
Institute of Computer Architecture and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47
D–70569 Stuttgart

Master Thesis Nr. 3304

Modeling of Design-for-test
infrastructure in complex

Systems-on-chips

David Prasetyo Buntoro

Course of Study: INFOTECH

Examiner: Prof. Dr. rer. nat. habil. Hans-Joachim
Wunderlich

Supervisor: M.Sc. Alejandro Cook

Dipl.-Inf. Laura Rodríguez Gómez

Dipl.-Inf. Dominik Ull

Commenced: 17.02.2012

Completed: 18.08.2012

CR-Classification: B5.1,B5.3,C5.3

Every integrated circuit contains a piece of design-for-test (DFT) infrastructure
in order to guarantee the chip quality after manufacture. The DFT resources are
employed only once in the fab and are usually not available during regular system
operation.

In order to assess the hardware integrity of a chip over its complete life-cycle, it
is promising to reuse the DFT infrastructure as part of system-level test.

In this thesis, the provided system, a Tricore processor from Infineon, must be
partitioned and modified in order to enable the autonomous structural test of every
component of the system in the field without expensive external tester.

Contents

List of Figures V

1 Introduction 1

2 Literature Review 4
2.1 Electronic System in Automotive . 4

2.1.1 CAN Bus . 4
2.2 SOC Test . 6
2.3 Design for Test . 7

2.3.1 Core-Based Test . 7
2.3.2 Scan Design . 10

2.4 Related Work . 15

3 Proposed Method 17

4 Implementation 19
4.1 System . 19
4.2 TriCore Programming . 19

4.2.1 Memory Mapped I/O . 20
4.2.2 Inserting Constant into SRE File 21

4.3 Peripheral Connection . 21
4.3.1 FPI Bus . 21
4.3.2 FPI Bus Multiplexer . 22

4.4 Test Data Transfer . 22
4.4.1 DFT Infrastructure Bridge 22
4.4.2 CAN Controller . 25

4.5 DFT Infrastructure for Peripherals 26
4.5.1 Tools . 27
4.5.2 EDT Logic Generation . 27

5 Test Application 30
5.1 Internal Test . 31
5.2 External Test . 32

III

Contents

5.3 Experiment Analysis . 33
5.4 Future Work . 33

6 Conlusion 35

Literatur A

IV

List of Figures

1.1 "Bathtub" curve represents the relationship between failure rate and
time . 2

1.2 Traditional and proposed approach 3

2.1 Numerous ECUs in a car . 4
2.2 CAN data frame . 5
2.3 CAN remote frame . 6
2.4 Boundary scan architecture [WST08] 8
2.5 Typical boundary scan cell [WWW06] 9
2.6 IEEE 1500 system architecture[WWW06] 11
2.7 Scan design architecture . 12
2.8 Muxed-D scan cell . 12
2.9 LSSD scan cell . 13
2.10 System of the logic built-in self-test 13
2.11 EDT architecture . 14
2.12 EDT decompressor . 14
2.13 SOC test platform using an embedded processor 16
2.14 Architecture diagram from [JT99] . 16

3.1 Generic test architecture for the proposed approach 18

4.1 Original TriCore SOC from Infineon 20
4.2 Timing diagram for single data transfer of FPI bus read and write . 22
4.3 FPI bus multiplexer configuration 23
4.4 Connect between the DFT infrastructure bridge and the DUT 24
4.5 Two concurrent Finite State Machines 25
4.6 Timing diagram of wishbone bus . 26
4.7 Timing diagram for translating FPI and wishbone bus 27
4.8 TestKompress flow to generate the DFT infrastructure 28
4.9 Counter toplevel transformation: (a) Original design. (b) Counter

after scan insertion. (c) Counter after EDT logic insertion. 29

5.1 Complete test environment . 30
5.2 Internal test scenario . 31

V

List of Figures

5.3 External test scenario . 33

VI

List of Tables

2.1 CAN data frame for base frame format 6

3.1 Relationship between test scenarios and the test requirement 17

4.1 Available address space in the TriCore simulation platform 20
4.2 An example on how to insert a constant value into a SRE file 21
4.3 Registers in the DFT infrastructure bridge 24

5.1 CAN message overhead and DUT test data 31
5.2 Internal test simulation result . 32
5.3 External test simulation result . 32

VII

1 Introduction

Nowadays, automotive systems offer numerous features, mostly realized in software,
which are executed on multiple interacting electronic control unit (ECU). To achieve
a high level of sophistication, the automotive industry has taken advantage of the
processing capabilities made available by continuous advances in semiconductor tech-
nology. According to [Cha09], current cars dedicate 35-40 percent of total cost to
its ECUs, which control areas like powertrain, chassis, interior or infotainment.

Considering the vital role of the ECUs, one defect might disrupt the whole sys-
tem operation. Therefore, the ISO 26262 standard has been proposed as a guidance
for the development of all system components, covering the concept phase, sys-
tem design, hardware & software development, validation, and even later device
production[JCJ+11] . Despite following the safety standard during development
and production phases, ECUs are still prone to hardware failures in the field.

According to the bathtub curve shown in Fig.1.1, the failure rate is characterized
by early lifetime, constant, and wear-out phases. Early lifetime failures occur due
to latent defects [Mak07], which manifest themselves after manufacturing test due
to electrical and thermal stress. Random problems such as electrostatic discharge
(ESD), account for the microelectronic constant failure phase, whereas the advance-
ment of microelectronics to deep sub-micron technology and beyond introduces a
wear-out failure factor due to electromigration, stress migration, time-dependent
dielectric breakdown, and thermal cycling[SABR04]. Similarly, aging degrades the
transistor performance because of hot-carrier degradation effects [Bor05].

Such failures can occur within one of the integrated circuits (IC) in the ECU,
which can happen at any point in the lifetime of the system. In order to assure
the system safety, hardware failures must be promptly identified. The chip must
be tested continuously while operating in the field, so that it is possible to detect a
defect before some critical system fails.

One way to assess the IC’s condition is to test the functional and performance
specifications[BA00]. This method, which is called functional test, applies a large
set of input combinations to the IC and checks its output. While this is possible for
designs with a few number of inputs, thoroughly test an IC with hundreds of inputs
is not feasible and leads to excessive test time.

Another method to test an IC is called structural test. Instead of analyzing the IC
functionality, this method checks the hardware integrity of the SOC. Structural test
is more exhaustive than functional test because of the ability to control and observe
internal signals of an SOC. The test data is generated based on a specific fault

1

1 Introduction

Decreasing
Failure Rate

Constant
Failure Rate

Increasing
Failure Rate

Observed
Failure Rate

Wear Out
Failures

Early
Failure

Random
Failure

Time

F
ai

lu
re

 R
at

e

Figure 1.1: "Bathtub" curve represents the relationship between failure rate and
time

model by a tool called automatic test pattern generator (ATPG). The fault model
represents the behavior of the defect, with stuck-at faults as the most successful
fault models [WWW06]. Stuck-at fault model assumes a defect exists and makes
the signal lines to be stuck at logical ’1’ or ’0’.

Traditionally, IC is once tested structurally in the fab. After it is assembled into
an electronic system like an ECU, there is no direct access to the resources required
to perform structural test. Therefore, failure analysis has to proceed using functional
tests, which may not achieve sufficient fault coverage.

