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Abstract 

 

In scientific computing, the number of floating point operations are increasing along with 
the higher performance of computers, as well as the larger problem size. Due to the 
finite representation of real numbers in computers, the calculated results are rounded 
into the representative numbers, which results in round-off errors. The round-off errors 
might be propagated as the program runs longer and in the end leads to an unreliable 
result.  

Discrete Stochastic Arithmetic (DSA) provides a method to evaluate the accuracy of 
computed results and detect numerical instabilities during execution of the program. 
The DSA has been implemented on an FPGA-based hardware system. The FPGA-
based hardware system has N parallel processing blocks so that it can run the same 
piece of code N times in parallel in different round-off error propagations, which is 
required by DSA. 

In this thesis, based on this hardware architecture, a graphical numerical accuracy 
debugger is developed. Using this graphical numerical accuracy debugger, the user can 
debug same piece of code in both PowerPC processors synchronously, without any 
modification to source codes. 

In order to implement the proposed debugging flow, a script has been written to 
substitute the original underlying debugging engine of SDK. Within the script, a series of 
functionalities are achieved: GDB input commands catching/forwarding, process calling, 
GDB output messages catching/forwarding etc. Moreover, with the substitution, it’s able 
to collect results from all processing blocks and then the number of significant bits can 
be calculated and presented to users.
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1 Introduction 

 

1.1 Background Knowledge 

 

With the increase of computers‘ speed and performance nowadays, the number of the 
arithmetic operations, especially floating point operations in scientific computations are 
significantly increased. However, due to the fact that only a finite number of bits in 
computer can be used to store floating point numbers, round-off operations are needed 
to fit the real numbers into the finite representation, which results in a round-off error 
against the actual numbers. As more and more floating point operations are performed 
in a sequence, the error could be propagated, and in the end, at some point, leads to a 
result which totally differs from the expected one, which is also known as numerical 
instability. 

In order to control this round-off error, several methods are developed, such as interval 
arithmetic (IA), variable-precision arithmetic (VPA), discrete stochastic arithmetic (DSA) 
etc [1].  

IA provides two values for each result, and the exact result is guaranteed to be between 
those two values [16], and the length of interval between the two values are considered 
to be the accuracy of the result. However, extra effort, for instance, change of rounding 
mode after each floating point operation, has to be performed, which dramatically 
lowers the computational efficiency. In addition, with the increasement of the problem 
size, the estimation of the numerical accuracy bases on IA is turned out to be very 
pessimistic and even fails to give results or any useful information for medium-to-large-
size problem case [15].  

While VPA allows the precision of floating point arithmetic used in the computations to 
be variable, depending on the problem to be solved and the required accuracy of the 
results [2]. However, VPA has the main advantage that it is too slow compared to native 
floating point operations. With the increase of specified precision, the time which the 
computations cost will also increase dramatically. 

DSA, which is much faster than VPA, has meanwhile the advantage over IA that the 
estimation of numerical accuracy is significantly tighter and independent of problem size 
[15]. Therefore, DSA is chosen in this thesis as the basis of arithmetic for discussion.  
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The basic idea of DSA is explained as follows: 

1. Run the same piece of code N times independently and synchronously, with 
random-rounding [4] applied after each floating point operation. 

2. With the N results gathered from N runs after each floating point operation, the 
accuracy (with respect to significant digits) is calculated based on a pre-
developped formula and therefore numerical instability can be detected. 

 

1.2 Motivation 

 

The round-off error controlling methods mentioned above can be implemented in a 
either software or hardware way [2][3][4]. As for DSA, there’re are also different kinds of 
implementations:  

• A software implementation: CADNA library developped by Labortoire 
d'informatique de Paris 6 (LIP6) in University Pierre & Marie Curie and CNRS 
(UMR 7606) [5][6]. 

• A hardware implementation by R. Avot-Chotin and H. Mehrez [1]. 

In this thesis, an FPGA-based computing system with two parallel processing blocks is 
served as the hardware platform support, which is based on a hardware architecture 
with DSA support, proposed by Wenbin Li in [15].  

However, with this FPGA-based computing system, as well as the accompanying Xilinx 
Tools (XPS,SDK, XMD, etc), while in SDK‘s graphical debugging interface, it is 
impossible to debug the same piece of code in C-statement level simultaneously and 
synchronously in both PowerPC processors,  which is required in DSA (running the 
same piece of code N times, with N = 2). In addition, the precision (number of significant 
bits) of certain variable cannot be displayed directly to the user. In this case, the user 
cannot have a clear and convenient view about how accurate the result is. 

Thus, a graphical numerical accuracy debugger should be developed and implemented 
to fulfill the following goals: 
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1. Debug the same piece of code in both PowerPC processors simultaneously, 
without any modification to source codes. 

2. Gather the value of variables from both processors while the debugging process 
is in background execution. 

3. Calculate the numerical accuracy and display both the accuracy information and  
the computed result to users. 

 

1.3 Hardware Platform and Software Tools 

 

1.3.1 Hardware Devices 
 

The following hardware devices are used in this thesis: 

• Xilinx Virtex-5 FXT ML510 FPGA board 

• JTAG chain 

• Computer with Windows operation system 

 

1.3.2 Software Tools 
 

The following software tools are referenced during this thesis: 

• Xilinx ISE Design Suite 14.3 

• Xilinx Embedded Development Kit (EDK) 14.3 

• Microsoft Visual Studio 2010 
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1.4 Main Steps 

 

In order to reach the previously stated targets, the following steps are scheduled and 
carried out during the thesis work.  

Firstly, an investigation is made to find out the principles and work flows of Xilinx SDK 
debugging session, which helps to understand where the changes should be made and 
serves as the foundations of next step. Secondly, a script is written to substitute the 
original underlying debugging engine of SDK (i.e. GDB), so that when user is debugging 
via SDK’s graphical debugger interface, the script is able to capture the sequence of 
commands that SDK sends to GDB, without any interruption or interference of user’s 
debugging process. Thirdly, a modification should be applied to this script, so that it’s 
adapted to dual-processor debugging scenarios. Lastly, a few additional functionalities 
are augmented, so that via the script, the results from both processors can be collected, 
and the significant digits are calculated and presented to users. 
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2 Recall of Discrete Stochastic Arithmetic (DSA) 

 

In this chapter, the concepts and principles of Discrete Stochastic Arithmetic (DSA) are 
reviewed. In section 2.1, a brief introduction of floating point number representation 
standard is presented as the first step, and then the round-off error is introduced in 
section 2.2, afterwards in section 2.3 a brief recall of DSA is shown. 

 

2.1 Floating Point Number Representation 

 

Every real number 𝑥 can be represented as 

𝑥 = 𝑠 ∗ 𝑚 ∗ 𝑏𝑒  , 

where 

• 𝑠 is the sign bit 

• 𝑏 is the base 

• 𝑒 is the exponent  

• 𝑚 is the mantissa , 1 ≤ 𝑚 < 𝑏, with the form  

𝑚 = (𝑑1.𝑑2𝑑3 …𝑑𝑛)   ∀𝑖 ∈ [1,𝑛],   𝑑𝑖 ∈ ℕ 𝑎𝑛𝑑 0 ≤  𝑑𝑖 < 𝑏 

According to IEEE Standard for Floating-Point Arithmetic (IEEE 754), in computer 
where a floating point number is stored, 𝑏 is chosen as 2, and therefore it’s a sequence 
of bits made up from 0 and 1, which can be interpreted as: 

𝑥 = 𝑠 ∗ (𝑑1.𝑑2𝑑3 …𝑑𝑛) ∗ 2𝑒 

where 

∀𝑖 ∈ [1,𝑛]  𝑑𝑖 ∈ {0,1} 
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exponent  

exponent  

 

In IEEE 754, two most-frequently used binary floating point formats are specified, single 
precision and double precision [8]. For single precision floating point number, 𝑛 = 24. 
As shown in Figure 2.1,  it‘s encoded as 32 bits: with first bit as sign bit (0 for + and 1 for 
-), followed by 8 bits as exponent, and 23 bits as mantissa, which corresponds to 
(𝑑2𝑑3. .𝑑24), while 𝑑1 is hidden, and 𝑑1 = 1 for normalized numbers (which is the 
most case), and 𝑑1 = 0 for denormalized numbers. Due to the possibility that the 
exponent can be negative, the coded exponent results from an addition of the actual 
exponent and a bias, which is 127 for single precision. 

  

 

 

 

The double precision floating point number is encoded in a similar way, except 𝑛 = 53, 
and exponent is encoded as 11 bits, while the bias for exponent is 1023, as depicted in 
Figure 2.2. 

  

 

 

 

2.2 Rounding Mode 

 

As only finite bits are used to store the floating point numbers, for those real numbers 
which exceed the maximum length of bits for storage, a rounding operation is 
necessary. 

Let 𝑋 be a real number in exact arithmetic, then 𝑋 is bounded by two consecutive 
floating point numbers, one rounded down 𝑋− and the other rounded up 𝑋+, each of  

0   1                                8  9                                                                       31          

s mantissa 

Figure 2.1: Single precision floating point number presentation 

0   1                              11 12                                                                       63          

s mantissa 

Figure 2.2: Double precision floating point number presentation 
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them representing the exact representative result [1], i.e. 𝑋− ≤  𝑋 ≤ 𝑋+ . Thus, 𝑋 can 
be rounded to 𝑋− or 𝑋+ depending on which rounding mode is applied. 

IEEE 754 defines four such rounding modes, which are: 

• Round to nearest (roundTiesToEven):  𝑋 is rounded to the nearer of 𝑋+ or 
𝑋−. In case that neither is nearer, the even alternative is chosen. 

• Round to zero: 𝑋 is rounded to the representable number closer to 0, i.e. 
min {|𝑋−|, |𝑋+|} 

• Round to positive-infinity: 𝑋 is rounded to 𝑋+. 

• Round to negative-infinity: 𝑋 is rounded to 𝑋−. 

Random rounding, is when an inexact representable number is obtained and a rounding 
operation is need, the process to randomly choose 𝑋+or 𝑋−  with identical probability. 

 

2.3 Discrete Stochastic Arithmetic (DSA) 

 
Discrete Stochastic Arithmetic (DSA) provides a method for analyzing and controlling 
round-off errors during the execution of scientific codes. It’s an extension of  the 
CESTAC method but also presents new concepts like informational zero, stochastic re-
lations etc, which will be explained afterwards. 
 
The aim of DSA is [4]: 
 

• Detect numerical instabilities 
• Evaluate round-off error propagation on each result 
• Calculate the accuracy of results in terms of significant bits 
• Judge the result is reliable or not 
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2.3.1 CESTAC Method 
 
Contrôle et Estimation Stochastique des Arrondis de Calculs (CESTAC) method [12][13] 
is such a method to evaluate the effect of round-off error propagations and detect nu-
merical instabilities. It was proposed by M. La Porte and J. Vignes in 1974, and the 
basic principle can be summarized as follows: 
 

1. Run the same piece of codes N times, and randomly rounding is applied after 
each floating point operations. 

2. After N executions, N results are gathered and compared. 
3. Those parts which are common in all N results are considered to be reliable, and 

the number of bits of this part is known as significant digits. 
 
