
Visualisierungsinstitut der Universität Stuttgart
University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3338

Visualization of
Space-Time-Structure of
Electromagnetic Fields

Oliver Schmidtmer

Course of Study: Software Engineering

Examiner: Prof. Dr. Thomas Ertl

Supervisor: Dr. Sc. Filip Sadlo

Commenced: May 14, 2012

Completed: November 13, 2012

CR-Classification: I.3.8, J.2

Abstract

In the course of this work are techniques for visualization of time-dependant electromagnetic
fields in space-time representation introduced. This happens on the basis of wave propagation,
as this phenomenon is still not adequately researched. Therefore in this work are usually
scalar fields used. The methods which are developed in this work could also be used for
visualization of other typical wave propagation phenomena. In the case of vector field data,
such as electromagnetic fields, they must be used on their magnitude. This methods also set a
foundation for further developments in combination with analysis based on vector topology of
electromagnetic fields, for further more detailed visualizations.

The in the course of this work introduced methods base on the extraction of height ridge
and valley surfaces. To avoid occlusions in space-time representation and further reduce the
complexity of the representation, so-called virtual sources are introduced in the visualisation of
wave phenomena. For this are two approaches on extracting these virtual sources explored and
different approaches on processing them to space-time curves. By using these space-time-curves
for a reconstruction of the original field, they deliver a compact representation of the field.
This allows an effective visualisation and interpretation of the space-time structures in the
field and their relations.

Kurzfassung

Im Rahmen dieser Arbeit werden Techniken zur Visualisierung zeitabhängiger, zweidimen-
sionaler elektromagnetischer Felder in einer Raum-Zeit-Darstellung vorgestellt. Dies geschieht
auf Basis der Wellenausbreitung, da dieses Phänomen noch nicht angemessen erforscht wurde.
In dieser Arbeit wird daher vorwiegend mit Skalarfeldern gearbeitet. Die hier entwickelten
Methoden können allgemein zur Visualisierung der Wellenausbreitung verwendet werden
und müssen im Fall von Vektorfeldern auf deren Magnitude angewendet werden, wie dies
bei elektromagnetischen Feldern der Fall ist. Die entwickelten Methoden bieten auch eine
Basis für Weiterentwicklungen im Zusammenspiel mit Analysen auf der Vektortopologie der
elektromagnetischen Felder, für weitere, detailliertere Visualisierungen.

Die in dieser Arbeit vorgestellten Methoden basieren auf der Extraktion von Grad- und
Talflächen. Um Verdeckungen in der Raum-Zeit-Darstellung zu vermeiden und die Komplexität
der Darstellung weiter zu reduzieren, werden so genannte virtuelle Quellen in die Visualisierung
der Wellenausbreitung eingeführt. Dabei werden zwei Ansätze zur Extraktion dieser virtuellen
Quellen vorgestellt und verschiedene Ansätze um diese zu Raum-Zeit-Kurven zu verarbeiten.
In dem diese Raum-Zeit-Kurven als Basis einer Rekonstruktion des ursprünglichen Feldes
verwendet werden, liefern sie eine kompakte Repräsentation des Feldes, was eine effektive
Visualisierung und Interpretation der räumlich-zeitlichen Strukturen und Zusammenhänge
erlaubt.

3

Contents

1. Introduction 9
1.1. Motivation . 9
1.2. Related Work . 10
1.3. Structure . 11

2. Basics 13
2.1. Handling of Electromagnetic Fields . 13
2.2. Space-Time Representation . 13
2.3. Sampling Requirements . 13
2.4. Requirements regarding Dataset Extents and Sizes 14
2.5. Eigen - Linear Algebra Library . 14
2.6. VTK - Visualization Framework . 15

3. Dataset Generation 17
3.1. Wave Equation . 18
3.2. Hertzian Dipole . 18

4. Wavefront Extraction 21
4.1. Basic Visualization . 21
4.2. Ridges . 22
4.3. Gradient-Magnitude-Based Ridge Extraction 22
4.4. Marching Ridges . 23
4.5. Comparison . 25

5. Extraction of Virtual Sources 27
5.1. Extraction by Local Minima of Ridge Surfaces 27
5.2. Extraction by Means of Centers of Curvature 28
5.3. Clustering of Extracted Virtual Source Points 31
5.4. Comparison . 32

6. Virtual Source Signal Reconstruction 35
6.1. Spatially Clustered Stationary Virtual Sources 37
6.2. Ungrouped Virtual Source Points Local Time Extrapolation 38
6.3. Connected Virtual Source Point Interpolation 39
6.4. Comparison . 41

7. Results 43
7.1. Timings . 43

5

8. Conclusion 47
8.1. Future Work . 47

A. Implementation 49
A.1. Dependencies . 49
A.2. Overview . 50
A.3. Tool: Scalar Field Creator . 51
A.4. Tool: Dipole E-M-Field Creator . 52
A.5. Filter: vtkRidges . 52
A.6. Filter: vtkSourcesLocalMinima . 54
A.7. Filter: vtkSourcesCenterOfCurvature . 54
A.8. Filter: vtkPointInCellCounter . 55
A.9. Filter: vtkPCASplit . 56
A.10.Filter: vtkSignalreconstructionFulltime . 57
A.11.Filter: vtkSignalreconstructionLocal . 58
A.12.Filter: vtkSignalreconstructionGreedyclustered 59

Bibliography 61

6

List of Figures

2.1. Comparison of Sampling Rates in Datasets . 14

3.1. Scalar field Creator . 17

4.1. Sinus Wave . 21
4.2. Boundary Surface and Volume Visualization of a Dataset 22
4.3. Gradient-Magnitude Method . 23
4.4. Marching Ridges . 24
4.5. Comparison of Ridge Extraction Methods . 25

5.1. Center of Curvature Illustration . 28
5.2. Center of Curvature - Normal Vector . 28
5.3. Center of Curvature - Point Projection . 30
5.4. Center of Curvature - Interpolation along Tangent 30

6.1. Signal Reconstruction - Stationary Sources . 37
6.2. Signal Reconstruction - Local Time Extrapolation Sampling 39
6.3. Signal Reconstruction - Connected Source Point Interpolation 40

7.1. Visualization Results . 44
7.2. Visualization Results 2 . 45

A.1. VTK Custom Filter Combinations . 50
A.2. Scalar Field Creator GUI . 51
A.3. Dipole E-M-Field Creator GUI . 53

List of Algorithms

4.1. Ridge / Valley Extraction Algorithm . 26

5.1. PCA Split Algorithm . 32

7

1. Introduction

1.1. Motivation

The domain of time dependant electromagnetic field analysis and visualization is a huge and
still not adequately covered field. Most approaches rely on comparably simple visualization
techniques like isosurface extraction or volume rendering. More complex approaches investigate
on topological structures of these fields. Many researches are done and heading in the direction
of vector field analysis on using specialized topology analysis for peculiarities on electromagnetic
fields.

In the course of this work another direction is pursued. It focuses on the extraction of features
in the space-time representation of time-dependant electromagnetic fields. Thereby the focus is
laid on wave propagation, because no appropriate visualization approaches on this exist so far
and wave propagation is the most significant phenomenon in time-dependant electromagnetic
phenomena. The approaches in this work provide a simplified representation of electromagnetic
fields phenomena, including reflections and superpositions effects.

Our approach starts with the height ridge surface extraction from the space-time representation
of two-dimensional fields. Note that it is usable on any scalar field of wave phenomena. In the
case of electric or magnetic fields, or even other vector fields, the methods have to be applied
to their magnitude. Although the extracted ridge surfaces in space-time already reduce the
amount of data for visualization by far and provide a valuable visualization of time-dependant
electromagnetic field phenomena, they still suffer from occlusion and clutter. Therefore further
approaches on the extraction of so-called virtual sources are done, which are represented by
curves in space-time. Those virtual sources can represent true sources of the original data,
but can also originate in effects such as superpositions, reflections or other disturbances of
the field. Finally we reconstruct the signal of those virtual sources, in terms of which signal
strength along the space-time curves reproduces the original field as close as possible. The
resulting visualization by colored space-time curves of virtual sources together with context
information provided by selected ridge surfaces or volume rendering provides a direct notion
of the causes that are responsible for the observed field at a given location. It is expected,
that virtual sources which represent true sources of the original data should provide a clearer
and more ridge aligned signal, than sources which originate in other effects.

9

1. Introduction

1.2. Related Work

A major part of analysis and visualization of electromagnetic fields is conducted in the
domain of vector field topology. Sanderson et al. [SCT+] research for recurrent patterns in
toroidal magnetic fields. Their application for research is the magnetic structure of plasma in
tokamak fusion reactors. Bachthaler et al. [BSW+12] extend traditional vector field topology
visualization to magnetic flux in two-dimensional magnetic fields. This provides a quantitative
view on the magnetic flux and helps thereby on identifying magnetic rings and magnetic chains.
Machado et al. [GMME12] research visualization of the electromagnetic fields in terms of the
sun. Their targets are magnetic effects from features of the corona, such as coronal loops.

Research on wave propagation visualization is more common on acoustic data than on elec-
tromagnetic fields. Yokota et al. [YST] develop a visualization for sound propagation and
scattering in rooms based on wave boundaries in a two-dimensional sound field. A similar
approach is done for evaluating acoustical environments in enclosed three-dimensional space
for reflection analysis by Omoto and Uchida [OU]. Obermaier et al. [OMD+] use mesh-free
valley surface extraction on low frequency sound simulations. This is the only work that
we are aware of, which uses ridge and valley extraction in the context of wave propagation
visualization. Note that they use they use it in a three-dimensional space field, while we use a
space-time representation of two-dimensional fields and extract features therefrom. Deines et
al. use phonon tracing for simulation and visualization of sound waves in [BDM+], [DBM+06]
and [Dei08]. An other approach for interactive purposes of sound propagation is using frustum
tracing in [LCM07] by Lauterbach et al. For propagation time and sound clarity analysis and
visualization a ray based approach is used by Stettner and Greenberg in [SG89]. Simulation and
visualization of sound strength for acoustic design is researched by Monks et al. in [MOD00].

Height ridges, as used for the research this work, are defined by Eberly in [Ebe96]. Eberly
defines ridges on the basis of the gradient g, eigenvalue λ, and eigenvectors ~e of the Hessian
matrix H. A ridge extraction method, called Marching Ridges, is researched in [FP98] and
[FP01] by Furst and Pizer. Their method however does not follow a marching cubes approach,
but employs contour tracing from a user-defined starting point. Sadlo and Peikert advance
on this with a marching cubes approach for ridge surface extraction that uses adaptive mesh
refinement for efficient extraction in [SP07].