To allow the verification of an IC integrity in the field, a suitable test architecture
for an SOC has been developed in this thesis. The architecture is able to struc-
turally test the core inside the SOC by reusing the available test infrastructure.
While existing test architectures require the presence of an external controller, the
developed test solution can either be performed independently or activated by an
external, low-cost device. For this purpose, the existing functional resources in the
system are employed to access a device under test (DUT) and to transfer the cor-
responding test information. Developing the test architecture involves insertion of
a test interface, test infrastructure, test vector generation, as well as test response
analysis. Fig.1.2 illustrates the difference between the traditional approach and the
proposed method in this thesis.

This thesis report is organized as follows. Chapter two presents the theoretical
background of the test architecture, together with other existing in-field test ar-
chitectures. Chapter three explains the general overview of the proposed solution.
Chapter four discusses the detailed implementation of the system. Chapter five ex-
plains the test application process and the test result. Conclusion is presented in

2

embedded
with :
In-Field
Testing
Capability

Traditional Approach Proposed Approach

Figure 1.2: Traditional and proposed approach

the last chapter.

3

2 Literature Review

2.1 Electronic System in Automotive

Modern automotive electronic systems are composed of multiple independent com-
puter systems. These computer systems, which are called electronic control unit
(ECU), have specialized tasks. They monitor a specific component in the system
such as engine and react according to an external event. Figure 2.1 shows some of
the available ECUs inside a modern car.

Power Steering
Airbag

Engine

Body Control
Module

Light

Cooling Fan

Park Distance
Control

Break

Suspension

Door
Mirror

Figure 2.1: Numerous ECUs in a car

This ECUs is connected through a communication channel to form a distributed
computing system. The common bus protocols in automotive domain are controller
area network (CAN), local interconnect network (LIN), media oriented system trans-
port (MOST), and FlexRay. CAN is a complex bus standard and the most popular
communication network in the automotive domain. LIN is a bus standard that has
less complexity and cheaper than CAN bus. FlexRay is designed to be more reliable
than CAN bus, therefore it is more expensive. MOST is a multimedia bus standard
that is optimized for automotive application.

2.1.1 CAN Bus

CAN is a very popular bus standard in the automotive domain. Taken directly
from the specification, CAN is defined as a serial communications protocol which

4

2.1 Electronic System in Automotive

efficiently supports distributed real time control with a very high level of security
[Gmb91]. Originally developed in 1983 at Robert Bosch GmbH, CAN is used to
create a communication link between multiple ECUs in an automobile.

The data transmission in the CAN bus supports sequential data transfer, i.e. there
is only one message transmitted or received at the same time. To determine which
message owns the bus, the CAN protocol checks the dominant (logic low) and reces-
sive bits (logic high) in the messages. When two nodes in the CAN network transmit
messages at the same time, message with more dominant bits in the beginning wins
the bus arbitration. This means, message priority is reflected by first field of CAN
frame, i.e. the device id inside the arbitration field. The lower the device ID, the
higher its priority.

CAN message, which is also known as CAN frame, has two different standards
called base frame format (CAN 2.0 A) and extended frame format (CAN 2.0 B).
The only difference between those standards is the size of message ID, with 11 bit
and 29 bit to the former and latter standard, respectively. Data transfers between
nodes are facilitated by data frame and remote frame.

2.1.1.1 CAN Data Frame

CAN data frame functionality is implied from its name, i.e. to transfer data between
CAN nodes. It consists of seven different fields, as shown in Figure 2.2. The start of
frame field marks the beginning of the CAN transmission using one dominant bit.
Depending on the standard, the arbitration field contains 11/29 bit device ID and
1 dominant bit of remote transmission request (RTR). The control field consists of
two reserved bits and four data length bits. The unit for the data length is byte,
and the maximum data length size is 8 bytes. The CRC field contains the cyclic
redundancy check (CRC) and one bit CRC delimiter. The transmitter sets the
acknowledge (ACK) field with two recessive bits so that when the target receiver
gets the message correctly, it can acknowledge to the transmitter by sending two
domain bits at the ACK field. The end of frame field contains a sequence of 7
recessive bits, defined as the end of the message. This explanation is summarized
at Table 2.1.

Start of
Frame

Arbitration
Field

Control
Field

Data
Field

CRC ACK End of
Frame

Bus Idle Bus Idle

CAN data frame

Figure 2.2: CAN data frame

5

2 Literature Review

Field name Length
(bit)

Description

Start of frame 1 Start of transmission
Arbitration 12 Contains 11 bit Device ID and 1 bit Remote

transmission request(RTR)
Control field 6 2 reserved bit and 4 bit data length code
Data field 0-64 Data to be transmitted
CRC field 16 15 bit CRC sequence and 1 bit CRC delimiter
ACK field 2 Contains ACK slot and ACK delimiter
End-of-frame (EOF) 7 Contains 7 recessive bits

Table 2.1: CAN data frame for base frame format

2.1.1.2 CAN Remote Frame

A remote frame is transmitted by a node who wants to request some information
from another node. The structure of remote frame is the same as the data frame,
except that the RTR bit is recessive and there is no data field. Figure 2.3 shows the
CAN remote frame.

Start of
Frame

Arbitration
Field

Control
Field

CRC ACK End of
Frame

Bus Idle Bus Idle

CAN remote frame

Figure 2.3: CAN remote frame

2.2 SOC Test

Failures can happen anytime during an ECU’s lifetime. Hence, it must be continu-
ously tested so that a safety mechanism can be launched. For the safety mechanism,
some systems initiate a system shut down when an error is detected, while other
systems reconfigure itself so that it can continue working by degrading the system
performance. To avoid system error because of hardware failures, test procedures
include not only the ECU system as a whole, but also individual components that
compose the system, such as SOC. Depending on the time when structural tests
take place, test is categorized into two groups, online and offline test.

Online test is used to detect faults during normal system operation [AAMH98].

6

2.3 Design for Test

One simple method to justify the system functionality is to use a watchdog timer,
i.e., a peripheral that counts up and gets cleared by the system periodically. If the
software, for any kind of reasons, freezes, the watchdog timer will reach to a certain
value. When this condition occurs, it means that the system is faulty. Besides in
system level, online test is also exist in the core level. [PGSR10] proposes soft-
ware based self-test (SBST) for a microprocessor for online test, whereas [VGPH05]
supports concurrent built-in self-test (BIST).

Offline test at the core level is performed when the device is inactive. One example
of offline test is a BIST, a design for testability (DFT) technique that provides test
capability within the component itself [Wun98]. Normally, offline test is performed
once in the factory for manufacturing test. As there is a need to perform this test
in the field [AS11], it is possible to run the offline test periodically or sporadically.
Periodic testing is a prescheduled test activity[PG05], while sporadic testing happens
only at specific time, such as during device start up or shut down.

2.3 Design for Test

This thesis focuses on nonconcurrent online test to detect a hardware fault using
structural test. Structural test consists of three steps, which are applying the test
pattern to the core under test (CUT), getting the test response from the CUT, and
analyzing the received test response. Such test is covered by a method called DFT.
DFT is a design technique that adds a test infrastructure to the design, so that
controllability and observability of internal signals are acquired.

