
Visualisierungsinstitut der Universität Stuttgart
University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelor’s Thesis Nr. 06

Interactive Volume Visualization
with WebGL

Michael Becher

Course of Study: Computer Science

Examiner: Prof. Dr. Thomas Ertl

Supervisors: M.Sc. Grzegorz K. Karch
M. Sc. Finian Mwalongo

Commenced: May 2, 2012

Completed: November 1, 2012

CR-Classification: I.3, H.3.5

Abstract

Web-based applications have become increasingly popular in many areas and advances in
web-based 3D graphics were made accordingly.
In this context, we present a web based implementation of volume rendering using the relatively
new WebGL API for interactive 3D graphics. An overview of the theoretical background
of volume rendering as well as of the common approaches for a GPU implementation is
given, followed by detailed description of our implementation with WebGL. Afterwards the
implementation of advanced features is covered, before a short introduction to X3DOM, as a
possible alternative for web based volume visualization, is given.
It is the aim of this work to incorporate both basic and advanced methods of volume rendering
and to achieve interactive framerates with WebGL, using the power of client-side graphics
hardware. With regard to that, the result of our implementation is discussed by evaluating its
performance and by comparing it to an alternative solution. Finally, we draw a conclusion of
our work and point out possible future work and improvements.

3

Contents

1 Introduction 9

2 Related Work 11

3 GPU Accelerated Volume Rendering 13
3.1 Volume Data . 13
3.2 Optical Models . 13
3.3 Volume Rendering Integral . 14

3.3.1 Discrete Volume Rendering Integral . 15
3.4 Compositing . 15

3.4.1 Back to Front Compositing . 16
3.4.2 Front to Back Compositing . 16

3.5 Texture Based Volume Rendering . 16
3.6 Raycasting . 17

3.6.1 Generating and Casting a Ray . 18
3.6.2 Sampling and Compositing . 19

3.7 Transfer Functions . 19

4 Volume Rendering with WebGL 21
4.1 Introduction to WebGL . 21
4.2 Creating a WebGL Context . 22
4.3 File Loading . 23
4.4 Initializing Shaders . 23
4.5 Emulating 3D textures . 23
4.6 Initializing Textures . 28
4.7 Initializing Render Plane . 28
4.8 Transfer Function . 29
4.9 Display Function . 29
4.10 Vertex Shader . 29
4.11 Fragment Shader . 30

5 Advanced Features 33
5.1 Geometry Rendering . 33
5.2 Isosurface Visualization . 34
5.3 Lighting . 35
5.4 Animation . 37

5

6 X3DOM 39
6.1 Introduction to X3DOM . 39
6.2 Volume Rendering with X3DOM . 39

7 Evaluation 41
7.1 Stability . 41
7.2 Performance . 41
7.3 Comparison with X3DOM . 42

7.3.1 Features . 42
7.3.2 Performance . 43

8 Conclusion and Future Work 45

9 Acknowledgements 47

A Appendix 49
A.1 Zusammenfassung . 49

Bibliography 51

6

List of Figures

3.1 Ray - Box Intersection . 14
3.2 Texture Based Volume Rendering . 17
3.3 Raycasting . 18

4.1 OpenGL ES 2.0 Pipeline . 21
4.2 Structure of the Application . 22
4.3 2D Texture Layout . 24
4.4 Adjustments for Bilinear Filtering . 25
4.5 Index-Offsets . 27
4.6 Transfer Function . 30

5.1 Geometry Rendering . 34
5.2 Iso-Surface . 35
5.3 Lighting . 36

6.1 X3DOM Screenshot . 40

List of Tables

7.1 Benchmark . 42
7.2 Benchmark Comparison . 43

Listings

6.1 Example of the minimum necessary code for volume rendering with X3DOM. . 39

7

1 Introduction

The demand for exciting and elaborate, and often professional, web applications has risen to
new heights. To keep up with it, in recent years a lot of effort was put forth to increase the 3D
graphics capabilities of web applications. Presented solutions usually require the installation
of browser add-ons in order to view the 3D content, forcing the user to install a plug-in first.
To avoid such complications and make advanced 3D and 2D graphics accessible to a wide
audience, in 2009 the Khronos Group started an initiative to develop a standardized, native,
low-level API based on the OpenGL ES 2.0 specification, nowadays known as WebGL [Khr09].
Prior to that, experiments to embed an OpenGL 3D context into an HTML5 canvas element
were already made by Mozilla [Vuk07] and Opera[Joh07], the latter using a more independent
3D context. A more detailed introduction to WebGL is given in Chapter 4.
With the native support for an OpenGL based API in the browser, the pathway to numerous
new web applications has been opened. Because they run in a browser and are using the
OpenGL ES 2.0 API, the applications are essentially platform independent and can be used
on a wide range of hardware. This includes of course desktop PCs, but also mobile devices
such as smartphones and tablets, which lately are outfitted with increasingly fast graphics
hardware.
Apart from that, the availability is improved not only by the wide hardware support, but
also by the fact that no additional software is required. As long as a browser is installed,
applications featuring complex 3D graphics can be used on any device, without the need to
install any special, often proprietary, software.

The solutions for web-based graphics content presented prior to WebGL are usually limited to
rendering surface geometry (e.g. polygonal meshes). However, especially in some scientific
fields of study, three dimensional volume datasets are often used and the implementation of
corresponding algorithms proves to be difficult, if possible at all, with limited render options.
One of these algorithms is volume rendering, the most popular method to visualize three
dimensional datasets. A volume dataset is essentially a three dimensional grid filled with scalar
values. A more detailed explanation is given in Chapter 4.1.
Volume rendering has been known, researched and actively used for more than two decades
[Lev88]. It is a leading technique for the visualization of scientific data, often with medical
background but also several other lines of research, including fluid simulations, meteorology or
engineering. Volume rendering is generally divided in two categories: direct volume rendering
and indirect volume rendering. The former aims to directly evaluate and display all aspects
of a volume, whereas the latter focuses on extracting surface information from a volume to
create a suitable surface representation for rendering.
Over time, a variety of algorithms were introduced that improved upon the original idea.

9

1 Introduction

Some examples are texture-based volume rendering [CN94][EKE01], shear-warp factorizations
[LL94] or GPU accelerated Raycasting [KW03]. An extensive and detailed overview of volume
rendering is given in [HLSR08].

The visualization pipeline describes the steps that lead from a data source to a rendered image.
It is usually divided into four stages: First, in the data acquisition stage, raw data is collected
from any suitable source like simulations or sensor input. Second, in the filtering stage, the
collected raw data is refined. Third, in the mapping stage, the refined data is mapped to the
desired graphical primitives. Among others these can include points, surfaces or volumes, as
well as attributes like color and transparency. The fourth and last stage is the rendering stage.
Here the graphical primitives are rendered to create images. In terms of the visualization
pipeline, we are concentrating on rendering and mapping, while data acquisition is completely
skipped and filtering is generally omitted as well.

The aim of this work is to develop an interactive volume rendering application, combining the
advances made in web based real-time 3D rendering with the well developed techniques for
volume rendering. Besides the implementation of the basic volume rendering functionality
with raycasting, some advanced features including lighting and iso-surface visualization are to
be part of the application. Furthermore we want to compare our implementation to already
existing solutions for web-based volume rendering, namely X3DOM or XML3D. However,
volume rendering support for XML3D is planned for 2013 and not yet available. This leaves
only X3DOM for comparison.

The thesis is structured as follows. First, in Chapter 2, an overview of previous work in the
field of volume rendering and web based 3D graphics is given. Next, in Chapter 3, we review
the theoretical principles of volume rendering and discuss different, suitable approaches for a
GPU volume rendering algorithm.
Afterwards, in Chapter 4, our WebGL implementation is explained in detail, followed by a
description of some advanced features in chapter 5. In Chapter 6, we give a short introduction
to X3DOM [BEJZ09]. After an evaluation of our application and comparison with X3DOM in
chapter 7, we hint at some possible future improvements in chapter 8.

10

2 Related Work

Originally, the typical method for GPU accelerated volume rendering is an object-order
approach, first introduced in 1993 by Cullip and Neumann [CN94]. The basic idea is to cut
slices from the volume and render these using proxy geometry. A short overview of this method
is given in Chapter 3.
Another fast algorithm for volume rendering is shear-warp factorization, presented by Lacroute
and Levoy [LL94]. A volume is transformed into a sheared space, where a parallel projection
creates an intermediate image, which is then warped to produce the final image.
Krüger et al. improved GPU-based volume rendering by using the programmable graphics
pipeline of modern graphics cards for a raycasting algorithm, that allowed the integration of
acceleration techniques [KW03].
Volume rendering has not only been researched with regard to improved algorithms. A model
for distributed volume rendering was presented by Magallón et al. [MHE01]. With a high-speed
network, a cluster consisting of mainstream graphics hardware can be created, in order to be
able to render larger datasets.
An interactive volume rendering application for mobile devices was presented by Moser and
Weiskopf[MW08]. Their implementation used the OpenGL ES 1.0 API and therefore similar
functionality restrictions, as imposed by WebGL, were addressed.

