

ABSTRACT

Graph Visualization is an interdisciplinary technology which aims to visualize
data information and relationship, it`s an effective and intuitional way to study
abstract data. There are a wide range of related subjects: graph Theory, graph
drawing algorithm, human-computer interaction, computer science, aesthetics
and so on. Along the development of these subjects, especially the rapid de-
velopment of computer science, accelerate graph visualization`s growth.

In this thesis, we study on the most popular graph representation: node-link
layout. We first introduce graph, drawing graph according to input data, rela-
tionship between graph components and data (graph theory). Then we study
on graph layout features and algorithms, focus on revealing graph components
relationship from data operation algorithms. Specially, we present a new
method for graph drawing: partially drawn links. In the end, briefly introduce
our interactive interface and functions` performance test, discussion of what
we did and future work.

I

Table of Contents ... I

Table of Figures ... III

Chapter 1 Introduction ... 1

1.1 Origin ... 1

1.2 Node-Link Layout .. 2

1.3 Layout Features .. 3

1.4 Interactive Visualization ... 5

Chapter 2 Graph Theory .. 7

2.1 Graph .. 7

2.2 Adjacency Matrix ... 7

2.3 Important Algorithms in Graph Theory ... 10

2.3.1 All Pairs Shortest path ... 11

2.3.2 Depth First Search Algorithm (DFS) .. 13

Chapter 3 Graph Visualization/Graph Drawing 18

3.1 Graph Drawing and Aesthetics ... 18

3.2 Force-directed Layout Algorithm ... 21

3.2.1 Spring embedder (Eades, Kamada and Kawai) .. 21

3.2.2 Force-directed Method (Fruchterman and Reingold 90) 23

3.3 Partial Drawn Links in Directed Graph (Edges Shorten) 27

3.3.1 Type of Edges ... 27

3.3.2 Partially Drawn Links Methods ... 30

3.3.3 Nodes Placement ... 33

3.3.4 Partially Drawn Links in User-defined Region .. 36

3.3.5 Discussion and Further work .. 37

3.4 Hierarchical Clustering Algorithm ... 38

3.4.1 Agglomerative Clustering .. 38

II

3.4.2 Linkage Criteria ... 39

3.4.3 Directed Graph .. 42

3.5 Strongly Connected Components of Directed Graph 43

3.5.1 Strongly Connected Components .. 43

3.5.2 Searching Algorithm ... 43

3.5.3 Graph Layout of SCC .. 45

3.6 Shortest Path between Two Nodes .. 47

Chapter 4 Matlab GUI Instructions 49

Chapter 5 Conclusion, Discussion and Future Work . 52

5.1 Performance .. 52

5.2 Discussion and further work .. 52

Erklärung .. 54

Acknowledgements ... 55

Bibliography ... 56

III

Table of Figures

Figure 1.1: a) Euler`s drawing of Konigsberg Problem 1

 b) reduced diagram... 1

Figure 1.2: Social Network (from FaceTru.com) 2

Figure 1.3: A directed graph with 30 nodes and 106 edges 3

Figure 1.4: Force-directed layout with 30 nodes and 106 edges 4

Figure 1.5: partially drawn links .. 4

Figure 1.6: Hierarchical clustering .. 5

Figure 1.7: Graph visualization reference model[25] 6

Figure 2.1 a): Adjacency Matrix(directed) ... 8

 b): Directed Graph .. 8

Figure 2.2 a): Adjacency Matrix(undirected) ... 9

 b): Undirected Graph .. 9

Figure 2.3 a): adjacency matrix with self-connection 10

 b): ‘s’ in the node id to represent self-connection 10

Figure 2.4: Intermedia nodes .. 12

Figure 2.5: Example of Floyd-Warshall ... 13

Figure 3.1 Subway map of HongKong .. 19

Figure 3.2: S-Bahn map of Stuttgart ... 19

Figure 3.3: a) minimizing edge crossing layout 21

 b) maximizing symmetry layout .. 21

Figure 3.4: replace edge with spring ... 21

Figure 3.5: force between nodes .. 21

Figure 3.6: Spring Algorithm (Eades) .. 23

Figure 3.7: forces versus distance .. 24

Figure 3.8: Force-directed placement ... 25

Figure 3.9: Grid boxes technique .. 26

IV

Figure 3.10: modeling the frame along x-coordinate 26

Figure 3.11: Graph of email record ... 27

Figure 3.12: a) all straight edges .. 28

 b) curved edge instead .. 28

Figure 3.13: a) all straight edges; ... 28

 b) with curved edge ... 28

Figure 3.14: Bezier curve ... 28

Figure 3.15: Orthogonal grid drawing ... 29

Figure 3.16: polyline upward grid drawing .. 29

Figure 3.17: a) street sign at Dublin .. 30

 b) graph representation ... 30

Figure 3.18: a) x-y coordinate of link .. 31

 b) intermedia node introduced .. 31

Figure 3.19: location relationship between start node and end node.... 32

Figure 3.20: x,y absoluate value comparison 32

Figure 3.21: Length control ... 33

Figure 3.22: failure example ... 33

Figure 3.23: a) Force-directed layout .. 34

 b) partially drawn links .. 34

Figure 3.24: circular placement .. 35

Figure 3.25: a) before shorten links .. 35

 b) after links shortened ... 35

Figure 3.26: a) region selected ... 37

 b) partially drawn links for region 37

Figure 3.27: Flow chat of hierarchical clustering................................... 39

Figure 3.28: Single linkage ... 40

Figure 3.29: Complete linkage .. 40

V

Figure 3.30: Average linkage .. 40

Figure 3.31: Undirected graph .. 43

Figure 3.32: Graph size reduce .. 46

Figure 3.33: Color coding layout ... 46

Figure 3.34: Shortest path between two nodes 47

Figure 3.35: Shortest Path from City C to City F 48

 1

Chapter 1 Introduction

1.1 Origin

Graph is an intuitional model to visualize interconnection. it can provides in-
formation like: communication degree, relation degree, communicate direc-
tion(who contact who) and frequency. We can use human eyes to see, explore
abstract information without mathematical analysis. It`s a convenient way to
describe some instances, similarity (dissimilarity), depth and relationship.

In 1736, Euler published originating graph theory. In his theory which used to
solve the famous Konigsberg problem(7 bridges), Euler believed that the key
point is the number of bridges which connect banks and islands, has nothing to
do with size or shape of banks and islands, or length of bridges. He regarded
banks and islands as nodes to be visited, and bridges as links which connect
corresponding vertex. Therefore, a graph was been drawn, Konigsberg prob-
lem is transform to the question: whether you could ‘drawing this picture

without retracing any line and without picking your pencil up off the paper’
[2].

Despite the first graph was published in early 1736, the development is actu-
ally in recent decades. Knuth`s paper about computer-drawn flowcharts[3] is
generally acknowledged as the first time introduce layout algorithm into visu-
alization science.

The generation of graph has important applications in many fields, like social
network, internet communications, map routes, enables users to see and un-
derstand large amounts of information. Because of that, graph layout must has
readability. There`re different graph representations: node-link layout, space
nested layout, 3D layout and so on[1].

Figure 1.1: a) Euler`s drawing of Konigsberg Problem

 b) reduced diagram

 2

1.2 Node-Link Layout

Node-link diagram is the most popular layout, it`s nothing but a collection of
nodes links in which nodes represent entities and link between two nodes
means they have correlation, more internodes information can be observed
along with different techniques. It arranges nodes and links in a space to help
us to understand the whole and regional data information.

‘Many node-link graphs/diagrams use boxes or circles to show entities and
linking lines drawn between them to represent relationships between the enti-
ties.’[6] For example, in internet social network(like Facebook), each person
can be represented as a node, connections between them are links(edges). In
figure 1.2, labels on links describe their relationship and red labels around the
nodes represent activities occurred between pairwise nodes. Interpersonal
relationship, communication and activities can be observed easily, assign dif-
ferent components with different colors enhance heuristics of layout. Besides,
use photos as node ids make the relationship between pairwise nodes more
clear, won`t confuse about which one is ‘Father’ for instance.

 Figure 1.2: Social Network (from FaceTru.com)

There`re two kinds of graphs: directed and undirected graph. Obviously, ‘di-
rected’ means connection has direction, visualizator need to concern more
when doing data analysis and layout a graph, it`s more complex than undi-
rected graph but exhibits more information as well. Of course, which graph we
use depend on the task.

 3

1.3 Layout Features

Although node-link layout is the most popular model and it match human per-
ception, when the number of nodes and links become larger, it`s difficult to
locate or find the links between two nodes. Figure 1.3 illustrates a directed
graph with just 30 nodes and 106 edges, it`s enough to confuse user to sep-
arate pairwise nodes and edge between them, difficult to identify even the ar-
row head(direction). This drawback forces us to develop different layout fea-
tures and methods to help user to discover significant information.

In the past decades, various algorithms have been proposed, for example,
force-directed placement which presented by Fruchterman[4]. The resulted
spring layout is in an aesthetically pleasing way(Figure 1.4). Edges are all
straight lines, uniform nodes distribution and symmetry.

We barely get information from figure 1.3 deal to overlapped nodes and inter-
crossed links. It`s almost impossible to find pairwise nodes by following the
links. By contrast, force-directed save our eyes from chaos, user can identify
node and link from mass to good looking, no more overlapped nodes, make
out pairwise connected nodes by following the link become easier.

However, it requires very high running time, and both require large display
space, and suffer the common problem: when data increases, user has more
and more trouble to make out nodes and links.

