
Institut of Parallel and Distributed Systems
Universität Stuttgart

Universitätsstraße 38
70569 Stuttgart

Germany

Diplomarbeit Nr. 3433

 Development of a Graphical Numerical
 Accuracy Debugger based on an

FPGA Computing System

Kailai Wang

Course of Study: Information Technology

Examiner: Prof. Dr. Sven Simon

Supervisor: M.sc. Wenbin Li

Commenced: 18.June 2012

Completed: 18.December 2012

CR-Classification: B.2, D.2.5, D.3.4, G.1.0

3

Abstract

In scientific computing, the number of floating point operations are increasing along with
the higher performance of computers, as well as the larger problem size. Due to the
finite representation of real numbers in computers, the calculated results are rounded
into the representative numbers, which results in round-off errors. The round-off errors
might be propagated as the program runs longer and in the end leads to an unreliable
result.

Discrete Stochastic Arithmetic (DSA) provides a method to evaluate the accuracy of
computed results and detect numerical instabilities during execution of the program.
The DSA has been implemented on an FPGA-based hardware system. The FPGA-
based hardware system has N parallel processing blocks so that it can run the same
piece of code N times in parallel in different round-off error propagations, which is
required by DSA.

In this thesis, based on this hardware architecture, a graphical numerical accuracy
debugger is developed. Using this graphical numerical accuracy debugger, the user can
debug same piece of code in both PowerPC processors synchronously, without any
modification to source codes.

In order to implement the proposed debugging flow, a script has been written to
substitute the original underlying debugging engine of SDK. Within the script, a series of
functionalities are achieved: GDB input commands catching/forwarding, process calling,
GDB output messages catching/forwarding etc. Moreover, with the substitution, it’s able
to collect results from all processing blocks and then the number of significant bits can
be calculated and presented to users.

5

Acknowledgements

I would like to thank my supervisor Mr. Wenbin Li for his kindly help, as well as the
support and advices during my entire thesis working period all-long. He always
shows a very patient, respectful and warmhearted attitude not only to me, but also to
all other colleagues. With the help of him, I’m able to improve my thoughts in a more
technical way and have a better understanding on my topic and related knowledge
fields.

I’m also very grateful to Prof. Dr. Sven Simon for providing me such a chance to
work on this topic, which gives me an opportunity to get my knowledge well applied
and practiced.

I’m thankful for the department of Parallel Systems to provide me a comfortable and
friendly working environment, together with all these kind and outgoing colleagues.

Lastly, I would take this chance to thank my family for all their love, encouragement
and support all the time.

7

Contents

1 Introduction ... 11

 1.1 Background Knowledge .. 13

 1.2 Motivation ... 14

 1.3 Hardware Platform and Software Tools .. 15

 1.3.1 Hardware Devices ... 15

 1.3.2 Software Tools ... 15

 1.4 Main Steps ... 16

2 Recall of Discrete Stochastic Arithmetic (DSA) ... 17

 2.1 Floating Point Number Representation ... 17

 2.2 Rounding Mode .. 18

 2.3 Discrete Stochastic Arithmetic (DSA) .. 19

 2.3.1 CESTAC Method .. 20

 2.3.2 Informational Zero .. 22

3 Hardware Platform Support ... 23

 3.1 Overview of the Hardware System ... 23

 3.2 Discrete Stochastic Floating Point Unit (DSFPU) .. 24

 3.3 Synchronization Unit .. 25

 3.4 Numerical Analysis Unit (NAU) .. 26

4 SDK Debugging Session .. 29

 4.1 Xilinx EDK Concepts and Tools ... 29

 4.1.1 Software Development Kit (SDK) .. 29

 4.1.2 Xilinx Microprocessor Debugger (XMD) .. 31

 4.1.3 GNU Debugger (GDB) ... 32

 4.2 Work Flow of SDK Debugging Session .. 32

 4.2.1 Creation of A Test Project .. 33

8

 4.2.2 Work Flow of Single-processor Debugging .. 34

 4.2.3 Work Flow of Dual-processor Debugging ... 39

 4.3 A Semi-auto Dual-processor Debugging Flow ... 43

5 Implementation of the Semi-auto Dual-processor Debugging Flow 45

 5.1 Basic Principle for Implementation .. 45

 5.2 Command Catching/Forwarding ... 46

 5.2.1 Arguments Passing .. 46

 5.2.2 GDB Input Stream Reading Model ... 47

 5.2.3 Process Calling .. 54

 5.2.4 Command Cathing Results ... 57

 5.3 Extensions to Dual-processor Debugging .. 59

 5.3.1 Overview of the Extended Reading Model .. 59

 5.3.2 Command Processing Block .. 61

 5.3.3 Connection of STDOUT/STDERR ... 64

 5.4 Output Catching/Forwarding ... 65

 5.4.1 GDB Output Stream Writing Model ... 65

 5.4.2 Output Message Catching Results .. 71

 5.5 Results Collection and Calculation of Precision ... 72

6 Conclusions and Future Work ... 77

A Appendix ... 79

 A.1 Complete Commands Catched During a Debugging session 79

 A.2 Complete Output (for 1 GDB) Catched During a Debugging session 82

References ... 91

Declaration .. 93

9

List of Figures

 2.1 Single precision floating point number presentation .. 13
 2.2 Double precision floating point number presentation .. 13

 3.1 Overview of the hardware system which support DSA ... 24

 4.1 SDK working environment .. 30

 4.2 XMD acts as a bridge ... 31
 4.3 Hardware system of test project .. 33

 4.4 SDK debug perspective .. 35

 4.5 Active processes in windows task manager view ... 36

 4.6 Information printed in XMD console window .. 37

 4.7 SDK single-processor debugging/connection flow.. 37
 4.8 XMD connects to both PowerPC440 targets ... 39
 4.9 XMD closes one GDB connection..40
 4.10 XMD successfully accepted two GDB connections ... 41

 4.11 SDK dual-processors debugging/connection flow ... 42

 4.12 Semi-auto dual-processor debugging flow ... 43

 5.1 Basic idea of GDB substitution ... 46

 5.2 Redirected-STDIN GDB communicates with SDK .. 50
 5.3 Redirected-I/O GDB communicates with SDK .. 51

 5.4 GDB input stream reading model (i) .. 52

 5.5 GDB input stream reading model (ii) ... 53

 5.6 GDB input stream reading model for dual-processor debugging 60

 5.7 The processing flow before starting debugging session .. 62

 5.8 Information printed in XMD terminal .. 64

 5.9 Screenshot of semi-auto dual-processor debugging session 65

10

 5.10 GDB Output Stream Writing Model .. 69

 5.11 A complete diagram about the input/output catching implementation 70

 5.12 Different values of mul from different values ... 73

 5.13 Customized format for SDK reading... 74
 5.14 SDK reads the modified value and displays it .. 75

 5.15 Final diagram of the graphical numerical accuracy debugger 726

11

List of Listings

 4.1 Software source codes of test project .. 34

 5.1 The arguments which SDK passes to GDB .. 47
 5.2 Error message when AllocConsole() is applied ... 48
 5.3 Source codes to check the console input buffer .. 49

 5.4 Error message when GetConsoleMode() is applied ... 50

 5.5 A pseudo-code example with infinite loop applied .. 56

 5.6 Usage of STARTUPINFO and CreateProcess() .. 57

 5.7 A section of commands recorded.. 58

 5.8 C implementation of XMD port modification ... 63

 5.9 A pseudo-code of output catching implementation .. 4367

 5.10 A pseudo-code of input/output catching implementation .. 69

 5.11 A section of output messages recorded .. 71
 5.12 C codes of the test software application .. 72

12

13

1 Introduction

1.1 Background Knowledge

With the increase of computers‘ speed and performance nowadays, the number of the
arithmetic operations, especially floating point operations in scientific computations are
significantly increased. However, due to the fact that only a finite number of bits in
computer can be used to store floating point numbers, round-off operations are needed
to fit the real numbers into the finite representation, which results in a round-off error
against the actual numbers. As more and more floating point operations are performed
in a sequence, the error could be propagated, and in the end, at some point, leads to a
result which totally differs from the expected one, which is also known as numerical
instability.