An overview of existing techniques for the 3D rendering in the web can be found in an article
by Behr et al. [BEJZ09]. In the same article, Behr et al. introduced an integration for the
X3D standard into the HTML5 Document Object Model called X3DOM. It offers a declarative
approach to web-based 3D graphics.
Since the introduction of WebGL, numerous works featuring native 3D graphics support for
browsers were published. Among these, an article by J.Congote et al. is of particular interest
in regard to the subject of this thesis [CSK+11]. They presented a WebGL implementation of
a volume renderer, focusing on the visualization of medical and meteorological data. Even
though there are some differences in the render algorithms and focus of the work, the initial
idea of the article and the approach of the implementation are very similar. The features they
mention as possible future works are at least partially implemented as a part of this thesis, e.g.
lighting and surface rendering.
Jacinto et al. published another work that uses WebGL for the visualization of medical data
[JKD+12]. Instead of direct volume rendering, they used indirect volume rendering and put
more emphasis on the interface of their application.
WebGL has also been used by P. Jiarathanakul to implement a real-time ray marching algorithm
for distance fields [Jia12]. A scene is rendered by stepping trough it, at each step checking

11

2 Related Work

the distance to the nearest surface and deciding the step size based on that, till a surface is
reached.

12

3 GPU Accelerated Volume Rendering

Next to traditional surface rendering, which relies on some kind of surface representation like
polygonal meshes, volume rendering is one of the most prominent rendering techniques in
the field of computer graphics. This is aided by the fact, that for some time now, hardware
accelerated volume rendering allows interactive framerates.
In this chapter, we solely discuss direct volume rendering. In the first part, a brief explanation
of the theoretical background, namely optical models and the volume rendering integral, is
given, followed by two volume rendering techniques suited for a GPU implementation in the
second part.

3.1 Volume Data

In our practical context of volume rendering, a volume is defined as a discrete, three dimensional
set of scalar values. It can be thought of as the result of sampling a continuous three dimensional
function. A single value of this set is called a voxel, and is considered as the smallest unit of a
uniform, three dimensional grid [HLSR08].
Volume datasets are mostly generated by medical scans and scientific simulations. However,
since the acquisition of such data sets is not a part of this thesis, we will not pursue this topic
any further.

3.2 Optical Models

Almost all volume rendering algorithms are based on an underlying physical model, that
describes the interaction of light with the particles of a medium. The properties that contribute
to the radiance of a particle are absorption, emission and scattering.
Several optical models with varying degrees of realism are known [Max95]. The three that are
of relevance to this study, are briefly described below.

Absorption Only

This model assumes the particles to be perfectly black and cold [Max95]. Light that passes
through a medium consisting of such particles looses some of its radiative energy, depending on
the absorption coefficient. No light is emitted by a particle, and no scattering takes place.

13

3 GPU Accelerated Volume Rendering

Emission Only

The emission-only model neglects absorption and scattering. The particles only emit light.

Absorption and Emission

The effects of both absorption and emission are taken into account with this model, but
scattering is omitted. This model is closer to reality as the previous two, since a medium
usually both partially absorbs incoming light but also emits light again.

3.3 Volume Rendering Integral

We formulate the volume rendering integral for the absorption-emission model, the most
frequently used one for direct volume rendering. Note that for the continuous volume rendering
integral, we are falling back to a non-discrete view of a volume for now.
For a ray r, that represents the way that light travels from a light source trough the volume
to the eye, we parametrise the position r(x) on the ray with the distance x from the eye. The
scalar value obtained from the volume at a position r(x) is denoted by v(r(x)). Since we
are using an absorption and emission model, we need to define the emission c(v(r(x))) and
absorption coefficient κ(v(r(x))). For the sake of simplicity, in the following equations both
are written as functions with distance x from the viewer as parameter.
As Figure 3.1 illustrates, the ray enters the volume at s0 and exits it in the direction of the
viewer at s1. To model the emission of the volume, we integrate over the distance between s0
and s1 and add it to the initial intensity I(s0) multiplied by the transparency of the volume
along r. We model the transparency T between two points x0 and x1 with

(3.1)

T = e−τ(x0,x1)

τ(x0, x1) =
x1∫
x0

κ(x)dx

s1

s0

r

eye

Figure 3.1: Top-down cross section of a Ray-Box intersection.

14

3.4 Compositing

The integral over the absorption coefficient is called the optical depth. The exponential
function for the transparency is deduced by solving the differential equation given by the
emission-absorption model [Max95]. Finally, Equation 3.2 is the volume rendering integral.

(3.2) I(s1) = I(s0) · e−τ(s0,s1) +
s1∫
s0

c(x) · e−τ(x,s1)dx [Max95]

3.3.1 Discrete Volume Rendering Integral

As already stated in Section 3.1, in practical applications the volume is a discrete set of
values. Therefore, the volume rendering integral is also evaluated using a discrete, numerical
approximation. The discretisation is achieved by approximation of the integrals with Riemann
sums [HLSR08].
For the optical depth τ in Equation 3.1 we obtain the discrete version

(3.3) τ(x0, x1) ≈
b(x1−x0)/∆xc∑

i=0
κ(x0 + i ·∆x) ·∆x

which leads to the following approximation of the exponential function

(3.4) e−τ(x0,x1) ≈
b(x1−x0)/∆xc∏

i=0
e−κ(x0+i·∆x)·∆x

Accordingly, the emission in i-th ray segment is approximated by

(3.5) Ci = c(s1 + i ·∆x)∆x

Using the approximation for both the emission and absorption, leads to the discrete volume
rendering integral:

(3.6) I =
b(s0−s1)/∆xc∑

i=0
Ci

i−1∏
j=0

e−κ(s1+j·∆x)·∆x

3.4 Compositing

Volume rendering algorithms usually evaluate the discrete volume rendering integral by means
of an iterative computation. The method shown here is also called alpha blending [HLSR08].

15

3 GPU Accelerated Volume Rendering

3.4.1 Back to Front Compositing

We introduce the opacity A, which can be defined as

A = 1− T

Back-to-front composition is directly derived from the discrete volume rendering integral.

(3.7)
C ′i = Ci + (1−Ai)C ′i+1

A′i = Ai + (1−Ai)A′i+1

Ci is the colour value of the i-th sample and C ′i is the color accumulated up to the i-th sample.
Analogue, Ai is the opacity of the i-th sample and A′i is the accumulated opacity up to the
i-th sample.

3.4.2 Front to Back Compositing

Reversing the order of the summation leads to the front-to-back compositing scheme.

(3.8)
C ′i = Ci(1−Ai−1) + C ′i−1

A′i = Ai(1−Ai−1) +A′i−1

3.5 Texture Based Volume Rendering

One of the most important algorithms for hardware accelerated volume rendering is a texture-
based, object-order approach, that has been known since the early nineties [CN94][CCF94]
and has since then repeatedly been used and improved [WE98][EKE01]. It is a method that
doesn’t require modern per fragment operations,but instead relies on rasterization, texturing
and blending features, that even older graphics hardware supports.
The general idea is to slice the volume with several planes to create proxy geometry, which is
then textured with values from the volume and blended together. The intersection of a plane
with the volumes bounding box results in a polygon, that is used as proxy geometry.
Slicing is done either bounding box axis aligned, or view plane aligned. Depending on the
slicing method the slices are textured using 2D textures or a 3D texture, meaning either
bilinear or trilinear interpolation. The composition of the resulting, textured stack of slices is
done in back-to-front order. Figure 3.2 illustrates the three major steps for both bounding box
and view plane aligned slicing.

16

3.6 Raycasting

Figure 3.2: Upper left: Bounding box aligned slicing. Upper middle: The slices are textured using
bilinear filtering. Upper right: Composition of the slices.
Lower left: View plane aligned slicing. Lower middle: The slices are textured using
trilinear filtering. Lower right: Composition of the slices. [Ert11].

3.6 Raycasting

Raycasting is an image-order algorithm that renders a frame by casting rays into the scene.
A single ray is generated for every pixel on the screen, in order to retrieve the pixel’s color
from the scene. Unlike Raytracing, which shares same similarities, Raycasting only uses rays
that originate at the viewer location, usually referred to as primary rays. The general idea is
illustrated in Figure 3.3.
After their generation, the rays are tested against all scene objects for intersections. In volume
rendering, the volume’s bounding box is used as primitive for the intersection test. If a ray hits
a bounding box, the volume is visible at the corresponding screen pixel, otherwise the screen
pixel is set to the background color. The intersection points (when intersecting a straight
line with a box, there are always two intersections) are sorted by distance from the origin to
identify the entry and exit point. The screen pixel’s color is then retrieved by stepping through
the volume, starting at the entry point, along the ray. To get the final color, the sample points
are composited in front to back order.
Since the rays are independent from each other and the operations performed for all rays
are nearly identical, Raycasting is well suited for parallelization on the GPU. Casting a ray ,
performing the intersection test and stepping through the volume if necessary, are implemented
as per fragment operations.

17

3 GPU Accelerated Volume Rendering

Figure 3.3: Illustration of the general idea of Raycasting.

3.6.1 Generating and Casting a Ray

There are different approaches at creating the fragments and generating the corresponding
rays.

