
Institute of Parallel and Distributed Systems
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3242

Data security in multi-tenant
environments in the cloud

Tim Waizenegger

Course of Study: Computer Science

Examiner: Prof. Dr. Bernhard Mitschang

Supervisor: Dipl.-Inf. Thomas Ritter

Commenced: 1. October, 2011

Completed: 13. April, 2012

CR-Classification: C.2.4, C.5.5, D.2.11, H.3.4, K.6.5

Contents

1 Introduction 9
1.1 Cloud Computing . 10

Cloud Technologies . 11

Virtualization . 11

Cloud Models . 12

Cloud Service Models . 12

Multi-tenancy . 14

1.2 Security Terminology . 15

Security Principles . 16

Security by Design & Open Security . 18

Security through Obscurity . 18

1.3 IBM SmartCloud Archive . 19

2 Cryptography 21
2.1 Introduction . 21

2.2 Encrypting Data . 22

Data at Rest . 22

Preventing and Detecting Data Manipulation 22

Encrypting Drives and Partitions . 24

Data in Motion . 26

2.3 Encryption Algorithms . 26

Cryptographic Principles . 26

The One-Time Pad . 26

Modes of Operation . 27

Hash Functions . 29

Asymmetric Encryption . 29

3 Authentication and Authorization 31
3.1 Authentication . 31

Authenticating Users . 31

Certificate based Authentication . 32

Certification Process . 32

Authenticating Systems and Processes . 33

Deep Authentication . 33

3.2 Authorization . 34

Certificated based Authorization . 35

3

4 Key Management 37
4.1 Introduction . 37

Identity management . 37

Security of data at rest: . 38

Security of operations: . 38

Security of communication: . 38

Encryption key management . 38

Security of data at rest: . 39

Security of operations: . 39

Security of communication: . 39

System credential management . 40

Security of data at rest: . 40

Security of operations: . 40

Security of communication: . 40

Conclusion . 40

4.2 Key Management Concepts . 41

Local Key Store without Protection . 43

Local Key Store with Software Assisted Protection 43

Local Key Store with Hardware Assisted Protection 43

Client-Server Configuration without Client-Credential Protection 44

Client-Server Configuration with Client-Credential Protection 44

4.3 Security Concerns . 44

Encryption Scheme . 44

Providing an Initial Master Key . 45

Storing the Master Key . 45

Preventing Access to the Master Key . 46

4.4 State of the Art Solutions . 46

Public-Key Cryptography Standards (PKCS) . 46

Websphere Keystore . 47

Implementation . 48

5 Cloud Solutions and Security 49
5.1 Threat Assessment and Standardization Efforts 49

5.2 Tenant Isolation and Cloud Delivery Models . 50

5.3 Common Threats to Cloud Components . 51

Custom Web Applications and User Interface 52

Code Injection Vulnerability . 52

Cross-Site Scripting Attack (XSS) . 53

Cross-Site Request Forgery Attack (CSRF) 55

The Prepared Web Site . 56

Authentication Vulnerabilities . 57

Middleware Components and Service Layer . 57

SQl Injection Attack . 57

Network Infrastructure . 59

Points of Entry . 60

4

Mitigation . 61

Operating Systems and Processes . 61

Points of Entry . 62

Mitigation . 63

Virtualization Technologies . 63

Points of Entry . 63

Mitigation . 65

Physical Security . 65

Attack Vector . 66

Mitigation . 66

5.4 IBM SmartCloud Archive — Architecture and Components 66

5.5 IBM SmartCloud Archive — Processes and Activities 69

5.6 IBM SmartCloud Archive — Security Evaluation 71

User Interface . 71

Cross-Site request Forgery (CSRF) . 71

Cross-Site Scripting (XSS) . 72

Middleware . 72

Infrastructure Components . 72

6 A Key Management System for IBM SmartCloud Archive 75
6.1 Architecture and Design . 75

Terminology . 75

Client Component . 76

Server Component . 76

System Architecture . 77

6.2 Use Cases . 77

UC1 — Initializing the Server . 78

UC2 — Setting up a Tenant Administrator . 78

UC3 — Initializing a Client . 78

UC4 — Revoking a Client . 79

UC5 — Client to Server authentication . 79

UC5.1 — Storing new key material on the Server 80

UC5.2 — Requesting key material from the Server 80

UC4.3 — Modifying key material on the Server 81

UC5.5 — Remove an object from the Server . 81

6.3 Features . 82

6.4 Certificates . 82

6.5 Encryption Scheme . 83

6.6 Access Scheme . 84

6.7 Communication Protocol . 84

6.8 Data Structure . 85

7 Conclusion and Outlook 89

Bibliography 91

5

List of Figures

1.1 Degrees of Integration in Multi-Tenancy . 15

1.2 Security Terminology — Relationship . 17

1.3 IBM SmartCloud Archive Components . 20

2.1 Hash Chaining Log Files to Detect Manipulation 23

2.2 Data Encryption Points Between Hardware and Software 24

2.3 ECB and CBC Encryption . 28

5.1 Attack Vectors: Cross Site Scripting . 54

5.2 Attack Vectors: Cross Site Request Forgery . 55

5.3 Attack Vectors: SQL Injection . 59

5.4 Attack Vectors: Man-in-the-Middle . 60

5.5 Attack Vectors: Escape operating System Isolation 62

5.6 Attack Vectors: Hypervisor Escape . 64

5.7 IBM SmartCloud Archive component relationship 67

5.8 Authentication of a subject in IBM SmartCloud Archive 70

6.1 CKS — System Architecture . 77

6.2 CKS — Certificate Relationship . 82

6.3 CKS — Access Scheme . 85

6.4 CKS — Two-Way Authentication . 86

List of Tables

2.1 Comparison of Symmetric Encryption Algorithms 29

4.1 Key Management Tasks — Information Sensitivity 41

4.2 Comparison of Key Management Schemes for Encryption Aware Clouds . . . 43

5.1 Tenant Isolation and Cloud Service Model Combinations 51

5.2 List of Threats and Vulnerabilities in Cloud Computing 52

6

Abstract

While cloud computing is widely used in consumer applications, business and enterprise
customers remain hesitant. The most commonly cited issues preventing the adoption of
cloud computing are reliability, security and privacy. [SKS11]

Enterprise Software as a Service solutions offered in the cloud consist of many distinct
components that are integrated into a solution which is consumed by the customer. Single
components are connected and form a complex solution by communicating and complement-
ing their services. This communication is often not properly secured because components
were developed for non-cloud scenarios where inter process and component communication
security requirements are less stringent. Preventing unauthorized access by users, processes
or components is a basic requirement for any solution. Especially in a cloud context the
integration of not or lesser trusted components might be required but a trustable solution is
still expected.

As a first line of defense, access to systems and services is secured by authentication mech-
anisms. This requires a system to validate user credentials as well as provide proof of
its identity to the user. The individual components comprising a cloud service need to
authenticate each other as well in order to prevent unauthorized access by compromised
components or systems. Securing this communication by authentication requires the individ-
ual components to have access to certain keys. While authentication is used to secure services
against unauthorized access, encryption can often be employed to secure data for transport
or storage. In both cases similar problems are faced. When using keys for encryption and
authentication the security of the system relies on securely managing the keys.

This thesis will investigate technology options for authentication, encryption and key man-
agement in a cloud based Software as a Service solution exemplified by the IBM SmartCloud
Archive.

7

1 Introduction

Thesis Outline

This thesis will discuss the topic of security in a cloud computing context by focusing
on the aspects of data security through encryption and secure system operation through
authentication. Both of these concepts will be shown to rely on the secure management
of keys and credentials, introducing the topic of key management systems. The presented
solutions are motivated by addressing the following problems:

• What solutions exist for encrypting data for storage and transport and how can they
be used in a cloud computing context?

• What mechanisms for authenticating users and systems are available today and what
are their implications for key management?

• How can a secure key management solution be deployed in a cloud computing
environment?

• Who generates the keys and credentials, the customer or the cloud provider and how
can a key infrastructure like PKI be used in this context?

• Which keys does the cloud software require access to in order to perform certain tasks.
Can they be derived from user credentials in order to prevent storing them in the
cloud?

• How are keys and credentials stored in the cloud, what solutions exist and what are
their shortcomings?

This thesis is divided into three parts leading from an introduction into the matter and
technologies to an evaluation of the IBM SmartCloud Archive product to arrive at a recom-
mendation and design for a key management system.

Chapter 1 will provide an overview of the topic of cloud computing, security in general and
the IBM SmartCloud Archive.

Chapters 2 through 4 give insight into technologies and procedures that are essential for
the security of a system.

Chapter 5 presents common security issues and guidance for securing a system against
the underlying vulnerabilities and then analyzes the components that make up IBM
SmartCloud Archive to derive security recommendations and requirements for a key
management solution.

9

1 Introduction

Chapter 6 foots on the results and possibilities provided in the previous chapters and
presents the design for a secure key management solution.

Chapter 7 sums up the results of this thesis and provides reference points for further
research.

1.1 Cloud Computing

The paradigm of cloud computing follows in the footsteps of cluster and grid computing.
While a cluster is usually comprised of machines with a similar hardware configuration
residing within the same location and network, a grid can be widespread and heterogeneous
in its hardware configuration. Both of these models have in common that they are used for
a single, or a very limited number of purposes like a specific scientific application, or the
provision of a network or Internet service. They usually only serve a single organization, or
a specific group of customers.

Cloud computing goes one step further than these models and creates a heterogeneous,
widespread platform for multipurpose computing, available to a large user base. With this
premise it becomes attractive for a wide range of computing applications that did not fit the
requirements for cluster or grid computing.

Cloud computing seeks to get a foothold in markets formerly dominated by conventional IT
systems by offering attractive advantages to its customers. The main cause for enterprises
to employ cloud computing is the reduction of costs in all sectors associated with IT
infrastructure while benefiting from higher quality services and software. Customers no
longer have to maintain and implement their own infrastructure, but acquire these services
from external vendors allowing them to focus on their core business. The pay-as-you-go
model of cloud computing allows customers to shift their expenses from the capital (CAPEX)
to the operational (OPEX) side, minimizing up-front investment and improving flexibility in
times of lower demand.

The paradigm shift introduced by cloud computing to outsource data to third parties makes
enterprises hesitant to move towards the cloud. The fear of losing control over their data
which could lead to data loss, leaking or provider lock-in is a hurdle that has to be overcome
by cloud computing before finding mainstream adoption among enterprise customers.
[CGJ+09]

From an organizational point of view three roles involved in the cloud computing model can
be identified. The cloud infrastructure provider operates and maintains the required hardware
while the cloud service provider creates and services the software used by the cloud customer.

In order to achieve its goals like cutting costs, raising availability and security and providing
a better service, cloud computing allows for the flexible delegation of these roles to different
entities. This creates the sub models public and private cloud as described later in this
chapter.

10

1.1 Cloud Computing

Through this delegation of roles it is possible for different groups of customers to take
advantage of different aspects of cloud computing. While a large corporation can afford
to operate its own cloud infrastructure in order to benefit from the higher efficiency the
technology offers, smaller customers can leave this role to a cloud provider and benefit from
higher quality software and better service than they could provide by themselves. [IT10]

Cloud Technologies

Cloud computing on itself is not a new technology but rather a means of combining proven,
existing technologies to deliver a new kind of service. The following sections give a brief
overview over the technologies that make up today’s cloud computing infrastructures.

The technologies running cloud computing can be assigned to the same three roles identified
before. The cloud infrastructure provider separates the offered service from the hardware
it is running on by means of virtualization as described in the next section. This allows a
flexible choice of hardware and enables the cloud service provider to create elastic services
that scale up and down by starting and stopping virtualized instances. The technologies used
by the cloud service provider to create such services are no different than in conventional
web services and include distributed file systems, databases and application servers that
comprise the middleware layer.

Most cloud services are delivered to the customer through rich web interfaces created
with HTML5 and AJAX technologies. Though it is possible to use native applications in
combination with cloud services, this approach is most commonly used on mobile devices
today. [Pha10]

this yields a cloud computing software stack that contains off-the-shelve components on the
infrastructure and middleware layer which are only customized through configuration and
set up, and custom components comprising the service and user interface layer that form the
core of the cloud application.

Virtualization

Virtualization allows an operating system to run not directly on the physical hardware but
rather on virtualized hardware. This layer of virtualization makes it possible to offer multiple
instances of virtualized hardware on a single physical machine, each running a separate
operating system instance.

The concept of virtualization first appeared in 1966 in IBMs System/360 mainframe computer.
Development has continued and today virtualization is available in one form or another
through nearly all available hardware platforms and operating systems. [AAB+

05]

The main component of virtualization is the Hypervisor. It interfaces with the physical
hardware and provides the virtual hardware instances used by its guest operating systems.
Depending on the support for virtualization available in the hardware and operating system,

11

1 Introduction

different types of Hypervisors such as hardware, software or paravirtualization are used.
Modern hardware featuring virtualization support allows the Hypervisor to directly offer
access to the physical hardware to its guest, while the Hypervisor stays in control over
which resources exactly are accessible by the guest. This hardware virtualization has virtually
no performance losses compared to native execution, making it an attractive solution for
production environments.

When there is no support for virtualization in the underlying hardware, every hardware
access by the guest needs to be passed through the Hypervisor to allow enforcing access
limitations. On the software side, operating system support is not necessarily required for
efficient virtualization if hardware virtualization is available, since the operating system has
direct access to hardware as it would in a native environment. If no hardware virtualization
is available though, the guest operating system can be harnessed to still achieve high
performance by integrating parts of the Hypervisor directly into the kernel. This way the
Hypervisor does not have to analyze and modify each hardware access since it directly
controls the paravirtualized operating system and its hardware access.

Cloud Models

Public cloud computing is the concept that shapes today’s Internet. It is a cloud service that is
openly accessible from the Internet, though it might require authentication to gain access.
Such an open environment poses certain security risks which makes this model unpopular
with businesses but due to its convenience the preferred one for consumer services.

For customers with high security demands another model, the private cloud is used. Such a
cloud can be hosted within the customer’s premises, offering the highest security standard
possible, or in an external data center managed by a third party. In both cases the cloud
is only accessible from within the customer’s local network, usually via VPN in case of
an external cloud. Certain components of a cloud solution might have lower security
requirements than others, yielding the hybrid cloud model. Critical components are housed
in a private cloud while public data or services can be moved to a public cloud in order to
leverage the lower cost of public cloud environments. [PM11]

Cloud Service Models

A cloud computing infrastructure can be used to deliver different types of services which
are located on a specific layer of the Software-Platform-Infrastructure (SPI) model. From the
bottom up these layers comprise the following service models. [PM11]

Infrastructure as a Service (IaaS) offers the lowest level of service access in cloud comput-
ing by providing the customer with access to computing resources like processing, storage
and network. Often the customer can deploy an operating system of his choice or use a
preconfigured operating system instance with full administrative access. Customers usually

12

1.1 Cloud Computing

access the service via a web interface or API which enables them to acquire virtual machines,
upload, run and stop instances of VM-images and configure storage and network resources.
The customer himself has to take care of scaling his application by provisioning additional
virtual machines, and routing traffic to them in times of peak load. Through the use of the
provided API he can integrate this functionality into his application and harness the elasticity
of the cloud. The largest IaaS providers today include Amazon EC2 and S3, Rackspace, Dropbox
and the upcoming IBM SmartCloud Enterprise.

Platform as a Service (PaaS) offerings can be built on top of Infrastructure as a Service or
provided as an independent offering. The platform is a framework for running applications
in the cloud. It usually consists of a runtime environment for a programming language like
Java, C# or Python and a set of APIs allowing the developer to gain access to specific services
offered by the cloud provider.

These services include access to a database, file storage or other infrastructural components.
Usually the framework only allows for the development of stateless request-response driven
applications, giving the cloud provider the possibility to simply spawn an instance of the
application on any available machine as soon as a request comes in. This gives Platform as a
Service applications a built-in scalability without the need for custom implementation of
such features by the developer.

Compared to infrastructure as a service, the framework gives the developer less control over
the system, while at the same time allowing for faster development of cloud-applications.
Some responsibilities concerning security, scalability and availability are shifted from the
developer towards the platform provider, making it easier to develop reliable services without
much knowledge of the underlying infrastructure. Vendor lock-in is a major drawback of
todays’ PaaS offerings since no platform standard exists yet making it difficult to switch
providers or spread an application across multiple clouds to maximize availability. The
major PaaS providers today include Google Apps, Microsoft Azure and force.com.

Software as a Service (SaaS) delivers a ready-to-use software product to the customer
which is accessed over the internet or the customer’s local network. Processing and storage
is handled by the cloud and the customer is oblivious to implementation or infrastructure
details.

The offered products are rather off-the-shelf solutions than custom software. Some cus-
tomization is usually possible especially in the enterprise market, but the intent of Software
as a Service is to write a product once and sell it to many customers. This comes with a
benefit especially for small customers who could not afford to have a complex system built
for them and often don’t employ an infrastructure that support such sophisticated security
and backup solutions that a cloud provider can offer due to the economy of scale. They can
take advantage of the high quality software that the provider needs to assure in order to
attract large customers. The best known SaaS providers today are Google and SalesForce.

13

1 Introduction

Besides these well-known service models described by the National Institute of Standards
and Technology (NIST), a number of derived models exist to more precisely describe specific
cloud offerings including Data as a Service (DaaS) and Business Process as a Service (BPaaS).

Multi-tenancy

As stated before, cutting the service cost is a major goal of cloud computing. Cloud
providers harness the economy of scale when serving a large amount of customers from a
single infrastructure, and pass on some of their savings to the customer in order to create an
incentive for moving into the cloud. A key technology for achieving lower operational costs
is multi-tenancy. Without multi-tenancy, each customer has to be hosted on an individual
machine making the cost of hosting a customer instance amount to the cost of operating a
whole machine.

Scalability is not easily achieved in such an environment as well. So in order to prevent the
application from becoming unresponsive due to overloading the machine, the hardware is
dimensioned in such a way that it can meet the expected peak loads of the application. This
results in the hardware being underutilized most of the time, bearing an average system
load as low as 5 to 20 percent which leads to a very inefficient operation and high costs per
request. [Fri11]

Multi-tenancy seeks to improve the hardware utilization and thus reducing the costs per
request. This is achieved by running multiple application instances belonging to different
customers on a shared physical machine. During idle times, a large number of tenants can
share the same hardware so that their accumulative workload utilizes the machine in a more
efficient manner. Since peak loads usually don’t occur at the same time for every tenant, it is
possible for a single machine to even sustain peak loads from a few tenants if dimensioned
properly. Through means of virtualization, additional instances of client applications can
be brought up or down on separate machines, depending on the current demand. This
constitutes the elastic property of cloud computing, enabling it to provide the demanded
performance just in time while still being able to efficiently utilize the available hardware
resources.

Multi-tenancy can be used with various degrees of separation as illustrated in Figure 1.1.

A high degree of separation like setup d) provides better default security by using low-level
isolation features of the Hypervisor, requiring an attacker to escape the Hypervisor in order
to access data belonging to other tenants. On the downside, such deep separation introduces
the overhead of a virtual machine, operating system and middleware stack to each tenant
instance while a less separated approach like a) allows spreading this overhead over multiple
tenants, resulting in lower per-tenant resource utilization.