An other research by Peikert and Sadlo presents a more efficient approach which does not
need explicit eigenvector calculation in [PS08]. Their approach uses the parallel vectors
operator [PR99] for extracting ridges. In their approach Ridges are extracted using a matrix
determinant constructed from the gradient and the Hessian. Further studies on crease surface
extraction which expand on [PS08] are done by Schultz et al. in [STS10]. Lindeberg also
provides techniques on edge and ridge detection in [Lin96] on two-dimensional imaging. Damon
researches a solution for connecting disjointed ridge lines which result from transitions around
singular Hessian points in [Dam]. In the field of diffusion tensor magnetic resonance imaging,
ridge lines and surfaces are used for analysis by Kindlmann et al. [KTW06]. Furst et al. [FKMP]
show that features of images, such as boundaries and skeletons, can be formulated as height
ridges in an extended Euclidean space. Research on surface extraction of vortex and strain

10

1.3. Structure

skeletons is done by Sahner et al. in [SWTH07]. A research on feature flow fields using ridge
lines in three-dimensional data is done by Theisel and Seidel in [TS03].

Other approaches include the approach on particle-based ridge and valley extraction by
Kindlmann et al. in [KSSW09] and the research on finding ridges and valleys on discrete
surfaces by Soo-Kyun Kim and Chang-Hun Kim in [KK05] and on dense triangle meshes by
Ohtake et al. in [OBS04]. However, those approaches do not directly relate to height ridges.

The concept of space-time visualization is already a successfully used concept. It was used
by by Weinkauf et al. [WSTH07] for vortex extraction from fluid flows, by Machado et
al. [GMME12] for visualizing solar dynamics data and by Bachthaler et al. [BSDW12] for
extracting topological structures in time-dependant 2D vector fields.

1.3. Structure

The process on this work was not strictly linear. For example, the process of source extraction
required refining back in the ridge extraction stage and even new filtering approaches for the
ridge surface to suppress the creation unnecessary virtual sources. The same also happened
for the signal reconstruction stage with respect to the virtual source extraction stage. In the
whole however, each new step introduced new perspectives for the further processing in the
subsequent steps. Therefore the transcription of this work is structured in following way:

Chapter 2 – Basics: This chapter contains a description of the requirements and limitations
of this work and introduces required fundamentals.

Chapter 3 – Dataset Generation: The topic of this chapter is the generation of the
datasets, which are used for testing and validating the developed methods and also for
illustration purposes.

Chapter 4 – Wavefront Extraction: Presents basic feature extraction approaches based
on wavefront surfaces in space-time.

Chapter 5 – Extraction of Virtual Sources: Describes how virtual sources are extracted
from previously extracted wavefront surfaces.

Chapter 6 – Virtual Source Signal Reconstruction: Discusses approaches on the recon-
struction of signals of the virtual sources from the original dataset, which could provide
a compact space-time representation.

Chapter 7 – Results: Presents results on using the approaches which are introduced from
this work.

Chapter 8 – Conclusion: In this chapter the results of this work are discussed and examples
for possible further work are given.

Appendix A – Implementation: Provides a documentation of the the implementation
details of developed tools and filters.

11

2. Basics

In the process of this work a few preconditions have to be met for a successful visualization of
the addressed data. In particular, requirements to dataset resolution and data sizes have to be
met to assure successful analysis. It includes how electromagnetic fields are handled with the
presented techniques, as they are vector fields and the major part of this work addresses wave
propagation in scalar fields. Here is also referred to the external libraries and tools, which
were used to accomplish this work.

2.1. Handling of Electromagnetic Fields

Electromagnetic fields consist of two three-dimensional vectors at each point in space. These
represent their two components, the magnetic field B and the electric field E. Hence those
vector fields have to be converted to scalar fields first. This is simply done by calculating the
magnitude of both component vectors separately and by using both resulting scalar fields for
separate analysis.

2.2. Space-Time Representation

The target of this work is the feature extraction from time-dependant two-dimensional fields.
This representation is obtained by stacking the two-dimensional data for providing a time axis
t that is perpendicular to the spatial x- and y-axes. As a result the obtained three-dimensional
datasets contain an original two-dimensional scalar field at each time-coordinate and the
resulting representation is rendered by treating the time axis as z-axis. In the context of
dataset generation (Chapter 3), from three-dimensional field sources, such as the Hertzian
dipole, only a slice of the time-dependent field is used and stacked in space-time.

2.3. Sampling Requirements

To enable successful feature extraction from a given dataset, the dataset has to meet certain
sampling rates. They depend on the maximum frequency f of oscillations in the field and
the phase velocity vp of the given wave type in the traversed medium. From the wavelength
λ = vp/f the sampling rate for the spatial dimensions can easily be obtained. The absolute
maximum for the sampling distance is λ/8, better λ/16 for accurate ridge surface extraction. In
a similar fashion this is calculated for the temporal resolution as ∆t = 1/f and the requirement

13

2. Basics

(a) (b) (c)

Figure 2.1.: Comparison of sampling rates in datasets. The same source is sampled with
sampling rates of λ/4 (a), λ/8 (b), and λ/16 (c). The surfaces are extracted
with the method as described in Section 4.3.

for the sampling distance with ∆t/8, respectively ∆t/16. Figure 2.1 shows a comparison
between different sampling rates. It can be seen, that sampling distances higher than λ/8 do
not allow a clear wavefront surface extraction while λ/8 still exhibits holes even in simple
datasets. Therefore for the subsequent processing steps after surface extraction higher sampling
rates are necessary.

2.4. Requirements regarding Dataset Extents and Sizes

With the already mentioned required sampling rates the size of the analyzed region also has to
be limited in relation to wavelength and frequency. In the example of a 2.4GHZ electromagnetic
wave, with sampling rates of λ/16, ∆t/16, a time interval of a second would require ∼384 · 108

samples. In the spatial dimensions this would require ∼128 samples per meter.

In regard to the subsequent techniques for signal reconstruction, datasets should cover around
double the time duration of what a wave would need to traverse the spatial extent of the
dataset. This ensures that random sample points in space-time have good chances that their
observed signal originates from sources within the dataset time range. Otherwise, in wide
datasets that are flat in the time extent, most sampled points would refer to sources long time
before the dataset begins.

2.5. Eigen - Linear Algebra Library

For the signal reconstruction, which is presented in Chapter 6, the least squares approach
is used. An introduction to least squares and solving methods is, for example, provided in

14

2.6. VTK - Visualization Framework

[Bjö]. These calculations can easily require the calculation of matrices with many hundreds or
thousands of columns. Despite most coefficients in the matrices being zero, standard dense
matrix implementations would require too much memory. The use of intelligent sparse matrices,
that only store nonzero values, is necessary, together with appropriate decomposition methods.
Therefore the library Eigen1 is used.

2.6. VTK - Visualization Framework

For the data management and processing the Visualization Toolkit (VTK)2 is used. With
this it is possible to use already existing and well validated modules for data loading, saving,
and a multitude of filtering techniques. Therefore the techniques presented in this work are
implemented as custom filter modules in VTK.

The resulting representations could then be, for example, visualized with ParaView3. ParaView
provides a graphical user interface for all aspects of VTK and can be used for flexible
visualization configuration and generation of animations from the analyzed datasets. This is
faster in configuration and everyday use and therefore more flexible than directly coding the
pipeline with VTK.

The custom filtering modules which are developed in course of this work however are not
implemented for usage within ParaView directly. This implementation of the modules as
ParaView plugins was avoided to ease development and to save time. The conversion from
VTK filters to ParaView plugins however would be straightforward with sufficient knowledge
of ParaView and can be carried out as future work. Therefore the custom modules can so far
only be used in custom VTK programs and their output can be loaded into ParaView.

1http://eigen.tuxfamily.org/
2http://www.vtk.org/
3http://www.paraview.org/

15

3. Dataset Generation

A first task for this work was the creation of datasets, on which the feature extractions could
be developed, validated, and illustrated. As a broad variety of datasets of different complexity
was required, a standalone application including a GUI (Figure 3.1) was developed. With the
help of this application sources can be placed in two-dimensional space. Second and an as
important part of the application is the selection of space and time ranges and sampling rates
in a region of interest, for which the data should be generated. The result can be exported
as VTK Image data (.vti) in the form of a structured grid. The application was originally
written for sampling simple wave equations and later on extended with Hertzian dipoles. In
the following sections both analytical solutions for the fields are described, together with their
parameters.

Additionally, for an evaluation on more realistic datasets, datasets were obtained using a
finite-difference time-domain method by Siphos and Thompson [ST08], using an existing
implementation by Thomas Müller.

Figure 3.1.: Dataset generation for scalar fields. Simple preview at tFrom and tTo time slices
on the right.

17

3. Dataset Generation

3.1. Wave Equation

For experimental purposes the application supports different wave types. Basic inputs for the
formulation of all types are the frequency f , wavelength λ, and time t. Further variables are
the vectors x, which defines the current position in space, o the origin of the source, and d a
unit vector of the direction of the wave. From those are the angular frequency ω = f · 2 · π
and the wavenumber k = 2 · π/λ calculated.

Linear wave, no falloff A wave from a directional source, no range falloff.

cos(〈d,x〉 · k − ω · t)

Point source, no falloff A wave originating at a point source, no range falloff.

cos(‖x− o‖ · k − ω · t)

Point source, quadratic falloff A wave originating at a point source, quadratic range falloff.

cos(‖x− o‖ · k − ω · t)
‖x− o‖2

3.2. Hertzian Dipole

For the generation of electromagnetic fields a Hertzian dipole as in [Kar, p. 224] is used. As
the analytical solution uses spherical coordinates, the source origin o and sample position x
have to be converted by equation 3.1.

(3.1)

 r

Θ
ϕ

 =

 ‖x− o‖
acos(xz − oz)/ ‖x− o‖
atan2(xy − oy,xx − ox)

In addition to the previously defined parameters are the dipole moment p and the zero phase
α used. Further required are the constants for permittivity e = 8.85418781762 · 10−12F/m and
speed of light c = 299792458m/s. To simplify the formula, the substitution τ = ω · (t−r/c)+α
is used.

The resulting fields ~E (electric) and ~H (magnetic) of Equations 3.2 and 3.3 are also given in
spherical coordinates.

(3.2) ~E =

2·p·cos(ϕ)

4·π·e · (1
r3 · sin(τ) + ω

c·r2 · cos(τ))
0
p·sin(ϕ)

4·π·e · ((
1
r3 − ω2

r·c2) · sin(τ) + ω
c·r2 · cos(τ))

18

3.2. Hertzian Dipole

(3.3) ~H =

 0
ω·p·sin(ϕ)

4·π · (− ω
c·r · sin(τ) + 1

r2 · cos(τ))
0

Those are converted back to Cartesian coordinates with the Equations 3.4 and 3.5.

(3.4) ~ECartesian =

 ~Er · sin(ϕ) · cos(Θ) + ~Eϕ · cos(ϕ) · cos(Θ)
~Er · sin(ϕ) · sin(Θ) + ~Eϕ · cos(ϕ) · sin(Θ)
~Er · cos(ϕ)− ~Eϕ · sin(ϕ)

(3.5) ~HCartesian =

 − ~HΘ · sin(Θ)
~HΘ · cos(Θ)
0

19

4. Wavefront Extraction

As the visualization of the whole field, e.g., by means of volume rendering, would suffer from
massive occlusion, it is our goal to only extract the wavefronts in form of generalized extrema,
called ridges. Hence our first step consists in the extraction of those ridge surfaces. Figure 4.1
illustrates the ridge concept for a one-dimensional function, distinguished to ridges and valleys.
In the instance of a single point source for the waves, the result of a codimension-one ridge
extraction would be a circle in a two dimensional field or a sphere in a three-dimensional
field.