According to this approach [14], after N times running of the codes, each sample 𝑅𝑖  can 
be modeled as: 
 

𝑅𝑖 = 𝑟 +  �𝑔𝑘(𝑑)2−𝑝𝛼𝑘 + 𝑂(2−2𝑝)
𝑛

𝑘=1

 , 

 
where  
 

• 𝑅𝑖 :   the 𝑖-th sample,  𝑖 ∈ [1,𝑁] 
• 𝑟 :   the exact result 
• 𝑔𝑘(𝑑): quantities depending exclusively on the program and data, but  

  independent of 𝛼𝑘 
• 𝛼𝑘:  normalized rounding errors, which are modelled by independent  

                    random variables identically and uniformly distributed on (-1,+1) 
• 𝑝:  wordlength of mantissa 

 
The reliability of this model and the effectiveness of CESTAC method for actual use in 
scientific codes can only be guaranteed if the following hypotheses are true [4]: 
  

• Hyp1. The elementary round-off errors 𝛼𝑘 of the floating point arithmetic opera-
tions are random independent, centered and uniformly distributed variables. 
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• Hyp2. The approximation of the first order in 2−2𝑝  is legitimate. 
 

If these two hypotheses hold,  then 𝑅𝑖, 𝑖 ∈ [1,𝑁] is proven to be samples of Gaussian 
distribution, centered on the exact result 𝑟, therefore it is possible to use Students test 
to get a confident interval of 𝑅� with the probability of (1 −  𝛽) [4][17], where 𝑅� is the av-
erage value of N samples, which are given as follows: 
 

𝑅� =
1
𝑁  �𝑅𝑖

𝑁

𝑖=1

  . 

 
And the precision, i.e. number of significant digits, can be evaluated by the following 
formula [14]: 
 
 

𝐶𝑅� = 𝑙𝑜𝑔10 �
√𝑁 ∗ |𝑅�|
𝜏𝛽 ∗ 𝜎

� , 

 
where  

𝜎2 =
1

𝑁 − 1�(𝑅𝑖 −  𝑅�)2
𝑁

𝑖=1

, 

 
and 𝜏𝛽 is the critical value of the Student distribution for 𝑁 − 1 degrees of freedom and 

a probability level 1 −  𝛽. 
 
Hypothesis 1 is ensured to be satisfied due to the great universality of the theorem of 
central limit and robustness of Student law [4], while Hypothesis 2 holds if the terms in 
2−2𝑝 is negligible compared to terms in 2−𝑝, to be more exact, the following two re-
strictions must be met: 
 

• The operands of any multiplication are both significant. 
• The divisor of any division is significant. 

 
Both of the restrictions are inspected in the implementation of the hardware platform, 
which will be presented later in Chapter 3. 
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2.3.2 Informational Zero 
 

A result from the CESTAC method is said to be informational zero if and only if one of 
the following two conditions holds: 

• 𝑅𝑖  =  0, ∀𝑖 ∈ [1,𝑁] 

• 𝐶𝑅�  ≤  0 

Informational zero is denoted as @.0, from this definition, Discrete Stochastic Relations 
(DSR) can be derived as follows [4]: 

Assume 𝑋 and 𝑌 are N-samples provided by CESTAC method, 

• discrete stochastic equality (denoted by 𝑠 =) is defined as 

𝑋 𝑠 = 𝑌  if  𝑋 − 𝑌 = @. 0 

• discrete stochastic inequality (denoted by 𝑠 > and 𝑠 ≥) are defined as 

𝑋 𝑠 > 𝑌  if  𝑋� > 𝑌� and 𝑋 − 𝑌 ≠ @. 0 

𝑋 𝑠 ≥ 𝑌 if 𝑋� ≥ 𝑌� or 𝑋 − 𝑌 = @. 0 
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3 Hardware Platform Support 

 

In this thesis, an FPGA-based hardware architecture which supports DSA, is served as 
the hardware platform support for the graphical numerical accuracy debugger. In 
section 3.1, a general overview of this hardware system is presented, and in the 
following three sections (section 3.2, section 3.3, section 3.4) the descriptions and 
functionalities of some key components: Discrete Stochastic Floating Point Unit, 
Synchronization Unit, and Numerical Accuracy Unit are introduced respectively. 

 

3.1 Overview of the Hardware System 

 

The hardware system is located on the Xilinx Virtex-5 FXT ML510 FPGA board. It 
consists of two hardwired PowrePC440 processors, two Discrete Stochastic Floating 
Point Units (DSFPUs), one Synchronization Unit (SyncU), one Numerical Accuracy Unit 
(NAU) and some other necessary components like memories, serial ports etc. The NAU 
consists of a Significant Digits Estimation Unit (SDEU) and a Numerical Instability 
Detection Unit (NIDU). 

The overview of this hardware system is shown in Figure 3.1. 

Here the PowerPC440 processor, the DSFPU as well as the corresponding memories 
and other components are said to form a processing block. While the synchronization 
unit, together with NAU, are shared by both processing blocks. 
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Figure 3.1: Overview of the hardware system which support DSA 

 

 

3.2 Discrete Stochastic Floating Point Unit (DSFPU) 

 

The DSFPU, which is connected to PowerPC processors through Auxiliary Processor 
Unit (APU) [7], worked as a coprocessor. Apart from normal functionalities which are in 
common with traditional IEEE-754 compatible  
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FPUs (e.g. decoding and execution of the standard floating point operations, support of 
single precision and double precision formats etc.), it is supposed to support DSA and 
therefore some more features are added: 

• Random rounding 
 
As mentioned in 2.2, random rounding is used in DSA after each floating point 
operation, to round the result either upwards or downwards randomly with the 
same probability. In DSFPU, it is implemented by using a Linear Feedback Shift 
Register (LFSR) to generate a pseudo random number [15]. 
 

• Discrete Stochastic Relations support 

It’s implemented by a particular unit to support the DSR which are defined in 
section 2.3.2. This unit is designed as a common unit for both DSFPUs, because 
the execution of the program in different processing blocks might jump into 
different branches of the program depending on their own results obtained. If this 
is the case, then the subsequent numerical analysis is impossible. Thus, a 
decision has to be made before the program enters the branch and forwarded 
both processors, and this discrete stochastic relations unit is designed to 
generate such a decision. 

• Forward exceptions raised from NAU 
 
When there’s an exception raised from NAU due to the detection of any 
numerical instabilities, DSFPU should be able to assert and deassert applicable 
signals in order to communicate the exception to PowerPC process via APUs 
properly [7]. 
 

3.3 Synchronization Unit 

 

According to the principles of DSA, the floating point operations running in each process 
block need to be synchronously processed. Otherwise, different results of the same 
variable cannot be collected and subsequent numerical analysis cannot be performed.  
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Thus the synchronization unit for both processor blocks is necessary. It’s designed in 
such a way that, when an asynchronous execution is discovered, that is, when a floating 
point operation on one DSFPU has already started but not on the other, a stall signal is 
issued by this synchronization unit. When such a stall signal is asserted, the DSFPU 
suspends the current execution by executing stall cycles, keeps all the state 
unchanged, until the other DSFPU catches it. After that the stall signal is released and 
both DSFPUs can continue executing.  

 

3.4 Numerical Analysis Unit (NAU) 

 

Numerical Analysis Unit (NAU) is the key component of the hardware system with DSA 
support. It consists of Significant Digits Estimation Unit (SDEU) and Numerical 
Instability Detection Unit (NIDU), and should have a functional implementation of the 
following: 

a) Estimate the number of significant digits 

b) Check the significance of multiplication operands and the divisor, as 
mentioned in section 2.3.1 

c) Check if the accuracy of the result is acceptable, i.e. if the accuracy is lower 
than the pre-defined threshold 

d) Check if there’s a loss of accuracy due to cancellation in addition/subtraction 

e) Check if there’s unstable branch 

f) Raise the excpetions to DSFPU in case of any detection of numerical 
instabilities 

Function a) is implemented by SDEU, while function b) – f) is implemented by NIDU. 

The SDEU is connected to both DSFPUs and calculates the number of significant digits 
for multiplication operands, divisor, as well as the computed results. An optimized data 
path for estimation of the exact significant digits for N = 2 (i.e. two processing blocks) is 
proposed in [15], via this optimization, the cost of hardware resources are also reduced.  
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After the calculation is done, the computed number of significant digits are sent to 
Discrete Stochastic Relations Unit (DSRU) to make comparisons for the decision of 
DSR operations, and/or to the NIDU for the detections of numerical instabilities. 

Although the number of significant bits can be calculated in NAU,  an extra calculation in 
the software debugger is required, because: 

• The calculation result in NAU is sent to DSRU and/or NIDU for the decision of 
DSR operations, or for the detection off numerical instabilities. It’s for internal 
usage and therefore the user cannot obtain this calculation result via debugging 
interface. 

• In order to reduce the cost of hardware resources, the calculations of number of 
significant bits in NAU is an approximate value. 

• It’s not a high demand in terms of calculation speed as it‘s for debugging 
purpose, therefore calculating in software is sufficient and acceptable. 
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4 SDK Debugging Session 

 

Since the numerical accuracy debugger is based on the FPGA computing system, the 
FGPA-related Xilinx tools (e.g. XPS, SDK, etc) are referenced. Among them, SDK itself 
already provides a friendly and convenient graphical debugging interface, with GDB 
used as the underlying debugging engine. Thus the graphical debugger tool integrated 
in SDK is here chosen as the starting point of developing the numerical accuracy 
debugger. 

In section 4.1, a few referenced terminologies are explained and the functionalities of 
used  Xilinx tools are introduced, and in section 4.2, the principles and work flows of 
SDK debugging session are discussed, including single-processor debugging and dual-
processor debugging. Based on the analysis on these, a new semi-auto dual-processor 
debugging flow is proposed and explained in section 4.3. 

 

4.1 Xilinx EDK Concepts and Tools 

 

Xilinx Embedded Development Kit (EDK) is a collection of tool package, including Xilinx 
Platform Studio (XPS), Software Development Kit (SDK), hardware IP and some other 
components [9]. These tools are designed for the implementation of the complete 
embedded systems on a Xilinx FPGA device. 

 

4.1.1 Software Development Kit (SDK) 
 

While XPS is used for designing and developing the hardware environment of the 
customized embedded system, and afterwards, this hardware design can be exported 
to SDK, where the C/C++ embedded software applications running on processors are 
created and implemented, based on the hardware platform specifications. 