 Figure 1.3: A directed graph with 30 nodes and 106 edges

 4

 Figure 1.4: Force-directed layout with 30 nodes and 106 edges

From above comparison, we could draw a conclusion that no overlapped
nodes and reduce intercrossed links make relationships between pairwise
nodes more understandable. Based on this experience, we place nodes
without overlap, draw links partially to reduce intersection. The arrow head on
the links lead us from one node to it`s connected nodes. Although the link`s
arrowed end doesn`t connect with node closely, we can still find pairwise
nodes connection under the arrow`s navigation.

 Figure 1.5: partially drawn links

 5

Sometimes we want to sort data into subsets or clusters base on some prop-
erties, aggregate data into different groups, or clustered in different levels.
Members in a cluster share common property or in other word ‘similarity’. For
example, band score boundaries are set to divide examination results, a
community can be separated to different groups base on people`s hobbies.

This community structure focus on statistical analysis of clustered groups
which share distinctive properties regardless whether nodes in the group are
connected by links or not. There are several types of mature clustering algo-
rithms: exclusive clustering; overlapping clustering; hierarchical clustering,
probabilistic clustering and so on. New algorithms are under research and
developing also, this technique which combines graph drawing with statistics
analysis is full of practical value. One example is social network like Facebook,
Twitter, has demand on statistical analysis of users` interests, communication,
regional distribution and so on, it`s not intuitive just enumerate a large amount
of pure data.

We study in agglomerative clustering which is one version of hierarchical
clustering algorithm. Objects are clustered with nearest distance, this cluster is
viewed as a whole new object, distance between objects is recalculated and
objects with new nearest distance be aggregated. After some iterations the
final clusters formed, which is a bottom-up algorithm. The schematic diagram
of such algorithm is illustrated in Figure 1.5.

 Figure 1.6: Hierarchical clustering

1.4 Interactive Visualization

Although we already have some layout techniques, it should be noticed that
none of them is ‘perfect’, advantages coexist with disadvantages. It`s difficult
to judge which one is ‘better’, more effective, more efficient, hard to generalize
absolute criteria to evaluate results, because different algorithms deal with
specific works with specific purposes.
By use of computer, graph visualization is actually interactive between human
and computer. Computer is like a teacher, interpret knowledge inside the ab-
stract data, we can ask questions to get more detailed information. The quali-
ty(processor, graphic card, etc.) of the computer that user used also limits

 6

visualization ability and speed. The amounts of processed data, layout ax-
es(space), graph readability depend a lot on the computer.

We can view graph visualization as a mapping process from data to graph then
to human vision perceptual system. This process is illustrated in Figure 1.6, it`s
a simple reference model of graph visualization. From left to right, each arrow
may represent a series of transform. Arrows from ‘task’ to ‘data’(from right to
left) indicate that viewer can manipulate to adjust the transform. Graph visual-
ization is serve the task at last.

Figure 1.7: Graph visualization reference model[25]

Human-computer interactive interface is an effective way to combine different
layout features, enable user to gain interested information in different aspects.
For example, hierarchical clustering let us obtain data`s similari-
ty/distance/connection degree easily, force-directed or radial layout can
strongly enhance the readability of trouble discerning and cluttered graph.
In other words, no matter which visualization feature to be used, all aims to
navigate user has better understanding from massive amount of data in dif-
ferent aspect at the same time.

The tasks for visualizator are clear: make data more understanding for more
people, get rid of as more ‘noisy’ data as possible, let user choose the appro-
priate representations for different tasks.

There are two basic aspects of graph visualization: (1) detect, summarize, ex-
tract inside relationship and structural modeling data sets; (2) transfer struc-
tural data sets to graphical form that could be viewed and interact with. These
two aspects focus on different areas but their boundary are not very clear be-
cause the same data structure can be layout in different ways[7].

 7

Chapter 2 Graph Theory

2.1 Graph

‘Graph’ in the graph theory is not the graph discussed in calculus and geometry,
but a mathematical abstract for the connection between some real world`s en-
tities. This graph consists of a nodes/vertices set and some links/edges, it`s
convenient to use graph to describe many instances in the real world. For
example, regard two persons as nodes while a link connection represent
they`re friends; or cities as nodes and it has train between them if there is a
link between them. In this kind of graph, people are more concern about
whether there is a line connecting two giving nodes, not how they connect.
Normally, a graph G has three components: nodes/vertices, edges/links and
weight.

A graph could be undirected, means it`s no distinction between nodes with
connected edges. If graph is directed, edges have direction between source
nodes and destination nodes.

2.2 Adjacency Matrix

There are several possible ways to represent a graph inside the computer, we
discuss adjacency matrix in this thesis.

A graph is determined by adjacent relationship between nodes, the graph`s
data structure which stored in computer has to equivalent/match this relation-
ship. An adjacency matrix is capable of this ‘media’ role. For a graph with N
nodes can be represented by an N-by-N adjacency matrix, weights of the
edges are all nonzero entries in the matrix.
For an adjacency matrix A = [𝑎𝑖𝑗], 𝑎𝑖𝑗 = 1 means node i and node j has con-

nection and, means has edge from node i to node j in directed graph. Besides,
𝑎𝑖𝑗 = 0 means node i and node j are individual nodes without connection (no

edge).

Further more, assign weight to each edge, an (weighted)adjacency matrix A =
[𝑎𝑖𝑗], 𝑎𝑖𝑗 represents the number of edges start from node i and ended at node

j in directed graph, or the number of edges which connect node i and j for an
undirected graph. Besides, 𝑎𝑖𝑗 = 0 means no connection(no edge) between

node i and j[5].

Adjacency matrix for a graph:

A[i,j] = {
1 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑛𝑜𝑑𝑒 𝑗 ℎ𝑎𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

 0 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑛𝑜𝑑𝑒 𝑗 ℎ𝑎𝑠 𝑛𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

 8

(Weighted) Adjacency matrix for a graph:

A[i,j] = {
𝑤𝑖𝑗 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑛𝑜𝑑𝑒 𝑗 ℎ𝑎𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

0 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑛𝑜𝑑𝑒 𝑗 ℎ𝑎𝑠 𝑛𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛

Figure 2.1 is a weighted adjacency matrix and figure 2.2 is the corresponding
directed graph. For example, we regard ‘Mr. John’ as node 1 and ‘Mr. King’ as
node 2, 𝑎1,4 = 4 could means Mr. John sent 4 emails to Mr. King and 𝑎4,1 = 0

means Mr. King didn`t send any email to Mr. John.

𝐴 =

[

0 4 0 9 0
0 0 0 0 2
7 1 0 0 5
0 9 6 0 0
2 0 0 6 0]

 Node 1 Node 2 Node 3 Node 4 Node 5

Node 1 0 4 0 9 0

Node 2 0 0 0 0 2

Node 3 7 1 0 0 5

Node 4 0 9 6 0 0

Node 5 2 0 0 6 0

Figure 2.1 a): Adjacency Matrix(directed)

Figure 2.1 b): Directed Graph

For an undirected graph, entry 𝑎𝑖,𝑗 = 𝑎𝑗,𝑖, that is, adjacency matrix is symmet-

ric. We can see from figure 2.2 a) and b). For example, node 1 represent
Stuttgart city and node 4 as Munich, traffic fee for through train between this
two cities is 9 euros, no matter which one is the source.

 9

𝐴 =

[

0 4 7 9 2
4 0 1 9 2
7 1 0 6 5
9 9 6 0 0
2 2 5 0 0]

 Node 1 Node 2 Node 3 Node 4 Node 5

Node 1 0 4 7 9 2

Node 2 4 0 1 9 2

Node 3 7 1 0 6 5

Node 4 9 9 6 0 0

Node 5 2 2 5 0 0

Figure 2.2 a): Adjacency Matrix(undirected)

Figure 2.2 b): Undirected Graph

There`s a special case in graph layout, self-connection. If an edge`s two ver-
tices is the same, we say this vertex is self-connected. In adjacency matrix A, if
𝑎𝑖,𝑖 is nonzero entry, means node i has link to itself. A graph without

self-connection is named simple graph, in most case, graph is simple graph.
We contribute to visualize connection between nodes, and more extra edges
will make the layout graph visually confusing, in our node-link layout, put an ‘s’
in the node id to represent self-connection to reduce edges. Refer to figure 2.3,
Node 1,2,3,4 all contain self-connection.

In this thesis, we will concern more about directed graph because it can dis-
play more information than undirected graph. For example:

 10

 Node 1 Node 2 Node 3 Node 4 Node 5

Node 1 1 1 0 1 0

Node 2 0 1 0 0 1

Node 3 1 1 1 0 1

Node 4 0 1 1 1 0

Node 5 1 0 0 1 0

Figure 2.3 a): adjacency matrix with self-connection

 Figure 2.3 b): ‘s’ in the node id to represent self-connection

2.3 Important Algorithms in Graph Theory

Graph theory is an vital subject or foundation of graph visualization. We could
have in-depth knowledge of graph data and, algorithms to manipulate the
graph data structure. Graph theory deal with various problems: subgraphs,
graph coloring, route problems network flow and so on. In this thesis, we study
route problems, highlight characteristics and reveal underlying meaning of
graph data, implement these theory and apply them in graph visualization.
Since adjacency matrix is the mathematical representation of a graph, graph
theory is algorithms and methods about matrix. It`s a mathematical procedure
manipulate facilitate automatism in graph visualization, help visualizator to
analyze and visualize. For example, depth first algorithm searching the adja-
cency matrix provides a new adjacency matrix which includes paths visiting
order, a sequence of nodes in topological order.

