
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Master’s Thesis No. 3347

Extending an Open Source Enterprise
Service Bus for Dynamic Discovery
and Selection of Cloud Data Hosting

Solutions based on WS-Policy

Mansur Uralov

Course of Study: INFOTECH

Examiner: Prof. Dr. Frank Leymann
Supervisor: Steve Strauch
Commenced: May 31, 2012
Completed: November 30, 2012

CR-Classification: C.2.4, D.2.11, H.3.4

Abstract

As part of Cloud computing, the service model Platform-as-a-Service (PaaS) has emerged,
where customers can develop and host internet-scale applications on Cloud infrastructure.
The Enterprise Service Bus (ESB) is one possible building block of a PaaS offering, providing
integration capabilities for Service-Oriented architectures. Dynamic service discovery and
selection support for an ESB increases flexibility of the application composed of reusable
services in the Cloud and gives providers the possibility react faster on changes in the
market.

In this master’s thesis we specify, design and implement Dynamic Discovery and Selection of
Cloud Data Hosting Solutions for an open-source ESB. Provided dynamic service discovery
and selection endpoint/service allows users of tenants to send requests with attached policies,
while tenants register Cloud Data Hosting Solutions with the policies that describe their
capabilities. To provide uniform policy language a new WS-Policy Assertion Language is
created and specified that is used to express functional and non-functional properties of
Cloud Data Hosting Solutions. By matching a policy in a request and policies of Cloud Data
Hosting Solutions, a suitable Cloud data store service is discovered. Moreover, we ensure
data isolation between tenants while providing dynamic service discovery and selection.

Contents

1. Introduction 1
1.1. Motivating Scenario . 1
1.2. Scope of Work . 3
1.3. Outline . 3
1.4. Definitions and Conventions . 4

2. Fundamentals 7
2.1. Cloud Computing . 7
2.2. Service-Oriented Architecture . 8
2.3. Enterprise Service Bus . 10
2.4. WS-Policy . 11
2.5. Extending an Open Source ESB for Multi-Tenancy Support Focusing on Ad-

ministration and Management . 12
2.6. Extending an Open Source ESB for Multi-Tenancy Support 13
2.7. Technologies . 15

2.7.1. Java Business Integration . 15
2.7.2. Open Services Gateway initiative (OSGi) Framework 16
2.7.3. Apache ServiceMix . 16

3. Related Works 19
3.1. Comparison of Policy Languages for the Usage in Cloud Computing 19
3.2. WS-Policy and WSRF Extensions for Open Source Enterprise Service Bus . . . 20
3.3. A User Driven Policy Selection Model . 22
3.4. Dynamic Service Selection Capability for Load Balancing in ESB 23

4. Domain-specific WS-Policy Extension for CDHS 25
4.1. Introduction . 25

4.1.1. Goals . 25
4.1.2. Requirements . 25

4.2. Cloud Data Hosting Solutions (CDHS) Policy Assertions 26
4.2.1. Scalability . 26
4.2.2. Availability . 27
4.2.3. Recovery . 29
4.2.4. Security . 29
4.2.5. Privacy . 29
4.2.6. Location . 30
4.2.7. Data Constraints . 31
4.2.8. Interoperability . 32

iii

Contents

4.2.9. Compatibility . 34
4.2.10. Storage . 34
4.2.11. Performance . 35
4.2.12. CAP . 35
4.2.13. Flexibility . 36
4.2.14. Cloud Computing . 36
4.2.15. Management / Maintenance Effort . 37
4.2.16. Monitoring . 38
4.2.17. Backup . 38
4.2.18. Multi-tenancy . 39

5. Concept and Specification 41
5.1. System Overview . 41

5.1.1. Components . 41
5.1.2. Scenarios . 43

5.2. Dynamic Service Discovery and Selection . 43
5.2.1. Service Discovery . 43
5.2.2. Service Selection . 45

5.3. Requester Policy Inclusion . 46
5.4. Cache . 46
5.5. Use Cases . 46
5.6. Application Interfaces . 56
5.7. Non-functional Requirements . 57

5.7.1. Extensibility . 58
5.7.2. Re-usability . 58
5.7.3. Data Consistency . 58
5.7.4. Backward Compatibility . 58
5.7.5. Security . 58
5.7.6. Maintainability . 58

5.8. Special Cases . 59

6. Design 61
6.1. Architectural Overview . 61

6.1.1. Components . 61
6.1.2. Integration . 63

6.2. Extensions to ServiceMix . 63
6.2.1. Dynamic Service Discovery and Selection Service Engine 63
6.2.2. Registry OSGi Bundle . 66

6.3. Web Application . 66
6.4. Database Schemes . 66

6.4.1. Service Registry . 67
6.4.2. Tenant Registry . 67

7. Implementation and Validation 69
7.1. Implementation . 69

iv

Contents

7.1.1. Dynamic Service Discovery and Selection Service Engine 69
7.1.2. Dynamic Service Discovery and Selection (DSDS) Service/Endpoint . 73
7.1.3. Registry Component . 73
7.1.4. Changes to Management Application 75

7.2. Validation . 75
7.2.1. Initialization . 75
7.2.2. Dynamic Service Discovery and Selection Validation 76

8. Conclusion and Future Work 89

A. Interface Definitions 91
A.1. WS-Policy Assertion Language Interface . 91
A.2. Rules Interface . 110
A.3. Validation Policy Documents Interface . 111

Bibliography 115

v

Contents

vi

List of Figures

1.1. Motivating Scenario . 2

2.1. SOA Stack . 9
2.2. ArchitectureModification . 14

3.1. ProBus Architecture . 21

5.1. Overview of the DSDS Extension to JBI Multi-tenancy Multi-container Support
(JBIMulti2) . 42

5.2. Service Ranking based on the Prioritization . 45
5.3. Tenant Admin Use Case Diagram . 47
5.4. Tenant Operator Use Case Diagram . 49
5.5. Web UI: Service Registrations Content Panel 56
5.6. Web UI: Service List Content Panel . 57
5.7. Special Cases Diagram . 60

6.1. Architecture . 62
6.2. Sequence Diagram . 64
6.3. DSDS Class Diagram . 65
6.4. Service Registry ER . 67

7.1. Add Tenant Request with soapUI . 82
7.2. Deploy Service Assembly Request with soapUI 85
7.3. Add Tenant Request with soapUI . 88

vii

List of Figures

viii

List of Tables

1.1. XML Namespaces . 4

5.1. Description of Use Case: Register Policy Language 47
5.2. Description of Use Case: Register Rules . 48
5.3. Description of Use Case: Register Service . 50
5.4. Description of Use Case: Attach Policy . 51
5.5. Description of Use Case: List Policy . 52
5.6. Description of Use Case: Retrieve Policy . 53
5.7. Description of Use Case: View Policy . 54
5.8. Description of Use Case: Delete Policy . 55

ix

List of Tables

x

List of Listings

7.1. Rules XML File . 72
7.2. Cache Configuration . 74
7.3. Company B first user policy . 77
7.4. Amazon RDS MySQL Service Provider Policy 78
7.5. Amazon RDS Postgres SQL Service Provider Policy 80
7.6. Company B second user policy . 83
7.7. Amazon Dynamo DB Service Provider Policy 83
7.8. Company A user policy . 86

A.1. Syntax of WS-Policy Assertion Language Schema 91
A.2. CDHS WS-Policy Assertion Language Schema 99
A.3. Post-Processing Rules XML Schema . 110
A.4. Google Cloud SQL Service Provider Policy . 111
A.5. SQL Database Service Provider Policy . 112

xi

1. Introduction

1.1. Motivating Scenario

In this section we describe a scenario that will be used to validate the implementation of the
master’s thesis. In the scenario, the three requesters are demonstrated that belong to two
companies (Company A and Company B). Requesters search for the Cloud data stores to
migrate or build their database layer in the Cloud, while companies provide services for their
requesters. In this work, companies are considered to be tenants and the requesters are user
of the tenants.

The companies register their services to make them available to their users. As you see in
the Figure 1.1, Company A registered the Cloud data store services Amazon RDS MySQL
Engine [ARD], Amazon SimpleDB [ASD], and Xeround [Xer], while the Company B registered
Amazon RDS MySQL Engine, Amazon RDS PostgreSQL Engine, Amazon DynamoDB [ADy],
SQL Database [WAS], and Google Cloud SQL [Goo] Cloud data store services.

In this scenario (see Fig. 1.1), the users of the tenants specify their requirements in policy
documents and attach them to the request messages that they send to the ESB. Based on
the requirements specified in the policy documents attached to the message requests, a
corresponding Cloud data service fulfilling the requirements is discovered.

In this work we describe concept and design as well as implement a prototype of the work
based on concepts and design solutions to provide dynamic service selection and binding
for Cloud Data Hosting Solutions [SKLU11]. According to our scenario, we need to develop
dynamic service selection functionality in an ESB to increase flexibility of the application
composed of reusable services in the Cloud and gives providers the possibility react faster
on changes in the market. While providing dynamic service discovery and selection, data
isolation between tenants should be maintained.

1

1. Introduction

Apache ServiceMix (ESB)

Company B

1. SQL Support
2. Scalable:
 - Vertical & Horizontal
 - Automatic
3. Reliable:
 ...

attach

1. SQL Support
2. Scalable:
 - Horizontal
 - Manual
3. Reliable:
 ...

attach

Company A

1. No SQL Support
2. Scalable:
 - Vertical & Horizontal
 - Automatic
3. Reliable:
 ...

attach

Figure 1.1.: Motivating Scenario.

2

1.2. Scope of Work

1.2. Scope of Work

Our goal in this master’s thesis is to specify concepts, designs and realize a prototype in order
to provide Dynamic Service Discovery and Selection of CDHS based on WS-Policy in open-
source Apache ServiceMix. As Dynamic Service Discovery and Selection increases flexibility
of the application composed of reusable services as well as gives providers the possibility
react faster on changes in the market, we develop the functionality for Apache ServiceMix.
This work also supports multi-tenancy [AGJ+08] that helps to isolate data between tenants
during service discovery and selection. Furthermore, we employ cache mechanism for data
retrieval from the databases outside Apache ServiceMix to improve performance.

As service providers need a uniform policy language to specify the functional and non-
functional properties of their Cloud data store services, a new policy language should be
created and specified in this work. With the help of this policy language service providers
express capabilities of their Cloud Data Hosting Solutions [SKLU11], whereas requesters
specify their needs.

To register services with policies and to attach services to already existing services, JBI Multi-
tenancy Multi-container Support [Muh11] Management Application interface and service
registry are extended.

Out of scope is the design and implementation of different load-balancing strategies for
service selection.

1.3. Outline

The current work is organised as follows:

• Fundamentals, Chapter 2 – in this chapter, the relevant literatures that covers the
fundamentals of the master’s thesis are reviewed and specified.

• Related Works, Chapter 3 – in this chapter, we investigate the works that have relation
to our work and position our work towards this state of the art.

• Domain-Specific WS-Policy Extension for CDHS, Chapter 4 – in this chapter, a new
WS-Policy Assertion language is specified that is used to specify functional and non-
functional properties of Cloud Data Hosting Solutions.

• Concept and Specification, Chapter 5 – in this chapter, as a result of investigating the
related works and surveying fundamentals, the conceptual solutions are found and
specified for the specified functional and non-functional requirements of Dynamic
Service Selection and Discovery support for multi-tenant Enterprise Service Bus (ESB).

• Design, Chapter 6 – in this chapter, architectural and technological solution for the
concepts and specified functional and non-functional requirements are designed.

3

1. Introduction

• Implementation and Validation, Chapter 7 – in this chapter, the challenges occurred
during implementation are specified in more detail. In addition, the result of the
implementation is validated.

• Conclusion and Future Work, Chapter 8 – this chapter summarizes the outcomes of
this work and suggests future extensions to the developed system.

1.4. Definitions and Conventions

The following definitions and abbreviations should be inspected for understanding the
descriptions in this work. They are used throughout the document.

The following eXtensible Markup Language (XML) namespaces are used in this document
and referenced by the listed prefix:

Prefix Namespace Specification

cdhs http://iaas.uni-stuttgart/cdhs This document

dsds http://iaas.uni-stuttgart/dsds This document

camel http://camel.apache.org/schema/spring [APA11a]

osgi http://www.springframework.org/schema/osgi [CHLP09]

soap http://www.w3.org/2003/05/soap-envelope [SOA07]

soap12 http://schemas.xmlsoap.org/wsdl/soap12 [WSD06]

sp http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702 [OAS09]

wsdl http://schemas.xmlsoap.org/wsdl [WSD01]

wsp http://www.w3.org/ns/ws-policy [WSP07b]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

[OAS06]

xs http://www.w3.org/2001/XMLSchema [XSD04]

xsi http://www.w3.org/2001/XMLSchema-instance [XSD04]

Table 1.1.: XML namespaces referenced in this document via listed prefix.

List of Abbreviations

The following list contains abbreviations used in this document. Full names by convention
not valid or not used anymore are marked as deprecated.

BC Binding Component

EAI Enterprise Application Integration

4

1.4. Definitions and Conventions

ESB Enterprise Service Bus

JAR Java Archive

Java EE 5 Java Platform, Enterprise Edition v. 5

JBI Java Business Integration

JBIMulti2 JBI Multi-tenancy Multi-container Support

SmxDSDS ServiceMix Dynamic Service Discovery and Selection Support

CDHS Cloud Data Hosting Solutions

DSDS Dynamic Service Discovery and Selection

JDBC Java Database Connectivity

JMX Java Management Extensions

JOnAS Java Open Application Server

JVM Java Virtual Machine

NMR Normalized Message Router

OSGi Open Services Gateway initiative (deprecated)

PaaS Platform-as-a-Service

SaaS Software-as-a-Service

SE Service Engine

SU Service Unit

SA Service Assembly

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol (deprecated)

WSDL Web Services Description Language

XML eXtensible Markup Language

XSD XML Schema Definition

GUI Graphic User Interface

API Application Program Interface

UI User Interface

EIP Enterprise Integration Patterns

5

1. Introduction

6

2. Fundamentals

2.1. Cloud Computing

Our world is becoming more and more instrumented, interconnected and intelligent and
pressures like workforce mobility and increasing productivity are placing greater demands on
IT systems. To fulfil these challenges new paradigm called Cloud computing transforms the
IT industry and changes way people work and companies operate. In particular, it enables
the developers of software application to distribute their applications over the World Wide
Web and to have reduced maintenance and installation efforts.

Cloud as a new evolving paradigm has on-demand self-service, broad network access,
resource pooling, rapid elasticity, and measured services essential characteristics. Cloud
computing doesn’t only provide software applications on the web, but also all computing
resources, such as compute service, data store and networking. The definition of Cloud
computing by National Institute of Standards and Technology (NIST) [NIS11] is "Cloud com-
puting is a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction. This cloud model is composed of five essential characteristics,
three service models, and four deployment models."

According to the NIST Cloud computing definition there are three following service models:

• Software as a Service (SaaS) Provider’s applications are provided for consumers on the
cloud infrastructure. Consumers can only use and configure this applications but they
normally don’t have access to manage and control underlying cloud infrastructure in-
cluding, servers, operating systems, storage or even individual application capabilities.

• Platform as a Service (PaaS) This model provides to the consumer to deploy its applica-
tions onto the Cloud infrastructure. The consumer is not allowed to manage and control
the underlying cloud infrastructures including, servers, operating systems, storage or
even individual application capabilities but the consumer can configure the deployed
applications and possible application hosting environment configurations.

• Infrastructure as a Service (IaaS) This enables the consumer to provide processing, storage,
networks, and other fundamental resources. The consumer does not manage or control
the underlying cloud infrastructure but has control over operating systems, storage,
and deployed applications.

7

2. Fundamentals

According to the NIST Cloud computing definition, the cloud applications are deployed
differently to meet their requirements and priorities. The first deployment type Private
Cloud that could be on-premise or off-premise cloud infrastructure that is only used by one
organization. It may be owned, managed and operated by the organization, a third party, or
some combination of them. The second one is Community Cloud that is used by a community
of several organizations and it can be operated, managed, controlled by the organisations of
the community or third party or some combinations of them. It exists on or off the premises of
cloud the cloud provider. The third one is Public Cloud that is used by the general public and
may be owned, managed, and operated by a business, academic, or government organization,
or some combination of them. It exists on the premises of the cloud provider. The last Hybrid
Cloud is the combination of previously stated deployment models.

As it is clear from the IBM Cloud Reference Architecture 2.0 [OPG11] SOA services have
all characteristics cloud services have but they are optional for SOA services. The Cloud
computing architecture is based on SOA architecture, but it adds some additional features,
like virtualization, security across business boundaries, and service management automation.
Thus, development of cloud services are simply an extension of SOA services.

2.2. Service-Oriented Architecture

With increase of outsourcing of companies and the importance of business process reengi-
neering have led to the emergence of Service-oriented Architecture (SOA) as an importance
architectural style to the business information technology. Currently, SOA is widely used
distributed architectural approach used by service providing and consuming enterprises. As
a basis for SOA, a service is a logical representation of a reusable business activity, maybe
composed out of other services, self-contained and hides the details behind it. Among many
offered paradigms, SOA represents the easiest way to deploy and consume shared, reusable
services [WCL+05].

SOA is an architectural style that supports service orientation. Service orientation is a
way of thinking in terms of services and service-based development and the outcomes of
services [SOAb]. SOA is a specific architectural style that is concerned with loose coupling
and dynamic binding of services. The most important principles of SOA is represented in SOA
Triangle [WCL+05]. As shown in the SOA triangle, bind/publish/find. First, a service provided
by a provider needs to be described, for example, abstract definition, binding possibilities are
described. Second, the service is registered or published to Service Discovery facility to allow
consumer to find the service. Third, the consumers who want to use services searches for the
service that meet their requirements with the help of Discovery Facility and finds suitable
services. Finally, the consumer can bind to the found service and execute it.

SOA is implemented by Web Service Technology that has been selected as a leading SOA
technology among other technologies, whereas ESB is the centrepiece of this implementation.
The Figure 2.1 illustrates the high-level architecture of SOA stack. The bottom transport layer
deals with transport protocols that connect to services and its requesters. Second bottom level,

8

2.2. Service-Oriented Architecture

which is on top of transport level, deals with XML and non-XML messages that are sent be-
tween requesters and services. The level on top of messaging layer deals with the description
of Services and Interfaces in terms of operations and supported bindings with Web Services
Description Language (WSDL) [WSD01] documents as well allows specification of policies to
them to guarantee quality of services. The quality of service that the BUS supports are located
in this level. In this level, security of Web services such as integrity, confidentiality, and
non-repudiation as well as reliable transferring of messages and various kind of transactions
support locate. The top layer represents various kind of virtual components of the Web
services. In this layer atomic services represent services that are only the virtual component
of a single service as far as requester’s experience with the service is concerned. The services
that composed of several services represent the composed services aimed to a certain business
logic. Composed services that the service bus supports itself are choreographies and societies
of services that cooperate with each other based on an agreement protocol to decide on the
success of the cooperation at the end of the cooperation.

U
D

D
I, M

eta data E
xch ange...

Transport

Messaging

Description

Quality of
Service

Components

HTTP SMTP, TCP/IP,...

SOAP, WS-Addressing, JMS ...

WSDL WS-Policy*

WS-Reliable
Messaging WS-Security*

WS-AtomicTransaction,

WS-BusinessActivity

Composite Atomic

BPEL WS-Coordination,...

Figure 2.1.: SOA Stack

The structure of SOAP (version 1.2) [SOA07] messages is defined as an XML Information Set
that support different transport protocols. Each SOAP message has a SOAP envelope in it
that contains a SOAP header and a SOAP body. The message payload, which is in SOAP
body, is defined with meta-data in a SOAP header. As a result, a SOAP message is processed
accordingly on chain of nodes, with each chain node manipulating the message based on the

9

2. Fundamentals

information in the SOAP header.

With the help of a WSDL (version 1.1) [WSD01] document an abstract and a concrete definition
of a Web service can be specified. The abstract definition includes one or more port types that
are the abstract interface of the service, whereas the concrete definition is used to map port
types to concrete bindings and service endpoints. The WS-Policy [WSP07b] documents can
be referenced in a WSDL document that define claims about QoSs or information contained
in SOAP messages.

To sum up, Web Service Technology for SOA provides features to find services and their
description as well as an agreement for the interaction between a requester and a service.
Currently, SOA is the very important architectural paradigm that enhances efficiency, agility,
and productivity of the enterprises where an enterprise solution logic is based on services.

2.3. Enterprise Service Bus

Several business and technical factors have led to the need for integration. Some organiza-
tions have generations of systems, legacy systems and mainframes, databases, enterprise
applications and increasingly cloud and Software-as-a-Service (SaaS) applications and mobile
applications. Achieving business objective requires integrating such applications. Over
several years, a lot of work has been done for the integration of heterogeneous applications.
First, integration was done manually, then Enterprise Application Integration (EAI) was
employed. Finally with the emergence of SOA the ESB [Cha04] has been developed that is the
middleware that enables communications among web-based applications. Traditional EAI
supports methods and tools for applications systems focusing on EAI Patterns [HW03] and
process-oriented integration. Whereas, SOA is a middleware platform focusing on messaging
and transformation. Currently, EAI is provided as a service in an ESB.

According to Chappel [Cha04] "An Enterprise Service Bus (ESB) is a flexible connectivity
infrastructure for integrating applications and services. An ESB can power your SOA by reduc-
ing the number, size, and complexity of interfaces between those applications and services".
Key properties of ESB are different message-oriented middleware (e.g. synchronous/asyn-
chronous, publish/subscribe, point-to-point), intelligent routing methods (e.g. content-based,
rule-/policy-based, static routing, correlation), protocol transformation between requester
and service, message transformation, secure and reliable messaging properties. It also allows
service orchestration by compsing services available for the purpose of achieving a certain
business logic. With the properties described, an ESB provides loosely-coupled communica-
tion between applications that allows applications changes take place independently without
focusing on the integration of different applications. Additionally, an ESB allows you to add
or delete services, or change the existing services with little impact or no impact to the use of
existing services.

ESB as a distributed middleware platform can span beyond a single enterprise or business
infrastructure. Each instance of an ESB can be distributed in different enterprises that is

10

2.4. WS-Policy

connected each other. That means each instance can be independently used by a certain
enterprise by integrating services of other enterprises on different locations.

Due to the importance of an ESB, it can be a building block to Platform-as-a-Service (PaaS)
offerings in the Cloud. Therefore, we work in this master’s thesis on the extension of the
open-source ESB Apache ServiceMix for DSDS that is provided as a PaaS offering in the
Cloud.

2.4. WS-Policy

WS-Policy [WSP07b] is an extensible framework that provides the means that are used to
express the domain-specific description of capabilities, requirements, and other characteristics
of Web Services-based system in policy documents. The capabilities, requirements, and
other characteristics that manifest on the wire, for example authentication scheme, transport
protocol and others are used for the selection of services by describing their privacy policies
and QoS that do not have wire manifestation. Such properties can be expressed with simple
declarative assertions and more sophisticated conditional assertions supplied by WS-Policy
Framework.

The abstract policy model is the construct of policy, policy alternative, and policy assertion [WSP07b].
Policy assertion represents requirements, capabilities, and other characteristics of Web service-
based systems. Policy alternative is potentially empty collection of policy assertions, that
gives choice in other words. Policy is a potentially empty collection of policy alternatives.
A policy with more that one alternatives indicate several choices, while a policy without
alternative gives no choice.

A policy is used to convey conditions between service providers, service requesters, or Web
service-based systems. Web service provider expose its policy under which conditions it
provides its services. Service requesters might use these policies of the published services
to choose the services that meet their needs. A Service requester chooses only one of the
alternatives provided by service provider policy. As a scope of assertions is different for
different properties (e.g. security, transaction, etc.) assertion authors provide domain-specific
assertion language for a certain interaction scope. Therefore, a WS-Policy Assertion language
that complies with WS-Policy framework is created. Created domain-specific policies are
attached to the policy subjects (service, endpoint, operation, and message) [WSP07a].

As a building-block for policy documents, a policy expression has an XML Infoset representa-
tion that can either be in a normal form or compact form. Normal form of policy expression
is key for interoperability and intersection that enumerates each of its alternatives that in
turn enumerate each of its assertions. Whereas compact form of a policy is very verbose that
expressing optional assertions, copying other policies, and not using nested policies. For
detailed information please refer to WS-Policy framework specification [WSP07b].

Policy operators (wsp:Policy, wsp:All and wsp:ExactlyOne) are used in policy expression to
convey requirements, capabilities, and other characteristics of entities that are collection of
assertions. The schema outline for the wsp:Policy element in the compact form is as follows:

11

2. Fundamentals

1 <wsp:Policy ... >
2 (<wsp:Policy ...>...</wsp:Policy> |
3 <wsp:ExactlyOne>...</wsp:ExactlyOne> |
4 <wsp:All>...</wsp:All> |
5 <wsp:PolicyReference ... >...</wsp:PolicyReference> |
6 ...
7)*
8 </wsp:Policy>

Intersection operation is carried out between the policies of two parties are to determine
whether they have compatible alternatives. If parties agree on mutual alternatives, only then
an interaction can take place. As we already mentioned, the policies in a normal form is
needed for the intersection of policies. For that reason, there is also an important operation
normalization. Normalization has to take place before intersection to normalize the policies of
both parties for intersection.