The first is a multi-pass approach [KW03], where the actual bounding box of the volume is
rendered to determine the entry and exit points of a ray, that originates at the viewer’s location
and hits the bounding box. The faces of the box are color coded to reflect the coordinates
of a surface point inside texture space. We refer to texture space as the three dimensional
space where the bounding box dimensions are normalized in all three directions, meaning the
bounding box expands from (0.0, 0.0, 0.0)T to (1.0, 1.0, 1.0)T despite what the actual dimension
of the volume dataset is.
In the first renderpass the frontfaces of the bounding box are rendered to a texture. Due to
the color coding, the color of a texel is equal to the coordinates of the entry point in texture
space. The next renderpass is starts with rendering the backfaces of the bounding box, thus
obtaining the exit points for each fragment. Together with the output of the first renderpass,
the ray direction is now calculated by subtracting the entry points from the exit point. The
intersection of the ray with the bounding box is done implicitly by only rendering the bounding
box in the first place. Hence, no fragments are created where a viewing ray does not hit the
bounding box.
The approach can be modified, so that only a single render pass is required. Depending on
whether or not the viewer location is inside or outside the bounding box, either the backfaces or
frontfaces are rendered. The ray direction is then obtained by subtracting the camera position,
which is transformed to texture space for this, from the entry or exit point. This variation is
slightly superior, since it allows for camera positions inside the volume, but requires either
an expensive if conditional statement in the fragment shader, or separate shader programs to
decide the camera location.

Both variations are dropped in favour of a second, more generalised approach to ray generation.
Instead of using the graphics pipeline to create only the relevant fragments, we want to create

18

3.7 Transfer Functions

a fragment for each screen pixel and then test the bounding box against all resulting rays.
This is achieved by rendering a simple, screen filing plane.
The ray direction is then calculated by subtracting the camera position from the fragment
position. If done in view space, this is especially easy as the viewer location is always the
origin. Using the obtained ray direction as well as the ray origin, the ray and bounding box
are now tested for intersections.

3.6.2 Sampling and Compositing

An important part of a Raycast volume renderer addresses how the rays are used to acquire
the color and opacity information of a screen pixel from the volume. As mentioned above, this
is done by stepping through the volume.
Essentially, this means that the volume is sampled at equidistant points along the ray. We
explained earlier, that the volume’s voxels form a three dimensional uniform grid. Sample
points are rarely positioned at a voxel’s center and therefore interpolation schemes are used to
obtain the value at a sampling point.
Starting at the entry point, we gradually move in ray direction until we pass the exit point.
During this process the color and opacity, obtained from the sample points via a transfer
function (see Section 3.7), are accumulated using front to back compositing. Should the opacity
pass a threshold of 1.0 the sampling the volume is stopped, because all sample point further
ahead are occluded by the thus far accumulated sample points anyway. This simple speed up
method is called early ray termination.
Once the last sample point is accounted for, the accumulated color and opacity is assigned to
the screen pixel, that corresponds to the fragment.

3.7 Transfer Functions

The transfer function is essentially a transformation from the space R1 to the space R4. The
domain in both spaces is limited to the range [0, 1], due to normalization of the values from
the volume dataset.
It is used to assign a color and opacity to each sample point, which only holds a single,
scalar value. While assigning an opacity is indispensable for the employed volume rendering
technique, assigning a color, instead of using a grey-scale value, is a very important aspect of
visualizing scientific data, as it helps to set apart certain areas. In less scientific applications
(e.g. video games etc.), color remains an important aspect, simply because of its vital role in
visual perception.

19

4 Volume Rendering with WebGL

4.1 Introduction to WebGL

In March 2011 the Khronos Group released version 1.0 of the WebGL specification [Khr11], as
the first, finalized result of their initiative. WebGL offers client-side 3D rendering functionality
for web applications, based on the OpenGL ES 2.0 API. For a list of the difference between
WebGL and OpenGL ES 2.0 see [Khr]. The rendering pipeline is directly taken over from
OpenGL ES 2.0 and contains two fully programmable stages, namely the vertex and fragment
Shader. It is illustrated in Figure 4.1.
A WebGL application generally needs, apart from the HTML web page it is embedded into,
two parts: The JavaScript code and a Shader program.
The JavaScript code controls the application and issues all necessary calls to the OpenGL
API. Here, all WebGL objects (e.g. Vertex-Buffer-Objects, textures, Shader programs etc.)
are created and administrated. It is executed on the CPU.
Shaders on the other hand are essentially programs written specifically for graphics hardware.
They are written in the OpenGL Shading Language (GLSL). The Raycasting algorithm is
implemented as a Shader program and executed on the GPU.

Primitive

Processing
Vertices

Triangles/Lines/Points

Vertex

Shader

Primitive

Assembly
Rasterizer

Vertex

Buffer

Objects

Fragment

Shader

Depth

Stencil

Colour

Buffer

Stencil

Dither Frame Buffer

API

Figure 4.1: OpenGL ES 2.0 Programmable Pipeline.

21

4 Volume Rendering with WebGL

Create

WebGL Context

Initialize

Shader Programs

Initialize

Render Plane

Initialize Pass 1

Framebuffer

Load

Volume Files

Convert to

2D Texture

Compute

Gradient

Pass One:

Render Geometry

Pass Two:

Render Volume

Display Function

Loop

Figure 4.2: Overview of the application flow. Light colored nodes are part of the JavaScript code,
the slightly darker nodes are Shader Programs. Nodes with a dark, right half are part of
advanced features that are described in Chapter5.

Writing a WebGL application is in quite a lot of ways very similar to writing a classic OpenGL
program using any eligible language (e.g. C++). However, due to the limiting nature of
the current WebGL specification, there are a couple of areas where some additional effort is
necessary in order to implement the volume rendering techniques presented in the previous
chapter.

This Chapter is divided into two areas. The Sections 4.2 to 4.9 cover the JavaScript code of
the application, whereas the Sections 4.10 and 4.11 cover the Shader program.

4.2 Creating a WebGL Context

A WebGL context provides access to the WebGL functionality and is required to use any
WebGL function e.g. compiling Shader program or creating WebGL Texture objects.
To create a context a canvas element is required. The canvas element was introduced with
HTML5 to offer support for freely drawing graphical elements. In combination with WebGL,
the canvas is used to draw the rendered images on the web page. Using the getContext()
canvas function, an experimental-webgl context is created.

22

4.3 File Loading

4.3 File Loading

It is possible to store Shader sourcecode as HTML script elements. It is more convenient
though to store the Shader source code in separate files alongside the JavaScript files. Unlike
the JavaScript files, which can be directly linked in the HTML code, the Shader files have to
be loaded using the XMLHttpRequest API, a popular way to load server-side files.

The volume files are stored locally and have to be uploaded by the user. This is done using the
File API, that was introduced with HTML5. It features easy-to-use access to local files and a
file reader interface, that makes it possible to read binary data and store it in an array.

4.4 Initializing Shaders

Initializing a Shader program in WebGL is done analogously to desktop OpenGL. Unlike more
recent OpenGL Versions (3.2+), which also offer the possibility to use geometry and even
tessellation Shaders, a WebGL program consists only of a vertex and a fragment Shader. In
short, the initialization is compromised of the following steps:
First, new vertex and fragment Shader objects are created. After the Shader source code is
added, the Shaders can be compiled and are ready to be attached to a newly created program
object. As soon as both Shaders are compiled and attached to the program, the program is
linked to the WebGL context and is ready for use.

4.5 Emulating 3D textures

One of the essential parts of any volume renderer is, naturally, the volume data itself. Currently,
3D textures are the most popular and convenient way to handle the volume data. This is
based on the earlier explained view of a volume as a uniform, three dimensional grid.
Unfortunately, there currently is no native support for 3D textures available in the WebGL
Specification. A workaround has to be found, using the existing feature set in the best way
possible.
A known solution for this issue is to emulate the 3D texture using the available 2D texture
support [Khr]. This approach suggests itself, since one way to interpret a 3D texture is as a
number of 2D textures. These single 2D textures, which together add up to the complete 3D
texture or volume, are henceforth referred to as slices. The aim of this method is to find an
optimal way to copy and arrange all slices of a given volume into a single 2D texture, often
reffered to as a texture atlas. Furthermore each slice should not be split into smaller parts,
but remain as whole within the 2D texture space. Figure 4.3 illustrates the general idea of
how the slices are arranged in a 2D texture.

23

4 Volume Rendering with WebGL

Texture Resolution

A naive algorithm could simply copy the data of the 3D texture into a 2D texture with the
same width as a single slice and the height of a slice multiplied by the number of slices as
its height. Obviously this would not produce an optimal result, especially when considering
the limited maximum texture resolution of graphic card hardware. Instead, a more optimal
texture resolution can be found by trying to meet two conditions.
First, the width m multiplied by the height n of the texture has to be either equal or greater
than the volume’s width x multiplied with it’s height y and depth z, so that there is a texel in
the texture for every voxel of the volume.
Second, the width and height of the texture should be approximately the same, so that a
maximum amount of image data can be fitted into a single texture file. Both conditions are
expressed by Equations 4.1.
On a side note, the width and height of the 2D texture should both be a multiple of a slice’s
width and height respectively. Because slices are to remain as a whole, this simplifies the
process of copying the data into the texture buffer, as well as accessing values from the texture
later on.