 11

2.3.1 All Pairs Shortest path

Finding shortest path is one of the most optimization problem, also a classic
algorithm in graph research. It has been applied widely, like route selection,
addressing and circuit routing arrangement, used as foundation to solve other
most optimization problem, forecast and decision-making. For example, a road
map with n cities, shortest path or cheapest expense travel from one city to
another could be found.

Consider in mathematics aspect, large amount of most optimization problem
or dynamic programming problems can be viewed equivalently to find shortest
path in directed graph[8]. In graph theory, shortest path algorithm had been
thorough solved.
Assign real number to each edge, recorded as W and named as edge`s weight.
Sum of all the constituent edges` weight from node i to node j is the weight of
path p and, the minimum weight is shortest path distance between node i and
node j. Finding shortest paths for all pairs of nodes result a matrix D, consider
a graph with n nodes, D is a nxn matrix, entry 𝑑𝑖𝑗 is distance (weight) of a

shortest path from node i to node j.

We use a set of in-pathed nodes to represent p, p = <𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2, … , 𝑛𝑜𝑑𝑒𝑘>,
the weight (distance) of path p is the sum of the weights of its constituent
edges:

𝑊(𝑝) = ∑ 𝑊(𝑖, 𝑖 + 1)𝑘−1
1

The shortest path distance from node i to node j is

𝑑𝑖𝑗= {

 0, 𝑖𝑓 𝑖 = 𝑗

 min(𝑊(𝑝)) , 𝑖𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑝 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 → 𝑗 𝑒𝑥𝑖𝑠𝑡𝑠

∞ (𝑖𝑛𝑓), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

In the Floyd-Warshall algorithm, ‘intermediate’ nodes is be introduced. A path p
= <𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2, … , 𝑛𝑜𝑑𝑒𝑗>, an intermediate node k is any node of p but not

node 1 nor node j, that is, any node in the node set {𝑛𝑜𝑑𝑒2, 𝑛𝑜𝑑𝑒3, … , 𝑛𝑜𝑑𝑒𝑗−1}.

Consider all n nodes of a graph be{𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2, … , 𝑛𝑜𝑑𝑒𝑛}and a subset

{𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2, … , 𝑛𝑜𝑑𝑒𝑘}. Let 𝑑𝑖𝑗
(𝑘)

 the weight of a shortest path from node i to

node j with all intermediate nodes in the node subset and p a shortest path

among the subset. Floyd-Warshall algorithm is to explore the relationship be-

tween path p and shortest paths from node i to node j with intermediate nodes

in the subset. The relationship depends on whether or not node k is an inter-

mediate node of path p[9].

If k=0, the shortest path is from node i to node j directly with no intermediate

 12

node at all, has at most one edge, hence 𝑑𝑖𝑗
(0)
= 𝑊(𝑖, 𝑗).

If 𝑘 ≥ 1, intermediate nodes of path p exist, then splits p into a subpath from
node i to node k and node k to node j as figure 2.4. Node k is not an interme-
diate node in node p1, so p1 is the shortest path from node i to node k with
intermediate nodes in {node 1,node 2,…,node k-1}. The same hold for p2 the
shortest path from node k to node j with intermediate nodes in {node1,node
2,…node k-1}.

Figure 2.4: k=0, path p is a shortest path from node i to node j; otherwise, intermedi-

ate node exist, break p into 𝒊
𝒑𝟏
→ 𝒌

𝒑𝟐
→ 𝒋

Based on above structure, the following is a recursive solution to all pairs
shortest path:

𝑑𝑖𝑗
𝑘 = {

𝑊(𝑖, 𝑗) , 𝑖𝑓 𝑘 = 0

min(𝑑𝑖𝑗
(𝑘−1), 𝑑𝑖𝑘

(𝑘−1) + 𝑑𝑘𝑗
(𝑘−1)) , 𝑖𝑓 𝑘 ≥ 1

For all pairs of nodes result a distance matrix 𝐷(𝑛) = 𝑑𝑖𝑗
(𝑛)

 . A bottom up pro-

cedure can be derived from above recurrence, it`s input is an nxn adjacency

matrix and output 𝐷(𝑛).

FLOYD-WARSHALL (W)

1 n ← rows[W]

2 𝐷(0) ← W
3 for k ← 1 to n
4 do for i ← 1 to n
5 do for j ← 1 to n

6 do 𝑑𝑖𝑗
(𝑘)

 ← min(𝑑𝑖𝑗
(𝑘−1), 𝑑𝑖𝑘

(𝑘−1) + 𝑑𝑘𝑗
(𝑘−1))

7 return 𝐷(𝑛)

 13

The running time of Floyd-Warshall algorithm is 𝜃(𝑛3), three variables i, j, k in
the nested loops, each of the variables can take n possible values.

Take an example of the matrix details to have better understand of
Floyd-Warshall.

For input W = 𝐷0 = [

0 3 0 0
0 0 12 5
4 0 0 − 1
2 − 4 0 0

] , n=4, obtain the follow 𝐷(𝑛) when re-

currence algorithm executed[10].

 Figure 2.5: Example of Floyd-Warshall

 𝐷1 = [

0 3 0 0
0 0 12 5

4 0 − 1

2 − 4 0 0

] 𝐷2 =

[

 0 3

𝟕

 𝟏𝟓

0 0 12 5
4 7 0 − 1

2 − 4 0

]

,

𝟖

𝟖

 𝐷3 = [

0 3 15 8

 0 12 5

4 7 0 − 1
2 − 4 8 0

] 𝐷4 =

[

0 3 15 8

𝟏𝟔 0 12 5𝟕

 𝟏 − 0 − 1

2 − 4 8 0

]

𝟓

2.3.2 Depth First Search Algorithm (DFS)

Depth First Search Algorithm(DFS) is the primary algorithm in graph theory,
many other algorithms are more or less affected by DFS. DFS is a kind of
graph traversal algorithm that traversal each component of a graph, it plays a
crucial role in nodes positioning, graph partitioning and so on[11].

 14

DFS originates from Maze solving problem, begin with an entrance, walk every
not repeated corridor and you will find a way out at last. This maze walking
arrangement can be considered as a graph, corridors as edges while view in-
tersections, corners and dead ends as nodes. The DFS idea is developed
base on this maze solving principle, start from entrance, have to search all
corridors, go out from the entrance. Mark corridors you have been searched to
avoid repeated search, find and walk along the unsearched corridors as deeply
as you can when reach an corner. At certain location, way back if you couldn`t
find unmarked corridor or meet an dead end. Repeat and repeat, all corridors
could be searched and go out the maze from entrance[12[16].

According to above theory, the process of DFS algorithm is:

1. Mark all edges and nodes ‘unsearched’/’unvisited’ and start search from
random node;

2. Choose an ‘unsearched’ edge and visit connected node, mark the edge

‘searched’;

3. Repeat step 2 until reach the node which has is ‘unsearched’ edge ,
way back to previous visited node and go back to step 2;

4. If way back to started node, choose an unvisited node and go to step 2;

5. End search if all nodes and edges are searched.

Let`s take an example to explain DFS. Given an adjacency matrix

𝐺 = [

0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

]

Have corresponding graph:

We use another adjacency matrix S which to record the node visiting order,
visit in ascending order. S has the same size as graph adjacency matrix G,
entry 𝑆𝑖𝑗 means visit node j from node i.

Begin from node A for example, walk along unsearched edge to node B:

 15

S=[

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

]

2

At node B, pick up an unsearched edge and go to next node:

 S=[

0 2 0 0

0 0 0

0 0 0 0
0 0 0 0

]
3

From node C, couldn`t find any unsearched edge that connected to node C, so
way back to previous Node B:

 S=[

0 2 0 0
0 0 3 0

0 0 0

0 0 0 0

]
4

From node B, we can find unsearched edge, along this edge to node D:

 16

 S=[

0 2 0 0

0 0 3

0 4 0 0
0 0 0 0

]
5

There is no unsearched edge that connected to node D, so way back to it`s
previous node B:

S=[

0 2 0 0
0 0 3 5
0 4 0 0

0 0 0

]

6

The same, back to started node A (entrance), all edges and nodes are
searched, end the search process. We have the final matrix S as follow:

S=[

0 2 0 0

 0 3 5

0 4 0 0
0 6 0 0

]
7

Besides, two additional sequence be provided to record all nodes (sequence k)
and each node`s corresponding previous node(sequence f):

k = A B C D
f = 0 A B B

DFS returns an topological order of nodes after traversing a graph. If each
node means an event, we could find out or layout the sequence order of all
events and make reasonable schedule. At above example, resulted
sequences k and f represent nodes` topological order, graph can be divided
into three layers according to the order, node A in first layer, node B in second

 17

layer, node C and D in third. When there is no particular request, DFS plays an
important role in node positioning algorithm to improve graph layout aesthetics,
it`s resulted nodes topological order has great helpful in making the node-link
graph drawn in more reasonable way. Although this node positioning algorithm
won`t be studied in the thesis, it still make sense for future work or study.

 18

Chapter 3 Graph Visualization/Graph Drawing

Graph drawing techniques will be discussed in this chapter since basic
knowledge of graph and it`s mathematical operation are introduced. There are
two major research areas: how to draw a pleasing graph and how graph reveal
underlying information from input data.

3.1 Graph Drawing and Aesthetics

Why draw graph to represent information? One important reason is people
have the need to visualize information. In other words, one function of graph
drawing is to reveal relationship between objects. One example in our daily life
is the subway map. When refer to a map to look for routes from one site to
another or to multiple destinations, the following questions should be an-
swered by the map: any station at the sites? which train lines pass one station?
how to transfer if no nonstop train?