Availability and response times can be more easily guaranteed in a less integrated setup since
Hypervisors and operating systems provide mechanisms for assigning shared resources
to individual instances. When using multi-tenancy on an application level, this sharing of

14

1.2 Security Terminology

Physical hardware

Middleware

Application instance

Tenant A

a)

Tenant B

OS

Physical hardware

Middleware

Application
instance

Tenant A

b)

Tenant B

Application
instance

OS

Physical hardware

Middleware

Application
instance

Tenant A

c)

Tenant B

Application
instance

OS

Middleware

Physical hardware

Middleware

Application
instance

Tenant A

d)

Tenant B

Application
instance

VM Partition /
OS

Middleware

VM Partition /
OS

Figure 1.1: Degrees of Integration in Multi-Tenancy

resources has to be either done by the application or replaced by the automatic provisioning
of additional instances.

The security implications and limitations of different isolation approaches will be more
thoroughly discussed in Section 5.2. From an economic standpoint, lower degrees of
separation are desirable in order to profit from the economy of scale introduced by the
spreading of resource, maintenance and setup overhead.

1.2 Security Terminology

In order to have a common ground for discussion, the field of computer security and
cryptography use a set of terms and phrases with often non-intuitive meaning. Some of the
main recurring terms used in this thesis will be defined in the following.

Entity: In the process of authentication, an entity is the actual physical person requesting
access.

Subject: Refers to the virtual representation of an entity in the context of authentication and
authorization. A system is unaware of the actual entity but rather deals with a subject.
Any entity can have multiple subjects, and a subject can be used by multiple entities.

15

1 Introduction

Object: An object is a virtual or physical resource in the context of authorization. A subject
may or may not perform certain operations on an Object.

Rule: A rule specifies which operations a subject may perform on an object.

Credentials: Also referred to as authentication data is a set of information used to identify
and authenticate a subject. A user name and password or a certificate can be used as
as credentials.

Key: Refers to a cryptographic key used in symmetric or asymmetric encryption.

Vulnerability: Any system may expose certain structural, operational, procedural or design
specific weaknesses. These vulnerabilities are the points of entry for an attacker and
may allow compromising the security of the system. [Amo94]

Attack: The exploitation of a vulnerability by an attacker is considered an attack on the
system. The attack is always specific to a certain vulnerability and requires certain
tools and access to the system or data to be successful.

Threat: Or attack vector is the combination of a vulnerability and a known or assumed
attack. As long as there is no known attack that could exploit a vulnerability, arguably
the threat remains low.

Risk: Refers to the likelihood of a vulnerability being discovered and an appropriate attack
being feasible. The risk gives a unit of measurement about how dangerous a threat
or vulnerability is and allows to prioritize security improvement efforts as well as
assessing the security implications of design decisions and problematic requirements.
As detailed in Section 1.2, using risk as sole measurement for security can lead to a
seemingly secure system with hidden vulnerabilities waiting to be exploited.

Adversary and Attacker: The adversary is a hypothetical entity with a malicious intent to
compromise the system. The term is often used in cryptography to objectively assess
security by introducing an entity with idealized capabilities. Specifically the adversary
is assumed to have physical access to the system and network and has any reasonable
software or hardware tools available at his disposal. The adversary symbolizes the
entirety of all possible attackers and allows discussing the security of a system on a
design level without thinking of specific vulnerabilities or attack vectors.

An attacker is the actual entity perpetrating the attack by exploiting a specific vulnera-
bility with a certain set of tools and capabilities. The relationship between these entities
and concepts is described in Figure 1.2.

Security Principles

Based on different capabilities of an attacker there are different principles to securing a
system that take into account possible attack vectors and provide security against a defined
set of these capabilities.

16

1.2 Security Terminology

System

Vulnerability

Exposes

Risk

Attack

Visibility
Exposure

Exploits

Threat

Adversary

Seeks to compromise

Uses

Figure 1.2: Security Terminology — Relationship

Shannon [Sha49] defined an attacker with unlimited computational capabilities and con-
cluded that:

Definition 1. If an information source conveys some information, then the attacker will surely extract
that information.

Requiring any theoretically unbreakable encryption to be as secure as the one-time pad
(see Section 2.3). These requirements are arguably not practical for real world applications
and don’t reflect the reality of attackers capabilities. Diffie and Hellmann [DH76] revised
these requirements in their 1979 paper on cryptography assuming an attacker has limited
computational capabilities, laying the foundation for modern cryptography that relies on al-
gorithmic complexity [Gol97]. This leads to the assumption made by today’s cryptographers
that:

Definition 2. If an algorithm exists that would break the system, the attacker would surely find this
algorithm.

Resulting in a new model of an attacker in which he has limited computational capabilities
but unlimited programming capabilities. This model appears to be confirmed by reality and
the ongoing success attackers experience, and leads to the concept of open security.

17

1 Introduction

Security by Design & Open Security

The rationale behind open security is that any algorithmic or design related weakness will
eventually be discovered and exploited by an attacker, making the hiding of algorithmic and
design aspects a futile attempt at securing the system.

The process of open security starts with designing a secure system while all the aspects are
open to the public and the scientific community for peer review and evaluation. The goal
is to have identified and eliminated all vulnerabilities and reached the consensus that the
system is secure by design.

This approach is often used in the development of cryptographic algorithms like RSA which
heavily rely on the open security aspect by publishing all design and algorithmic work for
peer review [RSA83]. Security by design can be employed as well without the aspect of open
security which is often preferred for commercial projects since the protection of intellectual
property can only be guaranteed this way.

Security through Obscurity

In contrast to security by design, security through obscurity assumes the notion of Definition
2 to be false or at least exaggerated, allowing to secure a system by hiding known vulnera-
bilities and design related weaknesses [Pav11]. Not to be confused with security by design
in closed systems, security through obscurity relies on certain aspects of the system being
kept in secret since knowledge of these aspects would allow an attacker to break into the
system.

This approach is especially popular with closed hardware systems since it is believed to be
impractical and infeasible to reverse engineer the relevant aspects from a piece of hardware.
This has been shown not to be the case with the 2008 crypto analysis of the Mifare RFID Key
Card which managed to extract a shared secret key stored within the card by analyzing the
physical structure of the microchip [KN08].

The still ongoing research of the A5/1 Decryption Project 1 managed to identify severe
weaknesses in the proprietary A5/1 encryption algorithm used in GSM cellular phone
networks by analyzing the protocol traffic and using common cryptographic tools. This
attack relied heavily on the use of large amounts of computing power making it only recently
possible for individuals or a dedicated group without large funding.

For the reasons stated above, security through obscurity cannot be considered a valid process
for securing a system since its notion is an insecure system that tries to hide vulnerabilities
from an attacker. It implies the possibility of surfacing these vulnerabilities with enough
effort, leading to a calculated risk of the system being compromised. Therefore security
through obscurity should not be applied as the only means of securing a system, especially
in software projects with a broad user base that creates an incentive for attackers.

1A5/1 Decryption Project: https://reflextor.com/trac/a51

18

https://reflextor.com/trac/a51

1.3 IBM SmartCloud Archive

1.3 IBM SmartCloud Archive

To analyze security vulnerabilities and implement improvements, this thesis is based on
IBM’s enterprise cloud archive solution SmartCloud Archive (SCA)2.

In order to offer the benefits of cloud computer to its enterprise customers, IBM launched its
cloud computing strategy in 2007 by announcing software to manage public, hybrid and
private clouds and beginning collaboration with customers and cloud providers like Google
[Tom07]. Beginning with the IaaS and PaaS solutions SmartCloud Enterprise, IBM launched
the SaaS SmartCloud product line in 2011. As one of the first products to be launched in this
context, SmartCloud Archive offers enterprise content management in the cloud.

In order to comply with government regulations, enterprises have to keep archived copies of
documents and data for certain periods of time. Enterprise content archiving has to enforce
retention policies to prevent the deletion of objects and must allow e-discovery to locate
relevant documents for legal processes. Content classification and attribute management
play a key role in achieving these goals so SmartCloud Archive choose to use an enterprise
content management system as a core component to store documents. An exhaustive insight
into enterprise content management systems and design aspect of SmartCloud Archive is
given by [Bö11] and [Fri11].

Since SmartCloud Archive (SCA) stores sensitive customer data in the cloud, data security is
an important selling point and basic requirement for any enterprise cloud solution.

The lifecycle of customer data in SCA begins with data being uploaded into the system and
ingested by either the SCA Batch loader, IBM WorkplaceXT or the IBM Content Collector ICC for
Email. The data then resides within the IBM Filenet P8 Content Engine, waiting to be either
exported for a legal case through eDiscovery Manager or disposed of after its retention time
by a disposition sweep.

The architecture of IBM SmartCloud Archive is comprised of a set of IBM enterprise products
and custom components combining these into an integrated cloud solution. The storage
layer is provided by the IBM General Parallel File SystemTM(GPFS) on top of which the IBM
FileNet P8 enterprise content engine manages the customers data. An IBM DB2 R© Database
instance stores repository meta-data and most of the IBM SmartCloud Archive configuration.
The IBM Tivoli R© Directory Server (TDS) stores user accounts for the integrated system users
and serves as an authentication provider. Synchronization with a customer directory server
can be used to support users already registered within the customer’s directory.

The IBM Websphere R©Application Server serves as a platform for the custom components Batch
Loader and IBM SmartCloud Archive Portal while IBM eDiscovery Manager and Workplace XT
provide access to the repository content. Archive statistics and usage reports are provided
by the enterprise analytics tool IBM Cognos. Figure 1.3 shows an overview of the architecture
components and their relationship.

2https://www-935.ibm.com/services/us/en/it-services/smartcloud-archive.html

19

https://www-935.ibm.com/services/us/en/it-services/smartcloud-archive.html

1 Introduction

Websphere Application Server

httpd

GPFS
file system

Storage

SCA Portal
Workplace

XT
eDiscovery
Manager

Cognos
Batch
loader

Storage
Storage

DB2
Filenet
P8 CE

Tivoli
Directory Server

Platform components

Off-the-shelve web services

Custom components

Figure 1.3: IBM SmartCloud Archive Components

20

2 Cryptography

2.1 Introduction

The intent of encryption is to reduce the amount of data that has to be hidden from an
attacker in order to prevent disclosure. A large amount of encrypted data can be stored
or transmitted in an insecure environment while only a small encryption key needs to
be kept secure, lowering the required security standard for large portions of the involved
infrastructure. This shift of sensitivity from data to encryption keys introduces the field of
key management discussed in chapter 4.

Data in information systems exists in two states, data at rest and data in motion. Security
concerns in both states can be met by encrypting the data at rest and transferring it only in
its encrypted state or by utilizing an additional encryption layer for wrapping the data when
it is being transferred. This yields two mechanisms for dealing with encryption on a holistic
level.

Encryption oblivious cloud describes the scheme of encryption the data only once at the source.
This encrypted data can be handled by any type of trusted or untrusted information system
and is only decrypted by the owner once he retrieves it. This mechanism has one major
drawback in the fact that it is no longer possible for the information system to do any type
of operation on the data except storing and replicating it.

Encryption aware cloud can be used when dealing with a trustworthy information system
which should be able to operate on the data. Encryption is employed for data at rest while
the encryption key is known to the information system. The system can decrypt the data in
order to perform operations such as indexing or database operations and encrypt the data
again before it is committed to storage. When transferring the data, a new encryption layer
is introduced for securing the connection.

Depending on the type of service that is used, an Encryption oblivious cloud may not be a
feasible option and an Encryption aware cloud is required. A certain degree of trust must
be put in the service provider when using this mechanism, while the encryption schemes
discussed below combined with a secure key management concept discussed in chapter 4,
give service providers the ability to prove the trustworthiness of their solution.

21

2 Cryptography

2.2 Encrypting Data

Data at Rest

The goal of encrypting data at rest is to prevent an attacker from gaining access to plain text
data under certain conditions, and prevent or detect manipulation of data to guarantee data
integrity.

Preventing and Detecting Data Manipulation

Preventing and detecting data manipulation seeks to counteract the integrity threat discussed
in chapter 1. Detecting data manipulation is a weaker requirement than preventing it, since
prevention is only possible if any malicious access can be ruled out.

Manipulation detection through digital signing uses the signature approach discussed
under asymmetric encryption below to identify the specific content of a document or file by
calculating its hash value and encrypting this value with the private key of a digital certificate.
This digital signature is then stored together with the data to allow verifying the content by
decrypting the hash value with the public key and comparing it to a new calculated value.
This approach is well suited for static content and archiving or legal purposes.

Manipulation detection through hash chains is a novel approach to verify the contents of
log files and journals. Its most prominent use can be found in the distributed version control
system git1 where it prevents the injection of malicious entries. All these applications have in
common that they only append entries to a file or repository but never change old entries.
Hash chaining starts with a root entry of which a hash value is calculated and appended to
the second entry. The end of this chain is always a hash value of the row (entry n, hash (row
n-1)) as shown in Figure 2.1 [BS99].

This approach follows the rationale of encryption in reducing the amount of sensitive data.
Hash chaining reduces the amount of data that needs to be stored, and calculated in order to
detect manipulation. It is tailored to storage systems that only allow appending data and
therefore makes use of the fact that old entries never change. This makes it possible to only
compute hash values for new data and include the existing hash value of the old data in that
calculation.

The hash chain starts empty, once an entry is inserted the corresponding hash value of that
entry is calculated and written to the next row. This last row of the chain only contains a
hash value of the previous row. When the next entry is inserted, it is appended to the hash
value of the last row and a new hash value for that row is calculated, comprising the new
last row. This way, the last row of the hash chain always contains a hash value capable of
recursively verifying the whole chain.

1http://git-scm.com

22

http://git-scm.com

2.2 Encrypting Data

In order to detect manipulation, a copy of that value must be stored in a secure location after
each append operation.

Instead of securely storing the last value, manipulation detection is also possible if instead of
a hash function, a Message Authentication Code (MAC) is used. The MAC is a hash function
that accepts a secret key as a second input parameter. It calculates a hash value based on the
input, and the secret key. An attacker who tries to manipulate the hash chain is not able to
compute legitimate hash values without the necessary secret key.

Entry 1

#
1

Entry 2

#
2

Entry 3

#
3 Secure storage

Row

Figure 2.1: Hash Chaining Log Files to Detect Manipulation

A common standard for encrypting data at rest is yet to be established. All proposed
mechanisms are either proprietary in nature or part of ongoing research. The IEEE2 launched
the standardization project P1619 towards that goal and commissioned the IEEE P1619
Security in Storage working group3. Their approach is to find a holistic solution for storage
encryption that includes encryption algorithms and methods as well as key management.
The findings of this working group will be discussed at the appropriate sections in this thesis
along with other solutions.

The encryption of data at rest can be implemented at any level from the file itself down to
the whole storage medium. Figure 2.2 gives an overview of the storage system and shows at
which point encryption can be employed. While solutions a and b rely on hardware assisted
encryption, c through e only require encryption software and can be used with any hardware
storage system. Solutions c and d utilize operating system or file system components to
offer transparent encryption while solution d refers to internal application level encryption.
Different hardware and software based products will be discussed in the following.

2http://ieee.org
3http://siswg.net

23

http://ieee.org
http://siswg.net

2 Cryptography

Storage
controller

File system

File

Encryption

Storage
controller

File system

File

Encryption

Storage
controller

File system

File

Encryption

Storage
controller

File system

File

Encryption

Storage
controller

File system

File

Encryption

a b c d e

Figure 2.2: Data Encryption Points Between Hardware and Software

Encrypting Drives and Partitions

Hardware based Data encryption at the lowest level, the storage device, can be separated
further into two different approaches. External encryption as displayed in Figure 2.2.a utilizes
a hardware encryption module that sits between a regular hard drive and a storage controller
while internal encryption (called Discryption, Figure 2.2.b) integrates the encryption module
directly into the hard drive [Har07].

External encryption has an inherent drawback; it allows an attacker who gains physical
access to the drive full access to the cipher text stored on the device. By comparing multiple
images of the cipher text an attacker can derive information about access pattern and recently
changed files in order to manipulate data or the behavior of the system in some way. An
attacker might be able to undo certain operations by restoring data from on older version
of the cipher text. Knowledge about the position of system files that can be gained by e.g.
statistically analyzing the changes to the cipher text after a system update was performed,
can be harnessed to change the behavior of the system. The content and layout of common
system files can be easily obtained and allow an attacker to randomize a jump address within

24

2.2 Encrypting Data

that file by simply changing the corresponding part of the cipher text and thereby rendering
certain security or other mechanisms of the systems ineffective. [DMLW08]

Internal encryption combines encryption with authentication and allows only a valid user in
possession of the key access to the data. Without the key, not even access to the cipher text is
possible, rendering the aforementioned attacks futile. It is however possible for an attacker
in physical possession of the drive to bypass the integrated controller and gain direct access
to the platters by employing data recovery tools and equipment. Such a procedure would
require the device to be brought to a special facility for a prolonged period of time and would
leave visible evidence of the process on the device. This makes manipulating the system and
data virtually impossible since these attacks rely on the process going unnoticed. Attempting
to decrypt the data by brute force or cryptographic analysis would be the only viable option
for an attacker in this case. Internal encryption follows a Full Disk Encryption (FDE) approach
which puts the contents of the whole disk into one security context by encrypting the whole
drive with one encryption key. While this suits the use cases for personal computers and
on-premise servers it does not provide any separation in multi-tenant cloud computing
scenarios. Some external hardware based encryption systems mentioned below are capable
of creating multiple security contexts within the same disk or array by encryption on the
partition level. This can be a sufficient level of separation in some multi-tenant scenarios
but the low-level process of creating partitions and the limitation in the amount of possible
partitions makes this approach unsuitable for massive multi-tenant systems.

Software based Software based approaches to drive or partition encryption are more
widespread than hardware encryption and since no additional hardware is required, cheaper
solutions are possible. Concerning data security, they suffer the same weaknesses as external
hardware based encryption. Additionally they are open to a set of new risks since the
encryption software and the memory containing the key are not located in a secured piece of
hardware but in the more easily compromised environment of the operating system, making
it susceptible to the same kind of attacks used on other software. Encryption keys stored
in memory can be read by other privileged processes and the software itself can become a
target to manipulation [ASR09].

In environments that use virtualization, software based disk encryption can be applied at, or
below the hypervisor in order to hide the encryption layer from the virtualized operating
system and software stack. [LC10] has demonstrated an approach to hypervisor assisted full
disk encryption that has shown additional protection against attacks originating fron within
the virtualized environment. Compared to hardware assisted encryption, this approach is
only as secure as the separation provided by the hypervisor.

25

2 Cryptography

Data in Motion

Encrypting data in motion is a widely used mechanism today and thus fairly easy to
implement. It can be employed on different layers of the OSI protocol stack4 in order
to achieve different goals. The most straightforward way of encrypting a connection is
to tunnel all traffic through a virtual priate network (VPN). A VPN has two endpoints
between which an encrypted communication channel is established over the Internet or
any untrusted network. The endpoints can be in form of a hardware appliance or a piece
of software. Most communication protocols can be tunneled through the VPN without
additional considerations making this approach a good choice for retrofitting security onto a
system.