In order to control this round-off error, several methods are developed, such as interval
arithmetic (IA), variable-precision arithmetic (VPA), discrete stochastic arithmetic (DSA)
etc [1].

IA provides two values for each result, and the exact result is guaranteed to be between
those two values [16], and the length of interval between the two values are considered
to be the accuracy of the result. However, extra effort, for instance, change of rounding
mode after each floating point operation, has to be performed, which dramatically
lowers the computational efficiency. In addition, with the increasement of the problem
size, the estimation of the numerical accuracy bases on IA is turned out to be very
pessimistic and even fails to give results or any useful information for medium-to-large-
size problem case [15].

While VPA allows the precision of floating point arithmetic used in the computations to
be variable, depending on the problem to be solved and the required accuracy of the
results [2]. However, VPA has the main advantage that it is too slow compared to native
floating point operations. With the increase of specified precision, the time which the
computations cost will also increase dramatically.

DSA, which is much faster than VPA, has meanwhile the advantage over IA that the
estimation of numerical accuracy is significantly tighter and independent of problem size
[15]. Therefore, DSA is chosen in this thesis as the basis of arithmetic for discussion.

14

The basic idea of DSA is explained as follows:

1. Run the same piece of code N times independently and synchronously, with
random-rounding [4] applied after each floating point operation.

2. With the N results gathered from N runs after each floating point operation, the
accuracy (with respect to significant digits) is calculated based on a pre-
developped formula and therefore numerical instability can be detected.

1.2 Motivation

The round-off error controlling methods mentioned above can be implemented in a
either software or hardware way [2][3][4]. As for DSA, there’re are also different kinds of
implementations:

• A software implementation: CADNA library developped by Labortoire
d'informatique de Paris 6 (LIP6) in University Pierre & Marie Curie and CNRS
(UMR 7606) [5][6].

• A hardware implementation by R. Avot-Chotin and H. Mehrez [1].

In this thesis, an FPGA-based computing system with two parallel processing blocks is
served as the hardware platform support, which is based on a hardware architecture
with DSA support, proposed by Wenbin Li in [15].

However, with this FPGA-based computing system, as well as the accompanying Xilinx
Tools (XPS,SDK, XMD, etc), while in SDK‘s graphical debugging interface, it is
impossible to debug the same piece of code in C-statement level simultaneously and
synchronously in both PowerPC processors, which is required in DSA (running the
same piece of code N times, with N = 2). In addition, the precision (number of significant
bits) of certain variable cannot be displayed directly to the user. In this case, the user
cannot have a clear and convenient view about how accurate the result is.

Thus, a graphical numerical accuracy debugger should be developed and implemented
to fulfill the following goals:

15

1. Debug the same piece of code in both PowerPC processors simultaneously,
without any modification to source codes.

2. Gather the value of variables from both processors while the debugging process
is in background execution.

3. Calculate the numerical accuracy and display both the accuracy information and
the computed result to users.

1.3 Hardware Platform and Software Tools

1.3.1 Hardware Devices

The following hardware devices are used in this thesis:

• Xilinx Virtex-5 FXT ML510 FPGA board

• JTAG chain

• Computer with Windows operation system

1.3.2 Software Tools

The following software tools are referenced during this thesis:

• Xilinx ISE Design Suite 14.3

• Xilinx Embedded Development Kit (EDK) 14.3

• Microsoft Visual Studio 2010

16

1.4 Main Steps

In order to reach the previously stated targets, the following steps are scheduled and
carried out during the thesis work.

Firstly, an investigation is made to find out the principles and work flows of Xilinx SDK
debugging session, which helps to understand where the changes should be made and
serves as the foundations of next step. Secondly, a script is written to substitute the
original underlying debugging engine of SDK (i.e. GDB), so that when user is debugging
via SDK’s graphical debugger interface, the script is able to capture the sequence of
commands that SDK sends to GDB, without any interruption or interference of user’s
debugging process. Thirdly, a modification should be applied to this script, so that it’s
adapted to dual-processor debugging scenarios. Lastly, a few additional functionalities
are augmented, so that via the script, the results from both processors can be collected,
and the significant digits are calculated and presented to users.

17

2 Recall of Discrete Stochastic Arithmetic (DSA)

In this chapter, the concepts and principles of Discrete Stochastic Arithmetic (DSA) are
reviewed. In section 2.1, a brief introduction of floating point number representation
standard is presented as the first step, and then the round-off error is introduced in
section 2.2, afterwards in section 2.3 a brief recall of DSA is shown.

2.1 Floating Point Number Representation

Every real number 𝑥 can be represented as

𝑥 = 𝑠 ∗ 𝑚 ∗ 𝑏𝑒 ,

where

• 𝑠 is the sign bit

• 𝑏 is the base

• 𝑒 is the exponent

• 𝑚 is the mantissa , 1 ≤ 𝑚 < 𝑏, with the form

𝑚 = (𝑑1.𝑑2𝑑3 …𝑑𝑛) ∀𝑖 ∈ [1,𝑛], 𝑑𝑖 ∈ ℕ 𝑎𝑛𝑑 0 ≤ 𝑑𝑖 < 𝑏

According to IEEE Standard for Floating-Point Arithmetic (IEEE 754), in computer
where a floating point number is stored, 𝑏 is chosen as 2, and therefore it’s a sequence
of bits made up from 0 and 1, which can be interpreted as:

𝑥 = 𝑠 ∗ (𝑑1.𝑑2𝑑3 …𝑑𝑛) ∗ 2𝑒

where

∀𝑖 ∈ [1,𝑛] 𝑑𝑖 ∈ {0,1}

18

exponent

exponent

In IEEE 754, two most-frequently used binary floating point formats are specified, single
precision and double precision [8]. For single precision floating point number, 𝑛 = 24.
As shown in Figure 2.1, it‘s encoded as 32 bits: with first bit as sign bit (0 for + and 1 for
-), followed by 8 bits as exponent, and 23 bits as mantissa, which corresponds to
(𝑑2𝑑3. .𝑑24), while 𝑑1 is hidden, and 𝑑1 = 1 for normalized numbers (which is the
most case), and 𝑑1 = 0 for denormalized numbers. Due to the possibility that the
exponent can be negative, the coded exponent results from an addition of the actual
exponent and a bias, which is 127 for single precision.