Obviously, use graph to represent these information is better than language.
We can use a series of language to represent which stations each train line
pass, like train 1 pass station A, B, C, train 2 pass station C, D, E, F, train 3
pass station E, G, H. A large amount of language to represent a little infor-
mation, and it`s not easy to extract any further more information. It`s not diffi-
cult to find out the routes from station A to H if just three trains and eight sta-
tions, but rather confused when consider more and more trains and stations.
It`s convenient and intuitive using graph to visualize information.

Figure 3.1 is a node-link subway map of Hong Kong, each station on the map
can be represented as node, train lines connect these nodes is edges. Edges
in different color to distinguish different trains, put nodes at exactly real location.
Figure 3.2 is a S-Bahn (suburban) subway map of Stuttgart, color coding
edges to represent train lines, white dots on the edges is approximately loca-
tion which mapping the real map, and use bigger nodes to represent two ends
of train lines. Further more, all urban subways in figure 3.2 are drawn in gray
line, not affect the whole graph but enrich graph information. Figure 3.1 com-
bine subway node-link graph with real geographical city map make it has two
functions: a subway map and city map as well. Almost all important information
that we need are layout on these graphs even they layout in different ways.
You can not reveal all information and consider every aspect on a graph of
course, it depends on specific task. What important is the graph visualization
technique could provide explicit relationship between objects, and identify
pairs of connected nodes is precisely what we need in this thesis.

 19

Figure 3.1 Subway map of HongKong

Figure 3.2: S-Bahn map of Stuttgart

 20

A ‘bad’ node-link graph normally suffer from three fundamental problems:
(1) Graph become cluttered and indecipherable, normally because nodes get-
ting too close or even overlap, too much edges crossing or edges drawn in
inappropriate way.
(2) Nodes are placed in wrong position. Nodes position affect the under-
standable and readable of graph very much, not just about graph aesthetics
but also graph meaning representation, graph could be interpreted different
when draw nodes in different positions even with the same input[24].
(3) Violate perceptual custom. For example, strongly or highly related nodes
drawn far away from each other or connected by long links, irrelevant nodes
positioned closely on the contrary.

It`s difficult to define a graph is ‘nice’ or ‘bad’ precisely, but there are still some
commonly accepted criteria or principles for graph drawing. The difficulty to lay
out a readable and understandable graph can be summarize to two
parts[14][16][17]:

1. Syntactic. Mainly about graph aesthetics, how to lay out a beautiful
graph, avoid overlap between nodes or edges.

2. Semantic. How a graph reveal information: task specific, underlying
meaning, data characters.

One important reference is Norman`s three levels model. Norman group the
process which viewer extract edges shape and information into three levels:
visceral, behavioural and reflective. This ‘process principles’ can be applied to
graph drawing help us to evaluate graph visualization.

Visceral level is about perception and impression of objects. One important
principle which we will apply to hierarchical clustering is grouping principles:
elements could be grouped according to similarity, continuation, proximity
connectedness or familiarity. Behavioural level is affected by visceral level
result, focus on graph`s usability and readability. Which means: our cognition
of graph is influenced by aesthetics. Understanding the results from previous
two processes is reflective level. How we find the meaning of a graph is influ-
enced by culture, education, environment and so on. Figure 3.1 place
nodes(stations) on real location of map, use it`s background (real Hong Kong
map) convenient to tourist with different background, whereas figure 3.2 en-
hance the shape of node-link graph.

For node-link graph drawing, Purchase present ‘metrics for seven aesthet-
ics’[15] about nodes and edges placement:
● minimizing edge crossings,
● minimizing edge bends,
● maximizing symmetry,
● maximizing the minimum angle between edges leaving a node,
● maximizing edge orthogonality,
● maximizing node orthogonality,
● maximizing consistent flow direction (directed graphs only).

It`s difficult to apply all these metrics and aesthetics criteria simultaneously.

 21

For example, conflict between symmetry and grouping nodes in clustering al-
gorithm. Figure 3.3 illustrates conflict minimizing edge crossings and maxim-
izing symmetry for the same adjacency matrix input.

a) b)

Figure 3.3: a) minimizing edge crossing layout

 b) maximizing symmetry layout

3.2 Force-directed Layout Algorithm

Force-directed is popular because the algorithm is easy to understand and
program, it encodes aesthetic criteria, results visually pleasing graph, do well
at distributing nodes evenly, minimizing edge bends and maximizing sym-
metry.

3.2.1 Spring embedder (Eades, Kamada and Kawai)

Force-directed algorithms view graph as system of bodies, task is about the
configuration of forces between bodies let the system with locally minimal en-
ergy. Let`s take a look at an example about the force here. Eades[18][21][23]
present an concept of spring embedded, replace edges by springs, calculate
forces between nodes and edges. The resulted force will let the spring stay at
an certain length, attractive force arise when spring is stretched and repulsive
force push nodes away if they get too close.

Figure 3.4: replace edge with spring Figure 3.5: force between nodes

 22

Replace all edges by spring, calculate forces to position nodes and config
length of edges, system will reach an equilibrium state: sum of forces on each
body is zero. This state defines a kind of straight line drawing, rough configu-
ration process schematic diagram in Figure 3.6.

Although the physical system of springs is modeled, Hooke`s law* is not im-
plemented in algorithm. It`s actually defined as energy system rather a force
system, algorithm config system to reach locally minimal energy state. A vari-
ety of force formulas had been developed, all use the concept of ‘force’ rather
than realistic one. Eades define the attractive and repulsive forces as:

 𝑓𝑎 = 𝑘𝑎 log 𝑑

and 𝑓𝑟 = 𝑘/𝑑
2

where k is the optimal and d is the initial distance between nodes.

Kamada and Kawai[20] used another algorithm which is based on spring graph
system: for a pairwise connected nodes, force try to keep them in ideal dis-
tance which is proportional to their graph theoretical shortest path. They define
energy of the graph as:

 ∑ 𝑘𝑖𝑗(|𝑝𝑖 − 𝑝𝑗| − 𝑙𝑖𝑗)
2

≤𝑖<𝑗≤|𝑉|

Where 𝑝𝑖 is the position of the spring corresponding to node i, 𝑘𝑖𝑗 is the

spring constant between 𝑝𝑖 and 𝑝𝑗, and 𝑙𝑖𝑗 is the ideal distance between

node i and j. By solving partial differential equation, energy is reduced until it
below a preset threshold and node is reposition during this process.

*Hooke`s law[19]:
The concept of Hooke’s Law is that the amount of force applied to a spring or elastic
object is proportional to the amount of deformation (length of stretch or compression).
The greater the force applied to an elastic object, the more deformation (stretch or
compression) there is. With less force applied, there will be less deformation in the
spring. The formula for Hooke’s Law is 𝐹𝑥 = −𝑘(𝑥 − 𝑥0) = −𝑘𝑥. Where 𝑘 is the

force constant of the spring, 𝑥 is the amount of deformation in meters.

 23

Figure 3.6: Spring Algorithm (Eades)

3.2.2 Force-directed Method (Fruchterman and Reingold 90)

What special in Fruchterman algorithm are: control the graph drawing with a
square wall boundary to prevent nodes and edges outside the wall, and pre-
vent nodes be drawn too close to each other, attractive forces only be calcu-
lated between pairwise connected nodes, but repulsive forces are considered
between all nodes just like Eades.
Initial state is not or partly considered in this algorithm, normally nodes are
placed randomly at first. Iteration number is chose by user or programmer, the
effect of attractive forces between pairwise connected nodes and repulsive
forces between all nodes be calculated in each iteration, a ‘cool down’ anneal
to limit displacement finally. During the iteration, a restriction condition be in-
troduced to keep nodes` new position still within user-defined square boundary.
Pseudo-code is given in Figure 3.8.

(a) Forces calculation

The area of frame is predefined as a rectangle: W * L, where W is the width

and L as length, nodes are positioned randomly in this frame first, and let 𝑑
the initial distance between two nodes.

 24

The optimal distance between nodes is calculated as:

 𝑘 = 𝐶 √
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

where C is experimental based constant, it`s value better be chose between
0.5 and 0.7 according to Dr. Scott White from University of California, Irvine.
Our goal is to place nodes in the frame evenly, apart two nodes away if they
get too close or push them closer if nodes are too far away from each other.

Let 𝑓𝑎 and 𝑓𝑟 be the attractive and repulsive forces respectively, the forces
formulas are defined as:

 𝑓𝑎 = 𝑑
2/𝑘

and 𝑓𝑟 = 𝑘
2/𝑑

after some experiments. The sum of 𝑓𝑎 and 𝑓𝑟 equal to zero under certain
distance value, this value is k the ideal distance between nodes. In other words,

𝑓𝑎 and 𝑓𝑟 counteract each other when nodes place at ideal distance, illus-
trated in Figure 3.7.

Since the initial nodes position is random, a special case exists: nodes are
overlap or in the same position. This algorithm predefine a constant to replace

𝑑 if above situation happens. The value of this constant should not larger than
frame area of course.

 Figure 3.7: forces versus distance[4]

 25

Pseudo code for Fruchterman Force-directed Algorithm[4]:

Figure 3.8: Force-directed placement

(b) Drawing boundary

In this algorithm, drawing region is modeled as an static, ‘four walls’ object,
each wall with normal force ‘exactly equal to the force pushing any node be-
yond it to stop the node ‘like a real wall’[4]. All walls of this region are orthogonal
to coordinate system to make it easier to implement.