Deeper integration of encryption into the communication protocol allows for easier service
deployment since no additional VPN infrastructure needs to be implemented on client side.
Another way of securing a non secure communication protocol is offered by the SSL/TLS
protocol family. These protocols encapsulate the entire data stream of a layer 5 protocol
between the client and server. While a VPN connection usually does not only provide
encryption of the data stream but also authentication of the user, SSL/TLS traditionally only
provides data encryption and leaves authentication and authorization to the application
developer although such functionaity is provided by these protocols.

2.3 Encryption Algorithms

Cryptographic Principles

Cryptography always involves two stages, encryption and decryption. Plain text is encrypted
into cypher text and vice versa. We talk about symmetric encryption when both de- and
encryption key are identical or trivially related. In asymmetric encryption, those two
keys are not identical, and non-trivially related which makes decryption impossible with
only the knowledge of the encryption key. Symmetric encryption is much more efficient
than asymmetric encryption which makes it the preferred method for encrypting bulk
data. Applications for asymmetric encryption are mostly found in key exchange or identity
verification scenarios and will be discussed in detail after symmetric encryption.

The One-Time Pad

The one-time pad is an idealized cryptographic key that is used as a matter of discussion
and comparison with other encryption keys and their security under certain conditions. The
one-time pad is as long as the message it encrypts, and must be non-repetitive and truly
random. This results in a cipher text that is truly random as well and allows an attacker no

4https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.9497&rep=rep1&type=pdf

26

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.9497&rep=rep1&type=pdf

2.3 Encryption Algorithms

insight into the message content without knowledge of the used one-time pad. Therefor the
one-time pad provides perfect cryptographic security under any condition which makes it
an ideal model for describing the security of other encryption keys.

Modes of Operation

In data encryption, two modes of operation can be identified. Block ciphers are limited to
encrypting a single fixed-length block of data at once [And01]. They derive a secret key
from the provided encryption key and perform a transformation using the plain text and
secret key as input. The output of this transformation comprises the cipher text. In order to
encrypt larger amounts of data this transformation has to be sequentially applied to each
consecutive block of plain text. This can be done in different ways; one approach is called an
electronic codebook (ECB). This straight forward encryption scheme uses the same secret key
for each block of data and thus yields the same cipher text for plain text blocks containing
identical information, making it vulnerable to analysis since it reveals data patterns. A more
sophisticated approach can be found in the class of cipher-block chaining (CBC) algorithms.
These use the cipher text output of the previous block as a modifier for the secret key and
use this new key to encrypt the next block of data, resulting in pseudo-random cipher text
that hides data patterns as demonstrated in Figure 2.3. Image a shows the plain text input
data while b is an image of the encrypted cipher text using an electronic code book algorithm.
Image c applies the same secret key but uses a cipher-block chaining approach to encrypt
the data. Both examples use the same 256 bit AES encryption algorithm to generate the
secret key from the pass phrase “123456”. Note that the pass phrase doesn’t influence the
pattern preserving nature of ECB encryption. A different pass phrase would only result in a
different coloring in this visual example.

In order for the chain of encrypted blocks in CBC to start, an initialization vector (IV) is used
in combination with the secret key as input for the first block. Repeated use of the same IV
under the same key leads to the CBC scheme behaving like ECB for the first block of cipher
text, allowing an attacker to observe similarities in the transmitted message. The IV is for
that reason always required to be pseudo-random in order for it not to be reused, or allow
conclusions about the message. Depending on the used encryption algorithm, the IV may
also be required to be unpredictable to an adversary. The AES algorithm used above only
requires a pseudo-random IV which allows it to be a nonce (number used once) which is
generated and stored or transmitted with the cipher text.

Stream ciphers provide a method for encrypting a continuous stream of plain text data
without separating it into blocks. Anything from a single bit to an arbitrarily long stream of
data can be encrypted on the fly. Block cipher algorithms can be used in a similar manner by
using the modes of operation described above which implies some drawbacks. Since these
algorithms have a fixed block length that must be encrypted at once, they impose a certain
delay on streaming applications while they collect data to fill a block. Small bursts of data
that don’t fill up a single block still result in a cipher text of full block length imposing an
overhead on the amount of produced cipher text.

27

2 Cryptography

Figure 2.3: ECB and CBC Encryption

For these reasons the class of stream cipher algorithms is preferred in applications that require
true streaming data encryption like communication. Dedicated stream cipher algorithms use
the secret key as a seed for a pseudo random number generator and combine this stream
by means of a logic function with the plain text stream, resulting in a stream of cipher text.
By inverting the logic function the same mechanism can be used to decrypt the stream
which reduces the complexity of hardware or software implementation of stream ciphers.
This simple mode of operation makes stream ciphers very fast in hardware and software
implementations but makes them more vulnerable to attacks as well [And01].

For reasons discussed in Section 1.2, trust in the security of encryption algorithms is
strengthened by evaluating them through the scientific peer review process. This is why
most established and widely used encryption algorithms are freely available to the public.
Table 2.1 shows the most common encryption algorithms today, their operational parameters
and the result of extensive cryptographic analysis conducted since their publication. The
block cipher algorithms considered most secure by today’s standards are AES and triple
DES. The most successful crypto analysis of AES available today allows a four times faster
decryption than using a brute force attack, reducing the number of required operations to
2190 for 256 bit AES [AB11]. The triple DES standard, a successor to DES originally developed
by IBM in 1977, has been shown to be susceptible to known-plaintext attacks and can be
broken with 288 operations. A performance comparison of triple DES and AES shows that
AES outperforms triple DES in most applications, making it the encryption algorithm of
choice for general purpose encryption [NJ05].

28

2.3 Encryption Algorithms

Encryption algorithm Type Key size State/Block size Speed Security
AES block 128, 192 or 256 bits 128 bits low very high
DES block 56 bits 64 bits high very low

Triple DES block 56, 112 or 168 bits 64 bits low high
Blowfish block 1 - 448 bits 64 bits high high

RC4 stream 40 - 2048 bits 2064 bits very high low

Table 2.1: Comparison of Symmetric Encryption Algorithms

Hash Functions

The third pillar of cryptography besides asymmetric and symmetric encryption is comprised
of hash functions. They provide a way to detect data manipulation and verify integrity by
calculating a hash value over a given data input (message). The two main properties of
cryptographic hash functions are collision resistance and inversion resistance. Collisions
occur when different messages produce the same hash value. This characteristic can’t be
avoided since hash functions accept arbitrarily large messages but always produce a hash
value of fixed size. Collision resistance should provide an even distribution of hash values
for each domain of similar sized messages and make the intentional computation of a
colliding message for a given hash value infeasible. Inversion resistance is similar to collision
resistance in that it guarantees that the computation of an inverse function to a given hash
algorithm is infeasible. Computation of such a function would allow to easily find a message
for any given hash value.

With these properties hash functions are used to verify the integrity of a message by storing
its hash value in a safe location or encrypting it and later calculating and comparing the
hash value again.

They are widely used for authentication purposes by storing hash values of subjects creden-
tials in the identity service and comparing it. An attacker gaining access to the content of the
identity service can’t reproduce the credentials from the stored hash values and is unable to
use this data for identity theft purposes.

Asymmetric Encryption

Contrary to symmetric encryption, asymmetric encryption uses different keys for de- and
encryption. Asymmetric encryption therefor requires a key pair rather than a single key.
The key pair consists of a public, and a private key. Both can be used to encrypt data
which is then decrypted by the other key. This allows the possibility of establishing a secure
communication channel over an insecure transmission channel by both parties exchanging
their respective public which is used to encrypt the data being transmitted. An eavesdropper
can only gain possession of the public which doesn’t allow him to decrypt any of the data
being transmitted. Due to the inefficiency of asymmetric encryption algorithms, this scheme

29

2 Cryptography

is often used to mutually generate and exchange a symmetric encryption key which is used
for further communication.

Besides key exchange, asymmetric encryption is applied in the digital certification process
for identity verification and integrity assurance as described in section 3.1.

30

3 Authentication and Authorization

Authentication is the first line of defense in securing systems against unauthorized access.
When accessing a service, a user or process is challenged for credentials which allow the
system to decide whether the request should be granted or not. The security of authentication
mechanisms therefor relies on the credentials being secret.

3.1 Authentication

Authenticating Users

The process of authentication allows a server to verify the claimed identity of a subject in
order to determine access rights to the system. The rationale behind authentication is that
the subject is in possession of a private secret that no one else knows. The subject proves
his identity towards the server by proving he is in possession of the private secret. This
requires the server being able to verify the secret provided by the subject. Since the private
secret is no physical object but plain information, the term in possession is ambiguous in that
indistinguishable copies can be made and used by an attacker for authentication. Mitigating
the threat of copies is achieved by designing the authentication method in such way that it
doesn’t include creating any copies of the secret for either the server, or during the authentication
process.

The three requirements for authentication methods are therefor:

• The subject has a private secret

• The server can verify the secret

• No copies of the secret are created

While the first two are basic structural elements required for the function of the authentication
method, the third requirement improves the security of the method by preventing abuse.

The following section will discuss different approaches to authentication and present com-
monly used methods that implement the above three requirements in different ways, leading
to security and system complexity implications.

31

3 Authentication and Authorization

Certificate based Authentication

Public key certificates are a mechanism for subjects to prove their identity to a service by
stating that identity within a certificate which is signed by a third party. The service trusts
this third party to have verified the identity of the subject and can then verify the certificate
for integrity and challenge the subject to prove he is the owner of the certificate. Through
that process it is possible to authenticate a subject without the service having any prior
information about it other than trusting the third party who signed the certificate.

Certification Process

The certification process is separated into three steps; certificate creation, signing and
distribution.

First, certificates are created by the subject and the trusted third party, called the certificate
authority (CA). Creating a certificate begins with generating a public/private key pair for
asymmetric encryption. Then a certificate is created which can be considered a plain-text file
containing information about the identity of the subject, and its public key.

The signing process starts by delivering the certificate to the CA who then verifies the identity
claimed in the certificate. The CA inserts its own identity information into the certificate and
subsequently calculates a hash value of the entire certificate (identity information and public
key of the subject, identity information of the CA). The certificate is signed by encrypting
this hash value with the CAs private key, and appending this signature (encrypted hash
value) to the certificate.

It now contains:

• Identity information about the CA

• iIdentity information about the subject

• The subject’s public key

• A hash value of the above information, encrypted with the CAs private key.

The certificates are now being distributed among service providers and subjects. The subject
receives his own certificate and service providers receive the CAs certificate. the subject can
now authenticate against service providers by sending his certificate, which is validated by
the service provider through calculating the same hash value the CA did, and comparing it
by decrypting the hash value within the certificate with the CAs public key.

To verify that the subject claiming to own the certificate is in fact the owner, the service
provider initiates a challenge-response mechanism in which he calculates a secret random
number and encrypts it with the subject’s public key found in the certificate. This challenge
is then sent to the subject who decrypts the number using his private key and responds to
the challenge with the random number in plain text. The service provider compares the

32

3.1 Authentication

subject’s response with his generated random number and now has proof of the subject’s
identity.

This scheme assumes that only a legitimate subject is in possession of the private key
belonging to a certificate, while the certificate itself may be public.

Public Key Infrastructure In certificate based authentication, a public key infrastructure
harnesses the transitive nature of signed certificates to create a tree-structure with chains of
trust extending from a root certificate authority to any signed certificate below.

A PKI involves the root certificate authority (CA) which is considered a trusted third party
by both the server, and client. The CA assures the validity of any certificate it issues by
verifying the identity of the subject requesting certification. The public key certificate of the
root CA is distributed among all participants and allows them to verify the certificate of any
other party.

This scheme is widely used in online server verification through the SSL protocol. Client
web-browsers contain a copy of the root CAs certificate which allows them to verify the
identity of a web server before establishing encrypted communication.

Due to the transitive nature of signed certificates, any subject holding a certificate can itself
issue and sign new certificates. Clients can recursively verify the integrity of these certificates
up to the root CA and decide whether to trust the certificate based on the signing parties
involved in the chain of trust.

Authenticating Systems and Processes

System and process authentication is required when services in a distributed environment
interact in order to assure that only legitimate requests are executed. Similar to a user request,
a request originating from a service must be assigned to a subject, and that subject must be
authenticated since an attacker can forge system requests which would allow unauthorized
data access.

Contrary to users, system can be configured and programmed to only issue legitimate
requests, providing a basic level of security given that the systems are not compromised.
Section 5.3 will demonstrate that many attack vectors against cloud services rely on unau-
thorized system-to-system request

Deep Authentication

With deep authentication the security issues with high-level multi-tenancy discussed in
section 5.2 can be mitigated.

33

3 Authentication and Authorization

Tenant separation on a high level is desirable for performance and maintenance reasons but
it raises the tenant isolation layer higher in the application stack, bringing it closer within
the reach of an attacker.

Low-level tenant isolation is favorable from a security standpoint since the tenant isolation is
hidden under application stack layers that an attacker would have to penetrate.

As section 5.2 has shown, each application stack layer provides methods for tenant isolation
that can improve the security of a system. An attacker has to either penetrate a layer with
tenant isolation until he reaches a non-isolated layer, or find software vulnerabilities that
allow him to circumvent the isolation. Deep authentication allows to make use of isolation
mechanisms in each layer of the application stack by using tenant-specific authentication in
each layer.

3.2 Authorization

The process of authorization takes place after a subject is authenticated and determines
which operations on the system shall be granted or denied.

Authorization mechanisms are found in operating systems to control access to objects like
files and resources, and are used in any kind of multi-user distributed system. [SS94]

A basic building block of authorization mechanisms are Access Control Lists (ACL). An
ACL is attached to an object or a group of objects, and contains entries for users or groups
of users stating the permissions to operate on that objects. An ACL for a file object would
contain the name of a user and state if that user has permissions for reading or writing to
that file.

The disadvantage of plain ACLs is their verbosity and the complexity of determining a user’s
effective permissions over a large number of files which is only possible through examining
the ACL for each file.

To mitigate the verbosity of ACLs UNIX systems have introduced an authorization mecha-
nism based on ACLs which is known as Discretionary Access Control (DAC).

In DAC, each object has an owner who is the creator of the object, or another subject
appointed by the previous owner. The ACL only contains three entries. Permissions
regarding the owner, a group and any subject not belonging to the first two categories. This
authorization mechanism is discretionary in that it is at the discretion of the object creator or
owner to define the access permissions.

With DAC the disadvantage of determining the effective permissions of a subject is retained
from ACLs while the verbosity is eliminated by limiting the ACL to the aforementioned
three entries at the cost of losing flexibility.

A different approach is taken by Mandatory Access Control (MAC) which makes use of a
large central access control list. The access permissions are mandated by a central authority

34

3.2 Authorization

that is the sole entity with the right to modify access permissions. Subjects may have to right
to create files but they don’t assume ownership over them and can’t decide over their access
policy.

The advantages of MAC are that subjects should be given access to objects without having
the right to pass that permission on to other subjects. MAC also eliminates the disadvantage
of ACL and DAC in determining the effective permissions of a subject by having only a
single, central access policy that can more easily be analyzed and managed.

A concept found in distributed multi-user systems that deal with operations and access to
sub-systems rather than objects and files is Role Based Access Control (RBAC). In RBAC
a set of roles is defined where each role specifies a list of access permissions to the certain
system operations. These roles are static in nature compared to the other mechanisms up
the point where only a predefined set of roles is available. Users or groups of users are now
assigned to roles giving them a set of permissions that can easily be deduced later by the
user’s role assignment. [BEE+

10]

Certificated based Authorization

Certificate based authorization is a method of utilizing certificates not only for the purpose
of authenticating an entity, but also for authorizing or denying requests. Contrary to
authorization methods based on access permissions residing on the server authorizing a
client’s request, the concept of certificate based authorization allows each client to provide
his own access permissions which are then evaluated by the server.

Through the technology of signing certificates by a trusted authority, it is possible for the
server not only to verify the identity of the subject, but also verify the integrity and legitimacy
of additional information contained within the certificate. In the process of issuing a signed
certificate, the certificate authority verifies the identity information provided by the subject
and attests the validity of that information with its signature.

For certificate based authorization, the CA also attests the access permissions belonging to
the subject by including them with the certificate before signing. To verify the permissions,
the CA cooperates with the party who is affected by them by either having this party present
during the certification process, or by issuing the certificate to that party on behalf of the
subject.

Managing the access permissions also involves revoking access rights from clients. In cer-
tificate based authorization this is done by invalidating the entire client certificate through
Certificate Revocation Lists (CRL) which are a well-supported feature in public key infras-
tructures. Since each certificate usually has an expiration date after which is becomes invalid,
entries in the CRL must only be kept until their natural expiration date, keeping the CRL
from getting bloated over time.

The advantages of such an authorization mechanism over server-side access control lists lie
in the separation of duties, and the conformity with large-scale distributed systems.

35

3 Authentication and Authorization

It allows the separation of duties between the server or infrastructure provider, and the
service provider or data owner. Without direct interaction with the server, an administrator
can issue certificates granting certain access permissions to a client. In a distributed system
these can be evaluated by any server without the need to synchronize access permissions
across a large number of systems. In use cases with a very large number of clients and
complex access patterns, this concept reduces the amount of information that needs to be
stored and managed by the server as well as the number of entities who need administrative
access to the server in order to manage the access control lists.

36

4 Key Management

4.1 Introduction

Key management systems play an integral part in computer security concepts especially in a
multi-tenant cloud environment where resources are shared between customers.

In order to utilize the security mechanisms like authentication and encryption that were
discussed in this thesis, three supporting technologies were identified that constitute the
backbone of any holistic security architecture. These are Identity Management, System
Credential Management and Encryption Key Management. Not all of these are responsi-
bilities of a key management system in the conventional understanding. The topic of identity
management is covered by directory servers like the IBM Tivoli Directory Server used in IBM
SmartCloud Archive while system credential management and encryption key management
are similar tasks which lack widespread product support.

A 2011 survey by the European Network and Information Security Agency (ENISA) among
enterprises and government bodies that employ encryption has shown that the topic key
management is not well addresses and often neglected. It was found very common that
sensitive encryption keys or certificate keys are found within the operating system and
included in unprotected backups.

As described in [Amo94] the security of a system relies on securing the three operational
aspects; data at rest, system operation and communication. The following will describe
the tasks of the three aforementioned systems and analyze their security requirements
considering these aspects.

The use cases for all three tasks can be satisfied by a system following the client-server
architecture, while both of these parties have different security requirements.

Identity management

Consists of tasks related to user authentication, authorization and permission or role man-
agement. These services are often provided by a directory service which is well suited for
large organizational structures involving large user bases and sophisticated synchronization
and replication mechanisms.

37

4 Key Management

Security of data at rest:

Identity management systems need to be able to identify a certain subject and authenticate
its user credentials, no sensitive data needs to be stored in plain text. By using hash values
to verify passwords an attacker gains little information from unauthorized data access to the
stored information of an identity management system. Data manipulation on the other hand
can compromise the security of the system more drastically since an attacker can modify the
stored password hashes to a value known to him and adapt the authorization rules to gain
unlimited access to any system relying on the identity management

Security of operations:

Since a client application can’t verify the information it receives from the identity manage-
ment system, the correctness of internal operations must be guaranteed. Restrictions and
policies are only enforced programmatically and not cryptographically. The logic of the
identity management system must adhere to its rules and not expose any vulnerability.