2.3.1 Core-Based Test

2.3.1.1 Boundary Scan Standard

Boundary scan standard, which is also known as IEEE 1149.1 or JTAG, is a widespread
and successful standard. Originally designed to assist board level test of digital logic
circuits, the standard makes its way to other application like power management,
clock control, verification and debugging [WWW06]. Using the JTAG standard, it
is possible to control the internal register of the chip through the standardized test
interface.

JTAG standard consists of four hardware components: a TAP controller (TAPC),
a test access port (TAP), instruction registers, and other type of data registers such
as bypass register, boundary scan register, or device ID register. TAPC, which is
controlled using test clock (TCK), test mode select (TMS), and test reset (TRST)
pin, controls the mode of operation through the finite state machine (FSM) logic.
Together with test data in (TDI) and test data out (TDO), the five pins are the
necessary signals for the JTAG standard. The FSM logic schedules the access to the
JTAG’s instruction and data register.

7

2 Literature Review

BSC

BSC

BSC

BSC

BSC BSC BSC

TMS
TCK

TRST
TDO

Instruction Register

TAP Controller

TDI

Logic
Core

Bypass Register

Instruction Decoder

User-defined Register

Figure 2.4: Boundary scan architecture [WST08]

TAP Controller TAPC is made from a state machine that has 16 states. This
state machine generates reset signal, as well as capture, update, and shift signals
for the instruction and data register. The signals are generated based on the 16
different states of the FSM, which are divided into three groups: idle state, control
data register state, and control instruction register state. In essence, TAPC provides
three functionalities:

• Resets the boundary scan architecture.

• Generates a control signal to load a value into instruction register.

• Generates signals to manipulate the content of the boundary register using
operation such as capture, update, and shift.

Instruction register The instruction register determines the operation of the JTAG.
The standard specifies four mandatory instructions, which are SAMPLE, PRELOAD,
BYPASS, and EXTEST. SAMPLE instruction creates a snapshot of the current
value at both the input and output pins. PRELOAD instruction allows the test

8

2.3 Design for Test

data to be shifted into/out of the data register. BYPASS instruction is used to
channel the data directly from TDI to TDO. EXTEST instruction enables a tester
to check the external hardware connection between chips and boards. Beside these
four instructions, JTAG standard also accommodates some other user-defined in-
structions.

Boundary Scan Figure 2.5 shows a typical boundary scan cell. Mode, shift-DR
and clock-DR pins are controlled by TAPC signals. When mode is set to 0, the
scan cell enters normal mode and there is a direct connection between the input and
the output. Test mode is entered when mode is set to 1, making the out pin to be
connected with the output of flip-flop R2.

Capture operation saves the input pin value to the flip-flop R1 by setting the
shift-DR pin to 0 and applies a clock pulse to clock-DR pin. Shift operation moves
the data from pin scan-in to scan-out. This is performed by setting the shift-DR pin
to 1 and applies the clock-DR pin with one clock pulse. For update operation, the
data from flip-flop R1 is copied to flip-flop R2 by applying a clock to pin update-DR.

In

0

1

0

1
D Q D Q

ClockDR UpdateDR

Mode

Scan Out

Out
R1 R2

Scan In

Shift DR

Figure 2.5: Typical boundary scan cell [WWW06]

2.3.1.2 IEEE 1500

IEEE 1149.1 standard was originally designed for testing the connection between
ICs in a PCB. As trends go to many core era, testing cores in a SOC seems to
be analogous to testing many chips on a PCB. However, the two test scenarios
pose different characteristics and challenges. [WWW06] mentions some problems
for core-based test that leads to the development of IEEE 1500:

• Mixing technologies – As SOC contains lots of different cores from multiple
vendors, it is not possible for system integrators to generate all of the test

9

2 Literature Review

data by themselves. Core providers should contribute with the test generation
process. Therefore, there is a need to standardize the test mechanism.

• Expensive external ATE – If all testing mechanisms for cores are conducted
by an external tester, test time will be high. Considering that an ATE is very
expensive, longer test time leads to higher test cost. By embedding some of
the core test capabilities within the SOC, test time can be reduced.

• IP protection – A core with IP protection doesn’t provide internal structure.
Reusing the test data from the core vendor without/little modification is the
preferable method. Hence, a standard test interface is needed.

IEEE 1500 standard wraps each core with a wrapper, a component that is used
to standardize the test interface and to execute test commands. Figure 2.6 displays
n number of cores with IEEE 1500 wrapper. In total, IEEE 1500 spefication defines
five hardware components, which are:

• Wrapper Serial Port (WSP) – consists of wrapper serial input (WSI), wrapper
serial output (WSO), and wrapper serial control (WSC). WSI and WSO have
the same functionality as TDI and TDO in JTAG standard, which are to
interface data input and data output. WSC produces six signals to control the
WBR and 1500 standard functions.

• Wrapper Parallel Port (WPP) – an optional component for core parallel ac-
cess. WPP consists of three terminals: wrapper parallel input (WPI), wrapper
parallel output (WPO), and wrapper parallel control (WPC).

• Wrapper Instruction Register (WIR) – similar to the JTAG’s instruction reg-
ister, which is to store instruction to be executed.

• Wrapper Bypass Register (WBY) – is used to directly bypass test data from
the input to the output pin.

• Wrapper Boundary Register (WBR) – has the same functionality as boundary
scan cell in JTAG, with four additional modes These are normal mode, inward
facing mode, outward facing mode, and nonhazardous (safe) mode.

2.3.2 Scan Design

The purpose of scan design is to gain observability and controllability over the
sequential element, i.e. flip-flops (FF). Scan design is built by replacing normal
FFs with scannable FFs (SFF), so that it is possible to serially connect all FFs. The
configuration, which is called scan chain, is automatically generated by an electronic
design automation (EDA) tools.

10

2.3 Design for Test

Core A

WIR

1500 wrapper

Core N

WIR

1500 wrapper

Wrapper Serial Controls (WSC)

Wrapper Serial Port (WSP)

Chip I/O Chip I/O

TAM
Source

TAM
Sink

WSI
1 WSO

1
WSI

n
WSO

n

User Defined Prallel TAM

TAM-in TAM-out TAM-in TAM-out

System Chip

Figure 2.6: IEEE 1500 system architecture[WWW06]

SFF differs from normal FF, in that it has three additional pins: a scan-input
(SI), a scan-output(SO), and a scan enable(SE). Normal mode and test mode are
active when SE pin is deasserted and asserted, respectively. In normal mode, SFF
behaves as normal FF. In test mode, FF content can be controlled by shifting in data
through SI and observed from from reading the SO value. There are two popular
scan cell design: muxed-D scan cell and level sensitive scan design (LSSD).

Mux-D scan cell As the most popular scan cell design [WWW06], a mux-D scan
cell consists of a multiplexer and a D flip-flop. When SE is set to 0, the scan cell
works at normal mode. Test mode is activated when SE is set to 1. New data is
shifted in through SI, and the FF data is shifted out through SO. Data shift occurs
during rising edge of the clock input.

LSSD scan cell Mux-D scan cell is suitable for an edge-triggered flip-flop design,
while LSSD scan cell is used for a latch based design. LSSD scan cell, shown in
Figure 2.9, consists of multiplexer, FF, and latch. Because of the latch, data capture
happens when CLK input is 1. Data is shifted out during falling edge of the FF.

