8. On each robot
the ANNs were initialized and from now on each individual gets the chance to
demonstrate its skills.

In Figure 4.9 the expected (solid line) and the real angular positions (dashed line)
of the individual robots were recorded for a time period of 800 ticks. This time
period corresponds to the duration of the assessment of one individual on each
of the robots. At time step 0 all hinges are at a central position. Meaning that all
initial artificial neural network produces output signals which leads the hinges to
position: −1. This corresponds to a hinge angle of −90 degrees. For this reason the
snake-shaped organism curls at the beginning.

Amazingly already in the subsequent generations can be seen that the organism
performs a snake-like locomotion. For example in Figure 4.10 the organism is mov-
ing sinusoidally over the ground already in the second generation.

Looking at the same generation to the hinge angles (Figure 4.11) different rhythm
patterns for the individual modules are discernible. Some of the recorded rhythms
are synchronized to each other while others behave asynchronously but phase
shifted. Additional robots in the middle of the organism show greater amplitudes
in contrast to the peripheral positions. Perhaps the several elements have already
taken over different functions.

In Figure 4.17 the data has been documented over a period of 1000 time steps.
At step 224800 the evolutionary engine changes the individual on each robot of the
organism. This results in different output patterns which are generated by different
ANNs.
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Parameter Value Description
Evolutionary Algorithm Type SNN defines the type of network

Using Phenotype Mapping 1 activates phenotype map-
ping, note CGE can operate
directly on genome

Population Size of Island 10 size of the start population of
an island

Number of Input Neurons 5 number of input neurons
Number of Output Neurons 3 number of output neurons
Number of Initial Mutations 5 number of mutations which

should be performed to a ran-
dom start genome

Number of Steps for Evaluation 800 number of steps a genome
will be evaluated before
switching to the next one

Number Of Generations undefined total number of generations
Number of Exploitation Steps 10 number of exploitation steps

to perform before a explo-
ration step follows

Default Learning Rate 0.3 Default learning rate for neu-
ron if genome is generated
randomly

Default Mutation Probability 0.3 Default mutation probability
for a neuron if genome is gen-
erated randomly

Fitness Function Type STRAIGHTON defines the type of fitness
function to use

SelectionMode ELITISM defines the type of selection
mechanism

Selection Parameter 20.0 parameter to pass to the se-
lection function

EnableParametricMutation ON enables parametric mutation
EnableStructuralMutation ON enables structural mutation
NewNeuronToLinkRatio 0.5 0.4 means during structural

mutation, 40% probability for
new neurons and 60% proba-
bility of a new link

Table 4.4: First Run: Parameters for Evolving Locomotion with a Snake-Shaped
Organism.
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Figure 4.8: First Generation: Evolving Locomotion for a Snake-Shaped Organism.
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Figure 4.9: First Generation: Individual Actuator Positions of the Snake-Shaped
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.10: Second Generation: Evolving Locomotion for a Snake-Shaped
Organism.
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Figure 4.11: Second Generation: Individual Actuator Positions of the Snake-
Shaped Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].

65



4 Experiments

Figure 4.12: Fourth Generation: Evolving Locomotion for a Snake-Shaped
Organism.
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Figure 4.13: Fourth Generation: Individual Actuator Positions of the Snake-Shaped
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.14: Sixth Generation: Evolving Locomotion for a Snake-Shaped Organism.
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Figure 4.15: Sixth Generation: Individual Actuator Positions of the Snake-Shaped
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.16: 29th Generation: Evolving Locomotion for a Snake-Shaped Organism.
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Figure 4.17: 29th Generation: Individual Actuator Positions of the Snake-Shaped
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Summary

In summary it could be shown that the snake-shaped organism is able to move
across the arena (Figure 4.18). The organism starts at point [0, 0] and travels a longer
distance during the evolutionary process. Directly at the beginning of the first run
the organism covered a long and straight distance which indicates a good gait. Ad-
ditionally, the evaluated motion pattern looks like a snake.

The good locomotion at the beginning can be identified in Figure 4.19, too. Already
between the third and fourth generation the best fitness values were achieved.
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Figure 4.18: First tracking of the snake-shaped organism on the virtual arena.

X-axis: X direction [-∞, +∞].
Y-axis: Y direction [-∞, +∞].
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Figure 4.19: First fitness values for the snake-shaped organism for each
generation.

X-axis: generation [0, +∞].
Y-axis: evaluated fitness value [0, +∞].

Second Run: Locomotion for a Snake-Shaped Organism

Because of the long duration of the evolutionary process this experiment could not
repeated for 40 times as in the first two experiments of this thesis. For verification
of the achieved result of the first run a second run with the same snake-shaped or-
ganism was performed.

Note that a second repetition with the same result can not be regarded as a gen-
eral proof of the behavior.
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Parameters

For the second experimental run for evolving locomotion the parameters in Ta-
ble 4.5 were set. Notice that the parameters were not changed from the first run.
This was done to exclude that a modification of these parameters do not lead to a
variation of the result of the experiment.

Summary

Just as in the first pass the snake-shaped organism crawls partly straight across
the arena floor. The tracking data in Figure 4.20 shows its movement behavior. In
the second run it was also possible to evaluate motion patterns which leads to lo-
comotion of the organism.

It should also be mentioned that the interesting parts of the tracking data are the
straight walking lines. These are the regions where the individual robots respec-
tively their motion patterns generated by the artificial neural networks on each
robot interact functionally and form adequate locomotion.

An uncontrolled spinning in circles is caused by a combination of behavioral pat-
terns of different artificial neural networks which are distributed on the robots.
Over the time these artificial neural networks have evolved in different evolution-
ary directions. A fact that might be happened during the entire evolutionary pro-
cess. However, such combinations will be extinguished by the implemented se-
lection mechanisms. This fact is also the explanation why the fitness values will
not increase continuously and that are the dues which have to be paid for the dis-
tributed approach of this thesis.