As this work addresses two-dimensional fields with stacked time dimension, i.e. in three-
dimensional space-time representations, the expected result for the previously assumed point
sources would be a funnel-like structure for each extracted wavefront. In the following different
approaches for visualization and extraction are explained.

Figure 4.1.: Illustration of ridges and valleys for a sinus wave travelling to the right. Ridge
points are marked red, valleys blue.

4.1. Basic Visualization

As a first approach for the wavefront visualization, a simple boundary surface display and
volume rendering, as shown in Figure 4.2, are used. With the structures visible on the outside,
we complemented this visualization by volume rendering to see inside. Mapping the absolute
scalar values to opacity, the wavefronts appeared as distinguishable dense structures with empty
spaces between. However, the volume rendering approach suffers strongly from perception
issues and visual clutter, representing a method for quick overview but insufficient for detailed
investigation.

With increasing distance to the source, the wavefront structures are thinning out to indistin-
guishable fog, as the ridges and valleys absolute values become lower. It became apparent that
instead of the scalar values a feature extraction approach could compensate for the flattening
of the waves on their way from the sources. Furthermore, the results from volume rendering
could not be used for further analysis, as it delivers no geometric representation, only an image.
Therefore, volume rendering can only serve for a first overview of a dataset or to provide
context to results from the feature extraction techniques, which are explored in this work.

21

4. Wavefront Extraction

(a) (b)

Figure 4.2.: Color coding on domain boundaries and volume rendering.

4.2. Ridges

Common definitions and works on ridges base on that by Eberly [Ebe96]. Eberly uses the
gradient g of the scalar field and the eigenvalues λ as well as the corresponding eigenvectors
~e of the Hessian matrix of the scalar field. On a n-dimensional field with the Hessian
eigenvalues λ1 ≥ λ... ≥ λn ridges are defined by, according to this definition, points where
λn < 0, 〈 ~en, g〉 = 0, valleys accordingly where λ1 > 0, 〈~e1, g〉 = 0.

4.3. Gradient-Magnitude-Based Ridge Extraction

The idea behind this approach is based on methods from analyzing one-parametric functions.
For a function f(x) the first derivative f ′(x) has to vanish if x is part of a crease. Hence,
f ′(x) = 0 solves for all extrema, including minima, maxima and saddles.

As a generalization for three-dimensional scalar fields, the magnitude of the gradient can be used.
Hence, crease surfaces can be formulated inside a scalar field S according to Equation 4.1.

(4.1) ‖∇S‖ = 0

In a discretized implementation this implies the calculation of the gradient from central
differences and calculating the magnitude. The extraction of this set of points represents
an isosurface extraction problem, which can be achieved by means of the marching cubes
algorithm [LC87] with a isovalue of zero. In generic discretized scalar fields, however the
isosurface at level zero is hard to extract because there are no negative gradient magnitudes.
Therefore a tolerance to zero ε has to be introduced. As the necessary ε relates to the values
at the ridges, it must be determined for each scalar field independently.

22

4.4. Marching Ridges

(a)

(b)

Figure 4.3.: The source dataset using a sampling distance of λ/50 and ε = 0.6 in (a) and
ε = 0.1 in (b) for extraction.

In Figure 4.3 it can be seen, that ε must even be reconsidered for focusing on different parts
of the field. While in (a) the inner most ridge parts exhibit gaps within the surface, because
the ε is too low with respect to the gradient magnitude on the ridges, the outer ridge parts
are insufficiently represented by two distant surfaces. With the lower ε in(b) the flattening
outer ridge regions are captured, but at the cost of disruption of the inner-most ridges. It
generally applies, that the higher the sampling rate is, the lower the ε can be and the better
the ridges are captured. However, this would require very high sampling rates for practical
usage in datasets.

An other disadvantage of this method is, that it cannot directly distinguish which surfaces are
ridges and which are valleys. As superposition of waves could raise or lower ridge values, the
sign of the original scalar could not be used for distinction.

4.4. Marching Ridges

The second approach for ridge surface extraction uses an algorithm proposed in [SP07] and
[FP01]. The idea behind this algorithm is to use a modified marching cubes algorithm based

23

4. Wavefront Extraction

Figure 4.4.: Same Dataset as in fig. 4.3, using Marching Ridges with ridges only.

on the Eberly criterion (Section 4.2) in terms of the first and second derivatives of the scalar
field.

As mentioned in Section 4.3, zero isosurfaces could be detected using ‖∇S‖ = 0, but this
approach would not distinguish them into ridges and valleys and would suffer from sampling
problems. Therefore the second derivative, the Hessian matrix, is used. The eigenvalues λ
of the Hessian contain the second derivatives along the corresponding eigenvectors. So for a
ridge the minor eigenvalue λmin is determined and for a valley the major eigenvalue λmax. In
addition to ‖∇S‖ = 0 the criterion for ridges then is λmin < 0 and λmax > 0 for valleys. This,
however, would exhibit the same problems with sampling and finding points where ‖∇S‖ = 0
as the method described in Section 4.3.

Therefore the central part of the algorithm is the approach used to obtain a criterion to decide
at which point between the samples the gradient and the Hessian should be interpolated.
Here the eigenvector ~ev of the previously determined eigenvalue λ is used, which points in the
direction of strongest curvature. The dot product from gradient and eigenvector in this point,
〈 ~ev,∇S〉, could be used, as the orientation of the curvature should stay constant around a
ridge, but the gradient should change direction, what produces a negative value on one side of
the ridge and a positive on the other side. So the derivative in eigenvector direction 〈 ~ev,∇S〉
is used as scalar field in the respective marching cubes cell together with an isovalue of zero to
determine the ridge.

However, as eigenvectors define a direction without orientation and as a result two possible
directions, they must be consistently oriented for each cell before determining the marching
cubes case. For this purpose a covariance matrix is calculated, which uses both directions
of the eigenvectors belonging to the cell. Then for each point the dot product between the
respective eigenvector ~ev and the PCA-eigenvector of the major eigenvalue of the covariance
matrix is used. If this dot product is negative, the respective eigenvector is flipped.

The pseudocode in Algorithm 4.1 outlines the algorithm, but lacks details regarding the
used filtering methods. As previously mentioned, the first necessary filtering in the marching
cubes cases step is to discard all triangles, where at least at one vertex the minor eigenvalue
λmin is not below zero in the case of ridge extraction or the major eigenvalue λmax not over
zero if valleys are extracted. Based on this filter, an offset around zero could be used for

24

4.5. Comparison

(a) (b) (c)

Figure 4.5.: Comparison from left to right: Gradient-magnitude approach, marching ridges
and Euclidean distance. The color scale in (c) refers to the cell width of 0.5 and
indicates differences between one to five cell widths.

suppressing flat ridge or valley regions, because stronger ridges have higher absolute eigenvalues
λ. In the post processing step, the connected component sizes of the resulting ridge surface
representation are a good filter. In Figure 4.4 all components with less than 1000 connected
triangles were rejected. For fragments due to superpositions, fringe cutting has shown effective.
On fringe cutting are all triangles cropped, which have at least one edge that is not connected
to an other triangle. This filter could be used for multiple iterations for further smoothing.

A range filtering for ridges and valleys by the scalar field value can also be used and has a
similar effect like the eigenvalue threshold. However, it must be set for ridges and valleys
independently and is dependent of the ground level around which ridges and valleys oscillate.
Further this can vary in a dataset due to superpositions.

4.5. Comparison

In comparison, the marching ridges algorithm provides a much better precision than the
gradient magnitude method. As this is necessary for further analysis, it is used in this work
for further steps. It however has a much higher computing time. Therefore, if only a fast
overview is needed, the gradient magnitude method has its benefits.

On a more complex dataset with two sources, as in Figure 4.5, further differences can be
seen. Where marching ridges shows flattened, deformed ridges and jags on superpositions (b),
the gradient-magnitude approach splits to tube like structures (a). This can be explained as
separations from the ridge surface through the superposition of the other source. The tube
then emerges from the ε tolerance to zero of the gradient-magnitude approach. With further
distance to the interfering source they would connect back to the main ridge. As it can be
seen on the Euclidean distance graphic (c), both produce similar results and diverge on the
superpositions in the middle of both sources.

25

4. Wavefront Extraction

Algorithm 4.1 Ridge / Valley Extraction Algorithm
procedure ExtractSurface(ScalarField S, type ∈ {ridge, valley})

EigenvectorField E
GradientField G
HessianField H
calculateGradient(in S, out G)
calculateHessian(in G, out H)
for all Point ∈ S do

Eigenvalue eigenV al
if type == ridge then

getLowestEigenvalue(in H[Point], out eigenV al)
else if type == valley then

getHighestEigenvalue(in H[Point], out eigenV al)
end if
calculateEigenvector(in eigenV al, out E[Point])

end for
for all Cell ∈ S do

Matrix C
Eigenvector eigenV ec
calculateCovarianceMatrix(in E[Point ∈ Cell], out C) // Using E and −E of

all Points ∈ Cell
if type == ridge then

getLowestEigenvalue(in C, out eigenV al)
else if type == valley then

getHighestEigenvalue(in C, out eigenV al)
end if
calculateEigenvector(in eigenV al, out eigenV ec)
for all Point ∈ Cell do

if 〈E[Point], eigenV ec〉 > 0 then
E[Point] = −E[Point] // flip vector orientation

end if
end for
calculateMarchingCubeCase(in 〈E[Point],G[Point]〉 ∈ Points ∈ Cell, iso-

value = 0)
end for

end procedure

26

5. Extraction of Virtual Sources

After the extraction of ridge and valley surfaces, those informations can be used to locate
virtual sources of waves. Obviously, strong real sources are identifiable from a funnel like
structure (Chapter 4). A drain would look like the reverse. For sources which are weaker as
other sources around and whose ridges are deformed and displaced by superpositions, this is
not as easy.

In visualization it is impossible to decide from the data, whether a indicated source is a real
source or origins from superpositions. Therefore in this work the extracted sources are called
virtual sources and used as an indicator of the features of the original scalar field. In the
following are two possible methods for virtual source extraction investigated.

5.1. Extraction by Local Minima of Ridge Surfaces

As mentioned, ideal sources form funnels with the source position at the bottom. So it is
obvious to search for minima at the time axis on the ridge surfaces. Because ridges of multiple
sources can connect to a single surface, the search for minima must be local and not global.

As deformations and inaccuracies through sampling can cause false positives it is worthwhile
to use at least a two ring neighbourhood as a minimum condition, i.e., we require that all
neighboring vertices of a minimum vertex candidate reside at later times, in terms of a location
above the current candidate on the time axis. Our experiments have shown that a greater
neighbourhood search does not substantially reduce the further count of false positives in
relation to computing cost. However, through modifying the ridge surfaces, using fringe cutting
as a filter, the count of false positives around deformations from superpositions could be
significantly reduced. Further, a condition on the surface for discarding the found minima
can be used. If a local minima vertex has triangles, whose edges are not all connected to
other triangles, i.e., it is located at the boundary of a ridge surfaces, it is probable that the
minimum is a result of deformations, superpositions, or boundary effects. Therefore it is
usually discarded in our approach.