(4.1)
m · n ≥ w · h · d,

m = a · w ≈ b · h = n,

The dimensions m,n,w,h and d are specified in the number of texels and voxels. The variables
a and b are the number of slices in X and Y direction respectively. All variables are elements

0
1

n-1

...

0 1

k k+1

n-1n-2

w

h

d

n

m

Figure 4.3: Illustrates how the slices of a volume are arranged inside a single 2D texture.

24

4.5 Emulating 3D textures

of N.
Using the Equations 4.1 a near minimum number of slice in x and y direction can be determined.
This is expressed in the following Equations 4.2.

(4.2)
a = d

√
h · d
w
e

b = dw · a
h
e

With a and b being known values, calculating the final texture width and height becomes
easy.

Bilinear Filtering

WebGL features integrated bilinear filtering for 2D textures. Because each slice stays as a
whole when copied into a 2D texture, we are able to benefit from this feature. However, there
now are multiple areas where the boundary texels of one slice are located directly next to those
of another slice. When accessing texels from those areas, binary filtering would interpolate
between values from texels, that originally weren’t neighbours. This can lead to clearly visible
artefacts during rendering, which could be described as part of one of the volume’s boundary
surface ’bleeding’ into another.
To avoid this effect, each slice is expanded by a one texel wide border. This results in the
new width of a slice w′ = w + 2 and the new height h′ = h + 2, as well as the new width
m′ = m+ (2 · a) and height n′ = n+ (2 · b) of the 2D texture. The values for the texels of this
border are taken from the nearest texel of the original slice. Therefore, whenever a texture
access falls into the vicinity of a slice’s boundary, the binary filtering will only interpolate
between appropriate values.

Figure 4.4: Illustration of the lower left slice and its neighbourhood. Dark pixels belong to the added
border. Arrows indicate which values are used to fill the border pixels

25

4 Volume Rendering with WebGL

Data Format

Before implementing an algorithm that meets all of the above listed requirements, the internal
data representation of any texture, be it 3D, 2D or even 1D, has to be taken into consideration,
since this is where the actual copying and rearranging of voxel to texel data takes place.
In our case, the volume data is compromised of a single float value per voxel. Even though the
data represents a 3D texture, these values are stored slice by slice in a simple, one dimensional
float array q, with each slice being stored in a row-major order. Similarly the texels of a 2D
texture are simply stored in row-major order in a one dimensional array. Basically, all that
needs to be done is to copy the data from the original input array q into a new array p, while
making sure that the position inside p will result in the desired position within 2D texture
space. Depending on the number of slices that are placed horizontally next to each other in
2D texture space, a row of the resulting 2D texture is made up from single rows of different
slices. Because of the row-major order storage of 2D textures, texels from a single slice are no
longer stored in a single connected block.
To copy the data of a voxel with given coordinates x, y, z ∈ N, we need to know its index in q
and p. The position inside the one dimensional array p is calculated by adding up a couple
of offset values, that are defined in Equation 4.3. Both soffset and toffset are offset values that
are necessary to reach the starting point of the slice, that the current texel belongs to. To
reach the correct row inside the slice roffset is needed and by adding x the position of the texel
within the array p is finally found. Figure 4.5 illustrates where the texels, that the offsets are
pointing at in the 1D array, are located in the 2D texture and how adding them up leads to
the correct position.
On the other hand, finding the index within the array q is a little bit more straightforward. To
reach the beginning of a slice within q, the voxels of all slices in front of it have to be skipped.
We know that a slice contains w · h voxels, so we simply multiply that with the number of the
slice z: z · (w · h). To reach the correct row inside the slice, we again skip over the voxels of
the rows in front of it: y · w. Finally we can add the x value to obtain the final index.
The complete process is summed up in Equation 4.4. Variables w′, h′ as well as w, h and d
are taken over from the two previous sections. It is important to note, that the equations hold
for all x, y and z within the given domain.

(4.3)

soffset = w · (z mod a)

toffset = h · wbz
a
c

roffset = m · y

(4.4)
p(toffset+soffset+roffset+x) = q(z·(w·h)+(y)·(w)+(x))

x, y, z ∈ N, 0 6 x < w, 0 6 y < h, 0 6 z < d

If we include the boundary around each slice, the equation gets more complicated. To correctly
copy values for the boundary texels from the original array q, we have to handle several

26

4.5 Emulating 3D textures

different cases. This version, that is also used in the actual implementation, is shown in the
Equations 4.6 and 4.5.

(4.5)

soffset = w′ · (z mod a)

toffset = h′ · w′bz
a
c

roffset = m′ · y

(4.6)
p(toffset+soffset+roffset+x) =

q(z·(w·h)+(y)(w)+(x)) , (x = 0 ∧ y = 0)
q(z·(w·h)+(y−2)(w)+(x)) , (x = 0 ∧ y = h′ − 1)
q(z·(w·h)+(y)(w)+(x−2)) , (x = w′ − 1 ∧ y = 0)
q(z·(w·h)+(y−2)(w)+(x−2)) , (x = w′ − 1 ∧ y = h′ − 1)
q(z·(w·h)+(y−1)(w)+(x−2)) , (x = w′ − 1)
q(z·(w·h)+(y−1)(w)+(x)) , (x = 0)
q(z·(w·h)+(y−2)(w)+(x−1)) , (y = h′ − 1)
q(z·(w·h)+(y)(w)+(x−1)) , (y = 0)
q(z·(w·h)+(y−1)(w)+(x−1)) , else

x, y, z ∈ N, 0 6 x < w′, 0 6 y < h′, 0 6 z < d

n

m

t
offset

s
offset

r
offset

x

Figure 4.5: Illustrates where the texels, that the respective offsets are pointing at inside the 1D
array, are positioned inside 2D texture space.

27

4 Volume Rendering with WebGL

Multiple Textures

When converting a volume into a 2D texture representation, one last problem needs to be taken
care of. That is, the size limitation imposed on 2D textures by the available graphics card
hardware. Most modern GPUs support a texture resolution up to the size of 16384× 16384.
Even though a volume dataset with a resolution of 5123 can still be easily fitted onto a single
2D texture of that resolution, any considerable larger datasets require the usage of more than
one texture.
Therefore, in case the maximum texture size would be exceeded, the volume has to be split
apart. Should the resulting parts exceed the size restriction again, the number of overall parts
is increased by one until an acceptable size for each part is reached. Furthermore no slice
of the volume is to be split apart, so that each part only contains a set of complete slices.
Depending on the overall amount of slices and the number of parts the volume is split into,
the different parts do not contain the exact same number of slices.
Afterwards, as soon as the volume is split into parts that can be fitted into a single texture,
each part is copied into a 2D texture data buffer and uploaded to the graphic card as a
separate texture. The number of textures is again limited by the hardware and it’s available
texture units. This feature is especially useful on devices with much smaller maximum texture
resolution.

4.6 Initializing Textures

In Chapter 3 we stated, that we assume volume datasets to contain only float values. It would
be most convenient to simply keep these float values for the actually used textures as well.
Therefore, at some point before the first texture is uploaded to the graphics card, preferably
directly after the WebGL context is created, the float texture extension needs to be activated
to be able to use float valued textures in first place.
After the raw volume data has been loaded and transformed into the required 2D representation,
it can finally be send to the graphics card as one or more 2D texture. The following steps are
repeated for each data buffer.
A new WebGL Texture object is created and set active. Next, the texture parameters are
set. Because we are using non-power-of-two textures, some limitations are in place concerning
texture filtering, where only linear interpolation or nearest-texel are legal modes, and texture
wrapping, which has to be set to clamp to edge. Now, the data buffer is uploaded with the
data format as well as the internal format set to LUMINANCE, as the texture only contains a
single float value per texel.

4.7 Initializing Render Plane

As explained in Section 3.6 rendering a screen filling plane is the first step of our GPU
Raytracing algorithm. To use it, the plane geometry has to be created and prepared for
rendering. First, a new array is created to house the coordinates of the plane’s four vertices.

28

4.8 Transfer Function

To have the plane fill the complete screen, the coordinates are already stored in normalized
device coordinates. Each vertex is placed in a screen corner, resulting in the coordiantes of
(−1.0,−1.0, 0.0), (−1.0, 1.0, 0.0)T, (1.0,−1.0, 0.0)T and (1.0, 1.0, 0.0)T respectively.
WebGl utilizes vertex buffer objects (VBO) to store the vertex data of a geometry object
directly on the graphics hardware for non-immediate-mode rendering. So the next step is to
generate a new VBO, set it active and finally upload the previously created vertex data.