Figure 4.21 shows the just contemplated history of the evaluated fitness values of
each generation. Generally speaking the diagram looks similar to that of the first
run. Conspicuously and inexplicably is the halt of the whole organism in 23rd gen-
eration. Perhaps an evolutionary accident.
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Parameter Value Description
Evolutionary Algorithm Type SNN defines the type of network

Using Phenotype Mapping 1 activates phenotype map-
ping, note CGE can operate
directly on genome

Population Size of Island 10 size of the start population of
an island

Number of Input Neurons 5 number of input neurons
Number of Output Neurons 3 number of output neurons
Number of Initial Mutations 5 number of mutations which

should be performed to a ran-
dom start genome

Number of Steps for Evaluation 800 number of steps a genome
will be evaluated before
switching to the next one

Number Of Generations undefined total number of generations
Number of Exploitation Steps 10 number of exploitation steps

to perform before a explo-
ration step follows

Default Learning Rate 0.3 Default learning rate for neu-
ron if genome is generated
randomly

Default Mutation Probability 0.3 Default mutation probability
for a neuron if genome is gen-
erated randomly

Fitness Function Type STRAIGHTON defines the type of fitness
function to use

SelectionMode ELITISM defines the type of selection
mechanism

Selection Parameter 20.0 parameter to pass to the se-
lection function

EnableParametricMutation ON enables parametric mutation
EnableStructuralMutation ON enables structural mutation
NewNeuronToLinkRatio 0.5 0.4 means during structural

mutation, 40% probability for
new neurons and 60% proba-
bility of a new link

Table 4.5: Second Run: Parameters for Evolving Locomotion with a Snake-Shaped
Organism.

75



4 Experiments

-100

-50

 0

 50

 100

-100 -50  0  50  100

tracking

Figure 4.20: Second tracking of the snake-shaped organism on the virtual
arena.

X-axis: X direction [-∞, +∞].
Y-axis: Y direction [-∞, +∞].
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Figure 4.21: Second fitness values for the snake-shaped organism for each
generation.

X-axis: generation [0, +∞].
Y-axis: evaluated fitness value [0, +∞].

Example of an evaluated Artificial Neural Network

For demonstration purpose in Figure 4.22 a generated ANN is plotted. The illus-
trated artificial neural network originates from the robot which is marked black in
the figures and has been generated during the second generation.

The network consists of the five input neurons “I” marked as I0, I1, I2, I3 and I4.
Additional there are the three output spiking neurons SN0, SN1 and SN2. The
“SN” output neurons are identifiable with their black border. Neuron SN3 is a spe-
cial spiking neuron that was added by a structural mutation. It was not included
right from the start but was inserted only during the evolutionary process.

The numbers at the connecting lines are the corresponding weights of this edge.
The weights can also be negative which leads to an inhibition of the subsequent
neuron. Because of that reason there were no distinct between activation or in-
hibitory spiking neurons in the implementation needed.
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Figure 4.22: Example - Evolved Neural Network.
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4.3.4 Results of the Quadruped Organism

With the quadruped organism pictured in Figure 4.23 were also two documented
runs performed and analyzed in the following section.

The used robot organism consists of seven individual autonomous robots from the
University of Karlsruhe. Each robot is fixed connected to its neighbor with the help
of specific docking elements.

Figure 4.23: A quadruped robot organism consisting of seven individual au-
tonomous robots from the University of Karlsruhe. This kind of robot
is one of the three available robot platforms developed during the Sym-
brion project. The remaining platforms can be seen in Figure 4.7.

2 6
1 4 5
3 7

Table 4.6: The distributed identification numbers for each robot of the organism.

First Run: Locomotion for a Quadruped Organism

For sake of completeness, each run the list of parameters were added because only
little changes would lead to different results. The results were not reproducible
without this parameter listing.
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Parameters

For the first experimental run for evolving locomotion the parameters in Table 4.7
were set.

Most of the parameters are chosen as in the previous experiment with the same
arguments as already mentioned in Chapter 4.3.3. Contrary to the first experiment
the evaluation steps were increased to 1000 time steps in order to give the individ-
uals more time to prove themselves.

Because it is not clarified how the best ratio between structural and parametric mu-
tation is in this experiment an attempt was made with only five exploitation steps.
With this amendment every fifth generation a structural mutation is performed in-
stead of a parametric one. What kind of consequences that entails is unknown.

Discussion

As in the experiment 4.3.3 the quadruped organisms lies flat on the arena floor
initially. This organism is curling at the beginning because of the already-described
reasons. Descriptive images of the behavior in the first generation are shown in
Figure 4.24 and the corresponding joint angles in Figure 4.25 and 4.26. In the sub-
sequent pictures the rest of the documented generations can be seen.

The documented diagrams are sorted by robot identification number. Adjacent
diagrams are not necessarily associated with adjacent robots in the organism. The
topology can be seen in Figure 4.6.

Examining the second generation (4.27) the organism already performs rhythmic
movements. A fact which will be shown on the basis of the recorded angular posi-
tions of the joints. For example the backbone robots with the identification one and
four perform synchronous movements in opposite direction looking at the signifi-
cant peaks.

Comparing the feet of the organism a synchronous movement of the front feet
which affects the robot two and robot three is determined. The movement corre-
sponds to a forward pulling and can be seen right in the middle of the Figure 4.27.
Precisely observing robot three with robot six indicates an synchronous behavior.
These robots are placed diagonally opposite to each other. A movement that looks
similar to that of a salamander, see Figure 2.3.