2.3.2.1 Logic Built-in Self-Test

Logic BIST is a DFT technique that provides a self test capability to the design.
Testing digital logic requires two elements, a test pattern source and a test response

11

2 Literature Review

Combinational
Logic

Scan FF

Scan FF

Scan FF

Inputs Outputs

Scan Out

Scan Enable
Scan In

Figure 2.7: Scan design architecture

D Q

scan_in

data_in

scan_en clock

Q / scan_out
0

1

Flip-flop

Figure 2.8: Muxed-D scan cell

analyzer. Besides, the test must be controlled by some kind of logic controller to
create control signals, such as scan enable and scan clock, as well as to determine
whether the core under test (CUT) passes or fails the test. The architecture of logic
BIST is shown at Figure 2.10.

Test pattern generator (TPG) generates the necessary test data that is applied
to the CUT. There are many kinds of test pattern generator sources. Deterministic
testing stores the predetermined test pattern into a test storage, therefore it is very
expensive in terms of resource area. Exhaustive testing is able to generate all input
combinations using binary counter or complete linear feedback shift register (LFSR),
but it takes too much time to complete a core test. Compared to deterministic
testing, pseudo random testing reduces the resource requirement to generate the
test pattern by sacrificing the test coverage. Pseudo random testing typically uses
maximum length LFSR as the pattern generator.

Output response analyzer (ORA) collects and compacts the CUT response into
a signature. Response compaction is necessary, as it is not feasible to store all
circuit’s fault free responses. By only comparing the signature, the system saves
massive amount of data storage. Popular ORA methods are ones count testing,

12

2.3 Design for Test

D Q
scan_in

data_in

scan_en

clock

0

1
Q

scan_outD Q

Flip-flop

Latch

CK

Figure 2.9: LSSD scan cell

Logic
BIST

Controller

Test Pattern Generator (TPG)

Circuit Under Test (CUT)

Output Response Analyzer (ORA)

Figure 2.10: System of the logic built-in self-test

transition count testing, and signature analysis.

2.3.2.2 Embedded Deterministic Test

Embedded Deterministic Test (EDT) is a DFT method that aims to reduce the test
data by using a compression technique [RTKM04]. The EDT method minimizes the
need to modify the original hardware and follows the same test procedure that is
based on scan and ATPG. As shown in Figure 2.11, the EDT architecture consists
of scan chains, a compactor, and a decompressor. The test procedure is composed
of EDT logic insertion, test vector generation using an ATPG, and test application
using an Automatic Test Equipment (ATE). The test vector, which is compressed
and predetermined, is stored in an Automatic Test Equipment (ATE).

Decompressor The decompressor receives the compressed test pattern from an
ATE through scan channels. As the test pattern is shifted in, it is also decompressed
and fed into a large number of scan chains. Shown at Figure 2.12, the decompression
process is carried out by a ring generator and a phase shifter. Ring generator is
another form of linear finite state machine (LFSM). The phase shifter enables the
ring generator to control the various scan paths by mutually displacing the produced
sequences.

13

2 Literature Review

D
E
C
O
M
P
R
E
S
S
O
R

C
O
M
P
A
C
T
O
R

Compressed
stimuli

Compacted
responsesATE

Scan
channel

Scan
channel

Scan chain

Core

System-on-chip

Figure 2.11: EDT architecture

Ring Generator

Phase Shifter

Figure 2.12: EDT decompressor

14

2.4 Related Work

Compactor The compactor is located between the scan chains output and the scan
channels. It compacts the test response from scan chains and transfers it to the scan
channels output. The compactor is controlled by the decompressor and is made of
spatial compactor(s) and gating logic.

2.4 Related Work

Currently, the method to test the ECUs in a vehicle is to test its functionality as a
whole. This test is not sufficient to detect hardware defects that can occur inside a
SOC. As a result, it is necessary to structurally test the SOC in the field. Several
authors have proposed test architectures for this purpose.

[LCH05] proposes a test architecture using an embedded processor with a dedi-
cated test access mechanism (TAM) controller. The test system, which is illustrated
in Figure 2.13, supports numerous core wrappers such as IEEE 1149.1, IEEE 1500,
and BIST. Beside a processor and a TAM controller, the system needs a test bus, a
test access port (TAP) controller, an embedded memory, an external memory, and
an external memory control. By using this configuration, the test system supports
scan, analog-digital conversion (ADC), memory BIST, and hierarchical test control.

The test starts when test program is loaded and executed by the processor. First,
the test program reads some of the test data from the external memory and then
transfers it to the embedded memory. Next, the processor configures the TAM
controller. After the configuration, the TAM controller autonomously fetches the
test data from the embedded memory and delivers it to the designated core. Then,
the processor verifies the test response. This procedure is repeated until all test
data have already been applied. When all test responses are correct, the chip is
determined to be defect free.

[JT99] introduces a test architecture that minimizes the test cost by reducing the
test storage data and the test time. The idea behind this architecture is based on
the fact that the test time is related to the test data. They argues that test time
can be decreased if there are less test data to be applied. Therefore, the test data
comes in the form of compressed deterministic test vector and stored in the external
tester.

The test flow begins when an external tester transfer the test data to the SOC
through communication channel. The test data is already modified in a way that
it contains a processor instruction and test pattern. A processor inside the SOC
receives and decodes the test data and applies the test pattern to the scan chain
through the test data serializer. The test response from the target core goes through
a multiple-input shift register (MISR) for compacting the test response. The com-
pacted test response, which is called response signature, is sent back by the processor
to the tester. Figure 2.14 shows the test architecture together with the CUT.

The presented test solutions prove that testing a core in the field without an ATE

15

2 Literature Review

External memory:
Test stimuli, Test response

System Bus
External
Memory
Control

1149.1 Cores

Test Bus
TAM

Controller

Boot ROM.
Contains test

program

System on Chip

Embedded
Memory

Embedded
Processor

1500 Cores
Mixed-signal

Devices
Hierarchical

Cores

Figure 2.13: SOC test platform using an embedded processor

is feasible. Both approaches, unfortunately, require an external test component to
store the test data. Therefore, the proposed test architecture should be able to run
independently without an external component. Two ideas from each approaches, i.e.
the test data compression and the TAM controller functionality, should be included
into the proposed approach.

Tester

Memory I/O
Controller

Memory

Processor

Serializer Scan Chain

Serializer Scan Chain

Serializer Scan Chain

MISR

SOC

Figure 2.14: Architecture diagram from [JT99]

16

3 Proposed Method

Industry experts have discussed and stated that there are four possible scenarios to
test the SOC in an ECU. The easiest test scenario is to take the whole ECU out of
the vehicle and send it to the laboratory for examination. The second test scenario
is conducted when the vehicle is in the workshop for maintenance. There, the ECU
stays in the vehicle and is tested using a special device. When the vehicle is in the
field, it should be possible to test the SOC autonomously either during the system
operation or the system power up/down. Table 3.1 shows the relationship between
the four scenarios and some factors to consider: cost, test time, test location, and
suitable test type.