Software project is processor-specific, i.e., if more than one processor is specified in the 
hardware platform implementation, then whenever a software project is created, it must 
be clearly defined that on which processor would this software project run.  
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Figure 4.1 shows the screenshot of SDK working environment. 

 

Figure 4.1: SDK working environment 

For a software project, the source files, as well as the header files and the board 
support package (BSP) are required, which are listed in the left-side window of the 
working environment. 

The source files, together with necessary header files can be compiled later to result in 
a binary output (.elf) file, which can be downloaded to target processor later for 
debugging or execution purpose. While the board support package (BSP), mandatorily 
correspond to each software project, is a collection of low-layer drivers and libraries, 
which are linked by the software application at runtime. 

The C/C++ code perspective and debug perspective are located in the top-right corner. 
Perspective in SDK refers to different displays of windows, and depending on the on-
going activities should the perspective change accordingly. When the C/C++ codes are  
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being developped, C/C++ code perspective will be shown, while the binary file is being 
debugged on hardware, SDK will automatically jump to the debug perspective. 

4.1.2 Xilinx Microprocessor Debugger (XMD) 
 

Xilinx itself also provides a debugging and verifying tool for the software application 
running on PowerPC (405 or 440) processor, MicroBlaze processor, or ARM Cortex-A9 
MPCore processor [10]. It’s so called Xilinx Microprocessor Debugger (XMD). 
 
As depicted in Figure 4.2, XMD helps user to debug the software project on hardware 
by acting as a bridge in between.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TCP connection 

 

Xilinx Microprocessor Debugger (XMD) 

GDB remote protocol interface TCL interface 

local or remote GDB/SDK manual debugger/TCL scripts 

Microblaze targets 

JTAG chain 

PowerPC targets Cortex A9 targets 

hardware on board 

Figure 4.2: XMD acts as a bridge 
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XMD provides a Tool Command Language (TCL) interface which can read customized 
TCL scripts to realize line-control functionalities or commands for debugging, and it also 
accepts a connection to the local or remote GNU Debugger (GDB) via TCP protocol so 
that the user can control the debugging process on GDB. On the other side, XMD con-
nects to the targets on the actual hardware platform, and allows to download the soft-
ware applications to hardware targets for debugging or running. These targets can be 
Microblaze processor targets, PowerPC processor targets, Cortex A9 processor targets, 
etc. 
 
Beside these, XMD also supports some other interfaces, e.g. socket interface, serial in-
terface, etc., which are not explained in detailed here. 
 

4.1.3 GNU Debugger (GDB) 
 
The GNU Debugger (GDB), which is one of the most used debuggers, is integrated in 
SDK and used by SDK as the underlying debugging engine when debugging software 
applications running on hardware targets. 
 
The GNU Debuggers are classified into different kinds in SDK, depending on which pro-
cessors they are called for. For debugging the software applications running on Micro-
blaze processor, mb-gdb is called; while for those running on PowerPC processor, 
powerpc-eabi-gdb is called. 
 
As mentioned in section 4.1.2, GDB connects to XMD via a remote TCP protocol, and 
uses XMD as an underlying engine to communicate with the targets on board, which 
enables remotely debugging from the user’s point of view. The detailed work flow of the 
debugging session will be explained in next section. 
 

4.2 Work Flow of SDK Debugging Session 

 
As stated in Chapter 3, the hardware platform is built with PowerPC processors, thus,  
only debugging session for PowerPC targets is discussed here. 
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4.2.1 Creation of A Test Project 
 
In order to find out the work flow of SDK debugging session, a test project is created as 
the first step. The hardware system of this test project is shown in Figure 4.3 as a block 
diagram.  
 
 
 
 
 
 
 
 

 

 

 

 

  

 

 

 

 

 

Figure 4.3: Hardware system of test project 

Actually it’s a simplified version of hardware systems presented in Chapter 3: the whole 
system includes two PowerPC440 processors with maximum operating frequency up to  
400MHz, each processor has its own 512MB DDR2_SDRAM attached, and connection 
to Floating Point Unit (FPU) is established via Fabric Co-processor Bus (FCB), in 
addition , two RS232_Uart are also connected to PowerPC processors respetively via 
Processor Local Bus (PLB) so that the output printed results can be observed. 
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Apart from that, a small piece of C codes are written for the software application, which 
is shown in Listing 4.1 below. 

 

 

 

 

 

 

 

 

 

 

 

Listing 4.1: Software source codes of test project 

 

4.2.2 Work Flow of Single-processor Debugging 
 
Let’s first consider the single-processor debugging scenario. Here single-processor de-
bugging means debug one piece of code on single PowerPC processor, within one de-
bugging session. 
 
Now that the test project is created, the hardware debugging session can be launched  
(via right click the .elf file and select Debug as > Launch on hardware), after several 
seconds’ loading, the debug perspective is presented, and the program is suspended at 
the beginning of main function, where the first breakpoint is located by default, waiting 
for the user’s next actions. The debug perspective is shown in Figure 4.4. 
 
 

#include <stdio.h> 
#include "platform.h" 
 
int main() 
{ 

init_platform(); 
 

    double a = 1.2; 
    double b = 2.3; 
    double c = a * b; 
 
    cleanup_platform(); 

 
    return 0; 
} 
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Figure 4.4: SDK debug perspective 

 
During the initialization phase of debugging session, two more useful observations are 
noticed here: 
 
1. Active processes in windows task manager shown in Figure 4.5. 
 
Among them, the remarkable processes are: 

• javaw.exe 
represents SDK process, as SDK is based on Eclipse. 
 

• powerpc-eabi-gdb.exe 
proves that the GDB for PowerPC processor is running, and the actual path can 
be located via checking the property of this process, which turns out to be 
C:\Xilinx\14.3\ISE_DS\EDK\gnu\powerpc-eabi\nt\bin\powerpc-eabi-gdb.exe 
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• xmd.exe 

there’re two xmd.exe listed, whose absolute paths can be both located as: 
C:\Xilinx\14.3\ISE_DS\EDK\bin\nt\xmd.exe 
C:\Xilinx\14.3\ISE_DS\EDK\bin\nt\unwrapped\xmd.exe 
respectively, and it’s proven that when SDK is started, the former  XMD is called, 
which will call the latter one afterwards. 

 
 

 
Figure 4.5: Active processes in windows task manager view 

 
2. Information printed in XMD console window, shown in Figure 4.6. 

The message “Accepted a new TCLSock connection from 127.0.0.1 on port 1276” 
shows that that GDB successfully connects to XMD, while the message “Software 
Breakpoint 3 Hit, Processor Stopped at 0x000000218” is consistent with the fact shown 
in Figure 4.4 that the first breakpoint is hit and the processor is temporarily stopped to 
wait for the user’s next operations. 
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Figure 4.6: Information printed in XMD console window 
 
According to further reading in [10] and conclusion from the above observations, it’s 
proven that whenever XMD connects to a hardware target on board, it opens a GDB 
server, together with a listening port (port number in default: 1234), which allows a local 
or remote connection from GDB via this TCP port, this SDK single-processor debug-
ging/connection flow is shown in Figure 4.7:  
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.7: SDK single-processor debugging/connection flow 
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Here GDB and XMD are automatically called by SDK once the “debug on hardware” 
command is received from the user. In the flow graph, GDB and XMD are distributed on 
two different computers, which actually realize a remote-debugging functionality. How-
ever, they can also both located on the same computer (i.e. Computer 1 and 2 in Figure 
4.7 are the same computer), which is adopted in our case for convenience purpose. 
 
As a conclusion, when Debug as > Launch on hardware is applied to .elf files, a series 
of operations are handled by SDK in background during the debugging session launch 
and initialization period, which are listed below: 
 

• Connect XMD to hardware target with the command 
connect ppc hw –debugdevice devicenr x cpunr x 
This will open a gdb server on XMD and a TCP port for GDB connection. 
 

• Execute powerpc-eabi-gdb.exe with the commnd 
powerpc-eabi-gdb [options] –nw testelf.elf  
The actual options will be discovered later. 
 

• Connect GDB to XMD via the command 
target remote localhost:1234 
Here localhost means the GDB and XMD are located on the same machine, 
while 1234 represents the TCP port opened by XMD. After the command is suc-
cessfully called, XMD will also print out a confirmation message that the GDB 
connection is accepted. 
 

• Dowland .elf file to board 
which is equal to XMD command dow test.elf 
 

• Set breakpoints, initialize debug information 
breakpoints are set in the beginning and end of main function by default, then the 
user‘s customized breakpoints are added  
 

• Enter the debug perspective 
 
Notice: all of these operations are automatically done by SDK, there’s no manual input 
or commands from user point of view at all. 
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4.2.3 Work Flow of Dual-processor Debugging 
 
Now let’s consider the dual-processor debugging scenario. 
 
In fact, it is possible to connect single XMD instance to both PowerPC targets at the 
same time, and switch between different targets is also possible, as depicted in Figure 
4.8: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: XMD connects to both PowerPC440 targets 
 
 
By connecting to both processors, XMD will open two GDB servers and two listening 
ports, according to the principles explained in section 4.2.2. However, it’s impossible for 
single GDB instance to connect to both GDB servers: when the same GDB instance, 
which is already connected to one GDB server opened by XMD, is forced to connect to 
the other GDB server opened by XMD, it will be shown that the previous GDB connec-
tion is closed automatically, as depicted in Figure 4.9. 
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Figure 4.9: XMD closes one GDB connection 
 
However, this doesn’t mean that XMD cannot accept two GDB connections at the same 
time. It is possible, but only if two GDB instances are used for connection. Figure 4.10 
shows the situation. 
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Figure 4.10: XMD successfully accepted two GDB connections 
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.elf #0 

.elf #1 

 
Based on this, if two software projects are created for two PowerPC processors respec-
tively, SDK allows the two .elf files to be debugged on different PowerPC processors 
simultaneously but independently, which is shown in Figure 4.11: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.11: SDK dual-processors debugging/connection flow 
 
Here “simultaneously but independently” means that the two debugging sessions can 
be proceeded in parallel, but operations/commands which the user performs in .elf #0 
debugging session will not affect the user’s operations/commands in .elf #1 debugging 
session, they are asynchronously proceeded. The debugging status (breakpoints, vari-
able values) will not take effect in each other either. Moreover, users can switch back 
and forth between these two debugging sessions freely. 
 
However, the pre-set debugging modes mentioned above are not the debugging flows 
required, because firstly, the same piece of the code needs to be debugged; secondly, 
the debugging operations have to be synchronously performed, which means, for in-
stance, when user asks PowerPC #0 to do “step over” operations, the same commands 
should be received and carried out by PowerPC #1, only in this case can the results be 
obtained from both processors after each floating point operation. 
 