Considering all capabilities of WS-Policy framework and comparing it with other policy
languages, we have decided to utilize it as a base for our new WS-Policy Assertion language
that will contain the assertions aimed to the description of functional and non-functional
properties of CDHS in policy documents.

2.5. Extending an Open Source ESB for Multi-Tenancy Support
Focusing on Administration and Management

In this section we describe the diploma thesis of Muhler [Muh11] shortly. In this diploma
thesis, a multi-tenant management application system for the open-source ESB Apache Ser-
viceMix [ASM] has been developed. The management application grants tenant users limited
configuration access to the ESB’s connectivity and integration services. The system enables
data isolation between tenants for the management application and ESB message flows.
Moreover, the management application can control clusters of ESB instances, supporting
elasticity.

The management system is built on top of Apache ServiceMix [ASM] providing different
Web Service Application Program Interface (API)s for its users. The provided Web service
APIs are aimed to different roles of users like system administrator, tenant-administrator,
and tenant-operator. System administrators are allowed to configure system clusters and
grant cluster accesses to tenants and monitory the resource usage as well as assigns quotas
of resources to the tenants. In contrast to system administrator, tenants consume the given
quotas of resources to deploy service assemblies or services. Tenants also have different
administrator and operator roles where tenant administrator is allowed to define roles and
assign permissions to other tenants as well as create and assign contingents to the tenant
operators. In turn, tenant operators use assigned contingents to them to deploy service
assemblies or register services.

12

2.6. Extending an Open Source ESB for Multi-Tenancy Support

As the Management application is developed as a not part of the ESB, the information
related to service assemblies, services and others should be stored in shared registries. For
that purpose, service assembly and service data are stored in service registry database,
whereas tenant related data is stored in tenant registry database. In addition to service
and tenant registry databases, a new configuration registry database is created that stores
cluster configuration data and enables access control to different roles as well as contingent
assignment data. Each configuration data belonging to a certain tenant is isolated by having
tenant identifier as primary key on its entities.

Integration of the Management web application to Apache ServiceMix is done by developing
a new OSGi bundle that provides necessary management interfaces for Web application.
The bundle consumes management messages containing management commands, such as
install Java Business Integration (JBI) Component, install service assembly, coming from
Management Web Application. Based on such received commands, service assemblies or
services are deployed, where tenant identifier is added to their service endpoints enabling
isolation of tenant services and components. Additionally, each message sent by tenants must
also contain tenant context (see Sect. 2.6) that ensures data isolations between tenants.

In the current master’s thesis, we develop DSDS support as well as Registry component
with cache mechanism, which is in charge of accessing data from external databases that the
described diploma thesis lacks.

2.6. Extending an Open Source ESB for Multi-Tenancy Support

Currently, Cloud computing is becoming more and more widespread and important in
Information Technologies and most of the applications are being provided or migrated into
the Cloud. Therefore, an ESB is also offered in a PaaS in the Cloud that is extended for multi-
tenancy support in the master’s thesis [Ess11]. In this work it is also investigated several
open-source ESBs for the multi-tenancy awareness extension, eventually, the open-source
ESB Apache ServiceMix is selected as the best candidate. Moreover, a new concept tenant
context is conceived to develop multi-tenancy in the ESB.

Original implementation of Apache ServiceMix does not support multi-tenancy, therefore,
its components need to be extended for multi-tenancy support. So called tenant context
fragment attached included messages compromise tenant or tenant user related information
to distinguish different tenants. To support multi-tenancy and provide tenant context, the
data related to tenants and services need to be stored in a database. For this purpose, Service
Registry and Tenant Registry databases are created, which store tenant isolated data. Service
registry stores service related data, while tenant registry stores tenant related data.

Apache ServiceMix architecture modification is depicted in the Figure 2.2. It illustrates the
main JBI components and highlights the changed/created components with bold border.
These components are Binding Component (BC), such as SOAP over HTTP, JMS BC, and

13

2. Fundamentals

E-Mail BC; Service Engine (SE), such as Content Enricher and Content Based Router that to-
gether provide Enterprise Integration Patterns (EIP) Tenant Router used to route the messages
to the corresponding services/endpoints.

Standardised	 Interfaces	 for	 Binding	 Components	

Standardised	 Interfaces	 for	 Service	 Engines	

Normalized	 Message	 Router	

Binding	
Component	 JMS	 E-‐Mail	

SOAP	 over	
HTTP	

JBI	 Environment	 JMX	

Installa?on	

Monitoring	

Control	

Deployment	

External	
Service	
Provider	

External	
Service	

Consumer	

Tenant	 Router	

Service
Engine

Service
Engine

Content
Enricher

Content Based
Router

Figure 2.2.: Modifications to the Architecture of Apache ServiceMix

In the ESB, any provider, consumer, routing module or other component needs to be aware
of a tenant when they process or serves tenant isolated messages. For that purpose, every
tenant related message has to have a tenant context that uniquely identifies a tenant or tenant
user the message belong to.

The BCs like servicemix-http, servicemix-jms, and servicemix-xmpp, which are in charge of
connecting the ESB to outside world, are extended to support multi-tenancy by identifying
tenants from a tenant context of a message. On the other hand, new service engines are
created to support Tenant Router that consists of Message Enrichment and Message Router.
As we already mentioned, Content Router and Content Based Router service engines together
provide routing capability in the ESB, where Content Enricher adds the tenant specific data,
which has actual service that handles the request of the specific tenant and tenant itself
from service and tenant registries respectively to incoming messages. In contrast to content
enricher, message router routes the message to the corresponding service/endpoint based
on the data embedded in the message. The router routes the message with the help of
Normalized Message Router (NMR), therefore, a message must be normalized before sending
it to NMR and a tenant context must be added to each normalized message to allow messages’
tenant isolation.

In this work the open-source ESB Apache ServiceMix is extended for multi-tenancy support in
terms of communication. The main goal of this work is to make the open-source ESB Apache

14

2.7. Technologies

ServiceMix multi-tenant aware by extending its BCs and creating new SEs for message routing,
while keeping backward compatibility for non multi-tenant aware communication. However,
in this work services are selected statically with defined routing rules rather than discovering
and selecting/routing services dynamically by specifying a consumer’s needs in messages.

2.7. Technologies

The following sections describe technologies that realize concepts of SOA and the ESB that
this work builds up.

2.7.1. Java Business Integration

The JBI is the specification that defines a standards-based architecture. It can be used as the
basis for Java-based integration products, in particular ESB, as the common characteristics
of an ESB is abstract, which is earlier described (see Sect. 2.3). An ESB integrates different
applications using diverse protocols, however, building blocks of the ESB itself are still vendor-
specific. That means that each software vendor might design an own service container and
define interfaces to connectivity and integration services. To provide common standards Java
Community Process (JCP) created the JBI specification that standardizes the interoperating
between service containers, connectivity services, and integration services [JBI05].

JBI model consists of JBI container that has SEs and BCs. The former hold services, while
the latter is responsible for connectivity to existing applications and service outside the JBI
environment. BCs allow JBI components to communicate over any protocol or transport
like HTTP, JMS, and others, simply by plugging in the appropriate BC. BCs consumes
messages and transfers them to NMR to be normalized that is then consumed by SEs. JBI
components (SEs and BCs) connect with each other using the NMR, but NMR does not
obligate the components with any format but is responsible for sending and receiving the
messages, which enables to loose-coupling capability between components. NMR has several
message exchange patterns like In-Only, Robust-In-Only, In-Out, and In-Optional-Out.

A JBI component can consume or provide services where provider provides a service, while
consumer consumes the service. Providers describe services as per WSDL 1.1 [WSD01] or
WSDL 2.0 [WSD07] specifications and declare them to the NMR. That means that each provide
should publish its service description to the NMR as WSDL 1.1 or WSDL 2.0 document. As
WSDL 2.0 document is split into an abstract and concrete part, the only abstract part of the
WSDL is used inside the NMR. As a result, one needs to know abstract part to determine how
to invoke a certain service specified in WSDL 2.0.

According to the Chappel [Cha04] JBI components can be themselves containers to Service
Unit (SU)s can be deployed. The reason why deploying such artefact is that often integration
problems cannot be solved by a single JBI component. SUs provide information about the
services and their endpoints to the component. SUs are packaged and deployed on to target

15

2. Fundamentals

components by Service Assembly (SA)s. SA is an archive file also has metadata file for the
deployment.

The JBI also specifies a management framework that integration architects can use for con-
figuring those services to cope with individual integration tasks. For this purpose, the JBI
specification depends on Java Management Extensions (JMX) that is a standart Java means of
managing and monitoring applications. To allow monitoring and management with JMX,
each JBI component has to implement predefined Managed Bean (MBean) interfaces. By
doing that administrators will be able to install or unistall such JBI components.

In this work we developed Dynamic Service Discovery and Selection functionality in a
separate SE (see Sect. 7.1.1).

2.7.2. OSGi Framework

The OSGi framework [OSG11] is a module system and service platform for the Java pro-
gramming language that implements a complete and dynamic component model. It runs
modular applications and encourages resource sharing between component within a single
Java Virtual Machine (JVM). There are executable and non-executable modules bundles in
OSGi, which are packaged as Java Archive (JAR) files.

As a component either provides capabilities for other components or depends on other
components, each OSGi bundle has meta-data that describes capabilities it provides and
requirements it demands. Capabilities are Java packages the bundle provides of Java classes
it provides, whereas requirements are Java packages the bundle depends and does not deliver
itself. After a new bundle deployment, the OSGi framework initializes a network of Java
class loaders, allowing bundles to use system packages, framework packages, and packages
exported by other bundles.

As bundles should be administered, the OSGi framework defines the bundle lifecycle opera-
tions (install, update, start, stop, and uninstall). Therefore, executable bundles implement
OSGi specific interfaces that allow the framework to start and stop the individual bundle.
Moreover, a bundle can provide services to other bundles by registering service objects, of
which methods can be access by direct invocation. OSGi services are just Java interfaces
representing a conceptual contract between service providers and service clients. The services
publishes themselves in the service registry, where service other bundles can look up use
necessary services.

As a part of this work, we developed a OSGi bundle that is used to get the data from the
databases outside Apache Servicemix and caches them if necessary (see Sect. 7.1.3).

2.7.3. Apache ServiceMix

In the current work, we are going to extend the open-source ESB Apache ServiceMix for
Dynamic Service Discovery and Selection, which we call ServiceMix from now on. Apache
ServiceMix is a flexible, open-source integration container that combines the features and

16

2.7. Technologies

functionality of Apache ActiveMQ [AMQ], Camel [APA11a], ODE [AOD], Karaf [APA11b]
into a powerful runtime platform one can use to build his/her own integration solutions. It is
powered by OSGi (see Sect. 2.7.2).

The main features Apache ServiceMix are as follows:

• reliable messaging that is provided by Apache ActiveMQ

• messaging, routing and Enterprise Integration Patterns with Apache Camel

• WS-* and RESTful web services that is provided by Apache CXF

• loosely coupled integration between all the other components with Apache ServiceMix
NMR including rich Event, Messaging and Audit API

• complete WS-BPEL engine is provided by Apache ODE

• OSGi-based server runtime powered by Apache Karaf that builds its kernel layer

The goal of ServiceMix is to provide ESB that implements JBI specification. The OSGi frame-
work realizes the technology layer of Apache ServiceMix on top of the kernel layer, which
complies with JBI specification. Moreover, ServiceMix includes large set of JBI Components
that together provide ESB functionalities and features given. There two types of JBI compo-
nents, BC and SE. The former support different protocols like HTTP, JMS, FTP, and SMTP. The
latter is used to orchestrate services in ServiceMix by consuming the messages handed-off
by BCs. SEs also wraps Apache Camel provides enterprise integration patterns [HW03],
which includes XML transformations, content-based routing, message splitting, or message
aggregation. The NMR is based on Apache ActiveMQ in ServiceMix.

An instance of ServiceMix can be administered via a command line console that is provided
by Apache Karaf. The console not only provides management for OSGi bundles and services,
but also introduce additional console commands for managing installed JBI components and
deployed service assemblies. One can ServiecMix artifacts like OSGi bundles, JBI compo-
nents, or SA putting them in deploy directory of installed ServiceMix. For the extension of
ServiceMix, the developers are supplied with Maven [AMV] plugins that eases the creation
of ServiceMix artefacts.

17

2. Fundamentals

18

3. Related Works

3.1. Comparison of Policy Languages for the Usage in Cloud
Computing

In the Student Report Software Engineering [SR12], number of already existing Policy Lan-
guages are observed for the usage in Cloud Computing. The policy languages for Cloud
Computing are evaluated for the projects CloudCycle [CLC12] and MIGRATE [MIG12] based
on the criterias of policy languages. TOSCA [OAS12] standard of OASIS Consortium is used
as a foundation for both projects.

There are number of policy Languages to be analysed to find which ones are more suitable for
Cloud Computing. As a result, some policy languages are excluded due to the lack of such
features like unsufficient documentation, no XML support, language redundancy, and others.
The policy languages that do not lack such features are observed further.

Analytic Hierarchy Process (AHP) [SR12] is employed to support decision making in big
groups and to simplify the problem policy language decision making. There are three main
criterias: User-Friendliness, Power (Strength) and Technical prerequisites which are used in
AHP to rank the policy languages. These main criterias are subdivided into sub-criterias as
well:

• User Friendly - Readability, Compactness, Documentation, Intuitiveness, Modularity,
Comment Support;

• Power - Optional Requirements, Logical Operations, Set Operations, Dependability,
Specification and Generalization, Expandability, Formal Model;

• Technical Prerequisites - Implementation, Programming Language Support, Tool Sup-
port;

Each criteria has "yes" or "no" value. Based on these criterias the decision making of the policy
languages is accomplished by using the procedure shown in the student project.

According to the student project, WS-Policy [WSP07b] and Rei [Rei] are ranked as the best
suitable policy languages for Cloud Computing as shown below. First one, WS-Policy is
a policy language, W3C recommendation as of 2007, provides service providers ability to
specify quality, version and security properties and evaluate them against consumer policies.
Another one is the policy language Rei which is based on the latest standards of the semantic
web. Rei was developed for very dynamic and distributed environments to give a semantic
web an ability to define, use and evaluate policies without central management or predefined
decision makings.

19

3. Related Works

It is shown below first top six policy languages (taken from the student project) with their
rank value and the reason why they are excluded:

1. WS-Policy 9,38

2. Rei 8,83 – is used for semantic web

3. XACML 8,12 – extensible XML schema to describe authorization and entitlement poli-
cies.

4. PERMIS 7,57 – PERMIS is developed to implement role-based access right in multi-user
systems.

5. SAML 7,40 – standard for exchanging authentication and authorization data between
security domains

6. RuleML 5,26 – has very weak extensibility

As a result of thoroughly learning the student project and investigating the policy languages
available in the Web, we have come to decision to use WS-Policy language. As demonstrated
in the student project the most of the policy languages don’t fit CDHS property description
because for example some of them for special purposes, some of them lack extensibility.
Among them the WS-Policy language is selected as the most suitable language to express
functional and non-functional properties of CDHS in policy documents.

3.2. WS-Policy and WSRF Extensions for Open Source Enterprise
Service Bus

ProBus [Wie07] is the extension of the open-source ESB Apache Service Mix 3.3.1 providing
the capability of Dynamic Service Discovery and Selection by employing WS-Policy and
WSRF [OAS04]. With the help of ProBus, tenants (companies, enterprises) can only specify
their requirements in a WS-Policy document then send a request the policy attached to it.
The service which fulfils these requirements will be selected and bound automatically (or
manually by tenants) by ProBus. There is no need to know for a tenant which service or
resources being selected and bound, consequently, flexibility of the application composed of
reusable services is increased and the providers have the possibility react faster on changes in
the market.

The WS-Policy and WSRF are extended in ProBus for the purpose of enabling requests to
select services with the help of policies extended to support specific requirements. The policies
are attached to Policy Subjects by using XPointers [XPF03]. Service consumers can be located
either inside or outside JBI environment. In order to determine whether the requirements
of provider policy meet the requirements of consumer, the policies must be intersected. If
the result of intersection gives at least one alternative (i.e. a provider meets a consumer
requirement) then it has to be checked for rules compatibility defined by XPath [XPA99]
expressions.

20

3.2. WS-Policy and WSRF Extensions for Open Source Enterprise Service Bus

WSRF is also extended to enable ESB to process Policies related to resources and stateful
Web Services. For that new assertions types are defined and formulated with help of XPath
expressions.

Under two circumstances the post-processing is carried out. First one is aimed to assess
the alternative(s) resulting from intersection if they match the rules defined. Second one is
that the endpoint resources are evaluated against the policy requirements. In both cases the
post-processing is carried out based on the rules defined with XPath expressions.

ProBus employs Apache WS-Commons Policy Framework [WSP07b] that provides general
framework for the programmers to use WS-Policy. The operations that play important role
such as merge, normalize and intersect to find corresponding services based on WS-Policies
are built-in. The framework is integrated into Normalized Message Router (NMR) (see Fig. 3.1)
as depicted in Figure 3.1.

Selected Services

NMR
(WS-Policy Framework integrated (merge, normalize, intersect))

Post-Processing Registry

BC

BC BC

Service 1 Service 2

Consumer A Consumer B

BC

Deployment

Figure 3.1.: ProBus Architecture.

In contrast to this diploma thesis, we integrate a similar WS-Policy framework and post-
processing into a single JBI Component (SE) inside ServiceMix. Developing entire DSDS
functionality in a single JBI Component allows us to deploy the component to other ESBs that
support JBI. Furthermore, it makes backward compatibility support easier to configure by
just ignoring DSDS JBI Component.

21

3. Related Works

3.3. A User Driven Policy Selection Model

In the technical report [MF06], service selection based on non-functional properties of Web
services are conceived. It is firstly created quality model for non-functional properties and
then service selection model according to quality model is developed. It is also considered
preferences of users that lead to choosing the best service by ranking services base on the user
preferences.

The quality of Web service can be defined as the set of quality dimensions (qds) that are
used to describe non-functional aspects of a Web service. Because of strong dependency on
quality dimension, it is included so called quality designer who collects and organizes quality
dimensions in a certain application domain. Quality designer creates so called QT (Quality
Tree), which is a tree of all quality dimensions. For further details about quality model, which
is not that related to our work, the work [MF06] can be referred.

Policy model that is used to requirements or capabilities of a Web service. Service provider
attaches service policy to its service describing its offerings, whereas requesters specify their
requirements in a user policy. WS Policy language is utilized to specify the service and user
policies. Service policy includes only pqds (primitive quality dimensions) and it is defined
when the service provider publishes the Web service. It is assumed that QT(Quality Tree)
to the Web service being advertised exists. By using this QT service provider sets values of
primitive quality dimensions. Likewise, requester also fills the values to the primitive quality
dimension and derived quality dimension (dqd) of its user policy. The requester can also
specify if all its requirements have to be met completely by service provider or partly. For
this purpose, user can indicate quality dimensions as mandatory that must be met by service
provider. In addition, requester can change quality dimension weights according to its own
preferences. For example, some user may prefer to have cheaper price than having high
quality. In this case, the requester puts more weight to price quality dimension.

Given user policy and several Web services with their QT, policy selection is used to discover
the best service candidate that meet requester preferences best. It is assumed that service
providers and requesters have the same QT model. The requester has UP(QT) (user pol-
icy) and customized quality tree (UQT), whereas service providers have SP(QT)s (service
policies).

The selection process is composed of two main processes: satisfiability evaluation and alternative
ranking. During satisfiability evaluation process it is verified that for all the requirements
expressed in UP, there exists at least one of the service capabilities. This means that all the
quality dimensions specified in UP must be included in SP too. If at least one quality dimen-
sion of UP is not offered by SP, in case all user quality dimensions indicated as mandatory,
then the satisfiability evaluation fails. The UP quality dimensions indicated as non-mandatory
may be ignored, that is service is not obliged to provide non-mandatory user requirements.
The result of satisfiability evaluation process is matched policy (MP).

Alternative ranking process is responsible for the ranking of the alternatives in the MP resulted
from satisfiability evaluation according to the preferences specified in the UQT. Where, input

22

3.4. Dynamic Service Selection Capability for Load Balancing in ESB

policies are MP and UQT (customized quality tree for user preferences) and the result of the
ranking is ranked policy (RP).

In this work a new approach to select Web services is proposed as a result of anaylysis
of offered quality. Quality definition model is defined that is used to specify Web service
provider quality and user desired quality. As opposed to our work, user preferences are
specified by changing QT as well as they used mandatory and non-mandatory fields for
quality dimensions.

3.4. Dynamic Service Selection Capability for Load Balancing in ESB

In the work Aimrudee [AJ10] Dynamic Service Selection Capability for Load Balancing in
ESB is developed. Load-balancing is done between different services with the same function,
not between service replicas. New service type concept is created that is used to group services
with the same functionalities. This enables dynamic selection of the target service. The
selection of the service from the service type is based on a balancing strategy.

Service type groups several services with the same functionalities. Each service in the service
registry belongs to a service type. A service type is formed of service type name, service signature,
and service property. The basic idea of incorporating the service type is a service of the same
service type may be substituted with each other.

The idea of balancing mechanism is that a service is dynamically selected based on a service
type. Balancing mechanism functionalities are splitted into several components. First one
is inbound router that is provided by Mule [Mul] receives a request message. Another one is
message extractor that is used to extract the service type from the message in this work. Third
one is service group recognizer that receives a service type and finds services having this service
type from the registry. It also can filter services if service property information is specified.
Fourth one is service registry that stores the information including service type of services.
Fifth one is balance computing module that is the main component responsible for sending the
messages to the most suitable service, which has the lowest load. There is also load info that
keeps load information of a service. Load monitor selects a service based on the data in a load
info of a service and sends a message to extended outbound router. The extended outbound
router, in turn, is used to send messages to a target service. It also handles failure situations
such as a service is unreachable.

The selection of a actual destination service is based on balancing strategy. Several strategies
such as round-robin, random, threshold, minimum, and last-load that are implemented in the
work of Aimrudee.

In contrast our work, this work only considers load-balancing to select services dynami-
cally but it does not select services based on their functional and non-functional properties
(specified with WS-Policy) nor does it support multi-tenancy.

23

3. Related Works

24

4. Domain-specific WS-Policy Extension for CDHS

In this chapter a new domain-specific policy assertion language for CDHS [SKLU11] will be
introduced. The language provides assertions through which functional and non-functional
properties of CDHS can be described. These assertions are listed in detail.

4.1. Introduction

The specification defines the new domain-specific policy assertion language for CDHS that
allow the specification of capabilities, requirements and other characteristics of CDHS. With
the help of the assertion language, functional and non-functional properties of CDHS can be
specified in WS-Policy alternatives.

4.1.1. Goals

With the current extension to WS-Policy Language we propose a uniform language and
format to specify functional and non-functional properties of CDHS.

4.1.2. Requirements

In meeting the goal the specification must address the following requirements:

The Means

Define the means to describe functional and non-functional properties of CDHS.

Extensibility

It must be possible to define new elements and new assertion construction.

Re-usability

The assertions created with this language should be re-usable.

Understandability

The policy language has to be understandable to the users in order to make creation and
extension of policies easier.

25

4. Domain-specific WS-Policy Extension for CDHS

4.2. CDHS Policy Assertions

In this section we list and describe all assertions in detail that constitute our current WS-Policy
Assertion Language.

4.2.1. Scalability

Scalability assertion (see lines 9-37 in Listing A.1) of a CDHS is its ability to endure increasing
workloads without decreasing an agreed service level when underlying resources are also
increased. It identifies an assertion (<cdhsp:calability ...> ..</cdhsp:scalability>) in the policy
schema. Scalability has also several sub-properties that are described below:

Automation Degree

This assertion indicates to which extent scalability is automated.

• Manual – this indicates that scalability is done manually by humans.

• Automatic – this indicates that scalability adjust automatically depending on the
changes in a CDHS (e.g. load-balancin, performance, etc.).

Type

This assertion identifies how servers of a CDHS are scaled. Servers of a CDHS can both scale
vertically (up/down) and horizontally (in/out).

• Vertical – This indicates that vertical scalability is used in a CDHS. Typically vertical
scaling refers to adding more hardware to a system to improve processing capability,
load-balancing.

• Horizontal – This indicates that horizontal scalability, also described scale-out, is used
in a CDHS. Typically horizontal scaling refers to tying multiple independent computer-
s/servers together to provide more processing power.

Degree

This assertion indicates if the number of (virtual) replicas is limited or not.

• Virtually Unlimited – this indicates that number of virtual replicas is not limited.

• Limited – this indicates that number of replicas is limited.

26

4.2. CDHS Policy Assertions

Time to Launch New Instance

This nested assertion indicates how much time is needed launch new instance of replica for
scalability of a CDHS. The time (in milliseconds) that is needed launch new instance of replica
for scalability of a CDHS is set with attribute Milliseconds.

Automatic Scalability Criterion

This nested assertion indicates the criteria of automatic scalability, which might be either
system load or latency, or combination of both.

• System Load – this indicates that system load is main criteria for automatic scalability.