From generation to generation the movement will be further developed and char-
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Parameter Value Description
Evolutionary Algorithm Type SNN defines the type of network

Using Phenotype Mapping 1 activates phenotype map-
ping, note CGE can operate
directly on genome

Population Size of Island 10 size of the start population of
an island

Number of Input Neurons 5 number of input neurons
Number of Output Neurons 3 number of output neurons
Number of Initial Mutations 5 number of mutations which

should be performed to a ran-
dom start genome

Number of Steps for Evaluation 1000 number of steps a genome
will be evaluated before
switching to the next one

Number Of Generations undefined total number of generations
Number of Exploitation Steps 5 number of exploitation steps

to perform before a explo-
ration step follows

Default Learning Rate 0.3 Default learning rate for neu-
ron if genome is generated
randomly

Default Mutation Probability 0.3 Default mutation probability
for a neuron if genome is gen-
erated randomly

Fitness Function Type STRAIGHTON defines the type of fitness
function to use

SelectionMode ELITISM defines the type of selection
mechanism

Selection Parameter 20.0 parameter to pass to the se-
lection function

EnableParametricMutation ON enables parametric mutation
EnableStructuralMutation ON enables structural mutation
NewNeuronToLinkRatio 0.5 0.4 means during structural

mutation, 40% probability for
new neurons and 60% proba-
bility of a new link

Table 4.7: First Run: Parameters for Evolving Locomotion with a Quadruped
Organism.
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acterized. Thus in the tenth generation the following behavior can be described:
Now the backbone robots one and four are still synchronous but the amplitude of
robot one is smaller than before. The front feet are still synchronous and try to
pull the organisms. However, the rear feet work asynchronous and perform their
movements out of phase. In contrast to previous generations the arranged diago-
nally robots three and six are now asynchronous.

Summary

In summary it could be shown that the quadruped organism is able to move across
the arena (Figure 4.39). The organism starts at point [0,0] as in the experiments be-
fore. It moved a long distance through the virtual arena with a lot of straight runs.
As already known these straight drives are an indicator of good movement.

This good movements can also be seen in the fitness chart, see Table 4.40. The
fitness values of the best organism (solid line) and the average (dashed line) are
shown for all individuals for all 30 generations. The recorded fitness values are
fluctuating but in average they are quite large.

A good result for locomotion of a quadruped organism because this is not a sim-
ple movement. It is very difficult to move four legs on such way that an adequate
action results.
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Figure 4.24: First Generation: Evolving Locomotion for a Quadruped Organism.
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Figure 4.25: First Generation: Individual Actuator Positions 1 - 4 of the Quadruped
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.26: First Generation: Individual Actuator Positions 5 - 7 of the Quadruped
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.27: Second Generation: Evolving Locomotion for a Quadruped Organism.
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Figure 4.28: Second Generation: Individual Actuator Positions 1 - 4 of the
Quadruped Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.29: Second Generation: Individual Actuator Positions 5 - 7 of the
Quadruped Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.30: Fourth Generation: Evolving Locomotion for a Quadruped Organism.
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Figure 4.31: Fourth Generation: Individual Actuator Positions 1 - 4 of the
Quadruped Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.32: Fourth Generation: Individual Actuator Positions 5 - 7 of the
Quadruped Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.33: Sixth Generation: Evolving Locomotion for a Quadruped Organism.

92



4.3 Evolving Locomotion

-1

-0.5

 0

 0.5

 1

 50000  50200  50400  50600  50800  51000

robot1 expected
robot1 real

-1

-0.5

 0

 0.5

 1

 50000  50200  50400  50600  50800  51000

robot2 expected
robot2 real

-1

-0.5

 0

 0.5

 1

 50000  50200  50400  50600  50800  51000

robot3 expected
robot3 real

-1

-0.5

 0

 0.5

 1

 50000  50200  50400  50600  50800  51000

robot4 expected
robot4 real

Figure 4.34: Sixth Generation: Individual Actuator Positions 1 - 4 of the Quadruped
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.35: Sixth Generation: Individual Actuator Positions 5 - 7 of the Quadruped
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.36: Tenth Generation: Evolving Locomotion for a Quadruped Organism.
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Figure 4.37: Tenth Generation: Individual Actuator Positions 1 - 4 of the
Quadruped Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].

96



4.3 Evolving Locomotion

-1

-0.5

 0

 0.5

 1

 90000  90200  90400  90600  90800  91000

robot5 expected
robot5 real

-1

-0.5

 0

 0.5

 1

 90000  90200  90400  90600  90800  91000

robot6 expected
robot6 real

-1

-0.5

 0

 0.5

 1

 90000  90200  90400  90600  90800  91000

robot7 expected
robot7 real

Figure 4.38: Tenth Generation: Individual Actuator Positions 5 - 7 of the
Quadruped Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.39: First tracking of the quadruped organism on the virtual arena.

X-axis: X direction [-∞, +∞].
Y-axis: Y direction [-∞, +∞].

Second Run: Locomotion for a Quadruped Organism

Because of the long duration of the evolutionary process this experiment could not
repeated for 40 times like in the first two experiments of this thesis. For verification
of the achieved result of the first run a second run with the same quadruped organ-
ism was performed.

Note that a second repetition with the same result can not be regarded as a gen-
eral proof of the behavior.
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Figure 4.40: First fitness values for the quadruped organism for each genera-
tion.

X-axis: generation [0, +∞].
Y-axis: evaluated fitness value [0, +∞].

Parameters

For the second experimental run for evolving locomotion the parameters in Table
4.8 were set.