The double precision floating point number is encoded in a similar way, except 𝑛 = 53,
and exponent is encoded as 11 bits, while the bias for exponent is 1023, as depicted in
Figure 2.2.

2.2 Rounding Mode

As only finite bits are used to store the floating point numbers, for those real numbers
which exceed the maximum length of bits for storage, a rounding operation is
necessary.

Let 𝑋 be a real number in exact arithmetic, then 𝑋 is bounded by two consecutive
floating point numbers, one rounded down 𝑋− and the other rounded up 𝑋+, each of

0 1 8 9 31

s mantissa

Figure 2.1: Single precision floating point number presentation

0 1 11 12 63

s mantissa

Figure 2.2: Double precision floating point number presentation

19

them representing the exact representative result [1], i.e. 𝑋− ≤ 𝑋 ≤ 𝑋+ . Thus, 𝑋 can
be rounded to 𝑋− or 𝑋+ depending on which rounding mode is applied.

IEEE 754 defines four such rounding modes, which are:

• Round to nearest (roundTiesToEven): 𝑋 is rounded to the nearer of 𝑋+ or
𝑋−. In case that neither is nearer, the even alternative is chosen.

• Round to zero: 𝑋 is rounded to the representable number closer to 0, i.e.
min {|𝑋−|, |𝑋+|}

• Round to positive-infinity: 𝑋 is rounded to 𝑋+.

• Round to negative-infinity: 𝑋 is rounded to 𝑋−.

Random rounding, is when an inexact representable number is obtained and a rounding
operation is need, the process to randomly choose 𝑋+or 𝑋− with identical probability.

2.3 Discrete Stochastic Arithmetic (DSA)

Discrete Stochastic Arithmetic (DSA) provides a method for analyzing and controlling
round-off errors during the execution of scientific codes. It’s an extension of the
CESTAC method but also presents new concepts like informational zero, stochastic re-
lations etc, which will be explained afterwards.

The aim of DSA is [4]:

• Detect numerical instabilities
• Evaluate round-off error propagation on each result
• Calculate the accuracy of results in terms of significant bits
• Judge the result is reliable or not

20

2.3.1 CESTAC Method

Contrôle et Estimation Stochastique des Arrondis de Calculs (CESTAC) method [12][13]
is such a method to evaluate the effect of round-off error propagations and detect nu-
merical instabilities. It was proposed by M. La Porte and J. Vignes in 1974, and the
basic principle can be summarized as follows:

1. Run the same piece of codes N times, and randomly rounding is applied after
each floating point operations.

2. After N executions, N results are gathered and compared.
3. Those parts which are common in all N results are considered to be reliable, and

the number of bits of this part is known as significant digits.

According to this approach [14], after N times running of the codes, each sample 𝑅𝑖 can
be modeled as:

𝑅𝑖 = 𝑟 + �𝑔𝑘(𝑑)2−𝑝𝛼𝑘 + 𝑂(2−2𝑝)
𝑛

𝑘=1

 ,

where

• 𝑅𝑖 : the 𝑖-th sample, 𝑖 ∈ [1,𝑁]
• 𝑟 : the exact result
• 𝑔𝑘(𝑑): quantities depending exclusively on the program and data, but

 independent of 𝛼𝑘
• 𝛼𝑘: normalized rounding errors, which are modelled by independent

 random variables identically and uniformly distributed on (-1,+1)
• 𝑝: wordlength of mantissa

The reliability of this model and the effectiveness of CESTAC method for actual use in
scientific codes can only be guaranteed if the following hypotheses are true [4]:

• Hyp1. The elementary round-off errors 𝛼𝑘 of the floating point arithmetic opera-
tions are random independent, centered and uniformly distributed variables.

21

• Hyp2. The approximation of the first order in 2−2𝑝 is legitimate.

If these two hypotheses hold, then 𝑅𝑖, 𝑖 ∈ [1,𝑁] is proven to be samples of Gaussian
distribution, centered on the exact result 𝑟, therefore it is possible to use Students test
to get a confident interval of 𝑅� with the probability of (1 − 𝛽) [4][17], where 𝑅� is the av-
erage value of N samples, which are given as follows:

𝑅� =
1
𝑁 �𝑅𝑖

𝑁

𝑖=1

 .

And the precision, i.e. number of significant digits, can be evaluated by the following
formula [14]:

𝐶𝑅� = 𝑙𝑜𝑔10 �
√𝑁 ∗ |𝑅�|
𝜏𝛽 ∗ 𝜎

� ,

where

𝜎2 =
1

𝑁 − 1�(𝑅𝑖 − 𝑅�)2
𝑁

𝑖=1

,

and 𝜏𝛽 is the critical value of the Student distribution for 𝑁 − 1 degrees of freedom and

a probability level 1 − 𝛽.

Hypothesis 1 is ensured to be satisfied due to the great universality of the theorem of
central limit and robustness of Student law [4], while Hypothesis 2 holds if the terms in
2−2𝑝 is negligible compared to terms in 2−𝑝, to be more exact, the following two re-
strictions must be met:

• The operands of any multiplication are both significant.
• The divisor of any division is significant.

Both of the restrictions are inspected in the implementation of the hardware platform,
which will be presented later in Chapter 3.

22

2.3.2 Informational Zero

A result from the CESTAC method is said to be informational zero if and only if one of
the following two conditions holds:

• 𝑅𝑖 = 0, ∀𝑖 ∈ [1,𝑁]

• 𝐶𝑅� ≤ 0

Informational zero is denoted as @.0, from this definition, Discrete Stochastic Relations
(DSR) can be derived as follows [4]:

Assume 𝑋 and 𝑌 are N-samples provided by CESTAC method,

• discrete stochastic equality (denoted by 𝑠 =) is defined as

𝑋 𝑠 = 𝑌 if 𝑋 − 𝑌 = @. 0

• discrete stochastic inequality (denoted by 𝑠 > and 𝑠 ≥) are defined as

𝑋 𝑠 > 𝑌 if 𝑋� > 𝑌� and 𝑋 − 𝑌 ≠ @. 0

𝑋 𝑠 ≥ 𝑌 if 𝑋� ≥ 𝑌� or 𝑋 − 𝑌 = @. 0

23

3 Hardware Platform Support

In this thesis, an FPGA-based hardware architecture which supports DSA, is served as
the hardware platform support for the graphical numerical accuracy debugger. In
section 3.1, a general overview of this hardware system is presented, and in the
following three sections (section 3.2, section 3.3, section 3.4) the descriptions and
functionalities of some key components: Discrete Stochastic Floating Point Unit,
Synchronization Unit, and Numerical Accuracy Unit are introduced respectively.

3.1 Overview of the Hardware System

The hardware system is located on the Xilinx Virtex-5 FXT ML510 FPGA board. It
consists of two hardwired PowrePC440 processors, two Discrete Stochastic Floating
Point Units (DSFPUs), one Synchronization Unit (SyncU), one Numerical Accuracy Unit
(NAU) and some other necessary components like memories, serial ports etc. The NAU
consists of a Significant Digits Estimation Unit (SDEU) and a Numerical Instability
Detection Unit (NIDU).

The overview of this hardware system is shown in Figure 3.1.

Here the PowerPC440 processor, the DSFPU as well as the corresponding memories
and other components are said to form a processing block. While the synchronization
unit, together with NAU, are shared by both processing blocks.