• Latency – this indicates that latency is main criteria for automatic scalability.

Transfer Limit

This nested assertion defines the maximum information volume being transferred to/from
CDHS. The information can either incoming (in) or outgoing (out).

• In – This assertion defines the maximum information volume being transferred to
CDHS. Gigabyte – This attribute is used to set the maximum information volume being
transferred to CDHS.

• Out – This assertion defines the maximum information volume being transferred from
CDHS. Gigabyte – This attribute is used to set the maximum information volume being
transferred from CDHS.

4.2.2. Availability

This assertion (see lines 40-72 in Listing A.1) is used to describe the availability properties
of CDHS. System called available if it is up and running and produces correct results. The
availability of a system is the fraction of time it is available. Availability also includes several
(nested) properties, which are replication, replication type, replication method, replication location,
self-healing, automatic fail-over, and degree.

Replication

This identifies replication assertion. This assertion indicates that replication capability is
supported.

27

4. Domain-specific WS-Policy Extension for CDHS

Replication Type

This assertion indicates that Master-Master, Master-Slave, or combination of both replication
types (method) are used in a CDHS. Master-Master This assertion indicates that Master-
Master replication type (method) is used in a CDHS. Master-Slave This assertion indicates
that Master-Slave replication type (method) is used in a CDHS.

Replication Method

This assertion identifies the replica connection/process methods such as synchronous, asyn-
chronous, combination of both. Synchronous – This assertion indicates that the replica is
connected/processed synchronously. Asynchronous – This assertion indicates that the replica
is connected/processed asynchronously.

Replication Location

This assertion identifies replica locations.

• Same DC – This assertion indicates that a replica is located in the same data center with
a CDHS.

• Diff DC in Same Region – This assertion indicates that a replica is located in different
data center in the same region with a CDHS.

• Diff DC in Diff Region – This assertion indicates that a replica is located in different
data center in different region with a CDHS.

Automatic Fail-Over

This assertion indicates whether automatic fail-over is available or not. Automatic fail-over
means that in case of failure circumstances, the system automatically and dynamically avoids
failures by using other replicas for example.

Availability Degree

This assertion indicates availability degree ranging from 0 to 100%. MinRange – This attribute
is used to set minimum range of availability degree. MaxRange – This attribute is used to set
maximum range of availability degree.

28

4.2. CDHS Policy Assertions

4.2.3. Recovery

This assertion (see lines 75-80 in Listing A.1) defines in which kind of failure situations the
CDHS instance can be recovered.

• Disaster Recovery – a CDHS has a disaster recovery capability. Hence, it can adjust
servers against disasters.

4.2.4. Security

This assertion (see lines 83-94 in Listing A.1) includes several sub-assertions as follows:

• Storage Encryption – this indicates whether the storage encryption is available or not.

• Transfer Encryption – this indicates whether transfer encryption for each data being
transferred is available or not.

• Firewall – this indicates whether firewall for a CDHS is available or not. It is used to
secure network access to the CDHS. CDHS may provide firewall settings to control the
network access.

• Authentication – this indicates whether authentication for a CDHS is available or not.
Authentication is the process of identifying someone or something is, in fact, who or
what is declared to be. In different systems authentication is done with help of logon
passwords and digital certificates.

• Authorization – this indicates whether authorization for a CDHS is available or not.
CDHS users are given access rights as authorization is the process of giving someone
permission to do or have something (e.g. HR group is authorised to access employee
records).

• Confidentiality – this indicates whether confidentiality property of a CDHS is available
or not. It is the term used to mean preventing the disclosure of information to unautho-
rized individuals or systems (credit card data, personal data, medical data, etc. should
be protected).

• Integrity – this assertion indicates whether integrity of data in a CDHS is provided or
not. The CDHS provide data integrity that prevents from undetected data modification.

4.2.5. Privacy

This assertion (see lines 97-112 in Listing A.1) includes privacy properties.

29

4. Domain-specific WS-Policy Extension for CDHS

Secure Destruction

This assertion indicates that whether the CDHS provider destroy Personally identifiable
information (PII) obtained by customers in a secure manner.

Complete Destruction

This assertion indicates that whether the information completely destroyed and can it be
recovered.

Supported Privacy Policy Languages

• p3p [P3P] – This assertion indicates that P3P language is supported. The Platform
for Privacy Preferences. P3P is a standard for communicating privacy practices and
comparing them to the preferences of individuals.

• xacml [XAC] – This assertion indicates that XACML language is supported. The Exten-
sible Access Control Markup Language together with its Privacy Profile is a standard
for expressing privacy policies in a machine-readable language which a software system
can use to enforce the policy in enterprise IT systems.

• epal [EPA] – This assertion indicates that EPAL language is supported. The Enterprise
Privacy Authorization Language is very similar to XACML, but is not yet a standard.

• wsPrivacy – This assertion indicates that WS Privacy language is supported. "Web Ser-
vice Privacy" will be a specification for communicating privacy policy in web services.

4.2.6. Location

This assertion (see lines 115-138 in Listing A.1) includes Cloud and geographic locations.

Choice

If choice is enabled then locations can be chosen. Otherwise, the location might be either
single location or selected automatically.

Geographic Location

This assertion indicates the locations of a CDHS servers. The name of the locations can be set
to the attribute name of the assertion.

30

4.2. CDHS Policy Assertions

Cloud Location

• On-Premise – this indicates that the Cloud infrastructure of a CDHS is located inside
an organization.

• Off-Premise – this indicates that the Cloud infrastructure of a CDHS is located outside
an organization.

4.2.7. Data Constraints

Amount of data stored in the CDHS may be limited in terms of the following (see lines 141-159
in Listing A.1):

• MaxItemSize – this indicates the maximum size in bytes of an item stored in a Cloud
store, the size is set with Bytes attribute that in turn accepts integer values

• RowSize – this indicates the maximum size of each row stored in bytes in a CDHS, the
size is set with Bytes attribute that in turn accepts integer values

• FileSize – this indicates the maximum size of each file stored in bytes in a CDHS, the
size is set with Bytes attribute that in turn accepts integer values

And in terms of

• MaxDomainSize – this indicates the maximum size of each domain in gigabytes stored
in a CDHS, the size is set with Gigabyte attribute that in turn accepts float values

• TableSize – this indicates the maximum size of each table in gigabytes stored in a CDHS,
the size is set with Gigabyte attribute that in turn accepts float values

• BucketSize – this indicates the maximum size of each bucket in gigabytes stored in a
CDHS, the size is set with Gigabyte attribute that in turn accepts float values

And in terms of

• MaxItemNumberPerInstance – this indicates the maximum number of items per CDHS
instance, the number of items is set with Number attribute that in turn accepts integer
values

• MaxRowNumberPerInstance – this indicates the maximum number of rows per CDHS
instance, the number of rows is set with Number attribute that in turn accepts integer
values

• MaxFileNumberPerInstance – this indicates the maximum number of files per CDHS
instance, the number of files is set with Number attribute that in turn accepts integer
values

And in terms of

• MaxSizePerInstance – maximum overall size of all domains, tables, and buckets per a
CDHS inistance

31

4. Domain-specific WS-Policy Extension for CDHS

• PredefinedInstanceSize – the size of a CDHS can be predefined if this property is en-
abled. And the following property means that Cloud computing/storage/database/etc.
instance size is predefined.

4.2.8. Interoperability

This assertion includes all interoperability properties (see lines 162-254 in Listing A.1).

Data Portability

The CDHS consumers own their data and its platforms should make it easy and efficient
to securely, consistently move customers data in and out. To indicate such properties as
assertions the following portability capabilities are used:

• import – enables import of data from other Cloud providers and/or

• export – enables export of data from the current CDHS and/or

• One-Way Synchronisation – Data is expected to change in one location only. To recon-
cile the changes, the synchronization process copies changes in one direction only. For
example, if data in consumer local servers is synchronised based on the data on CDHS
but data on CDHS is not synchronised based on the data on consumer servers.

• Two-Way Synchronisation – the synchronization process copies data on both directions
to reconcile changes as needed. Data is expected to change on both locations. Locations
can be locations of Cloud consumer and Cloud providers or two Cloud providers.
And/or none

Data Exchange Format

This assertion indicates the data exchange formats supported in the exchange with the other
CDHS. The sub-assertions that constitute the this assertions are as follows:

• XML – this assertion indicates whether XML data exchange format is supported or not

• JSON – this assertion indicates whether JSON data exchange format is supported or not

Additionally, other proprietary or no proprietary data exchange formats can be added as the
language allows extensibility.

32

4.2. CDHS Policy Assertions

Storage Access

This assertion indicates how the data of the CDHS is accessed. The variants of the data
accesses of the CDHS are as follows:

• SOA – this assertion indicates whether services to access the data of the CDHS is
accessed with SOA style web services or not

• REST – this assertion indicates whether services to access the data of the CDHS is
accessed with RESTful style web services or not

• SQL – this assertion indicates whether the CDHS is accessed as plain SQL requests or
not

ORM

This assertion indicates which Object Relational Mappers (ORM) are supported by the Cloud
provider or community. The variants of ORMs are as follows:

• JPA – Java Persistence API

• JDO – Java Data Objects

• LINQ – LINQ

• and other Object Relational Mappings

Migration and Deployment Support

This assertion indicates whether the data migration and setup are supported by the Cloud
provider.

Supported Integrated Development Environments (IDE)

This assertion indicates which developer Integrated Development Environments are sup-
ported by the Cloud provider or community. The variants of IDEs are as follows:

• Eclipse Eclipse IDE is supported

• NetBeans NetBeans IDE is supported

• Visual Studio VisualStudio IDE is supported

• IntelliJIdea IntelliJIdea IDE is supported and other IDEs are supported

33

4. Domain-specific WS-Policy Extension for CDHS

Developer SDKs

This assertion indicates which developer Software Development Kids (SDK) are supported
by the CDHS provider. The variants of SDKs are follows:

• Java

• .Net

• PHP

• Ruby

• Python

• or none of them

OS

This assertion indicates which Operation Systems are supported by the Cloud provider or
community. The operations are Windows Versions, Linux Distributions, and the others.

4.2.9. Compatibility

Compatibility of the CDHS with the database products including their versions (see lines
257-270 in Listing A.1).

• Product including Version the CDHS can be compatible with MySQL, Postgre SQL,
MSSQL, etc. versions

4.2.10. Storage

Storage assertion (see lines 273-294 in Listing A.1) is used to indicate how storage is accessed,
what storage type is used as well as how transaction is supported in the CDHS.

Accessability

How CDHS storage is accessed via VPN or the other ways of accesses. Its sub-assertion VPN
indicates whether it is possible to restrict access to the CDHS to a Virtual Private Network
(VPN).

34

4.2. CDHS Policy Assertions

Storage Type

This assertion indicates the type of the CDHS. Its sub-assertions, RDBMS stands for Relational
Database Management System, NoSQL stands for Not only SQL, Blob Store is for storing
binary data and CDN stands for Content Delivery Network.

Transaction Support

This assertion indicates how transactions are supported. Is the Cloud data ACID (Atomicity,
Consistency, Integrity, Durable) compliant?

4.2.11. Performance

This assertion (see lines 298-310 in Listing A.1) is composed of the key performance indicators
of the CDHS.

Predictability Read/Write/Response

This assertion indicates whether the response time for read and write requests predictable.

Throughput

This assertion indicates how much throughput can be used at most in the CDHS. Throughput
as an actual transfer volume is measured byte/seconds.

Latency

This assertion indicates how much is latency of a request to the CDHS. Latency is a measure
of time delay experienced in a system. 0 - N milliseconds.

4.2.12. CAP

This assertion (see lines 313-327 in Listing A.1) is used to define CAP [Bre12] properties.

35

4. Domain-specific WS-Policy Extension for CDHS

Consistency Model

This assertion indicates that which assertion consistency models are supported by the CDHS.
The existing consistency models are as follows:

• Strong Consistency – After the update completes, any subsequent access will return
the updated value.

• Weak Consistency – The system does not guarantee that subsequent accesses will
return the updated value.

• Eventual Consistency – The storage system guarantees that if no new updates are made
to the object, eventually all accesses will return the last updated value.

Availability in Case of Partitioning

This indicates that availability is kept although distributed databases are partitioned.

4.2.13. Flexibility

This assertion (see lines 330-336 in Listing A.1) defines flexibility of the schema of the data in
a CDHS.

Schema

This assertion indicates whether a schema can be created for the data in the CDHS.

Schema Customizable

This assertion indicates whether the schema of the data in the CDHS can be customized or
not.

4.2.14. Cloud Computing

This assertion includes (see lines 339-356 in Listing A.1) nested assertions that altogether
define Cloud computing properties.

36

4.2. CDHS Policy Assertions

Service Model

This assertion indicates which Cloud service model the CDHS use. The service models
variants are as following:

• IaaS – Provider’s applications are provided for consumers on the Cloud infrastructure.
Consumers can only use and configure this applications but they normally do not
have access to manage and control underlying Cloud infrastructure including, servers,
operating systems, storage or even individual application capabilities.

• PaaS – This model provides to the consumer to deploy its applications onto the Cloud
infrastructure. The consumer is not allowed to manage and control the underlying
Cloud infrastructures including, servers, operating systems, storage or even individual
application capabilities but the consumer can configure the deployed applications and
possible application hosting environment configurations.

• SaaS – This enables the consumer to provide processing, storage, networks, and other
fundamental resources. The consumer does not manage or control the underlying
Cloud infrastructure but has control over operating systems, storage, and deployed
applications.

Deployment Model

This property contains Cloud deployment models that the CDHS provide.

• Private Cloud – is either on-premise or off-premise Cloud infrastructure that is only
used by one organization. It may be owned, managed and operated by the organization,
a third party, or some combination of them.

• Public Cloud – that is used by the general public and may be owned, managed, and
operated by a business, academic, or government organization, or some combination of
them. It exists on the premises of the Cloud provider.

• Community Cloud – that is used by a community of several organizations and it can
be operated, managed, controlled by the organisations of the community or third party
or some combinations of them. It exists on or off the premises of the Cloud provider.

• Hybrid Cloud – the combination of Private, Public, Community Cloud deployment
models.

4.2.15. Management / Maintenance Effort

This assertion (see lines 359-365 in Listing A.1) indicates the properties used to define how
efforts to management and maintenance are done.

37

4. Domain-specific WS-Policy Extension for CDHS

Degree of Automation

How are updates of the CDHS managed? Are they installed automatically or is it a manual
process (self-service)?

4.2.16. Monitoring

This assertion (see lines 368-381 in Listing A.1) indicates the Key Performance Indicators
(KPIs) that are provided to monitor the CDHS instances.

Supported KPIs

This property indicates that what Key Performance Indicators are available to monitor a
CDHS. For example, Processing Load (CPU), Data Transfer - Network (I/O), Data Transfer - Disk
(I/O), Memory Load (RAM).

4.2.17. Backup

This assertion (see lines 384-413 in Listing A.1) includes to indicate the backup properties.

Backup Interval

This assertion indicates how often can backups get triggered. For example, none, periodic(every
1 - x mins), and/or on-demand.

Interrupt of Access

This property indicates that whether the creation of a backup shortly interrupt access to the
CDHS.

Number of Backups Kept

This assertion indicates that how many and/or how long backups are kept by the provider of
the CDHS. For example, None, 1 - x Backups, and how long 1 - x Days.

38

4.2. CDHS Policy Assertions

Backup Method

What backup methods are supported by the provider of the CDHS. There are three common
backup methods:

• Snapshot - states of a CDHS are stored at certain point in times.

• File-Backup - CDHS instance is backed up as a file. For example, as a compressed zip
file or in other file formats.

• Incremental Backup - this method is used to back the data up that have changed since
last backup.

4.2.18. Multi-tenancy

Multi-tenancy refers to software architecture where a software instance serves to multiple
software clients (tenants) (see lines 416-427 in Listing A.1).

Multi-tenancy Capability

This property indicates whether multi-tenancy capability is supported by CDHS or not.

Multi-tenancy Type

There are two types of multi-tenancy:

• Multiple Instances – a CDHS platform creates a new instance for each CDHS client
(tenant)

• Native Multi-tenancy – CDHS provides multi-tenancy that is one instance of a CDHS
serves to multiple consumers (tenants)

39

4. Domain-specific WS-Policy Extension for CDHS

40

5. Concept and Specification

This chapter composes requirements for a Dynamic Service Discovery and Selection func-
tionality extension for Apache ServiceMix [ASM] that can be part of a PaaS platform, like
4CaaSt [4Ca]. At first, an overview of the key functional requirements and components is
given in Section 5.1. The following sections describe functional requirements in more detail
and include a use case analysis. Moreover, non-functional requirements are listed in Section
5.7 giving guidance values for several software qualities.

5.1. System Overview

In the current extension of the open-source ESB Apache ServiceMix, we develop DSDS
functionality for CDHS based on the created new WS-Policy Assertion language (Chapter 4).
Tenant operators (service providers) register their services with the policy attachment that
contain the service capabilities. In turn, sends requests with their requirements in the policy
attached (see Sect. 5.3). DSDS SE is aimed to find and select a suitable service for the request
by matching the consumer and provider service policies (see Sect. 5.2). The registered services
and their policies are retrieved from the service registry database through a component that
employs caching mechanism (see Sect. 5.4). Furthermore, while extending the ServiceMix for
the dynamic discovery and selection, the multi-tenancy support is maintained that allows
only discover the tenant services for its tenant users (customers). DSDS can also run not in a
multi-tenant manner that discovers services for the messages without tenant-context.

We made the changes to the Web User Interface (UI) and Web Service API of the system
developed on top of the ServiceMix that is JBIMulti2. These changes will be described in
more detail in the coming sections.

5.1.1. Components

As described in the Section 2.7.3, ServiceMix complies with the JBI specification [JBI05].
Therefore, ServiceMix is designed as a JBI container that allows the installation of two types
of JBI components. BC connect the JBI container to external endpoints via different protocols,
whereas SE orchestrate the message flow inside the JBI container. Each JBI component uses
service assemblies as configuration data that defines additional behaviour, such as message
flows, message transformations, or bindings to external endpoints. Dynamic service discovery
and selection support is developed in a separate SE.

41

5. Concept and Specification

The system in this master’s supports DSDS while maintaining the multi-tenancy support
of JBIMulti2 system that is developed by Muhler [Muh11]. The system is called ServiceMix
Dynamic Service Discovery and Selection Support (SmxDSDS).

NMR

Discover & Select (SE)

A consumer

Configuration
Registry

Registry + Cache Service
Registry

Tenant
Registry

JMS Management
Service

Web UI / Web Service API

Business Logic

Legend
Unidirectional data flow

Bidirectional data flow

Componanets

Databases

BC

Figure 5.1.: Overview of the DSDS Extension to JBIMulti2. Arrows illustrate data flow
between core components and resources.

DSDS component is a core part of ServiceMix Dynamic Service Discovery and Selection
Support (SmxDSDS). The key operations are used to discover the suitable service candidates,
such as service finding that includes policy normalization, intersection, and post-processing
operations are carried out in this component. After discovering service candidates, the service
selection is carried out that is configurable and extensible.

According to the diploma thesis Muhler [Muh11] the system relies on three databases: Service
Registry, Tenant Registry, and Configuration Registry. In this work we make changes to service
and configuration registries.

It is clear that the huge number of requests to SmxDSDS might affect to the performance of
the ServiceMix adversely. Due to the performance reasons, we propose a separate component
that accesses the data from the registries by utilizing cache mechanism.

42

5.2. Dynamic Service Discovery and Selection

Web Graphic User Interface (GUI) and Web API provide system administrators, tenant
administrators, and tenant operators with the corresponding interfaces [Muh11]. In the
current work, we expose new Web UI and Web API operations based on the use cases
specified in the Section 5.5.

5.1.2. Scenarios

There are two main scenarios how SmxDSDS is used by the service consumers. First one
is that DSDS enables consumer requests being processed dynamically. In this scenario the
request process is comprised of only one step that is sending a request with the specified
policy and the suitable service is discovered and selected by DSDS component. Second one
is Backward Compatibility Support that means traditional way of working of the ServiceMix
without DSDS and multi-tenancy support.

5.2. Dynamic Service Discovery and Selection

DSDS support that is developed for ServiceMix have several main steps. Firstly, after receiv-
ing the consumer and provider policy in service discovery step, the policies are intersected.
Secondly, intersected policy is passed to post-processing step. Next step ranks service candi-
dates that are result of preceding steps. Finally, the most suitable service is selected in the
service selection step. All steps are explained in detail in the following section.

5.2.1. Service Discovery

As mentioned above the operation that used to find service candidates fulfilling the require-
ments specified in the consumer message policy. First, the component, upon receiving the
message, retrieves the services of the tenant that the consumer belongs to. After that it
evaluates the policy of the message to the policies of the retrieved (provider) services. To do
so, the consumer policy and each provider policy are intersected to find a so-called effective
policy (intersected policy). An effective policy is a new policy that contains all alternatives of
consumer and provider policy that are compatible. If the effective policy has at least one
non-empty alternative, the service of the provider policy is considered to be compatible.

A consumer asks for its requirements while provider offer capabilities. Because of that the
consumer policy should be the subset of the provider policy. In other words, all the service
requests expressed in the requester policy, there exists at least one of the service offering
capabilities that satisfies such a request. This means that all the assertions included in the
requester policy must be included in the service provider policy as well. If at least one of the
quality dimensions in the requester policy is not satisfied, then the process considers the two
policies as not compliant [MF06].

To mean capability as opposed to requirement we add to every assertion in the service
provider policy the attribute wsp:Ignorable. By marking a provider assertion with the

43

5. Concept and Specification

wsp:Ignorable attribute with a value of "true" the provider indicates that a requester may
choose to either ignore such assertions or to consider them as a part of policy intersection. An
assertion that may be ignored for policy intersection is called an ignorable assertion. Using
the wsp:Optional attribute would be incorrect in this case, since it would indicate that the
behaviour would not occur if the alternative without the assertion were selected [WSP07c].

Post-Processing

The intersected policy from the intersection has to be post-processed to evaluate attribute
values of assertions. In the current work post-processing is carried out on the domain-
specific assertion attributes of the effective policy to evaluate if the provider assertion at-
tribute values fulfil the requester assertion attribute values. For instance, let’s assume that
the requestor has the assertion <cdhs:availabilityDegree cdhs:Percentage="98.9"/>
in its policy, whereas the service provider has the assertion <cdhs:availabilityDegree
cdhs:Percentage="99.99"/> in its policy. Obviously, the policies are compatible but their
domain-specific assertions still need to be post-processed for cdhs:Percentage attribute
values of the given assertions.

To provide domain-specific assertion processing, we propose to map a rule to each assertion.
Specifying rules for domain-specific assertions in a separate file instead of hardcoding them in
source code result in stronger re-usability. As it is obvious that the domain-specific attributes
can have different types and their comparison logic is different. To provide wide range of
types and comparison possibilities we employ XPath [XPA99] expressions. Thus, each rule
mapped to a certain assertion qualified name (QName) is a XPath assertion that expresses
evaluation logic of two compatible assertions.

Service Ranking

Different users have different preferences for the CDHS properties, therefore it is important
for the properties to be specified from the perspective of service consumers. Services Ranking
should be based on consumer preferred properties [YL04] specified in a policy document
of a message. For example, the service consumer while describing its needs in a policy
document can describe its preferences. This is done by prioritizing the required consumer
requirements (i.e. adding optional priority attribute to each assertion).

We need service ranking in case no provider fulfils the complete requester requirements.
Services are sorted based on a new term called Service Rank Factor. The sum of all the assertion
priority values determine the rank factor value. As the priorities increase in ascending order
(1 - the highest, 2, 3, 4 - the lowest), the service that has the minimum rank factor value is the
most preferable service candidate, while the service with the maximum rank factor value
is the least preferable service. An example is shown in the Figure 5.2 where Service B rank
factor is the most preferable having the lowest Service Rank Factor value.

Service rank factor of a certain service is calculated as follows:

44

5.2. Dynamic Service Discovery and Selection

ServiceRankFactor = ass1.p + ass2.p + ... + assn.p

where, ass1, ass2, ..., assn - are assertions; p - is priority.

Consumer policy:

<wsp:Policy ..>
 <ass1 Priority = 1/>
 <ass2 Priority = 3/>
 <ass3 Priority = 1/>
</wsp:Policy>

Service A policy:

<wsp:Policy ..>
 <ass2 wsp:Ignorable='true'/>
 <ass3 wsp:Ignorable='true'/>
</wsp:Policy>

Service B policy:

<wsp:Policy ..>
 <ass1 wsp:Ignorable='true'/>
 <ass3 wsp:Ignorable='true'/>
</wsp:Policy>

Policy Matching
& Processing

Service A matched
Policy:

<wsp:Policy ..>
 <ass2 Priority = 3/>
 <ass3 Priority = 1/>
</wsp:Policy>

Service B matched
Policy:

<wsp:Policy ..>
 <ass1 Priority = 1/>
 <ass3 Priority = 1/>
</wsp:Policy>

Service ranking

Ranked services:

1. Service B
 rank factor = 2
2. Service A
 rank factor = 4

Figure 5.2.: Example for Service Ranking based on the Prioritization.