4.8 Transfer Function

Instead of using a static transfer function, a user-defined transfer function, that can be changed
in real time, offers a higher level of interaction and flexibility. The function itself is implemented
with a one dimensional RGBA texture. Because 1D textures are not supported in WebGL, it
is faked by simply using a 2D texture with a height of one. Using a texture is not only an
elegant way to implement the R1 → R4 transformation, but also offers linear interpolation to
make up for the limited resolution.
All four channels of the texture can be manipulated individually. For that purpose, four
HTML5 canvas objects are used, each controlling a channel. The canvas x-axis equals the
position inside the texture, while the y-axis equals the value stored in a one channel of a
texel. By creating and moving points on the canvas a number of support points for linear
interpolation are supplied. A point’s x-coordinate is mapped to the corresponding texel,
whereas the y-coordinate is normalized to a range between zero and one and used to set
the channel value. The texels in-between two support point are set according to the linear
interpolation. The texture values, which are stored inside a array, are updated every time a
change on a canvas is made and the texture in the graphics card’s memory is updated with
these new values.

4.9 Display Function

The rendering of a frame is handled by the display function. At the beginning of the
function, the framebuffer is prepared for rendering, followed by the computation of the required
transformations matrices. Afterwards the transformation matrices are passed on to the Shader
program, just like some other relevant informations including texture dimension. Next, all
required textures are bound to an active texture units.
Finally, we bind the render plane’s VBO and make the draw call to start rendering a frame.

4.10 Vertex Shader

The vertex Shader is a simple pass-trough Shader. Since the vertices of the render plane are
already given in screen space coordinates, no transformations are necessary at this point.

29

4 Volume Rendering with WebGL

Figure 4.6: Example of a user defined transfer function and the resulting colour of the rendered
volume.

4.11 Fragment Shader

Volume Texture Access

Section 4.4 discusses the problems associated with the lack of 3D texture support in WebGL.
Accordingly, neither do WebGL Shader programs support the built-in access function for 3D
textures, nor would the built-in function work after the rearrangement of the volume data.
Therefore, custom functions are needed to access the volume textures. The basic problem is to
find for a set of given 3D coordinates the correct texture (in the case of the usage of multiple
textures) and for that texture a set of 2D coordinates pointing at the right texel. 3D and 2D
Texture coordinates are generally given within a domain of [0, 1].
Identifying the correct texture and determining the 2D texture coordinates for that texture
are strictly separated functions. Using the z-coordinate and the number of overall textures
the correct texture is easily identified. The z-coordinate is then normalized back to a range of
[0, 1] for the function that calculates the 2D access coordinates.
There, we first of all need to identify the slice that the current z-coordinate points at as well
as its position inside the 2D texture. To that end the z-coordinate is first transformed to the

30

4.11 Fragment Shader

index number of the slice and then used for the calculation that determines the x- and y-offset
of the slice’s lower left corner within 2D texture space.

(4.7)

slice = b(z · d)c

xoffset = slice mod a

a

yoffset =
b slicea c
b

A texel position within the slice is then calculated by adding the x- and y-coordinate, both
scaled to down to fit to the slice’s height and width inside the texture, to the corresponding
offset. The one pixel wide border around each slice is also taken into account.

(4.8)
x = xoffset + x

a
+ 1
m

y = yoffset + y

b
+ 1
n

Trilinear Interpolation

Sample points are interpolated between the eight nearest voxels, using a trilinear interpolation
scheme, to achieve a smooth result. As explained in Section 4.4, bilinear interpolation is
already achieved by using the built-in functionality, but interpolation in z-direction has to
be done manually. Instead of accessing only a single value from the nearest slice, two values
are accessed from the two nearest slices. Overall, the above described process for accessing a
volume texture is done twice: Once with the original sample point coordinates, and a second
time with the z-coordinate incremented by one.

Bounding Box Intersection

For the intersection test of a view ray with the volume bounding box, a fast and straightforward
algorithm, developed by Kay and Kayjia, is used. A description of the algorithm can be found
at [Sig98].

Accumulation Loop

The accumulation loop is where the sampling and compositing steps of the Raycasting are
executed. In this context, accumulation refers to how the color and opacity of the sample points
are accumulated over time with each cycle of the loop. WebGL does not support while-loops
in a Shader, so instead a for-loop with static length and a conditional break is used.
These six basic steps make up the body of the loop:

31

4 Volume Rendering with WebGL

1. The texture coordinates of the sample point within the volume are computed. We do
this by adding the ray direction, multiplied with the thus far covered distance, to the
coordinates of the starting point. This is, depending on whether the camera is in- or
outside the volume, either the entry point of the ray or the camera position itself.

2. With the coordinates, the sample point’s value is retrieved from the volume data by
calling the volume texture access function.

3. The transfer function is called and returns a 4D vector, containing RGB color information
and an opacity value.

4. The obtained color and opacity are added to the so far accumulated values, utilizing the
front-to-back compositing scheme.

5. We increase the value that stores the distance from the start point in preparation of the
next iteration of the loop.

6. Before jumping into the next cycle, we check the two conditions for exiting the loop:
Reaching or going past the exit point, or reaching an accumulated opacity of one. If
either one of these is fulfilled, a break command is issued and the accumulation loop is
finished.

32

5 Advanced Features

Apart from the basic volume rendering functionality, several advanced features have been
added to the application.

5.1 Geometry Rendering

Even though the focus of this work is set on volume rendering, the ability to render surface
geometry is a useful addition. Since geometry rasterisation is the most classical application of
hardware accelerated computer graphics, it is fairly easy to implement. It can be used both
to directly complement the rendered volume (e.g. by displaying a frame around the volumes
bounding box) or to add standalone elements to the scene.
To implement geometry rendering alongside volume rendering, a multi-pass renderer is necessary,
consisting of a geometry and a volume pass. In the first pass, all geometry objects within the
scene are rendered to a texture using a previously created framebuffer object. The texture
attached to that framebuffer object contains RGBA float values, however the alpha channel is
used to store depth information instead of opacity. To ensure that the geometry is correctly
aligned with the volume, the transformation matrices for the first render pass are generated
with the same camera parameters that are used for the Raycasting during the second render
pass.
To correctly merge the rasterized geometry with the rendered volume, even in the case that
some geometry objects are positioned within the volume, any simple composition of the first
render pass and the following volume pass does not produce a satisfying result. Therefore,
during the second pass the texture containing the output of the first pass needs to be made
available. Within the fragment Shader, the fragments position in normalized screen space
is calculated and used to access the corresponding values of the first render pass from the
texture. The actual merging takes place during the accumulation loop. At each sample, the
distance from the viewer’s location is tested against the depth value stored in the texture’s
alpha channel. As soon as that distance exceeds the stored value, all remaining sample points
along the view ray are occluded by a geometry object. Thus the accumulation of sample points
can be stopped and the texture’s RGB value, multiplied by the remaining opacity, is added to
the accumulated color. The accumulated opacity is set to one and the accumulation loop is
exited. Finally, the accumulated values are written to the Shader’s output.

Currently, there only is limited support for loading geometry objects from files. Figure 5.1
shows a scene containing polygonal surface geometry that was loaded from a VTK file [Kit].

33

5 Advanced Features

Figure 5.1: An example of the combination of volume rendering and surface rendering in the same
scene, showing flow-lines added as geometry inside the volume. There is also a frame
rendered around the bounding box.

5.2 Isosurface Visualization

Some regions inside the volume can be of special interest. This includes surfaces, which help
to grasp the shape of a displayed object. One possibility to visualize the surfaces contained in
volume data are isovalue contour surfaces [Lev88]. In this method, the surface is defined by
voxels with the same value. To actually render the surfaces, the voxel’s opacity has to be set
based on whether they are part of a surface or not. Apart from simple approaches, where all
voxels are either set opaquely or non-opaquely based on a threshold, the opacity can be set
by using the local gradient of each voxel. The gradient of a voxel xi is approximated by the
following operator.

(5.1) ∇f(xi) = ∇f(xi, yj , zk) ≈

(1
2(f(xi+1, yj , zk)− f(xi−1, yj , zk),

1
2(f(xi, yj+1, zk)− f(xi, yj−1, zk),

1
2(f(xi, yj , zk+1)− f(xi, yj , zk−1)

)[Lev88]

In boundary regions, the central difference used to calculate the discrete differential, is replaced
by either a forward or backward difference. This guarantees that the gradient of every voxel is
well defined.
The gradient values are computed after the volume data has been written to 2D textures.
For each texture that contains volume data, a texture containing the corresponding gradient
data is created. Since it can be considered as image processing, it is easy to speed up the
computation by doing it on the graphics card instead of the CPU. With a framebuffer object
that matches the volume texture resolution, the gradient values for x,y and z direction
are rendered to an RGB texture. In the case that a volume is made up out of more than a

34

5.3 Lighting

Figure 5.2: Left: Standard direct volume rendering. Right: Iso-surface mode with the following
parameters: fv = 0.5 av = 1.0 r = w.0.

single texture, as described in Section 4.5, up to three textures are required for the computation.

The opacity a(xi) of each voxel is now set according to the following expression [Lev88].