Test Scenarios
Laboratory Workshop During Operation Power On/Off

Test Time high/low high/low low low
Cost high/low high/low low low
Data location ext/int ext/int internal internal
Test Type external external internal internal

Table 3.1: Relationship between test scenarios and the test requirement

The devised test architecture should support all four test scenarios. By carefully
considering the other test architectures from previous chapter, two types of SOC test
are proposed: internal and external test. Internal test embeds all test components
within the SOC to maintain low test time, while external test uses an external
tester to keep the system cost low. The user chooses between two implementations
depending on the test scenario they have.

External test is a suitable test scenario in a laboratory and in a workshop, be-
cause there is no maximum time limit to execute the test there. To run this test
mode, external test requires a communication channel that connects the CUT to an
external tester. The external tester can be a laptop or a low-cost portable handled
device. The external tester, besides storing the fault-free response, has two other
functionalities in this test mode. First, it supplies the CUT with test patterns and
retrieves test responses from the CUT. Second, it compares the received and the
fault free test responses and then declares whether the CUT passes or fails the core
test.

Internal test, on the other hand, is the suitable test solution in the field. The test

17

3 Proposed Method

can be conducted either when the device is in operational condition or is powered
on/off. In this test mode, an external tester is unnecessary, as both of its function-
alities are integrated inside the SOC. For storing the test vector, the SOC provides
a storage element such as a ROM. The SOC needs a control logic for comparing the
test response.

As there are many cores in a SOC, core partitioning is needed to exclusively test
only one of the cores. The CUT in this thesis, which is a digital core in a SOC,
is equipped with a DFT infrastructure to execute the structural test. This DFT
infrastructure is used once during manufacturing test, and will be reused to run the
internal and external test.

A processor, which is a common core in a SOC, has three main tasks to accommo-
date both test modes. It controls the communication controller to enable the data
transfer between an external tester and the SOC. In addition, it controls the DFT
infrastructure bridge, a core that creates a test interface to the DFT infrastructure.
Furthermore, it is responsible for comparing the test response and determining if the
core pass or fail the test. By using a processor as the test controller, it is possible
to structurally test all but processor core. For the processor core, processor can run
a self test using SBST. The general system overview of the proposed approach is
shown in Figure 3.1.

External
Tester

Communication
Controller

Data
Storage DUT

DFT Infrastructure

System-on-Chip

Processor
BUS

DFT
Infrastructure

Bridge

Figure 3.1: Generic test architecture for the proposed approach

18

4 Implementation

After introducing the system’s general overview from the previous chapter, this
chapter presents the implementation for each components. The explanation begins
with the target system architecture, TriCore SOC, followed by the method to pro-
gram it. Then, the way to connect peripherals to the system bus is presented. The
data transfer in the system, which is between the tester–SOC and the SOC–DUT,
is explained later. Finally, the DFT infrastructure generation is then discussed.

The architecture implementation is a big challenge for this thesis. The target ar-
chitecture is a SOC platform from Infineon that comes only with source code. There
is no complete, well-defined documentation resource for the TriCore SOC, except
several user manuals and one example program file. To implement the proposed
system, reverse engineering is used to understand how to program the TriCore and
how to connect multiple peripherals to the system bus.

4.1 System

TriCore is a SOC platform that is designed for automotive application. While the
released commercial version contains numerous peripherals, the essential compo-
nents in the system are the TriCore processor, the data memory (DMEM), and the
program memory (PMEM). The system architecture shown at Figure 4.1 is the pro-
vided simulation platform from Infineon. In addition to the main three components,
it also has a LFI bridge, a Flexible Peripheral Interface (FPI) RAM, and a FPI
multiplexer for supporting multiple peripherals. The FPI RAM is simply a RAM
memory; it is not used in the final architecture implementation. The LFI bridge
enables the TriCore processor to control peripherals that are connected through the
FPI bus.

4.2 TriCore Programming

The TriCore SOC is simulated using a ModelSim, a mixed hardware description
language (HDL) simulation tool. To run the simulation, the program memory and
data memory must contain some data, so that the processor can execute a program.
The program and data memory is generated using a Perl script, which comes together
with the simulation platform. The Perl script itself needs a SRE file to generate the
program and data memory. The SRE file, which is generated by Tasking compiler

19

4 Implementation

P_MEM

LFI Bridge

TriCore
Processor

FPI_RAM

D_MEM

TriCore SOC

CLK

RST

FPI Bus

M
U

X

FPI Bus

Figure 4.1: Original TriCore SOC from Infineon

from Altium, contains a series of hexadecimal number that represents processor
instruction.

During the architecture development, it is known that the simulation platform
address space is different from the commercial TriCore address space. The simulation
parameters that are outside from the value shown in Table 4.1 must be changed.
Therefore, the reset address value is changed from 0xA0000000 to 0x800B3000. The
later address serves also as the boot address. In addition, the trap table address is
set from 0xA00F2000 to 0x800E0000. These two configurations are available in the
linker file of the compiler.

Table 4.1: Available address space in the TriCore simulation platform

0x80081000 – 0x80082000
0x800B3000 – 0x800F3000
0xD0000000 – 0xD7FFFFFF
0xF0000000 – 0xF7FFFFFF

4.2.1 Memory Mapped I/O

Memory mapped I/O is the only known method to control a peripheral through
the FPI bus. This method shares the same address space for both the memory
and the peripheral registers. The CPU can control the peripheral the same way
as manipulating the memory content. In C programming language, the memory
content is easily manipulated using a pointer.

20

4.3 Peripheral Connection

4.2.2 Inserting Constant into SRE File

By modifying the SRE file, it is possible to insert a constant value directly inside the
program memory. Table 4.2 shows an example to insert 4 byte constant at address
0x800EEB00. This constant value can be accessed by the CPU using a pointer. The
valid address for the constant insertion follows the address specified in Table 4.1.

Table 4.2: An example on how to insert a constant value into a SRE file

Target address 800EEB00
Target data 012AE36E
SRE format constant + byte count + address + switched data + CRC
Constant S3
byte count address length + data length + CRC length = 04 + 04 + 01 = 09
Address 800EEB00
Switched data 6EE32A01
CRC char(09+80+0E+EB+00+6E+E3+2A+01) = char(0x2FE) = FE
Result S3 09 800EEB00 6EE32A01 FE

4.3 Peripheral Connection

4.3.1 FPI Bus

Among many buses inside the TriCore SOC, the FPI bus is the one that interconnects
the CPU and peripherals[tc109]. The bus is able transfer data up to 320 Mbytes/s
and supports multiple masters and slaves. While the FPI bus slave can only accepts
bus transaction, the FPI bus master is able to accept and initiate bus transaction.

The FPI bus transaction is initiated when the bus master asks for bus ownership
to the system peripheral bus control unit (SBCU). The SBCU is the one that handles
bus arbitration, as well as bus error. When the bus is free, the SBCU grants the
bus ownership so that the bus master can send a message to the bus slave. The bus
slave then receives and responses to the bus message accordingly.

There are two types of bus transfer, which are single and block transfer. Single
bus transfer can transmit only one byte/half word/word data at a time. Block data
transfer can transmit up to 8 words data at once.

As shown in Figure 4.2, single data transfer from the bus master to the bus slave
requires at least three clock cycles. At the first clock cycle, the bus master requests
a bus ownership to the SBCU. Provided that the bus is free, the bus master asserts
the request signal, then applies the address and the data at cycle two and three,

21

4 Implementation

respectively. The data transfer is finished at the fourth clock cycle, and the bus
becomes idle.