Security of communication:

If an identity management system is configured to enforce restrictions on password complex-
ity it must receive a plain text password in modify and create operations. Authentication
and authorization operations do not require any plain text credentials to be submitted and
therefor don’t expose valuable information to eavesdropping attacks. Man-in-the-middle
attacks must be avoided in all communication cases since they allow an attacker to forge any
response of the system and grant any authentication or authorization request.

Encryption key management

Is the primary domain of key management solutions and it’s responsible for securely
storing cryptographic keys used in various encryption applications. Content stored in a
key management system are cryptographic objects as discussed in chapter 2 like symmetric
encryption keys, asymmetric key pairs and public key certificates. The task of a key
management system is to store and manage these sensitive objects and provide a secure way
of accessing them.

Different approaches are possible to fulfill these requirements. Since the sensitive data does
not require external verification and is only used locally, the involvement of a server is not
necessary from a pure functional point of view. The cryptographic keys can be stored and
managed locally, and be protected from unauthorized access through operating system and
software measures or a hardware based approach.

38

4.1 Introduction

From a security standpoint the local storage of encryption keys has some drawbacks. An
attacker with physical access to the machine could circumvent software or hardware protec-
tion measures and access both the encrypted data, and the respective encryption keys. Such
an attack could be detected, but not remotely prevented once the attacker is in possession of
the physical hardware.

A centralized client-server architecture for a key management system provides not only
physical separation of the encrypted data and encryption keys, but adds the possibility of
centrally managing access permissions and revoke the rights of compromised clients.

Due to these security improvements provided by a client-server approach, such a system is
preferred and will be the basis of further analysis in this thesis.

Security of data at rest:

Due to the design of a key management system, all sensitive data is encrypted and does
not reveal any valuable information to an attacker. Public keys and certificates are often
stored in plain text depending on the use case text since they are considered non-critical
information.

Access to the content of the key management system is therefore not critical while the
necryption key used to secure the content is considered highly sensitive information. This
master key needs to be well protected since the security of the whole system relies on it.

Security of operations:

An idealized key management system would secure operations on the server cryptographi-
cally and would not have to rely on programmatically enforcing policies and rules in order to
be secure. Such a system would have to utilize the client provided credentials as encryption
keys for the content in order to render all information stored on the server non-sensitive on
itself. If multiple clients are associated with the same stored objects, multiple copis would
have to be created and each encrypted with the key belonging to a client. More sophisticated
encryption schemes could be applied in order to reduce the amount of redundancy and
management overhead.

Operational requirements can make this approach infeasible and lead to a key management
system that has to rely on the correctness of the program.

Security of communication:

The communication with a key management system needs to be secured since sensitive
cryptographic material is transferred from and to the system in most of its operations.

39

4 Key Management

System credential management

Similar to encryption keys, system credentials are used by an application to acquire data
or services from another system which is usually a middleware component like a database.
This information is often stored in configuration files since it is required for basic application
functionality. Some key management solutions like IBMs Tivoli Key Lifecycle Manager (TKLM)
support the storing of arbitrary secure data or credentials in special and may be used as a
credential management system as well.

Security of data at rest:

Depending on the credential management system in use, credentials may be stored in plain
text or encrypted form. Appropriate security measures discussed in section 4.3.

Security of operations:

Depending on the use of plain text configuration files for storing credentials or the use
of encrypted storage, different requirements occur. In the plain text scenario, credential
management poses the same security requirements as an identity management system.
Credential management systems with encrypted storage expose the same requirements for
operational security as a key management system.

Security of communication:

The same requirements as in a key management system apply since all information transmit-
ted to and from the credential management system is considered critical.

Conclusion

The role of identity management creates a different set of requirements for these systems
than in key or system credential management. Identity management and verification per
definition involves a third party attesting the identity of one subject to another, necessitating
the use of a client-server approach or public key infrastructure as described in Section 3.1.

System credential and encryption key management systems share the same characteristics
in that they store and manage sensitive information that must be made available to client
systems but not attackers, leading to the common requirement of authentication against such
a system and an authorization mechanism for granting or denying requests.

Assuming a client-server based architecture for all three types of services, and server side
encryption of the sensitive information, table 4.1 states the sensitivity of data at rest and in
operation on the server as well as during communication with the client.

40

4.2 Key Management Concepts

Description of terms used in table 4.1

The information may be read and altered by an attacker without compromising the
system.

G# The information may be altered by an attacker, but not read.

H# The information may be read by an attacker, but not altered.

 Any kind of access to the information may compromise the system.

Key management task Data at rest System operation Communication
To Server To Client

Identity H# H#
Encryption key #
System credential #

Table 4.1: Key Management Tasks — Information Sensitivity

Concluding that both a key management and a system credential management system
share the same security requirements and basic functionality, a system for both roles can
be designed. The security requirements allow the stored data to be considered non-critical
which allows makes the handling of backups and storage more efficient since no security
protocols have to be followed. As stated above, the only sensitive information that needs
secure storage is the master key used to encrypt the stored keys or credentials.

The operations of such a system need to be programmatically safe since has been shown that
cryptographic safety is not feasible. Secure communication is necessary due the sensitive
nature of the data being transmitted. Conventional methods for securing communications
described in Section 2.2 are sufficient.

4.2 Key Management Concepts

Since the task of managing keys and credentials can be handled in different ways, the
following will analyze their security implications and point our recommendations for a
secure system design.

In the system architecture, a physical and a logical layout can be distinguished. While the
physical layout addresses the distribution of client and server roles and their physical security
requirements, the logical layout defines the separation of duties between the components.

The goal of choosing the physical layout beyond that of a single machine is to prevent an
attacker from gaining access to both the encrypted data, and the encryption key.

Different architectures comprised of a physical and logical layout can be grouped by a few
characteristics listed in Table 4.2. The encryption keys can be stored either locally on the

41

4 Key Management

hardware holding the encrypted data, or remotely on a centralized key server. Such a key
server requires some kind of authentication to verify key requests, creating the requirement
of storing authentication credentials on the machine operating on the encrypted data. This
approach follows the rationale of encryption by further reducing the amount of sensitive
information from the encryption keys in the case of local storage, to authentication credentials
in the case of a remote key server.

Both approaches have in common that the client machine (operating on the encrypted data)
needs to store some kind of sensitive information, be it encryption keys or authentication
credentials. This further groups key management system by the type of protection in place to
secure this sensitive information. They can be characterized by employing either no, software
assisted, or hardware assisted protection.

Table 4.2 compares these types of key management systems by the kind of attack they are
protected against. It lists these six types of systems and shows if they provide protection
against an attacker with either logical access to the client machine, limited physical access,
or full physical access. Full physical access assumes an attacker is able to modify the system
in a way to gain access to the hardware protected secure storage holding encryption keys or
authentication credentials. Limited physical access assumes that the hardware protection
can’t be circumvented.

The machine accessed by the attacker is assumed to be the client in the client-server configu-
ration, and the protection method applies to the authentication credentials the client hold for
authenticating against the server.

If an attacker gains access to the key server, rows one through three (local key storage)
apply to the security of the key server content. Since a physical separation is in place in the
client-server configuration, a successful attack is comprised of a successful attack against
both the server and the client.

Descriptions of abbreviations in Table 4.2

LK Local key storage

KS Central key server

No No protection for locally stored sensitive information

SW Software (operating system) assisted protection

HW Hardware assisted protection

42

4.2 Key Management Concepts

Key management Protects against
Type Protection Logical access Limited physi-

cal access
Full physical
access

Key revocation

LK
No
SW X
HW X X

KS
No X
SW X X X X
HW X X X X

Table 4.2: Comparison of Key Management Schemes for Encryption Aware Clouds

The different relationship between encrypted data and the stored secret in local and central-
ized storage allows for a higher security standard and flexible management when using a
key server. While locally stored encryption keys are directly related to the encrypted data
and allow decryption without any further information, the stored secret on the client system
using a key server is only connected to the encrypted data through the server. This allows
the remote revocation of client credentials in the case of a physical attack which is detected
through the interrupted operation of the system.

Local Key Store without Protection

Such a configuration does not provide any protection against an attacker with even only
logical access to the system. Any encryption key can be read from storage just like the
encrypted data itself. The configuration defies the purpose of encryption and is only
mentioned for completeness.

Local Key Store with Software Assisted Protection

In this configuration, the encryption keys for the locally stored encrypted data are stored
on the same hardware but are protected by software measures like file permissions. Given
the software operates as intended, an attacker with logical access is not able to read the
encryption keys. Physical access allows an attacker to circumvent these protection measures
by replacing the software, or directly accessing the storage device.

Local Key Store with Hardware Assisted Protection

Instead of using software measures to protect the encryption keys, this configuration uses a
hardware key store based on a Trusted Platform Module (see Section 4.3) that is capable of
verifying the integrity of the operating system and software stack running on the machine
before allowing access to the keys. As described above, it is assumed that an attacker with

43

4 Key Management

full physical access is capable of circumventing this protection by gaining possession of the
hardware and manipulating it with the adequate tools.

Client-Server Configuration without Client-Credential Protection

In this configuration, a client-server architecture is introduced and access to the stored
content on the client doesn’t allow the decryption of any data since the keys reside on
the server. If the authentication credentials the client holds are not protected in any way,
an attacker can forge a key request and send it to the server using the clients legitimate
credentials. The server can’t distiguish this request from a legitimate one, and the attacker
gains access to the encryption keys.

Client-Server Configuration with Client-Credential Protection

A new functionality introduced with the client-server architecture is the possibility of
revoking compromised client credentials. An advatage gained by this feature is the possibility
to convert an attack detection mechanism to a prevention mechanism. This is done by
monitoring the clients remotely and revoking the credentials on the server in case they
become compromised.

Due to this functionality, even software assisted client-credential protection is sufficient to
prevent any kind of attack.

4.3 Security Concerns

Encryption Scheme

As stated earlier, the contents of a key management system for encryption keys and system
credentials comprise critical data that needs to be encrypted. An encryption scheme describes
a method through which these keys are provided, and which entity holds them. In a
distributed key management system, this can be either the client or the server. A distributed
system has the advantage of physical separation between the encrypted data on the client
and the keys on the server. This allows the clients to be put into a lower security environment
while only a single server has to be protected in order to secure the whole system.

This model of having many low-security clients and a small number of protected servers
allows easy deployment of such a system in existing data centers and creates the requirement
for a flexible client management system on the server to introduce new client, modify access
or remove them.

An encryption scheme putting encryption keys onto the clients defeats the purpose of such a
distributed system since it introduces new requirements that conflicts with the ones initially
motivating such a system.

44

4.3 Security Concerns

The clients now contain key material which, together with a snapshot of the server’s
encrypted content, allows decryption of secret data on the clients. This raises the security
level required for client instances.

Client management is more complicated in such a setup since the need to remove clients
requires each client to have an individual encryption key which in turn has to be used to
encrypt a new copy of each secret object on the server. Removing a client now requires to
remove each secret object from the server that was encrypted with its key.

Keeping the encryption key for the secure storage on the server allows fulfilling the initial
security requirements and provides a more flexible client management. The server uses a
single encryption key for the secure storage and only has to manage access lists and client
lists to enforce access restrictions.

Providing an Initial Master Key

In a setup that keeps the encryption key on the server, additional mechanisms have to be in
place to provide separation between the secure storage content and the key used to encrypt
it. This Master Key must be available to the key management server in normal operation but
not to an attacker gaining access to the server.

Physical separation of the key and storage is achieved through a hardware key store which
keeps the key in a separate tamper resistant memory module that is only accessible through
protected channels.

Operating system protection provides another set of means to protect access to certain
objects and enforce restrictions on the operation of the system. Compared to the physical
separation achieved through a hardware key store, the restrictions enforced by the operating
system are only in place as long the operating system is working. They are not tamper
resistant and can be circumvented by exploiting vulnerabilities. This makes it necessary
to restrict physical access to the server, and only expose those interfaces needed for key
management operations.

Storing the Master Key

When using physical separation through a hardware key store or logical isolation through
operating system means, the two stages of accessing the master key, and operating with it in
a secure context have to be taken into account.

A hardware key store is a cryptographic, tamper resistant hardware module containing
secure storage for key material and cryptographic processing capabilities. Often used
in public key cryptography, the hardware module operates on the stored key material,
providing capabilities to encrypt data, sign certificates or do authentication through a
challenge-response protocol. Access to hardware key stores is possible through the PKCS11

protocol described in Section 4.4.

45

4 Key Management

Hardware key stores provide security by storing sensitive key material in an external location
that only allows access after successful authentication. When used to store the master key for
the server, this authentication against the hardware key store has to be provided on server
start up.

This can be done either manually, by credentials stored on the system or by using a hardware
key store that authenticates the system itself through a trusted Platform Module. The TPM
authenticates system hardware components and verifies the software before allowing access
to the encrypted content only to the legitimate system it is bound to.

Using local storage to keep the master key has the advantage of not requiring additional
hardware but provides weaker protection against attacks than a hardware key store with
TPM protection. Anyone with physical access to the machine can read the plain text master
key and gain access to the key management system content.

Preventing Access to the Master Key

Operating system methods can be employed to prevent unauthorized access to the stored
master key. The basic scheme to such a setup is to first assign a dedicated process user ID
to the key management server process, and then limiting access to the master key to that
user ID. The general discretionary access control (DAC) mechanisms in UNIX operating
systems don’t allow for such fine-grained access controls. A root user would always be
allowed to read the master key and can even delegate that right. Side channels for accessing
the file content exist through reading the memory content of the key server process or
directly accessing the storage device that holds it on a block level below the file system,
circumventing file system access controls.

The SELinux kernel extensions provide such fine-grained mandatory access controls (MAC)
capable of assigning access policies to files and system components that can’t be delegated
and even prohibit access by a root user [KAAS11]. To make use of these mechanisms for the
key management server, a dedicated user account without login rights is created, and given
sole access to the master key file. The user is then prohibited to run any process beside the
key management server. On startup, the system automatically starts the key server under its
dedicated user ID and assumes operation.

4.4 State of the Art Solutions

Public-Key Cryptography Standards (PKCS)

The Public-Key cryptography standards are a set of 15 standards covering generation of
public key pairs and certificates, encryption algorithms and key exchange. Some of these
standards will later find use in the design and implementation part of this thesis.

46

4.4 State of the Art Solutions

The PKCS12 standard defines an exchange format for cryptographic objects like keys and
certificates. A PKCS12 key store is contained within a .p12 file and provides encrypted
storage for different objects. It is often used as a container format for storing a public key pair
and an associated, signed certificate. The content can be secured individually by providing a
passphrase for each security object, or as whole by providing a key store password. Each
entry in a PKCS12 store is identified by an alias that has to be provided when storing, or
retrieving content.

Libraries for operating with PKCS12 key stores are provided by the Java Cryptographic
Architecture (JCA) through the PKCS12 key store implementation.

The PKCS11 standard [sta09b] defines the functional design and a common API for crypto-
graphic hardware that provides hardware cryptographic functions, key storage and protec-
tion. As a common interface standard, it allow developers to write software that is capable
of using hardware cryptographic modules without the knowledge of the specific module
used by the customer.

Such modules are often used to contain a user’s private key, and can be unlocked with a
passphrase.

Websphere Keystore

The Websphere application server features an integrated key management solution that is
used by Websphere itself to store its internal passwords but is also available to the application
developer for storing credentials. Its intended use is in a secure environment where attackers
are not supposed to gain access to the content of the store system containing the Websphere
configuration files.

The key store is part of the security.xml configuration file which holds user names in plain
text and passwords in an encoded form. Encoding is done by applying an XOR operation to
the password and a cipher string, resulting in an obfuscated password. As mentioned in
chapter 2, encryption mechanisms often rely on XOR operations in the last step of transforming
plain text into cipher text by applying an XOR operation to the plain text and cipher stream
produced by the encryption algorithm.

The encoding mechanism employed by Websphere does not make use of an encryption
algorithm to produce the cipher stream but rather relies on providing a static cipher string
that is sufficiently long to accommodate for the maximum allowed password length of 60

characters.

A known-plaintext-attack can always be used to reconstruct the cipher stream which is of
minor concern in cryptographic applications since the cipher stream is unique and non-
repetitive. When a static cipher string is used, its reconstruction by a known-plaintext-attack
renders the whole encoding scheme futile. To make matters worse, the cipher string used by
Websphere cannot be changed by the user and is shared across all Websphere installations.
An attacker with access to any Websphere instance can therefor reconstruct the cipher string
and decode any password file he gains access to.

47

4 Key Management

This encoding mechanism shall serve as an example for an applied security-through-obscurity
scheme whose stated purpose is not to secure the system against a dedicated attacker, but
to deter the casual observer.1 Its goal is to prevent a person getting a quick look at the
configuration file from remembering the readable chosen password by transforming it into a
series of hard to remember random characters.

To gain better security, Websphere provides a plug point to integrate a custom encoding
mechanism for its key store that can utilize any encryption scheme chosen by the devel-
oper.2

Implementation

To use the Websphere key store for custom applications, a developer has to implement
interface code for retrieving the credentials and provide them to the key store as part of
the system configuration. The latter task can be done by either directly manipulating the
security.xml configuration file or by utilizing Webspheres administration interface and
entering the credentials as a new Authentication Data Entry.

Access to these entries is done by utilizing the Java Authentication and Authorization Services
(JAAS) through a JNDI call that presents an interface to the stored credentials.

1https://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.express.doc/
info/exp/ae/tsec_protplaintxt.html

2https://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.express.doc/
info/exp/ae/tsec_plugpoint_custpass_encrypt.html

48

https://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.express.doc/info/exp/ae/tsec_protplaintxt.html
https://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.express.doc/info/exp/ae/tsec_protplaintxt.html
https://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.express.doc/info/exp/ae/tsec_plugpoint_custpass_encrypt.html
https://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.express.doc/info/exp/ae/tsec_plugpoint_custpass_encrypt.html

5 Cloud Solutions and Security

5.1 Threat Assessment and Standardization Efforts

As the importance of cloud computing in the private and official segment grows, govern-
mental and non-governmental organizations are concerned with the security of these new
service models. To combat the threats, these organizations work to raise the awareness of
potential customers about the security implications and best practices while standards are
being created to allow an objective assessment of the offered security.

In the following these publications will be analyzed and compared to pre-cloud security
standards and recommendations that are not geared towards cloud computing but are still
held in high regard among corporations and governments.

The cloud security alliance (CSA)1 collects information on common threats towards cloud
computing and issues a list of top threats concerning cloud computing itself, and its cus-
tomers [CSA10]. The most severe issues pointed out can be traced back to an uncertain
security standard and the lack of separation between customers. The latter constitutes the
matter of this thesis and was found to be an issue of components and technologies not
geared towards the use in cloud environments. The uncertainty of customers in the security
of cloud environments can be traced back to the lack of common security standards for cloud
computing, and the unsuitability of established standards for cloud environments.

A thorough survey conducted by the European Network and Information Security Agency
(ENISA)2 found a list of technology inherent threats not specific to cloud computing that
must be considered when building cloud services [eni10]. It was found that due to the
multi-tenant nature of cloud services, a lot of the attacks can be done by external attacks
while they would require a malicious insider in conventional on-premise information systems
which raises the risk of these threads in cloud environments. These threats concern all layers
of the application stack from the user interface to the physical infrastructure and will be
analyzed in the section below.