If two nodes are far away enough, the repulsive force between them does not
contribute much to displacement, such repulsive forces are omitted when
calculating sum of repulsive forces. This is so called grid boxes technique. Grid
boxes used as threshold, nodes which is in distance far way beyond the
threshold be ignored[22]. Only repulsive forces between nodes lying in nearby
boxes be considered. See Figure 3.9. Another refinement is to model the
border after physical frame. The length of border is compute according to dis-
placement vectors, move nodes to a restricted area so that the resulted graph
never near the border. Figure 3.10 is the modification along x-coordinate, the

 26

same thing happened to nodes` y-coordinate.

 Figure 3.9: Grid boxes technique

 Figure 3.10: modeling the frame along x-coordinate

Finally, an important simulation ‘cool down’ is considered. Temperature T is set
to limit maximum displacement of nodes, the temperature and maximum dis-
placement will be changed at each iteration. A good cool down schedule is
help to have better graph layout. We define T as frame area related, T = W/10
for example. Experimentations tell us that low temperature T leads to better
and fewer iterations (according to [4] and Dr. Scott White).

 27

3.3 Partial Drawn Links in Directed Graph (Edges Shorten)

In node-link graph, objects represent as nodes and links as relationship be-
tween objects as introduced. Viewer`s usual habits of observation is from initial
node, find out node which is at the other end of the edge by following the link
(descendant). It`s an important task for visualizator to looking for node`s de-
scendants. For example, Figure 3.1and 3.2 the subway graphs, from departure
station, locate terminal station by following the subway line. Another example
is an email record system as illustrated in Figure 3.11, want to know David
email to whom, or all people David ever contacted. From the node which rep-
resents David, along all links send out from the node, go to targets at the other
ends of these links.

 Figure 3.11: Graph of email record

3.3.1 Type of Edges

Links or edges play a media role in finding descendant nodes, thus, algorithms
deal with edge drawing is important. There are three types of usually used
edges: curve, polyline and straight line. One of straight line drawing:
force-directed has been introduced, let`s have an rough overview of other two
types but not go to drawing algorithm details.

(a) Curve

Curved edges is one of drawing conventions, edge crossings can be reduced,
avoid nodes and edges get too close, enhance graph readability by using
curved edges. Figure 3.12 a) and b) are drawn from same data input and place
nodes at same position, edge crossing is avoided when replace one straight
line edge by curve. In Figure 3.13 a), edge from node A to node C not just go
through node B but almost parallels other two edges, these two problems is

 28

solved in b) perfectly. A variety of curve edge drawing algorithms has been
developed, one instance is Bezier curves[26], which use calculated smooth
curve to avoid edge crossing through nodes and graph aesthetics is improved.

 Figure 3.12: a) all straight edges

 b) curved edge instead

Figure 3.13: a) all straight edges; Figure 3.14: Bezier curve

 b) with curved edge

(b) Polyline (bended edges)

Polyline is used in orthogonal grid drawing: edge consists of segment lines, or
in other words, bend straight line with at arbitrary angle, and these segment
lines are parallel with coordinates axis. Figure 3.15 is an example of orthogo-
nal drawing, and figure 3.16 is an upward grid drawing with area-efficient
which presented by Garg Goodrich Tamassia[27]. Graph is well structured and
has good visual: edges not too close to each other, edges bended angle is
uniform.
.

 29

.
Figure 3.15: Orthogonal grid drawing Figure 3.16: polyline upward grid drawing

Compare above edges drawing, the turning point at bended edge could cause
visual confusion, create visual illusion that the turning point is a node. Curve
conforms with visual habits much more better, viewer can follow the edge to
find the other end under the orientation of arrow more ‘smoothly’, while bended
edge weaken the orientation function of arrowed edge.

Straight edge has best orientation effect within these types, guiding human
visual direction quite well. A daily life example is the street signs, a straight line
with arrow head to indicate destination direction, see Figure 3.17 a). The end
of the link with arrow doesn`t connect to the target, but couldn`t prevent us to
find the destination under the arrow`s guiding. The corresponding node-link
graph representation is drawn in Figure 3.17 b), use partially drawn straight
link shoot out from one node to find out it`s descendants while the end with
arrow do not need to have contact with target nodes.

A new node-link graph drawing technique will be introduced in following sec-
tion: use partially drawn straight links to reduce edge crossings, minimizing
edge bends, enhance graph readability and convenient for viewer to find out
descendants. This thought is put forward by Dr. Burch from Stuttgart University
and developed under his supervise.

 30

 a) b)

 Figure 3.17: a) street sign at Dublin

 b) graph representation

3.3.2 Partially Drawn Links Methods

In partially drawn links technique, straight line is used to draw edges, start and
end points are lay on a line. The first part of the link is like other techniques, a
starting node, link shoot out from this node, then the first question we have to
answer is where the other end (with arrow head) place to. We put the drawing
frame at the quadrant I of x y coordinates, nodes on the link can be calculated
as their coordinate point. Then the first question be solved as:

1. for each pairwise nodes, derive linear equation from start and end nodes`
coordinate point;

2. base on start node`s coordinate point and linear equation, control the link`s
length according to a given scaling parameter or user-defined.

(a) Method 1

Do not consider orientation relationship between start and end nodes first, take
a pair of connected nodes, their x y coordinate relationship is illustrated in
Figure 3.18 a). The start node is static and its position is given, we introduce a
intermedia node (see Figure 3.18 b) which also lay on the link to control the
arrow head position, then the length of the link could be partially drawn.

Substitute start node (𝑥1, 𝑦1) and ended node (𝑥2, 𝑦2) coordinate points to linear
equation 𝑦 = 𝑘𝑥 + 𝑏:

{
𝑦1 = 𝑘𝑥1 + 𝑏
𝑦2 = 𝑘𝑥2 + 𝑏

Solve equation set to get 𝑘 and 𝑏. 𝑏 is the coordinate point where link in-

tersects x-coordinate when y = 0. 𝑘 is slope of the link, which is 𝑘 = tan 𝜃 =
(𝑦2 − 𝑦1)/(𝑥2 − 𝑥1). Value range of 𝑥3 is 𝑥1 to 𝑥2. We introduce a parame-

ter a to control value of 𝑥3 that enable the intermedia node could be any point

 31

in the link, which is:

 𝑥3 =
(𝑥2−𝑥1)

𝑎
,

substitute 𝑥3, 𝑘 and 𝑏 to linear equation to get

𝑦3 =
𝑘(𝑥2 − 𝑥1)

𝑎
+ 𝑏

Then we get the end node`s coordinate point:

(𝑥3, 𝑦3) = (
(𝑥2 − 𝑥1)

𝑎
 ,
𝑘(𝑥2 − 𝑥1)

𝑎
+ 𝑏)

This coordinate point is used to control the arrow head position which is the
length of link.

Figure 3.18: a) x-y coordinate of link b) intermedia node introduced

For the coordinate point of intermedia node, we just need to confirm the value

of 𝑥3 or 𝑦3, the other one can be calculated. From the above derivation, have
to choose from 𝑥3 = (𝑥2 − 𝑥1)/𝑎 or 𝑦3 = (𝑦2 − 𝑦1)/𝑎 first for position calcu-
lation. Assume a is fixed value, then we could have better control of arrow
head for the numerator which has lager value. Because we just need to
change the value a little bit, the length of link will has obvious change. It`s more
obviously when there are more edges. Another reason is we get result with
small number for a numerator with small value, even need to precise to several
digits after the decimal point. Computation time and difficulty is increased,
higher demand for processor.

There are four situation four location relationships between start and end
nodes, illustrated in Figure 3.19, which the end node at the direction of north-
west, southwest, southeast and northeast respectively. Because the coordi-
nate point of start and end nodes are known, means slope of link is known,

then the direction relationship is become whether 𝑥2 or 𝑦2 is larger or smaller

than 𝑥1 or 𝑦2. Then whole process can be summarize as:
1. Get linear equation form coordinate point of start and end nodes;

2. Pick up the larger absolute value different from 𝑥2 − 𝑥1 or 𝑦2 − 𝑦1. Use
x-coordinate for example, one situation is 𝑥2 ≥ 𝑥1, then 𝑥3 = (𝑥2 − 𝑥1)/𝑎, the
other situation is 𝑥1 ≥ 𝑥2, then 𝑥3 = (𝑥1 − 𝑥2)/𝑎.It`s the same for y-coordinate.

 32

The coordinate point of intermedia node is confirmed, length of link can be
controlled by changing the value of a.

 Figure 3.19: location relationship between start node and end node

 Figure 3.20: a) |(y2 − y1)| ≥ |(x2 − x1)| . b) |x2 − x1| > |(y2 − y1)|

(b) Method 2

It`s more understandable and readable if viewer could control length with a flat
rate, for example: shorten link to its 50% length. This method is more ac-
ceptable by viewer. To achieve this, based on method 1, just need one more
length control step in each intermedia node coordinate calculation. Here are
the calculation steps:

1. Get linear equation form coordinate point of start and end nodes, and get

link`s length L = √(𝑦2 − 𝑦1)
2 + (𝑥2 − 𝑥1)

2;

2. Control the length of link by intermedia node(𝑥3, 𝑦3), 50% length for example,
just need to solve equation set:

{
𝐿 ∗ 50% = √(𝑦3 − 𝑦1)

2 + (𝑥3 − 𝑥1)
2

𝑦3 = 𝑘 ∗ 𝑥3 + 𝑏

With constrain conditions: (𝑥3, 𝑦3) must between (𝑥1, 𝑦1) and (𝑥2, 𝑦2). For

viewer, it`s intuitive method but higher running time than method 1. Figure 3.21
is the scheme diagram.