1 2 3 4

REQ

ADDR

DATA

0

VALID

VALID

FPI Bus

CLOCK

Figure 4.2: Timing diagram for single data transfer of FPI bus read and write

4.3.2 FPI Bus Multiplexer

The configuration to connect multiple slave peripherals in the FPI bus is shown in
Figure 4.3. The output from LFI bridge is connected to core A, core B, and core C.
The multiplexer is used to select which core is connected to the LFI bridge.

In total, three multiplexers are used to select the ready, acknowledge, and data
out signals that come out from the bus slave. The multiplexer selects the active
data using the respective enable signals. The multiplexer employs a priority control;
when two enable are asserted, the data that has higher priority is chosen.

Ready signal indicates whether the bus slave is available to handle the upcoming
data. When one data transfer is finished, the bus slave can send a feedback to the
bus master whether no special condition occurs, message retry is requested, or bus
error occurs. This feedback message is encoded using 2-bit acknowledge signal. Data
out is simply a 32-bit data output from the FPI slave.

4.4 Test Data Transfer

The test data must be transferred between an external tester, the SOC, and the
DUT. While CAN bus is used to transfer data between the external tester and the
SOC, the DFT infrastructure bridge transfers the test data between the SOC and
the DUT.

4.4.1 DFT Infrastructure Bridge

The DFT infrastructure bridge (DFT-IB) is developed as an interface between the
CPU and the DUT. This core is designed to support both the internal and external
test mode. The main difference between the two test modes is the location of the test

22

4.4 Test Data Transfer

co
re

_A
_a

ck
_o

co
re

_B
_a

ck
_o

co
re

_C
_a

ck
_o

co
re

_A
_d

_e
n

co
re

_B
_d

_e
n

co
re

_C
_d

_e
n

co
re

_A
_d

_o
co

re
_B

_d
_o

co
re

_C
_d

_o

co
re

_A
_a

ck
_e

n
co

re
_B

_a
ck

_e
n

co
re

_C
_a

ck
_e

n

co
re

_A
_r

dy
_e

n
co

re
_B

_r
d

y_
en

co
re

_C
_r

d
y_

en

co
re

_A
_r

d
y_

o
co

re
_B

_r
dy

_o
co

re
_C

_r
dy

_o

Core C

Core B

Core A

TriCore
CPU

LFI
Bridge

FPI bus FPI bus

rd
y_

o

ac
k_

o

d
_o

Figure 4.3: FPI bus multiplexer configuration

data. In internal test, the test data is available internally. In external test, the test
data is supplied from the CPU. The test data for both test modes is predetermined.

For external test, the DFT-IB acts as a gateway between the CPU and the DUT
to transfer the test data. To be more precise, the DFT-IB gets the test pattern
from the CPU, applies it to the DUT, reads the DUT’s test response and stores it
into a register. The CPU can obtain the test response by reading the corresponding
register.

For internal test, the DFT-IB runs independently from the CPU, as it has an
internal access to the test data. The DFT-IB applies the internal test pattern to
the DUT, gets the DUT’s test response, then compares it with the fault-free test
response from the internal storage. After exercising all the test data, the DFT-IB
writes the test result to a register. The CPU then reads the test result through this
register.

23

4 Implementation

4.4.1.1 Architecture

Table 4.3 shows the four registers inside the DFT-IB. To run an internal or external
test, the CPU writes the request to the command register. After executing the com-
mand, DFT-IB writes a response to register command response. Register command
and command response are used for the internal and external test modes, while
register test response and test stimuli are only used by the external test mode. The
size of the test stimuli and test response register is flexible, depending on the input
and output pins of the DUT.

Table 4.3: Registers in the DFT infrastructure bridge

Command contains the command to be executed by the core
Command response core response after executing the command
Test Stimuli contains the test pattern that is applied to the DUT
Test Response contains the test response from the DUT

Figure 4.4 shows the connection diagram between the DFT-IB and the DUT. For
this configuration, the minimum size of register test stimuli and test response is 9 bit
and 7 bit, respectively. Netlist t_out is used to set the DUT’s input, while netlist
t_in is used to get the DUT’s output.

FPI
Interface

t_out[8..0]

t_in[6..0]

Command

Command Resp

Test Stimuli

Test Response

Registers:

DFT Infrastructure Bridge

ROM

input_0

input_1

input_2

input_3

input_4

input_5

input_6

input_7

output_0

output_1

output_2

output_3

output_4

output_5

output_6input_8

DUT

Figure 4.4: Connect between the DFT infrastructure bridge and the DUT

4.4.1.2 State Machine

Because this core is a FPI slave, it is unable to initiate a message transfer or send
an interrupt to the CPU to inform a device status update. Hence, the CPU uses
polling operation for controlling the DFT-IB. To read the device status register,
the CPU needs to directly access the respective register through the FPI bus using

24

4.4 Test Data Transfer

memory mapped IO. The DFT-IB must be ready to answer any inquiry from the
processor, even if the device is busy performing the internal or external test. To do
such mentioned tasks, the core implements two concurrent Finite State Machines
(FSM) shown in Figure 4.5 for the circuit logic.

The first FSM manages the data transfer between the CPU and the device. Read-
/write register access are granted only when the message has the correct address.
The second FSM monitors the command register and executes the respective com-
mand. Test run time depends whether it is an internal or external test, as well as test
data size. After executing the command, a response is written into the command
response register

IDLE

Check
Address

Read
Register

Write
Register

Invalid
Address

Request

Read
Command

Write
Command

Return Return

IDLE

External
Test

Internal
Test

Command=
Run internal
test

Command=
Run external

test

End Test End Test

FSM 1 : Register read/write FSM 2 : Command executor

Figure 4.5: Two concurrent Finite State Machines

4.4.2 CAN Controller

In automotive domain, there are several popular bus standards: CAN, LIN, and
Flexray. CAN bus is chosen as the data communication standard, as it is the most
popular bus. Hence, a CAN controller is inserted to the system bus, so that processor
can control the data transfer.

The CAN controller, which is a project from opencores website, supports the 8051
bus and the wishbone bus[Moh12]. Therefore, a bus translator that changes the
signal from the FPI bus to the 8051/wishbone bus must be created. The wishbone
bus is selected over the 8051 bus in this implementation, as it has similar behaviour
as the FPI bus. The wishbone timing diagram is shown in Figure 4.6

4.4.2.1 FPI-Wishbone Bus Translator

When the bus translator detects a request signal, it collects the address and the data
information. After receiving the FPI request and FPI address, the bus translator

25

4 Implementation

1 2 3 40

CYC

STB

ADDR

ACK

WE VALID

VALID

Wishbone Bus

CLOCK

Figure 4.6: Timing diagram of wishbone bus

informs the bus master that it is busy by deasserting the FPI ready signal, so that
bus master does not try to send another message. The bus translator then produces
the needed wishbone signal, and waits until the wishbone slave generates the ac-
knowledge signal. The FPI ready signal is deasserted as soon as the acknowledge
signal is available. For the read procedure, in addition to this, the bus translator
puts the data to the FPI line. After all of these procedures, the FPI master is free
to send another message.