(5.2) a(xi) =

av, if |∇f(xi)| = 0 and f(xi) = fv

av · (1− 1
r · |

fv−f(xi)
|∇f(xi)| |),

if |∇f(xi)| > 0
and
f(xi)− r|∇f(xi)| ≤ fv ≤ f(xi) + r|∇f(xi)|

0, otherwise

The variables fV , av and r are user-defined values. The value for fv decides the displayed
iso-surface, meaning that we are displaying the iso-surface, that is made up from voxels with
value fv. The opacity of that iso-surface is set with av.
To achieve a smoother final result, the opacity of voxels with a value unequal to fv are set
inverse proportional to their distance r (in voxel) from the nearest surface area.

5.3 Lighting

The visual quality of the rendered images can be increased by adding lighting and even a very
simple model helps to lift the perceived quality of most volume data sets. Two examples are
shown in Figure 5.3.

35

5 Advanced Features

The Blinn-Phong [Bli77] reflection model was chosen for both its simplicity and good perfor-
mance. It replicates the local illumination of a given surface point by combining an ambient
Ia, diffuse Id and specular term Is.

(5.3)

I = Ia + Id + Is

Ia = ka

Id = kd · (N · L)
Is = kS · (N ·H)

ka,kd and ks are constant, implementation depended values used to control the contribution of
the ambient, diffuse and specular term. To keep things simple, a directional light source is
assumed, meaning that the light direction L is constant for all surface points. Furthermore,
we assume that the light always comes from the direction of the camera V , meaning L = V . A
gradient computation has already been added as a preprocessing step in the previous section,
so the surface normal vector N can be easily obtained with a single texture access, followed by
a normalization. The vector H is called the halfway-vector, and is used as an approximation
of the reflection vector, that is used in the original Phong lighting. It is defined by

(5.4) H = L+ V

|L+ V |

The lighting function is called for each sample point during the accumulation loop. A sample
point’s final color value is obtained by multiplying each of it’s color channels with the light
intensity I.

Figure 5.3: Left: Two different volume datasets, both unlit. Right: The same datasets, but with
enabled lighting.

36

5.4 Animation

5.4 Animation

Volume data sources like simulations are often time dependent, meaning that for every point in
time a volume file, containing the state of the simulation at that time, is created. Therefore it is
a useful feature to be able to view different versions of a volume, or if possible to even animate
it. To render such an animation, for each time step a volume file needs to be available, which
is the main challenge of this feature. There a three different ways to solve this problem:

1. All relevant volume files are loaded into the main memory at the start of the application.
Depending on the resolution of the volume, this is very memory consuming up to the
point where there simply is not enough memory available to load the complete animation.
Furthermore, due to the huge amount of data streamed and processed all at once, the
application tends to freeze for a considerable time at startup.

2. Only the currently rendered volume is loaded from the hard drive into the system- and
graphics card memory. Memory is not an issue with this version, however the hard drives
speed is. Depending on the volume resolution, there will be a noticeable delay when
switching between two volume files. If the delay is too long, a fluid animation would
no longer be possible. Additional to the time needed to access the data on the hard
drive, the preprocessing necessary for emulating 3D textures described in Section 4.5
increases the delay before a newly loaded volume file becomes available for rendering.
Still, with reasonably fast hardware and a volume resolution below 1283, this version
offers interactive framerates and is easy to implement.

3. A third solution requires a rather complicated streaming implementation. The volume
files are streamed from the hard drive in advance, but at no point all volume files are
present in system memory. This way, there are no delays when switching the rendered
volume. However, it is difficult to perform the necessary preprocessing after streaming
the volume files, without interrupting the rendering of the current volume and causing a
considerable drop in framerates or even stuttering.

Within the scope of this thesis, the second variant was pursued, due to its simple implementa-
tion and reliability.

37

6 X3DOM

6.1 Introduction to X3DOM

X3DOM integrates the X3D standard into the HTML5 Document Object Model(DOM)
[BEJZ09]. It aims to make 3D content available to web developers without previous experience
in graphics programming. Because WebGL basically gives JavaScript access to the OpenGL
ES 2.0 API, using it requires a certain knowledge of OpenGL programming.
X3DOM however only requires a declarative description of the 3D scene in X3D standard.
For that purpose if offers a number of graphical primitives (e.g. boxes, spheres, light sources
etc.) and options (e.g. material attributes, transformations) via so called nodes, that can be
arranged in a scene.

6.2 Volume Rendering with X3DOM

X3DOM supports volume rendering with the VolumeData element. Thanks to the concept
behind X3DOM, creating a scene that contains a volume is fairly easy and only involves a few
lines of code. This is best demonstrated by simply showing the HTML body of a very simple
X3DOM volume renderer:

<body>
<X3D width=’1024px’ height=’500px’>

<Scene>
<Background skyColor=’0.0 0.0 0.0’/>
<Viewpoint description=’Default’ zNear=’0.0001’ zFar=’100’/>
<Transform>

<VolumeData id=’volume’ dimensions=’4.0 2.0 4.0’>
<ImageTextureAtlas containerField=’voxels’ url=’room.png’ numberOfSlices=’91’

slicesOverX=’7’ slicesOverY=’14’/>
<OpacityMapVolumeStyle>
</OpacityMapVolumeStyle>

</VolumeData>
</Transform>

</Scene>
</X3D>

</body>

Listing 6.1: Example of the minimum necessary code for volume rendering with X3DOM.

39

6 X3DOM

Figure 6.1: A screenshot taken with X3DOM’s volume renderer.

A requirement for volume rendering with X3DOM is to have a 2D image file, also called texture
atlas, containing the volume’s slices in a very similar way to the 2D texture created in the
preprocessing stage of our application. We were able to edit a texture atlas, that was created
by our application and then saved as an image file, to match X3DOM’s expected layout and
used it as input for the X3DOM application above. Figure 6.1 shows an image captured from
the screen during testing of the application.

Apart from that, X3DOM’s volume renderer currently only works correctly when the number
of slices in x-direction nx equals the number of slices in y-direction ny. We identified a small
bug in the fragment Shader as the cause. The original implementation calculates the y-position
dy of a slice s as

dy =
b sny
c

ny
.

Correcting it to

dy =
b snx
c

ny

makes it possible to use a texture atlas with any number of slices.

40

7 Evaluation

7.1 Stability

WebGL is still a relatively new standard and it can therefore be expected to run into stability
issues every now and then.
During development and testing, the browser failed to compile perfectly fine Shader programs
quite frequently. Most of the time, that behaviour was triggered by refreshing the web page
(and therefore also restarting the WebGL application) numerous times, especially if changes
were made to the code in mean time. It also occurred, even though much less frequently, if
the browser had already been open for a while, possibly having run a WebGL application
before. On the bright side however, we rarely experienced a crash of the web browser due to
our application.

7.2 Performance

Benchmarks were conducted with an AMD HD7870 graphics card, combined with an AMD
Phenom II X6 1045T and 8GB RAM. We ran the application using Mozilla Firefox version
16.0.1 and Windows 7 64bit as operating system. On Windows systems, Firefox uses ANGLE
as backend for WebGL. ANGLE translates WebGL API calls to DirectX9 API calls, trying to
avoid compatibility issues with OpenGL and Windows. Yet, for our application, Firefox is
explicitly configured to use native OpenGL. Otherwise the Shader programs usually fail to
compile correctly if the accumulation loop exceeds a certain amount of cycles.

The benchmark was conducted with a canvas resolution of 1024× 512 and a volume dataset of
the size 91×46×91. Table 7.1 shows the average frames per second (fps) achieved with varying
sample rates. The fps are compared between four different render modes: Transfer texture
only(TT), transfer texture in combination with lighting (TTwL), iso-surface visualization
(ISO) and finally iso-surface visualization with lighting (ISOwL). Since geometry rendering is
currently not optional, in all four modes a bounding box frame is rendered as well.
It is important to note, that the sampling is done in texture space, where the bounding box is
normalized in all directions. Thus, the greatest distance a ray can travel through the volume
is
√

3. Together with the distance between samples, referred to as step-size, the maximum
amount of samples per fragments can be calculated.
The function used for redrawing the frame as often as possible is browser dependent and
deviations from the expected maximum framerate are not uncommon. We observed, that

41

7 Evaluation

Table 7.1: Benchmark - Shows the average fps while rendering a volume dataset of the size
91× 46× 91 with a resolution of 1024× 512.

Step-Size TT TTwL ISO ISOwL

0.01 67.0 66.8 66.9 59.7
0.0075 67.0 60.2 63.9 53.1
0.005 67.0 50.5 54.3 42.8
0.0025 51.0 33.3 37.3 27.3
0.001 28.9 16.3 19.0 12.9

Firefox’s requestAnimationFrame() function seems to limit the fps to an odd-valued 67 frames
per second. According to the official documentation, a redraw occurs up to 60 times per
second.

The achieved framerates are satisfying as far as the interactivity of the application is concerned.
Heavily noticeable stuttering that starts below 20 fps, only sets in for a very small step-size.
The worst case amount of sample points collected for a single fragment is up to 1400 in that case.