5.2.2. Service Selection

After discovering service candidates, the selection of the most suitable service is needed. To
find the most suitable service the component runs service selection on the candidates found
by the service discovery operation. Selection method is based on the method configured
by system administrator. The selection methods can be extended by developers to add
new selection methods like load-balancing selection that selects services based on service
loads [AJ10].

45

5. Concept and Specification

5.3. Requester Policy Inclusion

A requester should include its policy to a message it sends to ServiceMix. Because of large
number of assertions in WS-Policy Assertion language (see Chapter 4), a specified policy
documents with this language may be big. Putting a big policy document in the message
header deteriorates the message processing and in turn DSDS. As it can be currently sent
only SOAP messages to ServiceMix to utilize DSDS, first solution could be to reference the
requester policy from global repository. Another solution could be to include the requester
policy as an attachment to the SOAP message.

In this work we add a policy document as an attachment to the message. First solution is not
used because it leads consumers to carry out additional steps such as uploading their policies
to the place where it can be referenced. To free this burden on a user, the attaching the policy
to a SOAP message is used.

5.4. Cache

Current extensions to ServiceMix and to provide it as a PaaS with management application
and multi-tenancy support in the Cloud lead to the connection of the ESB with the external
databases that store services, tenants and configuration information. Increasing number
of requests to external databases might affect to the performance of ServiceMix adversely.
Therefore, ServiceMix needs to cache data retrieved from the external databases. To improve
the performance, a separate component in ServiceMix is to be created that is responsible for
data access and data caching of the data retrieved from the external databases. The reason to
provide such functionalities in a separate component in ServiceMix is to make the component
reusable.

The consistency of the data in the cache and databases must be ensured. If the data is changed
via Management Web Application, such changes to the cache data in ServiceMix have to be
made too. Temporary solution for this problem could be to set time-to-live to the cache data,
which is realized in this work.

5.5. Use Cases

The use cases specified in this section identify interactions between the SmxDSDS and its
users with Management and Administration Support. The interactions helps to discover
the requirements of system administrator, tenant administrator, and tenant operator of the
Management and Administration System of SmxDSDS.

We extended tenant administrator and tenant operator uses cases from the diploma thesis
that are developed by Muhler [Muh11]. We specified use case extensions to the tenant
administrator and tenant operator use cases by only specifying the changes with bold lines
illustrated in the Figure 5.3 and 5.4 respectively.

46

5.5. Use Cases

It is obvious from the Tenant Administrator use cases that WS-Policy Assertion language and
Rules are specific to tenants (companies). This means that each tenant can use SmxDSDS for
its own WS-Policy extension and rules.

Figure 5.3.: Use case diagram for Tenant Administrator.

Name Register Policy Language

Goal The tenant administrator uploads the policy assertion language schema file in
the configuration registry.

Actor Tenant Administrator

Pre-Condition The schema has to be specified as XML Schema Definition (XSD) file

Post-Condition The schema is saved successfully

Post-Condition in
Special Case

The schema is not saved.

Normal Case 1. The tenant administrator browse and selects WS-Policy Assertion language
Schema, which is XSD file, and saves it.

Special Cases 1a. The file is not XSD file.

a) The system shows an error message and aborts.

Table 5.1.: Description of Use Case Register Policy Language.

47

5. Concept and Specification

Name Register Rules

Goal The tenant administrator uploads the policy rules XML file in the configuration
registry.

Actor Tenant Administrator

Pre-Condition The rules must comply to the rules schema (see Listing A.3) provided

Post-Condition The rules XML is saved successfully.

Post-Condition in
Special Case

The rules XML is not saved.

Normal Case 1. The tenant administrator browse and selects rules XML file and saves it.

Special Cases 1a. The rules XML does not comply with its rules schema (see Listing A.3).

a) The system shows an error message and aborts.

Table 5.2.: Description of Use Case Register Rules.

48

5.5. Use Cases

Figure 5.4.: Use case diagram for Tenant Operator.

Name Register Service

Goal The tenant operator wants to register a service using an existing service registra-
tion contingent. The tenant operator can register a service with either WSDL file
or with the service name. During the service registration, the tenant operator can
either to decide to attach a policy or not.

Actor Tenant Operator

Pre-Condition The tenant operator has the permission to use the service registration contingent.

Post-Condition The service is registered and the number of available service registrations is
decreased by one for the used service registration contingent. If the policy is
attached, then it is saved and attached to the service.

Post-Condition in
Special Case

The service is not registered and the service registration contingent is not used or
service attached but the policy is neither attached nor saved.

Normal Case 1. The tenant operator enters either the location of a WSDL file or the ser-
vice name, chooses the policy if it is decided so, and chooses the service
registration contingent to use and confirms.

2. The system bundles a service assembly with the WSDL file, stores it to the
service registry and updates the configuration manager.

49

5. Concept and Specification

Special Cases 1a. One of the files does not exist.

a) The system shows an error message and aborts.

2a. The uploaded WSDL or policy file is not valid.

a) The system shows an error message and aborts.

2b. Concurrently the service registration contingent is completely used for other
service registrations.

a) The system shows an error message and aborts.

2c. Concurrently the tenant operator has lost the permission to use the service
registration contingent.

a) The system shows an error message and aborts.

2d. The system can not finish the transaction with the service registry and the
configuration registry.

a) The system shows an error message and aborts.

Table 5.3.: Description of Use Case Register Service.

50

5.5. Use Cases

Name Attach Policy

Goal The tenant operator wants to attach a policy to a service.

Actor Tenant Operator

Pre-Condition The tenant operator has the permission to the service and the policy file has to be
ready (specified).

Post-Condition The policy is attached to the service.

Post-Condition in
Special Case

The policy is neither attached nor saved to service registry.

Normal Case 1. The tenant operator chooses a service and browse the policy file location.

2. The system attaches the policy to the service and stores it in the service
registry.

Special Cases 1a. The policy file doesn’t exist.

a) The system shows an error message and aborts.

2a. The service has been deleted by someone while attaching the policy.

a) The system shows an error message and aborts.

2b. The uploaded file is no valid policy document file.

a) The system shows an error message and aborts.

2c. Concurrently the tenant operator has lost the permission to use the service
registration contingent.

a) The system shows an error message and aborts.

2d. The system can not finish the transaction with the service registry.

a) The system shows an error message and aborts.

Table 5.4.: Description of Use Case Attach Policy.

51

5. Concept and Specification

Name List Policy

Goal The tenant operator lists all the policies attached to its services.

Actor Tenant Operator

Pre-Condition There must be policies attached to its services

Post-Condition The list of policies

Post-Condition in
Special Case

There is no policy listed

Normal Case 1. The tenant requests all tenant-specific service policies.

Special Cases

Table 5.5.: Description of Use Case List Policy.

52

5.5. Use Cases

Name Retrieve Policy

Goal The tenant operator retrieves a policy content.

Actor Tenant Operator

Pre-Condition The policy is attached to a service and exist in the service registry.

Post-Condition The policy content is retrieved.

Post-Condition in
Special Case

The policy content is not retrieved.

Normal Case 1. The tenant operator chooses a service and retrieves its policy.

Special Cases 1a. The policy has been deleted while requesting it.

a) The system shows an error message.

Table 5.6.: Description of Use Case Retrieve Policy.

53

5. Concept and Specification

Name View Policy

Goal The tenant operator views a policy.

Actor Tenant Operator

Pre-Condition The policy is attached to a service and exits in the service registry.

Post-Condition The policy information is retrieved.

Post-Condition in
Special Case

The policy information is not retrieved.

Normal Case 1. The tenant operator chooses a policy of a service.

Special Cases 1a. The policy has been deleted while viewing it.

a) The system shows an error message.

Table 5.7.: Description of Use Case View Policy.

54

5.5. Use Cases

Name Delete Policy

Goal The tenant operator wants to delete a policy.

Actor Tenant Operator

Pre-Condition The policy exists and tenant operator has the permission to the service.

Post-Condition The policy is deleted.

Post-Condition in
Special Case

The policy is not deleted.

Normal Case 1. The tenant operator chooses the service’s policy and deletes it.

Special Cases 1a. The system can not finish the transaction with the service registry.

a) The system shows an error message and aborts.

1b. The policy is attached to other service(s).

a) The policy is not deleted from the service registry and show message
reporting that it is attached to another service.

Table 5.8.: Description of Use Case Delete Policy.

55

5. Concept and Specification

5.6. Application Interfaces

This section describes a graphical user interface that makes the previously described functions
of tenant-opeator available to humans. Moreover, a Web service API serves as interface to
other applications and can be used to integrate JBIMulti2 into PaaS platform.

Web-based Graphical User Interface

In the current work, additional features for tenant-operator are added to the Web GUI already
developed in Muhler [Muh11]. These additional functionalities are attach policy, specify policy,
edit policy, view policy, and delete policy that are shown in the uses cases section 5.5.

Tenant Operator Content Panels

Figure 5.5.: Web UI: Sketch of Service Registrations Content Panel with Service Registration
Tab.

The following content panels exist for tenant operators.

• Service Assemblies Content Panel: This is used to manage, deploy and undeploy service
assemblies to ServiceMix [Muh11].

• Service Registrations Content Panel (see Fig. 5.5):

56

5.7. Non-functional Requirements

Figure 5.6.: Web UI: Sketch of Service Registrations Content Panel with Service View Tab.

– Overview Content Panel (see Fig. 5.5): The tenant operator can upload a service
registration as a WSDL file, download a WSDL file, delete a service registration,
add a policy, and delete the policy.

– Register Service Tab (see Fig. 5.5): The tenant operator can attach a policy to a service
at the same wile registering the service.

– Service View Tab (see Fig. 5.6): The tenant operator can view all information of the
service selected. The tenant operator can also view, edit, and delete the policy
attached to the selected service.

Web Service API

We extended Web Service APIs of Muhler [Muh11] based on the use case analysis specified in
the Section 5.5. The APIs are stateless and integrates WS-Security by claiming a valid tenant
context on each request.

5.7. Non-functional Requirements

This section describes non-functional requirements that a productive version of SmxDSDS
should satisfy. Considering the fact that SmxDSDS acts as a building block of a PaaS platform,
we focused on different software qualities.

57

5. Concept and Specification

5.7.1. Extensibility

The added and extended components that provide key functionalities of the ESB for DSDS
need to be extensible. The implementation of the current extension of ServiceMix must be
extensible to allow further changes to the code.

5.7.2. Re-usability

The implemented components should be re-usable by providing good APIs and Interfaces.
For example, DSDS in a separate component in ServiceMix allows it to be used by other
components. Not only provide components re-usability but also the code should be re-
usable.

5.7.3. Data Consistency

The data in the cache of SmxDSDS must be consistent with the data in the external databases.

5.7.4. Backward Compatibility

Backward compatibility meaning that even if a service binding is made dynamic, the hard-
wired service binding (static selection & binding) style needs to stay as an option. In Addition,
non-tenant awareness has to be supported meaning that requests without tenant context
should be dealt as in a classical ESB.

5.7.5. Security

Security in terms of data isolation has to be considered between tenants.

5.7.6. Maintainability

The implementation should be well documented and the functionalities of the ESB should be
decomposed into different components to maintain functional changes easily. As stated above
the good APIs and Interfaces, which make the components re-usable, leverage maintainability
too.

58

5.8. Special Cases

5.8. Special Cases

This section describes the special cases that may occur during the message/data flow in
SmxDSDS. The cases are splitted up into places that have an impact on the message/data
flow illustrated in the Figure 5.7. The columns in this figure illustrate the places where
message/data is being processed. The special cases that need to be handled are marked with
numbers and measures to be taken in these cases are given as follows:

• If the special cases 3) and one of 6), 7), and 8) occur, the whole list of services (tenant-
specific services if a tenant context exists) is returned

• If the special cases 2) and 9) occur, no service is retuned

• If the special case 4) occurs, the partly satisfying services are ranked based on the rank
factor (see Sect. 5.2.1)

• If the special case 7) or 9) occurs, there cannot be service candidates

• If the special case 5) occurs, the exception is thrown and dispatched to the requester

59

5. Concept and Specification

S
e

rv
ic

e
 C

o
n

su
m

e
r

B
in

d
in

g
 C

o
m

p
o

n
e

n
t

N
M

R
D

S
D

S
 S

E
R

e
g

is
tr

y
+

 C
a

ch
e

S
e

rv
ic

e
 R

e
g

is
tr

y

P
o

lic
y

N
o
 P

o
lic

y

W
ro

n
g
 P

o
lic

y
S

yn
ta

x

Te
n
a
n
t
C

o
n
te

xt
R

o
u
te

 t
o

 S
E

N
o

t
C

a
ch

e
d

C
a
ch

e
d

D
is

c.
:

N
o
 c

a
n
d

id
a

te
S

e
l.:

 N
o
 s

e
rv

ic
e
 s

e
le

ct
e
d

E
xc

e
p
tio

n
 T

h
ro

w
n

N
o
 T

e
n
a
n
t

C
o
n
te

xt

S
e

rv
ic

e
s

w
/o

P

o
lic

ie
s

N
o

 S
e

rv
ic

e
s

S
e
rv

ic
e
s

w
/

P
o
lic

ie
s

3

7 9

5

S
e
rv

ic
e
s

w
/

a
n
d

w
/o

 P
o

lic
ie

s

86

D
is

c.
:
N

o
 1

0
0
%

 M
a
tc

h

 S

e
l.:

 S
e
rv

ic
e
 s

e
le

ct
e
d

4

1 2

S
p
e
ci

a
l c

a
se

s

B
id

ir
e
ct

io
n
a
l m

e
ss

a
g
e
 /
 d

a
ta

 f
lo

w

U
n

id
ir
e
ct

io
n
a
l m

e
ss

a
g
e

 /
 d

a
ta

 f
lo

w

n
S

p
e
ci

a
l c

a
se

 n
u
m

b
e
r

Figure 5.7.: Special Cases Diagram.60

6. Design

This chapter describes an architectural and technological solution for the concepts and
specified system requirements of Chapter 5. First, an overview of the system architecture
and used technologies is given in Section 6.1. Then, the design of the main components are
described.

6.1. Architectural Overview

As described in the Section 5.1, SmxDSDS is comprised of the new DSDS SE, Registry OSGi
component as an intermediary between ServiceMix and the external databases. Moreover,
connectivity of consumers to DSDS SE is provided with a HTTP consumer endpoint that
supports SOAP messages. Policies are included to SOAP messages as attachments. The policy
documents are specified with the new WS-Policy Assertion Language (see Chapter 4). The
created/changed components in ServiceMix are illustrated with grey colors as illustrated in
the Figure 6.1.

6.1.1. Components

As already mentioned, DSDS functionality to ServiceMix is being developed in a separate JBI
Component (SE) in order to make DSDS functionality reusable and easier to configure the SE
for backward compatibility. In turn, this component employs Apache Neethi [ANe12] that
provides general framework for the programmers to use WS-Policy.

Registry component that plays a mediator role between external databases and the ServiceMix
components is developed as a separate OSGi component. This component employs Java
Database Connectivity (JDBC) PostgreSQL Driver [JDB] to connect to the external postgres
databases. It also caches the data retrieved from the databases to improve the ServiceMix
performance. The caching done by EHCache [Ehc] framework, which is a widely used
open source Java distributed cache for general purpose caching, Java EE and light-weight
containers.

Currently, in the Registry OSGi component, data retrieval services to get data from only
service registry are provided. However, it can be also extended for tenant registry and
configuration registry databases.

61

6. Design

Service Mix Instance III

Service Mix Instance II

Service Mix Instance I

<<JBI Component>>
servicemix-xmpp-mt

<<JBI Component>>
servicemix-http-mt

<<JBI Component>>
servicemix-jms-mt

<<JBI Component>>
 Service Discovery &

Selection

<<OSGi service>>
Registry

Service Engines

Binding Components

Normalized Message Router

<<OSGi service>>
JMSManagement Service <<PostgreSQL>>

ServiceRegistry

<<PostgreSQL>>
TenantRegistry

<<PostgreSQL>>
Configuration

Registry

<<JSF Component>>
WebGUI

<<JAX-WS Component>>
WebService

<<EJB Component>>
AccessLayer

<<EJB Component>>
ServiceRegistry

<<EJB Component>>
TenantRegistry

<<EJB Component>>
ConfigurationRegistry

<<EJB Component>>
JBIContainerManager

<<OSGi service>>
AdminCommandsService

<<JMS Topic>>
Management

Messages

<<library>>
JBIPackagingBinding

<<library>>
JBIManagementXMLBinding

<<Library>>
TenantContextXMLBinding

A consumer

Fsfsfsf
Sfsfsfs
sfsfsfs

Fsfsfsf
Sfsfsfs
sfsfsfs

Tdfss
Dsfsf
ssdfs

Legend
Unidirectional data flow Bidirectional data flow

Use relation Changed and created components

Figure 6.1.: Architecture.

62

6.2. Extensions to ServiceMix

6.1.2. Integration

DSDS functionality of SmxDSDS is provided to the external world through a HTTP consumer
endpoint that consumes SOAP messages. The SU providing the endpoint connects to the
service unit that configures DSDS SE. To access the necessary data from the service registry
database, Registry OSGi component is created as an OSGi bundle, which is used by DSDS
SE. JDBC PostgreSQL Driver connects the Registry OSGi component to the service registry
database.

6.2. Extensions to ServiceMix

To provide the DSDS support to the ServiceMix, extensions to the ServiceMix are necessary.
As the ServiceMix does not ship with DSDS support, DSDS is developed in a SE in the
ServiceMix. Additionally, the Registry OSGi bundle is also developed in the ServiceMix that
connects the SE to the databases.

6.2.1. Dynamic Service Discovery and Selection Service Engine

Upon receiving a consumer message DSDS SE starts to find the services that fulfil consumer
needs in the attached policy. In order to do that it uses Registry OSGi component’s ServiceReg-
istry class to get all available services that are specific to a tenant (if tenant context is included
in the message) of the consumer. If the data exist in the cache of this component, the data
is retrieved from the cache store. After receiving the services, the SE passes the services
to ServiceFinder to discover and select services dynamically. Interactions between the main
objects of DSDS SE are illustrated in the sequence diagram (see Fig. 6.2).

ServiceFinder object is used to discover the cloud data store service candidates depending on
the requirements in the attached message policy. As we mentioned Apache Neethi [ANe12]
is employed to take advantage of the capabilities provided for WS-Policy framework.

PostProcessing object is used to post-process intersected policy (intersected policy) found by
service finder, to check if all attribute requirements are fulfilled.

ServiceRanker object is used to rank the service candidates based on the so called service rank
factor (see Sect. 5.2.1). The service candidates are ranked unless the requester requirements
are satisfied fully by these services, which is earlier described in Section 5.2.1.

The ServiceFinder object passes the found service candidates to ServiceSelector object that is
responsible for service selection. There are several selection methods developed so far, namely,
first-met and random service selection methods as depicted in the class diagram (see Fig. 6.3).

63

6. Design

Figure 6.2.: Sequence Diagram of DSDS SE Portraying Basic Operations.

64

6.2. Extensions to ServiceMix

Figure 6.3.: Diagram of the Classes Used for DSDS.

65

6. Design

6.2.2. Registry OSGi Bundle

As already mentioned Registry OSGi component is an intermediary between ESB and external
databases that is used to retrieve data from the external databases and caches them. The
Registry uses JDBC PostgresSQL Driver to connect to the databases. The driver allows Java
programs to connect to a PostgreSQL database using standard and database independent
Java code.

Large number of requests to the DSDS SE may lead to ServiceMix performance degradation.
To prevent this, Cache capability is added to the Registry component that caches data coming
from the service registry database to increase data access speed. Ehcache [Ehc] open-source
Java caching tool is used that allows simple, fast, thread safe, standards based caching.

6.3. Web Application

According to Muhler [Muh11] the management application, further called Web application,
has a three-tier-architecture, with a presentation layer, a business logic layer, and underlying
resources. The presentation layer is separated into a Web GUI component and a Web service
component. Whereas, the business logic is accessed via a superordinate AccessLayer that
orchestrates use cases by calling the underlying business logic components: ServiceReg-
istry, TenantRegistry, ConfigurationRegistry, and JBIContainerManager. It is developed as a
three-tier enterprise application utilizing Java Platform, Enterprise Edition v. 5 (Java EE 5)
technology. This section describes the changes made to business logic layer and Web Service
API.

Business logic access layer provides interfaces (comprising the use cases) for clients to access
business logic. Access layer acts as a Session Facade [Mar02]. Three stateful SystemAd-
minFacadeBean, TenantAdminFacadeBean, and TenantOperatorFacadeBean provide a method
for each use cases. In this work we added our use cases to TenantOperatorFacadeBean and
TenantAdminFacadeBean.

Web Service API provide the same functionality as described in the use case analysis. Moreover,
Web GUI is sketched and specified for future development, which also supplies operations
based on the uses cases.

6.4. Database Schemes

In this section we describe our changes to the databases and their schemas developed by
Muhler [Muh11].

66

6.4. Database Schemes

6.4.1. Service Registry

As you see in Figure 6.4 a new entity Policy has been added to the service registry database
schema. The policy entity store all information related to the attached policy of the service.
Currently, policy entity has one-to-many relationship with service entity because a Cloud
data store service can only have one policy document that describes its capabilities (several
policies may have contradicting capabilities), but a policy can be attached to several services
in the same scope of the tenant. The entity has policyName and policyFile, where policyName
is used as an identifier while policyFile field is used to store policy document content.

Figure 6.4.: Service Registry-Entity Relationship Diagram.

6.4.2. Tenant Registry

Regarding policy language XML schema and rules XML (see Fig. 5.3), they are stored in
KeyValuePair entity of tenant registry database [Muh11]. The values ’POLICY_LANGUAGE’
and ’RULES’ can be the keys for policy language XML Schema file and rules XML file
respectively, while the values mapped to these keys are content of the files.

67

6. Design

68

7. Implementation and Validation

Various challenges occurred during the implementation of a prototype that complies to the
concepts in Chapter 5 and conforms to the design solutions in Chapter 6. This chapter
describes chosen implementation challenges in more detail. Moreover, the validation of the
developed prototype is demonstrated.

7.1. Implementation

The implementation follows all the concepts (see Chapter 5) and the design solutions (see
Chapter 6) that are developed in this work. The current prototype of SmxDSDS has been
implemented as an extension to JBIMulti2 project, which is hierarchical Maven project. With
the help of Apache Maven [AMV] developers can modularize software systems, restricting
the dependencies between modules. The current prototype consists of two main modules that
implement the extensions to Apache ServiceMix and extension to JBIMulti2 Web application.
For the extensions of the ServiceMix we created a new JBI Component and new OSGi bundle
with the help of Maven plugins. In addition, the third Maven module consists of SUs that
expose the DSDS functionality of ServiceMix to consumers. Project files for the Integrated
Development Environment (IDE) Eclipse have been generated with Maven and used during
development. All Java source code was compiled with the Java Development Kit (JDK) 6.

7.1.1. Dynamic Service Discovery and Selection Service Engine

As the core component for SmxDSDS prototype, DSDS SE that is named servicemix-dsds is
created and developed complying the design in the Section 6.2.1 and concepts in the Section
5.2 specified. In the pseudo-code given in Listing 1, the main part of DSDS algorithm is
described, where in line 2 service candidates are discovered and in line 4 a suitable service is
selected.

Algorithm 1 Main Part of Dynamic Service Discovery and Selection Algorithm
1: ...
2: serviceCandidates← f indServices(reqPolicy, services);
3: ...
4: selectedService← select(serviceCandidates, selectionType);
5: ...

69

7. Implementation and Validation

Service Discovery

Here service discovery implementation is described that are developed based on concepts
specified in Section 5.2.1 and designs in Section 6.2.1. IServiceFinder interface provides
findService method that discovers service candidates based on a policy and services passed
as parameters to the method. First, it marks requester and service provider by putting
dsds:req="true" for requester policy assertions and dsds:prov="true" for service provider
assertions. The reason why marking is needed is that single effective policy document is
passed to Post-Processing process to distinguish requester and provider assertions, which
will be described shortly. Second, both policies are normalized and intersected to get an
resulting effective policy. The intersection operation created in this work is not the same
with the WS-Policy intersection because it goes to the end of nested assertions even if there
incompatible child-assertions and collects incompatible assertions. If there is no alternatives
of effective policy the policies are not compatible and cannot meet requester requirements at
all. Otherwise, effective policy is passed to post-processing process. Then PostProcessor
process the effective policy based on the attribute rules registered in the rules XML file.
Finally, ServiceFinder returns service perfect candidates if there is at least one perfect match,
otherwise it returns ranked service candidates that meet requester needs partly based on the
fulfilled requirements. The pseudo-code of this whole steps is illustrated in Listing 2.

Intersection is operation provided by WS-Policy framework for combining two policies to-
gether to find an acceptable policy for both parties. In contrast to WS-Policy intersection
algorithm, we developed here a new intersection algorithm that can collect incompatible
assertions. The result of the new intersection algorithm is the combination of compatible
policies. Adding such capabilities to the original intersection operation allows opportunity
to rank service providers. In case of no perfect match, services that meet service requesters
requirements partly have to be ranked based on how much they fulfil. Moreover, as men-
tioned we employ Apache Neethi framework to ease use of WS-Policy policy documents. We
adapted the framework by making few changes to its source code.