In the second run the exploitation steps were reseted to the original value of 10.
This was done to see which setting is better for the evolution of locomotion.
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Parameter Value Description
Evolutionary Algorithm Type SNN defines the type of network

Using Phenotype Mapping 1 activates phenotype map-
ping, note CGE can operate
directly on genome

Population Size of Island 10 size of the start population of
an island

Number of Input Neurons 5 number of input neurons
Number of Output Neurons 3 number of output neurons
Number of Initial Mutations 5 number of mutations which

should be performed to a ran-
dom start genome

Number of Steps for Evaluation 1000 number of steps a genome
will be evaluated before
switching to the next one

Number Of Generations undefined total number of generations
Number of Exploitation Steps 10 number of exploitation steps

to perform before a explo-
ration step follows

Default Learning Rate 0.3 Default learning rate for neu-
ron if genome is generated
randomly

Default Mutation Probability 0.3 Default mutation probability
for a neuron if genome is gen-
erated randomly

Fitness Function Type STRAIGHTON defines the type of fitness
function to use

SelectionMode ELITISM defines the type of selection
mechanism

Selection Parameter 20.0 parameter to pass to the se-
lection function

EnableParametricMutation ON enables parametric mutation
EnableStructuralMutation ON enables structural mutation
NewNeuronToLinkRatio 0.5 0.4 means during structural

mutation, 40% probability for
new neurons and 60% proba-
bility of a new link

Table 4.8: Second Run: Parameters for Evolving Locomotion with a Quadruped
Organism.
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Summary

Just as in the first pass the quadruped organism scrambles straight across the vir-
tual arena floor. Documented tracking data in Figure 4.41 shows the movement
behavior which is not as good as in the first pass. The area in which the organism
has moved is considerably smaller than before. In Figure 4.42 the associated fitness
values are illustrated.

The significant difference between the first and the second pass was in relationship
between parametric and structural mutation. In the first run all fifth generation a
structural instead of a parametric mutation was performed. In contrast as in the
second run it was at every tenth generation. The hope was to make a statement to
what relationship is more likely to be chosen.

Comparing the two recorded fitness charts in Figure 4.40 and 4.42 there are sig-
nificant unexplainable changes. Unfortunately no conclusion can be made about
what relationship would be better for evolution.
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Figure 4.41: Second tracking of the quadruped organism on the virtual arena.

X-axis: X direction [-∞, +∞].
Y-axis: Y direction [-∞, +∞].
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Figure 4.42: Second fitness values for the quadruped organism for each
generation.

X-axis: generation [0, +∞].
Y-axis: evaluated fitness value [0, +∞].
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Figure 4.43: Example - Evolved Neural Network.

Example of an evaluated Artificial Neural Network

For demonstration purpose in Figure 4.43 a generated artificial neural network is
presented which was made by the evolutionary engine during the development of
the quadruped locomotion.

The network consists of the five input neurons “I” marked as I0, I1, I2, I3 and I4.
Additional there are the three output spiking neurons SN0, SN1 and SN2. The
“SN” output neurons are identifiable with their black border. Neuron SN3 is a spe-
cial spiking neuron that was added by a structural mutation. It was not included
right from the start but was inserted only during the evolutionary process.
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4.3.5 Results of the Random Organism

With the random organism pictured in Figure 4.44 were also two documented runs
performed and analyzed in the following section.

The used robot organism consists of seven individual autonomous robots from the
University of Karlsruhe. Each robot is fixed connected to its neighbor with the help
of specific docking elements.

Figure 4.44: A random robot organism consisting of seven
individual autonomous robots from the Uni-
versity of Karlsruhe. This kind of robot is one
of the three available robot platforms devel-
oped during the Symbrion project. The remain-
ing platforms can be seen in Figure 4.7.

3
1 2 4

5
6 7

Table 4.9: The distributed identification numbers for each robot of the organism.
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First Run: Locomotion for a Random Organism

For sake of completeness, each run the list of parameters were added because only
little changes would lead to different results. The results were not reproducible
without this parameter listing.

Parameters

For the first experimental run for evolving locomotion the parameters in Table 4.10
were set.

Most of the parameters are chosen as in the previous experiment with the same
arguments as already mentioned in Chapter 4.3.3.

The exploitation steps was set again to 5 for verifying the consolidated findings
of the preceding experiments. In addition the mutation probability was slightly
increased with the hope to receive more divergent networks.

Discussion

No changes in the initial conditions leads to no amendments in the starting be-
havior. The organism begins with lying flat on the arena floor as in the other loco-
motion experiments. Descriptive images of that behavior of the first generation are
shown in Figure 4.45 and the corresponding joint angles in Figure 4.46 and 4.47. In
the subsequent pictures the rest of the documented generations can be seen.

In contrast to the already performed experiments in this one the parameter of the
“initial mutation” which is set to value five is of relevance. In combination with the
higher “mutation probability” the first generation of artificial neural networks pro-
duce already output signals. This can be seen in Figure 4.46 and 4.47. Analyzing
these seven diagrams for every robot shows that there is still no synchronization
between neighboring elements.

Looking to the 14th generation in Figure 4.57 with the joint angles 4.58 and 4.59
the following behavior can be interpreted with caution. The artificial neural net-
work of the robot with identification one produces only rarely peaks. The most
time the output is close to zero which means that the robot only passively partici-
pating in the movement. This provides a kind of rudimentary appendix.

Most of the labor movement is on the axis with the robots two to six. They move
rhythmically with a certain phase shift similar to the snake-shaped organism wherein
the robot with identification 6 plays a special role. Its artificial neural network pro-
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Parameter Value Description
Evolutionary Algorithm Type SNN defines the type of network

Using Phenotype Mapping 1 activates phenotype map-
ping, note CGE can operate
directly on genome

Population Size of Island 10 size of the start population of
an island

Number of Input Neurons 5 number of input neurons
Number of Output Neurons 3 number of output neurons
Number of Initial Mutations 5 number of mutations which

should be performed to a ran-
dom start genome

Number of Steps for Evaluation 1000 number of steps a genome
will be evaluated before
switching to the next one

Number Of Generations undefined total number of generations
Number of Exploitation Steps 5 number of exploitation steps

to perform before a explo-
ration step follows

Default Learning Rate 0.3 Default learning rate for neu-
ron if genome is generated
randomly

Default Mutation Probability 0.5 Default mutation probability
for a neuron if genome is gen-
erated randomly

Fitness Function Type STRAIGHTON defines the type of fitness
function to use

SelectionMode ELITISM defines the type of selection
mechanism

Selection Parameter 20.0 parameter to pass to the se-
lection function

EnableParametricMutation ON enables parametric mutation
EnableStructuralMutation ON enables structural mutation
NewNeuronToLinkRatio 0.5 0.4 means during structural

mutation, 40% probability for
new neurons and 60% proba-
bility of a new link

Table 4.10: First Run: Parameters for Evolving Locomotion with a Random
Organism.
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duces no more output signal and the robot holds its position. This robot is no longer
required to propel active the organism and serves now as a stiffened backbone.