During implementation, sometimes the FPI master produces FPI signals that is
different from the one in Figure 4.7. To avoid unknown signal sequence, a precaution
is made. At clock 2 and 11, the FPI slave will request a message retry using the FPI
acknowledge signal if the FPI request line is still deasserted. By doing this, the FPI
master repeats sending the same message so that the generated timing diagram is
similar to the one in Figure 4.7.

4.5 DFT Infrastructure for Peripherals

Design for testability for a peripheral includes a wrapper, test pattern generation,
and test response compaction. For this thesis, IEEE 1149.1 and IEEE 1500 are
not considered because both cover only the wrapper problem. The DFT technique
that covers these three parameters is BIST and EDT. They provide the necessary
wrapper, the solution to generate the test pattern, and the method to compact the
test response.

In BIST, pattern generation using PRPG is a low cost solution, but not an op-
timum method to achieve very high test coverage in a short time. To achieve such
goal, the pattern generation can use a ROM to store the deterministic test pattern.
The EDT architecture provides the same functionality as the logic BIST, but re-
quires less storage area to store the test pattern, due to the compression technique.
Hence, the EDT logic is chosen over the logic BIST.

26

4.5 DFT Infrastructure for Peripherals

1 2 3 40

CYC

STB

ADDR

DATA

WE

54h
WB

CLOCK

REQ

ADDR

DATA

54h

12h

FPI
Master

6 7 8 95

12h

ACK

11 12 13 1410 1615

54h

12h

54h

12h

WRITE READ

RDY
FPI
Slave

Figure 4.7: Timing diagram for translating FPI and wishbone bus

4.5.1 Tools

Mentor Graphics Tessent TestKompress is the tool used to automatically generate
the EDT logic[Cor11b]. In addition, TestKompress is also an ATPG tool that is
able to generate the compressed test vector for the EDT logic. To generate the EDT
logic, TestKompress requires DFT advisor for inserting the scan chains [Cor11a] and
a synthesis tool for synthesizing the RTL code. For this implementation, Synopsys
Design Compiler (SDC)[Cor10] is used.

4.5.2 EDT Logic Generation

Figure 4.8 shows the simplified version of the DFT logic generation. First, the
target core’s RTL code is compiled using SDC, with core’s gate level description as
the result. The scan chain is then inserted into the gate level using DFT advisor.
Later, TestKompress is executed to insert the EDT logic. The EDT logic is in RTL,
hence it needs to be compiled once more by SDC. The second compilation produces
the toplevel description of the DUT with its EDT logic. Finally, TestKompress uses
this gate level description to generate the test vectors.

A very simple and small 10-bit counter is used as the target DUT, because this core
takes minimum running time in terms of logic insertion and test vector generation.
Figure 4.9 shows the complete transformation of the DUT. Originally, the counter
has 3 inputs and 32 outputs. For the scan insertion, the DFT advisor is set to

27

4 Implementation

Core
RTL
Code

1st compile
(Synopsys

Design
Compiler)

Scan insertion
(DFT Advisor)

EDT Logic
Insertion

(TestKompress)

2nd Compile
(Synopsys

Design
Compiler)

Pattern
Generation

(TestKompress)
Test Vector

Core With
EDT Logic

Figure 4.8: TestKompress flow to generate the DFT infrastructure

generate 4 scan channels. Hence, 1 scan enable, 4 scan input, and 4 scan output
are added to the design. After the EDT logic insertion, with respect to the original
design, the core has 5 additional pins: a scan enable, one pair of EDT scan channel,
an EDT bypass, and a low-pin count-test (LPCT) clock. This 5 signals are necessary
for controlling the EDT logic.

28

4.5 DFT Infrastructure for Peripherals

clk out[31:0]
rst

up_down
counter

edt_ch_in edt_ch_out

scan_en

lpct_clk
edt_bypass

Core Xcounter

EDT wrapper
clk
rst

up_down

out[31:0]

scan_in1
scan_in2
scan_in3
scan_in4

scan_out1
scan_out2
scan_out3
scan_out4

clk out[31:0]
rst

up_down

scan_en counter

(a)

(b) (c)

Figure 4.9: Counter toplevel transformation: (a) Original design. (b) Counter after
scan insertion. (c) Counter after EDT logic insertion.

29

5 Test Application

Figure 5.1 shows the complete implementation of the SOC after all components
are integrated. An external tester, which is simulated using another TriCore SOC,
is necessary to show how the system operates. The CAN message is used as the
communication medium between the external tester and the TriCore SOC. When
one CAN node initiates a CAN data frame, the other CAN node replies with a CAN
remote frame. The additional peripherals in the system are a counter as the DUT,
an EDT logic for the DUT, a DFT-IB, a CAN controller, and two data storages for
test data. The test data is available in two locations of the system: one is integrated
with the program memory, the other one is included inside the DFT-IB.

LFI Bridge

CLK

RST

TriCore
Processor

F
P

I
M

U
X

Counter
Test Data

D_MEM

CAN
Controller

FPI
To

WB

WB
To
FPI

TriCore SOC

EDT logic

P_MEM

Test Data

FPI Bus
FPI Bus

DFT Infra-
structure Bridge

External Tester CAN
Port

Added core

Original core

Figure 5.1: Complete test environment

The SOC runs with 80 MHz clock frequency. At this rated clock speed, transfer-
ring one CAN data frame with 8 bytes of data and CAN remote frame takes 225
uS and 80 uS, respectively. The TestKompress ATPG tool originally produces 28
test vectors. For this application, the test vectors are transformed into 1095 sets of
test data by tapping the DUT I/O value during simulation. One set of test data
consists of 7 bits of test pattern, 33 bits of test response, and 33 bits of test mask.
This means, it takes

(7 + 33 + 33) ∗ 1095 = 79935

30

5.1 Internal Test

79935 bit or 78 kByte to store all test data inside the DFT-IB. This information is
shown in Table 5.1.

Table 5.1: CAN message overhead and DUT test data

CAN Data frame overhead 225 uS
Remote frame overhead 80 uS

DUT test data Test pattern width 7 bit
Test response width 33 bit
Test mask width 33 bit
Number of test data 1095 set

5.1 Internal Test

In internal test mode, the external tester presence is optional. The SOC test can be
started internally by the CPU, or triggered by an external tester. Figure 5.2 shows
the FSM for internal test where an external tester is available.

Wait for command

Configuration

Command: internal test

Applying
test pattern

Obtaining
test response

Test response
comparison

write command
response register

Test data is still available

No more test data

Send internal
test command

read command
response register

Done

Response is available

Response is
not available

External tester

SOC

No command

DFT Infrastructure Bridge (DFT-IB)

Figure 5.2: Internal test scenario

As soon as an internal test mode command is received by the SOC through the

31

5 Test Application

CAN message, the CPU replies using a CAN remote frame and configures the DFT-
IB register to prepare for internal test. The test data stored inside the DFT-IB is
then applied to the DUT. The DFT-IB obtains the test response and compares it
with the with the fault free one. Once there is a mismatch for the test response,
the DFT-IB indicates the test failure in the report register. However, if there is no
mismatch after all test patterns are applied, the DFT-IB writes a fault free response
in the report register and notifies the external tester using CAN message. Table 5.2
presents the test result for internal test.