PostProcessing is a class used to evaluate the defined XPath [XPA99] rules of assertion at-
tributes. In this class we explicitly need to tackle the domain-specific post-processing issues
in the bus. Therefore we define a general way how to define these domain-specific post-
processing rules. As WS-Policy is rendered as XML, we choose XPath to describe these rules.
It receives an intersected policy from Service Finder, then it evaluates attribute values of the
same assertions based on the rules described in rules XML file. If all rules are evaluated to
true then the post-processor return true, otherwise false. The post-processor can also keep
and allow access to not fulfilled assertions that are not evaluated to true. Rules XML file
registers all XPath rules for assertion attributes. Sample rules XML file is the Listing 7.1

Rules are created and registered by a tenant administrator to the domain-specific assertions
and their attributes provided by the policy language schema. As you see in Listing 7.1, each
XPath expression (rule) is mapped to a certain assertion qualified name (QName). In the XPath
expression, $reqAssertion and $provAssertion prefixes are added to differentiate requester
and provider part respectively, which are later replaced with corresponding assertion QNames.
Rules XML file has to comply with the XML Schema given in Listing A.3.

70

7.1. Implementation

Algorithm 2 Find Services

1: function FINDSERVICES(reqPolicy, services)
2: for service: services do
3: provPolicy← service.getPolicy();
4: if provPolicy = null then
5: continue;
6: end if
7: markPolicy(reqPolicy, true);
8: markPolicy(provPolicy, false);
9: provPolicy.normalize();

10: reqPolicy.normalize();
11: polMatcher ← newPolicyMatcher(reqPolicy, provPolicy, strict = f alse, coll IncompAssers = true);
12: e f f Policy← polMatcher.intersect();
13: if effPolicy alternatives exist then
14: postProcessor ← newPostProcessor();
15: boolean reqFul f illed← postProcessor.postProcess(e f f Policy);
16: incompAssers← polMatcher.getIncompAssers();
17: notFul f illedAssers← postProcessor.getNotFul f illedAssers();
18: if reqFulfilled and incompAssers.isEmpy then
19: serviceCandidates.add(service);
20: existPer f ectCandidate← true ;
21: else if not existPerfectCandidate and reqFulfilled then
22: rankFactor ← r f c.calcRankFactor(policy, incompAssers);
23: serviceFactor.put(service, rankFactor);
24: else if not existPerfectCandidate and incompAssers.isEmpty then
25: rankFactor ← r f c.calcRankFactor(policy, notFul f illedAssers);
26: serviceFactor.put(service, rankFactor);
27: else if not existPerfectCandidate then
28: incompAssers.addAll(notFulfilledAssers);
29: rankFactor ← r f c.calcRankFactor(policy, incompAssers);
30: serviceFactor.put(service, rankFactor);
31: end if
32: end if
33: end for
34: if not existPerfectCandidate and not serviceFactor.isEmpty() then
35: serviceCandidates← ServiceRanker.rank(serviceFactor);
36: end if
37: return serviceCandidates;
38: end function

71

7. Implementation and Validation

1 <?xml version="1.0" encoding="UTF-8"?>
2 <dsds:XPathRules xmlns:dsds="http://iaas.uni-stuttgart/dsds" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://iaas.uni-stuttgart/dsds rules.xsd"
4 xmlns:cdhs="http://iaas.uni-stuttgart/cdhs">
5

6 <dsds:Rule assertionQName="cdhs:timeToLaunchNewInstance">
7 <![CDATA[//$reqAssertion/@cdhs:Milliseconds < //$provAssertion/@cdhs:Milliseconds]]>
8 </dsds:Rule>
9

10 <dsds:Rule assertionQName="cdhs:latency">
11 <![CDATA[//$reqAssertion/@cdhs:Milliseconds < //$provAssertion/@cdhs:Milliseconds]]>
12 </dsds:Rule>
13

14 <dsds:Rule assertionQName="cdhs:throughput">
15 <![CDATA[//$reqAssertion/@cdhs:Milliseconds < //$provAssertion/@cdhs:Milliseconds]]>
16 </dsds:Rule>
17

18 <dsds:Rule assertionQName="cdhs:geographicLocation">
19 <![CDATA[//$reqAssertion/@cdhs:name = //$provAssertion/@cdhs:name]]>
20 </dsds:Rule>
21

22 <dsds:Rule assertionQName="cdhs:availabilityDegree">
23 <![CDATA[//$reqAssertion/@cdhs:Percentage <= //$provAssertion/@cdhs:Percentage]]>
24 </dsds:Rule>
25

26 <dsds:Rule assertionQName="cdhs:responseTime">
27 <![CDATA[//$reqAssertion/@cdhs:Milliseconds < //$provAssertion/@cdhs:Milliseconds]]>
28 </dsds:Rule>
29

30 </dsds:XPathRules>

Listing 7.1: Sample Rules XML File

We need service ranking in case no provider fulfils requester requirements fully as it is described
earlier. ServiceRanker has the implementation of service ranking. Services are sorted based
on the so called service rank factor. As already mentioned priority values ranges from 1 to 4 in
decreasing importance. A service rank factor is calculated for each service (as shown in the
lines 23, 26, 29 in Algorithm 2 that meet requester needs partly, and are sorted in increasing
order of the rank factors, that are the services having lower rank factors are more preferable
than the services having higher rank factors.

DSDSEndpoint is an entry class to DSDS SE. Upon receiving an incoming message, it starts
DSDS process. Moreover, it takes into account the special cases, which are described in
Section 5.8, that happen during DSDS process.

Service Selection

A service among the discovered services needs to be selected. In the current work we have
developed only two service selection algorithms that are First-Met and Random. However, for

72

7.1. Implementation

the future improvement new selection algorithms can be added by implementing IServiceS-
election interface of which design is depicted in the class diagram 6.3.

In case of perfect match, one of the perfectly matched services are selected based on configured
selection algorithm, which is selected with first-met algorithm in our work. In case of no
perfect match, the most preferable service among the ranked services is selected that is first
service in the list. The selection algorithm pseudo-code is given in Algorithm 3 in which
selection method can be configured with selectionType.

Algorithm 3 Service Selection

1: function SELECT(serviceCandidates, selectionType)
2: if selectionType = FIRST-MET then
3: selection← newFirstMetServiceSelection();
4: return selection.select(serviceCandidates);
5: else if selectionType = RANDOM then
6: selection← newRandomServiceSelection();
7: return selection.select(serviceCandidates);
8: else if then
9: selection← newFirstMetServiceSelection();

10: return selection.select(serviceCandidates);
11: end if
12: end function

7.1.2. DSDS Service/Endpoint

The SU dsds-http-consumer-su exposes DSDS service/endpoint to the users of ServiceMix. The
service/endpoint should not be tenant-specific since it is a service for all users of ServiceMix.
As each JBI Component defines what kind of configuration it relies on, the configuration has
to be deployed as a SU to ServiceMix. The SU dsds-http-consumer-su together with dsds-su
configuring the DSDS SE are directly (without management application) deployed in the SA
dsds-sa as multiple service units targeting different JBI components can be deployed together
as a SA. The reason for direct deployment is that as already mentioned, the service/endpoint
is a global in SmxDSDS.

7.1.3. Registry Component

Currently, servicemix-dsds SE uses the services provided by jbi.servicemix.registry
OSGi bundle for data access from service registry database with ServiceRegistry class.
In turn, the bundle utilize postgresql-9.1-901.jdbc3.jar library to connect to Service Registry
database. ServiceRegistry provides methods related only to Service Registry database that
can be used to get tenant-specific or public services data, however, the component can be
extended for the other databases in the future.

73

7. Implementation and Validation

As earlier mentioned, caching mechanism is used to improve performance of SmxDSDS. For
that purpose, we utilized Ehcache that is an open source, standards-based, and Java-based
cache. Here we describe two main classes used to provide Caching, first one is CacheFactory
that is in charge of creating an instance of EhCacheWrapper class, which is second one, used
to cache all types of objects with their keys. The former class uses CacheManager class of
Ehcache that controls creation of, access to, and removal of caches. The latter uses the cache
objects classes implementing Ehcache interface. The CacheFactory creates the cache based
on a configuration specified in a XML file. In this work, we specified the configurations in
ehcache.xml file (see Listing 7.2).

1 <ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation
=".../ehcache.xsd" dynamicConfig="true">

2 <diskStore path="java.io.tmpdir"/>
3 <cache name="jdbcCache"
4 maxEntriesLocalHeap="10000"
5 eternal="false"
6 timeToIdleSeconds="120"
7 timeToLiveSeconds="120"
8 maxEntriesLocalDisk="10000000"
9 diskExpiryThreadIntervalSeconds="120"

10 memoryStoreEvictionPolicy="LRU"
11 >
12 <persistence strategy="localTempSwap"/>
13 </cache>
14 </ehcache>

Listing 7.2: Cache Configuration.

Here we describe the used cache configurations in more detail (for further details refer to
Ehcache documentation [Ehc]):

• diskStore (line 2 in Listing 7.2) – with this sub-property of the Ehcache configuration,
the path to the directory where any required disk files will be created is configured.

• maxEntriesLocalHeap (line 4 in Listing 7.2) – This sets maximum entry number that is
stored in a local heap. It can also be set with attribute maxBytesLocalHeap in bytes.

• eternal (line 5 in Listing 7.2) – if this attribute is set to "true", it overrides timeToLiveSec-
onds and timeToIdleSeconds so that no expiration can take place.

• timeToIdleSeconds (line 6 in Listing 7.2) – The maximum number of seconds an element
can exist in the cache without being accessed

• timeToLiveSeconds (line 7 in Listing 7.2) – The maximum number of seconds an element
can exist in the cache regardless of use

• maxEntriesLocalDisk (line 8 in Listing 7.2) – It is used to control the size of the swap-to-
disk area in the local disk

74

7.2. Validation

• diskExpiryThreadIntervalSeconds (line 9 in Listing 7.2) – One thread per cache is used
to remove expired elements. This optional attribute sets the interval between runs of
the expiry thread.

• memoryStoreEvictionPolicy (line 10 in Listing 7.2) – This optional attribute is used to set
eviction policy: LFU(Last Frequently Used), LRU(Last Recently Used), and FIFO(First
In First Out).

• persistence (line 12 in Listing 7.2) – with this sub-property of the cache configuration,
a RestartStore, which provides fast restartability and options for cache persistence,
strategy can be set. After any restart, data that was last in the cache will automatically
load from disk into the RestartStore, and from there the data will be available to the
cache.

7.1.4. Changes to Management Application

We already mentioned that we change the Web service API by adding methods same with the
uses cases (see Sect. 5.5) for tenant-operator and tenant-administrator.

Now Web Service API users can attach a policy document while registering a service with the
help of register service Web service. Register service Web service can register a service either
with a policy or without policy. The management application users might want to attach a
policy to a service later with the help of attach policy, which accepts service name and policy
file as base64 binary format [FB96]. The last Web service delete policy is used to delete a policy
document from the database. In turn, a tenant administrator with the Web services provided
for tenant-admin can now register policy language and post-processing rules.

7.2. Validation

We need to validate implemented prototype of SmxDSDS to check if it gives desired results.
For this purpose, we use the Scenario (see Sect. 1.1) to validate the prototype.

7.2.1. Initialization

We are provided with an Ubuntu Virtual Machine (VM) in the Cloud that has installed
ServiceMix instance and the Java EE 5 certified application server Java Open Application
Server (JOnAS) 5.2.2 [OWJ] in which the configured databases Tenant Registry, Service
Registry, and Configuration Registry are created on PostgreSQL 9.1.1 [PSQ]. We only need
to start JOnAS application server, Postgres server, the ServiceMix instance to start using
JBIMulti2 and SmxDSDS.

The validation of the prototype of SmxDSDS occurs on a single ServiceMix instance in the
VM. As DSDS is provided as a global service/endpoint in the ServiceMix the core component
of the prototype DSDS SE and SUs that configure it are directly deployed to the ServiceMix

75

7. Implementation and Validation

instance without JBIMulti2. Moreover, OSGi bundle should be deployed along with DSDS SE
because the SE depends on the bundle.

We assume that there is no service registered in the ServiceMix. Therefore, via JBIMulti2
tenants need to register the Cloud data store services with their policy documents that express
their capabilities. The syntax of the policies are based on a certain policy language, in our
work, the policies must comply with WS-Policy Assertion language. A tenant admin registers
the XML Schema of this policy language as well as the rules used for post-processing.

Once the DSDS SE and its SUs are deployed in the ServiceMix plus the set of Cloud data store
services are registered, we can validate SmxDSDS by sending request messages with user
policies. To interact with the provided DSDS service/endpoint we use soapUI 3.6.1 [SOAa], a
graphical SOAP-based Web services testing tool. The validation is described in the following
section in more detail.

7.2.2. Dynamic Service Discovery and Selection Validation

Here we demonstrate general use of SmxDSDS. In this example we specified two different
policies user of tenants in the Listings 7.3, 7.6 that have the requirements of different users of
tenants. The tenant of both users registered five different services with five different policies.
The registered services are Amazon RDS MySQL with the policy in the Listing 7.4, Amazon
RDS PostgreSQL with the policy in the Listing 7.5, Amazon Dynamo DB with policy in the
Listing 7.7, Google Cloud SQL with the policy in the Listing A.4, and SQL Database with in
the policy the Listing A.5. The policies are sample (excerpts taken from real policies) policies
to make them to a reader easier to read and understand because the real policy documents of
the registered services are big.

First, we validate SmxDSDS with first user policy in the Listing 7.3. As it is illustrated in the
Figure 7.3, on the bottom left corner we can see the user policy attached. On the right-hand
side, the response returned discovered service, which is Amazon RDS MySQL. We now
explain why the service Amazon RDS MySQL is selected. If you look at the provider poli-
cies (see Sect. A.3) the Amazon RDS MySQL and Amazon RDS PostgreSQL services have capa-
bilities that can fulfil the requirements in the user policy better than the other services. These
two services are ranked top by ServiceRanker where Amazon RDS MySQL is ranked the
best. If you look at the provider policies, <cdhs:scalabilityType ..> (the line 33 in the List-
ing 7.4) assertion is provided in Amazon RDS MySQL but not in Amazon RDS PostgresSQL,
while the assertions <cdhs:degree ..> and <cdhs:automaticFailover ..> (the lines 18 -
22 and 33 in the Listing 7.5) are provided in Amazon RDS PostgresSQL but not in Amazon
RDS MySQL. Additionally, <cdhs:availabilityDegree cdhs:Percentage=’99.99’> (the
line 33 in the Listing 7.4) of Amazon RDS MySQL service fulfil the user assertion <cdhs:avai-
labilityDegree cdhs:Percentage=’99.98’>(the line 38 in the Listing 7.3) but the user
assertion <availabilityDegree Percentage=’99.97’> (the line 33 in the Listing 7.5) of
Amazon RDS Postgres SQL does not fulfil. Now if you look at the user policy, the user
has the highest priority values for assertions <scalabilityType cdhs:Priority=’1’> and
<cdhs:availabilityDegree cdhs:Priority=’1’ (the lines 16-21 and 38 in the Listing 7.3),

76

7.2. Validation

however, it has lower priorities for the assertions <cdhs:degree cdhs:Priority=’3’> and
<cdhs:automaticFailover cdhs:Priority=’2’> (the lines 23-27 and 37 in the Listing 7.3).
Thus, Amazon RDS MySQL meets requirements of the user that have higher priorities than
the requirements Amazon RDS PostgresSQL meets.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <wsp:Policy xmlns:wsp="http://www.w3.org/ns/ws-policy"
3 xmlns:cdhs="http://iaas.uni-stuttgart/cdhs"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:schemaLocation="http://www.w3.org/ns/ws-policy http://www.w3.org/2007/02/ws-policy.

xsd">
6

7 <cdhs:scalability>
8 <wsp:Policy>
9

10 <cdhs:automationDegree cdhs:Priority="2">
11 <wsp:Policy>
12 <cdhs:manual/>
13 </wsp:Policy>
14 </cdhs:automationDegree>
15

16 <cdhs:scalabilityType cdhs:Priority="1">
17 <wsp:Policy>
18 <cdhs:vertical/>
19 <cdhs:horizontal/>
20 </wsp:Policy>
21 </cdhs:scalabilityType>
22

23 <cdhs:degree cdhs:Priority="3">
24 <wsp:Policy>
25 <cdhs:limited/>
26 </wsp:Policy>
27 </cdhs:degree>
28

29 <cdhs:timeToLaunchNewInstance cdhs:Milliseconds="2100000" cdhs:Priority="3"/>
30

31 </wsp:Policy>
32 </cdhs:scalability>
33

34 <!-- Availability -->
35 <cdhs:availability>
36 <wsp:Policy>
37 <cdhs:automaticFailover cdhs:Priority="2"/>
38 <cdhs:availabilityDegree Percentage="99.98" cdhs:Priority="1"/>
39 </wsp:Policy>
40 </cdhs:availability>
41

42 <!-- Security -->
43 <cdhs:security>
44 <wsp:Policy>
45 <cdhs:storageEncryption cdhs:Priority="1"/>
46 <cdhs:transferEncryption cdhs:Priority="1"/>
47 <cdhs:firewall cdhs:Priority="3"/>

77

7. Implementation and Validation

48 <cdhs:authentication cdhs:Priority="1"/>
49 <cdhs:confidentiality cdhs:Priority="1"/>
50 <cdhs:integrity cdhs:Priority="1"/>
51 </wsp:Policy>
52 </cdhs:security>
53

54 <!-- Data Constraints -->
55 <cdhs:dataConstraints>
56 <wsp:Policy>
57 <cdhs:maxSizePerInstance cdhs:Gigabyte="1024" cdhs:Priority="2"/>
58 <cdhs:predefinedInstanceSize cdhs:Priority="2"/>
59 </wsp:Policy>
60 </cdhs:dataConstraints>
61

62 <!-- Cloud Computing -->
63 <cdhs:cloudComputing>
64 <wsp:Policy>
65 <cdhs:serviceModel cdhs:Priority="2">
66 <wsp:Policy>
67 <cdhs:paas/>
68 </wsp:Policy>
69 </cdhs:serviceModel>
70

71 <cdhs:deploymentModel cdhs:Priority="1">
72 <wsp:Policy>
73 <cdhs:public/>
74 </wsp:Policy>
75 </cdhs:deploymentModel>
76 </wsp:Policy>
77 </cdhs:cloudComputing>
78

79

80 </wsp:Policy>

Listing 7.3: Company B first user policy.

The following policy is attached to Amazon RDS MySQL service:

1 <wsp:Policy Name="http://iaas.uni-stuttgart/cdhs/AmazonRDS-MySQL" wsu:Id="AmazonRDSMySQL"
2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://www.w3.org/ns/ws-policy http://www.w3.org/2007/02/ws-policy.

xsd"
4 xmlns:wsp="http://www.w3.org/ns/ws-policy"
5 xmlns:cdhs="http://iaas.uni-stuttgart/cdhs"
6 xmlns:xs="http://www.w3.org/2001/XMLSchema"
7 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility

-1.0.xsd">
8

9 <!-- Scalability -->
10 <cdhs:scalability wsp:Ignorable="true">
11 <wsp:Policy>
12 <cdhs:automationDegree wsp:Ignorable="true">
13 <wsp:Policy>
14 <cdhs:manual/>

78

7.2. Validation

15 </wsp:Policy>
16 </cdhs:automationDegree>
17

18 <cdhs:scalabilityType wsp:Ignorable="true">
19 <wsp:Policy>
20 <cdhs:vertical/>
21 <cdhs:horizontal/>
22 </wsp:Policy>
23 </cdhs:scalabilityType>
24

25 <cdhs:timeToLaunchNewInstance cdhs:Milliseconds="2100000" wsp:Ignorable="
true"/> <!-- 35 * 60 * 100 milliseconds = 35 minutes -->

26

27 </wsp:Policy>
28 </cdhs:scalability>
29

30 <!-- Availability -->
31 <cdhs:availability wsp:Ignorable="true">
32 <wsp:Policy>
33 <cdhs:availabilityDegree Percentage="99.99" wsp:Ignorable="true"/>
34 </wsp:Policy>
35 </cdhs:availability>
36

37 <!-- Security -->
38 <cdhs:security wsp:Ignorable="true">
39 <wsp:Policy>
40 <cdhs:storageEncryption wsp:Ignorable="true"/>
41 <cdhs:transferEncryption wsp:Ignorable="true"/>
42 <cdhs:firewall wsp:Ignorable="true"/>
43 <cdhs:authentication wsp:Ignorable="true"/>
44 <cdhs:confidentiality wsp:Ignorable="true"/>
45 <cdhs:integrity wsp:Ignorable="true"/>
46 </wsp:Policy>
47 </cdhs:security>
48

49 <!-- Data Constraints -->
50 <cdhs:dataConstraints wsp:Ignorable="true">
51 <wsp:Policy>
52 <cdhs:maxSizePerInstance cdhs:Gigabyte="1024" wsp:Ignorable="true"/>
53 <cdhs:predefinedInstanceSize wsp:Ignorable="true"/>
54 </wsp:Policy>
55 </cdhs:dataConstraints>
56

57 <!-- Cloud Computing -->
58 <cdhs:cloudComputing wsp:Ignorable="true">
59 <wsp:Policy>
60 <cdhs:serviceModel wsp:Ignorable="true">
61 <wsp:Policy>
62 <cdhs:paas/>
63 </wsp:Policy>
64 </cdhs:serviceModel>
65 </wsp:Policy>
66 </cdhs:cloudComputing>
67

68 </wsp:Policy>

79

7. Implementation and Validation

Listing 7.4: Amazon RDS MySQL Service Provider Policy.

The following policy is attached to Amazon RDS Postgres SQL service:

1 <wsp:Policy Name="http://iaas.uni-stuttgart/cdhs/AmazonRDS-PostgresSQL" wsu:Id="
AmazonRDSPostgresSQL"

2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://www.w3.org/ns/ws-policy http://www.w3.org/2007/02/ws-policy.

xsd"
4 xmlns:wsp="http://www.w3.org/ns/ws-policy"
5 xmlns:cdhs="http://iaas.uni-stuttgart/cdhs"
6 xmlns:xs="http://www.w3.org/2001/XMLSchema"
7 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility

-1.0.xsd">
8

9 <!-- Scalability -->
10 <cdhs:scalability wsp:Ignorable="true">
11 <wsp:Policy>
12 <cdhs:automationDegree wsp:Ignorable="true">
13 <wsp:Policy>
14 <cdhs:manual/>
15 </wsp:Policy>
16 </cdhs:automationDegree>
17

18 <cdhs:degree wsp:Ignorable="true">
19 <wsp:Policy>
20 <cdhs:limited/>
21 </wsp:Policy>
22 </cdhs:degree>
23

24 <cdhs:timeToLaunchNewInstance cdhs:Milliseconds="2100000" wsp:Ignorable="
true"/> <!-- 35 * 60 * 100 milliseconds = 35 minutes -->

25

26 </wsp:Policy>
27 </cdhs:scalability>
28

29 <!-- Availability -->
30 <cdhs:availability wsp:Ignorable="true">
31 <wsp:Policy>
32 <cdhs:automaticFailover wsp:Ignorable="true"/>
33 <cdhs:availabilityDegree Percentage="99.97" wsp:Ignorable="true"/>
34 </wsp:Policy>
35 </cdhs:availability>
36

37 <!-- Security -->
38 <cdhs:security wsp:Ignorable="true">
39 <wsp:Policy>
40 <cdhs:storageEncryption wsp:Ignorable="true"/>
41 <cdhs:transferEncryption wsp:Ignorable="true"/>
42 <cdhs:firewall wsp:Ignorable="true"/>
43 <cdhs:authentication wsp:Ignorable="true"/>
44 <cdhs:confidentiality wsp:Ignorable="true"/>

80

7.2. Validation

45 <cdhs:integrity wsp:Ignorable="true"/>
46 </wsp:Policy>
47 </cdhs:security>
48

49 <!-- Data Constraints -->
50 <cdhs:dataConstraints wsp:Ignorable="true">
51 <wsp:Policy>
52 <cdhs:maxSizePerInstance cdhs:Gigabyte="1024" wsp:Ignorable="true"/>
53 <cdhs:predefinedInstanceSize wsp:Ignorable="true"/>
54 </wsp:Policy>
55 </cdhs:dataConstraints>
56

57 <!-- Cloud Computing -->
58 <cdhs:cloudComputing wsp:Ignorable="true">
59 <wsp:Policy>
60 <cdhs:serviceModel wsp:Ignorable="true">
61 <wsp:Policy>
62 <cdhs:paas/>
63 </wsp:Policy>
64 </cdhs:serviceModel>
65

66 </wsp:Policy>
67 </cdhs:cloudComputing>
68

69 </wsp:Policy>

Listing 7.5: Amazon RDS Postgres SQL Service Provider Policy.

81

7. Implementation and Validation

Figure
7.1.:D

SD
S

R
equestexecuted

by
a

tenantuser
w

ith
soapU

IPro
3.6.1

[SO
A

a].O
n

the
left-hand

side,top
partis

the
SO

A
P

request
m

essage
and

the
bottom

partis
the

m
essage

policy
attachm

ent.The
response

contains
the

discovered
service.