Summary

In summary it could be shown that the random organism is partly able to move
across the arena floor (Figure 4.60). It starts at point [0,0] like in the whole experi-
ments before. The shape of the random organism is unsuitable to produce adequate
movements. Thus, the calculated result is not as good as in the experiments before
in which symmetrical organisms were elected.

The area in which the robot moves in the arena is very limited. But the evolu-
tionary process has managed to partially get around a straight movement which is
a remarkable achievement after 14th generations for the type of organism. These
successes can be recognized also in Figure 4.61 where the fitness values are docu-
mented.
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Figure 4.45: First Generation: Evolving Locomotion for a Random Organism.
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Figure 4.46: First Generation: Individual Actuator Positions 1 - 4 of the Random
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.47: First Generation: Individual Actuator Positions 5 - 7 of the Random
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.48: Fifth Generation: Evolving Locomotion for a Random Organism.
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Figure 4.49: Fifth Generation: Individual Actuator Positions 1 - 4 of the Random
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.50: Fifth Generation: Individual Actuator Positions 5 - 7 of the Random
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.51: Eighth Generation: Evolving Locomotion for a Random Organism.
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Figure 4.52: Eighth Generation: Individual Actuator Positions 1 - 4 of the Random
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.53: Eighth Generation: Individual Actuator Positions 5 - 7 of the Random
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.54: 11th Generation: Evolving Locomotion for a Random Organism.
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Figure 4.55: 11th Generation: Individual Actuator Positions 1 - 4 of the Random
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.56: 11th Generation: Individual Actuator Positions 5 - 7 of the Random
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.57: 14th Generation: Evolving Locomotion for a Random Organism.
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Figure 4.58: 14th Generation: Individual Actuator Positions 1 - 4 of the Random
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.59: 14th Generation: Individual Actuator Positions 5 - 7 of the Random
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.60: First tracking of the random organism on the virtual arena.

X-axis: X direction [-∞, +∞].
Y-axis: Y direction [-∞, +∞].

Second Run: Locomotion for a Random Organism

Because of the long duration of the evolutionary process this experiment could not
be repeated for 40 times like the first two experiments of this thesis. For verification
of the achieved result of the first run a second run with the same random organism
was performed.

Note that a second repetition with the same result can not be regarded as a gen-
eral proof of the behavior.
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Figure 4.61: First fitness values for the random organism for each generation.

X-axis: generation [0, +∞].
Y-axis: evaluated fitness value [0, +∞].

Parameters

For the second experimental run for evolving locomotion the parameters in Table
4.11 were set.

In the second run the parameters were not changed. This was done with the hope
that the evolution under these circumstances leads to similar results as before.
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Parameter Value Description
Evolutionary Algorithm Type SNN defines the type of network

Using Phenotype Mapping 1 activates phenotype map-
ping, note CGE can operate
directly on genome

Population Size of Island 10 size of the start population of
an island

Number of Input Neurons 5 number of input neurons
Number of Output Neurons 3 number of output neurons
Number of Initial Mutations 5 number of mutations which

should be performed to a ran-
dom start genome

Number of Steps for Evaluation 1000 number of steps a genome
will be evaluated before
switching to the next one

Number Of Generations undefined total number of generations
Number of Exploitation Steps 5 number of exploitation steps

to perform before a explo-
ration step follows

Default Learning Rate 0.3 Default learning rate for neu-
ron if genome is generated
randomly

Default Mutation Probability 0.5 Default mutation probability
for a neuron if genome is gen-
erated randomly

Fitness Function Type STRAIGHTON defines the type of fitness
function to use

SelectionMode ELITISM defines the type of selection
mechanism

Selection Parameter 20.0 parameter to pass to the se-
lection function

EnableParametricMutation ON enables parametric mutation
EnableStructuralMutation ON enables structural mutation
NewNeuronToLinkRatio 0.5 0.4 means during structural

mutation, 40% probability for
new neurons and 60% proba-
bility of a new link

Table 4.11: Second Run: Parameters for Evolving Locomotion with a Random
Organism.
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Summary

In summary the result of the second run looks much better in contrast to the first
pass. As already mentioned the generation of movement for this kind of random
organism is very difficult. But in the second pass the tracking (Figure 4.62) of the or-
ganism resembles the results of the experiments with snake-shaped and quadruped
organisms.

The random body moves in a fairly large area around the arena. Despite unchanged
initial conditions the two performed experiments leads to significantly different re-
sults. This confirm the finding that only contingency events during evolutionary
process determines where the evolution ends.
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Figure 4.62: Second tracking of the random organism on the virtual arena.

X-axis: X direction [-∞, +∞].
Y-axis: Y direction [-∞, +∞].
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Figure 4.63: Second fitness values for the random organism for each genera-
tion.

X-axis: generation [0, +∞].
Y-axis: evaluated fitness value [0, +∞].

Example of an evaluated Artificial Neural Network

For demonstration purpose in Figure 4.64 a generated artificial neural network is
presented which was made by the evolutionary engine during the development of
the random locomotion.