In their publication Security Recommendations for Cloud Computing Providers [bsi10] the German
Federal Office for Information Security (BSI) compiled a list of recommendations concerning the
infrastructural and operational security of cloud environments.

1https://cloudsecurityalliance.org
2https://www.enisa.europa.eu

49

https://cloudsecurityalliance.org
https://www.enisa.europa.eu

5 Cloud Solutions and Security

As most important measures for securing cloud computing against external attackers and
malicious insiders a clear separation of duties and access permissions between the service
provider and the customer was recommended as well as protective separations between
customers.

Established standards are often not geared towards cloud environments and don’t take
into account the concept of multi-tenancy by either neglecting it, or hindering its efficient
implementation by placing strict requirements not suitable for cloud computing.

The IBM Information Security Standard ITCS104 [sta09a] which applies only to IBM-internal
IT systems makes recommendations for the secure configuration of IBM products and
the separation of customers. It does not allow for physical resources to be used by both
internal, and external processes while multiple external customers may share physical
resources. In the ITCS104 terminology, different customers are considered to be separate
zones. Following the guideline, different zones may only be handled by physically separate
hardware or through virtualization by an approved hypervisor like PR/SM on System z and
PowerVM, making the deployment of multi-tenancy cloud offerings on anything higher than
the hypervisor level impossible. Following the reasoning about the economy of scale from
Chapter 1, such limitations don’t allow for flexible and cheap large scale cloud offerings.

5.2 Tenant Isolation and Cloud Delivery Models

Since cloud computing is not a new technology on its own but rather a new way of using
and configuring existing technologies, it inherits security threats from the technologies it
employs and exposes them in a new environment, enabling attack vectors that were not
possible before. [Sav11]

The different cloud delivery and cloud service models (see Section 1.1) combined with the
different approaches to tenant isolation (see Figure 1.1) create a wide variety of possible
cloud service configurations, each requiring different security measures.

Each layer in the application stack of a cloud service consists of software that provides
possible vulnerabilities that an attacker can take advantage of. Depending on characteristics
of the cloud model and tenant separation, these vulnerabilities have different levels of
exposure.

The cloud service model describes which level of the application stack is directly accessible
to the customer, while the tenant isolation model describes which of the layers below that are
shared among multiple tenants. A cross-tenant attacker has to penetrate all tenant-separated
layers until he reaches a shared layer that allows access to another tenant’s data.

Table 5.1 shows the possible combinations of tenant isolation and service models with their
respective attack path, concluding that high level services with low level isolation provide
the best security through a long attack path. With low-level cloud services like IaaS and
PaaS, only few layers of tenant separation are possible, providing short attack paths by
definition.

50

5.3 Common Threats to Cloud Components

Isolation SaaS PaaS IaaS
Application level Enter: UI

Target: Application
n/a n/a

Application instance Enter: UI
Target: Middleware

n/a n/a

Middleware instance Enter: UI
Target: Platform

Enter: Middleware
Target: Platform

n/a

Virtual machine Enter: UI
Target: Hypervisor

Enter: Middleware
Target: Hypervisor

Enter: Platform
Target: Hypervisor

Table 5.1: Tenant Isolation and Cloud Service Model Combinations

5.3 Common Threats to Cloud Components

An attacker with a subset of the capabilities of an idealized adversary can be a member of
either of three groups with different preexisting access to the cloud application. An external
attacker has no legitimate access to the application and may only be able to reach an initial
login page or even be shut out by a VPN. A cross-tenant attacker uses his legitimate access
to the application as a means of accessing other customer’s data. A malicious insider is
an administrator or other person with legitimate physical or virtual access to some service
within the application who uses this privilege to gain access to customer data.

The cross-tenant attack is an attack vector available to attackers with legitimate access to
the cloud application as a customer. This access is used as a gateway to the system and
ultimately other customer’s data.

A cross-tenant attacker has a superset of the capabilities of an external attacker, while gaining
these capabilities is often as simple as signing up for the cloud service. These circumstances
have made the cross-tenant attack an attractive attack vector [DMT11].

A typical SaaS cloud computing solution is comprised of a software stack containing an
operating system on virtualized hardware, middleware components like a database or
application server, and an instance of the cloud application on the server side. The client
side executes the user interface through a web browser.

In order to secure the system against cross-tenant and external attacks, the tenant separating
layers must only allow requests from legitimate user operations to pass through to the
tenant-shared layer to access data. In order to prevent an attacker from penetrating a layer,
the software itself must not contain any known vulnerabilities that can easily be exploited.
Once this requirement is met, the software must be used in a secure manner by utilizing
the security features it provides through setup and configuration procedures. This includes
custom made components, off-the-shelve middleware components as well as the operating
system and hypervisor.

51

5 Cloud Solutions and Security

In order to compile a set of recommendations for securing cloud components, this section will
analyze actual and researched attacks on software and hardware components in the context
of cloud computing and other applications, and discuss methods to avoid the underlying
vulnerabilities. Table 5.2 gives an overview of the vulnerabilities and their parameters
discussed in the following Sections. It lists the type of attack, abbreviations used for the
attack types are found in the detailed description in the following Sections, the point of
entry an attacker has to use and the according access an attacker needs to the system. The
popularity estimation is given according to the findings in the IBM X-Force reports [XF10]
and [XF11].

Attack Type Point of entry Required access Attack target Popularity
XSS User interface UI access or

CSRF payload
User interface High

CSRF User interface None Service layer Medium
SQL-injection User interface UI access or

CSRF payload
Service Layer High

MITM Network infras-
tructure

Network com-
ponent

Communication Low

VM-escape Operating sys-
tem

Full OS access Hypervisor Low

OS-escape OS process Access to pro-
cess

Operating sys-
tem

Low

Table 5.2: List of Threats and Vulnerabilities in Cloud Computing

Custom Web Applications and User Interface

Cloud services are built using off-the-shelve components on the infrastructure and middle-
ware layer that are customized through configuration, and custom made components that
comprise the service layer and user interface.

The 2010 IBM X-Force R© Trend and Risk Report [XF10] found that 49 percent of all vulnerabilities
discovered in 2010 were found in web applications. This is attributed to the fact that these
applications have a shorter life cycle than existing middleware of infrastructure components
and therefore underwent less testing in average. An important factor for the finding of these
vulnerabilities and the risk they pose is their level of exposure. They comprise the topmost
layer in the software stack and are directly accessible to an attacker.

Code Injection Vulnerability

The SQL injection attack as well as XSS discussed below are special cases exploiting a code
injection vulnerability. Code injection in general allows an attacker to have custom code
executed by, and in the context of the system under attack.

52

5.3 Common Threats to Cloud Components

Systems that allow the ingestion of files or data often operate on that data to extract
information or perform transformations. This user provided data can be used by an attacker
as a means of injecting code into the system that is executed by exploiting a vulnerability
in the component operating on the data. This attack provides a method of exploiting
vulnerabilities in hidden software components.

Code injection is used to penetrate the layer the attacker has access to, and either execute the
attack on the layer below, or penetrate the stack further by exploiting vulnerabilities that are
now accessible.

Cross-Site Scripting Attack (XSS)

The cross-site scripting attack uses a vulnerability similar to the SQL injection attack in that
it relies on user input not being checked or sanitized. Contrary to the SQL injection attack,
XSS does not seek to alter the behavior of the service layer, but rather the user interface. It
works by injecting code disguised as user input into the application and have it become part
of the user interface logic. [DLFMT04]

The goal of this attack is to alter the behavior of the user interface in order to steal information
being displayed in the user interface, or entered by the user. Compared to the SQL injection
attack, the attacker has the advantage of full knowledge over the user interface code since
the JavaScript and HTML that makes up the UI is interpreted by the browser and thus has
to be available in plain text to the client.

The attacker generates JavaScript code that replaces or expands the functionality of the
service-provided user interface code and injects it into the application by exploiting a
vulnerability. He can redirect any information present in the user interface to a remote
server, or trigger operations on behalf of the user to his benefit. XSS is often used to steal
HTTP-cookies containing session tokens from a user in order to hijack the session. This
attack circumvents a security measure in web browsers that prevents them from sending
cookies to a different web-domain than the one they were received from. Since the injected
script runs within the context of the legitimate web application, it has full access to the
HTTP-cookie belonging to the user session and can send it to the attacker3.

Attack Vector Two types of XSS attacks can be identified. Persistent and reflected XSS. A
persistent attack uses a vulnerability that allows storing the XSS code in the persistence layer
of the application, and having it repeatedly delivered to users in the future. A reflected
attack manages to inject code into a a single instance of a user session.

Figure 5.1 shows the attack vector for a persistent XSS attack where the attacker and user
access the same application with some shared data. The attacker places the XSS code in the
shared content that is later retrieved by the user’s browser

3http://www.cgisecurity.com/xss-faq.html

53

http://www.cgisecurity.com/xss-faq.html

5 Cloud Solutions and Security

Operating
system

Hypervisor

Middleware

Application

Web
browser

UI

Client

Server

Web
browser

UI

Send information

Inject code

Separated components

Shared components

User

Attacker

Attack target

Figure 5.1: Attack Vectors: Cross Site Scripting

The usual point of entry for reflected attacks are URLs. Dynamic web applications often use
URL parameters to pass values on from one page to the next. These parameters are then used
by the target page to include content or determine functionality. If content provided through
a URL parameter is included in the resulting page, an attacker can prepare a malicious URL
linking to the legitimate target application, with the attack code hidden as a URL parameter.
He then lures the target user into clicking the malicious URL. The user is presented with the
application while his browser executes the script provided by the attacker.

Persistent XSS attacks exploit any functionality of the application that allows a user to
store data that gets retrieved and displayed in the user interface. This type of XSS is more
versatile than the one-time attack since it allows targeting a larger user group without raising
suspicion through manipulated links.

Mitigation XSS attacks are prevented by sanitizing user input from JavaScript code, and
treating any external data as user input.

54

5.3 Common Threats to Cloud Components

Cross-Site Request Forgery Attack (CSRF)

Contrary to the XSS attack that relies on the trust the web browser has towards the server
delivering the infected content, CSRF preys on the trust the web server has in the client’s
browser. The goal of the attack is to trigger an operation on the server on the user’s behalf
that is beneficial to the attacker.

The attack requires a user to be logged in at the targeted service, and have him click a URL
on a malicious site that points to the targeted service and triggers an operation as a side
effect.

Figure 5.2 shows the attack vector for a CSRF attack.

Operating
system

Hypervisor

Middleware

Application

Web browser

UI

Client

Server

Malicious
web page Prepare

Visit

operation

Separated components

Shared components

User

Attacker

Attack target

Figure 5.2: Attack Vectors: Cross Site Request Forgery

This attack exploits a design aspect of HTTP-cookie handling in web browsers. A server can
issue a session cookie that is saved by the browser and later sent back with every request
to the server. This mechanism allows the web server to keep a user authenticated after the
initial log in, and identify him on every successive request.

55

5 Cloud Solutions and Security

Attack Vector Attackers exploit this behavior of browsers by sending a request to the server
from within the browser through a prepared web page that they trick the user into visiting.
The browser dutifully includes the HTTP-cookie with the request, and the server assumes it
is a legitimate request.

Assume a banking application had a method for transferring funds that is triggered by
calling the URL http://bank/transferFunds?from=victim&to=attacker&amount=1000. In
a legitimate use case, this URL would be called by a page after the user entered the transfer
parameters. An attacker prepares such a URL and places it on the site he lures the user into
visiting. After clicking the URL the server recognizes that the users web browser is logged
in, and carries out the transfer without the user noticing.

Mitigation The CSRF attack can be prevented on the client side by browser security exten-
sions, or on the server side. In a large-scale distributed application like cloud computing,
controlling the client environment is not feasible so that a server-side approach should be
favored. [SV11]

The HTTP-header of the request sent by the client’s web browser contains a Referrer
attribute indicating from which page a request originates. Legitimate requests all originate
from the user interface itself, while the malicious request originates form the attackers
prepared web page. The server has to inspect the Referrer attribute and compare it to the
URL of the legitimate user interface to identify and deny malicious requests.

However, Referrer validation has its limitations since the attribute (URL of the web UI) is not
secret and can be included in the request if an attacker manages to modify the HTTP-header
through a browser vulnerability.

A more secure approach found in the Django-framework4 is to require a secret token with each
request. Similar to the HTTP-cookie, this token is assigned to a user session and included
in the requests to the server in order to authenticate the user. While the HTTP-cookie is
managed by the browser and included in every request to the server independent of origin,
the secret token is managed by the UI itself and is only included in requests generated by
the UI.

The Prepared Web Site

As discussed before, reflected XSS and CSRF attacks require the user to visit a malicious web
site which starts the attack by executing code within the context of the user’s browser. The
most effective method for an attacker is to abuse trusted, legitimate web sites that the user
might visit. It has been shown that small set of software with well-known vulnerabilities
runs a large portion of public web sites which provide an attacker with an easy way to plant
his malicious code5.

4https://docs.djangoproject.com/en/dev/ref/contrib/csrf/
5https://www.stopbadware.org/pdfs/compromised-websites-an-owners-perspective.pdf

56

https://docs.djangoproject.com/en/dev/ref/contrib/csrf/
https://www.stopbadware.org/pdfs/compromised-websites-an-owners-perspective.pdf

5.3 Common Threats to Cloud Components

Authentication Vulnerabilities

Vulnerabilities in the user authentication process include password security and the authenti-
cation process itself. Password security has been thoroughly researched in the past and a set
of rules can be found in the IBM ITCS 104 guideline [sta09a] and other standards mentioned
in Section 5.1.

The authentication process itself relies on the security of the involved components like the
authentication provider and the security of the transmitted data which were analyzed in
Chapter 3.

The security requirements for the mentioned authentication determine which of the attack
vectors presented in this Chapter pose a threat to the system. The source-to-sink model used
below to describe the information and authentication flow in SmartCloud Archive indicates
which station in the authentication process is potentially vulnerable, and which is inherently
secure due to the use of non-sensitive data. These characteristics of the authentication
method must be reconciled with security measures for the involved components in order to
prevent attacks.

For example, password based user authentication methods have an inherently vulnerable
source since the user provided password can be repeatedly used for authentication even when
stolen by an attacker. On the contrary an authentication provider for such a mechanism might
only store secure hash values of the passwords which don’t comprise sensitive information
since they can’t be user for authentication and therefore don’t compromise the security of
the system when disclosed.

Middleware Components and Service Layer

Access to middleware components is the business model for PaaS providers and therefore
these components comprise the first line of defense against an attacker. In the context of
SaaS applications, the middleware components are only accessible to an attacker through
code injection vulnerabilities, or to a malicious insider.

While the XSS code injection attack discussed above is targeted at the user interface running
inside the victims web browser, other code injection attacks merely use the user interface as
point of entry, but are targeted at middleware components or the Service Layer.

SQl Injection Attack

The most common attack against web services is the SQl injection attack. It seeks to inject
malicious SQL statements through the web service into the underlying SQL Database in
order to extract valuable information, or manipulate the behavior of the application. The IBM
X-Force 2011 Trend and Risk Report [XF11] found that the SQL attack is the most popular attack
against the service layer of an application amongst attackers, making such a vulnerability a

57

5 Cloud Solutions and Security

high-risk item. Its popularity is attributed to the low access requirements an attacker has to
meet in order to abuse such a vulnerability, and the high impact posed by it.

It uses a common vulnerability in web services that internally compile SQL queries that
include user-submitted data. The attacker forms the string he submits as a user in such a
way that it modifies the semantics of the SQL query compiled by the application to make it
execute a different operation. This usually involves special characters that are used inside
SQL queries as string delimiters. The attacker includes such characters in his string to escape
the query syntax compiled by the application and have parts of his string executed by the
database as SQL commands.

Due to the possibility of nested sub-queries, an attacker can include arbitrary commands
in his attack and is only limited by his knowledge of the underlying database schema.
The databases response may not be visible to the attacker depending on the applications
interpretation of it, and the visual representation in the user interface.

The goal of this attack is to extract information from the database that is not intended to be
visible to a user, or to modify information in order to alter the behavior of the application.
In cloud configuration that has no tenant separation on the database layer, an SQL injection
attacker has immediate cross-tenant data access. Figure 5.3 shows the attack vector for
SQL injection. The separation of the layers above the database instance can be of any type.
SQL injection can be used by a malicious insider to access data hidden from him, or by a
completely external attacker in a cross-tenant attack.

Points of Entry This attack can be used against any component of the system that accepts
user input and uses it in an SQL query like user submitted forms, login pages or URL
parameters.

Mitigation The SQL injection attack is widely known today and the means to avoid it
are present in most frameworks and programming languages. The approach is to sanitize
user input before including it in SQL queries. Either by removing special characters, or
transforming them into escape sequences that are not evaluated by the SQL query parser but
retain the information of the special characters6.

Another secure approach for preventing SQL injection is to use the SQL server itself rather
than the application to sanitize user input. This can be done by utilizing SQL stored
procedures and pass user input as parameters to these predefined procedures rather than
building custom SQL queries in the application. The SQL parser will always use the
parameter values only in the intended place and prevent the parameter escape approach used
for SQL injection.

6http://www.unixwiz.net/techtips/sql-injection.html

58

http://www.unixwiz.net/techtips/sql-injection.html

5.3 Common Threats to Cloud Components

Operating
system

Hypervisor

SQL Database

Application

Web
browser

UI

Client

Server

Web
browser

UI

Inject SQL

Application

Separated components

Shared components

User

Attacker

Attack target

• Retrieve information
• Manipulate data

Figure 5.3: Attack Vectors: SQL Injection

Network Infrastructure

As a central part of the infrastructure of any cloud environment, the network layer carries
any kind of information including sensitive data. Direct access to network infrastructure
components is usually not possible for an external attacker, but often trivial for a malicious
insider. Due to the nature of network transmissions, two basic kinds of attacks can be identi-
fied; unauthorized data access or eavesdropping, and data manipulation. The combination
of these two consitiutes the man-in-the middle attack which seeks to intercept information,
manipulate and resend the information. Figure 5.4 shows this attack vector. The goal of
man-in-the-middle attacks is usually to prevent the detection of an attack by manipulating
an operation without changing the outcome the user or system expects.

The term man-in-the-middle is often used ambiguously for all three types of attacks stated
above, and usually assumes the attack not being detected.

59

5 Cloud Solutions and Security

Operating
system

Hypervisor

Middle-
ware

Application

Web
browser

UI

Client

Server

Manipulate
routing

Retrieve or
manipulate data

Separated components

Shared components

User

Attacker

Attack target Resource
or Service

Network

Figure 5.4: Attack Vectors: Man-in-the-Middle

Points of Entry

Any part of the network infrastructure between the source and the sink of a request be the
point of entry for a man-in-the-middle attack. Misconfigured network devices or services are
usually targeted in order to divert the original traffic to the attacker, and back. These can be
hypervisors providing a virtual network, or hardware network appliances like routers or
switches.

Man-in-the-middle originates from physically separating a wired network connection and
inserting a custom device that would manipulate and forward the data traffic. A popular
approach to logically diverting network traffic is found in the method of ARP spoofing. The
Address Resolution Protocol (ARP) operates on layer 2 of the OSI model7 and is responsible
for resolving IP addresses to the physical (MAC) address of a network device. Any new
network device introduced to the infrastructure advertises its IP and MAC address in order

7https://en.wikipedia.org/wiki/OSI_model#Layer_2:_data_link_layer

60

https://en.wikipedia.org/wiki/OSI_model#Layer_2:_data_link_layer

5.3 Common Threats to Cloud Components

for routing devices to compile a table of logical IP addresses and their physical location on
the network.