As good datasets contain multiple ridge and valley wavefronts outgoing from each source,
missing them in some of the surfaces it not a problem, as they still would be represented by
others. Only for datasets with moving sources this can introduce inaccuracies when the source
positions have to be searched and connected through time.

A drawback of this method is, that virtual sources can be extracted only within the domain
of the dataset. Virtual sources that are outside of the dataset boundaries are obviously not

27

5. Extraction of Virtual Sources

Figure 5.1.: Illustration of center of curvature (blue) along a ridge (black).

(a) (b) (c)

Figure 5.2.: Consistent orientation of ridge normal vectors for correct projection. Technique
for determining flipping of normal vectors (a), unflipped (b) and flipped (c)
normal vectors. Vectors are colored by x-axis component.

amenable by local minima of the ridge surfaces. This is a case where a curvature-based
approach, as follows in the next Section, is promising.

5.2. Extraction by Means of Centers of Curvature

An other approach than local minima search on the surfaces, is to use the curvature of the
ridge to project where the respective center of curvature lies. As illustrated in Figure 5.1, the
curvature of each point on a ridge can be viewed as part of a circle and therefore a projection
to the center of the circle can be done. The radius of the circle is determined as the inverse of
the curvature.

With the technique described in Section 4.4 reduced from three dimensions to two dimensions
separately for each time step, the result are ridge lines instead of surfaces. It has, however,
to be extended for the calculation of the normal vectors that are necessary for curvature
computation. This is archived using the technique described in [PS08]. In a two-dimensional
field for each point the gradient vector ~g and the Hessian matrix H is needed. Using a matrix
constructed from the column vectors ~g and H · ~g, the determinant d = det(~g| ~Hg) can be
calculated. Then the normal is obtained as ~N = ∇d. While this must be calculated for the
whole field, due to the usage of central differences, only the interpolations at ~g · ~ev = 0, as
found along the ridge, provide normals that point to the center.

However, the normal gives a good representation for the orientation between a ridge sample
point and the center of curvature, but its direction is often pointing outwards, not inwards the

28

5.2. Extraction by Means of Centers of Curvature

curvature. Therefore the technique illustrated in Figure 5.2 (a) is used. By combining the
vectors which point from the sample point to its neighbours, a direction that points inwards
the curvature (illustrated as cells from P to P1 and P2), is obtained (red). While this does not
provide a good normal estimation, it is sufficient to decide if the normal vector must be flipped.
It is assumed that if the dot product 〈(~PP1 + ~PP2, ~N〉 < 0 the normal must be flipped. On
deformed ridges due to inappropriate sampling this could cause the normal to be inconsistently
oriented. Figure 5.2 (b) and (c) show the resulting normals before and after flipping.

Now the curvature κ can be obtained as the derivative of the tangent with respect to a
parametrization of the ridge curve, which is obtained as ~T = (−N2, N1)T . Our first approach
for obtaining the curvature was using tangent differences between neighboring vertices of the
ridge as shown in Equation 5.1. The distance at which the point is then moved along the
normal is then obtained as 1/k.

(5.1) κ =

Neighbours n∑
i

‖~Ti − ~T‖

n

Figure 5.3 shows in (b) the points after projection to the curvature center, from the original
points in (a). This however uses a threshold pmin for a minimum distance as (1/κ) > pmin, as
presumably points that did not substantially move are affected by errors in their calculation.
It can be seen, that many points group around the two desired virtual sources, but that also
the points scatter very far away from the sources. Outside the three dense regions from sources
further dense line-like structures can be observed. Those are typically result from curvature
changes due to superpositions, as changing curvature also changes the projection distance. To
reduce the scattering, other ways of computing the curvature and the distance of the center of
projection were examined.

The second approach is using sample points along both directions of the tangent of the sample
point, instead of its ridge neighbours, as illustrated in Figure 5.4. This was tried with different
distances along the tangent, mostly 1/10 cell size. However, in our tests with a simple one-
source dataset, where the ideal distance can be precomputed for comparison, it has shown
accuracy inferior to the sampling using ridge neighbours.

The third approach for determining the curvature computes the Jacobian J field from the ~N
field. With interpolated J and ~n, which must be normalized, at the ridge point the curvature
can be calculated using κ = ‖J · ~n‖. However, this approach also provided less accurate results
in our experiments, compared to the first method.

If the desired virtual sources are moving, the projected points have to be also projected through
time for an adequate space-time visualization. To reflect the time that a wave needs to travel
a given distance, one requires the phase velocity vp and the obtained projection distance d.
The travel time of the wavefront then can be calculated as t = d/vp and the position of the
centers of curvature are corrected by t back in time.

29

5. Extraction of Virtual Sources

(a) (b)

(c)

Figure 5.3.: Ridge points, original positions (a), centers of curvature (b), and with ridge
surfaces in comparison (c). In the images is only a slice of the full dataset, with
the points further filtered by a minimum projection distance.

Figure 5.4.: Illustration of a curved line (black) and the tangent directions (red) at a
point(blue).

30

5.3. Clustering of Extracted Virtual Source Points

For filtering, the curvature parameter on ridge extraction could be used. This is already
described in Section 4.4. With higher absolute eigenvalues the strength of the ridge is higher,
thus the flatter far away ridges are eliminated. This also is a indication to the curvature within
the ridge surface, which is used here for projection. As the distance is calculated as the inverse
of the curvature, errors on low curvature values have a high influence on the distance. With
the filtering of flat, far away ridges, those error-prone ridge points could be rejected.

As an improvement for the normal flipping, the formulation can be changed back to three-
dimensional ridge surfaces. Because the surfaces form funnels around the sources, the surface
normal must be pointing upward along the time direction, if the normal points inward the
curvature to center. So the normal must flipped if the vector component for the time dimension
is negative. As however the normal calculations are good enough, this approach is not used in
our implementation.

Due to the huge number of ridge points, the results are so much overlapping that the dense
regions could not necessarily be distinguished from scattering. In Figure 5.3 the dense clusters
are only clearly visible because only a very thin temporal slice of the whole dataset is displayed.
A first approach to improve this was to determine the point density by constructing a scalar
field that counts them per cell with a doubled resolution than the original field. This however
necessitates further work to extract the cluster centers for further analyses. Another approach
for clustering is described in Section 5.3.

5.3. Clustering of Extracted Virtual Source Points

As mentioned, the center of curvature projection needs a clustering method for extracting
virtual source positions from the set of centers of curvature. Also in case, that the virtual
sources are obtained from the minima extraction from the ridge surfaces, they can benefit from
clustering methods, to merge the points over time, which represent the same virtual source.
To this end, the PCA Split Algorithm 5.1 by Hopf and Ertl [HE03] is used.

The algorithm is based on Principal Component Analysis (PCA). The first step of the algorithm
is calculating the center of gravity of the point set and its covariance matrix. Then it must
be decided with an error function, if the dataset should be split into two subsets or if the
calculated center is a sufficient representation. If not, the principal component is extracted
from the covariance matrix and used for splitting the cluster. The eigenvector that represents
the principal component is used as a normal vector of a splitting plane. So for each point
in the dataset a vector from the dataset center to the point can be used together with the
principal component in a dot product. The points are then sorted regarding if the dot product
is above zero or not.

For the point extraction methods used in this work, the error function could be based on the
calculated covariances and the sample distances sdist. On the minima extraction as described
in Section 5.1 the criterion

√
(cov2

x + cov2
y > sdist was used on a two-dimensional PCA-Split,

ignoring the time dimension for clustering sources that are not moving.

31

5. Extraction of Virtual Sources

Algorithm 5.1 PCA Split Algorithm
procedure PCASplit(PointList pl)

Point avg = CalculateAverage(in pl) // Center of cluster
Matrix cov = CalculateCovarance(in pl)
if CheckError(in avg, in cov) then

return avg // Error of cluster low enough, return cluster
else // Error of cluster to high, split cluster

float[] eigenV alues = CalculateEigenvalues(in cov)
SortEigenvaluesDescending(inout eigenV alues)
Vector principalV ector = CalculateEigenvector(in cov, in eigenV alues.first)
Pointlist left, right
for all Point p ∈ pl do

Vector positionV ector = p− avg
if DotProduct(principalVector,positionVector) > 0 then

InsertPoint(inout left, in p)
else

InsertPoint(inout right, in p)
end if

end for
PCASplit(in left)
PCASplit(in right)

end if
end procedure

After clustering the count of points in a cluster can be used as an filtering criterion. Clusters
that contain few points are likely caused by superpositions or other errors and can be rejected.

5.4. Comparison

In a direct comparison, the precision of the approach based on local minima extraction is
higher, as no further error-prone calculations are needed. While the normal calculation in the
center of curvature method produces good results, the curvature calculation errors have strong
influence on the distance and time offset calculations. However, clustering and filtering by
cluster size can deliver acceptable results, but they are typically not as exact as those obtained
by the method based on the local minima of the ridge surfaces.

The center of curvature method has an advantage over the local minima extraction in terms of
sources that do not lie within the domain of the dataset. The center of curvature method can
detect those virtual sources, while obviously the local minimum extraction cannot.

It must be remarked that not all found virtual sources necessarily represent real sources in the
dataset. Deformations in curvature from superpositions can cause dense regions in center of
curvature projection or local minima in the ridges, as well as reflections of waves. Also, the

32

5.4. Comparison

clustering methods cannot detect sources that are moving or are heavily distorted through
superpositions.

33

6. Virtual Source Signal Reconstruction

The virtual sources obtained so far can be visualized by their geometry only, as points or
curves in space-time. Such a visualization provides information where the most important
contributions, with respect to the structures which emerge from the positions of the points,
come from and how these structures arise from the original field. The motivation for the
technique described in this section is to provide additional information about the contributions
in terms of field strength. This is achieved in terms of field reconstruction, by trying to
determine values along the space-time representation of the virtual sources such that their
superposition in terms of sources, including the phase velocity at which their information
spreads through the domain, results as close as possible to the original field.

Our model for reconstructing the values of the virtual sources is formulated as follows:

(6.1) S(x) =
sources∑

i

σi,t−∆t
(∆xi)2 ,∆ti = ∆xi

vp

The value S(x) at each point x within the domain of the field shall equal the sum of the
influences of sources. The values of the virtual sources are discretized with a uniform temporal
sampling, resulting in a set of values σi,t for each source i and discretized time t. Also the
travel time ∆ti of the wave from the respective source i to the point x, must be included in
the calculation, using the phase velocity vp and the distance ∆xi. Thus, for a sample point
x at time t the signal at the virtual source i must be fetched at t−∆t to accommodate for
travel time.

To calculate the virtual source signals σi,t from the given field data the system of equations

(6.2)

sample1{

0 d11 0 0 0 d12
sample2{ d2,1 0 0 d2,2 0 0

sample3{ 0 0 d3,1 0 d3,2 0
sample4{ d4,1 0 0 0 0 d4,4︸ ︷︷ ︸

source1t0..n

︸ ︷︷ ︸
source2t0..n

×

σ1,t0
...