82

7.2. Validation

Second user policy in the Listing 7.6 is used for validation. From the Figure 7.2, it is shown
on the right-hand side that Amazon DynamoDB is the selected service. Let’s explain why
it is discovered as the best service for the user requirements. If you look at the provider
policies (see Sect. A.3), the Amazon Dynamo DB service meets all the user requirements,
while others only meet them partly. In this case, ranking is not even needed, because Amazon
Dynamo DB perfectly fulfills the requirements.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <wsp:Policy xmlns:wsp="http://www.w3.org/ns/ws-policy"
3 xmlns:cdhs="http://iaas.uni-stuttgart/cdhs"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:schemaLocation="http://www.w3.org/ns/ws-policy http://www.w3.org/2007/02/ws-policy.

xsd">
6

7 <!-- Scalability -->
8 <cdhs:scalability>
9 <wsp:Policy>

10 <cdhs:automaticScalabilityCriterion>
11 <wsp:Policy>
12 <cdhs:systemLoadCriteria cdhs:Priority="2"/>
13 <cdhs:latencyCriteria cdhs:Priority="1"/>
14 </wsp:Policy>
15 </cdhs:automaticScalabilityCriterion>
16 </wsp:Policy>
17 </cdhs:scalability>
18

19 <!-- Security -->
20 <cdhs:security>
21 <wsp:Policy>
22 <cdhs:transferEncryption cdhs:Priority="1"/>
23 <cdhs:authentication cdhs:Priority="1"/>
24 </wsp:Policy>
25 </cdhs:security>
26

27 <!-- Performance -->
28 <cdhs:performance>
29 <wsp:Policy>
30 <cdhs:latency Milliseconds="9" cdhs:Priority="2"/>
31 </wsp:Policy>
32 </cdhs:performance>
33

34 </wsp:Policy>

Listing 7.6: Company B second user policy.

The following policy is attached to Amazon Dynamo DB service:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <wsp:Policy xmlns:wsp="http://www.w3.org/ns/ws-policy" Name="http://iaas.uni-stuttgart/cdhs/

AmazonDynamoDB"
3 xmlns:cdhs="http://iaas.uni-stuttgart/cdhs"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

83

7. Implementation and Validation

5 xsi:schemaLocation="http://www.w3.org/ns/ws-policy http://www.w3.org/2007/02/ws-policy.
xsd">

6

7 <!-- Scalability -->
8 <cdhs:scalability wsp:Ignorable="true">
9 <wsp:Policy>

10 <cdhs:automaticScalabilityCriterion wsp:Ignorable="true">
11 <wsp:Policy>
12 <cdhs:systemLoadCriteria wsp:Ignorable="true"/>
13 <cdhs:latencyCriteria wsp:Ignorable="true"/>
14 </wsp:Policy>
15 </cdhs:automaticScalabilityCriterion>
16 </wsp:Policy>
17 </cdhs:scalability>
18

19 <!-- Security -->
20 <cdhs:security wsp:Ignorable="true">
21 <wsp:Policy>
22 <cdhs:transferEncryption wsp:Ignorable="true"/>
23 <cdhs:authentication wsp:Ignorable="true"/>
24 </wsp:Policy>
25 </cdhs:security>
26

27 <!-- Performance -->
28 <cdhs:performance wsp:Ignorable="true">
29 <wsp:Policy>
30 <cdhs:latency Milliseconds="10" wsp:Ignorable="true"/>
31 </wsp:Policy>
32 </cdhs:performance>
33

34 </wsp:Policy>

Listing 7.7: Amazon Dynamo DB Service Provider Policy.

84

7.2. Validation

Fi
gu

re
7.

2.
:D

SD
S

R
eq

ue
st

ex
ec

ut
ed

by
a

te
na

nt
us

er
w

ith
so

ap
U

IP
ro

3.
6.

1
[S

O
A

a]
.O

n
th

e
le

ft
-h

an
d

si
de

,t
op

pa
rt

is
th

e
SO

A
P

re
qu

es
t

m
es

sa
ge

an
d

th
e

bo
tt

om
p

ar
t

is
th

e
m

es
sa

ge
p

ol
ic

y
at

ta
ch

m
en

t,
w

hi
le

on
th

e
ri

gh
t-

ha
nd

si
d

e
th

e
co

rr
es

p
on

d
in

g
SO

A
P

re
sp

on
se

m
es

sa
ge

is
di

sp
la

ye
d.

Th
e

re
sp

on
se

co
nt

ai
ns

th
e

di
sc

ov
er

ed
se

rv
ic

e.

85

7. Implementation and Validation

In this case, a user of company A sends a request attaching the same policy with first user
of company B. Tenant A (Company A) registered three Cloud data store services, which
are Amazon RDS PostgreSQL with the policy in the Listing 7.4 as well as Amazon Simple
DB and Xeround without policies. If you noticed, Amazon RDS PostgreSQL is available
in both tenants (companies). As we stated, the user of tenant A and first user of tenant B
sends request with the same policies (see Listings 7.3, 7.8). In doing so, if the data isolation
was not provided, for the request of the user of company A, the Cloud data service Amazon
RDS MySQL would be discovered. However, the result is Amazon RDS PostgreSQL because
Amazon RDS MySQL is not registered by tenant A. So, we demonstrated multi-tenancy
support.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <wsp:Policy xmlns:wsp="http://www.w3.org/ns/ws-policy"
3 xmlns:cdhs="http://iaas.uni-stuttgart/cdhs"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:schemaLocation="http://www.w3.org/ns/ws-policy http://www.w3.org/2007/02/ws-policy.

xsd">
6

7 <cdhs:scalability>
8 <wsp:Policy>
9

10 <cdhs:automationDegree cdhs:Priority="2">
11 <wsp:Policy>
12 <cdhs:manual/>
13 </wsp:Policy>
14 </cdhs:automationDegree>
15

16 <cdhs:scalabilityType cdhs:Priority="1">
17 <wsp:Policy>
18 <cdhs:vertical/>
19 <cdhs:horizontal/>
20 </wsp:Policy>
21 </cdhs:scalabilityType>
22

23 <cdhs:degree cdhs:Priority="3">
24 <wsp:Policy>
25 <cdhs:limited/>
26 </wsp:Policy>
27 </cdhs:degree>
28

29 <cdhs:timeToLaunchNewInstance cdhs:Milliseconds="2100000" cdhs:Priority="3"/>
30

31 </wsp:Policy>
32 </cdhs:scalability>
33

34 <!-- Availability -->
35 <cdhs:availability>
36 <wsp:Policy>
37 <cdhs:automaticFailover cdhs:Priority="2"/>
38 <cdhs:availabilityDegree Percentage="99.98" cdhs:Priority="1"/>
39 </wsp:Policy>
40 </cdhs:availability>

86

7.2. Validation

41

42 <!-- Security -->
43 <cdhs:security>
44 <wsp:Policy>
45 <cdhs:storageEncryption cdhs:Priority="1"/>
46 <cdhs:transferEncryption cdhs:Priority="1"/>
47 <cdhs:firewall cdhs:Priority="3"/>
48 <cdhs:authentication cdhs:Priority="1"/>
49 <cdhs:confidentiality cdhs:Priority="1"/>
50 <cdhs:integrity cdhs:Priority="1"/>
51 </wsp:Policy>
52 </cdhs:security>
53

54 <!-- Data Constraints -->
55 <cdhs:dataConstraints>
56 <wsp:Policy>
57 <cdhs:maxSizePerInstance cdhs:Gigabyte="1024" cdhs:Priority="2"/>
58 <cdhs:predefinedInstanceSize cdhs:Priority="2"/>
59 </wsp:Policy>
60 </cdhs:dataConstraints>
61

62 <!-- Cloud Computing -->
63 <cdhs:cloudComputing>
64 <wsp:Policy>
65 <cdhs:serviceModel cdhs:Priority="2">
66 <wsp:Policy>
67 <cdhs:paas/>
68 </wsp:Policy>
69 </cdhs:serviceModel>
70

71 <cdhs:deploymentModel cdhs:Priority="1">
72 <wsp:Policy>
73 <cdhs:public/>
74 </wsp:Policy>
75 </cdhs:deploymentModel>
76 </wsp:Policy>
77 </cdhs:cloudComputing>
78

79

80 </wsp:Policy>

Listing 7.8: Company A user policy.

87

7. Implementation and Validation

Figure
7.3.:D

SD
S

R
equestexecuted

by
a

tenantuser
w

ith
soapU

IPro
3.6.1

[SO
A

a].O
n

the
left-hand

side,top
partis

the
SO

A
P

request
m

essage
and

the
bottom

partis
the

m
essage

policy
attachm

ent.The
response

contains
the

discovered
service.

88

8. Conclusion and Future Work

In Chapter 2 we have presented relevant fundamentals to this work. As a result of inves-
tigating related works to DSDS, we have introduced concepts for DSDS extension to the
open-source ESB Apache ServiceMix that can be part of a PaaS platform. The emphasize
was on conceiving good solutions to DSDS in ServiceMix, while maintaining multi-tenancy
support and backward compatibility support. As a core part of this work, DSDS support is
conceived that is applied discover and select a proper CDHS for the needs of the consumer.
The main steps of SmxDSDS are Policy Matching, Post-Processing, Service Ranking, and
Service Selection. For the policy matching, a new policy intersection algorithm is conceived
that complies with the specification of WS-Policy framework and for the Post-Processing step
we conceive solutions and created rules that can be used to post-process the domain-specific
assertions and their attributes of intersected policy. We conceived Service ranking that is
based on the resulting incompatible and not-fulfilled assertions from previous steps and
according to them, it ranks services how much CDHS meet consumer needs. Here we only
developed two different selection methods like First-Met and Random selection.

As CDHS providers should express their offer with uniform policy language, while CDHS
consumers should specify their needs as policies relying on the compatible policy language.
For this purpose, we analysed all existing policy languages and also used the student
project [SR12] to determine which policy language is the most suitable for the expression
of functional and non-functional properties of CDHS. Based on the outcome of the student
project and other relevant works we decided to use WS-Policy as a basis to our new policy
language. As a result, we extended WS-Policy to create a new WS-Policy Assertion Language
that consists the assertions used to specify functional and non-functional properties of CDHS
as policy documents. To provide a valid assertion set for the language, we investigated the
functional and non-functional properties of all Cloud Data Hosting Solutions available.

As SmxDSDS retrieves the data for DSDS and multi-tenancy support from the databases
outside ServiceMix, with the increase of requests, it is likely that the performance deteriorate.
To prevent this, we proposed to build Cache mechanism in an intermediary component of
SmxDSDS that is in charge of getting the data from external databases.

Based on the conceived concepts, we designed the system in Chapter 6 that describes design
and technology solutions for the developed concepts to implement the prototype. Extensions
to ServiceMix have been designed for DSDS support, where DSDS support is designed to be
developed in a separate JBI Component (SE) allowing re-usability and support for backward
compatibility. In contrast, the intermediary component, which is responsible for getting the
data from databases and for their caching, is designed to be developed as an OSGi bundle.
In addition, design extensions to the database schemes are made that enable a service and
its policy handling. As for technology solutions, we designed to employ Apache Neethi

89

8. Conclusion and Future Work

Framework [ANe12] for DSDS support to take advantage of the capabilities provided for the
WS-Policy Framework. We also decided to use Ehcache [Ehc] open-source and standard-based
cache library in the OSGi bundle.

A prototype that complies to these design and technology solutions has been implemented and
validated in Chapter 7. In the validation, there are given two companies with their consumers
that uses SmxDSDS. First, it is demonstrated how DSDS works for user preferences in
case user requirements are not completely met. Second, the case when user requirements
are completely met is demonstrated. Finally, the case that demonstrates the data isolation
between tenants is validated.

For the future work, the WS-Policy Assertion Language and ranking in DSDS can be improved.
Currently, priorities are considered to be set by consumers to only child assertions that should
be improved for all assertion granularities. The policy validation is not done yet, so the
policy validation algorithm can be created for validation of policy documents because we use
WS-Policy construct <wsp:Policy>..</wsp:Policy> that is extremely extensible. New service
selection methods can be added and configured, such as choosing services based on their
load. We did not realize Web GUI either but we designed and specified it. Currently, the
OSGi component is only developed to get data from Service Registry database. However,
it can be easily extended for other databases like tenant registry, configuration registry.
Cache utilization can also be improved by taking advantage of all the relevant capabilities of
Ehcache.

90

Appendix A.

Interface Definitions

This chapter lists XSDs that WS-Policy Assertion language and Rules XML file must conform.
Furthermore, there are given several policy documents of Cloud data stores that are used for
validation.

A.1. WS-Policy Assertion Language Interface

This section illustrates XSD and syntax definition of WS-Policy Assertion language.

1 <wsp:Policy xmlns:wsp="http://www.w3.org/ns/ws-policy"
2 xmlns:cdhs="http://iaas.uni-stuttgart/cdhs"
3 xmlns:xs="http://www.w3.org/2001/XMLSchema">
4

5 <!-- "..." is used to indicate a point of extensibility -->
6 <!-- "?" means the element is optional (0 or 1) in terms of user spesification. It is user

choice whether to specify the assertion or not -->
7

8 <!-- Scalability -->
9 <cdhs:scalability (cdhs:Priority="xs:integer")? ... >

10 <wsp:Policy>
11 <cdhs:automationDegree (cdhs:Priority="xs:integer")? ... >
12 <wsp:Policy>
13 (<cdhs:manual ... /> | <cdhs:automatic ... /> | (<cdhs:manual ... /> <

cdhs:automatic ... />) | ...)
14 </wsp:Policy>
15 </cdhs:automationDegree>
16 <cdhs:scalabilityType (cdhs:Priority="xs:integer")? ... >
17 <wsp:Policy>
18 (<cdhs:vertical ... /> | <cdhs:horizontal ... /> | (<cdhs:vertical ... /> <

cdhs:horizontal ... />))
19 </wsp:Policy>
20 </cdhs:scalabilityType>
21 <cdhs:degree (cdhs:Priority="xs:integer")? ... >
22 <wsp:Policy>
23 (<cdhs:virtuallyUnlimited ... /> | <cdhs:limited cdhs:entityQuantity="xs:integer"

cdhs:entityType="xs:string"/> | ...)
24 </wsp:Policy>
25 </cdhs:degree>?

91

Appendix A. Interface Definitions

26 <cdhs:timeToLaunchNewInstance cdhs:Milliseconds="xs:integer" (cdhs:Priority="
xs:integer")? ... />? <!-- time in the range (0 - N) minutes -->

27 <cdhs:automaticScalabilityCriterion (cdhs:Priority="xs:integer")? ... >
28 <wsp:Policy>
29 <cdhs:systemLoadCriteria ... />?
30 <cdhs:latencyCriteria ... />?
31 ...
32 </wsp:Policy>
33 </cdhs:automaticScalabilityCriterion>?
34 <cdhs:transferLimit cdhs:Gigabyte="xs:float" (cdhs:Priority="xs:integer")? ... />
35 ...
36 </wsp:Policy>
37 </cdhs:scalability>
38

39 <!-- Availability -->
40 <cdhs:availability (cdhs:Priority="xs:integer")? ... >
41 <wsp:Policy>
42 <cdhs:replication (cdhs:Priority="xs:integer")? ... >
43 <wsp:Policy>
44 <cdhs:replicationType (cdhs:Priority="xs:integer")? ... >
45 <wsp:Policy>
46 <cdhs:masterSlave ... />?
47 <cdhs:masterMaster ... />?
48 ...
49 </wsp:Policy>
50 </cdhs:replicationType>
51 <cdhs:replicationMethod (cdhs:Priority="xs:integer")? ...>
52 <wsp:Policy>
53 <cdhs:synchronous ... />?
54 <cdhs:aynchrounous ... />?
55 ...
56 </wsp:Policy>
57 </cdhs:replicationMethod>
58 <cdhs:replicationLocation (cdhs:Priority="xs:integer")? ... >
59 <wsp:Policy>
60 <cdhs:sameDC ... />?
61 <cdhs:diffDCinSameRegion ... />?
62 <cdhs:diffDCinDiffRegion ... />?
63 ...
64 </wsp:Policy>
65 </cdhs:replicationLocation>
66 </wsp:Policy>
67 </cdhs:replication>?
68 <cdhs:automaticFailover (cdhs:Priority="xs:integer")? ... />?
69 <cdhs:availabilityDegree cdhs:Percentage="xs:float" (cdhs:Priority="xs:integer")? ...

/> <!-- in the range of (0 - 100)% -->
70 ...
71 </wsp:Policy>
72 </cdhs:availability>
73

74 <!-- Recovery -->
75 <cdhs:recovery (cdhs:Priority="xs:integer")? ... >
76 <wsp:Policy>
77 <cdhs:disasterRecovery (cdhs:Priority="xs:integer")? ... />?
78 ...

92

A.1. WS-Policy Assertion Language Interface

79 </wsp:Policy>
80 </cdhs:recovery>
81

82 <!-- Security -->
83 <cdhs:security (cdhs:Priority="xs:integer")? ... >
84 <wsp:Policy>
85 <cdhs:storageEncryption (cdhs:Priority="xs:integer")? ... />?
86 <cdhs:transferEncryption (cdhs:Priority="xs:integer")? ... />?
87 <cdhs:firewall (cdhs:Priority="xs:integer")? ... />?
88 <cdhs:authentication (cdhs:Priority="xs:integer")? ... />?
89 <cdhs:confidentiality (cdhs:Priority="xs:integer")? ... />?
90 <cdhs:integrity (cdhs:Priority="xs:integer")? ... />?
91 <cdhs:authorization (cdhs:Priority="xs:integer")? ... />?
92 ...
93 </wsp:Policy>
94 </cdhs:security>
95

96 <!-- Privacy -->
97 <cdhs:privacy (cdhs:Priority="xs:integer")? ... >
98 <wsp:Policy>
99 <cdhs:secureDestruction ... />?

100 <cdhs:completeDestruction ... />?
101 <cdhs:supportedPrivacyPolicyLanguages ... >
102 <wsp:Policy>
103 <cdhs:p3p ... />?
104 <cdhs:xamcl ... />?
105 <cdhs:epal ... />?
106 <cdhs:wsPrivacy ... />?
107 ...
108 </wsp:Policy>
109 </cdhs:supportedPrivacyPolicyLanguages>
110 ...
111 </wsp:Policy>
112 </cdhs:privacy>
113

114 <!-- Location -->
115 <cdhs:location (cdhs:Priority="xs:integer")? ... >
116 <wsp:Policy>
117 <cdhs:choice (cdhs:Priority="xs:integer")? ... >
118 <wsp:Policy>
119 <cdhs:yes ... >
120 <cdhs:geographicLocation cdhs:name="xs:string" (cdhs:Priority="xs:integer")? ...

/>? <!-- Region/Country/Continent -->
121 </cdhs:yes>
122 |
123 <cdhs:no ... >
124 <wsp:Policy>
125 (<cdhs:singleLocation ... /> | <cdhs:automaticallySelected ... />)
126 </wsp:Policy>
127 </cdhs:no>
128 </wsp:Policy>
129 </cdhs:choice>? <!-- If choice is not specified, it means the CDHS is either located

in a sigle place or selected automatically -->
130 <cdhs:cloudLocation (cdhs:Priority="xs:integer")? ... >
131 <wsp:Policy>

93

Appendix A. Interface Definitions

132 <onPremise ... />?
133 <offPremise ... />?
134 </wsp:Policy>
135 </cdhs:cloudLocation>
136 ...
137 </wsp:Policy>
138 </cdhs:location>
139

140 <!-- Constraints on the data to be migrated/created -->
141 <cdhs:dataConstraints (cdhs:Priority="xs:integer")? ... >
142 <wsp:Policy>
143 <cdhs:maxItemSize cdhs:Bytes="xs:integer" ... />?
144 <cdhs:rowSize cdhs:Bytes="xs:integer" ... />?
145 <cdhs:fileSize cdhs:Bytes="xs:integer" ... />?
146

147 <cdhs:maxDomainSize cdhs:Gigabyte="xs:float" ... />?
148 <cdhs:tableSize cdhs:Gigabytes="xs:float" ... />?
149 <cdhs:bucketSize cdhs:Gigabyte="xs:float" ... />?
150

151 <cdhs:maxItemNumberPerInstance cdhs:Number="xs:integer" ... />?
152 <cdhs:maxRowNumberPerInstance cdhs:Number="xs:integer" ... />?
153 <cdhs:maxFileNumberPerInstance cdhs:Number="xs:integer" ... />?
154

155 <cdhs:maxSizePerInstance cdhs:Gigabyte="xs:float" ... />?
156 <cdhs:predefinedInstanceSize/>?
157 ...
158 </wsp:Policy>
159 </cdhs:dataConstraints>
160

161 <!-- Interoperability -->
162 <cdhs:interoperability (cdhs:Priority="xs:integer")? ... >
163 <wsp:Policy>
164 <cdhs:dataPortability (cdhs:Priority="xs:integer")? ... >
165 <wsp:Policy>
166 <cdhs:import ... />?
167 <cdhs:export ... />?
168 <cdhs:importAndExport ... />?
169 <cdhs:oneWaySynchronization ... />?
170 <cdhs:twoWaySynchronization ... />?
171 ...
172 </wsp:Policy>
173 </cdhs:dataPortability>?
174 <cdhs:dataExchangeFormat (cdhs:Priority="xs:integer")? ...>
175 <wsp:Policy>
176 <cdhs:xml ... />?
177 <cdhs:json ... />?
178 <cdhs:proprietory ... />?
179 ...
180 </wsp:Policy>
181 </cdhs:dataExchangeFormat>
182 <cdhs:storageAccess (cdhs:Priority="xs:integer")? ... >
183 <wsp:Policy>
184 <cdhs:soa ... />?
185 <cdhs:rest ... />?
186 <cdhs:sql ... />?

94

A.1. WS-Policy Assertion Language Interface

187 <cdhs:proprietory ... />?
188 ...
189 </wsp:Policy>
190 </cdhs:storageAccess>
191 <cdhs:orm (cdhs:Priority="xs:integer")? ... >
192 <wsp:Policy>
193 <cdhs:jpa ... />?
194 <cdhs:jdo ... />?
195 <cdhs:linq ... />?
196 ...
197 </wsp:Policy>
198 </cdhs:orm>
199 <cdhs:migrationAndDeploymentSupport (cdhs:Priority="xs:integer")? ... />?
200 <cdhs:supportedIDEs (cdhs:Priority="xs:integer")? ... >
201 <wsp:Policy>
202 <cdhs:eclipse ... />?
203 <cdhs:netBeans ... />?
204 <cdhs:visualStudio ... />?
205 <cdhs:intelliJIdea ... />?
206 ...
207 </wsp:Policy>
208 </cdhs:supportedIDEs>
209 <cdhs:developerSDKs (cdhs:Priority="xs:integer")? ... >
210 <wsp:Policy>
211 <cdhs:java ... />?
212 <cdhs:dotNet ... />?
213 <cdhs:php ... />?
214 <cdhs:ruby ... />?
215 <cdhs:python ... />?
216 <cdhs:standartSupport ... />? <!-- none needed -->
217 <cdhs:none ... />?
218 ...
219 </wsp:Policy>
220 </cdhs:developerSDKs>?
221 <cdhs:OS cdhs:name="xs:string" (cdhs:Priority="xs:integer")? ...>
222 <wsp:Policy>
223 <cdhs:windows ... >
224 <wsp:Policy>
225 <cdhs:windowsXP ... />?
226 <cdhs:windows7 ... />?
227 <cdhs:windows8 ... />?
228 <cdhs:windowsServer ... />?
229 <cdhs:windowsVista ... />?
230 <cdhs:windows98 ... />?
231 </wsp:Policy>
232 </cdhs:windows>
233 <cdhs:linux ... >
234 <wsp:Poicy>
235 <cdhs:ubuntu ... />?
236 <cdhs:fedora ... />?
237 <cdhs:achLinux ... />?
238 <cdhs:gentoo ... />?
239 <cdhs:openSUSE ... />?
240 <cdhs:slackware ... />?
241 </wsp:Poicy>

95

Appendix A. Interface Definitions

242 </cdhs:linux>
243 <cdhs:macOS ... >
244 <wsp:Policy>
245 <cdhs:macOSX ... />?
246 <cdhs:osX ... />?
247 </wsp:Policy>
248 </cdhs:macOS>
249 </wsp:Policy>
250 </cdhs:OS>
251 ...
252 </wsp:Policy>
253 ...
254 </cdhs:interoperability>
255

256 <!-- Compatibility -->
257 <cdhs:compatibility (cdhs:Priority="xs:integer")? ... >
258 <wsp:Policy>
259 <cdhs:productIncludingVersion (cdhs:Priority="xs:integer")? ... >
260 <wsp:Policy>
261 <cdhs:mySQL (cdhs:version="xs:string")? ... />?
262 <cdhs:postgreSQL (cdhs:version="xs:string")? ... />?
263 <cdhs:msSQL (cdhs:version="xs:string")? />?
264 <cdhs:db2 (cdhs:version="xs:string")? />?
265 <cdhs:oracle (cdhs:version="xs:string")? />?
266 </wsp:Policy>
267 </cdhs:productIncludingVersion>
268 ...
269 </wsp:Policy>
270 </cdhs:compatibility>
271

272 <!-- Storage -->
273 <cdhs:storage (cdhs:Priority="xs:integer")? ... >
274 <wsp:Policy>
275 <cdhs:accessability (cdhs:Priority="xs:integer")? ... >
276 <wsp:Policy>
277 <cdhs:vpn ... />? <!-- VPN (virtual private network) -->
278 ...
279 </wsp:Policy>
280 </cdhs:accessability>
281 <cdhs:storageType (cdhs:Priority="xs:integer")? ... >
282 <wsp:Policy>
283 (<cdhs:rdbms ... /> | <cdhs:noSQL ... /> | <cdhs:blobStore ... /> | <cdhs:cdn ...