7.3 Comparison with X3DOM

7.3.1 Features

Compared to our implementation, X3DOM lacks certain comfort and quality features.
First of all, the employed bilinear filtering does not accommodate for the border regions. As
described earlier, not doing so results in visual artefacts, best described as one boundary
surface of the volume ’bleeding’ into the opposite side. This can be clearly seen in Figure 6.1.
The X3DOM volume renderer uses a ray-casting algorithm, that uses the first approach
described in Section 3.6.1 for the ray generation. Of course this means that it is not possible
to move the camera into the volume, a problem we avoided by using a more generalised, if
slower, approach.
While X3D offers several different render modes for volumes, X3DOM currently only seems
to support standard direct volume rendering with a transfer function. Neither lighting nor
iso-surface visualization are available
Just like our application, X3DOM utilizes a 1D texture for the transfer function. But unlike
our implementation, the texture is read from an image file and cannot be interactively changed
in real time without expanding the code.
In X3DOM the volume is loaded using an image file that contains the 2D representation of
the volume. If the source of the volume data does not already output such an image file,
it has to be created from the raw volume data by an external application. While there are
certainly some requirements concerning the raw data that can be read with our application,

42

7.3 Comparison with X3DOM

Table 7.2: Benchmark Comparison of average fps with X3DOM.

Max Cycle X3DOM Step-Size TT

60(default) 60 - -
280 60 0.005 67.0
560 50 0.0025 51.0
1400 35 0.001 28.9

we integrated the conversion to a 2D texture, which is rather specific to WebGL because of
the lacking 3D texture support, as a preprocessing step.

7.3.2 Performance

As a result of the rather small feature set, X3DOM’s volume renderer runs pleasantly fast.
In fact, it is difficult to see framerates below the upper limit of 60 frames per second on a
dedicated graphics card. Depending on the sample rate and as long as most of the advanced
features are deactivated, our implementation ’suffers’ from the same problem on our benchmark
system. Hence, it is difficult to make a comparison of the implementations. On a less powerful
system, our implementation drops below 67 FPS even with iso-surface rendering and lighting
disabled, while X3DOM still remains at the 60 fps limit. This is expected since we have some
additional overhead, due to the shiftable features, and a higher default sampling rate. However,
a meaningful performance comparison is still simply impossible as long as one application runs
faster than the fps-limiter would allow.
That is why we are manually adjusting the sample rate of X3DOM’s volume renderer to be
both high enough to push the fps below 60 as well as having it match the sample rate of our
implementation. This is done by manually setting a higher value for the maximum amount of
loop cycles. The result is illustrated in Table 7.2.
We compare X3DOM’s performance to our basic display mode, with both iso-surfaces and
lighting disabled. This mode resembles X3DOM’s volume renderer the most, even though
it still renders the additional geometry pass. For both applications, the size of the rendered
window is again set to 1024× 512 and the same dataset as before is used.

The overall performance is still competitive in a comparable scenario, even tough at the cost
of disabling most of the advanced features.

43

8 Conclusion and Future Work

We presented a web-based volume renderer, using GPU acceleration to achieve interactive
framerates. To that end, the Raycasting algorithm for direct volume rendering was successfully
implemented using WebGL. In addition, a number of advanced features could be added to the
application.
To our knowledge, our application is possibly the most feature rich web-based volume renderer
at this time. Nevertheless, interactive framerates are sustained in most scenarios, given a
reasonably fast system.
Even though WebGL already produces quite impressive results both performance- and feature-
wise, some stability issues still occasionally occur in the current version. During the development
and testing of the application, we also experienced some difficulties with browser dependent
functionality. For the affected functions, some extra care has to be exercised to guarantee
cross-browser compatibility.

Some aspects of the application could be further improved in the future. This includes the
basic volume rendering algorithm, which still lacks some optimizations. The accumulation
loop in particular is prone to unnecessary, redundant operations, that can heavily afflict the
performance. For example, a possible speed-up could be achieved by using a look-up array or
1D texture, instead of calculating the 2D coordinates for a set of 3D coordinates in real-time
for each sample point.
Apart from that, additional acceleration techniques could be implemented. Early ray termina-
tion is already in use, but empty space skipping could still improve the performance in some
scenarios.
Another obvious choice for future improvements is upgrading the advanced feature set. A
more sophisticated lighting system, featuring shadows and other effects, would certainly raise
the visual quality. The ability to display more than one iso-surface at once, would also be
beneficial, just as improved support for loading common geometry files would be.
In the scope of this thesis, little to none effort was put into the creation of a comfortable
user interface. This definitely could be improved in the future to guarantee a better user
experience.

45

9 Acknowledgements

I wish to thank my professor for giving me the opportunity to perform this work in his institute.
I would also like to express my gratitude to both of my advisers for their continued support
and guidance during the length of this work.
Furthermore I would like to extend my thanks to the ITLR Stuttgart for supplying a volume
dataset.

47

A Appendix

A.1 Zusammenfassung

Web-basierte Anwendungen erfreuen sich zunehmend großer Beliebtheit in einer Vielzahl von
Einsatzgebieten. Entsprechend werden auch auf dem Gebiet der web-basierten 3D-Grafik
zahlreiche Fortschritte erzielt.
Im Rahmen dieser Bachelorarbeit wird eine Implementierung zur Darstellung von Volumen-
grafik auf Webseiten mithilfe der WebGL API vorgestellt. Es wird zunächst ein Überblick über
die theoretischen Grundlagen der Volumengrafik, sowie über die üblichen Ansätze einer GPU-
Implementierung, gegeben. Dies umfasst sowohl die zugrundeliegenden optischen Modelle und
das Volume-Rendering-Integral, als auch das Raycasting Verfahren und ein Textur-basiertes
Vefahren der Volumengrafik. Anschließend werden die einzelnen Teile der Implementierung
im Detail erläutert. Dies umfasst sowohl all jene Teile, die dem in JavaScript geschrieben
Grundgerüst der Anwendung zugehörig sind, als auch die auf der Grafikkarte ausgeführten
Shader Programme. Darüber hinaus werden in einem weiteren Kapitel die fortgeschrittenen
Techniken näher behandelt.
Ziel dieser Arbeit ist es die grundlegenden, sowie einige fortgeschrittene Methoden der Volu-
mengrafik zu implementieren und darüber hinaus eine interaktive Bildwiederholungszahl zu
erreichen. In diesem Sinne wird der Erfolg der Implementierung anhand ihrer Lauffähigkeit
und Leistung diskutiert und zudem eine alternative Möglichkeit zur Volumen-Darstellung auf
Webseiten zum Vergleich herangezogen.
Es folgt abschließend die Feststellung, dass die Implementierung im Rahmen dieser Arbeit
erfolgreich war und es wird zudem auf einige, mögliche zukünftige Arbeitsgebiete sowie
Verbesserungsmöglichkeiten hingewiesen.

49

Bibliography

[BEJZ09] J. Behr, P. Eschler, Y. Jung, M. Zöllner. X3DOM: a DOM-based HTML5/X3D
integration model. In Proceedings of the 14th International Conference on 3D
Web Technology, Web3D ’09, pp. 127–135. ACM, New York, NY, USA, 2009. doi:
10.1145/1559764.1559784. URL http://doi.acm.org/10.1145/1559764.1559784.
(Cited on pages 10, 11 and 39)

[Bli77] J. F. Blinn. Models of light reflection for computer synthesized pictures. In
Proceedings of the 4th annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’77, pp. 192–198. ACM, New York, NY, USA, 1977. doi:10.
1145/563858.563893. URL http://doi.acm.org/10.1145/563858.563893. (Cited
on page 36)

[CCF94] B. Cabral, N. Cam, J. Foran. Accelerated volume rendering and tomographic recon-
struction using texture mapping hardware. In Proceedings of the 1994 symposium
on Volume visualization, VVS ’94, pp. 91–98. ACM, New York, NY, USA, 1994.
doi:10.1145/197938.197972. URL http://doi.acm.org/10.1145/197938.197972.
(Cited on page 16)

[CN94] T. J. Cullip, U. Neumann. Accelerating Volume Reconstruction With 3D Texture
Hardware. Technical report, Chapel Hill, NC, USA, 1994. (Cited on pages 10, 11
and 16)

[CSK+11] J. Congote, A. Segura, L. Kabongo, A. Moreno, J. Posada, O. Ruiz. Interactive
visualization of volumetric data with WebGL in real-time. In Proceedings of the
16th International Conference on 3D Web Technology, Web3D ’11, pp. 137–146.
ACM, New York, NY, USA, 2011. doi:10.1145/2010425.2010449. URL http:
//doi.acm.org/10.1145/2010425.2010449. (Cited on page 11)

[EKE01] K. Engel, M. Kraus, T. Ertl. High-quality pre-integrated volume rendering
using hardware-accelerated pixel shading. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, HWWS ’01, pp.
9–16. ACM, New York, NY, USA, 2001. doi:10.1145/383507.383515. URL
http://doi.acm.org/10.1145/383507.383515. (Cited on pages 10 and 16)

[Ert11] T. Ertl. Visualization Course Material Lecture 8, 2011. URL http:
//www.vis.uni-stuttgart.de/nc/lehre/details.html?tx_visteaching_
pi1[type]=tx_visteaching_lecture&tx_visteaching_pi1[uid]=76&tx_
visteaching_pi1[back]=773. (Cited on page 17)