In order to divert traffic, an attacker will advertise his own physical address with the logical
address of the target, and have all traffic to the target diverted to him.

Mitigation

The physical manipulation of network lines can only be prevented by physical means like
access restrictions and surveillance since eavesdropping on a physical line is impossible to
detect from the point of view of the network endpoints. It has been shown that without phys-
ically manipulating the line, an attacker can pick up the electromagnetic field surrounding
the wire with a sensitive antenna and extract information about the data being transmitted,
which rules out any possibility of detecting such an attack without physically monitoring
the line.

ARP spoofing attempts are prevented by modern network equipment, and can be prevented
by a secure network infrastructure configuration.

The common approach to prevent such attacks without reliance on a secure network is to
use an encrypted communication channel. methods like public key cryptography discussed
in Chapter 2 allow the establishment of a secure communication channel over an insecure
network connection. Such an approach is based on the detection of an attack, and uses this
knowledge to elevate the detection mechanism to a prevention measure by rejecting any
information that was identified as part of an attack.

Operating Systems and Processes

The operating system constitutes the last layer of tenant separation in PaaS and SaaS offerings
that don’t use separate virtual machine instances per tenant. Cloud providers either strive
for low service costs through a high degree of tenant integration, or a high level of security
through a low level of tenant integration. Therefore separation on the operating system layer
is usually chosen by PaaS providers since it is the highest level of integration possible in
such a configuration.

This concept achieves tenant separation by using operating system mechanisms like processes
and access control lists in order to prevent a tenant from accessing foreign data. Attackers
in PaaS services attempt to penetrate this separation layer in order to access or manipulate
data belonging to other tenants, while attackers in a lower integrated configuration with
hypervisor separation attempt to break the operating system isolation in order to attack
the underlying hypervisor. Figure 5.5 shows the attack path for breaking operating system
isolation.

61

5 Cloud Solutions and Security

Operating
system

Hypervisor

Middle-
ware

Application

Web
browser

UI

Client

Server

Separated components

Shared components

User

Attacker

Attack target

Abuse vulnerability

• Retrieve information
• Manipulate data

Middle-
ware

Figure 5.5: Attack Vectors: Escape operating System Isolation

Points of Entry

The rationale of operating system separation rests on the concept of a process context which
consists of memory and access to other system resources. The most popular approach for
attackers is to escape this process isolation in order to access memory belonging to another
process, or the operating system kernel. This attack is considered a privilege escalation since
the attacker seeks to gain higher privileges on the system than his process was originally
assigned. This is done by either exploiting vulnerabilities in the operating system itself, or
other processes that have higher privileges and provide some kind of service to the lower
privileged service.

Since most PaaS and SaaS offerings consist of multiple services that are often shared between
tenants or run with higher privileges than the services belonging to a specific tenant, a
popular approach is to abuse vulnerabilities in these services to execute operations in their
context,

62

5.3 Common Threats to Cloud Components

Mitigation

A secure configuration of the operating system process isolation mechanism is key to
operating system assisted tenant isolation. When such a configuration is in place, an attacker
can only rely on vulnerabilities in either the operating system or the services. In order to
mitigate these risks, the principle of least privilege must be applied and services should
always run with the minimal amount of system privileges they require to work.

It has been shown that the abuse of vulnerabilities is often only possible through advanced
execution concepts like run-time code generation that modern software often relies on
[HAF+

07]. Without these possibilities, the risk of abuse can me minimized while some
advanced functionality is lost. Such functionality is present in all major operating systems
today, but hardened software can be written by not making use of such features.

Virtualization Technologies

Virtualization constitutes the lowest possible layer in a multi-tenancy configuration, and
the only layer of tenant separation in IaaS offerings. As the last line of defense, secure
virtualization is a key requirement for secure multi-tenant solutions.

Prerequisite for an attack on virtualization technologies is an attacker with access to the
virtualized operating system. This is the case in either an IaaS environment or in PaaS/SaaS
offering where an attacker managed to circumvent the security measures in the abstraction
layers separating him from the operating system.

The IBM X-Force Trend and Risk Report 2010 [XF10] has shown that a total of 37 percent of the
vulnerabilities found in virtualization technologies allowed an attacker to escape the virtual
machine and gain direct access to the underlying hardware, enabling a cross-tenant attack.

Other types of attacks against virtualization target either the software on the administrative
VM or the guest VM images. The administrative VM is used to administer the guest VM
instances and allows for the manipulation of network traffic and file access. Attacks on the
guest VM images have the goal of modifying their behavior by manipulating the operating
system or software code either while the VM is being transmitted over the network, or
stored.

Points of Entry

Three kinds of virtualization related attack vectors were identified. The hypervisor-escape
attack, VM manipulation during transport or storage, and the attack on the administrative
VM.

Hypervisor-escape constitutes the most severe threat to virtualization environments today
due to the low access requirements an attacker has to meet, and the severity of the possible
consequences. The point of entry for such an attack is the virtualized hardware under the

63

5 Cloud Solutions and Security

operating system. Figure 5.6 shows this attack path. An attacker has direct access to these
resources in IaaS offerings, and can gain such access by penetrating the abstraction layers in
PaaS and SaaS.

Attacks on the administrative VM are usually carried out as payload for other types of
attacks like viruses or malware. They seek to infect the software on the administrative VM
in order to control it. This attack vector is not specific to virtualization.

Manipulation of the VM code is comparable to the manipulation of program code in
conventional environments through viruses or malware. Points of entry for this type
of attack are either a direct attack on a running VM instance, or manipulation during
transport through the aforementioned man-in-the-middle attack, or during storage through
vulnerabilities in other parts of the infrastructure that allow an attacker access to the storage
system.

Operating
system

Hypervisor

Middle-
ware

Application

Web
browser

UI

Client

Server

Separated components

Shared components

User

Attacker

Attack target

Abuse vulnerability

Operating
system

• Retrieve information
• Manipulate data

Figure 5.6: Attack Vectors: Hypervisor Escape

64

5.3 Common Threats to Cloud Components

Mitigation

In [CSS+09] the technique of VM introspection was researched to help mitigate threats to
the hypervisor that originate from within a guest VM. Since the hypervisor has full access to
all resources used by guest VMs, hypervisor assisted VM introspection allows to analyze
the processes running in the guest VM and detect attack patterns. No such technologies are
currently available in commercial products, but they present a promising mechanism for
securing virtualization environments.

Hypervisor escape attacks always work by exploiting vulnerabilities in the hypervisor
and thus can only be prevented by using a secure hypervisor that doesn’t expose known
vulnerabilities.

Attacks on the administrative VM are prevented by limiting access to the administrative
VM and securing it by the same means put in place for application servers and other
critical infrastructure. They should be used for the administrative purpose and not have any
unnecessary software installed or potentially vulnerable services running.

To prevent manipulation of the guest VM code, It should only be transmitted over the
network in an encrypted form to prevent man-in-the-middle attacks, and must only be stored
in way that allows the detection of manipulation.

Physical Security

All attack vectors discussed before are possible with logical access to the system and can
therefore be perpetrated by any attacker external, or internal. When all vulnerabilities
allowing malicious logical access are closed, the only threat remaining is physical access.

Physical access to the system is possible for malicious insiders and the prevention of such
attacks requires physical measures as well. Logical access to the operating system layer as
described above can be deterred through a secure configuration of the operating system
while physical access allows an attacker to circumvent these safeguards. The threat of
malicious insiders is faced by any information system but is particularly severe in cloud
computing due to the high density of customers in a data center and the uncertainty of the
physical location, as well as the personnel handling it. The surveys [CSA10] and [eni10]
mentioned in Section 5.1 both point out the malicious insider as one of the major threats in
cloud computing for these reasons.

Sensitive information residing on the system can only be protected from a malicious insider
by physically preventing access. To make this solution feasible, data encryption as described
in Chapter 2 is used to reduce the amount of sensitive information down to a small number
of encryption keys that can be kept physically secure with reasonable effort. In such an
environment, data security relies on the security of encryption keys and the anatomy of a
key management system must be designed in such a way that legitimate operations can
acquire keys while unauthorized access must be denied.

65

5 Cloud Solutions and Security

Attack Vector

The goal of the malicious insider is to abuse his physical access to the infrastructure to gain
access to the sensitive data by either accessing unencrypted data, or in the case of encryption,
acquire the data and respective encryption key.

The physical attack against a system is comprised of either replacing the operating system
and software in order to circumvent any software-based safeguards, or removing hardware
components in order to extract data using the attacker’s equipment.

Mitigation

As shown in chapter 2, an encryption aware cloud manages and uses encryption keys to
secure content in storage and transmission. Chapter 4 discussed different methods of storing
and providing these keys within the cloud and has shown the security concerns with storing
encryption keys on the same physical machine as the encrypted content.

5.4 IBM SmartCloud Archive — Architecture and Components

As an enterprise cloud based SaaS solution, IBM SmartCloud Archive (SCA) is comprised of
an architecture of existing off-the-shelf, and custom made components. The security of such
a system depends on vulnerabilities in custom made components and on the interaction
between the components, assuming the external components are safe. These two topics are
left to evaluate.

• Internal application security

• Communication and component interaction

The second item relies on leveraging secure communication channels and the security of the
external components. These components are assumed safe in the sense that the developer and
system architect using them has no means of evaluating the security of their implementation
and design. External components offer a set of security related features and configuration
parameters that when used allow the architect to integrate them securely into a compound
system like SCA. The components that make up SCA and its architecture are described in
Figure 5.7.

IBM Websphere R© Application Server

The middleware component Websphere Application Server runs all the components that
make up the SCA service and provides methods to allow communication between these
components. This makes it the key part for securing the whole system. Through JDBC
it acts as a database connectivity provider for its applications and offers JAAS to provide

66

5.4 IBM SmartCloud Archive — Architecture and Components

SCA Portal

Workplace
XT

eDiscovery
Manager

Cognos

Batch loader

DB2

Filenet
P8 CE

Tivoli
Directory Server

Records
Manager

Websphere Application Server

GPFS

Store/retrieve
metadata and
repository info

Store/retrieve
reports

Store/retrieve
repository
objects

Create, modify,
authenticate
users Store/retrieve

configuration
data

Retrieve bulk
data

Retrieve batch-
job information,
write data

Store/retrieve
configuration

Store/retrieve
database
objects

Store/retrieve
directory
objects

Websphere HTTP
Server

Access
applications

Figure 5.7: IBM SmartCloud Archive component relationship

user authentication against the IBM Tivoli Directory Server. Users access the system via the
Websphere HTTP Server which serves the user interface components and redirects requests
to the applications within the Websphere Application Server.

IBM Filenet P8

IBM Filenet P8 is an extensible enterprise content management system and serves as the
central repository for customer data within SCA. It follows the object-store model and allows
storing documents and data as objects with attributes, meta data and relationships. The
repository content is stored on a file system while repository management information is
kept in a database. The Filenet repository can be extended with add-ons to provide further
functionality. SCA makes use of the Filenet Records Manager, Workplace XT, eDiscovery
Manager and Content Search Engine. The Filenet Records Manager allows documents to be
declared as (legal) records which have a certain retention policy that dictates a time frame
in which the document may not be altered or deleted since it must be available for legal
purposes. Workplace XT is the front end application for the Filenet repository which is
used by customers to add and manage the repository content. Legal cases require certain

67

5 Cloud Solutions and Security

documents and records relevant to the case to be identified and retrieved from the repository.
This task is done by the eDiscovery Manager and Content Search Engine.

The Filenet repository is accessed by its add-ons through user-initiated operations, by the
SCA Batch Loader through scheduled tasks and through processes within the SCA Portal
application. In order to secure access to the repository content, Filenet utilizes Access Control
Lists (ACL described in Section 3.2) and user authentication.

IBM SmartCloud Archive Portal and Batch Loader

Since IBM already has all the components to create an archiving solution available, only few
parts of the SCA system have to be developed from scratch.

The SCA Portal provides a central interface for configuring and managing the system and
allows the customer to use the solution with little knowledge of the underlying components.
It is used by a small group of customer employees to perform configuration and management
tasks and is not available to the wider user base.

Operations in the SCA portal are triggered by either an authenticated user or a scheduled
system task. Access restrictions are provided by Role Based Access Control (RBAC described
in Section 3.2) with a set of predefined roles that can be granted to system users. Interactive
users are authenticated when they access the system. Scheduled system tasks are created by
such users and need to authenticate themselves against other system components once they
are started. This requires the user setting up a task to provide (his own) user credentials
in the form of a username/password with sufficient permissions when configuring a task.
These user credentials are then stored in plain text within the task definition, which the batch
loader later reads to execute the task and use the contained user credentials to authenticate
against other system components.

The SCA Batch Loader adds a second way for data to be imported into the Filenet repository
besides Workplace XT. It was designed to ingest large amounts of data in scheduled batch
jobs and allows the customer to keep the SCA repository in sync with their operational data
stock.

IBM Tivoli R© Directory Server

The IBM Tivoli Directory Server is used as a centralized LDAP user authentication service in
the SCA architecture. Every user with access rights to the system is represented by an object
within the directory tree of the LDAP server. The user object properties include a short name
(sn) and a password (userPassword) to authenticate the user. User passwords are stored as a
salted SHA hash value to eliminate the risk of unauthorized data access. To implement the
Role Based Access Controls used in the SCA Portal, the LDAP directory contains a group
object for each available role. Users are added to the groups corresponding to the roles they
have been assigned to.

68

5.5 IBM SmartCloud Archive — Processes and Activities

Access to the LDAP server is needed for generally two different kinds of operations; user
authentication and user management. The use case for user authentication consists of the
user providing his credentials and the LDAP server verifying these. Security requirements
for this operation can be minimized by calculating the hash value of the password before
sending it to the LDAP server so no critical data has to be transmitted.

User management includes creating, removing and modifying users as well as managing
group membership. These operations have to be performed by a user with higher privileges
on the LDAP server, and some of them require transmitting sensitive password data in plain
text.

5.5 IBM SmartCloud Archive — Processes and Activities

After deriving basic security recommendations from the systems components and their
functions, the system activities have to be inspected in order to identify the access patterns
and requirements imposed by the system.

IBM SmartCloud Archive (SCA) combines a number of different IBM products and custom
components into an integrated solution. Communication between these components needs
to be secured by authentication and authorization in order to utilize the integrated security
mechanisms of the different components. Following the Principle of least Privilege every
system access should only be granted the absolutely necessary rights and privileges in order
to perform the desired operation [Amo94].

This requires the use of credentials to authenticate against system components and gain
access to these operations. The propagation of credentials in chains of components and the
management of privileges associated with the subject belonging to them will be discussed in
the following, leading to one application for the proposed cloud key management system
described in chapter 6.

Every operation performed within SCA has a source and a sink of credentials. The source
triggers the operation which is then propagated through a set of SCA components until it is
executed by the sink. In order for a secure system, the source needs to be authenticated and
that authentication must be passed on to the intermediate components in order for the sink
to verify the legitimacy of the requested operation.

A source of an operation can be one of the following:

• An authenticated subject (user)

• An internally triggered task

In the current SCA architecture an operation triggered by a subject begins with the subject’s
authentication and the assignment of a session token which is later used the sink and other
components to identify the subject. Figure 5.8 shows this process.

Internally triggered tasks don’t use the token mechanism but rather supply credentials
directly to the components they need to authenticate against.

69

5 Cloud Solutions and Security

Application
Application User

Application
server

HTTP server

TDS
LDAP server

① login
username
password

② authenticate
username
hash(password)

③ authenticated

④ LTPA token

Websphere

⑤ LTPA token

⑥ verify token

⑦ response

Figure 5.8: Authentication of a subject in IBM SmartCloud Archive

The sink of an operation can be:

• The DB2 Database for configuration changes or system task definition.

• The Filenet P8 content repository in the case of content insertion or retrieval.

• The Tivoli Directory Server is considered a sink when user credentials are modified or
created.

For the proposed Cloud Key Store design, the internally triggered Batch Load process in
SCA is modified to use CKS as a source of authentication credentials.

The Batch Load process involves to stages; fist the process is set up by a user or administrator,
and later the scheduled task is executed by system using the stored credentials that were
provided by the user or administrator in the first step. As stated above, the current imple-
mentation for this process stores these credentials as properties within the task definition,
leading to the storage of sensitive information in a location not designed for this purpose.

70

5.6 IBM SmartCloud Archive — Security Evaluation

As a storage and management system for sensitive key material and system credentials,
CKS provides a method of storing this information in a secure location and only allowing
authorized access.

Due to the design of the Batch Load process and the overall system architecture, the following
requirements for the Cloud Key Store are necessary.

The work flow of setting up a Batch Task and executing it dictate these requirements:

Requirement 1. During an interactive user session, system credentials must be stored in CKS.

Since the principle of least privilege applies, reading or writing the credentials should only
be possible if the task requires it.

Requirement 2. The scheduled task is triggered internally and at that point needs access to the
specific credentials stored before while reading these credentials is not necessary for an interactive user
session, and should be prevented for anything but internal system operation.

Since the stored credentials comprise sensitive information, unauthorized access should not
only be prevented programmatically, but also cryptographically.

Requirement 3. All content of the key management system must be stored in an encrypted form.

5.6 IBM SmartCloud Archive — Security Evaluation

Based on the attack patterns identified in the beginning of this chapter, this section will
evaluate the security of the IBM SmartCloud Archive by applying the attack patterns and
identifying vulnerabilities.

User Interface

Cross-Site request Forgery (CSRF)

The evaluation has found that the portal application as well as eDiscovery manager and
WorkplaceXT are susceptible to CSRF attacks. Any function these applications offer is
triggered by calling a URL on the service layer with appropriate parameters. All these URL
calls can be issued out of context, from any legitimate or malicious page running in the same
browser. An attacker can exploit this vulnerability for example to create a new user with
permissions of his choosing in the background just by having the victim visit a web page he
prepared.

71

5 Cloud Solutions and Security

Cross-Site Scripting (XSS)

XSS vulnerabilities were found in the SCA portal application. As stated above, the XSS attack
requires a call to the service layer that includes user data and returns the user data in the
response in a format that allows the client web browser to execute JavaScript code.

Such a call was found in the SaveDispositionSweepTask method that is used to configure
new disposition tasks. Besides the task parameters, it requires the user to provide a username
and a password that is stored with the task definition. When saving the task, the provided
user credentials are verified and an error message is displayed if they are invalid. This
error message contains the user name (e.g. The user name _ is invalid.) and thus provides
a mechanism for user supplied data to be returned, and injected into the context of the
application. Enough special character are passed through and returned to the user interface
unaltered to allow the execution of harmful JavaScript code. In the current implementation,
the characters / and " are escaped and can’t be used in the injected code. The " character
can be replaced by other types of quote signs, while the / character is necessary to create
HTML end-tags for JavaScript (<script>...</script>). This second obstacle is overcome
by embedding JavaScript code within HTML tag-attributes that don’t require a closing tag
like the <body> element.