/> | ...)
284 </wsp:Policy>
285 </cdhs:storageType>
286 <cdhs:transactionSupport (cdhs:Priority="xs:integer")? ... >
287 <wsp:Policy>
288 <cdhs:acid ... />?
289 ...
290 </wsp:Policy>
291 </cdhs:transactionSupport>
292 ...
293 </wsp:Policy>
294 </cdhs:storage>
295

96

A.1. WS-Policy Assertion Language Interface

296

297 <!-- Performance -->
298 <cdhs:performance (cdhs:Priority="xs:integer")? ... >
299 <wsp:Policy>
300 <cdhs:predictable (cdhs:Priority="xs:integer")? ... >
301 <wsp:Policy>
302 <cdhs:responseTime cdhs:Milliseconds="xs:integer" ... />
303 ...
304 </wsp:Policy>
305 </cdhs:predictable>?
306 <cdhs:latency cdhs:Milliseconds="xs:integer" (cdhs:Priority="xs:integer")? ... />
307 <cdhs:throughput cdhs:value="xs:integer" (cdhs:Priority="xs:integer")? ... />
308 ...
309 </wsp:Policy>
310 </cdhs:performance>
311

312 <!-- CAP (Consistency, Availability, and Partitioning) property -->
313 <cdhs:cap (cdhs:Priority="xs:integer")? ... >
314 <wsp:Policy>
315 <cdhs:consistencyModel (cdhs:Priority="xs:integer")? ... >
316 <wsp:Policy>
317 <cdhs:strongConsistency ... />?
318 <cdhs:weakConsistency ... />?
319 <cdhs:eventuallConsistency ... />?
320 ...
321 </wsp:Policy>
322 ...
323 </cdhs:consistencyModel>
324 <cdhs:availableInCaseOfPartitioning (cdhs:Priority="xs:integer")? ... />
325 ...
326 </wsp:Policy>
327 </cdhs:cap>
328

329 <!-- Flexibility -->
330 <cdhs:flexibility (cdhs:Priority="xs:integer")? ... >
331 <wsp:Policy>
332 <cdhs:schema (cdhs:Priority="xs:integer")? ... />?
333 <cdhs:schemaCustomizable (cdhs:Priority="xs:integer")? ... />?
334 ...
335 </wsp:Policy>
336 </cdhs:flexibility>
337

338 <!-- Cloud Computing -->
339 <cdhs:cloudComputing (cdhs:Priority="xs:integer")? ... >
340 <wsp:Policy>
341 <cdhs:serviceModel (cdhs:Priority="xs:integer")? ... >
342 <wsp:Policy>
343 (<cdhs:iaas ... /> | <cdhs:paas ... /> | <cdhs:saas ... />)
344 </wsp:Policy>
345 </cdhs:serviceModel>
346 <cdhs:deploymentModel (cdhs:Priority="xs:integer")? ... >
347 <wsp:Policy>
348 <cdhs:private ... />?
349 <cdhs:public ... />?
350 <cdhs:community ... />?

97

Appendix A. Interface Definitions

351 <cdhs:hybrid ... />?
352 </wsp:Policy>
353 </cdhs:deploymentModel>
354 ...
355 </wsp:Policy>
356 </cdhs:cloudComputing>
357

358 <!-- Management and Maintenance Effort -->
359 <cdhs:managementAndMaintenanceEffort (cdhs:Priority="xs:integer")? ...>
360 <wsp:Policy>
361 <cdhs:selfService ... />?
362 <cdhs:managedOrAutomated ... />?
363 ...
364 </wsp:Policy>
365 </cdhs:managementAndMaintenanctEffort>
366

367 <!-- Monitoring -->
368 <cdhs:monitoring (cdhs:Priority="xs:integer")? ... >
369 <wsp:Policy>
370 <cdhs:supportedKPIs (cdhs:Priority="xs:integer")? ... >
371 <wsp:Policy>
372 <cdhs:processingLoad ... />? <!-- CPU -->
373 <cdhs:networkDataTransfer ... />? <!-- Network IO -->
374 <cdhs:diskDataTransfer ... />? <!-- Disk IO -->
375 <cdhs:memoryLoad ... />? <!-- RAM -->
376 ...
377 </wsp:Policy>
378 </cdhs:supportedKPIs>
379 ...
380 </wsp:Policy>
381 </cdhs:monitoring>
382

383 <!-- Backup -->
384 <cdhs:backup (cdhs:Priority="xs:integer")? ... >
385 <wsp:Policy>
386 <cdhs:backupInterval (cdhs:Priority="xs:integer")? ... >
387 <wsp:Policy>
388 <cdhs:none/>?
389 <cdhs:periodic cdhs:Minutes="xs:integer" ... />?
390 <cdhs:onDemand ... />?
391 ...
392 </wsp:Policy>
393 </cdhs:backupInterval>?
394 <cdhs:accessInterrupt (cdhs:Priority="xs:integer")? ... />?
395 <cdhs:numberOfBackupsKept (cdhs:Priority="xs:integer")? ... >
396 <wsp:Policy>
397 <cdhs:none/>?
398 <cdhs:backupNumber cdhs:number="xs:integer" ... />?
399 <cdhs:backupDays cdhs:days="xs:integer" ... />?
400 ...
401 </wsp:Policy>
402 </cdhs:numberOfBackupsKept>?
403 <cdhs:backupMethod (cdhs:Priority="xs:integer")? ... >
404 <wsp:Policy>
405 <cdhs:snapshot ... />?

98

A.1. WS-Policy Assertion Language Interface

406 <cdhs:fileBackup ... />?
407 <cdhs:incrementalBackup ... />?
408 ...
409 </wsp:Policy>
410 </cdhs:backupMethod>?
411 ...
412 </wsp:Policy>
413 </cdhs:backup>
414

415 <!-- Multi-Tenancy -->
416 <cdhs:multiTenancy (cdhs:Priority="xs:integer")? ... >
417 <wsp:Policy>
418 <cdhs:multiTenancyType (cdhs:Priority="xs:integer")? ... >
419 <wsp:Policy>
420 <cdhs:multipleInstances ... />?
421 <cdhs:nativeMultiTenancy ... />?
422 ...
423 </wsp:Policy>
424 </cdhs:multiTenancyType>
425 ...
426 </wsp:Policy>
427 </cdhs:multiTenancy>?
428

429 </wsp:Policy>

Listing A.1: Syntax of WS-Policy Assertion Language Schema.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:tns="http://iaas.uni-stuttgart/cdhs" targetNamespace="http://iaas.uni-

stuttgart/cdhs" xmlns:xs="http://www.w3.org/2001/XMLSchema">
3

4 <!-- Scalability -->
5 <xs:element name="scalability" type="tns:NestedPolicyType"/>
6

7 <xs:element name="automationDegree" type="tns:NestedPolicyType"/>
8

9 <xs:element name="manual" type="tns:SimplePolicyType"/>
10

11 <xs:element name="automatic" type="tns:SimplePolicyType"/>
12

13 <!-- Type of Scalability -->
14 <xs:element name="scalabilityType" type="tns:NestedPolicyType"/>
15

16 <xs:element name="vertical" type="tns:SimplePolicyType"/>
17

18 <xs:element name="horizontal" type="tns:SimplePolicyType"/>
19

20 <!-- Degree of Scalability -->
21 <xs:element name="degree" type="tns:NestedPolicyType"/>
22

99

Appendix A. Interface Definitions

23 <xs:element name="virtuallyLimited" type="tns:SimplePolicyType"/>
24

25 <xs:element name="limited">
26 <xs:complexType>
27 <xs:attribute name="entityQuantity" type="xs:integer"/>
28 <xs:attribute name="entityType" type="xs:string"/>
29 <xs:anyAttribute namespace="##any" processContents="lax"/>
30 </xs:complexType>
31 </xs:element>
32

33 <!-- Time To Launch New Instance for Scalability -->
34 <xs:element name="timeToLaunchNewInstance">
35 <xs:complexType>
36 <xs:attribute name="Milliseconds" type="xs:integer"/>
37 <xs:attribute name="Priority" type="tns:priorityInteger" use="optional"/>
38 <xs:anyAttribute namespace="##any" processContents="lax"/>
39 </xs:complexType>
40 </xs:element>
41

42 <!-- Automatic Criterion for Scalability -->
43 <xs:element name="automaticScalabilityCriterion" type="tns:NestedPolicyType"/>
44

45 <xs:element name="systemLoadCriteria" type="tns:SimplePolicyType"/>
46

47 <xs:element name="latencyCriteria" type="tns:SimplePolicyType"/>
48

49 <!-- Transfer Limit for Scalability -->
50 <xs:element name="transferLimit">
51 <xs:complexType>
52 <xs:attribute name="Gigabyte" type="xs:float"/>
53 <xs:anyAttribute namespace="##any" processContents="lax"/>
54 </xs:complexType>
55 </xs:element>
56

57 <!-- Availability -->
58 <xs:element name="availability" type="tns:NestedPolicyType"/>
59

60 <!-- Replication for Availability -->
61 <xs:element name="replication" type="tns:NestedPolicyType"/>
62

63 <!-- Type of Replication -->
64 <xs:element name="replicationType" type="tns:NestedPolicyType"/>
65

66 <xs:element name="masterMaster" type="tns:SimplePolicyType"/>
67

68 <xs:element name="masterSlave" type="tns:SimplePolicyType"/>
69

70 <!-- Type of Replication -->
71 <xs:element name="replicationMethod" type="tns:NestedPolicyType"/>
72

73 <xs:element name="synchronous" type="tns:SimplePolicyType"/>
74

75 <xs:element name="asynchronous" type="tns:SimplePolicyType"/>
76

77 <!-- Location of Replication -->

100

A.1. WS-Policy Assertion Language Interface

78 <xs:element name="replicationLocation" type="tns:NestedPolicyType"/>
79

80 <xs:element name="sameDC" type="tns:SimplePolicyType"/>
81

82 <xs:element name="diffDCinSameRegion" type="tns:SimplePolicyType"/>
83

84 <xs:element name="diffDCinDiffRegion" type="tns:SimplePolicyType"/>
85

86 <xs:element name="automaticFailover" type="tns:QNameAssertionType"/>
87

88 <xs:element name="availabilityDegree">
89 <xs:complexType>
90 <xs:attribute name="Percentage" type="tns:percentageType"/>
91 <xs:attribute name="Priority" type="tns:priorityInteger" use="optional"/>
92 <xs:anyAttribute namespace="##any" processContents="lax"/>
93 </xs:complexType>
94 </xs:element>
95

96 <!-- Recovery -->
97 <xs:element name="recovery" type="tns:NestedPolicyType"/>
98

99 <xs:element name="disasterRecovery" type="tns:QNameAssertionType"/>
100

101 <!-- Security -->
102 <xs:element name="security" type="tns:NestedPolicyType"/>
103

104 <xs:element name="storageEncryption" type="tns:QNameAssertionType"/>
105

106 <xs:element name="transferEncryption" type="tns:QNameAssertionType"/>
107

108 <xs:element name="firewall" type="tns:QNameAssertionType"/>
109

110 <xs:element name="authentication" type="tns:QNameAssertionType"/>
111

112 <xs:element name="confidentiality" type="tns:QNameAssertionType"/>
113

114 <xs:element name="integrity" type="tns:QNameAssertionType"/>
115

116 <xs:element name="authorization" type="tns:QNameAssertionType"/>
117

118 <!-- Privacy -->
119 <xs:element name="privacy" type="tns:NestedPolicyType"/>
120

121 <xs:element name="secureDestruction" type="tns:QNameAssertionType"/>
122

123 <xs:element name="completeDestruction" type="tns:QNameAssertionType"/>
124

125 <xs:element name="supportedPrivacyPolicyLanguages" type="tns:NestedPolicyType"/>
126

127 <xs:element name="p3p" type="tns:SimplePolicyType"/>
128

129 <xs:element name="xamcl" type="tns:SimplePolicyType"/>
130

131 <xs:element name="epal" type="tns:SimplePolicyType"/>
132

101

Appendix A. Interface Definitions

133 <xs:element name="wsPrivacy" type="tns:SimplePolicyType"/>
134

135 <!-- Location -->
136 <xs:element name="location" type="tns:NestedPolicyType"/>
137

138 <xs:element name="choice" type="tns:NestedPolicyType"/>
139

140 <xs:element name="yes" type="tns:NestedPolicyType"/>
141

142 <xs:element name="no" type="tns:NestedPolicyType"/>
143

144 <xs:element name="singleLocation" type="tns:SimplePolicyType"/>
145

146 <xs:element name="automaticallySelected" type="tns:SimplePolicyType"/>
147

148 <xs:element name="geographicLocation">
149 <xs:complexType >
150 <xs:attribute name="name" type="xs:string"/>
151 <xs:attribute name="Priority" type="tns:priorityInteger" use="optional"/

>
152 <xs:anyAttribute namespace="##any" processContents="lax"/>
153 </xs:complexType>
154 </xs:element>
155

156 <xs:element name="cloudLocation" type="tns:NestedPolicyType"/>
157

158 <xs:element name="onPremise" type="tns:SimplePolicyType"/>
159

160 <xs:element name="offPremise" type="tns:SimplePolicyType"/>
161

162 <!-- Data Constraints -->
163 <xs:element name="dataConstraints" type="tns:NestedPolicyType"/>
164

165 <xs:element name="maxItemSize">
166 <xs:complexType>
167 <xs:attribute name="Bytes" type="xs:integer"/>
168 <xs:anyAttribute namespace="##any" processContents="lax"/>
169 </xs:complexType>
170 </xs:element>
171

172 <xs:element name="rowSize">
173 <xs:complexType>
174 <xs:attribute name="Bytes" type="xs:integer"/>
175 <xs:anyAttribute namespace="##any" processContents="lax"/>
176 </xs:complexType>
177 </xs:element>
178

179 <xs:element name="fileSize">
180 <xs:complexType>
181 <xs:attribute name="Bytes" type="xs:integer"/>
182 <xs:anyAttribute namespace="##any" processContents="lax"/>
183 </xs:complexType>
184 </xs:element>
185

186 <xs:element name="maxDomainSize">

102

A.1. WS-Policy Assertion Language Interface

187 <xs:complexType>
188 <xs:attribute name="Gigabyte" type="xs:float"/>
189 <xs:anyAttribute namespace="##any" processContents="lax"/>
190 </xs:complexType>
191 </xs:element>
192

193 <xs:element name="tableSize">
194 <xs:complexType>
195 <xs:attribute name="Gigabyte" type="xs:float"/>
196 <xs:anyAttribute namespace="##any" processContents="lax"/>
197 </xs:complexType>
198 </xs:element>
199

200 <xs:element name="bucketSize">
201 <xs:complexType>
202 <xs:attribute name="Gigabyte" type="xs:float"/>
203 <xs:anyAttribute namespace="##any" processContents="lax"/>
204 </xs:complexType>
205 </xs:element>
206

207 <xs:element name="maxItemNumberPerInstance">
208 <xs:complexType>
209 <xs:attribute name="Number" type="xs:integer"/>
210 <xs:anyAttribute namespace="##any" processContents="lax"/>
211 </xs:complexType>
212 </xs:element>
213

214 <xs:element name="maxRowNumberPerInstance">
215 <xs:complexType>
216 <xs:attribute name="Number" type="xs:integer"/>
217 <xs:anyAttribute namespace="##any" processContents="lax"/>
218 </xs:complexType>
219 </xs:element>
220

221 <xs:element name="maxFileNumberPerInstance">
222 <xs:complexType>
223 <xs:attribute name="Number" type="xs:integer"/>
224 <xs:anyAttribute namespace="##any" processContents="lax"/>
225 </xs:complexType>
226 </xs:element>
227

228 <xs:element name="maxSizePerInstance">
229 <xs:complexType>
230 <xs:attribute name="Gigabyte" type="xs:float"/>
231 <xs:anyAttribute namespace="##any" processContents="lax"/>
232 </xs:complexType>
233 </xs:element>
234

235 <xs:element name="predefinedInstanceSize" type="tns:QNameAssertionType"/>
236

237 <!-- Interoperability -->
238 <xs:element name="interoperability" type="tns:NestedPolicyType"/>
239

240 <xs:element name="dataPortability" type="tns:NestedPolicyType"/>
241

103

Appendix A. Interface Definitions

242 <xs:element name="import" type="tns:SimplePolicyType"/>
243

244 <xs:element name="export" type="tns:SimplePolicyType"/>
245

246 <xs:element name="importAndExport" type="tns:SimplePolicyType"/>
247

248 <xs:element name="oneWaySynchronization" type="tns:SimplePolicyType"/>
249

250 <xs:element name="twoWaySynchronization" type="tns:SimplePolicyType"/>
251

252 <xs:element name="dataExchangeFormat" type="tns:NestedPolicyType"/>
253

254 <xs:element name="xml" type="tns:SimplePolicyType"/>
255

256 <xs:element name="json" type="tns:SimplePolicyType"/>
257

258 <xs:element name="proprietory" type="tns:SimplePolicyType"/>
259

260 <xs:element name="storageAccess" type="tns:NestedPolicyType"/>
261

262 <xs:element name="soa" type="tns:SimplePolicyType"/>
263

264 <xs:element name="rest" type="tns:SimplePolicyType"/>
265

266 <xs:element name="sql" type="tns:SimplePolicyType"/>
267

268 <xs:element name="orm">
269 <xs:complexType>
270 <xs:attribute name="name" type="xs:integer"/>
271 <xs:attribute name="Priority" type="tns:priorityInteger" use="optional"/>
272 <xs:anyAttribute namespace="##any" processContents="lax"/>
273 </xs:complexType>
274 </xs:element>
275

276 <xs:element name="jpa" type="tns:SimplePolicyType"/>
277

278 <xs:element name="jdo" type="tns:SimplePolicyType"/>
279

280 <xs:element name="linq" type="tns:SimplePolicyType"/>
281

282 <xs:element name="migrationAndDeploymentSupport" type="tns:QNameAssertionType"/>
283

284 <xs:element name="supportedIDEs" type="tns:NestedPolicyType"/>
285

286 <xs:element name="eclipse" type="tns:SimplePolicyType"/>
287

288 <xs:element name="netBeans" type="tns:SimplePolicyType"/>
289

290 <xs:element name="visualStudio" type="tns:SimplePolicyType"/>
291

292 <xs:element name="intelliJIdea" type="tns:SimplePolicyType"/>
293

294 <xs:element name="developerSDKs" type="tns:NestedPolicyType"/>
295

296 <xs:element name="java" type="tns:SimplePolicyType"/>

104

A.1. WS-Policy Assertion Language Interface

297

298 <xs:element name="dotNet" type="tns:SimplePolicyType"/>
299

300 <xs:element name="php" type="tns:SimplePolicyType"/>
301

302 <xs:element name="ruby" type="tns:SimplePolicyType"/>
303

304 <xs:element name="python" type="tns:SimplePolicyType"/>
305

306 <xs:element name="standartSupport" type="tns:SimplePolicyType"/>
307

308 <xs:element name="OS" type="tns:NestedPolicyType"/>
309

310 <xs:element name="windows" type="tns:NestedPolicyType"/>
311

312 <xs:element name="windowsXP" type="tns:SimplePolicyType"/>
313

314 <xs:element name="windows7" type="tns:SimplePolicyType"/>
315

316 <xs:element name="windows8" type="tns:SimplePolicyType"/>
317

318 <xs:element name="windowsServer" type="tns:SimplePolicyType"/>
319

320 <xs:element name="windowsVista" type="tns:SimplePolicyType"/>
321

322 <xs:element name="windows98" type="tns:SimplePolicyType"/>
323

324 <xs:element name="linux" type="tns:NestedPolicyType"/>
325

326 <xs:element name="ubuntu" type="tns:SimplePolicyType"/>
327

328 <xs:element name="fedora" type="tns:SimplePolicyType"/>
329

330 <xs:element name="archLinux" type="tns:SimplePolicyType"/>
331

332 <xs:element name="gentoo" type="tns:SimplePolicyType"/>
333

334 <xs:element name="openSUSE" type="tns:SimplePolicyType"/>
335

336 <xs:element name="slackware" type="tns:SimplePolicyType"/>
337

338 <xs:element name="macOS" type="tns:NestedPolicyType"/>
339

340 <xs:element name="macOSX" type="tns:SimplePolicyType"/>
341

342 <xs:element name="osX" type="tns:SimplePolicyType"/>
343

344 <!-- Compatibility -->
345 <xs:element name="compatibility" type="tns:NestedPolicyType"/>
346

347 <xs:element name="productIncludingVersion" type="tns:NestedPolicyType"/>
348

349 <xs:element name="mySQL" type="tns:VersionType"/>
350

351 <xs:element name="postgreSQL" type="tns:VersionType"/>

105

Appendix A. Interface Definitions

352

353 <xs:element name="msSQL" type="tns:VersionType"/>
354

355 <xs:element name="db2" type="tns:VersionType"/>
356

357 <xs:element name="oracle" type="tns:VersionType"/>
358

359 <!-- Storage -->
360 <xs:element name="storage" type="tns:NestedPolicyType"/>
361

362 <xs:element name="accessability" type="tns:NestedPolicyType"/>
363

364 <xs:element name="vpn" type="tns:SimplePolicyType"/>
365

366 <xs:element name="storageType" type="tns:NestedPolicyType"/>
367

368 <xs:element name="rdbms" type="tns:SimplePolicyType"/>
369

370 <xs:element name="noSQL" type="tns:SimplePolicyType"/>
371

372 <xs:element name="blobStore" type="tns:SimplePolicyType"/>
373

374 <xs:element name="cdn" type="tns:SimplePolicyType"/>
375

376 <xs:element name="transactionSupport" type="tns:NestedPolicyType"/>
377

378 <xs:element name="acid" type="tns:SimplePolicyType"/>
379

380 <!-- Performance -->
381 <xs:element name="performance" type="tns:NestedPolicyType"/>
382

383 <xs:element name="predictable" type="tns:NestedPolicyType"/>
384

385 <xs:element name="responseTime">
386 <xs:complexType>
387 <xs:attribute name="Milliseconds" type="xs:integer"/>
388 <xs:attribute name="Priority" type="tns:priorityInteger" use="optional"/

>
389 <xs:anyAttribute namespace="##any" processContents="lax"/>
390 </xs:complexType>
391 </xs:element>
392

393 <xs:element name="latency">
394 <xs:complexType>
395 <xs:attribute name="Milliseconds" type="xs:integer"/>
396 <xs:anyAttribute namespace="##any" processContents="lax"/>
397 </xs:complexType>
398 </xs:element>
399

400 <xs:element name="throughput">
401 <xs:complexType>
402 <xs:attribute name="value" type="xs:float"/>
403 <xs:attribute name="Priority" type="tns:priorityInteger" use="optional"/>
404 <xs:anyAttribute namespace="##any" processContents="lax"/>
405 </xs:complexType>

106

A.1. WS-Policy Assertion Language Interface

406 </xs:element>
407

408 <!-- CAP -->
409 <xs:element name="cap" type="tns:NestedPolicyType"/>
410

411 <xs:element name="consistencyModel" type="tns:NestedPolicyType"/>
412

413 <xs:element name="strongConsistency" type="tns:SimplePolicyType"/>
414

415 <xs:element name="weakConsistency" type="tns:SimplePolicyType"/>
416

417 <xs:element name="eventuallConsistency" type="tns:SimplePolicyType"/>
418

419 <xs:element name="availableInCaseOfPartitioning" type="tns:QNameAssertionType"/>
420

421 <!-- Flexibility -->
422 <xs:element name="flexibility" type="tns:NestedPolicyType"/>
423

424 <xs:element name="schema" type="tns:QNameAssertionType"/>
425

426 <xs:element name="schemaCustomizable" type="tns:QNameAssertionType"/>
427

428 <!-- Cloud Computing -->
429 <xs:element name="cloudComputing" type="tns:NestedPolicyType"/>
430

431 <xs:element name="serviceModel" type="tns:NestedPolicyType"/>
432

433 <xs:element name="iaas" type="tns:SimplePolicyType"/>
434

435 <xs:element name="paas" type="tns:SimplePolicyType"/>
436

437 <xs:element name="saas" type="tns:SimplePolicyType"/>
438

439 <xs:element name="deploymentModel" type="tns:NestedPolicyType"/>
440

441 <xs:element name="private" type="tns:SimplePolicyType"/>
442

443 <xs:element name="public" type="tns:SimplePolicyType"/>
444

445 <xs:element name="community" type="tns:SimplePolicyType"/>
446

447 <xs:element name="hybrid" type="tns:SimplePolicyType"/>
448

449 <!-- Management and Maintenance Effort -->
450 <xs:element name="managementAndMaintenanceEffort" type="tns:NestedPolicyType"/>
451