24

Figure 3.1: Overview of the hardware system which support DSA

3.2 Discrete Stochastic Floating Point Unit (DSFPU)

The DSFPU, which is connected to PowerPC processors through Auxiliary Processor
Unit (APU) [7], worked as a coprocessor. Apart from normal functionalities which are in
common with traditional IEEE-754 compatible

Xilinx ML510 Evaluation Board

PPC440 #0

PPC440 #1

DDR2_SDRAM

DDR2_SDRAM

D
SFPU

D
SF

PU

Synch. Unit

 NAU

 SDEU

NIDU

processing block #0 processing block #1

25

FPUs (e.g. decoding and execution of the standard floating point operations, support of
single precision and double precision formats etc.), it is supposed to support DSA and
therefore some more features are added:

• Random rounding

As mentioned in 2.2, random rounding is used in DSA after each floating point
operation, to round the result either upwards or downwards randomly with the
same probability. In DSFPU, it is implemented by using a Linear Feedback Shift
Register (LFSR) to generate a pseudo random number [15].

• Discrete Stochastic Relations support

It’s implemented by a particular unit to support the DSR which are defined in
section 2.3.2. This unit is designed as a common unit for both DSFPUs, because
the execution of the program in different processing blocks might jump into
different branches of the program depending on their own results obtained. If this
is the case, then the subsequent numerical analysis is impossible. Thus, a
decision has to be made before the program enters the branch and forwarded
both processors, and this discrete stochastic relations unit is designed to
generate such a decision.

• Forward exceptions raised from NAU

When there’s an exception raised from NAU due to the detection of any
numerical instabilities, DSFPU should be able to assert and deassert applicable
signals in order to communicate the exception to PowerPC process via APUs
properly [7].

3.3 Synchronization Unit

According to the principles of DSA, the floating point operations running in each process
block need to be synchronously processed. Otherwise, different results of the same
variable cannot be collected and subsequent numerical analysis cannot be performed.

26

Thus the synchronization unit for both processor blocks is necessary. It’s designed in
such a way that, when an asynchronous execution is discovered, that is, when a floating
point operation on one DSFPU has already started but not on the other, a stall signal is
issued by this synchronization unit. When such a stall signal is asserted, the DSFPU
suspends the current execution by executing stall cycles, keeps all the state
unchanged, until the other DSFPU catches it. After that the stall signal is released and
both DSFPUs can continue executing.

3.4 Numerical Analysis Unit (NAU)

Numerical Analysis Unit (NAU) is the key component of the hardware system with DSA
support. It consists of Significant Digits Estimation Unit (SDEU) and Numerical
Instability Detection Unit (NIDU), and should have a functional implementation of the
following:

a) Estimate the number of significant digits

b) Check the significance of multiplication operands and the divisor, as
mentioned in section 2.3.1

c) Check if the accuracy of the result is acceptable, i.e. if the accuracy is lower
than the pre-defined threshold

d) Check if there’s a loss of accuracy due to cancellation in addition/subtraction

e) Check if there’s unstable branch

f) Raise the excpetions to DSFPU in case of any detection of numerical
instabilities

Function a) is implemented by SDEU, while function b) – f) is implemented by NIDU.

The SDEU is connected to both DSFPUs and calculates the number of significant digits
for multiplication operands, divisor, as well as the computed results. An optimized data
path for estimation of the exact significant digits for N = 2 (i.e. two processing blocks) is
proposed in [15], via this optimization, the cost of hardware resources are also reduced.

27

After the calculation is done, the computed number of significant digits are sent to
Discrete Stochastic Relations Unit (DSRU) to make comparisons for the decision of
DSR operations, and/or to the NIDU for the detections of numerical instabilities.

Although the number of significant bits can be calculated in NAU, an extra calculation in
the software debugger is required, because:

• The calculation result in NAU is sent to DSRU and/or NIDU for the decision of
DSR operations, or for the detection off numerical instabilities. It’s for internal
usage and therefore the user cannot obtain this calculation result via debugging
interface.

• In order to reduce the cost of hardware resources, the calculations of number of
significant bits in NAU is an approximate value.

• It’s not a high demand in terms of calculation speed as it‘s for debugging
purpose, therefore calculating in software is sufficient and acceptable.

28

29

4 SDK Debugging Session

Since the numerical accuracy debugger is based on the FPGA computing system, the
FGPA-related Xilinx tools (e.g. XPS, SDK, etc) are referenced. Among them, SDK itself
already provides a friendly and convenient graphical debugging interface, with GDB
used as the underlying debugging engine. Thus the graphical debugger tool integrated
in SDK is here chosen as the starting point of developing the numerical accuracy
debugger.

In section 4.1, a few referenced terminologies are explained and the functionalities of
used Xilinx tools are introduced, and in section 4.2, the principles and work flows of
SDK debugging session are discussed, including single-processor debugging and dual-
processor debugging. Based on the analysis on these, a new semi-auto dual-processor
debugging flow is proposed and explained in section 4.3.

4.1 Xilinx EDK Concepts and Tools

Xilinx Embedded Development Kit (EDK) is a collection of tool package, including Xilinx
Platform Studio (XPS), Software Development Kit (SDK), hardware IP and some other
components [9]. These tools are designed for the implementation of the complete
embedded systems on a Xilinx FPGA device.

4.1.1 Software Development Kit (SDK)

While XPS is used for designing and developing the hardware environment of the
customized embedded system, and afterwards, this hardware design can be exported
to SDK, where the C/C++ embedded software applications running on processors are
created and implemented, based on the hardware platform specifications.

Software project is processor-specific, i.e., if more than one processor is specified in the
hardware platform implementation, then whenever a software project is created, it must
be clearly defined that on which processor would this software project run.

30

Figure 4.1 shows the screenshot of SDK working environment.

Figure 4.1: SDK working environment

For a software project, the source files, as well as the header files and the board
support package (BSP) are required, which are listed in the left-side window of the
working environment.

The source files, together with necessary header files can be compiled later to result in
a binary output (.elf) file, which can be downloaded to target processor later for
debugging or execution purpose. While the board support package (BSP), mandatorily
correspond to each software project, is a collection of low-layer drivers and libraries,
which are linked by the software application at runtime.

The C/C++ code perspective and debug perspective are located in the top-right corner.
Perspective in SDK refers to different displays of windows, and depending on the on-
going activities should the perspective change accordingly. When the C/C++ codes are

31

being developped, C/C++ code perspective will be shown, while the binary file is being
debugged on hardware, SDK will automatically jump to the debug perspective.

4.1.2 Xilinx Microprocessor Debugger (XMD)

Xilinx itself also provides a debugging and verifying tool for the software application
running on PowerPC (405 or 440) processor, MicroBlaze processor, or ARM Cortex-A9
MPCore processor [10]. It’s so called Xilinx Microprocessor Debugger (XMD).

As depicted in Figure 4.2, XMD helps user to debug the software project on hardware
by acting as a bridge in between.