One possible solution is creating two software projects for both PowerPCs with exactly 
the same source codes, and the same debugging operations are repeated manually in 
both debugging sessions. However, it would be obviously too much work, when the  
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source codes grow in larger-size and the debug operations also increase. The user has 
to set exactly the same breakpoints, print out exactly the same variable values, step into 
and over exactly the same functions/statements, which is not only troublesome, but also 
easy to make mistakes. 
 
In order to overcome this problem, a new and feasible dual-processor debugging flow 
must be developed. 
 

4.3 A Semi-auto Dual-processor Debugging Flow 

 
As discussed in section 4.2.3, the automatic SDK dual-processor debugging flow will 
not satisfy our target. Thus in this section, a combination of SDK debugging and manual 
connection is proposed as the new dual-process debugging flow here. 
 
It is based on the fact that in SDK debugging session, SDK will translate each user in-
terface action in debug perspective (for instance, press the button “step over”, double 
click to set breakpoints, etc.) into a sequence of GDB commands, while process the 
output of GDB to display the current state of the program (e.g., values of variables, list-
ing of breakpoints/registers) being debugged [18]. According to the principles, a semi-
auto dual-processor debugging flow is depicted in Figure 4.12 as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12: Semi-auto dual-processor debugging flow  
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As shown in Figure 4.12, the semi-auto debugging flow consists of two paths, the upper 
path is handled by SDK, after the “Launch debugging session on hardware” command 
is received by SDK, it will automatically call XMD to connect to PowerPC target, 
download .elf file, and execute powerpc-eabi-gdb.exe to connect to XMD and so on, as 
all described in section 4.2.2. While in the lower path, the user has to set up the 
connections himself before the debugging session is actually started. 

Therefore, from SDK point of view, it looks like “single-processor debugging”, as exactly 
one .elf file is asked to debug on only one PowerPC processor. However, in fact, the 
“dual-processor debugging” functionality is realized by adding the manual path.  

Compared to Figure 4.11, there’s one more difference here: another XMD instance is 
used, this is based on the fact that we cannot ask the XMD in the auto path to connect 
to both PowerPCs, because XMD (auto) is handled by SDK, and SDK will only connect 
it to one PowerPC processor if SDK considers it as a “single-processor debugging” 
case. 

The key point here is the “command catch/forward” functionality. The goal of this part is, 
when user is performing debug operations in SDK and SDK converts the user’s actions 
into a series of GDB commands, these commands are captured in the half-way, copied, 
and sent to GDB in the manual connection path. Through this method, the user only has 
to do debug operations once, but results in the emission and reception of GDB 
commands in both GDBs, followed by the transmission to XMD and applied to both 
PPC440 targets. This will meet our target in the right way: debug the same program 
synchronously in both processors. 

Thus, the implementation of this “command catch/forward” functionality would be the 
next point of discussion, which is presented in next chapter. 
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5 Implementation of the Semi-auto Dual-processor Debugging Flow 

 

As discussed in section 4.3, in order to realize the proposed semi-auto dual-processor 
debugging flow, the implementation of command catching functionality must be 
investigated as the first step; this is done by a substitution to the original GDB. In 
section 5.1, a basic concept and principle for this implementation is explained, while in 
section 5.2, the GDB input commands catching functionality is explained in details. After 
that, the implementation is extended to dual-processor debugging scenario in section 
5.3. In section 5.4, the GDB output message catching functionality is added, and in 
section 5.5, the way of gathering the results and computing the significant bits is 
presented. 

 

5.1 Basic Principle for Implementation 

 

As mentioned in section 4.2.3, SDK will convert the user’s actions in a sequence of 
GDB commands which are sent to powerpc-eabi-gdb.exe, and process the output of 
GDB to update the display of current state of the program in the graphical SDK debug 
perspective. Therefore, the most important issue is to capture the sequence of GDB 
commands which are sent from SDK to GDB.   

In order to capture the commands, we should either focus on the output stream of SDK, 
or the input stream of GDB (simply because the commands are transmitted from SDK to 
GDB). Considering SDK will not only send commands to GDB, but also probably to 
XMD or other components, and also sdk.exe might be well coded to interact with other 
executable programs, which makes it difficult to be modified or substituted. Therefore, 
the input stream of GDB should be the target for investigation. 

The basic idea is to write a new powerpc-eabi-gdb.exe, to substitute the original one. 
Whereas in the newly written GDB, it catches the received commands, performs 
necessary processing, and forwards them to the original one so that the original GDB 
can deal with all the tasks which it is supposed to do. By this means the new GDB is 
well pretended, that is, from SDK point of view there’re no changes made Figure 5.1 
shows this basic idea: 
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Figure 5.1: Basic idea of GDB substitution 

 

Here “send back confirmation/output” means that GDB has to send some confirmation 
message or output message which will be processed by SDK. However, GDB is still 
connected to XMD, as depicted Figure 4.13, there’s no conflict between them.   
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5.2.1 Arguments Passing 
 

According to Figure 4.5, the actual GDB called by SDK during the debugging session 
can be located:  

C:\Xilinx\14.3\ISE_DS\EDK\gnu\powerpc-eabi\nt\bin\powerpc-eabi-gdb.exe 

This is therefore the right GDB which should be substituted (will be called gdb.exe for 
short in the following). It can be renamed as powerpc-eabi-gdb-orig.exe (i.e. the original  
GDB, will be called gdb-orig.exe for short in the following), while the newly written GDB  
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takes the name powerpc-eabi-gdb.exe which can be recognized by SDK.  Both GDBs 
are located under C:\Xilinx\14.3\ISE_DS\EDK\gnu\powerpc-eabi\nt\bin. 

Since we are only interested in the commands that GDB receives, the arguments when 
SDK calls GDB, however, should remain unchanged and passed to the original GDB. 
This arguments passing functionality is implemented simply by copying the arguments 
of main() function and passing them when calling old GDB. Furthermore, these 
arguments can be printed out, which is shown in Listing 5.1, and a glance can be casted 
over them: 

 

 

 

 

 
 
 
 

Listing 5.1: The arguments which SDK passes to GDB 
 
The meanings of the options can be examined in [19]. Among them the remarkable op-
tion here is –i mi, where mi stands for machine interface. This indicates that the com-
mands that GDB receives from SDK are GDB/MI commands, which is a bit different 
from normal GDB debugging commands syntax. For more information about GDB/MI in-
terface, please refer to [20]. 
 

5.2.2 GDB Input Stream Reading Model 
 

In order to read information from the input stream of GDB, the property of standard input 
(STDIN) of GDB, when called by SDK, must be invested. Here property stands for the 
type of input stream of GDB, it might be the input from keyboard, a console input buffer, 
a reading end of a pipe, etc. 

powerpc-eabi-gdb 
-q 
-nw 
-i 
mi 
--cd=Z:\Xps_proj3\SDK\SDK_Workspace\test_proj1_ppc0 
--command=.gdbinit 
Z:\Xps_proj3\SDK\SDK_Workspace\test_proj1_ppc0\Debug\test_proj1_ppc0.elf 
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Obviously, the STDIN of GDB cannot be the keyboard input: the user doesn’t need to 
input any characters from keyboard during the debugging session. Therefore the 
possibility of a console input buffer is discussed in the following. 

A console is an interface that provides I/O to character-mode application, and a console 
consists of one input buffer and one or more screen buffers (output buffer) [21]. A 
console is created when a console process is invoked. A console process is a character 
-mode process whose entry point is the main() function [22], for example, the windows 
command processor is such a console process, when invoked, a console is created as 
well. If the user wants to call other console processors from the command processor 
window, one can specify whether the new process should inherit the parent processor’s 
(command processor) console, or a new console should be created for the new 
process. 

In addition, a process can be attached to at most one console, on the other side, one 
console can be attached with multiple processes. When a new console is created, the 
console’s input and output buffers are created as well, which serve as the default 
standard input (STDIN),  standard output (STDOUT)/standard error (STDERR) of the 
attached process, respectively. 

Although there’s no knowledge about how GDB is called by SDK, it can still be proved 
via AllocConsole() function that GDB is a console process which has been already 
attached with a console, an error message, shown in Listing 5.2, will be printed if 
AllocConsole() function is applied to the source code of new GDB: 

 

 

 

 

 
Listing 5.2: Error message when AllocConsole() is applied 

 

 

 
ERROR: API = Allocate console 
error code = 5 
message    = Access is denied. 
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AllocConsole() function only fails when the calling process already has a console 
attached. This proves that when GDB is called by SDK, it’s already attached with a 
console, which is hidden in front of users though. 

However, this fact doesn't say anything about the STDIN of GDB. It should be the 
console input buffer in default case, but also can be redirected to somewhere else. In 
order to invest it in depth, GetConsoleMode() function, together with other functions are 
applied here, which is shown in Listing 5.3: 

 

 

 

 

 
 
 
 
 
 
 
 

Listing 5.3: Source codes to check the console input buffer 
 
Here hConIn, which is returned by CreateFile() function,  is ensured to be is the handle 
of console input buffer, even though the STDIN of the program might be redirected to 
other handles, while hStdin, which is returned by GetStdHandle() function,  is ensured to 
be the handle of input buffer of the calling process, i.e., the handle after redirection in 
case there’s I/O redirection involved. If it can be proved that hConIn and hStdin points to 
the same handle object, then it can be concluded that the STDIN of GDB is just the 
console input buffer.  
 
There’re a few methods to examine this, here GetConsoleMode() function is employeed. 
By applying GetConsoleMode(hStdin, &ConMode) , an error message occured , which 
is listed in Listing 5.4 below: 

 
//check whether the console input buffer is the STDIN of the program 
HANDLE hConIn, hStdin; 
SECURITY_ATTRIBUTES sa; 
DWORD ConMode = 0x0; 
 
hStdin = GetStdHandle(STD_INPUT_HANDLE); 
hConIn = CreateFile("CONIN$",GENERIC_READ | GENERIC_WRITE, 
FILE_SHARE_READ,&sa,OPEN_EXISTING,NULL,NULL); 
 
if(!GetConsoleMode(hStdin, &ConMode)) 
  DisplayError("Get Console Mode"); 
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Listing 5.4: Error message when GetConsoleMode() is applied 
 
Since GetConsoleMode() function only accepts the handle of console input buffer as the 
first argument, thus, the “The handle is invalid”  error message indicates that hStdin is 
not the handle accepted, i.e., not the handle of console input buffer, which comes into 
the conclusion that  the STDIN of GDB is not the console input buffer, which results in 
that console I/O functions ( ReadConsole(), WriteConsole(), etc ) cannot be applied. 
 
From the discussions above, it is clear that when SDK invokes GDB, the STDIN of GDB 
is already redirected by SDK. Figure 5.2 presents this situation: 
 
 
 
 
 
 
  
 
 
 
 

Figure 5.2: Redirected-STDIN GDB communicates with SDK 
 
We don't know where the STDIN of GDB is exactly redirected to, however, it is not an 
important issue, as long as the redirected standard input handle can be obtained by 
GetStdHandle() function and used for reading data. 
 