 33

Figure 3.21: Length control

3.3.3 Nodes Placement

Since partially drawn link is deal with straight line, the graph has to be a kind of
straight line drawing. Besides, the end of link with arrow head plays a role as
direction guider but not closely touch the target node, nodes in graph must
keep well distance to avoid misleading. One embarrassing example is in Fig-
ure 3.21, target nodes are getting too close, partial links lost duty of direction
guiding. If irrelevant nodes be drawn closely and connected nodes are place
too far away could cause viewer confusion also.

The initial graph layout is important for this simple partially drawn link, new
graph drawing algorithm will not develop here, but use force-directed drawing
which was introduced in section 3.2. Because nodes in force-directed graph
keep well distance, pairwise nodes be drawn near each other and it`s static
equilibrium can reduce computation time than moving nodes. Original graph in
equilibrium state be drawn and then shorten the links. To make full effect of this
technique and accommodate different tasks, a changeable parameter or slider
bar is used to control length of all links, viewer can make comparison between
original graph and graph with shortened links. Figure 3.23 make such com-
parison between before and after links shortened, edge crossings can be re-
duced or no edge crossing.

Figure 3.22: failure example

Force directed algorithm requires high running time, but it`s still a good method
for graph drawing when there`re more and more nodes. To reduce computa-
tion time and make our partially drawn links more efficient, we place nodes in a

 34

simpler way when there are not too many nodes.

 Figure 3.23: a) Force-directed layout

b) partially drawn links

Inspired by circular layout, given an analog circle, according to the number of
nodes, use angle control to place nodes evenly on the circle. Graph symmetry
can be maximized and nodes overlap can be prevented also. It`s efficient es-
pecially not too many nodes but lots of edges.

Assume we have m nodes, then circle be divided to m parts, each one with

angle 𝛼 = 2𝜋/𝑚, then the coordinate point of node decided by sin 𝛼 and
cos 𝛼.

 35

 Figure 3.24: circular placement

Figure 3.25: a) before shorten links

b) after links shortened

Pseudo-code of core body:

Initial straight-line drawing, position of each node: [𝑥𝑖 , 𝑦𝑖]
For i  1 to n
 For j  1 to n

 Intermnodepos= [(𝑦𝑘 − 𝑏)/𝑘, 𝑦𝑘 = 𝑦𝑗 + (𝑦𝑗 − 𝑦𝑖)/𝑎]

 Or = [𝑥𝑘 = 𝑥𝑖 +
(𝑥𝑗−𝑦𝑖)

𝑎
, 𝑘 ∗ 𝑥𝑘 + 𝑏]

 // Arrow head position calculation
 end
end

The running time of the algorithm depends on the number of links, that is,
O(|E|). The running time of the whole program is 𝜃(|E|) plus initial straight line
drawing time.

 36

3.3.4 Partially Drawn Links in User-defined Region

All graphs presented above are all static pictures, and static graphs provide
limit information to viewer. The subway maps in Figure 3.1 and 3.2 for example,
besides graphs base on drawing algorithms, other techniques like color coding
and remark is used to enable viewer to find interesting information. But it`s not
enough. When density of a graph is large, or consider realistic problem like
viewer with near-sightedness, details of graph may not be observed clearly.
The components of node-link graph are nothing else but nodes and links, easy
to cause illusion chaos even with not too much nodes and edges.

‘A good visualization is not just a static picture that we can walk through and
inspect like a museum full of statues’[17]. Various operations is possible with
the help of computer interactive interface, enable user to get inside the graph
and look for something important or interesting. Schneidermann[28] summarize
the user`s information searching behavior as: ‘Overview first, zoom and filter,
then details on demand’. He presented seven tasks for graph visualization,
which may fulfill all what viewer needs:

●Overview: Gain an overview of the entire collection.
●Zoom: Zoom in on items of interest.
●Filter: Zoom in on items of interest.
●Details-on-demand: Select an item or group and get details when needed.
●Relate: View relationships among items.
●History: Keep a history of actions to support undo, replay, and progressive
refinement.
●Extract: Allow extraction of sub-collections and of the query parameters.

Of course, viewer don`t need so many functions usually. We offer two infor-
mation filtering operations in the software interface.
1. Zooming. Zooming is a common operation, zoom in to see details of graph
and zoom out have overview. In figure 3.23 for example, node ID or even ar-
row may not clear under some circumstances. Our interface provides zoom in

and out buttons: .

2. It`s not enough just for zooming in and out. The second operation is us-
er-defined region. User may just interest in one or several nodes` information.
By the use of mouse, click to select a rectangle region which includes nodes
user-demanded to process partially drawn their links. The example we used in
Figure 3.11, sometimes we just know want to know who a particular person
ever contacts, select node represent this person, only out-links of this node will
be shortened. In other words, only these particular user-demanded information
be filtered out.

 37

Figure 3.26: a) region selected b) partially drawn links for region

Besides, our interactive interface displaces both original graph and partially
drawn links graph at the same time, user can make comparison of both graphs.
At some software, previous graph would close automatically when new graph
displace, this method keeps interface clear and neat. Both method has it`s own

advantage. We choose to let user click ‘close’ icon to close down
graphs don`t needed.

Our user interface provides a more ideal method is to use a slider bar to con-
trol the length of links, let links change proportional, it`s much more match
viewer`s perception. It`s convenient for user control and observe the length,
easy-operate just by drag the slider bar up and down.

3.3.5 Discussion and Further work

The realization of partially drawn links still has many restrictions, that means
there is substantial room for improvement:

1. Image detection technique can be introduced, allow user import straight-link
graph which nodes in random places to process partially links drawing.

2. If edges close to or cross through a certain node, node can be moved to
ideal new position automatically.

3. Curved and straight lines being used at the same time usually. We can re-
main the curve but shorten all straight lines, beauty and readability of graph
would be enhanced.

http://www.showxiu.com/fan_yi/room/

 38

4. Animation is another important technique could be embedded. For nodes
which user selected, like an electric torch, keep switching on and off, links look
like light shoot out, the position where light could reach is the length of link.

3.4 Hierarchical Clustering Algorithm

Unlike the above algorithms, the nodes processed by clustering algorithm do
not have to be connected by edges. This algorithm is based on statistical
analysis, grouping objects according to their similarity, and each group shares
the same property or characteristics. Clustering is a kind of unsupervised
process of grouping a more understandable presentation of input data[30][31].

Hierarchical clustering algorithm has widely application in world wide web, so-
cial network, marketing analysis and so on. Statistical analysis usually results
large amount of data, it`s not intuitive to represent by language, forming or
listing, especially inconvenient when we just need an overview. Hierarchical
clustering results a tree viewed dendrogram, which cooperate with interpreted
node-link graph.
Distance matrix being used to describes distance between objects, entities of
this matrix is the distance between objects and the similarity between objects
is the study on relationships between entities of distance matrix. Weighted
adjacency matrix is used as distance matrix here.

There are two important components of clustering, one is clustering algorithm,
and the other is linkage criteria.

3.4.1 Agglomerative Clustering

Agglomerative Clustering works as merge two clusters into one base on link-
age measure. It`s initial condition is to view every object as a single cluster,
merge to final one cluster after some iterations.

Given a set of N objects to be clustered, and an N*N distance matrix, the basic
process of hierarchical clustering[28] is:
1. Assign each object to its own cluster, so we have N clusters initially, each
cluster contains one object, and the distance between clusters equal the dis-
tance between objects.
2. Find the closest (has most similarity) pair of clusters and put them into a
single cluster, no we have one less cluster.
3. Distances between new cluster and the remaining old clusters, then we
have a new distance matrix now.
4. Repeat 2 and 3 until all clusters are put into a single cluster, and the size of
the final cluster is N, which means it contains N objects.

 39

The flow chat of clustering process is given below:

Figure 3.27: Flow chat of hierarchical clustering

Step 2 and 3 in hierarchical algorithm can be done in different ways, depend
on which linkage measurement used for clustering.

3.4.2 Linkage Criteria

Distinct results be obtained by using different likage method. There`re three
most commonly used criteria in agglomerative hierarchical clustering: mini-

mum distance(Single linkage,), Maximum distance(Complete link)和 average

distance(average linkage)[33].

(a) Single linkage clustering
Distance between two clusters is the minimum distance from one point of its
cluster to any point of the other cluster:

 𝐷 = min𝑑(𝑥𝑖 , 𝑥𝑗)

Where 𝑑(𝑥𝑖 , 𝑥𝑗) is the entity of distance matrix. ‘It's called single link because

it says clusters are close if they have even a single pair of close points, a sin-
gle link’[32]

 40

 Figure 3.28: Single linkage

(b) Complete linkage
Distance between two clusters is the maximum distance from one point of its
cluster to any point of the other cluster:
 𝐷 = max𝑑(𝑥𝑖 , 𝑥𝑗)

It`s similar to single linkage, just use maximum distance instead.

 Figure 3.29: Complete linkage

(c) Average linkage
Distance between two clusters is computed as the average distance between
nodes of one cluster and nodes of another cluster. ‘Average linkage tends to
join clusters with small variances, and it is slightly biased toward producing
clusters with the same variance’[34][35] which was originated by Sokal and
Michener(1958).

𝐷 =
1

2
∑ ∑ 𝑑(𝑥𝑖 , 𝑥𝑗)

𝑗∈𝐶𝐿𝑖∈𝐶𝐾

where 𝐶𝐾,𝐶𝐿 are two clusters, distance between members of these two clus-
ters be calculated. ‘Average linkage is viewed as a compromise between sin-
gle and complete linkage, all nodes in cluster is considered but not just one
node, has less influenced by extreme large or small number.’[36]

 Figure 3.30: Average linkage

Let`s have an example of how these three methods deal with a same weighted
adjacency matrix input in different ways. Assume we have four sites: A, B, C, D,
distance between these sites is given as:

 41

 A B C D

A 0 2 5 9

B 2 0 3 7

C 5 3 0 4

D 9 7 4 0

(a) Single linkage

(b) Complete linkage

 42

(c) Average linkage

3.4.3 Directed Graph

Directed graph is a must in this domain, because relationships between ob-
jects may not be mutual equivalent. Little work has been done on clustering
deal with directed graph, most work to clustering target undirected situation.