TCP connection

Xilinx Microprocessor Debugger (XMD)

GDB remote protocol interface TCL interface

local or remote GDB/SDK manual debugger/TCL scripts

Microblaze targets

JTAG chain

PowerPC targets Cortex A9 targets

hardware on board

Figure 4.2: XMD acts as a bridge

32

XMD provides a Tool Command Language (TCL) interface which can read customized
TCL scripts to realize line-control functionalities or commands for debugging, and it also
accepts a connection to the local or remote GNU Debugger (GDB) via TCP protocol so
that the user can control the debugging process on GDB. On the other side, XMD con-
nects to the targets on the actual hardware platform, and allows to download the soft-
ware applications to hardware targets for debugging or running. These targets can be
Microblaze processor targets, PowerPC processor targets, Cortex A9 processor targets,
etc.

Beside these, XMD also supports some other interfaces, e.g. socket interface, serial in-
terface, etc., which are not explained in detailed here.

4.1.3 GNU Debugger (GDB)

The GNU Debugger (GDB), which is one of the most used debuggers, is integrated in
SDK and used by SDK as the underlying debugging engine when debugging software
applications running on hardware targets.

The GNU Debuggers are classified into different kinds in SDK, depending on which pro-
cessors they are called for. For debugging the software applications running on Micro-
blaze processor, mb-gdb is called; while for those running on PowerPC processor,
powerpc-eabi-gdb is called.

As mentioned in section 4.1.2, GDB connects to XMD via a remote TCP protocol, and
uses XMD as an underlying engine to communicate with the targets on board, which
enables remotely debugging from the user’s point of view. The detailed work flow of the
debugging session will be explained in next section.

4.2 Work Flow of SDK Debugging Session

As stated in Chapter 3, the hardware platform is built with PowerPC processors, thus,
only debugging session for PowerPC targets is discussed here.

33

4.2.1 Creation of A Test Project

In order to find out the work flow of SDK debugging session, a test project is created as
the first step. The hardware system of this test project is shown in Figure 4.3 as a block
diagram.

Figure 4.3: Hardware system of test project

Actually it’s a simplified version of hardware systems presented in Chapter 3: the whole
system includes two PowerPC440 processors with maximum operating frequency up to
400MHz, each processor has its own 512MB DDR2_SDRAM attached, and connection
to Floating Point Unit (FPU) is established via Fabric Co-processor Bus (FCB), in
addition , two RS232_Uart are also connected to PowerPC processors respetively via
Processor Local Bus (PLB) so that the output printed results can be observed.

Xilinx ML510 Evaluation Board

PPC440 #0

PPC440 #1

DDR2_SDRAM

DDR2_SDRAM

FPU

FP
U

FCB FCB

RS232_Uart

RS232_Uart

PLB PLB

34

Apart from that, a small piece of C codes are written for the software application, which
is shown in Listing 4.1 below.

Listing 4.1: Software source codes of test project

4.2.2 Work Flow of Single-processor Debugging

Let’s first consider the single-processor debugging scenario. Here single-processor de-
bugging means debug one piece of code on single PowerPC processor, within one de-
bugging session.

Now that the test project is created, the hardware debugging session can be launched
(via right click the .elf file and select Debug as > Launch on hardware), after several
seconds’ loading, the debug perspective is presented, and the program is suspended at
the beginning of main function, where the first breakpoint is located by default, waiting
for the user’s next actions. The debug perspective is shown in Figure 4.4.

#include <stdio.h>
#include "platform.h"

int main()
{

init_platform();

 double a = 1.2;
 double b = 2.3;
 double c = a * b;

 cleanup_platform();

 return 0;
}

35

Figure 4.4: SDK debug perspective

During the initialization phase of debugging session, two more useful observations are
noticed here:

1. Active processes in windows task manager shown in Figure 4.5.

Among them, the remarkable processes are:

• javaw.exe
represents SDK process, as SDK is based on Eclipse.

• powerpc-eabi-gdb.exe
proves that the GDB for PowerPC processor is running, and the actual path can
be located via checking the property of this process, which turns out to be
C:\Xilinx\14.3\ISE_DS\EDK\gnu\powerpc-eabi\nt\bin\powerpc-eabi-gdb.exe

36

• xmd.exe

there’re two xmd.exe listed, whose absolute paths can be both located as:
C:\Xilinx\14.3\ISE_DS\EDK\bin\nt\xmd.exe
C:\Xilinx\14.3\ISE_DS\EDK\bin\nt\unwrapped\xmd.exe
respectively, and it’s proven that when SDK is started, the former XMD is called,
which will call the latter one afterwards.

Figure 4.5: Active processes in windows task manager view

2. Information printed in XMD console window, shown in Figure 4.6.

The message “Accepted a new TCLSock connection from 127.0.0.1 on port 1276”
shows that that GDB successfully connects to XMD, while the message “Software
Breakpoint 3 Hit, Processor Stopped at 0x000000218” is consistent with the fact shown
in Figure 4.4 that the first breakpoint is hit and the processor is temporarily stopped to
wait for the user’s next operations.

37

Figure 4.6: Information printed in XMD console window

According to further reading in [10] and conclusion from the above observations, it’s
proven that whenever XMD connects to a hardware target on board, it opens a GDB
server, together with a listening port (port number in default: 1234), which allows a local
or remote connection from GDB via this TCP port, this SDK single-processor debug-
ging/connection flow is shown in Figure 4.7:

Figure 4.7: SDK single-processor debugging/connection flow

JTAG TCP

XMD

(GDB server)
GDB

Computer 1 Computer 2
 FPGA board

PowerPC target .elf

38

Here GDB and XMD are automatically called by SDK once the “debug on hardware”
command is received from the user. In the flow graph, GDB and XMD are distributed on
two different computers, which actually realize a remote-debugging functionality. How-
ever, they can also both located on the same computer (i.e. Computer 1 and 2 in Figure
4.7 are the same computer), which is adopted in our case for convenience purpose.

As a conclusion, when Debug as > Launch on hardware is applied to .elf files, a series
of operations are handled by SDK in background during the debugging session launch
and initialization period, which are listed below:

• Connect XMD to hardware target with the command
connect ppc hw –debugdevice devicenr x cpunr x
This will open a gdb server on XMD and a TCP port for GDB connection.

• Execute powerpc-eabi-gdb.exe with the commnd
powerpc-eabi-gdb [options] –nw testelf.elf
The actual options will be discovered later.

• Connect GDB to XMD via the command
target remote localhost:1234
Here localhost means the GDB and XMD are located on the same machine,
while 1234 represents the TCP port opened by XMD. After the command is suc-
cessfully called, XMD will also print out a confirmation message that the GDB
connection is accepted.

• Dowland .elf file to board
which is equal to XMD command dow test.elf

• Set breakpoints, initialize debug information
breakpoints are set in the beginning and end of main function by default, then the
user‘s customized breakpoints are added

• Enter the debug perspective

Notice: all of these operations are automatically done by SDK, there’s no manual input
or commands from user point of view at all.

39

4.2.3 Work Flow of Dual-processor Debugging

Now let’s consider the dual-processor debugging scenario.

In fact, it is possible to connect single XMD instance to both PowerPC targets at the
same time, and switch between different targets is also possible, as depicted in Figure
4.8:

Figure 4.8: XMD connects to both PowerPC440 targets

By connecting to both processors, XMD will open two GDB servers and two listening
ports, according to the principles explained in section 4.2.2. However, it’s impossible for
single GDB instance to connect to both GDB servers: when the same GDB instance,
which is already connected to one GDB server opened by XMD, is forced to connect to
the other GDB server opened by XMD, it will be shown that the previous GDB connec-
tion is closed automatically, as depicted in Figure 4.9.