51

http://doi.acm.org/10.1145/1559764.1559784
http://doi.acm.org/10.1145/563858.563893
http://doi.acm.org/10.1145/197938.197972
http://doi.acm.org/10.1145/2010425.2010449
http://doi.acm.org/10.1145/2010425.2010449
http://doi.acm.org/10.1145/383507.383515
http://www.vis.uni-stuttgart.de/nc/lehre/details.html?tx_visteaching_pi1[type]=tx_visteaching_lecture&tx_visteaching_pi1[uid]=76&tx_visteaching_pi1[back]=773
http://www.vis.uni-stuttgart.de/nc/lehre/details.html?tx_visteaching_pi1[type]=tx_visteaching_lecture&tx_visteaching_pi1[uid]=76&tx_visteaching_pi1[back]=773
http://www.vis.uni-stuttgart.de/nc/lehre/details.html?tx_visteaching_pi1[type]=tx_visteaching_lecture&tx_visteaching_pi1[uid]=76&tx_visteaching_pi1[back]=773
http://www.vis.uni-stuttgart.de/nc/lehre/details.html?tx_visteaching_pi1[type]=tx_visteaching_lecture&tx_visteaching_pi1[uid]=76&tx_visteaching_pi1[back]=773

Bibliography

[HLSR08] M. Hadwiger, P. Ljung, C. R. Salama, T. Ropinski. Advanced illumination tech-
niques for GPU volume raycasting. In ACM SIGGRAPH ASIA 2008 courses,
SIGGRAPH Asia ’08, pp. 1:1–1:166. ACM, New York, NY, USA, 2008. doi:
10.1145/1508044.1508045. URL http://doi.acm.org/10.1145/1508044.1508045.
(Cited on pages 10, 13 and 15)

[Jia12] P. Jiarathanakul. Ray Marching Distance Fields in Real-time on WebGL. Technical
report, University of Pennsylvania, 2012. (Cited on page 11)

[JKD+12] H. Jacinto, R. Kéchichian, M. Desvignes, R. Prost, S. Valette. A web interface for
3D visualization and interactive segmentation of medical images. In Proceedings
of the 17th International Conference on 3D Web Technology, Web3D ’12, pp.
51–58. ACM, New York, NY, USA, 2012. doi:10.1145/2338714.2338722. URL
http://doi.acm.org/10.1145/2338714.2338722. (Cited on page 11)

[Joh07] T. Johansson. Taking the canvas to another dimension,
2007. URL http://my.opera.com/timjoh/blog/2007/11/13/
taking-the-canvas-to-another-dimension. (Cited on page 9)

[Khr] Khronos. Khronos WebGL Wiki - WebGL and OpenGL Differences.
URL http://www.khronos.org/webgl/wiki/WebGL_and_OpenGL_Differences#
No_3D_Texture_support. (Cited on pages 21 and 23)

[Khr09] Khronos. Khronos Launches Initiative to Create Open Royalty Free Standard for
Accelerated 3D on the Web, 2009. URL http://www.khronos.org/news/press/
khronos-launches-initiative-for-free-standard-for-accelerated-3d-on-web.
(Cited on page 9)

[Khr11] Khronos. WebGL Specification 1.0, 2011. URL https://www.khronos.org/
registry/webgl/specs/1.0/. (Cited on page 21)

[Kit] Kitware Inc. VTK File Formats. URL http://www.vtk.org/VTK/img/
file-formats.pdf. (Cited on page 33)

[KW03] J. Kruger, R. Westermann. Acceleration Techniques for GPU-based Volume Render-
ing. In Proceedings of the 14th IEEE Visualization 2003 (VIS’03), VIS ’03, pp. 38–.
IEEE Computer Society, Washington, DC, USA, 2003. doi:10.1109/VIS.2003.10001.
URL http://dx.doi.org/10.1109/VIS.2003.10001. (Cited on pages 10, 11
and 18)

[Lev88] M. Levoy. Display of Surfaces from Volume Data. IEEE Comput. Graph. Appl.,
8(3):29–37, 1988. doi:10.1109/38.511. URL http://dx.doi.org/10.1109/38.511.
(Cited on pages 9, 34 and 35)

[LL94] P. Lacroute, M. Levoy. Fast volume rendering using a shear-warp factorization
of the viewing transformation. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’94, pp. 451–458. ACM,
New York, NY, USA, 1994. doi:10.1145/192161.192283. URL http://doi.acm.
org/10.1145/192161.192283. (Cited on pages 10 and 11)

52

http://doi.acm.org/10.1145/1508044.1508045
http://doi.acm.org/10.1145/2338714.2338722
http://my.opera.com/timjoh/blog/2007/11/13/taking-the-canvas-to-another-dimension
http://my.opera.com/timjoh/blog/2007/11/13/taking-the-canvas-to-another-dimension
http://www.khronos.org/webgl/wiki/WebGL_and_OpenGL_Differences#No_3D_Texture_support
http://www.khronos.org/webgl/wiki/WebGL_and_OpenGL_Differences#No_3D_Texture_support
http://www.khronos.org/news/press/khronos-launches-initiative-for-free-standard-for-accelerated-3d-on-web
http://www.khronos.org/news/press/khronos-launches-initiative-for-free-standard-for-accelerated-3d-on-web
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
http://www.vtk.org/VTK/img/file-formats.pdf
http://www.vtk.org/VTK/img/file-formats.pdf
http://dx.doi.org/10.1109/VIS.2003.10001
http://dx.doi.org/10.1109/38.511
http://doi.acm.org/10.1145/192161.192283
http://doi.acm.org/10.1145/192161.192283

Bibliography

[Max95] N. Max. Optical Models for Direct Volume Rendering. IEEE Transactions on
Visualization and Computer Graphics, 1(2):99–108, 1995. doi:10.1109/2945.468400.
URL http://dx.doi.org/10.1109/2945.468400. (Cited on pages 13 and 15)

[MHE01] M. Magallón, M. Hopf, T. Ertl. Parallel Volume Rendering Using PC Graphics
Hardware. In Proceedings of the 9th Pacific Conference on Computer Graphics
and Applications, PG ’01, pp. 384–. IEEE Computer Society, Washington, DC,
USA, 2001. URL http://dl.acm.org/citation.cfm?id=882473.883442. (Cited
on page 11)

[MW08] M. Moser, D. Weiskopf. Interactive Volume Rendering on Mobile Devices. In
Workshop on Vision Modelling and Visualization VMV ’08, pp. 217–226. 2008.
(Cited on page 11)

[Sig98] Siggraph. Ray - Box Intersection, 1998. URL http://www.siggraph.org/
education/materials/HyperGraph/raytrace/rtinter3.htm. (Cited on page 31)

[Vuk07] V. Vukićević. Canvas 3D: GL power, web-style, 2007. URL http://blog.vlad1.
com/2007/11/26/canvas-3d-gl-power-web-style/. (Cited on page 9)

[WE98] R. Westermann, T. Ertl. Efficiently using graphics hardware in volume rendering
applications. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’98, pp. 169–177. ACM, New York, NY, USA,
1998. doi:10.1145/280814.280860. URL http://doi.acm.org/10.1145/280814.
280860. (Cited on page 16)

All links were last followed on October 23, 2012.

53

http://dx.doi.org/10.1109/2945.468400
http://dl.acm.org/citation.cfm?id=882473.883442
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter3.htm
http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter3.htm
http://blog.vlad1.com/2007/11/26/canvas-3d-gl-power-web-style/
http://blog.vlad1.com/2007/11/26/canvas-3d-gl-power-web-style/
http://doi.acm.org/10.1145/280814.280860
http://doi.acm.org/10.1145/280814.280860

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Michael Becher)

	1 Introduction
	2 Related Work
	3 GPU Accelerated Volume Rendering
	3.1 Volume Data
	3.2 Optical Models
	3.3 Volume Rendering Integral
	3.3.1 Discrete Volume Rendering Integral

	3.4 Compositing
	3.4.1 Back to Front Compositing
	3.4.2 Front to Back Compositing

	3.5 Texture Based Volume Rendering
	3.6 Raycasting
	3.6.1 Generating and Casting a Ray
	3.6.2 Sampling and Compositing

	3.7 Transfer Functions

	4 Volume Rendering with WebGL
	4.1 Introduction to WebGL
	4.2 Creating a WebGL Context
	4.3 File Loading
	4.4 Initializing Shaders
	4.5 Emulating 3D textures
	4.6 Initializing Textures
	4.7 Initializing Render Plane
	4.8 Transfer Function
	4.9 Display Function
	4.10 Vertex Shader
	4.11 Fragment Shader

	5 Advanced Features
	5.1 Geometry Rendering
	5.2 Isosurface Visualization
	5.3 Lighting
	5.4 Animation

	6 X3DOM
	6.1 Introduction to X3DOM
	6.2 Volume Rendering with X3DOM

	7 Evaluation
	7.1 Stability
	7.2 Performance
	7.3 Comparison with X3DOM
	7.3.1 Features
	7.3.2 Performance

	8 Conclusion and Future Work
	9 Acknowledgements
	A Appendix
	A.1 Zusammenfassung

	Bibliography