Table 5.2: Internal test simulation result

Number of data frame 2
Number of remote frame 2
Total test time 809 uS
DFT infrastructure test time 54.76 uS

5.2 External Test

In this test mode, the external tester provides the test data and analyzes the test
response. The test process, which is shown in Figure 5.3, begins when an external
tester commands the SOC to run the external test mode. The CPU receives this
command and configures the DFT-IB to execute the external test. The test pattern
stored in the program memory is sent by the external tester using a CAN message
and the test response is sent back to the external tester for analysis. The external
tester generates a command to end the test as soon as all test patterns are applied.
The test result for external test is shown in Table 5.3.

Table 5.3: External test simulation result

Number of CAN data frame 1097
Number of CAN remote frame 1097
Test time for one set of test data 582 uS
Total test time 640 mS

32

5.3 Experiment Analysis

Wait for command

Configuration

Command: external test

Get
test pattern

Apply
test pattern

Send test
response

Test data is
still available

No more test data

Send external
test command

Send test pattern

Get test response

External tester

SOC

No command

Done

Read test response
from DUT

Test data is still available

No more test data

DFT Infrastructure Bridge (DFT-IB)

Figure 5.3: External test scenario

5.3 Experiment Analysis

The external test is proven to be a lot slower than the internal test, because of the
CAN communication overhead for transferring the test data. Therefore, the external
test is a suitable test case when there is no test time limitation, like in the laboratory
and in the car workshop. When the long test execution time is an issue, such as
testing during device operation or power up/down, the internal test can be used.
The internal test can has very fast time due to the additional test storage inside the
SOC.

5.4 Future Work

The DUT in this implementation is a very simple digital core, hence the test data
size is negligible. However, test data size will increase dramatically when the DUT
is a complex digital core. To reduce the test data, the system can only store the test
response signature, i.e. a compressed test response data created by a MISR.

The developed DFT-IB is able to partition and test only one DUT. Using this

33

5 Test Application

approach, testing n cores in the SOC requires n number of DFT-IB. As each DFT-
IBs need its own address space, the current solution will use too much memory
address space. The next version should be able to interface not only one core, but
all cores. To do this, the hardware connection between the DFT-IB and the core
should be simplified. This can be realized by using the boundary scan concept from
IEEE 1149.1 and IEEE 1500.

34

6 Conlusion

This thesis has successfully developed a method to conduct in-field tests for digital
cores inside a SOC. The method is realized by inserting an internal test interface to
gain control of the existing DFT infrastructure. By connecting the test interface to
the system bus, test controller acquires access to the DFT infrastructure to conduct
a core test. The test controller, which is a processor, can execute the structural
in-field tests as long as test data are available in the system.

The test architecture is able to run core tests with or without an external tester.
Internal test integrates all components within the SOC to run the test and requires an
optional external tester. This method has very low test time, as the communication
overhead between the DUT and the tester is kept to a minimum. The disadvantage
of internal test is the need of additional storage inside the SOC to store the test data.
External test requires a dedicated external component to store the test data, which
is later transferred to the DUT through the CAN bus. Test time is considerably
high compared to the internal test because of the CAN communication overhead.
Nevertheless, this method demands minimal modification at hardware level.

35

Bibliography

[AAMH98] H. Al-Asaad, B.T. Murray, and J.P. Hayes. Online bist for embedded
systems. IEEE Design Test of Computers, 15(4):17–24, Oct-Dec 1998.

[AS11] S. Arslan and G. Shah. A flexible in-field test controller. In IEEE 14th
International Multitopic Conference (INMIC), pages 71–75, Dec 2011.

[BA00] Michael L. Bushnell and Vishwani D. Agrawal. Essentials of Electronic
Testing. Kluwer Academic Publishers, 2000.

[Bor05] S. Borkar. Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation. IEEE Micro,
25(6):10–16, Nov-Dec 2005.

[Cha09] Robert N. Charette. This Car Runs on Code. IEEE Spectrum, 2009.

[Cor10] Mentor Graphics Corporation. Design Compiler User Guide. 2010.

[Cor11a] Mentor Graphics Corporation. Scan and ATPG Process Guide. 1999-
2011.

[Cor11b] Mentor Graphics Corporation. Tessent TestKompress User’s Guide.
2011.

[Gmb91] Robert Bosch GmbH. CAN specification Version 2.0. 1991.

[JCJ+11] Seo-Hyun Jeon, Jin-Hee Cho, Yangjae Jung, Sachoun Park, and Tae-
Man Han. Automotive hardware development according to ISO 26262.
13th International Conference on Advanced Communication Technology
(ICACT), 2011.

[JT99] A. Jas and N.A. Touba. Using an embedded processor for efficient de-
terministic testing of systems-on-a-chip. In International Conference on
Computer Design, 1999. (ICCD ’99), pages 418–423, 1999.

[LCH05] Kuen-Jong Lee, Chia-Yi Chu, and Yu-Ting Hong. An embedded pro-
cessor based soc test platform. In IEEE International Symposium on
Circuits and Systems (ISCAS), volume 3, pages 2983–2986, May 2005.

[Mak07] T.M. Mak. Infant Mortality - The Lesser Known Reliability Issue. 13th
IEEE International On-Line Testing Symposium, 2007.

A

[Moh12] Igor Mohor. CAN protocol controller. http://opencores.com/, 2003-
2012.

[PG05] A. Paschalis and D. Gizopoulos. Effective software-based self-test strate-
gies for on-line periodic testing of embedded processors. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
24(1):88–99, Jan 2005.

[PGSR10] M. Psarakis, D. Gizopoulos, E. Sanchez, and M.S. Reorda. Micropro-
cessor software-based self-testing. Design Test of Computers, IEEE,
27(3):4–19, May-June 2010.

[RTKM04] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee. Embedded determin-
istic test. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 23(5):776–792, May 2004.

[SABR04] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The impact of
technology scaling on lifetime reliability. In International Conference
on Dependable Systems and Networks, pages 177–186, June-July 2004.

[tc109] TC 1797 User’s Manual v1.1. Infineon Technologies AG, 2009.

[VGPH05] I. Voyiatzis, D. Gizopoulos, A. Paschalis, and C. Halatsis. A concurrent
bist scheme for on-line/off-line testing based on a pre-computed test set.
In Proc. IEEE International Test Conference (ITC), Nov 2005.

[WST08] Laung-Terng Wang, Charles E. Stroud, and Nur A. Touba. System on
Chip Test Architecture. Morgan Kaufmann, 2008.

[Wun98] H.-J. Wunderlich. Bist for systems-on-a-chip. INTEGRATION: The
VLSI Journal, Vol.26:pp.55–78, 1998.

[WWW06] Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen. VLSI Test
Principles and Architectures Design for Testability. Morgan Kaufmann,
2006.

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(David Prasetyo Buntoro)

	List of Figures
	Introduction
	Literature Review
	Electronic System in Automotive
	CAN Bus

	SOC Test
	Design for Test
	Core-Based Test
	Scan Design

	Related Work

	Proposed Method
	Implementation
	System
	TriCore Programming
	Memory Mapped I/O
	Inserting Constant into SRE File

	Peripheral Connection
	FPI Bus
	FPI Bus Multiplexer

	Test Data Transfer
	DFT Infrastructure Bridge
	CAN Controller

	DFT Infrastructure for Peripherals
	Tools
	EDT Logic Generation

	Test Application
	Internal Test
	External Test
	Experiment Analysis
	Future Work

	Conlusion
	Literatur