JTAG
XMD

(GDB server #0)

(GDB server #1)

Computer

PowerPC440 #0
target

PowerPC440 #1
target

FPGA board

40

Figure 4.9: XMD closes one GDB connection

However, this doesn’t mean that XMD cannot accept two GDB connections at the same
time. It is possible, but only if two GDB instances are used for connection. Figure 4.10
shows the situation.

41

Figure 4.10: XMD successfully accepted two GDB connections

42

.elf #0

.elf #1

Based on this, if two software projects are created for two PowerPC processors respec-
tively, SDK allows the two .elf files to be debugged on different PowerPC processors
simultaneously but independently, which is shown in Figure 4.11:

Figure 4.11: SDK dual-processors debugging/connection flow

Here “simultaneously but independently” means that the two debugging sessions can
be proceeded in parallel, but operations/commands which the user performs in .elf #0
debugging session will not affect the user’s operations/commands in .elf #1 debugging
session, they are asynchronously proceeded. The debugging status (breakpoints, vari-
able values) will not take effect in each other either. Moreover, users can switch back
and forth between these two debugging sessions freely.

However, the pre-set debugging modes mentioned above are not the debugging flows
required, because firstly, the same piece of the code needs to be debugged; secondly,
the debugging operations have to be synchronously performed, which means, for in-
stance, when user asks PowerPC #0 to do “step over” operations, the same commands
should be received and carried out by PowerPC #1, only in this case can the results be
obtained from both processors after each floating point operation.

One possible solution is creating two software projects for both PowerPCs with exactly
the same source codes, and the same debugging operations are repeated manually in
both debugging sessions. However, it would be obviously too much work, when the

JTAG

XMD

(GDB server #0)

(GDB server #1)

Computer

PowerPC440 #0
target

PowerPC440 #1
target

FPGA board

GDB

GDB

43

source codes grow in larger-size and the debug operations also increase. The user has
to set exactly the same breakpoints, print out exactly the same variable values, step into
and over exactly the same functions/statements, which is not only troublesome, but also
easy to make mistakes.

In order to overcome this problem, a new and feasible dual-processor debugging flow
must be developed.

4.3 A Semi-auto Dual-processor Debugging Flow

As discussed in section 4.2.3, the automatic SDK dual-processor debugging flow will
not satisfy our target. Thus in this section, a combination of SDK debugging and manual
connection is proposed as the new dual-process debugging flow here.

It is based on the fact that in SDK debugging session, SDK will translate each user in-
terface action in debug perspective (for instance, press the button “step over”, double
click to set breakpoints, etc.) into a sequence of GDB commands, while process the
output of GDB to display the current state of the program (e.g., values of variables, list-
ing of breakpoints/registers) being debugged [18]. According to the principles, a semi-
auto dual-processor debugging flow is depicted in Figure 4.12 as follows:

Figure 4.12: Semi-auto dual-processor debugging flow

JTAG

JTAG TCP

XMD (auto)

Computer

FPGA board

PowerPC440 #0
target

TCP PowerPC440 #1
target

SDK

XMD (manual)

GDB (auto)

GDB (manual)

command catch/forward

44

As shown in Figure 4.12, the semi-auto debugging flow consists of two paths, the upper
path is handled by SDK, after the “Launch debugging session on hardware” command
is received by SDK, it will automatically call XMD to connect to PowerPC target,
download .elf file, and execute powerpc-eabi-gdb.exe to connect to XMD and so on, as
all described in section 4.2.2. While in the lower path, the user has to set up the
connections himself before the debugging session is actually started.

Therefore, from SDK point of view, it looks like “single-processor debugging”, as exactly
one .elf file is asked to debug on only one PowerPC processor. However, in fact, the
“dual-processor debugging” functionality is realized by adding the manual path.

Compared to Figure 4.11, there’s one more difference here: another XMD instance is
used, this is based on the fact that we cannot ask the XMD in the auto path to connect
to both PowerPCs, because XMD (auto) is handled by SDK, and SDK will only connect
it to one PowerPC processor if SDK considers it as a “single-processor debugging”
case.

The key point here is the “command catch/forward” functionality. The goal of this part is,
when user is performing debug operations in SDK and SDK converts the user’s actions
into a series of GDB commands, these commands are captured in the half-way, copied,
and sent to GDB in the manual connection path. Through this method, the user only has
to do debug operations once, but results in the emission and reception of GDB
commands in both GDBs, followed by the transmission to XMD and applied to both
PPC440 targets. This will meet our target in the right way: debug the same program
synchronously in both processors.

Thus, the implementation of this “command catch/forward” functionality would be the
next point of discussion, which is presented in next chapter.

45

5 Implementation of the Semi-auto Dual-processor Debugging Flow

As discussed in section 4.3, in order to realize the proposed semi-auto dual-processor
debugging flow, the implementation of command catching functionality must be
investigated as the first step; this is done by a substitution to the original GDB. In
section 5.1, a basic concept and principle for this implementation is explained, while in
section 5.2, the GDB input commands catching functionality is explained in details. After
that, the implementation is extended to dual-processor debugging scenario in section
5.3. In section 5.4, the GDB output message catching functionality is added, and in
section 5.5, the way of gathering the results and computing the significant bits is
presented.

5.1 Basic Principle for Implementation

As mentioned in section 4.2.3, SDK will convert the user’s actions in a sequence of
GDB commands which are sent to powerpc-eabi-gdb.exe, and process the output of
GDB to update the display of current state of the program in the graphical SDK debug
perspective. Therefore, the most important issue is to capture the sequence of GDB
commands which are sent from SDK to GDB.

In order to capture the commands, we should either focus on the output stream of SDK,
or the input stream of GDB (simply because the commands are transmitted from SDK to
GDB). Considering SDK will not only send commands to GDB, but also probably to
XMD or other components, and also sdk.exe might be well coded to interact with other
executable programs, which makes it difficult to be modified or substituted. Therefore,
the input stream of GDB should be the target for investigation.

The basic idea is to write a new powerpc-eabi-gdb.exe, to substitute the original one.
Whereas in the newly written GDB, it catches the received commands, performs
necessary processing, and forwards them to the original one so that the original GDB
can deal with all the tasks which it is supposed to do. By this means the new GDB is
well pretended, that is, from SDK point of view there’re no changes made Figure 5.1
shows this basic idea:

46

Figure 5.1: Basic idea of GDB substitution

Here “send back confirmation/output” means that GDB has to send some confirmation
message or output message which will be processed by SDK. However, GDB is still
connected to XMD, as depicted Figure 4.13, there’s no conflict between them.

5.2 Command Catching/Forwarding

5.2.1 Arguments Passing

According to Figure 4.5, the actual GDB called by SDK during the debugging session
can be located:

C:\Xilinx\14.3\ISE_DS\EDK\gnu\powerpc-eabi\nt\bin\powerpc-eabi-gdb.exe

This is therefore the right GDB which should be substituted (will be called gdb.exe for
short in the following). It can be renamed as powerpc-eabi-gdb-orig.exe (i.e. the original
GDB, will be called gdb-orig.exe for short in the following), while the newly written GDB

send back
confirmation/output

SDK

new GDB send GDB cmd

1) Capture commands

2) Call old gdb.exe

3) Process the commands
if necessary

4) Forward commands to
old gdb.exe

XMD ...