σ1,tn
σ2,t0
...

σ2,tn

=

S(x1)
S(x2)
S(x3)
S(x4)

must be solved. The matrix has a row per sample point and a column per source and time
step. The matrix consists of coefficients di,j that represent the distance falloff factor from
source j to sample i and are only non-zero in the columns, that represents the time at which
the signal must have started to arrive at the right time at the sample. The vector which is

35

6. Virtual Source Signal Reconstruction

multiplied by the matrix represents the unknown source coefficients, for which the system of
equations must be solved using the given sample values S(x) on the right hand side. For a
robust result it is necessary to overdetermine the system , i.e., more sample points in the field
domain are needed than unknown signal coefficients.

The result of the reconstruction depends, beside other factors, on the quality of the virtual
source extraction result from the previous chapter. For these reasons it is likely that the
overdetermined system of equations has no exact solution and hence has to be approximated.
Therefore the least squares method is used, which tries to find a solution by minimizing
the errors with respect to an Euclidean error metric. As the transformation of the equation
A× x = b to x = A−1 × b would require the calculation of the inverse matrix, it is cheaper
to use a matrix decomposition method. For this the Cholesky decomposition method [Bjö,
p.44] is used. However, Cholesky decomposition requires the matrix to be a symmetric square
matrix, which does not directly match the need to overdetermine the system of equations.
Hence, Equation 6.2 must be transformed to AT × A × x = AT × b prior to the Cholesky
decomposition.

Depending on the choice of the sample points xi it can happen that some virtual source time
steps σi,t are never hit by a sample. This would cause that the column and row which represent
this time step are all zero and therefore cause the decomposition to fail, because the resulting
matrix AT ×A would be non-invertible. To fix these cases, all zero coefficients in the diagonal
of the matrix are set to non zero values and the respective source coefficients are marked as
invalid for the result. The respective values at the virtual sources are in our implementation
discarded and cause holes in the space-time-curve of the respective virtual source.

The occurrence of such errors and the quality of the reconstructed signal could be optimized
by a dedicated method for sample selection. Good results were achieved in our experiments by
using a constant number of samples per time slice and randomly choosing x/y positions, in
opposition to a fully random sampling within the space-time domain.

Another approach to guarantee that each source coefficient is hit by at least one sample is by
back tracing from those, i.e., by starting at each virtual source signal sample and determining a
time and location along the propagation through space and time. In doing so the samples were
chosen by projecting from each source coefficient into the dataset to choose a sample point,
which is then used for signal reconstruction. However, it needs much effort to ensure a good
sample distribution in the dataset using this technique, as relating to the source coefficient
position and time it can be hard to find samples within the dataset space-time domain. For
some source coefficients this approach may not even provide possible sample points if they lie
too near at the dataset boundaries and could not be hit by sample points within the dataset.

In contrast to ensuring that every source coefficient is hit by at least one sample, another
problem is that for an optimal solution every sample should hit every source exactly once for
providing a optimal distribution of the sample value to all superpositioning sources. Depending
on how virtual source points from the previous extraction are connected over time or within
which time interval the virtual source signal should be reconstructed, it is possible that samples
do not hit all sources. This leads to errors which cause a deviation of the result the more, the
fewer sources are hit.

36

6.1. Spatially Clustered Stationary Virtual Sources

(a) (b)

Figure 6.1.: Comparison of signal reconstruction for stationary sources with dataset time
range (a) and shifted time range (b). The surfaces are only ridges.

As the matrices are very large depending on the number of samples, sources, and reconstructed
time steps, the size of the data could be a problem. However, the matrix consists of mostly
zero entries. The factor of nonzero values is in optimum at one per number of time steps per
source. Mostly it is even a considerably lower factor, as not every source is hit by every sample.
Therefore, sparse matrix representation as mentioned in Section 2.5 is of substantial benefit,
reducing the memory footprint significantly.

In the following are different approaches described, which were explored in this work. They
use different ways of clustering the extracted virtual source points over time and different ways
of choosing the time frame for source reconstruction.

6.1. Spatially Clustered Stationary Virtual Sources

A first approach was to cluster the extracted source points based on two-dimensional space and
to ignore the time dimension, based on the PCA-Split approach with only low error tolerance.
This clusters tight virtual source point clusters, as those resulting from ridge surface funnels of

37

6. Virtual Source Signal Reconstruction

a stationary source, together, but keeps points of distorted or moving sources and other broad
clusters apart.

The time span and sampling rate for which the source signals are reconstructed is the same as
in the original dataset. However, in a straightforward approach many samples at the lower
end of the time domain would be too early to hit virtual sources and the latest source time
steps would never be hit by samples at the upper end of the time domain. To accommodate
for this the signal reconstruction time span is shifted back in time based on the spatial dataset
extent and phase velocity to gain a better sample/source hit ratio. This is done by shifting
by ∆t = δmax/vp · 1/2, with δmax being the maximum spatial diameter of the dataset, as the
mean signal travel time is the relevant factor. The difference can be seen in Figure 6.1 with
(a) dataset time span and (b) shifted time span. In (a) the top region exhibit missing values,
as no samples have hit them. In (b) the range is complete, but has distortions on the bottom
where the number of hits is lower. In both versions in Figure 6.1 it can be seen that the ridges
and valleys are correctly hit on the virtual sources curves and that the false source in the
middle is distorted and exhibits mostly weaker values.

A problem with this method is that each source requires many time steps to be computed.
In this work we used a number of 200 time steps per virtual source. Hence, when many
false positive sources exist, for example due to superpositions, the matrix can reach sizes
of thousands of columns. On the test hardware the decomposition of up to 40 sources took
around 10 minutes, but for 80 sources already two hours. Therefore, an iterative decomposition
method was tried in replacement for the Cholesky decomposition. But this did not provide
better timings, as it requires many iterations to converge.

6.2. Ungrouped Virtual Source Points Local Time Extrapolation

The second approach targets on reducing the sampled time range per source for lower computing
costs. In this approach the virtual source points that result from the approach based on
minima of the ridge surfaces (Section 5.1) are not further clustered. Each virtual source point
is sampled for a fixed time range before and after the point, hence assuming that the virtual
point sample can be approximated as a stationary point over this short period of time. With
the range set to a suitable value, stationary sources are covered over the full time range, as
they are covered by such a time interval from each ridge and valley. Distorted and moving
sources are covered locally per ridge and errors from superpositions have only local impact
instead of the full extent of the time domain of the dataset. However, if the local time range is
chosen too short, stationary sources will exhibit gaps. If, on the other hand, it is chosen too
long, overlaps can cause inconsistent results.

Figure 6.2 shows the difference between this approach and the clustered full time sampling of
sources. Both original sources that were used to generate the dataset are almost completely
captured even with the local sampling method. The described problems of temporal sampling
length can be seen, as the left source has minimal overlaps, but the right one exhibits many gaps.
In the center the difference to sources that arise from ridge surface errors due to superpositions
can be seen. While in global clustering they group together to one virtual source, they now

38

6.3. Connected Virtual Source Point Interpolation

Figure 6.2.: Same dataset as in Figure 6.1 but with the local time sampling scheme of the
virtual sources. The local minimum extraction errors are scattered to many
short time sequences instead of one clustered source.

split to many, even parallel, virtual sources. This lowers the obtained signal values of the
original sources, as the sample point values are distributed to much more virtual sources.

6.3. Connected Virtual Source Point Interpolation

Our third approach aims at building a connectivity between the extracted points and using
the resulting lines for source signal interpolation. The goal is to provide connected space-time
curves for moving sources.

The basic strategy of this approach is the clustering by searching from each point a connection
to a point later in time. This results in a maximum of one line segment starting per point,
but possibly multiple line segments merging into a point. For possible point connections
the condition is enforced, that the movement speed between the two end points must be
below the phase velocity vp as ∆spatial

∆time < vp. This origins in the requirement, that our virtual
sources always move slower than the phase velocity of their signals waves. This assumption is
motivated by the fact that our virtual source visualization is interpreted in terms of waves
that travel from these to a location of interest. To choose a point if multiple candidates apply,

39

6. Virtual Source Signal Reconstruction

(a) (b)

Figure 6.3.: Examples for the connected source point interpolation approach. (a) shows the
dataset from Figure 6.1 slightly rotated for a view on the result of the scattered
points in the middle. (b) shows a new dataset obtained from three stationary
original sources, where the left one is much weaker and strongly distorted.

which meet the maximum motion speed condition, a condition to chose the point with the
shortest distance is enforced. As this distance is a space-time distance, the dimensions must
be weighted. Therefore distance calculation is calculated as

√
x2 + y2 + (t · vp)2. Another

possible condition for choosing the upper (later) point for a segment would be to use the
slowest moving one instead of the above distance measure.

In the previous approaches from each sample only a ray to the spatial position of the source
had to be cast and the right time had to be calculated, as detailed above. The procedure is
more complex in this approach, as the virtual source line segments can exhibit any orientation
in space-time and not only be aligned to the time axis. We computed the crossings according
to Equation 6.4, where the left hand side represents the source line segment Seg and the right
hand side an upside down funnel originating in the sample point S. The Equations

(6.3) x2 + y2 = 1 r > 0 0 ≤ t ≤ 1

40

6.4. Comparison

provide further conditions for obtaining the results, as the radius r of the funnel must be
greater than zero and x, y give then the direction to the source. t is the parameter for the
crossing at the source line segment.

(6.4) −−−−−→Segstart + t ·
−−−−−−−→
Segdirection = −→S + r ·

 x

y

−1/vp

Figure 6.3 shows two examples for this approach. (a) shows the previously used dataset. The
original sources are well represented, but the points from inappropriate filtering in the middle
show erroneous connections. A fitting example for the described approach is given in (b). The
left source is weaker and strongly affected, but at least found and connected. On the right
source a deviation in the upper part could be seen. This happens due to the greedy search,
as the next both ridge and valley minimum points are missing and the erroneous point has a
smaller distance than the next correct local minimum.

On the lower middle part of the right source in (b) an incoming branch from an erroneous
point can be seen. A possible approach for filtering such branches would be to search in a
set of connected source segments for the longest connected line and crop shorter branches
away, before the signal reconstruction is done. Those branches otherwise get hits from dataset
samples where only one source segment should be and deteriorate the result.

6.4. Comparison

Comparing the spatial clustering method from Section 6.1 to the local extrapolation method
described in Section 6.2, the first provides smoother results, as overlaps and gaps are avoided.
Parallel erroneous segments as often results due to superpositions can be substantially reduced
by clustering. With the local extrapolation approach however, moving sources are much better
represented, as they are calculated locally and are not approximated by a rough cluster center.
The greedy connected interpolation approach presented in Section 6.3 produces the best results
for stationary and moving sources. However, erroneous points and distorted sources result also
here in erroneous connections. At least, the local minimum source extraction as in Section 5.1
can reduce the number of erroneous points by filtering. In the dataset used in this chapter
fringe cutting was deactivated for demonstration purposes. For datasets with weak and strongly
distorted stationary sources as the left one in Figure 6.3 (b), spatial clustering for stationary
sources should provide the best results through the averaging from clustering. The connected
interpolation method, however, still finds and connects them.