The major challenge is that relationships in directed graph is different from
undirected graph. This difference is obvious if compare the adjacency matrix
representation. The symmetry property of undirected adjacency matrix let
nodes in clusters share similar in and out links. The adjacency matrix of a di-
rected graph is square but not symmetric. A simply way to via a matrix trans-

formation: 𝐷𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐷𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 + 𝐷𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑
𝑇 , where 𝐷𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑

𝑇 is transpose of

 43

𝐷𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑. The weight of the edge in the symmetrized graph will be the sum of
the weights of the two directed edges[37][38][39].

3.5 Strongly Connected Components of Directed Graph

3.5.1 Strongly Connected Components

Connective problem is rather simple and obvious in undirected graph, an un-
directed graph can be decomposed to several connected components[41], see
Figure 3.30. The depth first search which introduced in chapter 2 does this
easily, each restart of search is a connected component.

Figure 3.31: Undirected graph

However, in directed graph, connectivity problem is more complicated, be-
cause the edge is ‘one way street’. In directed graph, between two nodes A
and B, if there exists a path from A to B, and a path from B to A, we call these
two nodes is strongly connected. ‘A strongly connected component is a max-
imal group of nodes that are mutually reachable without violating the edge di-
rections’[40], abbreviated as SCC. There could be multiple SCC in a directed
graph, even a single node could be a SCC.

3.5.2 Searching Algorithm

After depth first search of a graph, it returns topological layers order, each SCC
must be one sub-layer. Then we just need to find out the starting node of each
layer, take out the SCC one by one.

Define the DFN[n] be the order label of nodes visited before depth first search,
and low[n] be the smallest depth first search number of a node reachable by a
back or cross edge from N`s subtree. The current node is a root of one SCC if
DFN[n] = low[n]. Because if it`s not a root of SCC, then it must belongs to an-
other SCC and its root must be ancestor of current node, then a path to the
ancestor and include the current node would exists, if so, low[n] has to be
changed to a value smaller then DFN[n].

 44

Pseudo Code:
DFS(u)
{
 DFN[n]=Low[n]=++Index % set label for node n and initialize Low[n]
 Stack.push(n) % push node n into stack
 for each (n, v) in E % for each edge
 if (v is not visited) % if node v not been visited
 search(v) % continue
 Low[n] = min(Low[n], Low[v])
 else if (v in S) % if node n still in stack
 Low[n] = min(Low[n], DFN[v])
 if (DFN[n] == Low[n]) % if node n is the root of SCC
 repeat
 v = S.pop %pop node v out of stack
 print v
 until (n== v)
}

SCC searching is one of those algorithms which is difficult to be understand by
language describe. The following is flowing steps representation:

(1) Start DFS from node 1, push all traversed nodes into stack. When reach
node 6, no out-edge from node 6 and DFN[6] = Low[6], a SCC {6} is found.

(2) Way back to node 5, and DFN[5] = Low[5] , push node 5 out of stack and
it`s a SCC {5}.

 45

(3) Way back to node 3, it has an unsearched edge, reach node 4 and push it
into stack. There`re two out-edges from node 4, one is direct to node 1which
already in the stack, so Low[4] = 1. No more visit to node 6 because it`s al-
ready out of stack. Way back to node 3. Low[3] = Low[4] = 1, because edge
between node 3 and 4 is branch of the sub-tree.

(4) Way back to node 1, visit node 2 along the only unsearched out-edge.
Because node 4 still in stack, so Low[2] = DFN[4] = 5. Way back to node 1,
found that DFN[1] = Low[1] already, take all nodes in the stack out and form a
SSC {1,3,4,2}.

All nodes been visited once, in and out of stack once, so the time complexity is
O(n+e), where n is the number of nodes and e is the number of edges.

3.5.3 Graph Layout of SCC

SCC has realistic application in transportation routes arrangement, social
network user data analysis and so on. In graph visualization, could help to
reduce the size of graph, see Figure 3.31, node 1,2,3 and 4 is one strongly
connected component, then in some task they could be drawn into a single

 46

node, the final graph just contents three nodes and three edges.

Figure 3.32: Graph size reduce

Simply color coding is introduced here to draw graph to distinguish SCCs of a
graph. Apply HSV colormap which ranges from blue to red, and passes
through the colors cyan, yellow, and orange. Assign different color to each
SCC and the color is depends on the number of SCC. Result the Figure 3.32.

Figure 3.33: Color coding layout

 47

3.6 Shortest Path between Two Nodes

We already introduced Floyd-Warshall algorithm to find all-pairs shortest path.
But in application, it`s difficult to draw graph base on the algorithm resulted
matrix. Because the shortest path between two nodes is not necessary the
single edge between two nodes. Besides, in daily life, what we usually want to
figure out is just the shortest path between two nodes.

Assume we have n objects, weight of edge from node i to node j is 𝑊𝑖𝑗. For

any node k, the shortest path from node i to node j may pass or not pass node
k. If 𝑑𝑖𝑘 is the shortest distance from node i to node k and 𝑑𝑘𝑗 is the shortest

distance from node k to node j, compare 𝑑𝑖𝑗 and 𝑑𝑖𝑘 + 𝑑𝑘𝑗, if 𝑑𝑖𝑗 > 𝑑𝑖𝑘 + 𝑑𝑘𝑗,

let 𝑑𝑖𝑗 = 𝑑𝑖𝑘 + 𝑑𝑘𝑗 to keep 𝑑𝑖𝑗 always be the shortest distance from node i to

node j. Repeat until all node k are searched, the final 𝑑𝑖𝑗 is what we want. The

detailed process is:

Step 1 Input weight adjacency matrix W and initialize 𝑑𝑖𝑗 = 0.

 For all i,j we have 𝑑𝑖𝑗=𝑊𝑖𝑗, k=1.

Step 2 Update 𝑑𝑖𝑗. For all i, j, if 𝑑𝑖𝑗 > 𝑑𝑖𝑘 + 𝑑𝑘𝑗, let 𝑑𝑖𝑗 = 𝑑𝑖𝑘 + 𝑑𝑘𝑗.

Step 3 Stop when k=n, otherwise, go to step 2.

Pseudo Code:
// dist(i,j) is the shortest distance from node i to node j
For i←1 to n do
 For j←1 to n do
 dist(i,j) = weight(i,j)

For k←1 to n do // intermedia node is the primary condition
 For i←1 to n do
 For j←1 to n do
 if (dist(i,k) + dist(k,j) < dist(i,j)) then
 dist(i,j) = dist(i,k) + dist(k,j)

Figure 3.34: Shortest path between two nodes[11]

Figure 3.33 is the core body of Floyd-Warshall algorithm, the advantage of this
algorithm is easy to understand and implement. Finding shortest path has
practical meaning in traffic route arrangement, transportation route planning
and so on. For example, there`re five cities, assign distance or travel expense
from one city to another as weight value, shortest or cheapest way from city C
to city F can use graph to visualize this information as:

 A B C D E F

A 0 4 0 1 0 7

B 2 0 3 7 2 1

C 5 3 0 4 0 10

D 9 7 4 0 5 0

E 8 6 4 6 0 1

F 3 6 2 8 0 0

 48

Figure 3.35: Shortest Path from City C to City F

 49

Chapter 4 Matlab GUI Instructions

GUI and algorithms implementation are all programmed by the software
MATLAB. The GUI is show up by click a .exe executable file, here`s the initial
interface:

There are six main menus on the top:
1. Data Import;
2. Layout;
3. Partially Drawn Links;
4. Find Strongly Connected Components;
5. Hierarchical Clustering;
6. Shortest Path between 2 Points.

(a) Data Import

Click to import data from hard disk, a pop-up dialog box enable user to use
default IDs or input user-defined node IDs. This preferred IDs will be apply to
all layout features.

A grid box will display the input adjacency matrix with the node IDs. To reduce
the edges, nodes which has self-connection not present by edge but add a ‘s’
in node ID instead. For example:

 50

(b) Layout

Four types of graph can be layout according to input data:

(c) Partially draw links

Two kinds of initial graph provided: Equilibrium state and place node on circle
evenly.

Two kinds of links length control methods also coexist:

1. Enter user-defined ‘shorten parameter’ then original graph and graph after
links shortened display. Left-click your mouse, hold and drag a rectangle area,
partially drawn links will process the nodes inside the selected area.

2. An easy-operated slider bar used to control links length, original graph and
graph after links shortened are all provided.

(d) Find Strongly Connected Components

Graph`s strongly connected components will layout with color coding.
For example:

 Three SCC: {1,2,3,4} {5} and {6}

(e) Hierarchical Clustering

Clustering input data using agglomerative algorithm, three methods provide:
1, single linkage
2, complete
3, average

 51

Dendrogram along with node-link diagram cooperate to layout hierarchical
clustering of data.

(f) Shortest Path between 2 Points

Click to select, select the source and destination nodes from pop-up nodes list,
shortest path be highlighted in graph.

 52

Chapter 5 Conclusion, Discussion and Future Work

5.1 Performance

Performance test is running at laptop: Intel Core i3-2350M(2.3GHz), Windows
7 64bits, 1GB memory. Graph drawing not just affected by algorithms` calcu-
lation time, but also the property of drawing frame: ‘.figure’ file.