47

takes the name powerpc-eabi-gdb.exe which can be recognized by SDK. Both GDBs
are located under C:\Xilinx\14.3\ISE_DS\EDK\gnu\powerpc-eabi\nt\bin.

Since we are only interested in the commands that GDB receives, the arguments when
SDK calls GDB, however, should remain unchanged and passed to the original GDB.
This arguments passing functionality is implemented simply by copying the arguments
of main() function and passing them when calling old GDB. Furthermore, these
arguments can be printed out, which is shown in Listing 5.1, and a glance can be casted
over them:

Listing 5.1: The arguments which SDK passes to GDB

The meanings of the options can be examined in [19]. Among them the remarkable op-
tion here is –i mi, where mi stands for machine interface. This indicates that the com-
mands that GDB receives from SDK are GDB/MI commands, which is a bit different
from normal GDB debugging commands syntax. For more information about GDB/MI in-
terface, please refer to [20].

5.2.2 GDB Input Stream Reading Model

In order to read information from the input stream of GDB, the property of standard input
(STDIN) of GDB, when called by SDK, must be invested. Here property stands for the
type of input stream of GDB, it might be the input from keyboard, a console input buffer,
a reading end of a pipe, etc.

powerpc-eabi-gdb
-q
-nw
-i
mi
--cd=Z:\Xps_proj3\SDK\SDK_Workspace\test_proj1_ppc0
--command=.gdbinit
Z:\Xps_proj3\SDK\SDK_Workspace\test_proj1_ppc0\Debug\test_proj1_ppc0.elf

48

Obviously, the STDIN of GDB cannot be the keyboard input: the user doesn’t need to
input any characters from keyboard during the debugging session. Therefore the
possibility of a console input buffer is discussed in the following.

A console is an interface that provides I/O to character-mode application, and a console
consists of one input buffer and one or more screen buffers (output buffer) [21]. A
console is created when a console process is invoked. A console process is a character
-mode process whose entry point is the main() function [22], for example, the windows
command processor is such a console process, when invoked, a console is created as
well. If the user wants to call other console processors from the command processor
window, one can specify whether the new process should inherit the parent processor’s
(command processor) console, or a new console should be created for the new
process.

In addition, a process can be attached to at most one console, on the other side, one
console can be attached with multiple processes. When a new console is created, the
console’s input and output buffers are created as well, which serve as the default
standard input (STDIN), standard output (STDOUT)/standard error (STDERR) of the
attached process, respectively.

Although there’s no knowledge about how GDB is called by SDK, it can still be proved
via AllocConsole() function that GDB is a console process which has been already
attached with a console, an error message, shown in Listing 5.2, will be printed if
AllocConsole() function is applied to the source code of new GDB:

Listing 5.2: Error message when AllocConsole() is applied

ERROR: API = Allocate console
error code = 5
message = Access is denied.

49

AllocConsole() function only fails when the calling process already has a console
attached. This proves that when GDB is called by SDK, it’s already attached with a
console, which is hidden in front of users though.

However, this fact doesn't say anything about the STDIN of GDB. It should be the
console input buffer in default case, but also can be redirected to somewhere else. In
order to invest it in depth, GetConsoleMode() function, together with other functions are
applied here, which is shown in Listing 5.3:

Listing 5.3: Source codes to check the console input buffer

Here hConIn, which is returned by CreateFile() function, is ensured to be is the handle
of console input buffer, even though the STDIN of the program might be redirected to
other handles, while hStdin, which is returned by GetStdHandle() function, is ensured to
be the handle of input buffer of the calling process, i.e., the handle after redirection in
case there’s I/O redirection involved. If it can be proved that hConIn and hStdin points to
the same handle object, then it can be concluded that the STDIN of GDB is just the
console input buffer.

There’re a few methods to examine this, here GetConsoleMode() function is employeed.
By applying GetConsoleMode(hStdin, &ConMode) , an error message occured , which
is listed in Listing 5.4 below:

//check whether the console input buffer is the STDIN of the program
HANDLE hConIn, hStdin;
SECURITY_ATTRIBUTES sa;
DWORD ConMode = 0x0;

hStdin = GetStdHandle(STD_INPUT_HANDLE);
hConIn = CreateFile("CONIN$",GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ,&sa,OPEN_EXISTING,NULL,NULL);

if(!GetConsoleMode(hStdin, &ConMode))
 DisplayError("Get Console Mode");

50

Listing 5.4: Error message when GetConsoleMode() is applied

Since GetConsoleMode() function only accepts the handle of console input buffer as the
first argument, thus, the “The handle is invalid” error message indicates that hStdin is
not the handle accepted, i.e., not the handle of console input buffer, which comes into
the conclusion that the STDIN of GDB is not the console input buffer, which results in
that console I/O functions (ReadConsole(), WriteConsole(), etc) cannot be applied.

From the discussions above, it is clear that when SDK invokes GDB, the STDIN of GDB
is already redirected by SDK. Figure 5.2 presents this situation:

Figure 5.2: Redirected-STDIN GDB communicates with SDK

We don't know where the STDIN of GDB is exactly redirected to, however, it is not an
important issue, as long as the redirected standard input handle can be obtained by
GetStdHandle() function and used for reading data.

Thus here the pipe structure is assumed: SDK sends the commands to the writing-end
of pipe0, while GDB reads the commands from the corresponding reading-end of the
pipe.

ERROR: API = Get Console Mode
error code = 6
message = The handle is invalid.

SDK

gdb.exe

pipe0

...

51

Similarly, a pipe structure is also considered to be applied to the STDOUT/STDERR of
GDB. That is, SDK invokes GDB with the STDOUT/STDERR of GDB already redirected
to the writing-end of another pipe (pipe1). After processing of the commands, GDB
sends the output/confirmation message to the writing-end of pipe1, while SDK reads
those feedback messages from the reading-end of pipe1.

The complete pipe structure for the communication between SDK and GDB is present-
ed in Figure 5.3 here:

Figure 5.3: Redirected-I/O GDB communicates with SDK

Now that the communication model is set and the STDIN handle is grasped, it’s time to
read data from the reading-end of the pipe, here ReadFile() function is applied for that
purpose. Figure 5.4 shows this model:

SDK

gdb.exe

pipe0 pipe1

52

Figure 5.4: GDB input stream reading model (i)

In this model, the ReadFile() function, the print-out functionality, as well as the calling of
gdb-orig.exe are all implemented within gdb.exe.

Here STDIN of both GDBs are connected to the reading-end of pipe0, and gdb.exe is in
charge of calling gdb-orig.exe. We’re wishing to read data (commands received from
SDK) from the reading-end of pipe0 and print them out to some file.

And there’s no further redirection of STDOUT/STDERR of either gdb.exe or gdb-
orig.exe, they are both connected to the writing-end of pipe1.