Thus here the pipe structure is assumed: SDK sends the commands to the writing-end 
of pipe0, while GDB reads the commands from the corresponding reading-end of the 
pipe.  
 

 
ERROR: API = Get Console Mode 
error code = 6 
message    = The handle is invalid. 
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Similarly, a pipe structure is also considered to be applied to the STDOUT/STDERR of 
GDB. That is, SDK invokes GDB with the STDOUT/STDERR of GDB already redirected 
to the writing-end of another pipe (pipe1). After processing of the commands, GDB 
sends the output/confirmation message to the writing-end of pipe1, while SDK reads 
those feedback messages from the reading-end of pipe1. 
 
The complete pipe structure for the communication between SDK and GDB is present-
ed in Figure 5.3 here: 
 
 
 
 
 
  
 
 
 
 

Figure 5.3: Redirected-I/O GDB communicates with SDK  
 
 
Now that the communication model is set and the STDIN handle is grasped, it’s time to 
read data from the reading-end of the pipe, here ReadFile() function is applied for that 
purpose. Figure 5.4 shows this model: 
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Figure 5.4: GDB input stream reading model (i) 
 

In this model, the ReadFile() function, the print-out functionality, as well as the calling of 
gdb-orig.exe are all implemented within gdb.exe.  

Here STDIN of both GDBs are connected to the reading-end of pipe0, and gdb.exe is in 
charge of calling gdb-orig.exe. We’re wishing to read data (commands received from 
SDK ) from the reading-end of pipe0 and print them out to some file. 

And there’s no further redirection of STDOUT/STDERR of either gdb.exe or gdb-
orig.exe, they are both connected to the writing-end of pipe1. 

However, it turns out to be nothing is read, and the debugging session is stucked during 
the initialization phase. One possible reason is that within gdb-orig.exe a ReadFile() 
function is also called to read data from its STDIN, which results in a conflict between 
multiple readers of the same pipe, for example, the pipe can be designed in such a way 
that once the existence of multiple readers are detected, then  
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SDK is presented from continuing writing data to the writing-end of the pipe, which 
causes gdb-orig.exe not to generate the correct confirmation message (as it doesn’t 
receive commands from SDK) and SDK hangs the debugging session. 

In order to prevent this potential conflict, an additional pipe and buffer is added here, as 
Figure 5.5 depicted: 

 
 
 
 
  
 
 
 

 

 

 

 

 

 

 
 
 
 

Figure 5.5: GDB input stream reading model (ii) 
 

In this model, the ReadFile() function, the data store and print-out functionality, the 
creation of pipe2, together with the calling of gdb-orig.exe are all implemented within 
gdb.exe.  
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Here STDIN of gdb.exe remains unchanged, i.e. still connected to the reading-end of the 
pipe0. In fact, it is not crucial where the STDIN of gdb.exe is connected to, it can be 
connected to anywhere else, as long as we specify the ReadFile() function to read the 
data from the right reading-end of the pipe. However, it is crucial where the STDIN of 
gdb-orig.exe is connected to, since we’re not modifying the source code of gdb-orig.exe, 
therefore we cannot drive ReadFile() function within gdb-orig.exe to read from nowhere 
else, but STDIN of it. 

STDOUT/STDERR of both gdb.exe and gdb-orig.exe remain unchanged, i.e., still 
connected to the writing-end of pipe1. 

The data flow of this reading model goes as the following: SDK sends the commands to 
the writing-end of pipe0, the ReadFile() function within gdb.exe reads the commands 
from the reading-end of pipe0, store them into a temporary buffer for the potential 
processing later, these commands are printed out to a file, so that we can have a check. 
At the same time, these commands are forwarded to the writing-end of another pipe, 
pipe2 which is created earlier, so that gdb-orig.exe can read these commands via the 
reading-end of pipe2. In this case, STDIN of gdb-orig.exe must be connected to the 
reading-end of pipe2 for the correct reading. 

But adding an intermediate pipe, it’s guaranteed that the ReadFile() operations in gdb-
orig.exe are later than the ReadFile() operations in gdb.exe. This is ensured by the by 
the reading/writing principles of pipes: ReadFile() function will not return if the write 
operation is not completed on the writing-end of the pipe. That is, ReadFile() in gdb-
orig.exe will keep on waiting, until some data from the buffer is written to the writing-end 
of pipe2. 

 

5.2.3 Process Calling 
 

As mentioned in the section 5.1, gdb.exe will take the responsibility of calling/executing 
gdb-orig.exe. Moreover there’re some conditions which this calling/executing process 
must satisfy: 
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A) gdb.exe and gdb-orig.exe must be executed in parallel 

i.e. gdb.exe and gdb-orig.exe should both keep executing in parallel until the debugging 
session is over. gdb.exe needs to keep executing since it has to act as a “fake GDB 
object” which deceives SDK; while gdb-orig.exe needs to keep executing because it is 
the actual process who’s reading commands from SDK, processing them, and sending 
back outputs/confirmation messages. 

In order to meet the condition, there’re two more assumptions which must be checked: 

A.1 gdb.exe itself should not end until the debugging session is over, i.e. cannot return                  
from main() function. 

A.2 gdb.exe should not be stucked after calling gdb-orig.exe, i.e. it should not wait for 
the complete of gdb-orig.exe. 

 

B) The standard input (STDIN) of gdb-orig.exe must be redirected 

To be exact, STDIN of gdb-orig.exe must be redirected to the reading-end of pipe, as 
discussed in section 5.2.2. 

 

In order to fulfill the condition A.1, an infinite for loop is applied, a piece of pseudo codes 
are listed in Listing 5.5 to show this idea: 
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Listing 5.5: A pseudo-code example with infinite loop applied  

By taking advantage of the infinite for loop, it’s guaranteed that gdb.exe is keep on 
repeating the task it’s supposed to do and will never end unless the debugging session 
is over. 

As for condition A.2 and condition B), the way that gdb-orig.exe is called is crucial. Here 
CreateProcess() is chosen to meet these restictions. According to [23], the creation of 
the new process will not affect the execution of the calling process, which corresponds 
to condition A.2, on the other side, a STARTUPINFO structure can be specified as the 
argument of CreateProcess() function, which enables the I/O redirection of the new 
process. A couple lines of codes are shown in Listing 5.6 to show how it works: 

 

 

 

 

 

 

 

 

 
for (;;)    //infinite loop 
 
{ 
// tasks to do  
 1. read from reading-end of pipe0 
 2. store the read data into a buffer 
 3. print the data out to a file 
 4. write the data to the writing-end of the pipe2 
} 
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Listing 5.6: Usage of STARTUPINFO and CreateProcess() 

 

5.2.4 Command Cathing Results 
 

By applying the previous mentioned principles and concepts, the commands which SDK 
sends to GDB during the debugging session can now be captured. Listing 5.7 below 
shows a small section of them which are recorded (for the complete commands caught, 
please refer to Appendix A.1): 

 

 

// Create pipe2 
SECURITY_ATTRIBUTES sa; 
sa.bInheritHandle = TRUE; 
CreatePipe(&hRead_pipe2,&hWrite_pipe2,&sa,0); 
 
PROCESS_INFORMATION pi; 
STARTUPINFO si; 
    
// Set up the STARTUPINFO struct. 
ZeroMemory(&si,sizeof(STARTUPINFO)); 
si.cb = sizeof(STARTUPINFO); 
si.dwFlags = STARTF_USESTDHANDLES; 
 
// redirect STDIN of the new process to the reading-end of pipe2 
si.hStdInput = hRead_pipe2;   
 
// leave the STDOUT and STDERR undirected 
si.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE); 
si.hStdError  = GetStdHandle(STD_ERROR_HANDLE); 
 
// launch the process 
CreateProcess(NULL,exe_p,NULL,NULL,TRUE,NULL,NULL,NULL,&si,&pi); 
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Listing 5.7: A section of commands recorded 

 

 
148-gdb-set confirm off 
149-gdb-set width 0 
150-gdb-set height 0 
151-interpreter-exec console echo 
152-gdb-show prompt 
153-gdb-set auto-solib-add on 
154-gdb-set stop-on-solib-events 0 
155-gdb-set stop-on-solib-events 1 
156-target-select remote localhost:1234 
157-target-download 
Z:\\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0\\Debug\\test_proj1_ppc0.elf 
 
… 
 
172-exec-next 1 
173 info threads 
174-stack-info-depth 
175-stack-list-frames 0 1 
176-data-list-changed-registers 
177 info sharedlibrary 
178-stack-list-arguments 0 0 0 
179-stack-list-locals 0 
180 whatis a 
181 whatis b 
182 whatis c 
183-var-create - * a 
184-var-evaluate-expression var1 
185-var-create - * b 
186-var-evaluate-expression var2 
187-var-create - * c 
188-var-evaluate-expression var3 
189-exec-next 1 
190 info threads 
191-stack-info-depth 
192-stack-list-frames 0 1 
193-var-update var1 
194-var-update var2 
195-var-update var3 
 
… 
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The listing above clearly shows that the GDB connected to XMD by the command: 

156-target-select remote localhost:1234 

Where 1234 is the port number that XMD opens. 

And from this listing it’s also proved that SDK translates the user’s actions into a series 
of GDB commands, as discussed in previous chapter , for instance, line 172-188 shows 
the GDB commands generated when user press the “step over” button for the first time. 
 

5.3  Extensions to Dual-processor Debugging 

  
However, the contents discussed in this chapter so far are based on single-processor 
debugging, i.e., there’s only one gdb-orig.exe called by gdb.exe. In order to conform to 
the semi-auto debugging flow proposed in section 4.3, the extensions to dual-processor 
scenario should be made. 

 

5.3.1 Overview of the Extended Reading Model 
 

In order to perform this extension, three more functions must be augmented: 

• One more copy of gdb-orig.exe should be called. 

• One more pipe (pipe3) needs to be created. 

• Make necessary changes to the data which is read from pipe0, and forward the 
data to the second gdb-orig.exe via writing the data into the writing-end of pipe3. 

In below, the reading model for dual-processor scenario is shown in Figure 5.6: 
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Figure 5.6: GDB input stream reading model for dual-processor debugging 
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In this model, the original GDB is copied and renamed as gdb-orig-1.exe and gdb-orig-
2.exe respectively, while in debugging process, the three executables are running in 
parallel, and will not end before the debugging session is over. 

Besides that, two more points should be noticed: 

1. In the “processing” block, all the messages are copied from the buffer, except the 
connecting-to-XMD command. 

2. The STDOUT/STDERR of gdb-orig-2.exe should not be connected to the writing-
end of pipe1. 

The detailed discussion and explanation of these two points will be presented in the 
following two subsections. 