The network consists of the five input neurons “I” marked as I0, I1, I2, I3 and I4.
Additional there are the three output spiking neurons SN0, SN1 and SN2. The
“SN” output neurons are identifiable with their black border. Neuron SN3 is a spe-
cial spiking neuron that was added by a structural mutation. It was not included
right from the start but was inserted only during the evolutionary process.
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Figure 4.64: Example - Evolved Neural Network.
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4.3.6 Results of the Disrupted Organism

This experiment was performed to show how mighty the on-board evolution is.
The used organism consists of two separate organisms that are connected to each
other.

First a locomotion pattern for this structure should be evolved for ten generations.
After that phase the docking element between these “two” parts will be opened
and the individual organisms will be separated. This simulates for example a de-
fect or a conscious discarding of one leg of a quadruped if it gets stuck in a hole.

Back then a single robot would be no longer functional but in this approach will be
shown that it is possible to generate a new matching pattern of movement. Thus,
the robot can still be used and it is not lost.

Figure 4.65: A defective robot organism consisting of five individual autonomous
robots from the University of Karlsruhe. This kind of robot is one
of three available robot platforms developed during the Symbrion
project. The remaining platforms can be seen in Figure 4.7.

5
2 3 4
1

Table 4.12: The distributed identification numbers for each robot of the organism.
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First Run: Locomotion for a Disrupting Organism

For sake of completeness, each run the list of parameters were added because only
little changes would lead to different results. The results were not reproducible
without this parameter listing.

Parameters

For the experimental run the parameters in Table 4.13 were set.

All robots of the entire organism are “equipped” with a population of 10 individu-
als. Each individual is evaluated and has the chance to show how well the current
used artificial neural network is adapted to the task of locomotion during this set
time period of 1000 time steps. Because the evolutionary process is not terminating
the “Number Of Generations” parameter is set to undefined but in real the simula-
tion was aborted after 20 generations.

The individuals which are rated high by the already mentioned “Straight On” fit-
ness function were selected by the “Elitism” selection mechanism. For more in-
formation about that kind of selection see Chapter 3.1.5 - Implemented Selection
Functions.

Discussion

The first generations leads to comparable results like in the other experiments. It is
possible to get the whole organisms into motion with the help of the evolutionary
process.

Pictures of the movement in the second generation are in Figure 4.66 illustrated.
Associated angular positions are demonstrated in the Picture 4.67 and 4.68. The
development up to the ninth generation can be reconstructed in Figure 4.69 and
4.70.

Note that the order of the shown angular positions have been changed. Because
after separation one organism arises that consists of the three robots with identifi-
cation number one, two and five - see angular positions in Figure 4.67. The other
out-formed organisms consists of the two robots three and four- see in Figure 4.68.
This is the reason why the respective plots were mapped together.

After separation in the tenth generation the evolutionary process was continued
for another ten generations. Looking to Figure 4.71 regrettably one part of the un-
docked organism tilts to the side. What is a fact, however, that might happen in
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Parameter Value Description
Evolutionary Algorithm Type SNN defines the type of network

Using Phenotype Mapping 1 activates phenotype map-
ping, note CGE can operate
directly on genome

Population Size of Island 10 size of the start population of
an island

Number of Input Neurons 5 number of input neurons
Number of Output Neurons 3 number of output neurons
Number of Initial Mutations 5 number of mutations which

should be performed to a ran-
dom start genome

Number of Steps for Evaluation 1000 number of steps a genome
will be evaluated before
switching to the next one

Number Of Generations undefined total number of generations
Number of Exploitation Steps 5 number of exploitation steps

to perform before a explo-
ration step follows

Default Learning Rate 0.3 Default learning rate for neu-
ron if genome is generated
randomly

Default Mutation Probability 0.3 Default mutation probability
for a neuron if genome is gen-
erated randomly

Fitness Function Type STRAIGHTON defines the type of fitness
function to use

SelectionMode ELITISM defines the type of selection
mechanism

Selection Parameter 20.0 parameter to pass to the se-
lection function

EnableParametricMutation ON enables parametric mutation
EnableStructuralMutation ON enables structural mutation
NewNeuronToLinkRatio 0.5 0.4 means during structural

mutation, 40% probability for
new neurons and 60% proba-
bility of a new link

Table 4.13: First Run: Parameters for Evolving Locomotion with a Disrupting
Organism.
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reality. Figure 4.75 (a) indicates that this leads to a complete collapse of the fitness
values because it is an absolute different motion pattern. It is comparable to the
actuality that a fish which is thrown on land can walk now.

However, in generation 20 the output signal of the artificial neural network of this
overbalanced organism is positive rated by the fitness function. An indication that
this network is beginning to adjust to the new situation already after ten genera-
tions.

On the other hand is the organism consisting of the two remaining robots. This
leftover produces already in the 14th generation very good fitness results, see Fig-
ure 4.75 (b).

Figure 4.74 shows the movement course during the whole experiment. It is shown
how the complete organism moves through the arena (solid line) referred as “or-
ganism”. After the division the big organism is called “single A” (large dashed line)
and the small one “single B” (small dashed line). It could be shown that the small
body moves very well which argues for a quick good fitting.

Summary

In total could be shown that it is possible for the implemented approach to amend
the motion patterns if there is an unplanned condition or a defective part in the
organism. An incredible advantage that was made possible by on-board evolution.
Unaffectedly it is not possible to prepare the organism or the single robot for such
failures for example with offline evolution on a desktop computer.
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Figure 4.66: Second Generation: Evolving Locomotion for a Disrupting Organism.