The drawing frame can`t be infinite large, one major reason is computer pro-
cessing ability and the other is for a good layout. Our drawing frame area is set

to 𝑋 × 𝑌 ≈ 1000 × 1000 (unit area). Each node occupies 20 × 20 = 40unit

area, that means 1000 × 1000/20 × 20 = 2,500 nodes could be placed the-
oretically. Of course, edges and arrow should not be ignored in graph drawing.

Assume each node had an in and an out edge, each unit needs about 40 × 40
unit area, otherwise, some tricky problems may occur: node shape changed,
node not at predefined position and so on.

In fact, after testing we find out that edge is an extremely important factor when
layout a graph. If a graph with more nodes and less edges, can deal with ap-
proximate 130 nodes and 300 edges. On the contrary, just approximately 50
nodes and 900 edges could be handled.

For force-directed undirected graph, dot to represent objects instead of circle
node, space occupation can be reduced and layout speed can be increased. It
could layout graph with up to about 130 nodes and 10,000 edges.

5.2 Discussion and further work

Matlab is a powerful software because of its comprehensive functions, but ra-
ther a little bit weak in running time and self-update. Java is comparatively
complex in programming but faster running time. Matlab used more at base
studying while JAVA implement tasks much better. JAVA version of partially
drawn links may lead to better performance.

During performance testing, two restrictions of partially drawn links found: one
is when two shortened links` arrow heads intersect at one point, the ‘.figure’
frame would misplaces them automatically sometimes. The other is the way
we shorten the links. Intermedia node coordination point calculation may
needs up to many digits after the decimal point, error may occurs, depends on
the parameter we chose. The same problem as force-directed, constant C is
experimental based also. Better algorithm can be presented to improve the
partially drawn links.

Graph theories actually algorithms to traverse a graph, I start graph drawing
study with graph theory but did not apply it much in graph drawing technique
except SCC and shortest path. We study how input data matrix affect graph
layout, combine research of data and graph drawing by learning graph theory.

http://product.pconline.com.cn/so/s58202/

 53

Combination of graph theory and various node position and drawing algo-
rithms can help us to draw more appealing graph. For example, DFS we
learned before, results nodes` topological order, cooperate with SCC and even
hierarchical clustering, edge crossing can be minimizing and nodes positioned
in more human sense reasonable way[11][40]. But mentioned before, none of
drawing method is ‘perfect’, it`s necessary for visualizator try to learn and im-
plement different methods.

Besides, hierarchical clustering can be combined with many nodes position
algorithms and graph theory also, like force-directed, circular drawing. Drawing
each cluster in force-directed algorithm can improve graph meaning. Actually,
k-means, flow cut and other techniques already used in hierarchical clustering,
improving layout in different meaningful graphs[42].

We select adjacency matrix form as input data, actually, it`s better if the graph
visualization interface can support more input data form, like adjacency list,
sparse matrix. One reason is enable user has more choices, and different in-
put data can directly affect algorithm performance.

There is still substantial room for improvement and develop in interactive fea-
tures. More user-defined operation to nodes and edges could be developed.
For example, enable user to drag nodes to anywhere they want by mouse, but
edges go together along the nodes. That is, nodes position changed but con-
nection remains. User can move edges around the frame, change their shape
and size at will without change edges` two ends.

Graph visualization is devoted to reveal data relationship and meaning, let
viewers observe what they interest in and find out unknown. How to build a
easily operational interactive interface, combine more features into one block,
especially enhance the automatically generate ability are important topics for
visualizator.

 54

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen

Quellen benutzt zu haben. Wörtliche und sinngemäße Übernahmen aus anderen

Quellen habe ich nach bestem Wissen und Gewissen als solche kenntlich gemacht.

Stuttgart, den 30. März 2012 _____________________

 55

Acknowledgements

I want to thank Dr. rer. nat. Michael Burch, my supervisor, for his advice, pa-
tience and understand, provide me with materials, valuable ideas and his pre-
cious time. Guide me from blank to indoor, show me a whole new and colorful
scientific field. A little bit shame that I did not do well enough. For giving me
strong support and tolerance, Prof. Dr. Daniel Weiskopf and Ms. Ritzmann. For
giving our INFOTECH students generous support and helpful suggestions
these years, Dr.-Ing. Manfred Wizgall, my course director.

I shall extend my thanks to all my friends, take care my daily life during these
days, especially when suffered from physical injury and laptop damage.

Finally, I owe a lot to my parents, who have given me life and love, consistent
support and encouragement.

 56

Bibliography

[1] Weiwei Cui: A Survey on Graph Visualization. Hong Kong University of
 Science and Technology, 2005.

[2] A Math Forum Project, Drexel University, 1994-2012.

[3] D. E. Knuth: Computer-drawn Flowcharts. Communications of the ACM,
 1963.

[4] THOMAS M. J. FRUCHTERMAN AND EDWARD M. REINGOLD: Graph
 Drawing by Force-directed Placement. SOFTWARE—PRACTICE AND
 EXPERIENCE, VOL. 21(1 1), 1129-1164 (NOVEMBER 1991).

[5] J. A. Bondy and U. S. R. Murty: Graph Theory with Application.
 Department of Combinatorics and Optimization, University of Waterloo,
 1976.

[6] Colin Ware, Helen Purchase, Linda Colpoys and Matthew McGill:

Cognitive Measurements of Graph Aesthetics, University of New
Hampshire, 2002.

[7] Chaomei Chen: Information Visualization (beyond the horizon), Second
 Edition, 2006.

[8] Sung-Chul Han, Franz Franchetti, and Markus Puschl: Program

Generation for the All-Pairs Shortest Path Problem. Electrical and
Computer Engineering, Carnegie Mellon University Pittsburgh, PA 15213,

 2006.

[9] Thomas H. Cormen, Charles E. Leiserson, and Ronald L:
 Rivest Introduction to Algorithms, 2009.

[10] Cliff Stein: Optimization II. Columbia University, 2006.

[11] Cormen, Leiserson, Rivest, and Stein. Introduction to Algorithms (2nd
 Edition). MIT Press, 2001.

[12] Stephen R. Schmitt: Mathematics and Software Tutorial, 2010.

[13] Michelle Girvan and M.E.J. Newman: Community structure in social and
 biological networks, 2001.

[14] Chris Bennett, Jody Ryall, Leo Spalteholz and Amy Gooch:
 The Aesthetics of Graph Visualization. Computational Aesthetics in
 Graphics, Visualization, and Imaging, 2007.

[15] Helen C. Purchase: Metrics for Graph Drawing Aesthetics, 2002.

 57

[16] Takao Nishizeki, Md. Saidur Rahman: Planar Graph Drawing. Lecture
 Notes Series on Computing, 2004.

[17] Colin Ware: Information Visualization Perception for Design, 2004.

[18] Eades. P: A heuristic for graph drawing. Congressus Numerantiom 42,
 1984

[19] Richard Fitzpatrick: Classical Mechanics. The University of Texas at
 Austin, 2006.

[20] Jennifer Golbeck and Paul Mutton: Spring-Embedded Graphs for
 Semantic Visualization, 2005.

[21] John Howse, Peter Rodgers and Gem Stapleton: Automated Diagram
 Drawing, VL/HCC 2009.

[22] Michael Kaufmann and Dorothea Wagner: Drawing Graphs-Methods
 and Models, 2001.

[23] Stephen G. Kobourov. Force-Directed Drawing Algorithm. University of
 Arizona, 2004.

[24] Charles D. Hansen, Chris R. Johnson: The Visualization Handbook,
 2005.

[25] Yidong Feng, Guoping Wang and Shihai Dong. Information Visualization.
Journal of Engineering Graph, 2001.

[26] Farin, Gerald: Curves and surfaces for computer-aided geometric design,
1996.

[27] Bridgeman, S., Fanto, J, Garg, A. Tamassia, R., and Vismara, L. (1997):
 InteractiveGiotto: An algorithm for interactive orthogonal graph drawing,
 1997.

[28] Ben Shneiderman: The Eyes Have It: A Task by Data Type Taxonomy
 for Information Visualization. University of Maryland, 1996.

[29] S. C. Johnson: Hierarchical Clustering Schemes, 1997.

[30] Miklós Erdélyi, János Abonyi: Node Similarity-based Graph Clustering
 and Visualization, 2006.

[31] Olaf Sporns: Graph Theory Methods For The Analysis Of Neural
 Connectivity Patterns, 2002.

[32] Ryan Tibshirani: Distances between Clustering, Hierarchical Clustering,
 2009.

 58

[33] Kardi Teknomo: Linkages between Objects, 2009.

[34] Pankaj K. Agarwal: Algorithms in Computational Biology, 2003.

[35] James L. Schmidhammer: Applied Multivariate Methods, 2011.

[36] Daniel P. Berrar,Werner Dubitzky and Martin Granzow: A Practical
 Approach to Microarray Data Analysis, 2003.

[37] Venu Satuluri, Srinivasan Parthasarathy: Symmetrizations for Clustering
 Directed Graphs, 2011.

[38] Jie Chen and Yousef Saad: Dense Subgraph Extraction with Application
 to Community Detection. IEEE Transactions on Knowledge and Data
 Engineering (TKDE), 24(7):1216--1230, 2012.

[39] David Gleich: Hierarchical Directed Spectral Graph Partitioning. Stanford
 University, 2005.

[40] Tarjan, R.E: Depth first search and linear graph algorithms, 1972.

[41] Christos Papadimitriou: Efficient Algorithms and Intractable Problems,
 2012.

[42] Adam Smith: Algorithm Design and Analysis, 2008.

http://www.bus.utk.edu/stat/JLS