 

5.3.2 Command Processing Block 
 

From the general reading model, the commands that SDK sends to GDB are duplicated 
as two copies, which are forwarded to pipe2 and pipe3 respectively. However, there’s 
an exception: the connecting-to-XMD command, i.e. the following command: 

156-target-select remote localhost:1234 

As mentioned in section 4.3, in semi-auto dual-processor debugging scenario, two XMD 
instances will be used to connect to both PowerPC targets individually, and therefore 
two GDB servers are opened with different port numbers, thus, the port number 
here(1234) must be modified to be different. For the automatic connection path in 
Figure 4.12, SDK will get the port number from XMD automatically and use it to 
generate GDB commands.  However, in the manual connection path, the correct port 
number is only known after the connection is set, then the C source codes of gdb.exe 
must be adjusted accordingly to the correct port number, and then the compiled gdb.exe 
can be copied to overwrite the formal one, lastly the debugging session can be started. 
Figure 5.7 shows this processing flow: 
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Figure 5.7: The processing flow before starting debugging session 
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And a small piece of C codes to do the XMD port modification work (i.e. the 
“processing” block in Figure 5.6), is shown in Listing 5.8: 

 

 

 

 

 

 

 

 

 

Listing 5.8: C implementation of XMD port modification 
 

As previously stated, the value of XMD_PORT might be re-defined, according the port 
number captured after the manual XMD-PowerPC connection. 

In Figure 5.7, the step “disable reset_on_run in XMD” is important, otherwise the whole 
system will be reset (by default) once the debugging session is started, which will result 
the automatic debugging process to be suspended and stucked. 

Figure 5.8 shows the information printed in XMD terminal, with the port number 
included, as well as the system debugconfig information before and after “disable 
reset_on_run” is applied. 

 

 

 

 

 
#define XMD_PORT "1234" 
 
// copy the obtained commands into buffer 
memcpy(cmd_1,stdin_buf,dwRead); 
 
// if the connect-to-XMD command is found 
if((str_fnd = strstr(stdin_buf,”remote localhost”)) != NULL) 
 
// substitute the port number with XMD_PORT 

memcpy(&cmd_1[strlen(cmd_1) -1-  strlen(XMD_PORT)],        
               XMD_PORT,strlen(XMD_PORT)); 
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Figure 5.8: Information printed in XMD terminal 

 

 

5.3.3 Connection of STDOUT/STDERR  
 

As shown in Figure 5.6, the STDOUT/STDERR of gdb.exe and gdb-orig-1.exe are 
connected to the writing-end of pipe1, while the STDOUT/STDERR of gdb-orig-2.exe 
should not be connected. 

The reason is gdb-orig-1.exe already passes the output/confirmation messages to SDK 
via writing these messages to the writing-end of pipe1, if the STDOUT/STDERR of gdb-
orig-2.exe is again connected to the writing-end of pipe1, then SDK will receive two 
copies of the feedback messages. However, SDK is defined to be able to process one 
copy only at a time, thus it hangs if it receives two copies and the debugging session 
cannot be continued. 
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As a conclusion, the STDOUT/STDERR of gdb-orig-2.exe can be redirecte to anywhere 
else, except the writing-end of pipe1. 

 

5.4 Output Catching/Forwarding 

 

5.4.1 GDB Output Stream Writing Model 
 

By taking advantage of the functionalities which are implemented up to now, the user 
can debug the same piece of code synchronously in both PowerPC processors. Figure 
5.9 shows the screenshot of semi-auto dual-processor debugging session: 

 

Figure 5.9: Screenshot of semi-auto dual-processor debugging session 
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The screenshot clearly shows that the SDK auto-debugging path goes smoothly, and 
the manual debugging path is proven to be also in progress by the printed information in 
XMD terminal like “Accepting GDB connection”, “Software breakpoints hit” etc. 

However, it would be more convinced if the output of the GDBs can be examined, and 
when a test project is applied on the hardware platform which supports DSA (in Chapter 
3) with the random rounding mode applied, and different values of the same variable 
can be collected and presented to users, which is also one of the pre-set targets. 

As discussed in 5.2.2, the pipe structure is assumed for the communications between 
SDK and GDB. Similar to Figure 5.5, a GDB output stream writing model with additional 
buffer and pipe applied, is proposed here in Figure 5.10 below: 

 
 
 
 
 
  
 
 
 

 

 

 

 

 

 

 
 

 

Figure 5.10: GDB Output Stream Writing Model  
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Here the connection of STDIN of gdb-orig.exe is omitted due to the space limitation, 
and only the STDOUT/STDERR of it should be focused. 

The STDOUT/STDERR of gdb-orig.exe is redirected to a writing-end of pipe4, which is 
created earlier within gdb.exe. Again ReadFile() function is applied to read data from 
the reading-end of pipe4, and store them into a temporary buffer, after the contents in 
buffer are printed out to an external file, these contents are also written to the writing-en 
of pipe1, so that SDK can read them from the corresponding reading end. 

A corresponding pseudo code is shown in Listing 5.9: 

 

 

 

 

 

 

 

 

 

Listing 5.9: A pseudo-code of output catching implementation  

By this means we’re wishing to catch the output of gdb-orig.exe without affecting the 
debugging process. However, it would be not be successful, and SDK would generate 
an error when entering debug perspective. 

It’s due to the blocking behavior caused by the reading/writing principles of pipes: the 
ReadFile() /WriteFile() function will only return, if the number of required bytes has 
been read/written, or a write/read operation is completed in the writing-end/reading-end 
of the pipe, respectively. Otherwise, it will keep waiting until the write/read operation is 
done. 

 
// Set all the necessary connections/redirections 
 
for (;;)    //infinite loop 
 
{ 
 

1. perform input stream command catching (same source codes as in section 
5.2) 

2. perform output stream command catching 
 

} 
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Therefore, there’s no problem, when we implement the input stream command catching 
in the infinite loop: the ReadFile() function in gdb.exe will wait until some data is written 
to pipe0, and a carriage return is virtually hit. Then the ReadFile() function will start to 
read and in this way the data in pipe is flowing. 

However, when the same procedure for the GDB output catching is implemented in the 
same for loop, the ReadFile() function which is supposed to read the output of GDB, is 
waiting for GDB to write its output to the writing-end of pipe4. But the input command 
and the output message is not a one-by-one correspondence, which means, when GDB 
receives a command from SDK, it doesn't necessarily generate one output message, 
there’re also situations that GDB will generate one output message only when two or 
more commands are obtained. 

In this situation, the ReadFile() function is waiting for the output message, which GDB 
will never generate until it receives the next command from SDK, but the “receiving” 
process can only be done in the next loop run. Therefore the program is stucked in this 
point. 

The solution is running the input command catching codes and the output message 
catching codes in two separate loops, and the two loops must be executing in parallel.  

This is done by creating separate threads for both for-loops in main() function, and 
waiting for the finish of both threads for infinite time 

A piece of pseudo code in Listing 5.10 shows the idea: 

 

 

 

 

 

 

 



 

69 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listing 5.10: A pseudo-code of input/output catching implementation  

 

Extension to dual-processor debugging scenario is also very similar as described in 
section 5.3. Instead of showing the structure for output catching only, a complete 
diagram for both input and output catching implementation is shown below in Figure 
5.11: 

 
// Thread to do input command catching 
DWORD WINAPI Thread_1(void* pVoid) 
{ 
for (;;)    //infinite loop 
 { 
  do input command catching; 

} 
 
} 
 
// Thread to do output message catching 
DWORD WINAPI Thread_2(void* pVoid) 
{ 
for (;;)    //infinite loop 
 { 
  do output message catching; 

} 
 
} 
 
main() 
{ 
//create both threads 
 CreateThread1; 
 CreateThread2; 
 
//waiting for both threads to finish, for infinite time 
WaitForMultipleObjects(2, hThread, TRUE, INFINITE); 
 
} 
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Figure 5.11: A complete diagram about the input/output catching implementation 
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Here Buffer2 should not be connected to the writing-end of pipe1, according to the 
discussion in section 5.3.3. In addition, the input commands catching(for both GDBs), 
the output message catching for gdb-orig-1, the output message catching for gdb-orig-
2, should be included in three threads respectively. 

 

5.4.2 Output Message Catching Results 
 

Listing 5.11 shows a part of the output message catching result for one GDB, for the 
complete catching results, please refer to Appendix A.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Listing 5.11: A section of output messages recorded 

 
123^done,changelist=[] 
(gdb)  
124^done,changelist=[] 
(gdb)  
125^done,changelist=[{name="var3",in_scope="true",type_changed="false"}] 
(gdb)  
126^done,changed-registers=["32","45","64","70","114","174"] 
(gdb)  
&"info sharedlibrary\n" 
~"No shared libraries loaded at this time.\n" 
127^done 
(gdb)  
128^done,stack-args=[frame={level="0",args=[]}] 
(gdb)  
129^done,locals=[name="a",name="b",name="c"] 
(gdb)  
130^done,value="2.7599999999999998" 
(gdb)  
131^done,value="2.7599999999999998" 
(gdb) 
132^running 
(gdb)  
132*stopped,reason="end-stepping-range",thread-
id="0",frame={addr="0x00000248",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps
_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="14"} 
(gdb)  
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In this listing, it’s proved that GDB generates some output/confirmation messages as a 
respond to the commands received. These messages are read and processed by SDK, 
some of them are recognize as the confirmation message (e.g. ^done ), while some of 
them are taken as the required variable value, which will be displayed in the SDK’s 
graphical debugging interface (e.g. value="2.7599999999999998"). 

 

5.5 Results Collection and Calculation of Precision 

 

Now the actual hardware architecture which is described in Chapter 3 is applied, with a 
new software application for testing our numerical accuracy debugger. Listing 5.12 
shows the main source codes of the testing application: 

 

 

 

 

 

 

 

 

 

 

Listing 5.12: C codes of the test software application  

 

Here the same floating point multiplication is performed for 10 times, to make sure that 
different results can be obtained with random rounding mode applied. 

 
double x1 = 1.791234; 
double x2 = 1.312123; 
double mul; 
 
int i=0; 
 
for( i=0; i<10; i++ ) 
{ 
 mul = x1*x2; 
  
} 
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By debugging this software synchronously in both PowerPC processors based on the 
hardware system with DSA support, two output .txt files can be obtained, which records 
the output messages of both GDBs respectively. 

By examing these two files, all the output messages are identical, except the value of 
variable mul. It is shown in Figure 5.12 that different values of mul are obtained from 
different PowerPC processors: 

 

 

Figure 5.12: Different values of mul from different processors 
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 1 

 

From this test, it’s proven that the numerical accuracy debugger works perfectly and the 
results can be collected by checking for the output messages of GDBs. As long as the 
results are gathered, the number of significant bits can be straightly calculated, 
according to the equation presented in section 2.3.1. 