452 <xs:element name="selfService" type="tns:SimplePolicyType"/>
453

454 <xs:element name="managedOrAutomated" type="tns:SimplePolicyType"/>
455

456 <!-- Monitoring -->
457 <xs:element name="monitoring" type="tns:NestedPolicyType"/>
458

459 <xs:element name="supportedKPIs" type="tns:NestedPolicyType"/>
460

107

Appendix A. Interface Definitions

461 <xs:element name="processingLoad" type="tns:QNameAssertionType"/>
462

463 <xs:element name="networkDataTransfer" type="tns:QNameAssertionType"/>
464

465 <xs:element name="diskDataTransfer" type="tns:QNameAssertionType"/>
466

467 <xs:element name="memoryLoad" type="tns:QNameAssertionType"/>
468

469 <!-- Backup -->
470 <xs:element name="backup" type="tns:NestedPolicyType"/>
471

472 <xs:element name="backupInterval" type="tns:NestedPolicyType"/>
473

474 <xs:element name="periodic">
475 <xs:complexType>
476 <xs:attribute name="Minutes" type="xs:integer"/>
477 <xs:attribute name="Priority" type="tns:priorityInteger"/>
478 <xs:anyAttribute namespace="##any" processContents="lax"/>
479 </xs:complexType>
480 </xs:element>
481

482 <xs:element name="onDemand" type="tns:SimplePolicyType"/>
483

484 <xs:element name="accessInterrupt" type="tns:QNameAssertionType"/>
485

486 <xs:element name="numberOfBackupsKept" type="tns:NestedPolicyType"/>
487

488 <xs:element name="backupNumber">
489 <xs:complexType>
490 <xs:attribute name="number" type="xs:string"/>
491 <xs:anyAttribute namespace="##any" processContents="lax"/>
492 </xs:complexType>
493 </xs:element>
494

495 <xs:element name="backupDays">
496 <xs:complexType>
497 <xs:attribute name="number" type="xs:string"/>
498 <xs:anyAttribute namespace="##any" processContents="lax"/>
499 </xs:complexType>
500 </xs:element>
501

502 <xs:element name="backupMethod" type="tns:NestedPolicyType"/>
503

504 <xs:element name="snapshot" type="tns:SimplePolicyType"/>
505

506 <xs:element name="fileBackup" type="tns:SimplePolicyType"/>
507

508 <xs:element name="incrementalBackup" type="tns:SimplePolicyType"/>
509

510 <!-- Multi-Tenancy -->
511 <xs:element name="multiTenancy" type="tns:NestedPolicyType"/>
512

513 <xs:element name="multiTenancyType" type="tns:NestedPolicyType"/>
514

515 <xs:element name="multipleInstances" type="tns:SimplePolicyType"/>

108

A.1. WS-Policy Assertion Language Interface

516

517 <xs:element name="nativeMultiTenancy" type="tns:SimplePolicyType"/>
518

519 <!-- Global Elements -->
520

521 <xs:element name="none" type="tns:NoneType"/>
522

523 <xs:element name="type" type="tns:SimplePolicyType"/>
524

525 <!-- Schema Types -->
526

527 <xs:complexType name="NestedPolicyType">
528 <xs:sequence>
529 <!-- Actual content model is non-deterministic, hence wildcard. The following

shows intended content model: <xs:element ref="wsp:Policy" minOccurs="0" />
-->

530 <xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other" processContents=
"lax"/>

531 </xs:sequence>
532 <xs:attribute name="Priority" type="tns:priorityInteger" use="optional"/>
533 <xs:anyAttribute namespace="##any" processContents="lax"/>
534 </xs:complexType>
535

536 <xs:complexType name="SimplePolicyType">
537 <xs:sequence/>
538 <xs:anyAttribute namespace="##any" processContents="lax"/>
539 </xs:complexType>
540

541 <xs:complexType name="QNameAssertionType">
542 <xs:attribute name="Priority" type="tns:priorityInteger" use="optional"/>
543 <xs:anyAttribute namespace="##any" processContents="lax"/>
544 </xs:complexType>
545

546 <xs:simpleType name="priorityInteger">
547 <xs:restriction base="xs:integer">
548 <xs:minInclusive value="0"/>
549 <xs:maxInclusive value="4"/>
550 </xs:restriction>
551 </xs:simpleType>
552

553 <xs:simpleType name="percentageType">
554 <xs:restriction base="xs:float">
555 <xs:minInclusive value="0"/>
556 <xs:maxInclusive value="100"/>
557 </xs:restriction>
558 </xs:simpleType>
559

560 <xs:complexType name="ValueUnitType">
561 <xs:attribute name="value" type="xs:integer"/>
562 <xs:attribute name="unit" type="xs:string"/>
563 <xs:attribute name="Priority" type="tns:priorityInteger" use="optional"/>
564 <xs:anyAttribute namespace="##any" processContents="lax"/>
565 </xs:complexType>
566

567 <xs:complexType name="PercentageRangeType">

109

Appendix A. Interface Definitions

568 <xs:attribute name="Min" type="tns:percentageType"/>
569 <xs:attribute name="Max" type="tns:percentageType"/>
570 <xs:attribute name="Priority" type="tns:priorityInteger" use="optional"/>
571 <xs:anyAttribute namespace="##any" processContents="lax"/>
572 </xs:complexType>
573

574 <xs:complexType name="VersionType">
575 <xs:attribute name="version" type="xs:string"/>
576 <xs:anyAttribute namespace="##any" processContents="lax"/>
577 </xs:complexType>
578

579 <xs:complexType name="NoneType">
580 <xs:attribute name="none"/>
581 </xs:complexType>
582

583 </xs:schema>

Listing A.2: CDHS WS-Policy Assertion Language Schema.

A.2. Rules Interface

Rules created in a XML file must conform to the following XML schema:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <schema targetNamespace="http://iaas.uni-stuttgart/dsds" elementFormDefault="qualified"
3 xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://iaas.uni-stuttgart/dsds">
4

5 <complexType name="tXPathRules">
6 <sequence>
7 <element name="Rule" minOccurs="1" maxOccurs="unbounded">
8 <complexType mixed="true">
9 <attribute name="assertionQName" type="QName" use="required"/>

10 </complexType>
11 </element>
12 </sequence>
13 </complexType>
14

15 <element name="XPathRules" type="tns:tXPathRules"></element>
16

17 </schema>

Listing A.3: Post-Processing Rules XML Schema.

110

A.3. Validation Policy Documents Interface

A.3. Validation Policy Documents Interface

This section contains some policy documents that are used to validate the implemented
prototype.

1 <wsp:Policy Name="http://iaas.uni-stuttgart/cdhs/GoogleCloudSQL" wsu:Id="GoogleCloudSQL"
2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://www.w3.org/ns/ws-policy http://www.w3.org/2007/02/ws-policy.

xsd"
4 xmlns:wsp="http://www.w3.org/ns/ws-policy"
5 xmlns:cdhs="http://iaas.uni-stuttgart/cdhs"
6 xmlns:xs="http://www.w3.org/2001/XMLSchema"
7 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility

-1.0.xsd">
8

9 <!-- Security -->
10 <cdhs:security wsp:Ignorable="true">
11 <wsp:Policy>
12 <cdhs:authentication wsp:Ignorable="true"/>
13 </wsp:Policy>
14 </cdhs:security>
15

16 <!-- Data Constraints -->
17 <cdhs:dataConstraints wsp:Ignorable="true">
18 <wsp:Policy>
19 <cdhs:maxSizePerInstance cdhs:Gigabyte="100" wsp:Ignorable="true"/>
20 </wsp:Policy>
21 </cdhs:dataConstraints>
22

23 <!-- Compatibility -->
24 <cdhs:compatibility wsp:Ignorable="true">
25 <wsp:Policy>
26 <cdhs:productIncludingVersion wsp:Ignorable="true">
27 <wsp:Policy>
28 <cdhs:mySQL version="5.5.x"/>
29 </wsp:Policy>
30 </cdhs:productIncludingVersion>
31 </wsp:Policy>
32 </cdhs:compatibility>
33

34 <!-- Storage -->
35 <cdhs:storage wsp:Ignorable="true">
36 <wsp:Policy>
37 <cdhs:storageType wsp:Ignorable="true">
38 <wsp:Policy>
39 <cdhs:rdbms wsp:Ignorable="true"/>
40 </wsp:Policy>
41 </cdhs:storageType>
42

43 <cdhs:transactionSupport wsp:Ignorable="true">
44 <wsp:Policy>
45 <cdhs:acid wsp:Ignorable="true"/>

111

Appendix A. Interface Definitions

46 </wsp:Policy>
47 </cdhs:transactionSupport>
48 </wsp:Policy>
49 </cdhs:storage>
50

51 <!-- Monitoring -->
52 <cdhs:monitoring wsp:Ignorable="true">
53 <wsp:Policy>
54 <cdhs:supportedKPIs wsp:Ignorable="true">
55 <wsp:Policy>
56 <cdhs:networkDataTransfer wsp:Ignorable="true"/>
57 </wsp:Policy>
58 </cdhs:supportedKPIs>
59 </wsp:Policy>
60 </cdhs:monitoring>
61

62 </wsp:Policy>

Listing A.4: Google Cloud SQL Service Provider Policy.

1 <wsp:Policy Name="http://iaas.uni-stuttgart/cdhs/SQLDatabase" wsu:Id="SQLDatabase"
2 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
3 xsi:schemaLocation="http://www.w3.org/ns/ws-policy http://www.w3.org/2007/02/ws-policy.

xsd"
4 xmlns:wsp="http://www.w3.org/ns/ws-policy"
5 xmlns:cdhs="http://iaas.uni-stuttgart/cdhs"
6 xmlns:xs="http://www.w3.org/2001/XMLSchema"
7 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility

-1.0.xsd">
8

9 <!-- Scalability -->
10 <cdhs:scalability wsp:Ignorable="true">
11 <wsp:Policy>
12 <cdhs:scalabilityType wsp:Ignorable="true">
13 <wsp:Policy>
14 <cdhs:vertical/>
15 <cdhs:horizontal/>
16 </wsp:Policy>
17 </cdhs:scalabilityType>
18 </wsp:Policy>
19 </cdhs:scalability>
20

21 <!-- Availability -->
22 <cdhs:availability wsp:Ignorable="true">
23 <wsp:Policy>
24 <cdhs:automaticFailover wsp:Ignorable="true"/>
25 </wsp:Policy>
26 </cdhs:availability>
27

28 <!-- Security -->

112

A.3. Validation Policy Documents Interface

29 <cdhs:security wsp:Ignorable="true">
30 <wsp:Policy>
31 <cdhs:storageEncryption wsp:Ignorable="true"/>
32 <cdhs:transferEncryption wsp:Ignorable="true"/>
33 <cdhs:authentication wsp:Ignorable="true"/>
34 <cdhs:confidentiality wsp:Ignorable="true"/>
35 <cdhs:integrity wsp:Ignorable="true"/>
36 </wsp:Policy>
37 </cdhs:security>
38

39 <!-- Location -->
40 <cdhs:location wsp:Ignorable="true">
41 <wsp:Policy>
42 <cdhs:cloudLocation wsp:Ignorable="true">
43 <wsp:Policy>
44 <cdhs:offPremise/>
45 </wsp:Policy>
46 </cdhs:cloudLocation>
47 </wsp:Policy>
48 </cdhs:location>
49

50 <!-- CAP -->
51 <cdhs:cap wsp:Ignorable="true">
52 <wsp:Policy>
53 <cdhs:consistencyModel wsp:Ignorable="true">
54 <wsp:Policy>
55 <cdhs:strongConsistency/>
56 </wsp:Policy>
57 </cdhs:consistencyModel>
58

59 <cdhs:availableInCaseOfPartitioning wsp:Ignorable="true"/>
60 </wsp:Policy>
61 </cdhs:cap>
62

63 <!-- Flexibility -->
64 <cdhs:flexibility wsp:Ignorable="true">
65 <wsp:Policy>
66 <cdhs:schema wsp:Ignorable="true"/>
67 <cdhs:schemaCustomizable wsp:Ignorable="true"/>
68 </wsp:Policy>
69 </cdhs:flexibility>
70

71 <!-- Backup -->
72 <cdhs:backup wsp:Ignorable="true">
73 <wsp:Policy>
74 <cdhs:numberOfBackupsKept wsp:Ignorable="true">
75 <wsp:Policy>
76 <cdhs:backupDays days="35" wsp:Ignorable="true"/>
77 </wsp:Policy>
78 </cdhs:numberOfBackupsKept>
79

80 <!-- no support for backup method -->
81

82 </wsp:Policy>
83 </cdhs:backup>

113

Appendix A. Interface Definitions

84

85 </wsp:Policy>

Listing A.5: SQL Database Service Provider Policy.

114

Bibliography

[4Ca] 4CaaSt – EU Project. http://www.4caast.eu/.

[ADy] Amazon DynamoDB. http://aws.amazon.com/dynamodb/.

[AGJ+08] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger. Multi-Tenant
Databases for Software as a Service: Schema-Mapping Techniques. In Proc.
SIGMOD International Conf. on Management of Data SIGMOD’08, pages 1195–
1206. ACM, 2008.

[AJ10] S. T. AIMRUDEE JONGTAVEESATAPORN. Dynamic Service Selection Capability
for Load Balancing in Enterprise Service Bus. In Proceedings of the 4th WSEAS,
2010, 2010.

[AMQ] The Apache Software Foundation. Apache ActiveMQ. http://activemq.apache.
org/.

[AMV] The Apache Software Foundation. Apache Maven. http://maven.apache.org/.

[ANe12] Apache Neethi, 2012. http://ws.apache.org/neethi/.

[AOD] The Apache Software Foundation. Apache ODE (Orchestration Director Engine).
http://ode.apache.org/.

[APA11a] The Apache Software Foundation. Apache Camel User Guide 2.10.0, 2011. http:
//camel.apache.org/manual/camel-manual-2.10.0.pdf.

[APA11b] The Apache Software Foundation. Apache Karaf Users’ Guide 2.2.5,
2011. http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/
manual-2.2.5.pdf.

[ARD] Amazon Relational Database Service (Amazon RDS). http://aws.amazon.com/
rds/.

[ASD] Amazon Simple DB. http://aws.amazon.com/rds/.

[ASM] The Apache Software Foundation. Apache ServiceMix. http://servicemix.
apache.org/.

[Bre12] E. Brewer. CAP twelve years later: How the "rules" have changed. In Proc. 28th
IEEE Int Conf. on Data Engineering, 2012, pages 23–29, 2012.

[Cha04] D. A. Chappel. Enterprise Service Bus: Theory in Practice. O’Reilly Media, 2004.

115

http://www.4caast.eu/
http://aws.amazon.com/dynamodb/
http://activemq.apache.org/
http://activemq.apache.org/
http://maven.apache.org/
http://ws.apache.org/neethi/
http://ode.apache.org/
http://camel.apache.org/manual/camel-manual-2.10.0.pdf
http://camel.apache.org/manual/camel-manual-2.10.0.pdf
http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual-2.2.5.pdf
http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual-2.2.5.pdf
http://aws.amazon.com/rds/
http://aws.amazon.com/rds/
http://aws.amazon.com/rds/
http://servicemix.apache.org/
http://servicemix.apache.org/

Bibliography

[CHLP09] A. M. Colyer, H. Hildebrand, C. Leau, and A. Piper. Spring Dynamic Modules
Reference Guide 1.2.1, 2009. http://static.springsource.org/osgi/docs/1.
2.1/reference/pdf/spring-dm-reference.pdf.

[CLC12] CLOUDCYCLE, 2012. http://www.cloudcycle.org/.

[Ehc] Ehcache. http://ehcache.org/.

[EPA] Enterprise Privacy Authorization Language (EPAL 1.2). W3C Member Submis-
sion, http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/.

[Ess11] S. Essl. Extending an Open Source Enterprise Service Bus for Multi-Tenancy Sup-
port. Master’s thesis, Institute of Architecture of Application Systems, University
of Stuttgart, 2011.

[FB96] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies, 1996. RFC 2045, http://www.ietf.org/
rfc/rfc2045.txt.

[Goo] Google Cloud SQL. https://developers.google.com/cloud-sql/.

[HW03] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions. Addison-Wesley Professional, 2003.

[JBI05] Java Business Integration (JBI) 1.0, Final Release, 2005. JSR-208, http://jcp.org/
aboutJava/communityprocess/final/jsr208/.

[JDB] PostgreSQL JDBC Driver. http://jdbc.postgresql.org/.

[Mar02] F. Marinescu. EJB Design Patterns: Advanced Patterns, Processes, and Idioms.
John Wiley & Sons, Inc., 2002.

[MF06] F. R. Mariagrazia Fugini, Pierluigi Plebani. A User Driven Policy Selection Model.
In Proc. 4th Int Conf. 2006, pages 427–433, 2006.

[MIG12] MIGRATE, 2012. http://www.migrate-it2green.de/.

[Muh11] D. Muhler. Extending an Open Source Enterprise Service Bus for Multi-Tenancy
Support Focusing on Administration and Management, 2011. Institute of Archi-
tecture of Application Systems, University of Stuttgart, Diploma Thesis.

[Mul] Mule ESB. http://www.mulesoft.org/.

[NIS11] National Institute of Standards and Technology. The NIST Definition of Cloud
Computing, 2011. http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf.

[OAS04] OASIS. Web Services Resource Framework, 2004. https://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=wsrf.

[OAS06] OASIS. Web Services Security (WS-Security) 1.1, 2006. http://www.oasis-open.
org/standards/.

[OAS09] OASIS. WS-SecurityPolicy 1.3, 2009. http://www.oasis-open.org/standards/.

116

http://static.springsource.org/osgi/docs/1.2.1/reference/pdf/spring-dm-reference.pdf
http://static.springsource.org/osgi/docs/1.2.1/reference/pdf/spring-dm-reference.pdf
http://www.cloudcycle.org/
http://ehcache.org/
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
https://developers.google.com/cloud-sql/
http://jcp.org/aboutJava/communityprocess/final/jsr208/
http://jcp.org/aboutJava/communityprocess/final/jsr208/
http://jdbc.postgresql.org/
http://www.migrate-it2green.de/
http://www.mulesoft.org/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/standards/
http://www.oasis-open.org/standards/
http://www.oasis-open.org/standards/

Bibliography

[OAS12] OASIS. Topology and Orchestration Specification for Cloud Applications
(TOSCA), 2012. https://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=tosca.

[OPG11] The Open Group. IBM Cloud Computing Reference Architecture 2.0,
2011. https://www.opengroup.org/cloudcomputing/uploads/40/23840/
CCRA.IBMSubmission.02282011.doc.

[OSG11] OSGi Alliance. OSGi Service Platform: Core Specification Version 4.3, 2011.
http://www.osgi.org/Download/Release4V43/.

[OWJ] OW2 Consortium. JOnAS: Java Open Application Server. http://wiki.jonas.
ow2.org/.

[P3P] The Platform for Privacy Preferences 1.1 (P3P1.1) Specification. W3C Working
Group Note, http://www.w3.org/TR/P3P11/.

[PSQ] PostgreSQL. http://www.postgresql.org/.

[Rei] Rei Ontology Specifications, Ver 2.0. http://www.csee.umbc.edu/~lkagal1/
rei/.

[SKLU11] S. Strauch, O. Kopp, F. Leymann, and T. Unger. A Taxonomy for Cloud Data
Hosting Solutions. In Proc. 9th IEEE Int on Cloud and Green Computing, CGC
2011, pages 577–584, 2011.

[SOAa] SmartBear Software. soapUI. http://www.soapui.org.

[SOAb] SOA Work Group. www.opengroup.org/projects/soa/.

[SOA07] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), 2007. W3C Rec-
ommendation, http://www.w3.org/TR/2007/REC-soap12-part1-20070427/.

[SR12] A. G. u. H. T. Stefan Renner. Vergleich von Policy Sprachen zur Anwendung im
Bereich des Cloud Computings, 2012. Student Project, Institute of Architecture of
Application Systems, University of Stuttgart.

[WAS] Windows Azure SQL Database. http://msdn.microsoft.com/en-us/library/
windowsazure/ee336279.aspx.

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson.
Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall, 2005.

[Wie07] A. Wiese. Konzeption und Implementierung von WS-Policy- und WSRF-
Erweiterungen für einen Open Source Enterprise Service Bus, 2007. Institute
of Architecture of Application Systems, University of Stuttgart, Diploma Thesis.

[WSD01] Web Services Description Language (WSDL) 1.1, 2001. W3C Note, http://www.
w3.org/TR/2001/NOTE-wsdl-20010315.

[WSD06] WSDL 1.1 Binding Extension for SOAP 1.2, 2006. W3C Member Submission,
http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/.

117

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
http://www.osgi.org/Download/Release4V43/
http://wiki.jonas.ow2.org/
http://wiki.jonas.ow2.org/
http://www.w3.org/TR/P3P11/
http://www.postgresql.org/
http://www.csee.umbc.edu/~lkagal1/rei/
http://www.csee.umbc.edu/~lkagal1/rei/
http://www.soapui.org
www.opengroup.org/projects/soa/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://msdn.microsoft.com/en-us/library/windowsazure/ee336279.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/ee336279.aspx
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/

Bibliography

[WSD07] Web Services Description Language (WSDL) Version 2.0, 2007. W3C Recommen-
dation, http://www.w3.org/TR/wsdl20/.

[WSP07a] Web Services Policy 1.5 - Attachment, 2007. W3C Recommendation, http://www.
w3.org/TR/ws-policy-attach/.

[WSP07b] Web Services Policy 1.5 - Framework, 2007. W3C Recommendation, http://www.
w3.org/TR/2007/REC-ws-policy-20070904/.

[WSP07c] Web Services Policy 1.5 - Primer, 2007. W3C Note, http://www.w3.org/TR/
ws-policy-primer.

[XAC] eXtensible Access Control Markup Language (XACML). OASIS, https://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

[Xer] Xeround. http://xeround.com/.

[XPA99] XML Path Language (XPath), 1999. W3C Recommendation, http://www.w3.org/
TR/xpath/.

[XPF03] XPointer Framework, 2003. W3C Recommendation, http://www.w3.org/TR/
xptr-framework/.

[XSD04] XML Schema Part 1: Structures Second Edition, 2004. W3C Recommendation,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[YL04] L. Z. Z. Yutu Liu, Anne H. Ngu. QoS computation and policing in dynamic web
service selection. In Proc. 13th Int WWW Conf. WWW Alt. ’04, pages 66–73, 2004.

All links were last followed on November 29, 2012.

118

http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/2007/REC-ws-policy-20070904/
http://www.w3.org/TR/ws-policy-primer
http://www.w3.org/TR/ws-policy-primer
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://xeround.com/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

Declaration

All the work contained within this thesis, except where otherwise
acknowledged, was solely the effort of the author. At no stage was
any collaboration entered into with any other party.

Stuttgart, November 30, 2012 ——————————–
(Mansur Uralov)

	Introduction
	Motivating Scenario
	Scope of Work
	Outline
	Definitions and Conventions

	Fundamentals
	Cloud Computing
	Service-Oriented Architecture
	Enterprise Service Bus
	WS-Policy
	Extending an Open Source ESB for Multi-Tenancy Support Focusing on Administration and Management
	Extending an Open Source ESB for Multi-Tenancy Support
	Technologies
	Java Business Integration
	OSGi Framework
	Apache ServiceMix

	Related Works
	Comparison of Policy Languages for the Usage in Cloud Computing
	WS-Policy and WSRF Extensions for Open Source Enterprise Service Bus
	A User Driven Policy Selection Model
	Dynamic Service Selection Capability for Load Balancing in ESB

	Domain-specific WS-Policy Extension for CDHS
	Introduction
	Goals
	Requirements

	CDHS Policy Assertions
	Scalability
	Availability
	Recovery
	Security
	Privacy
	Location
	Data Constraints
	Interoperability
	Compatibility
	Storage
	Performance
	CAP
	Flexibility
	Cloud Computing
	Management / Maintenance Effort
	Monitoring
	Backup
	Multi-tenancy

	Concept and Specification
	System Overview
	Components
	Scenarios

	Dynamic Service Discovery and Selection
	Service Discovery
	Service Selection

	Requester Policy Inclusion
	Cache
	Use Cases
	Application Interfaces
	Non-functional Requirements
	Extensibility
	Re-usability
	Data Consistency
	Backward Compatibility
	Security
	Maintainability

	Special Cases

	Design
	Architectural Overview
	Components
	Integration

	Extensions to ServiceMix
	Dynamic Service Discovery and Selection Service Engine
	Registry OSGi Bundle

	Web Application
	Database Schemes
	Service Registry
	Tenant Registry

	Implementation and Validation
	Implementation
	Dynamic Service Discovery and Selection Service Engine
	DSDS Service/Endpoint
	Registry Component
	Changes to Management Application

	Validation
	Initialization
	Dynamic Service Discovery and Selection Validation

	Conclusion and Future Work
	Interface Definitions
	WS-Policy Assertion Language Interface
	Rules Interface
	Validation Policy Documents Interface

	Bibliography