The onload attribute of the <body> element may contain JavaScript code that gets executed
when the page is loading. It may contain an arbitrary number of JavaScript commands which
can be used to read the SCA session-cookie and send it to the attacker.

Middleware

Since no SQL operations in SCA are generated containing user input, no SQL injection
vulnerability could be identified.

The security of other middleware components is not directly infulenced by the SCA user
interface since no direct access is possible aside from the external products Workplace XT
and eDiscovery Manager.

Infrastructure Components

SCA is currently only distributed as a single-tenant offering on dedicated hardware, making
a cross-tenant attack impossible. Due to the single-tenant design of the application, multi-
tenancy is currently only possible on the middleware layer where the security relies entirely
on the secure configuration of shared components, so no evaluation in this respect can be
carried out on behalf of the SCA application itself.

The internal security currently relies on physically restricting access to the infrastructure
components. All internal communication is secured through encrypted and authenticated
communication channels, making a man-in-the-middle attack on network communication
impossible.

72

5.6 IBM SmartCloud Archive — Security Evaluation

Stored data is secured through operating system and middleware security features, prevent-
ing unauthorized access from an attacker with logical access to the infrastructure. Physical
access to the stored data is not prevented since no encryption or secure key management is
employed by the current implementation of SCA.

73

6 A Key Management System for IBM
SmartCloud Archive

6.1 Architecture and Design

The proposed Cloud Key Store (CKS) solution relies on a client-server architecture to be
secure and scalable in a large cloud environment. The server component manages the central
key store and all its content while the client serves the application servers and contains no
sensitive key material besides a client certificate used to authenticate against the server. This
architecture allows hosting all sensitive material on a central server which can be more easily
secured against physical access, and need not be available to services outside the cloud,
providing physical separation of key material and encrypted content as well as a server
component with a lightweight access protocol that can easily be secured.

Valid clients and their access permissions are only stored in a client certificate issued by a
tenant administrator. This eliminates the need to directly interact with the server to set up
clients and their permissions and allows shifting the responsibility of managing client access
from the infrastructure provider to a service provider.

CKS is implemented as an Enterprise Java Bean using a Stateful Session configuration.
Communication between the client and server component uses the Java RMI-IIOP protocol
which allows for a small footprint of the client component as well as good interoperability
with established middleware components and firewalls.

Terminology

Certain terms and abbreviations used in the context of this key management system will be
introduced in the following.

Server: The server component of the key management system. It stores all key material and
responds to requests from client instances.

Client: The client component of the key management system. It is used by an application to
store and retrieve key material. The physical machine on which the client component
runs is referred to as a server as well but is not to be confused with the server component
of the key management system. In the context of this discussion, server always refers to
the server component.

75

6 A Key Management System for IBM SmartCloud Archive

Tenant: Is used as a term for a customer of a cloud service. Data, application instances
an key material is said to belong to a tenant, signifying that it belongs to a specific
customer and must not be available to other customers.

Server Certificate: The public key certificate used by the server. It is also the root certificate
of the Public Key Infrastructure used by the key management system.

Server Private Key (SPK): Refers to the private key belonging to the Server Certificate.
Further Certificates and public key pairs are issued for each tenant and client. See
Section Certificates for a detailed description.

Server Master Key (SMK): The SMK is used to de- and encrypt all other key material on the
server. The relationship between the keys is described in the

Tenant Master Key (TMK): The TMK is used by the server to encrypt all key material be-
longing to a certain tenant. It is protected by the SMK.

Server Administrator: The responsibility of the Server Administrator are to set up new
Tenants and manage the server configutation.

Tenant Administrator: The Tenant Administrator holds the Tenant Certificate and private
key in order to introduce new clients, and revoke Client Certificates.

Client Component

The client component consists of a Java library which handles communication with the
key management server and can be integrated into any Java application. The client library
features a high-level API providing access to key material on the server while abstracting the
authentication and communication process.

Server Component

The server component stores and manages the key server contents in an encrypted form, his
server certificate private key as well as all the valid tenant certificates and a client revocation
list. Three individual storage mechanisms are in use to meet these requirements. A database
instance stores operational data including revoked clients, tenants and key material. The
server certificate and the corresponding private key are stored in a PKCS12 key store which
is secured with the server master key. General configuration data concerning database
connectivity and certificate location is kept in a configuration file.

76

6.2 Use Cases

System Architecture

The components making up the CKS system and their relationship are shown in Figure
6.1. The Server component lives separated from the client in a JVM running on the server
hardware in a secure location. The client application using the key server integrates a client
library JAR that implements the communication protocol and provides high-level functions
to access the key management server. For testing and development, a small servlet-based
test client was implemented that can also be used to perform basic maintenance tasks like
listing server content, and removing objects. Both server and client require access to private
key of their respective certificate. On the server the private key is secured using the Server
Master Key, on the client a passphrase is used. Access to the SMK and passphrase must
be provided when starting the services. Methods for securely storing and providing these
initial secrets are presented in Section 4.3.

Server
EJB

Remote
interface

Client
library

Application

Test
client

DB
instance

Certificate Certificate
Key

passphrase

Server JVM

Key
passphrase

Client JVM

RMI-IIOP

JDBC

OS-protected

OS-protected or
PKCS11 hardware

Figure 6.1: CKS — System Architecture

6.2 Use Cases

Before deciding on further design aspects of CKS like data structures and functions, the use
cases for the key store have to be defined.

Following the requirements identified in chapter 4, and the design decisions stated in
the beginning of this chapter, the following use cases should be supported by the key
management system.

77

6 A Key Management System for IBM SmartCloud Archive

UC1 — Initializing the Server

The Server Administrator installs the server component and sets up the basic configuration
and key material.

Success steps

• Server Administrator: Deploy the Server component on an application server.

• Server Administrator: Provide the configuration file and run the Server component’s
configuration tool to create the cryptographic material.

• Server configuration tool: Generate Server Master Key as well as certificate and protected
private key.

• Server Administrator: store the SMK in the secure location discussed in Section 4.3.

UC2 — Setting up a Tenant Administrator

The Server Administrator configures a new tenant instace on the server and passes the
cryptographic material on to the new Tenant Administrator.

Success steps

• Server Administrator: Use the Server configuration tool to create cryptographic material
for the new Tenant and initialize the Tenant configuration.

• Server configuration tool: Generate a Tenant Certificate and private key and TMK. Output
the Certificate and private key and store the configuration on the Server.

• Server Administrator: Securely pass the key material to the Tenant Administrator.

UC3 — Initializing a Client

A Tenant Administrator installs the client component and prepares it for operation by issuing
a new Client Certificate.

Success steps

• Tenant Administrator: Issue a new Client Certificate containing the desired access
permissions and sign it using the Tenant Private Key.

• Tenant Administrator: Deploy the client component on an application server with the
new Client Certificate and private key.

• Tenant Administrator: Store a copy of the Client Certificate for use in client revocation.

78

6.2 Use Cases

UC4 — Revoking a Client

A Tenant Administrator removes a compromised Client by revoking the Client’s certificate.

Success steps

• Tenant Administrator: Connect to the Server.

• Server: Authentication successful.

• Tenant Administrator: Transmit affected Client Certificate, request revocation.

• Server: Operation completed.

Error cases

• Authentication failure.

UC5 — Client to Server authentication

Before a Client instance can request operations on the Server, it needs to be authenticated
through the 2-way authentication procedure described in Section 6.7.

As step one, this operation if followed by one of the use cases below, consituting a two-step
self-contained operation.

Success steps

• Client: Request authentication, send own certificate.

• Server: Verify certificate signature with the stored Tenant certificate, enter Session Key
negotiation phase.

• Client: Complete Session Key negotiation.

• Server: Authentication successful.

Error cases

• Authentication failure.

• Client Certificate is no longer valid, or revoked.

79

6 A Key Management System for IBM SmartCloud Archive

UC5.1 — Storing new key material on the Server

After successful authentication, a Client may store key material on the server depending on
the predefined access permissions.

Success steps

• Client: Connect to the server.

• Server: Authentication successful.

• Client: Provide new object with alias and access policy, request insert operation.

• Server: Operation successful.

Error cases

• Client is not allowed to insert objects.

• Object alias is already taken.

UC5.2 — Requesting key material from the Server

After successful authentication, a client may request objects from the server depending the
access policy stored in the Client Certificate.

Success steps

• Client: Connect to the server.

• Server: Authentication successful.

• Client: Request object by object alias.

• Server: Operation successful, object returned.

Error cases

• The Client is not allowed to access the object.

• The object does not exists.

• To prevent information disclosure, the Client should not be able to distinguish these
error cases.

80

6.2 Use Cases

UC4.3 — Modifying key material on the Server

After successful authentication, a client may modify key material on the Server by providing
the object alias, and the new value.

Success steps

• Client: Connect to the server.

• Server: Authentication successful.

• Client: Request modification by object alias and new value.

• Server: Operation successful.

Error cases

• The Client is not allowed to access the object.

• The object does not exists.

• To prevent information disclosure, the Client should not be able to distinguish these
error cases.

UC5.5 — Remove an object from the Server

After successful authentication, a client may remove key material from the Server by provid-
ing the object alias and sufficient access permissions.

Success steps

• Client: Connect to the server.

• Server: Authentication successful.

• Client: Request removing an object by providing the object alias.

• Server: Operation successful.

Error cases

• The Client is not allowed to access the object.

• The object does not exists.

• To prevent information disclosure, the Client should not be able to distinguish these
error cases.

81

6 A Key Management System for IBM SmartCloud Archive

6.3 Features

Following the use cases and the design guidelines stated above, the Cloud Key Store system
will have the following features in order to fulfill the requirements.

Feature 1. A physical separation between a client using, and a server storing and managing the key
material will be provided.

Feature 2. Through an access scheme it is possible to assign clients the permission to create, read and
write content.

Feature 3. The revocation of these permissions is supported.

Feature 4. Interaction with the server is minimized by delegating the task of introducing clients and
defining their access permissions to a Tenant Administrator.

Feature 5. Clients need to authenticate against the server while the server is capable of identifying
individual clients through the authentication and enforce access restrictions.

Feature 6. Due to the support of multi-tenancy, CKS allows for tenant separation through the use of
separate logical name-spaces and separate cryptographic keys per tenant.

Feature 7. CKS uses a relational database for storing the key store content but employs an encryption
scheme above the database layer. Therefore backup and high-availability features present in the DBMS
can be harnessed by CKS without security concerns.

6.4 Certificates

Public key certificates are used in CKS for three purposes. To verify the identity of com-
munication partners, to negotiate symmetric encryption keys during communication and
to specify access rights. This is achieved by issuing certificates to the server, each tenant
and each client. The server is positioned as a certificate authority who possesses a root
certificate which signs each tenant certificate. The tenant certificate is then used to sign client
certificates, as seen in Figure 6.2.

Server
Signed by:
Server

Tenant_01
Signed by:
Server

Tenant_01
Client_01
Signed by:
Tenant_01
ACL:
R: 1, 2, 3
W: 1
A: 1, 2, 3

signs signs

signs

S S T

Figure 6.2: CKS — Certificate Relationship

82

6.5 Encryption Scheme

Certificates can store identity, and additional information about the subject they are issued to.
The server certificate does not necessarily need to contain any subject information while the
tenant certificate contains a unique tenant ID that is used to pass on to client certificates, and
later associate a client with a tenant. Besides this tenant ID, the client certificate contains a
unique client ID for identification and auditing purposes. The certificate is also used to hold
the access control list for the client, which cannot be manipulated since the whole certificate
is signed by the tenant certificate. Through this mechanism, the server does not need to have
a list of allowed clients and their access permissions, but can read this information from
the client certificate during a key request. This allows for clients to be introduced to the
server without direct interaction with the server, but by a tenant administrator alone who is
in possession of the valid tenant certificate and the associated private key.

Revocation of client certificates is possible by the tenant administrator through a revocation
list on the server which is checked by the server process on each client request.

This certification scheme requires the distribution of server, tenant and client certificates
to the individual subject. The following shows the distribution of certificates, and their
purpose.

• Server

– Server certificate & private key: Verification of local tenant certificates, de- and
encryption of stored keys, negotiation of communication session keys.

– Tenant certificates: Verification of client certificates during key requests.

• Tenant administrator

– Tenant certificate & private key: Signing of newly issued client certificates, identity
verification against the server for client revocation requests.

– Server certificate: Distribution to newly instantiated clients.

– Client certificates: When revoking a client certificate, the administrator needs to
know its hash value to communicate it to the server.

• Client instance

– Client certificate & private key: Identity verification and session key negotiation
during communication with the server.

– Server certificate: Verification of the server identity, session key negotiation.

6.5 Encryption Scheme

CKS uses a combination of cryptographic and programmatic security in its operation to
provide a strong security as well as reasonable administrative overhead. To provide tenant
separation and security of data at rest all sensitive material is encrypted. For each tenant a
symmetric encryption key (Tenant Master Key, TMK) is generated and used to encrypt all

83

6 A Key Management System for IBM SmartCloud Archive

key material belonging to this customer. All TMKs are themselves encrypted with the Server
Master Key (SMK). The SMK is also used to secure the private key belonging to the server
certificate. The SMK is kept in a secured memory location during operation and has to be
provided on server startup either manually, read from storage, or from a secure hardware
cryptographic module like a Trusted Platform Module (TPM)

a the private key of the server certificate. Access to this private key requires a secure pass
phrase, the server master key (SMK) which is kept in memory during the operation of the
CKS and has to be provided at start-up through one of the methods discussed in Section 4.3
depending on the security requirements.

6.6 Access Scheme

To allow a more flexible use of the key management system, different access patterns for
each client instance are supported. Additionally the server should manage multiple tenants
and allow a strict separation of access pattern between tenants.

This is achieved by placing the key material into access groups, and assigning clients to these
groups with a set of permissions to read, write or store new objects. Access groups and
objects (key material) are separated by tenant, and so are the clients. Each client certificate
contains information about the access group membership which makes the definition of
cross-tenant access paths impossible. A client accessing key material does not need to know
to which group it belongs, the server checks if the client has the necessary access permission.
When storing new key material, the client must specify to which access group it should
belong.

Each client certificate contains three access control lists for reading, modifying and storing
new objects. Each of these lists contain a set of access group identifiers.

The separation of duties between the Server and Tenant Administrator is achieved through
this method since Tenant Administrators assign the ACLs to Client instances. A separation
of duties on Clients is realized by the choice of access groups. Clients may have disjoint
access group membership, preventing them from accessing the other Client’s key material.
Relationship types (e.g. Producer - Consumer) can be modelled with access groups and
ACLs by assigning different permissions for the same group.

Figure 6.3 shows a model of this access scheme.

6.7 Communication Protocol

The communication between client and server uses the RMI-IIOP protocol and employs a
custom, integrated authentication and encryption mechanism. This secures the data being
transmitted beyond any lower level security mechanism like SSL and reduces the need to
implement such an infrastructure, avoiding an insecure configuration.

84

6.8 Data Structure

Client

Object

Group

Tenant

contains

Is
member

Belongs
to

Belongs
to

Belongs
to

*

*

*

1

1

1

1

*

*

*

Figure 6.3: CKS — Access Scheme

All key requests constitute a complete, self-contained operation and require authentication
before the request is answered. The authentication mechanism is based on two-way au-
thentication and a fast challenge-response scheme to negotiate a symmetric session key
used for encrypting the content of the communication. The client starts by transmitting his
certificate to show his identity to the server, and a random number used in the creation of
the session key. The server verifies the identity of the certificate by checking the signature,
and responds with the random number generated by the client and a new one generated by
the server. The client verifies his random number and thereby verifies the server’s identity.
He responds with the server’s random number, verifying his identity towards the server. The
now exchanged random number allow for the computation of a session key on both sides.

See Figure 6.4 for the sequence of events in this authentication process.

6.8 Data Structure

The server component of the key management system needs to store configuration data to
recognize clients, authorize requests, and manage the key store. This data is stored in a
relational database on the server which allows delegation of functionality to the database
and the aforementioned easy backup/recovery as well as high availability through replicated
database instances.

The database schema needed to support the required functionality is shown below. One
database is used for storing information about tenants and their clients to tie a request to the
specific tenant before checking permissions.

85

6 A Key Management System for IBM SmartCloud Archive

Client Server

Known information Known information Communication

Generate
random number

ClientRnd

InitialChallenge(ServerPubKey(ClientRnd), ClientCert)
ClientRnd

Generate
random number

ServerRnd

ResponseChallenge(ClientPubKey(ClientRnd, ServerRnd))

Compare Rnd,
authenticate server

ServerRnd

FinalResponse(ServerPubKey(ServerRnd))

Compare Rnd,
authenticate client

SessionKey

SessionKey

Communication encrypted with session key

ClientPrivKey

ClientPubKey

ServerPubKey

ServerPrivKey

ServerPubKey

ClientPubKey

ClientCert ServerCert

Figure 6.4: CKS — Two-Way Authentication

Another database contains hash values of revoked client certificates. A dedicated database is
assigned to each tenant, storing the specific access rules and the actual key material.

Database ServerConfiguration:
Tenants: (TenantID, Name)
TenantCertificates: (

:::::::::
TenantID, TenantCertificate)

TenantMasterKeys: (
:::::::::
TenantID, TMK)

RevokedClients: (
:::::::::
TenantID, ClientCertificateHash)

Database TenantID:
Groups: (GroupID, Description)
Objects: (ObjectAlias, ObjectReference)
GroupObjects: (

::::::::
GroupID,

::::::::::::
ObjectAlias)

86

6.8 Data Structure

To assure data integrity of the server configuration, these constraints were defined to enforce
the database schema.

• When deleting a row in Tenants, delete all rows in TenantCertificates,
TenantMasterKeys, RevokedClients belonging to that tenant and delete the
TenantID database.

• Only allow deletion of groups if no more objects are referencing it.

• Deletion of GroupObjects is not allowed.

• When deleting a row in Objects, delete all rows in GroupObjects referencing that
object.

87

7 Conclusion and Outlook

This thesis has shown the vast amount of different service configurations possible in a cloud
environment, and has analyzed the security implications of various design aspects. It was
pointed out that the combinations of cloud deployment models, service models and tenant
separation models create a diverse landscape of possible cloud services with individual
security requirements and possibilities for attack vectors.

While cloud services are comprised of existing technologies and solutions, it was shown that
they not only inherit security vulnerabilities from these components, but create new surface
area for novel attacks geared specifically towards cloud computing.

The concept of the cross-tenant attack takes existing attack vectors and applies them to this
new environment, creating threats of higher severity than before. This multi-tenant property
of cloud computing is the driving force behind all new threats towards cloud computing,
and relies on the basic premise of the cloud to share components and infrastructure amongst
customers in order to create affordable, high-quality services.

Due to these implications, the concept of multi-tenancy remains the most controversial in
cloud computing and the number one factor for customers to go in the direction of private
clouds and single-tenant configurations.

This ongoing trend contradicts the premise of cloud computing in that it relinquishes the
advantages that can be achieved by harnessing the economy of scale seen in large-scale
consumer cloud applications like social networks or email services.

In order for enterprise customers to accept the multi-tenant concept and take full advan-
tage of cloud computing, sophisticated security concepts that improve tenant isolation are
necessary.

The distinction made in this thesis between logical and physical access to the system under
the light of a shared infrastructure shows that the severity attributed to a malicious insider
rises significantly when the physical infrastructure is no longer under the control of the
customer.