The implementation is also not complicated. From Figure 5.11, a Collecting/Computing 
block is added on top of buffer #1 and buffer #2,  this block is in charge of collecting 
both values of the same variable by examing the output messages of both GDBs which 
are stored in the buffer. The block then extracts both values , calculates the number of 
significant bits and returns it to SDK . 

As discussed in section 5.4.2, SDK will take use of the output messages of GDB, 
extract the values of variables and display them on the graphical debugging interface. 
Therefore, after both values are collected and the number of significant bits are 
estimated, the Collecting/Computing block will modify the values of the variable (e.g. 
value="2.7599999999999998” will be modified) to the following format shown in Figure 
5.13: 

 

 

 

 

Figure 5.13: Customized format for SDK reading 

 

Figure 5.14 shows the actual screenshot of SDK reading the modified value and display 
it in the graphical debug perspective. 
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Figure 5.14: SDK reads the modified value and displays it 

 

Lastly, Figure 5.15 shows the final diagram of the graphical numerical accuracy 
debugger (the print-out lines are omitted). 
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Figure 5.15: Final diagram of the graphical numerical accuracy debugger 
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6 Conclusions and Future Work 

 

In this work, a graphical numerical accuracy debugger based on an FPGA computing 
system is developped. Using this debugger, without source code modification, the 
user’s program can be executed with random rounding on the N parallel processing 
blocks of the FPGA based computing system, and numerical accuracy information of 
any variable can be generated according to the Discrete Stochastic Arithmetic (DSA) 
and reported to the user. 

Starting from the investigation of Xilinx SDK debugging flow, a semi-auto dual-
processor debugging flow is proposed. In this debugging flow, a manual GDB-XMD-
PowerPC connection is set in parallel with the SDK‘s automatic debugging path, so that 
when an executable file is required to be debugged on hardware, the commands which 
are sent from SDK to GDB can be captured, processed and forwarded to another GDB 
instance, which realizes the functionality of synchronously debugging. 

The implementation of the proposed debugging flow is done via substituting the original 
GDB by a script. Within the script, functionalities like the input commands catching, 
processing, output messages catching etc, are implemented. In addition, by checking 
the output messages of GDBs, different values of the same variable can be extracted 
and used as the calculation of number of significant bits. Afterwards, the obtained 
accuracy, as well as the computed results can be displayed in SDK‘s graphical 
debugging interface by replacing the values in GDB output message with a customized 
format. 

 

Future Work 

In the current graphical numerical accuracy debugger implementation, the number of 
significant digits and the computed results can only be displayed in SDK graphical 
debugging interface, via the method of examing the output messages of GDB and 
replacing the actual values with a pre-defined format, as shown in section 5.5. By 
investigating the eclipse plug-ins, it would be possible to display the number of 
significant digits and both random rounding results from both processors in a more 
general and user-friendly way. 
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Moreover, according to the hardware platform specification, it is possible for PowerPC 
processors to catch the NAU exception which is raised whenever any kind of numerical 
instability is detected. Through reading the value of corresponding registers, the 
syndrome (catagories of numerical instabilities) can be located. Thus it would be very 
helpful if this syndrome can be displayed in SDK’s graphical debugging interface, so 
that the user can have a direct view of the types of the numerical instabilities detected. 
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A  Appendix 

 

A.1 Complete Commands Catched During a Debugging session 
 

79-gdb-set confirm off 

80-gdb-set width 0 

81-gdb-set height 0 

82-interpreter-exec console echo 

83-gdb-show prompt 

84-gdb-set auto-solib-add on 

85-gdb-set stop-on-solib-events 0 

86-gdb-set stop-on-solib-events 1 

87-target-select remote localhost:1241 

88-target-download Z:\\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0\\Debug\\test_proj1_ppc0.elf 

89-environment-directory Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0/Debug 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0/Debug/src 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0/src 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/code 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/include 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/lib 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/apu_fpu_virtex5_v1_00_a 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/apu_fpu_virtex5_v1_00_a/src 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/bram_v3_01_a 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/bram_v3_01_a/src 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/common_v1_00_a 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/common_v1_00_a/src 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/cpu_ppc440_v2_01_a 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/cpu_ppc440_v2_01_a/src 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/lldma_v2_00_a 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/lldma_v2_00_a/src 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/memcon_v2_00_a 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/memcon_v2_00_a/src 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/standalone_v3_07_a 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/standalone_v3_07_a/src 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/standalone_v3_07_a/src/profile 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/uartlite_v2_00_a 

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/uartlite_v2_00_a/src 

Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_platform 

Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_platform/cache 

Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_platform/settings Z:/ 

90 info threads 

91-data-list-register-names 

92-break-insert -t exit 
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93-stack-info-depth 

94-stack-list-frames 0 1 

95-break-insert -t main 

96-exec-continue 

97 info threads 

98-stack-info-depth 

99-stack-list-frames 0 1 

100-data-list-changed-registers 

101 info sharedlibrary 

102-stack-list-arguments 0 0 0 

103-stack-list-locals 0 

104 whatis a 

105 whatis b 

106 whatis c 

107-var-create - * a 

108-var-evaluate-expression var1 

109-var-create - * b 

110-var-evaluate-expression var1 

111-var-create - * c 

112-var-evaluate-expression var2 

113-var-evaluate-expression var2 

114-var-evaluate-expression var3 

115-var-evaluate-expression var3 

116-exec-next 1 

117 info threads 

118-stack-info-depth 

119-stack-list-frames 0 1 

120-var-update var1 

121-var-update var2 

122-var-update var3 

123-data-list-changed-registers 

124 info sharedlibrary 

125-stack-list-arguments 0 0 0 

126-stack-list-locals 0 

127-exec-next 1 

128 info threads 

129-stack-info-depth 

130-stack-list-frames 0 1 

131-var-update var1 

132-var-update var2 

133-var-update var3 

134-data-list-changed-registers 

135 info sharedlibrary 

136-stack-list-arguments 0 0 0 

137-stack-list-locals 0 

138-var-evaluate-expression var1 

139-var-evaluate-expression var1 

140-exec-next 1 

141 info threads 

142-stack-info-depth 

143-stack-list-frames 0 1 

144-var-update var1 
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145-var-update var2 

146-var-update var3 

147-data-list-changed-registers 

148 info sharedlibrary 

149-stack-list-arguments 0 0 0 

150-stack-list-locals 0 

151-var-evaluate-expression var2 

152-var-evaluate-expression var2 

153-exec-next 1 

154 info threads 

155-stack-info-depth 

156-stack-list-frames 0 1 

157-var-update var1 

158-var-update var2 

159-var-update var3 

160-data-list-changed-registers 

161 info sharedlibrary 

162-stack-list-arguments 0 0 0 

163-stack-list-locals 0 

164-var-evaluate-expression var3 

165-var-evaluate-expression var3 

166-exec-next 1 

167 info threads 

168-stack-info-depth 

169-stack-list-frames 0 1 

170-var-update var1 

171-var-update var2 

172-var-update var3 

173-data-list-changed-registers 

174 info sharedlibrary 

175-stack-list-arguments 0 0 0 

176-stack-list-locals 0 

177-exec-next 1 

178 info threads 

179-stack-info-depth 

180-stack-list-frames 0 1 

181-var-update var1 

182-var-update var2 

183-var-update var3 

184-data-list-changed-registers 

185 info sharedlibrary 

186-stack-list-arguments 0 0 0 

187-stack-list-locals 0 

188-exec-next 1 

189 info threads 

190-stack-info-depth 

191-stack-info-depth 

192-stack-list-frames 0 2 

193-var-update var1 

194-var-update var2 

195-var-update var3 

196-data-list-changed-registers 
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197 info sharedlibrary 

198-stack-list-arguments 0 0 0 

199-stack-list-locals 0 

200 kill 

201-gdb-exit 

 

A.2 Complete Output (for 1 GDB) Catched During a Debugging session 
 

&".gdbinit: No such file or directory.\n" 

(gdb)  

45^done 

(gdb)  

46^done 

(gdb)  

47^done 

(gdb)  

48^done 

(gdb)  

49^done,value="(gdb) " 

(gdb)  

50^done 

(gdb)  

51^done 

(gdb)  

52^done 

(gdb)  

Connected to a PPC440 target. 

53^connected,thread-

id="0",frame={addr="0x00000218",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="8"} 

(gdb)  

54+download,{section=".text",section-size="2352",total-size="42981"} 

54+download,{section=".text",section-sent="2352",section-size="2352",total-sent="2352",total-

size="42981"} 

54+download,{section=".init",section-size="36",total-size="42981"} 

54+download,{section=".fini",section-size="32",total-size="42981"} 

54+download,{section=".rodata",section-size="18",total-size="42981"} 

54+download,{section=".data",section-size="248",total-size="42981"} 

54+download,{section=".got2",section-size="28",total-size="42981"} 

54+download,{section=".ctors",section-size="8",total-size="42981"} 

54+download,{section=".dtors",section-size="8",total-size="42981"} 

54+download,{section=".eh_frame",section-size="8",total-size="42981"} 

54+download,{section=".jcr",section-size="4",total-size="42981"} 

54+download,{section=".sdata",section-size="8",total-size="42981"} 

54+download,{section=".boot0",section-size="204",total-size="42981"} 

54+download,{section=".boot",section-size="4",total-size="42981"} 

54^done,address="0xfffffffc",load-size="2958",transfer-rate="94656",write-rate="227" 

(gdb)  
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55^done,source-

path="Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc

0/Debug:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0/Debug/src:Z:/Xps_proj3/SDK/SDK_Workspace/te

st_proj1_ppc0/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp:Z:/Xps_proj3/SDK/SDK_Workspac

e/test_proj1_ppc0_bsp/ppc440_0:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/code:Z:

/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/include:Z:/Xps_proj3/SDK/SDK_Workspace/t

est_proj1_ppc0_bsp/ppc440_0/lib:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc

:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/apu_fpu_virtex5_v1_00_a:Z:/Xps

_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/apu_fpu_virtex5_v1_00_a/src:Z:/Xps_pr

oj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/bram_v3_01_a:Z:/Xps_proj3/SDK/SDK_Worksp

ace/test_proj1_ppc0_bsp/ppc440_0/libsrc/bram_v3_01_a/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1

_ppc0_bsp/ppc440_0/libsrc/common_v1_00_a:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440

_0/libsrc/common_v1_00_a/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/cp

u_ppc440_v2_01_a:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/cpu_ppc440_v2_

01_a/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/lldma_v2_00_a:Z:/Xps_p

roj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/lldma_v2_00_a/src:Z:/Xps_proj3/SDK/SDK_

Work-

space/test_proj1_ppc0_bsp/ppc440_0/libsrc/memcon_v2_00_a:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1