The necessary computing power is highly dependent on the clustering and filtering. With
inappropriate filtering and low error tolerance clustering, the first method produces many
sources with many samples per source, while the local clustering employs much fewer samples
per source. The greedily connected points in this case should have the medium to highest
computational cost, as a result from more complex sample calculations. The number of source

41

6. Virtual Source Signal Reconstruction

samples over all is of major impact here, as the signal reconstruction depends on the Cholesky
decomposition, which has complexity O(n3).

An important point which must be considered is the quality of the reconstructed signal. The
results are, if real sources are captured by our virtual source approach, typically similar to the
original signal which was used to build the dataset. On the boundaries of the datasets the
calculated signals exhibit often strong outliers, and on the interior the resulting values are
typically much lower than expected. This depends on the quality of the data samples and how
often each source sample is hit. More hits smoothen the result, what explains the outliers on
the boundaries, as the hit probability is lower there. Dataset samples should ideally hit each
original source once. Due to the clustering methods and time ranges, not every source is hit
by a sample. This makes the value distribution of the sample less continuous. The other effect
is that additional sources from erroneous points, which distribute the sample values to more
sources than actually exist, significantly lower the reconstructed signal values.

It should be also noted that in few cases, most commonly in the case of the local reconstruction
approach, as in Section 6.2, the Cholesky decomposition was not successful due to an “numerical
issues” error. It is unclear whether this originates from degenerated rows of the least squares
matrix due to inappropriate samples or from a problem within Eigen, the linear algebra library
which is used for these calculations. However, if the decomposition does not abort due to error,
which is the typical case, the results are as expected.

42

7. Results

We applied the introduced techniques to different datasets that were generated using the
software which is described in Chapter 3 and to an electromagnetic field simulation, which
bases on the finite-difference time-domain method and is also mentioned in the respective
chapter.

Figure 7.1 shows a result for a more complex dataset. The dataset was constructed by two
sources of same frequency, visible on the right, and one with half that frequency on the left.
As indicated by the ridge and valley surfaces of the wavefronts at the bottom, a full surface
visualization would suffer from clutter, making it hard to identify the inherent structure. It
also can be seen that at the boundary between the two sources to the left many artifacts
persist after filtering. This results a tree structure due to the greedy virtual source connection,
with a less regular signal reconstruction. The other virtual sources which represent real sources
of the dataset exhibit a regular signal reconstruction, on which the different frequencies can
be identified. However, on the left, lower frequency, virtual source some points are missing
from the local minima extraction. Therefore the uppermost virtual source point connects to a
virtual source point of the artifacts between the original sources.

A second dataset which was generated using the finite-difference time-domain method (imple-
mentation by Thomas Müller) is visualized in Figure 7.2. The dataset contains a stationary
oscillating source and a reflective boundary condition on the left. Beginning at the bottom, it
can be seen when the first wavefront hits the reflective boundary and is reflected back into
the field domain. It can be seen how reflected wavefronts superimpose the original wavefronts.
Examining the red dots, which represent the spatial center of curvature projections, on the
right side of the dataset dense lines could be seen. Due to varying curvature of the ridges, they
form lines instead of point shaped dense regions. The rather circular regions of points in the
middle of the domain are even more dense, but this is occluded by the ridge surfaces. It can
further be seen that the lateral lines are not as clearly visible on the left side of the dataset, as
the reflections cause further spread on this side.

7.1. Timings

Providing that the virtual sources are appropriately filtered, computation time is not an issue
for the approach presented in this work. However, as the current implementation for this
work precomputes and stores the gradient vector, the Hessian matrix and an eigenvector at
each node of the computation grid for the ridge extraction, system memory consumption is
a problem. Including the original scalar field, 16 double values are stored per dataset node.

43

7. Results

Figure 7.1.: Dataset consisting of three sources with different frequencies with greedy con-
nected virtual source points. They visualize the reconstructed signals, providing
a notion of the field.

This results in a memory consumption of ∼122MB for a 1003 cube dataset, still without the
extracted features. Table 7.1 shows the timings for two datasets. The first dataset consists of
100× 100× 200 points and is shown in Figure 6.3 (b). The second dataset two has a resolution
of 200× 200× 400 and is shown in Figure 7.1.

The timings of the signal reconstruction can be interpreted by the expenses of dataset sampling.
As 200 samples are taken per time slice on the runs in this table, they have a strong influence
in comparison to the resulting virtual source signal samples. Stationary sources involve the
simplest sample calculations and are therefore typically the fastest, as only the distance
between dataset sample and virtual source sample must be calculated for obtaining the travel
time of the wave. The local sampling includes further range checks on the time axis, but is still
simple. Only the calculations for the greedy connected virtual sources require the expensive
calculation of a crossing point between a funnel from the dataset sample and a line from the
virtual source segment.

1Triangle count pre Filtering, 2 fringe cut iterations
24-Neighbourhood search range
3From local minima Points

44

7.1. Timings

Figure 7.2.: Electromagnetic field dataset simulated using the finite-difference time-domain
method. A stationary oscillating source located at the spatial center with a
reflective boundary condition on the left. The red points visualize the centers of
curvature obtained according to the technique described in Section 5.2. Time
increases in upward direction while the spatial dimensions are horizontal.

Step Dataset 1 Dataset 2
Ridges1 639471 Triangles 8.81 7576767 Triangles 99.23
Valleys1 637974 Triangles 8.74 7538483 Triangles 100.35
Local minima Sources2 63 Points 2.56 242 Points 37.15
Center of Curvature Sources 42112 Points 2.02 288622 Points 18.32
PCA Split for minima Points 4 Points <0.01 4 Points <0.01
PCA Split for curvature Points 54 Points 0.02 183 Points 0.30
Signal reconstruction3

- stationary 800 Samples 0.10 1600 Samples 0.70
- local 630 Samples 0.33 2420 Samples 6.18
- greedy connected 707 Samples 0.64 1626 Samples 5.47

Table 7.1.: Computation times in seconds.

45

8. Conclusion

In this work we have introduced methods based on space-time height ridge extraction for the
visualization of wave propagation phenomena and introduced feature extraction techniques,
that are based on the extracted space-time wavefront surfaces, to provide a concise visualization.
With the introduction of virtual sources and signal reconstruction based thereon we have
provided a visualization technique with reduced occlusion and complexity, as compared to the
visualization by volume rendering or ridge surfaces.

We presented two different approaches for the extraction of virtual sources. One approach
based on local minimum extraction within the obtained ridge surfaces, the other based on a
projection to the spatial center of curvature of the space-time ridge surfaces. It must, however,
be noted, that the results from source extraction based on curvature projection result in many
more virtual sources due to curvature variation of the ridges. Hence, this approach does not
provide as robust results and requires special attention on parameter fitting for clustering. In
contrast, the results based on the local minimum extraction do not exhibit this drawback, as
long as the sampling rates are high enough. This is important as for the subsequent signal
reconstruction at the virtual sources in space-time the results can only be as good as the
preceding virtual source extraction step.

In our signal reconstruction the results show a good representation of when height ridges or
valleys have started at the respective virtual sources, as long as the space-time-curves are
constructed from an adequately filtered virtual source point extraction. The resulting signals
however are typically jittered, in dependence on spatial and temporal sampling. Nevertheless,
although an exact quantitative reconstruction of the original field is typically not feasible
at moderate computation times, the obtained results serve well for visualization purposes.
There are, however, several potentials for future improvements by more sophisticated filtering,
e.g., based on the regularity of the reconstructed signal, and advanced space-time sampling
techniques for the signal reconstruction step.

8.1. Future Work

There are different branches in which further work could be done. As the ridge surface
extraction and the local minimum extraction deliver adequate results, the curvature projection
stage and signal reconstruction step are particularly eligible.

A first point to improve could be a extension of the virtual source connection algorithm from
Section 6.3. Branches could be cut by searching the longest path of connections and cropping
all shorter branches off. This is assumed to improve the quality of the signal reconstruction

47

8. Conclusion

substantially. Also the greedy connection search itself could be improved by a better decision
between near points and fast virtual source movement or distant points and slow virtual source
movement. Thereby, the algorithm must cope with the relation between spatial distance and
temporal distance of virtual source points.

Another point to improve would be the data sampling for signal reconstruction. More
sophisticated selection algorithms, in contrast to the random sampling used in this work, are
likely to improve the signal reconstruction at the virtual sources. This could be achieved by
imposing additional constraints on the samples. A good sample should hit many different virtual
sources for a smooth result, and signal samples should be hit often for a good reconstruction.

On the curvature projection approach for virtual source extraction, the normal calculations
deliver good results. However, the curvature calculation and therefore the projection distance
scatter substantially. While the virtual sources can be identified as clusters in the centers of
curvature, they are typically not accurate enough for a smooth source signal reconstruction.
Therefore, the curvature calculation would be a significant branch for future work for improving
the results of the virtual source extraction step. This is furthermore significant, as the local
minimum based virtual source extraction is limited to the dataset domain, and hence unable
to extract virtual sources outside of the dataset, as for example are expected to appear due to
reflection.

48

A. Implementation

The tools and visualization methods which are developed in this work are based on the
Visualisation Toolkit (VTK). This framework enables the usage of many available visualization
methods and is including a rendering framework. As the developed methods are implemented
as custom filters, they can be freely combined. The framework also offers the infrastructure
for the handling of datasets themselves, which enables the output of interim results between
filtering methods at no additional development cost.

The projects were developed in C++ and use Visual Studio 2012, thus some elements in the
source code require C++11 compiler compatibility.

A.1. Dependencies

VTK 5.10.0

As stated above, the tools and filters are implemented within VTK and therefore depend on it.
For the dataset generation tools VTK must be build with QT Support, as the QVTK Widget
is used in the user interface.

QT Libs 4.8.3

The dataset generation tools use QT for the user interface. In the filter project QT is only
used for the file dialog to choose a dataset. The filters itself do not use QT.

Eigen 3.1.1

Eigen is used for sparse matrix decomposition in the context of the signal reconstruction filters
only.

Linalg

A library for two- to four-dimensional vector and matrix calculations, which was written by
Ronald Peikert, is used for simple linear algebra problems.

49

A. Implementation

A.2. Overview

Figure A.1.: Overview of possible filter combinations. Alternative choices are indicated by a
rue.

The custom filters depend on different input types and should be connected via the VTK
pipeline by means of their input and output ports. The initial input is a vtkImageData
object with scalar field values. As the datasets from Section 3.2 have two three-dimensional
scalar values, one of them must be chosen and prepared with the vtkImageMagnitude filter to
derive the respective scalar field for visualization. Figure A.1 shows all possible and useful
combinations of the implemented custom filters.

There exists no explicit filter for the gradient magnitude method based on isosurface extraction,
which is described in Section 4.3. The method can be realized by using the build-in VTK
filters vtkGradientFilter, vtkImageMagnitude, and vtkContourFilter in the mentioned order.