134



4.3 Evolving Locomotion

-1

-0.5

 0

 0.5

 1

 20000  20200  20400  20600  20800  21000

robot1 expected
robot1 real

-1

-0.5

 0

 0.5

 1

 20000  20200  20400  20600  20800  21000

robot2 expected
robot2 real

-1

-0.5

 0

 0.5

 1

 20000  20200  20400  20600  20800  21000

robot5 expected
robot5 real

Figure 4.67: Second Generation: Individual Actuator Positions 1 - 3 of the Disrupt-
ing Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.68: Second Generation: Individual Actuator Positions 4 - 5 of the Disrupt-
ing Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.69: Ninth Generation: Individual Actuator Positions 1 - 3 of the Disrupting
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.70: Ninth Generation: Individual Actuator Positions 4 - 5 of the Disrupting
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.71: 20th Generation: Evolving Locomotion for a Disrupting Organism.
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Figure 4.72: 20th Generation: Individual Actuator Positions 1 - 3 of the Disrupting
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.73: 20th Generation: Individual Actuator Positions 4 - 5 of the Disrupting
Organism.

X-axis: axis of time with the time ticks [0, +∞].
Y-axis: angle of the hinge element of the individual robot [-1, +1].
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Figure 4.74: Tracking of the disrupting organism on the virtual arena.

X-axis: X direction [-∞, +∞].
Y-axis: Y direction [-∞, +∞].
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(a) Organism part A.
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(b) Organism part B.

Figure 4.75: Fitness values for the disrupting organism for each generation.

X-axis: generation [0, +∞].
Y-axis: evaluated fitness value [0, +∞].
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5.1 Conclusion

In conclusion it can be said that is was possible to generate different output pat-
terns with the help of the implemented artificial neural networks. At the beginning
of the experimental part of this thesis could be demonstrated that the described ap-
proach is able to produce sinusoidal signals like a sine wave generator. Additional
it could be shown that it is also possible to change the frequencies of the signal by
varying the input value.

Thus it was shown that this approach is at least as good and is comparable to the
approaches that work with sine wave generators.

In a second step this thesis showed that it is possible to generate motion patterns
for organism with different shape. It was possible to evolve locomotion already
after a short number of generations. This was done with the help of on-board evo-
lution. The artificial neural networks were directly evolved on the robots and it
was shown that it is no pre-calculated network required.

It was also shown that none of the robots must take over the control and that a
distributed approach is possible. Each of the robot evaluates its own motion pat-
tern with the help of its own set of artificial neural networks. Only neighboring
elements receives the angular position of its neighbor via the internal messaging
system.

It could be also achieved that individual elements in the whole robot organism
take over specific functions for example that of a knee. The implemented fitness
function acts thereby only on the individual element. However, each element ben-
efits from the progress of the whole organism.

A big advantage was shown in the last experiment. An organism that comes in
trouble because one of its legs is stuck in hole has the opportunity to abandon the
affected limb. Old approaches were not able to deal with such danger. In most
cases the complete robot was lost. This thesis showed that it is possible to change
the shape of the organism and the evolutionary process adapts the motion pattern
to the new design.
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Thus it can be said in conclusion, that all pre-defined goals have been achieved
in this thesis with the implemented approach:

• There is no restriction to the organism shape and no restriction in motion
pattern for example only to sinusoidal waves.

• The Artificial Neural Networks are evolutionary adapted with the help of
fitness function.

• The Artificial Neural Networks are distributed over the whole organism in
each individual robot.

• The Spiking Neural Networks are able to solve different kind of problems
with the help of EANT.

5.2 Outlook

On the whole this thesis represents a way to create motion patterns with the help
of artificial neural networks consisting of Spiking Neurons.

Furthermore, during the period in which this thesis was written the real robots
were under construction but no hardware was available for the experiments. In
future work it must be gained certainty about the implemented approach on the
real robots.

However it should be noted that in all the experiments the evolution has been
terminated prematurely. This means that a continuously ongoing real-time envi-
ronment like on a real robot has to be tested.

In Addition it was not very easy to compare and evaluate the generated signals.
Perhaps a frequency analysis would be appropriate at this point in order to obtain
evaluable results.

The question of the proper choice of the parameters could not be clarified in this
thesis. This leaves some questions open for future work.
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[BKv09] Zdeněk Buk, Jan Koutník, and Miroslav Šnorek. NEAT in Hyper-
NEAT Substituted with Genetic Programming, volume 5495, pages 243–
252. Springer, 2009.

[BR] Z. Butler and A. Rizzi. Distributed and cellular robots. pages 911–920.

[Bra86] V. Braitenberg. Vehicles: experiments in synthetic psychology. Bradford
Books. MIT Press, 1986.

[DS04] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford
Company, Scituate, MA, USA, 2004.

[Eke93] Örjan Ekeberg. A combined neuronal and mechanical model
of fish swimming. Biological Cybernetics, 69:363–374, 1993.
10.1007/BF00199436.

[ES08] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing (Nat-
ural Computing Series). Springer, October 2008.

[FM08] Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelligence:
Theories, Methods, and Technologies. The MIT Press, 2008.

[HRE10] Evert Haasdijk, Andrei A. Rusu, and A. E. Eiben. Hyperneat for loco-
motion control in modular robots. In ICES’10, pages 169–180, 2010.

[HSSC10] H. Hamann, J. Stradner, T. Schmickl, and K. Crailsheim. A hormone-
based controller for evolutionary multi-modular robotics: From single
modules to gait learning. In Evolutionary Computation (CEC), 2010 IEEE
Congress on, pages 1 –8, july 2010.

[IHW99] Auke Jan Ijspeert, John Hallam, and David Willshaw. Evolving swim-
ming controllers for a simulated lamprey with inspiration from neuro-
biology. ADAPTIVE BEHAVIOR, 7(2):151–172, 1999.

A



Bibliography

[Ijs01] Auke Jan Ijspeert. A connectionist central pattern generator for the
aquatic and terrestrial gaits of a simulated salamander, 2001.

[Ijs08] Auke Jan Ijspeert. Central pattern generators for locomotion control in
animals and robots: a review. Neural Networks, 21(4):642–653, 2008.

[Izh03] E.M. Izhikevich. Simple model of spiking neurons. Neural Networks,
IEEE Transactions on, 14(6):1569 – 1572, nov. 2003.