_ppc0_bsp/ppc440_0/libsrc/memcon_v2_00_a/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/pp

c440_0/libsrc/standalone_v3_07_a:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsr

c/standalone_v3_07_a/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/standa

lone_v3_07_a/src/profile:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/uartli

te_v2_00_a:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/uartlite_v2_00_a/src

:Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_platform:Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_

platform/cache:Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_platform/settings:Z:/:$cdir:$cwd" 

(gdb)  

&"info threads\n" 

&"warning: RMT ERROR : failed to get remote thread list.\n" 

56^done 

(gdb)  

57^done,register-

names=["r0","r1","r2","r3","r4","r5","r6","r7","r8","r9","r10","r11","r12","r13","r14","r15","r16"

,"r17","r18","r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29","r30","r31","f0","f

1","f2","f3","f4","f5","f6","f7","f8","f9","f10","f11","f12","f13","f14","f15","f16","f17","f18","

f19","f20","f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31","pc","msr","cr","lr",

"ctr","xer","fpscr","","","","","","","","","","","","","","","","","pvr","","","","","","","","",

"","","","","","","","","","","","","sprg0","sprg1","sprg2","sprg3","srr0","srr1","tbl","tbu","","

","","icdbdr","esr","dear","ivpr","","tsr","tcr","dec","","","csrr0","csrr1","dbsr","dbcr0","iac1"

,"iac2","dac1","dac2","pir","rstcfg","mmucr","pid","ccr1","dbdr","ccr0","dbcr1","dvc1","dvc2","iac

3","iac4","dbcr2","sprg4","sprg5","sprg6","sprg7","decar","usprg0","ivor0","ivor1","ivor2","ivor3"

,"ivor4","ivor5","ivor6","ivor7","ivor8","ivor9","ivor10","ivor11","ivor12","ivor13","ivor14","ivo

r15","inv0","inv1","inv2","inv3","itv0","itv1","itv2","itv3","dnv0","dnv1","dnv2","dnv3","dtv0","d

tv1","dtv2","dtv3","dvlim","ivlim","dcdbtrl","dcdbtrh","icdbtrl","icdbtrh","mcsr","mcsrr0","mcsrr1

"] 

(gdb)  

58^done,depth="1" 

(gdb)  

59^done,bkpt={number="1",type="breakpoint",disp="del",enabled="y",addr="0x00000750",at="<exit+24>"

,times="0"} 

(gdb)  
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60^done,bkpt={number="2",type="breakpoint",disp="del",enabled="y",addr="0x00000218",func="main",fi

le="../src/main1.c",fullname="Z:\\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c"

,line="8",times="0"} 

(gdb)  

61^done,stack=[frame={level="0",addr="0x00000218",func="main",file="../src/main1.c",fullname="Z:\\

Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="8"}] 

(gdb)  

62^running 

(gdb)  

62*stopped,thread-

id="0",frame={addr="0x00000218",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="8"} 

(gdb)  

&"info threads\n" 

&"warning: RMT ERROR : failed to get remote thread list.\n" 

63^done 

(gdb)  

64^done,depth="1" 

(gdb)  

65^done,stack=[frame={level="0",addr="0x00000218",func="main",file="../src/main1.c",fullname="Z:\\

Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="8"}] 

(gdb)  

66^done,changed-

regis-

ters=["0","1","2","3","4","5","6","7","8","9","12","13","14","15","16","17","18","19","20","21","2

2","23","24","25","26","27","28","29","30","31","33","64","65","66","67","69","87","108","109","11

0","111","113","114","119","121","122","124","129","131","132","133","134","135","136","137","143"

,"145","146","147","148","150","151","152","153","155","156","157","158","159","160","161","162","

163","164","165","166","167","168","169","170","171","172","175","180","181","182","183","190","19

1","192","193","195"] 

(gdb)  

&"info sharedlibrary\n" 

~"No shared libraries loaded at this time.\n" 

67^done 

(gdb)  

68^done,stack-args=[frame={level="0",args=[]}] 

(gdb)  

69^done,locals=[name="a",name="b",name="c"] 

(gdb)  

&"whatis a\n" 

~"type = double\n" 

70^done 

(gdb)  

&"whatis b\n" 

~"type = double\n" 

71^done 

(gdb)  

&"whatis c\n" 

~"type = double\n" 

72^done 

(gdb)  

73^done,name="var1",numchild="0",type="double" 
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(gdb)  

74^done,value="2.1219815974473986e-314" 

(gdb)  

75^done,name="var2",numchild="0",type="double" 

(gdb)  

76^done,value="2.1219815974473986e-314" 

(gdb)  

77^done,name="var3",numchild="0",type="double" 

(gdb)  

78^done,value="-nan(0xf8fe800000000)" 

(gdb)  

79^done,value="-nan(0xf8fe800000000)" 

(gdb)  

80^done,value="0" 

(gdb)  

81^done,value="0" 

(gdb)  

82^running 

(gdb)  

82*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x0000021c",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="9"} 

(gdb)  

&"info threads\n" 

&"warning: RMT ERROR : failed to get remote thread list.\n" 

83^done 

(gdb)  

84^done,depth="1" 

(gdb)  

85^done,stack=[frame={level="0",addr="0x0000021c",func="main",file="../src/main1.c",fullname="Z:\\

Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="9"}] 

(gdb)  

86^done,changelist=[] 

(gdb)  

87^done,changelist=[] 

(gdb)  

88^done,changelist=[] 

(gdb)  

89^done,changed-

registers=["0","3","9","11","64","66","67","114","172","173","174","175","181","182","183"] 

(gdb)  

&"info sharedlibrary\n" 

~"No shared libraries loaded at this time.\n" 

90^done 

(gdb)  

91^done,stack-args=[frame={level="0",args=[]}] 

(gdb)  

92^done,locals=[name="a",name="b",name="c"] 

(gdb)  

93^running 

(gdb)  
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93*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x00000228",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="10"} 

(gdb)  

&"info threads\n" 

&"warning: RMT ERROR : failed to get remote thread list.\n" 

94^done 

(gdb)  

95^done,depth="1" 

(gdb)  

96^done,stack=[frame={level="0",addr="0x00000228",func="main",file="../src/main1.c",fullname="Z:\\

Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="10"}] 

(gdb)  

97^done,changelist=[{name="var1",in_scope="true",type_changed="false"}] 

(gdb)  

98^done,changelist=[] 

(gdb)  

99^done,changelist=[] 

(gdb)  

100^done,changed-registers=["9","32","64","114","115","181","182","183"] 

(gdb)  

&"info sharedlibrary\n" 

~"No shared libraries loaded at this time.\n" 

101^done 

(gdb)  

102^done,stack-args=[frame={level="0",args=[]}] 

(gdb)  

103^done,locals=[name="a",name="b",name="c"] 

(gdb)  

104^done,value="1.2" 

(gdb)  

105^done,value="1.2" 

(gdb)  

106^running 

(gdb)  

106*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x00000234",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="11"} 

(gdb)  

&"info threads\n" 

&"warning: RMT ERROR : failed to get remote thread list.\n" 

107^done 

(gdb)  

108^done,depth="1" 

(gdb)  

109^done,stack=[frame={level="0",addr="0x00000234",func="main",file="../src/main1.c",fullname="Z:\

\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="11"}] 

(gdb)  

110^done,changelist=[] 

(gdb)  

111^done,changelist=[{name="var2",in_scope="true",type_changed="false"}] 

(gdb)  
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112^done,changelist=[] 

(gdb)  

113^done,changed-registers=["32","64","114","172","183"] 

(gdb)  

&"info sharedlibrary\n" 

~"No shared libraries loaded at this time.\n" 

114^done 

(gdb)  

115^done,stack-args=[frame={level="0",args=[]}] 

(gdb)  

116^done,locals=[name="a",name="b",name="c"] 

(gdb)  

117^done,value="2.2999999999999998" 

(gdb)  

118^done,value="2.2999999999999998" 

(gdb)  

119^running 

(gdb)  

119*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x00000244",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="12"} 

(gdb)  

&"info threads\n" 

&"warning: RMT ERROR : failed to get remote thread list.\n" 

120^done 

(gdb)  

121^done,depth="1" 

(gdb)  

122^done,stack=[frame={level="0",addr="0x00000244",func="main",file="../src/main1.c",fullname="Z:\

\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="12"}] 

(gdb)  

123^done,changelist=[] 

(gdb)  

124^done,changelist=[] 

(gdb)  

125^done,changelist=[{name="var3",in_scope="true",type_changed="false"}] 

(gdb)  

126^done,changed-registers=["32","45","64","70","114","174"] 

(gdb)  

&"info sharedlibrary\n" 

~"No shared libraries loaded at this time.\n" 

127^done 

(gdb)  

128^done,stack-args=[frame={level="0",args=[]}] 

(gdb)  

129^done,locals=[name="a",name="b",name="c"] 

(gdb)  

130^done,value="2.7599999999999998" 

(gdb)  

131^done,value="2.7599999999999998" 

(gdb)  

132^running 
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(gdb)  

132*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x00000248",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="14"} 

(gdb)  

&"info threads\n" 

&"warning: RMT ERROR : failed to get remote thread list.\n" 

133^done 

(gdb)  

134^done,depth="1" 

(gdb)  

135^done,stack=[frame={level="0",addr="0x00000248",func="main",file="../src/main1.c",fullname="Z:\

\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="14"}] 

(gdb)  

136^done,changelist=[] 

(gdb)  

137^done,changelist=[] 

(gdb)  

138^done,changelist=[] 

(gdb)  

139^done,changed-registers=["0","9","10","64","66","67","114","115","172","173","174","180"] 

(gdb)  

&"info sharedlibrary\n" 

~"No shared libraries loaded at this time.\n" 

140^done 

(gdb)  

141^done,stack-args=[frame={level="0",args=[]}] 

(gdb)  

142^done,locals=[name="a",name="b",name="c"] 

(gdb)  

143^running 

(gdb)  

143*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x0000024c",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="15"} 

(gdb)  

&"info threads\n" 

&"warning: RMT ERROR : failed to get remote thread list.\n" 

144^done 

(gdb)  

145^done,depth="1" 

(gdb)  

146^done,stack=[frame={level="0",addr="0x0000024c",func="main",file="../src/main1.c",fullname="Z:\

\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="15"}] 

(gdb)  

147^done,changelist=[] 

(gdb)  

148^done,changelist=[] 

(gdb)  

149^done,changelist=[] 

(gdb)  

150^done,changed-registers=["0","64","114"] 
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(gdb)  

&"info sharedlibrary\n" 

~"No shared libraries loaded at this time.\n" 

151^done 

(gdb)  

152^done,stack-args=[frame={level="0",args=[]}] 

(gdb)  

153^done,locals=[name="a",name="b",name="c"] 

(gdb)  

&"kill\n" 

154^done 

(gdb)  

155^exit 
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