50

A.3. Tool: Scalar Field Creator

Figure A.2.: Scalar field creator GUI

A.3. Tool: Scalar Field Creator

Description

The tool, is used for creating scalar fields with x and y as spatial dimensions and z as time
dimension. Sources of different wave equation types can be combined to a resulting scalar field.
The used equations are described in Section 3.1.

Usage

The user interface is shown in Figure A.2. The upper matrix of input fields determines the
bounds and sampling rates for the output scalar field. To the right are previews of lowest and
top time slices, which must be updated manually by the update button.

For a wave, inputs for frequency in 1/s and wavelength in m must be given. Phase velocity is
calculated by the interface and shown in m/s. Depending on the wave type, the input vector
is the source origin or the wave direction. However, the list in the middle shows the added
sources with the data as wave type)frequency/wavelength(vectorx/vectory). Sources can be
selected in the list and be removed.

The output is created by using the menu file→ create vti which opens a file save dialog.

51

A. Implementation

Output

Three-dimensional vtkImageData. x and y dimensions are spatial dimensions and scaled in
meters. z dimension is a time dimension and scaled in seconds. Data is assigned per node of
the grid and contains a one-dimensional scalar value of type double.

A.4. Tool: Dipole E-M-Field Creator

Description

The tool is used for creating electromagnetic vector fields with x and y as spatial dimensions
and z as time dimension. It is used to place multiple Hertzian Dipoles in space. However, they
are all aligned along the z axis, standing vertical on the x/y plane. The used equations are
described in Section 3.2.

Usage

The user interface is shown in Figure A.3. The upper matrix of input fields determines the
output dataset bounds and sampling rates. To the right are previews of the lowest and the
top time slice, which must be updated manually by the update button.

For a electromagnetic dipole, inputs for frequency in 1/s, dipole moment in F/m
and zero phase in rad must be given. The origin determines the position of
the dipole. The list in the middle shows the added sources with the data as
frequency zero phase/dipole moment(originx/originy). Sources can be selected in the
list and can be removed.

Output

Three-dimensional vtkImageData. x and y dimensions are spatial dimensions and scaled in
meters. z dimension is a time dimension and scaled in seconds. Data is assigned per node of
the grid and contains two thee-dimensional vectors of type double.

A.5. Filter: vtkRidges

Description

Extracts ridge or valley surfaces as described in Section 4.4 using our marching ridges algo-
rithm.

52

A.5. Filter: vtkRidges

Figure A.3.: Dipole E-M-Field Creator GUI

Input

Port 0: Base Scalar field Three-dimensional vtkImageData. The scaling of the axis is not
significant for a correct result. The appended data must contain a scalar per point, which
is of type double.

Output

Port 0: Extracted Ridge/Valley Surfaces Type of vtkPolyData with triangles as three
points per vtkCell. Vertices are shared on adjacent triangles. Data contains a scalar
value which is interpolated from the input field. Scalar is of type double.

Parameters

SetExtractRidges() Sets the extraction method to ridges.

SetExtractValleys() Sets the extraction method to valleys.

SetFilterMinimumCurvature(double tau) A filter on the strength of ridge/valley sharp-
ness. Must be greater or equal to zero.

SetFilterScalarrange(double min, double max) A filter on the scalar value for a ridge.
Max must be greater than min.

SetFilterMinimumComponentSize(int triangles) A filter on the number of connected
triangles. Connected components with less triangles are discarded.

53

A. Implementation

SetFilterFringeCutIterations(int i) A filter for interferences. Triangles, which have at
least on edge that is not connected to an other triangle, i.e., reside at the mesh boundary,
are discarded. With the parameter i this can be repeated multiple times.

A.6. Filter: vtkSourcesLocalMinima

Description

Extracts local minima from ridge and valley surfaces. The base scalar field is needed, for
deciding whether a found minimum is on the bottom plane of the dataset extent.

Input

Port 0: Base Scalar Field Three-dimensional vtkImageData. The scaling of the axis is not
significant for a correct result.

Port 1: Ridges Type of vtkPolyData with triangles as three points per vtkCell. Vertices
must be shared between adjacent triangles.

Port 2: Valleys Type of vtkPolyData with triangles as three points per vtkCell. Vertices
must be shared between adjacent triangles.

Output

Port 0: Source Points Type of vtkPolyData with vertices as one point per vtkCell. Only
points which are assigned to a cell are valid. No further data is appended.

Parameters

SetFilterNeighbourrange(int range) A parameter for neighbourhood size in which a point
must be the minima to be accepted.

A.7. Filter: vtkSourcesCenterOfCurvature

Description

Extracts sources from a scalar field by calculating the centers of curvature from two-dimensional
ridge surfaces per time slice. The method is described in Section 5.2.

54

A.8. Filter: vtkPointInCellCounter

Input

Port 0: Base Scalar Field Three-dimensional vtkImageData. The x and y axis must be
scaled in meters and the z axis in seconds. The appended data must contain a scalar
per node of type double.

Output

Port 0: Source Points Type of vtkPolyData with vertices as one point per vtkCell. Only
points which are assigned to a cell are valid. The appended data contains a scalar value
per point, which contains the curvature and a vector value, which contains the normal
vector. Output is of type double.

Parameters

SetProjectionForTimeOn(bool b) Defines if the projection (i.e., the center of curvature
computation) should not only be done in the spatial dimensions, but also in time.

SetPhasevelocity(double pv) Sets the phase velocity m/s of wave propagation.

SetNormalflippingOn(bool b) Set whether the internal method for consistent vector ori-
entation should be used or not.

SetFilterProjectionDistance(double minDist, double maxDist) Sets a filter based on
the projection distance which is calculated from the curvature.

SetCurvatureMode(int m) A switch for internal curvature calculation methods. Mode 0
selects curvature from tangent differences between ridge neighbours. Mode 1 interpolates
points at 1/10 of cell size along the point tangent to calculate curvature from the tangent
differences. Mode 2 uses a Jacobi matrix. Mode 0 typically delivers best results.

SetExtractRidges() Sets the extraction method to ridges.

SetExtractValleys() Sets the extraction method to valleys.

SetFilterMinimumCurvature(double tau) A filter on the strength of ridge/valley curva-
tures. Must be greater or equal to zero.

SetFilterScalarrange(double min, double max) A filter on the scalar value for a ridge.
max must be greater than min.

A.8. Filter: vtkPointInCellCounter

Description

Lays a grid over a point input and counts the number of points per cell.

55

A. Implementation

Input

Port 0: Source Points Type of vtkPolyData with vertices as one point per vtkCell. Only
points which are assigned to a cell are valid.

Output

Port 0: Source Point Image Type of vtkImageData with a scalar per point which contains
the number of counted points. The scalar type is double.

Parameters

SetOrigin(double point[3)] Sets the origin of the resulting image data.

SetExtent(int extent[6)] Sets the extent of the resulting image data.

SetSpacing(double spacing[3)] Sets the spacing between nodes of the resulting image
data.

AddOuterPointsToBorder(bool b) Sets whether points which lie outside the result dataset
bounds should be discarded or added to the dataset boundary cells.

A.9. Filter: vtkPCASplit

Description

Implements the PCA Split clustering algorithm as described in Section 5.3. For different
purposes the clustering could ignore the z time dimension and only cluster using the spatial
dimensions x and y. If clustering should use all three dimensions, it may be necessary to set
coefficients per dimension for the covariance calculations, as time and spatial dimensions may
need different weight factors.

Input

Port 0: Source Points Type of vtkPolyData with vertices as one point per vtkCell. Only
points which are assigned to a cell are valid.

Output

Port 0: Source Points Type of vtkPolyData with vertices as one point per vtkCell. Only
points which are assigned to a cell are valid.

56

A.10. Filter: vtkSignalreconstructionFulltime

Parameters

SetFilterMinimumCluserSize(unsigned size) Sets a filter, which discards clusters that
contain less than size points.

SetMaxErrorForSplit(double error) Sets the error value on covariance, on which a set
of points is split to two subsets.

SetDimensionCoefficients(double x, double y, double t) Sets coefficients for each di-
mension on the covariance calculation. For the usage in this work typical usage would
be x = 1, y = 1, t = vp.

SetIgnoreTimeDimension(bool b) Sets whether clustering should be two-dimensional or
three-dimensional, including the time dimension.

A.10. Filter: vtkSignalreconstructionFulltime

Description

Performs a signal reconstruction as described in Section 6.1. It makes sense to use a two-
dimensional PCA-Split clustering beforehand. For a correct result the phase velocity must be
set.

Input

Port 0: Base Scalar Field Three-dimensional vtkImageData. The x and y axis must be
scaled in meters and the z axis in seconds. The appended data must contain a scalar
per point, which is of type double.

Port 1: Source Points Type of vtkPolyData with vertices as one point per vtkCell. Only
points which are assigned to a cell are valid.

Output

Port 0: Source Signal Lines Type of vtkPolyData with line lists as two or more points
per vtkCell. A scalar which contains the calculated signal value is assigned per vertex.
Data type is double.

57

A. Implementation

Parameters

SetPhasevelocity(double pv) Sets the phase velocity in m/s of wave propagation.

SetTimeTranslationFactor(double f) A internal time span is calculated on base of the
maximum distance between a source and dataset edge points with respect to the phase
velocity. The factor is a multiple of the duration by which the signal reconstruction is
translated back in time. Default is 0.5.

SetSamplesPerTimeslice(unsigned int i) Sets the number of samples which are taken
per time slice. This must be greater than the number of input sources.

A.11. Filter: vtkSignalreconstructionLocal

Description

Performs a signal reconstruction as described in Section 6.2. As from each ridge a point per
source should be included, the time range must be configured for minimal overlapping to
produce good results. For a correct result the phase velocity must be set.

Input

Port 0: Base Scalar Field Three-dimensional vtkImageData. The x and y axis must be
scaled in meters and the z axis in seconds. The appended data must contain a scalar
per point of type double.

Port 1: Source Points Type of vtkPolyData with vertices as one point per vtkCell. Only
points which are assigned to a cell are valid.

Output

Port 0: Source Signal Lines Type of vtkPolyData with line lists as two or more points
per vtkCell. A scalar which contains the calculated signal value is assigned per vertex.
Data type is double.

Parameters

SetPhasevelocity(double pv) Sets the phase velocity m/s of wave propagation.

SetCoefficientsPerSource(unsigned int i) Sets the time range over which the signal for
a source point is calculated, as the signal samples are set with the dataset time sampling
distance.

58

A.12. Filter: vtkSignalreconstructionGreedyclustered

SetSamplesPerTimeslice(unsigned int i) Sets the number of samples which are taken
per time slice. There must be more samples taken, than coefficients for sources are
reconstructed.

A.12. Filter: vtkSignalreconstructionGreedyclustered

Description

Calculates source signals as described in Section 6.3. For a correct result the phase velocity
must be set. For each source line segment the covered time length is divided by the sampling
distance of the time axis. If the segment is too long, the number of samples for this segment is
limited by SetMaxCoefficientsPerSource.

Input

Port 0: Base Scalar Field Three-dimensional vtkImageData. The x and y axis must be
scaled in meters and the z axis in seconds. The appended data must contain a scalar
per point of type double.