[Izh04] E.M. Izhikevich. Which model to use for cortical spiking neurons? Neu-
ral Networks, IEEE Transactions on, 15(5):1063 –1070, sept. 2004.

[KEM+07] Yohannes Kassahun, Mark Edgington, Jan Hendrik Metzen, Gerald
Sommer, and Frank Kirchner. A common genetic encoding for both
direct and indirect encodings of networks. In Proceedings of the 9th
annual conference on Genetic and evolutionary computation, GECCO ’07,
pages 1029–1036, New York, NY, USA, 2007. ACM.

[KKY+03] H Kurokawa, A Kamimura, E Yoshida, K Tomita, S Kokaji, and S Mu-
rata. M-TRAN II: metamorphosis from a four-legged walker to a caterpillar,
volume 3, pages 2454–2459. 2003.

[KKY+05] A Kamimura, H Kurokawa, E Yoshida, S Murata, K Tomita, and
S Kokaji. Automatic locomotion design and experiments for a modular
robotic system. IEEEASME Transactions on Mechatronics, 10(3):314–325,
2005.

[KLM+11] Serge Kernbach, Jens Liedke, Rene Matthias, Florian Schlachter,
Christopher Schwarzer, Benjamin Girault, and Patrick Alschbach. Het-
erogeneity of Autonomous Robotic Modules for the Reliability of a Self-
Reconfigurable Multi-Robot Organisms. 2011.

[KMEK09] Yohannes Kassahun, Jan Metzen, Mark Edgington, and Frank Kirchner.
Incremental acquisition of neural structures through evolution. In De-
sign and Control of Intelligent Robotic Systems, Studies in Computational
Intelligence, pages 187–208. Springer, 2009.

[KS05] Yohannes Kassahun and Gerald Sommer. Evolution of neural networks
through incremental acquisition of neural structures. Institut für In-
formatik und Praktische Mathematik der Christian-Albrechts-Universität zu
Kiel, 2005.

[LFS92] M A Lewis, A H Fagg, and A Solidum. Genetic programming approach to
the construction of a neural network for control of a walking robot, volume 3,
pages 2618–2623. IEEE Comput. Soc. Press, 1992.

B



[Maa97] W. Maass. Networks of spiking neurons: The third generation of neural
network models. Neural Networks, 10(9):1659 – 1671, 1997.

[MI05] D. Marbach and A.J. Ijspeert. Online Optimization of Modular Robot
Locomotion. In Proceedings of the IEEE Int. Conference on Mechatronics
and Automation (ICMA 2005), pages 248–253, 2005.

[MNSI04] Takeshi Mori, Yutaka Nakamura, Masa-Aki Sato, and Shin Ishii. Rein-
forcement learning for a cpg-driven biped robot. In Proceedings of the
19th national conference on Artifical intelligence, AAAI’04, pages 623–630.
AAAI Press, 2004.

[PMG98] D.L. Poole, A.K. Mackworth, and R. Goebel. Computational intelligence:
a logical approach. Oxford University Press, 1998.

[Rob10] Robot3d, open source modular swarm robot simulation engine. Web-
site, 2010. Available online at https://launchpad.net/robot3d;
visited on January 4th 2012.

[Sab11] Renato M.E. Sabbatini. Imitation of life: A history of the first
robots. http://www.cerebromente.org.br/n09/historia/
turtles_i.htm, december 2011.

[SAP94] Saunders, Peter J. Angeline, and Jordan B. Pollack. Structural and be-
havioral evolution of recurrent networks, 1994.

[Zun11] Dominik Zunt. Who did actually invent the word "robot" and what
does it mean? http://capek.misto.cz/english/robot.html,
december 2011.

https://launchpad.net/robot3d
http://www.cerebromente.org.br/n09/historia/turtles_i.htm
http://www.cerebromente.org.br/n09/historia/turtles_i.htm
http://capek.misto.cz/english/robot.html




Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Patrick Alschbach)


	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	Introduction
	Motivation
	The Symbrion Project
	Related Work
	Goals
	Structure

	Basics
	Robotics
	Modular Robotics
	Swarm Robotics

	Artificial Intelligence
	Artificial Neural Networks
	Spiking Neural Networks
	Central Pattern Generators

	Evolutionary Algorithms
	Common Genetic Encoding
	Evolutionary Acquisition of Neural Topologies


	Hormone-Based Controller

	Implementation
	Software Environment
	Robot3D
	Evolutionary Robotic Framework
	Behavior of Spiking Neurons
	Implemented Fitness Functions
	Sine Wave Function
	Distance Function
	Straight On Function

	Implemented Selection Functions
	Elitism
	Elitism and Remain


	Development
	Development of a ``Sine Wave Generator''
	Development of a ``Variable - Sine Wave Generator'' 
	Development of a Central Pattern Generator

	Implementation
	Sine Wave Generator
	Locomotion Controller


	Experiments
	Evolving a Sine Wave Generator
	Fitness Function
	Parameters
	Simulation
	Result
	From Spike to Numeric Value

	Averages over 40 runs

	Evolving a Variable - Sine Wave Generator
	Fitness Function
	Parameters
	Simulation
	Results
	Averages over 40 runs

	Evolving Locomotion
	Fitness Function
	Simulation
	Results of the Snake-Shaped Organism
	First Run: Snake-Shaped Organism
	Second Run: Snake-Shaped Organism
	Example of an evaluated Artificial Neural Network

	Results of the Quadruped Organism
	First Run: Quadruped Organism
	Second Run: Quadruped Organism
	Example of an evaluated Artificial Neural Network

	Results of the Random Organism
	First Run: Random Organism
	Second Run: Random Organism
	Example of an evaluated Artificial Neural Network

	Results of the Disrupted Organism
	First Run: Disrupting Organism



	Summary
	Conclusion
	Outlook

	Bibliography