While the system can be defended against logical access and remote attackers with conven-
tional measures, the protection against an attacker with physical access under the light of
a multi-tenant infrastructure raises a new field of study that can only party benefit from
established security measures.

In order to provide a basic set of tools for creating such a multi-tenant environment secured
against malicious insiders, the concept of encryption was introduced. The basic mechanism

89

7 Conclusion and Outlook

of encryption to reduce the amount of sensitive information from gigabytes down to a small
encryption key was used throughout the proposed security concept.

The basic premise for this rationale is the fact that ultimately data security relies on physically
securing some system resources against unauthorized access. To make this approach feasible,
the sensitive-information reducing property of encryption was used to first reduce large
amounts of stored sensitive data to a number of encryption keys, which are further reduced
to an authentication key.

This reduction process created dependencies between the involved objects data, encryption
key and authentication key. These objects can now be physically separated while their
dependency remains preserved. The physical separation of these objects allows fulfilling the
requirement of physically securing sensitive information.

To achieve this goal, the concept of a central key management system was introduced to
play the part of the only physically secured infrastructure component in the system. It was
shown that this approach lacks widespread support in applications and services, which lead
to the implementation of the prototypical Cloud Key Store system.

Under the light of physical security, it was analyzed how interaction with this crucial
component can be minimized in order to reduce the surface area for possible attacks.

The concept of certificate based authorization was introduced as a means of further delegat-
ing responsibilities away from the central key management component, to trusted tenant
administrators.

It was shown that the proposed security design involving a central key management system
presents a possibility to secure a multi-tenant cloud environment against malicious insiders
under less strict conditions than previous approaches. This suggests further research in the
central component of this approach, the key management server and client component.

While vendor-specific proprietary solutions for such a scenario exist in some commercial
encryption products, further research in this topic is necessary in order for this approach to
be widely recognized as a trustable solution for enterprise cloud environments.

An important factor for wide-spread adoption of such a system is not only its reputation, but
also its availability. It is necessary to have a common standard and interoperability protocol
for client-server communication with the central key management component.

Once these conditions are met and widespread support for encryption and key management
solutions for a cloud environment exist, it will be possible for cloud providers to create
a service with unparalleled data security only comparable to conventional on-premise IT-
systems, eliminating the last reservations customers have towards the adoption of cloud
computing.

90

Bibliography

[AAB+
05] W. J. Armstrong, R. L. Arndt, D. C. Boutcher, R. G. Kovacs, D. Larson, K. A.

Lucke, N. Nayar, R. W. Swanberg. Advanced virtualization capabilities of
POWER5 systems. IBM Journal of Research and Development, 49(4.5):523 –532,
2005. doi:10.1147/rd.494.0523. (Cited on page 11)

[AB11] C. R. Andrey Bogdanov, Dmitry Khovratovich. Biclique Cryptanalysis of the
Full AES. Technical report, Microsoft Research Redmond, USA, 2011. (Cited on
page 28)

[Amo94] E. Amoroso. Fundamentals of Computer Security Technology. Prentice Hall, 1994.
(Cited on pages 16, 37 and 69)

[And01] R. Anderson. Security Engineering. John Wiley & Sons, Chichester, 2001. (Cited
on pages 27 and 28)

[ASR09] M. Alomari, K. Samsudin, A. Ramli. A Study on Encryption Algorithms and
Modes for Disk Encryption. In 2009 International Conference on Signal Processing
Systems, pp. 793 –797. 2009. doi:10.1109/ICSPS.2009.118. (Cited on page 25)

[BEE+
10] J. Bacon, D. Evans, D. M. Eyers, M. Migliavacca, P. Pietzuch, B. Shand. Enforcing

end-to-end application security in the cloud (big ideas paper). In Proceedings of
the ACM/IFIP/USENIX 11th International Conference on Middleware, Middleware
’10, pp. 293–312. Springer-Verlag, Berlin, Heidelberg, 2010. URL http://dl.acm.
org/citation.cfm?id=2023718.2023739. (Cited on page 35)

[BS99] J. K. Bruce Schneier. Secure Audit Logs to Support Computer Forensics. Coun-
terpane Systems, 101 East Minnehaha Parkway, Minneapolis, MN 55419, 1999. URL
https://www.schneier.com/paper-auditlogs.pdf. (Cited on page 22)

[bsi10] Security Recommendations for Cloud Computing Providers. Technical
report, Federal Office for Information Security (BSI), 2010. URL https:
//www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Minimum_
information/SecurityRecommendationsCloudComputingProviders.pdf.
(Cited on page 49)

[Bö11] A. Börner. Orchestration and Provisioning of Dynamic System Topologies. Master’s
thesis, University of Stuttgart, 2011. (Cited on page 19)

[CGJ+09] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, J. Molina.
Controlling data in the cloud: outsourcing computation without outsourcing
control. In Proceedings of the 2009 ACM workshop on Cloud computing security,

91

http://dl.acm.org/citation.cfm?id=2023718.2023739
http://dl.acm.org/citation.cfm?id=2023718.2023739
https://www.schneier.com/paper-auditlogs.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Minimum_information/SecurityRecommendationsCloudComputingProviders.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Minimum_information/SecurityRecommendationsCloudComputingProviders.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Minimum_information/SecurityRecommendationsCloudComputingProviders.pdf

Bibliography

CCSW ’09, pp. 85–90. ACM, New York, NY, USA, 2009. doi:http://doi.acm.
org/10.1145/1655008.1655020. URL http://doi.acm.org/10.1145/1655008.
1655020. (Cited on page 10)

[CSA10] CSA. Top Threads to Cloud Computing. Technical report, Cloud Security
Alliance, 2010. URL http://www.cloudsecurityalliance.org/topthreats/
csathreats.v1.0.pdf. (Cited on pages 49 and 65)

[CSS+09] M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, D. Zamboni. Cloud
security is not (just) virtualization security: a short paper. In Proceedings of the
2009 ACM workshop on Cloud computing security, CCSW ’09, pp. 97–102. ACM,
New York, NY, USA, 2009. doi:http://doi.acm.org/10.1145/1655008.1655022.
URL http://doi.acm.org/10.1145/1655008.1655022. (Cited on page 65)

[DH76] W. Diffie, M. Hellman. New directions in cryptography. Information Theory,
IEEE Transactions on, 22(6):644 – 654, 1976. doi:10.1109/TIT.1976.1055638. (Cited
on page 17)

[DLFMT04] G. Di Lucca, A. Fasolino, M. Mastoianni, P. Tramontana. Identifying cross
site scripting vulnerabilities in Web applications. In Web Site Evolution, 2004.
WSE 2004. Proceedings. Sixth IEEE International Workshop on, pp. 71 – 80. 2004.
doi:10.1109/WSE.2004.10013. (Cited on page 53)

[DMLW08] S. M. Diesburg, C. R. Meyers, D. M. Lary, A.-I. A. Wang. When cryptography
meets storage. In Proceedings of the 4th ACM international workshop on Storage
security and survivability, StorageSS ’08, pp. 11–20. ACM, New York, NY, USA,
2008. doi:http://doi.acm.org/10.1145/1456469.1456472. URL http://doi.acm.
org/10.1145/1456469.1456472. (Cited on page 25)

[DMT11] K. Dahbur, B. Mohammad, A. B. Tarakji. A survey of risks, threats and vulnera-
bilities in cloud computing. In Proceedings of the 2011 International Conference on
Intelligent Semantic Web-Services and Applications, ISWSA ’11, pp. 12:1–12:6. ACM,
New York, NY, USA, 2011. doi:http://doi.acm.org/10.1145/1980822.1980834.
URL http://doi.acm.org/10.1145/1980822.1980834. (Cited on page 51)

[eni10] Cloud Computing Risk Assessment, 2010. URL https://www.enisa.europa.
eu/act/rm/files/deliverables/cloud-computing-risk-assessment. (Cited
on pages 49 and 65)

[Fri11] F. Fritz. Maximization of resource utilization through dynamic provisioning and
deprovisioning in the cloud. Master’s thesis, University of Stuttgart, 2011. P. 11.
(Cited on pages 14 and 19)

[Gol97] S. Goldwasser. New directions in cryptography: twenty some years later (or
cryptograpy and complexity theory: a match made in heaven). In Foundations
of Computer Science, 1997. Proceedings., 38th Annual Symposium on, pp. 314 –324.
1997. doi:10.1109/SFCS.1997.646120. (Cited on page 17)

92

http://doi.acm.org/10.1145/1655008.1655020
http://doi.acm.org/10.1145/1655008.1655020
http://www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://doi.acm.org/10.1145/1655008.1655022
http://doi.acm.org/10.1145/1456469.1456472
http://doi.acm.org/10.1145/1456469.1456472
http://doi.acm.org/10.1145/1980822.1980834
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
https://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment

Bibliography

[HAF+
07] G. Hunt, M. Aiken, M. Fähndrich, C. Hawblitzel, O. Hodson, J. Larus, S. Levi,

B. Steensgaard, D. Tarditi, T. Wobber. Sealing OS processes to improve
dependability and safety. SIGOPS Oper. Syst. Rev., 41:341–354, 2007. doi:
http://doi.acm.org/10.1145/1272998.1273032. URL http://doi.acm.org/10.
1145/1272998.1273032. (Cited on page 63)

[Har07] L. Hars. Discryption: Internal Hard-Disk Encryption for Secure Storage. Com-
puter, 40(6):103 –105, 2007. doi:10.1109/MC.2007.202. (Cited on page 24)

[IT10] D. W. S. Iryna Tsvihun, Philipp Stephanow. Vergleich der Sicherheit tradi-
tioneller IT-Systeme und Public Cloud Computing Systeme. Technical report,
Fraunhofer Institut, 2010. (Cited on page 11)

[KAAS11] K. Khan, M. Amin, A. Afridi, W. Shehzad. SELinux in and out. In Communication
Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on, pp. 339

–343. 2011. doi:10.1109/ICCSN.2011.6014064. (Cited on page 46)

[KN08] S. H. P. Karsten Nohl, David Evans. Reverse-Engineering a Cryptographic RFID
Tag. USENIX Security Symposium, 2008. (Cited on page 18)

[LC10] M. Liang, C. wen Chang. Research and design of full disk encryption based
on virtual machine. In Computer Science and Information Technology (ICCSIT),
2010 3rd IEEE International Conference on, volume 2, pp. 642 –646. 2010. doi:
10.1109/ICCSIT.2010.5565144. (Cited on page 25)

[NJ05] A. Nadeem, M. Javed. A Performance Comparison of Data Encryption Algo-
rithms. In Information and Communication Technologies, 2005. ICICT 2005. First
International Conference on, pp. 84 – 89. 2005. doi:10.1109/ICICT.2005.1598556.
(Cited on page 28)

[Pav11] D. Pavlovic. Gaming security by obscurity. In Proceedings of the 2011 workshop
on New security paradigms workshop, NSPW ’11, pp. 125–140. ACM, New York,
NY, USA, 2011. doi:http://doi.acm.org/10.1145/2073276.2073289. URL http:
//doi.acm.org/10.1145/2073276.2073289. (Cited on page 18)

[Pha10] H. Pham. User interface models for the cloud. In Adjunct proceedings of the 23nd
annual ACM symposium on User interface software and technology, UIST ’10, pp.
359–362. ACM, New York, NY, USA, 2010. doi:http://doi.acm.org/10.1145/
1866218.1866223. URL http://doi.acm.org/10.1145/1866218.1866223. (Cited
on page 11)

[PM11] T. G. Peter Mell. The NIST Definition of Cloud Computing, 2011. (Cited on
page 12)

[RSA83] R. L. Rivest, A. Shamir, L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 26:96–99, 1983. doi:http://doi.
acm.org/10.1145/357980.358017. URL http://doi.acm.org/10.1145/357980.
358017. (Cited on page 18)

93

http://doi.acm.org/10.1145/1272998.1273032
http://doi.acm.org/10.1145/1272998.1273032
http://doi.acm.org/10.1145/2073276.2073289
http://doi.acm.org/10.1145/2073276.2073289
http://doi.acm.org/10.1145/1866218.1866223
http://doi.acm.org/10.1145/357980.358017
http://doi.acm.org/10.1145/357980.358017

Bibliography

[Sav11] L. Savu. Cloud Computing: Deployment Models, Delivery Models, Risks and
Research Challenges. In Computer and Management (CAMAN), 2011 International
Conference on, pp. 1 –4. 2011. doi:10.1109/CAMAN.2011.5778816. (Cited on
page 50)

[Sha49] C. Shannon. Communication Theory of Secrecy Systems. Technical report, Bell
System Technical Journal 28(4):656–715, 1949. (Cited on page 17)

[SKS11] S. Sengupta, V. Kaulgud, V. Sharma. Cloud Computing Security–Trends and
Research Directions. In Services (SERVICES), 2011 IEEE World Congress on, pp.
524 –531. 2011. doi:10.1109/SERVICES.2011.20. (Cited on page 7)

[SS94] R. Sandhu, P. Samarati. Access control: principle and practice. Communications
Magazine, IEEE, 32(9):40 –48, 1994. doi:10.1109/35.312842. (Cited on page 34)

[sta09a] Information Technology Security Standards, 2009. URL https://w3-03.
ibm.com/transform/sas/as-web.nsf/ContentDocsByTitle/ITCS104. (Cited
on pages 50 and 57)

[sta09b] PKCS 11 Base Functionality v2.30: Cryptoki, 2009. (Cited on page 47)

[SV11] M. Siddiqui, D. Verma. Cross site request forgery: A common web application
weakness. In Communication Software and Networks (ICCSN), 2011 IEEE 3rd
International Conference on, pp. 538 –543. 2011. doi:10.1109/ICCSN.2011.6014783.
(Cited on page 56)

[Tom07] S. Tomasco. IBM Cloud computing, 2007. URL https://www-03.ibm.com/
press/us/en/presskit/29681.wss. (Cited on page 19)

[XF10] I. X-Force. IBM X-Force R©
2010 Trend and Risk Report. Technical re-

port, IBM Security Solutions, 2010. URL https://www14.software.ibm.
com/webapp/iwm/web/signup.do?source=swg-spsm-tiv-sec-wp&S_PKG=
IBM-X-Force-2010-Trend-Risk-Report. (Cited on pages 52 and 63)

[XF11] I. X-Force. IBM X-Force R©
2011 Mid-year Trend and Risk Report. Technical report,

IBM Security Solutions, 2011. URL https://public.dhe.ibm.com/common/ssi/
ecm/en/wgl03009usen/WGL03009USEN.PDF. (Cited on pages 52 and 57)

All links were last followed on March 06, 2012.

94

https://w3-03.ibm.com/transform/sas/as-web.nsf/ContentDocsByTitle/ITCS104
https://w3-03.ibm.com/transform/sas/as-web.nsf/ContentDocsByTitle/ITCS104
https://www-03.ibm.com/press/us/en/presskit/29681.wss
https://www-03.ibm.com/press/us/en/presskit/29681.wss
https://www14.software.ibm.com/webapp/iwm/web/signup.do?source=swg-spsm-tiv-sec-wp&S_PKG=IBM-X-Force-2010-Trend-Risk-Report
https://www14.software.ibm.com/webapp/iwm/web/signup.do?source=swg-spsm-tiv-sec-wp&S_PKG=IBM-X-Force-2010-Trend-Risk-Report
https://www14.software.ibm.com/webapp/iwm/web/signup.do?source=swg-spsm-tiv-sec-wp&S_PKG=IBM-X-Force-2010-Trend-Risk-Report
https://public.dhe.ibm.com/common/ssi/ecm/en/wgl03009usen/WGL03009USEN.PDF
https://public.dhe.ibm.com/common/ssi/ecm/en/wgl03009usen/WGL03009USEN.PDF

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Tim Waizenegger)

	1 Introduction
	1.1 Cloud Computing
	Cloud Technologies
	Virtualization

	Cloud Models
	Cloud Service Models

	Multi-tenancy

	1.2 Security Terminology
	Security Principles
	Security by Design & Open Security
	Security through Obscurity

	1.3 IBM SmartCloud Archive

	2 Cryptography
	2.1 Introduction
	2.2 Encrypting Data
	Data at Rest
	Preventing and Detecting Data Manipulation
	Encrypting Drives and Partitions

	Data in Motion

	2.3 Encryption Algorithms
	Cryptographic Principles
	The One-Time Pad
	Modes of Operation
	Hash Functions

	Asymmetric Encryption

	3 Authentication and Authorization
	3.1 Authentication
	Authenticating Users
	Certificate based Authentication
	Certification Process

	Authenticating Systems and Processes
	Deep Authentication

	3.2 Authorization
	Certificated based Authorization

	4 Key Management
	4.1 Introduction
	Identity management
	Security of data at rest:
	Security of operations:
	Security of communication:

	Encryption key management
	Security of data at rest:
	Security of operations:
	Security of communication:

	System credential management
	Security of data at rest:
	Security of operations:
	Security of communication:

	Conclusion

	4.2 Key Management Concepts
	Local Key Store without Protection
	Local Key Store with Software Assisted Protection
	Local Key Store with Hardware Assisted Protection
	Client-Server Configuration without Client-Credential Protection
	Client-Server Configuration with Client-Credential Protection

	4.3 Security Concerns
	Encryption Scheme
	Providing an Initial Master Key
	Storing the Master Key
	Preventing Access to the Master Key

	4.4 State of the Art Solutions
	Public-Key Cryptography Standards (PKCS)
	Websphere Keystore
	Implementation

	5 Cloud Solutions and Security
	5.1 Threat Assessment and Standardization Efforts
	5.2 Tenant Isolation and Cloud Delivery Models
	5.3 Common Threats to Cloud Components
	Custom Web Applications and User Interface
	Code Injection Vulnerability
	Cross-Site Scripting Attack (XSS)
	Cross-Site Request Forgery Attack (CSRF)
	The Prepared Web Site

	Authentication Vulnerabilities
	Middleware Components and Service Layer
	SQl Injection Attack

	Network Infrastructure
	Points of Entry
	Mitigation

	Operating Systems and Processes
	Points of Entry
	Mitigation

	Virtualization Technologies
	Points of Entry
	Mitigation

	Physical Security
	Attack Vector
	Mitigation

	5.4 IBM SmartCloud Archive — Architecture and Components
	5.5 IBM SmartCloud Archive — Processes and Activities
	5.6 IBM SmartCloud Archive — Security Evaluation
	User Interface
	Cross-Site request Forgery (CSRF)
	Cross-Site Scripting (XSS)

	Middleware
	Infrastructure Components

	6 A Key Management System for IBM SmartCloud Archive
	6.1 Architecture and Design
	Terminology
	Client Component
	Server Component
	System Architecture

	6.2 Use Cases
	UC1 — Initializing the Server
	UC2 — Setting up a Tenant Administrator
	UC3 — Initializing a Client
	UC4 — Revoking a Client
	UC5 — Client to Server authentication
	UC5.1 — Storing new key material on the Server
	UC5.2 — Requesting key material from the Server
	UC4.3 — Modifying key material on the Server
	UC5.5 — Remove an object from the Server

	6.3 Features
	6.4 Certificates
	6.5 Encryption Scheme
	6.6 Access Scheme
	6.7 Communication Protocol
	6.8 Data Structure

	7 Conclusion and Outlook
	Bibliography