Port 1: Source Points Type of vtkPolyData with vertices as one point per vtkCell. Only
points which are assigned to a cell are valid.

Output

Port 0: Source Signal Lines Type of vtkPolyData with line lists as two or more points
per vtkCell. A scalar which contains the calculated signal value is assigned per vertex.
Data type is double.

Parameters

SetPhasevelocity(double pv) Sets the phase velocity m/s of wave propagation.

SetMaxCoefficientsPerSource(unsigned int i) Sets how many samples at maximum are
used per source connection.

SetSamplesPerTimeslice(unsigned int i) Sets the number of samples which are taken
per time slice. There must be more samples taken, than coefficients for sources are
reconstructed.

59

Bibliography

[BDM+] M. Bertram, E. Deines, J. Mohring, J. Jegorovs, H. Hagen. Phonon Tracing for
Auralization and Visualization of Sound. In IEEE Visualization, p. 20. IEEE
Computer Society. (Cited on page 10)

[Bjö] Å. Björck. Numerical Methods for Least Square Problems. Miscellaneous Bks.
(Cited on pages 15 and 36)

[BSDW12] S. Bachthaler, F. Sadlo, C. Dachsbacher, D. Weiskopf. Space-Time Visualization of
Dynamics in Lagrangian Coherent Structures of Time-Dependent 2D Vector Fields.
International Conference on Information Visualization Theory and Applications,
pp. 573–583, 2012. (Cited on page 11)

[BSW+12] S. Bachthaler, F. Sadlo, R. Weeber, S. Kantorovich, C. Holm, D. Weiskopf.
Magnetic Flux Topology of 2D Point Dipoles. Computer Graphics Forum, 31(3):955–
964, 2012. (Cited on page 10)

[Dam] J. N. Damon. Properties of Ridges and Cores for Two-Dimensional Images. Journal
of Mathematical Imaging and Vision, (2):163–174. (Cited on page 10)

[DBM+06] E. Deines, M. Bertram, J. Mohring, J. Jegorovs, F. Michel, H. Hagen, G. M.
Nielson. Comparative Visualization for Wave-based and Geometric Acoustics.
IEEE Trans. Vis. Comput. Graph., 12(5):1173–1180, 2006. (Cited on page 10)

[Dei08] E. Deines. Acoustic Simulation and Visualization Algorithms. Ph.D. thesis, 2008.
(Cited on page 10)

[Ebe96] D. Eberly. Ridges In Image And Data Analysis (Computational Imaging And
Vision). Springer, 1996. (Cited on pages 10 and 22)

[FKMP] J. D. Furst, R. S. Keller, J. Miller, S. M. Pizer. Image Loci are Ridges in Geometric
Spaces. In B. M. ter Haar Romeny, L. Florack, J. J. Koenderink, M. A. Viergever,
editors, Scale-Space, Lecture Notes in Computer Science, pp. 176–187. Springer.
(Cited on page 10)

[FP98] J. D. Furst, S. M. Pizer. Marching optimal-parameter ridges: An algorithm to
extract shape loci in 3D images. In W. Wells, A. Colchester, S. Delp, editors,
Proceedings of the 1st International COnference on Medical Image Computing and
Computer-Assisted Intervention – MICCAI’98, number 1496 in Lecture Notes in
Computer Science, pp. 780–787. Springer-Verlag, M.I.T., Cambridge, MA, U.S.A.,
1998. (Cited on page 10)

61

Bibliography

[FP01] J. D. Furst, S. M. Pizer. Marching ridges. In M. H. Hamza, editor, SIP, pp. 22–26.
IASTED/ACTA Press, 2001. (Cited on pages 10 and 23)

[GMME12] T. M. D. M. Gustavo M. Machado, Filip Sadlo, T. Ertl. Visualizing Solar Dynamics
Data, 2012. Proceedings of International Workshop on Vision, Modeling and
Visualization (VMV) 2012, to appear. (Cited on pages 10 and 11)

[HE03] M. Hopf, T. Ertl. Hierarchical Splatting of Scattered Data. In Proceedings of
IEEE Visualization ’03. 2003. (Cited on page 31)

[Kar] K. Kark. Antennen und Strahlungsfelder: Elektromagnetische Wellen auf Leitungen,
im Freiraum und ihre Abstrahlung. Aus dem Programm Informationstechnik. (Cited
on page 18)

[KK05] S.-K. Kim, C.-H. Kim. Finding ridges and valleys in a discrete surface using a
modified MLS approximation. Computer-Aided Design, 37(14):1533–1542, 2005.
(Cited on page 11)

[KSSW09] G. L. Kindlmann, R. San Jose Estepar, S. M. Smith, C.-F. Westin. Sampling and
Visualizing Creases with Scale-Space Particles. IEEE Trans. Visualization and
Computer Graphics, 15(6):1415–1424, 2009. doi:10.1109/TVCG.2009.177. (Cited
on page 11)

[KTW06] G. Kindlmann, X. Tricoche, C.-F. Westin. Anisotropy Creases Delineate White
Matter Structure in Diffusion Tensor MRI. In Ninth International Conference
on Medical Image Computing and Computer-Assisted Intervention (MICCAI’06),
Lecture Notes in Computer Science 4190, pp. 126–133. Copenhagen, Denmark,
2006. (Cited on page 10)

[LC87] W. E. Lorensen, H. E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. COMPUTER GRAPHICS, 21(4):163–169, 1987. (Cited
on page 22)

[LCM07] C. Lauterbach, A. Chandak, D. Manocha. Interactive sound rendering in complex
and dynamic scenes using frustum tracing. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1672–1679, 2007. (Cited on page 10)

[Lin96] T. Lindeberg. Edge Detection and Ridge Detection with Automatic Scale Selection.
International Journal of Computer Vision, 30:465–470, 1996. (Cited on page 10)

[MOD00] M. Monks, B. M. Oh, J. Dorsey. Audioptimization: Goal-Based Acoustic Design.
IEEE Comput. Graph. Appl., 20(3):76–91, 2000. (Cited on page 10)

[OBS04] Y. Ohtake, A. Belyaev, H.-P. Seidel. Ridge-valley lines on meshes via implicit
surface fitting. ACM Trans. Graph., 23(3):609–612, 2004. (Cited on page 11)

[OMD+] H. Obermaier, J. Mohring, E. Deines, M. Hering-Bertram, H. Hagen. On Mesh-Free
Valley Surface Extraction with Application to Low Frequency Sound Simulation.
IEEE Trans. Vis. Comput. Graph., (2):270–282. (Cited on page 10)

[OU] A. Omoto, H. Uchida. (Cited on page 10)

62

Bibliography

[PR99] R. Peikert, M. Roth. The “Parallel Vectors” Operator – A Vector Field Visualiza-
tion Primitive. In Proceedings IEEE Visualization 1999, pp. 263–270. 1999. (Cited
on page 10)

[PS08] R. Peikert, F. Sadlo. Height Ridge Computation and Filtering for Visualization. In
I. Fujishiro, H. Li, K.-L. Ma, editors, Proceedings of Pacific Vis 2008, pp. 119–126.
2008. (Cited on pages 10 and 28)

[SCT+] A. R. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger, J. Breslau. Analysis
of Recurrent Patterns in Toroidal Magnetic Fields. IEEE Trans. Vis. Comput.
Graph., (6):1431–1440. (Cited on page 10)

[SG89] A. Stettner, D. P. Greenberg. Computer graphics visualization for acoustic
simulation. In Proceedings of the 16th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’89, pp. 195–206. 1989. (Cited on page 10)

[SP07] F. Sadlo, R. Peikert. Efficient Visualization of Lagrangian Coherent Structures by
Filtered AMR Ridge Extraction. IEEE Trans. Vis. Comput. Graph., 13(6):1456–
1463, 2007. (Cited on pages 10 and 23)

[ST08] M. Sipos, B. G. Thompson. Electrodynamics on a grid: The finite-difference
time-domain method applied to optics and cloaking. American Journal of Physics,
2008. (Cited on page 17)

[STS10] T. Schultz, H. Theisel, H.-P. Seidel. Crease Surfaces: From Theory to Extraction
and Application to Diffusion Tensor MRI. IEEE Transactions on Visualization
and Computer Graphics, 16(1):109–119, 2010. (Cited on page 10)

[SWTH07] J. Sahner, T. Weinkauf, N. Teuber, H.-C. Hege. Vortex and Strain Skeletons in Eu-
lerian and Lagrangian Frames. IEEE Trans. Vis. Comput. Graph., 13(5):980–990,
2007. doi:http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.1053. (Cited
on page 10)

[TS03] H. Theisel, H.-P. Seidel. Feature flow fields. In Proceedings of Eurographics /
IEEE TVCG Symposium on Visualisation, pp. 141–148. 2003. (Cited on page 11)

[WSTH07] T. Weinkauf, J. Sahner, H. Theisel, H.-C. Hege. Cores of Swirling Particle Motion
in Unsteady Flows. IEEE Transactions on Visualization and Computer Graphics,
13(6):1759 –1766, 2007. doi:10.1109/TVCG.2007.70545. (Cited on page 11)

[YST] T. Yokota, S. Sakamoto, H. Tachibana. Visualization of sound propagation and
scattering in rooms. Acoustical Science and Technology, (1):40–46. (Cited on
page 10)

63

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Oliver Schmidtmer)

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Structure

	2 Basics
	2.1 Handling of Electromagnetic Fields
	2.2 Space-Time Representation
	2.3 Sampling Requirements
	2.4 Requirements regarding Dataset Extents and Sizes
	2.5 Eigen - Linear Algebra Library
	2.6 VTK - Visualization Framework

	3 Dataset Generation
	3.1 Wave Equation
	3.2 Hertzian Dipole

	4 Wavefront Extraction
	4.1 Basic Visualization
	4.2 Ridges
	4.3 Gradient-Magnitude-Based Ridge Extraction
	4.4 Marching Ridges
	4.5 Comparison

	5 Extraction of Virtual Sources
	5.1 Extraction by Local Minima of Ridge Surfaces
	5.2 Extraction by Means of Centers of Curvature
	5.3 Clustering of Extracted Virtual Source Points
	5.4 Comparison

	6 Virtual Source Signal Reconstruction
	6.1 Spatially Clustered Stationary Virtual Sources
	6.2 Ungrouped Virtual Source Points Local Time Extrapolation
	6.3 Connected Virtual Source Point Interpolation
	6.4 Comparison

	7 Results
	7.1 Timings

	8 Conclusion
	8.1 Future Work

	A Implementation
	A.1 Dependencies
	A.2 Overview
	A.3 Tool: Scalar Field Creator
	A.4 Tool: Dipole E-M-Field Creator
	A.5 Filter: vtkRidges
	A.6 Filter: vtkSourcesLocalMinima
	A.7 Filter: vtkSourcesCenterOfCurvature
	A.8 Filter: vtkPointInCellCounter
	A.9 Filter: vtkPCASplit
	A.10 Filter: vtkSignalreconstructionFulltime
	A.11 Filter: vtkSignalreconstructionLocal
	A.12 Filter: vtkSignalreconstructionGreedyclustered

	Bibliography