However, it turns out to be nothing is read, and the debugging session is stucked during
the initialization phase. One possible reason is that within gdb-orig.exe a ReadFile()
function is also called to read data from its STDIN, which results in a conflict between
multiple readers of the same pipe, for example, the pipe can be designed in such a way
that once the existence of multiple readers are detected, then

gdb.exe

SDK

pipe0

gdb-orig.exe

call

ReadFile()

print the read
data out

pipe1

53

SDK is presented from continuing writing data to the writing-end of the pipe, which
causes gdb-orig.exe not to generate the correct confirmation message (as it doesn’t
receive commands from SDK) and SDK hangs the debugging session.

In order to prevent this potential conflict, an additional pipe and buffer is added here, as
Figure 5.5 depicted:

Figure 5.5: GDB input stream reading model (ii)

In this model, the ReadFile() function, the data store and print-out functionality, the
creation of pipe2, together with the calling of gdb-orig.exe are all implemented within
gdb.exe.

SDK

pipe0

gdb-orig.exe

gdb.exe

ReadFile() ,

store the read data
into a buffer

Buffer

pipe2

print

call

pipe1

54

Here STDIN of gdb.exe remains unchanged, i.e. still connected to the reading-end of the
pipe0. In fact, it is not crucial where the STDIN of gdb.exe is connected to, it can be
connected to anywhere else, as long as we specify the ReadFile() function to read the
data from the right reading-end of the pipe. However, it is crucial where the STDIN of
gdb-orig.exe is connected to, since we’re not modifying the source code of gdb-orig.exe,
therefore we cannot drive ReadFile() function within gdb-orig.exe to read from nowhere
else, but STDIN of it.

STDOUT/STDERR of both gdb.exe and gdb-orig.exe remain unchanged, i.e., still
connected to the writing-end of pipe1.

The data flow of this reading model goes as the following: SDK sends the commands to
the writing-end of pipe0, the ReadFile() function within gdb.exe reads the commands
from the reading-end of pipe0, store them into a temporary buffer for the potential
processing later, these commands are printed out to a file, so that we can have a check.
At the same time, these commands are forwarded to the writing-end of another pipe,
pipe2 which is created earlier, so that gdb-orig.exe can read these commands via the
reading-end of pipe2. In this case, STDIN of gdb-orig.exe must be connected to the
reading-end of pipe2 for the correct reading.

But adding an intermediate pipe, it’s guaranteed that the ReadFile() operations in gdb-
orig.exe are later than the ReadFile() operations in gdb.exe. This is ensured by the by
the reading/writing principles of pipes: ReadFile() function will not return if the write
operation is not completed on the writing-end of the pipe. That is, ReadFile() in gdb-
orig.exe will keep on waiting, until some data from the buffer is written to the writing-end
of pipe2.

5.2.3 Process Calling

As mentioned in the section 5.1, gdb.exe will take the responsibility of calling/executing
gdb-orig.exe. Moreover there’re some conditions which this calling/executing process
must satisfy:

55

A) gdb.exe and gdb-orig.exe must be executed in parallel

i.e. gdb.exe and gdb-orig.exe should both keep executing in parallel until the debugging
session is over. gdb.exe needs to keep executing since it has to act as a “fake GDB
object” which deceives SDK; while gdb-orig.exe needs to keep executing because it is
the actual process who’s reading commands from SDK, processing them, and sending
back outputs/confirmation messages.

In order to meet the condition, there’re two more assumptions which must be checked:

A.1 gdb.exe itself should not end until the debugging session is over, i.e. cannot return
from main() function.

A.2 gdb.exe should not be stucked after calling gdb-orig.exe, i.e. it should not wait for
the complete of gdb-orig.exe.

B) The standard input (STDIN) of gdb-orig.exe must be redirected

To be exact, STDIN of gdb-orig.exe must be redirected to the reading-end of pipe, as
discussed in section 5.2.2.

In order to fulfill the condition A.1, an infinite for loop is applied, a piece of pseudo codes
are listed in Listing 5.5 to show this idea:

56

Listing 5.5: A pseudo-code example with infinite loop applied

By taking advantage of the infinite for loop, it’s guaranteed that gdb.exe is keep on
repeating the task it’s supposed to do and will never end unless the debugging session
is over.

As for condition A.2 and condition B), the way that gdb-orig.exe is called is crucial. Here
CreateProcess() is chosen to meet these restictions. According to [23], the creation of
the new process will not affect the execution of the calling process, which corresponds
to condition A.2, on the other side, a STARTUPINFO structure can be specified as the
argument of CreateProcess() function, which enables the I/O redirection of the new
process. A couple lines of codes are shown in Listing 5.6 to show how it works:

for (;;) //infinite loop

{
// tasks to do
 1. read from reading-end of pipe0
 2. store the read data into a buffer
 3. print the data out to a file
 4. write the data to the writing-end of the pipe2
}

57

Listing 5.6: Usage of STARTUPINFO and CreateProcess()

5.2.4 Command Cathing Results

By applying the previous mentioned principles and concepts, the commands which SDK
sends to GDB during the debugging session can now be captured. Listing 5.7 below
shows a small section of them which are recorded (for the complete commands caught,
please refer to Appendix A.1):

// Create pipe2
SECURITY_ATTRIBUTES sa;
sa.bInheritHandle = TRUE;
CreatePipe(&hRead_pipe2,&hWrite_pipe2,&sa,0);

PROCESS_INFORMATION pi;
STARTUPINFO si;

// Set up the STARTUPINFO struct.
ZeroMemory(&si,sizeof(STARTUPINFO));
si.cb = sizeof(STARTUPINFO);
si.dwFlags = STARTF_USESTDHANDLES;

// redirect STDIN of the new process to the reading-end of pipe2
si.hStdInput = hRead_pipe2;

// leave the STDOUT and STDERR undirected
si.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE);
si.hStdError = GetStdHandle(STD_ERROR_HANDLE);

// launch the process
CreateProcess(NULL,exe_p,NULL,NULL,TRUE,NULL,NULL,NULL,&si,&pi);

58

Listing 5.7: A section of commands recorded

148-gdb-set confirm off
149-gdb-set width 0
150-gdb-set height 0
151-interpreter-exec console echo
152-gdb-show prompt
153-gdb-set auto-solib-add on
154-gdb-set stop-on-solib-events 0
155-gdb-set stop-on-solib-events 1
156-target-select remote localhost:1234
157-target-download
Z:\\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0\\Debug\\test_proj1_ppc0.elf

…

172-exec-next 1
173 info threads
174-stack-info-depth
175-stack-list-frames 0 1
176-data-list-changed-registers
177 info sharedlibrary
178-stack-list-arguments 0 0 0
179-stack-list-locals 0
180 whatis a
181 whatis b
182 whatis c
183-var-create - * a
184-var-evaluate-expression var1
185-var-create - * b
186-var-evaluate-expression var2
187-var-create - * c
188-var-evaluate-expression var3
189-exec-next 1
190 info threads
191-stack-info-depth
192-stack-list-frames 0 1
193-var-update var1
194-var-update var2
195-var-update var3

…

59

The listing above clearly shows that the GDB connected to XMD by the command:

156-target-select remote localhost:1234

Where 1234 is the port number that XMD opens.

And from this listing it’s also proved that SDK translates the user’s actions into a series
of GDB commands, as discussed in previous chapter , for instance, line 172-188 shows
the GDB commands generated when user press the “step over” button for the first time.

5.3 Extensions to Dual-processor Debugging

However, the contents discussed in this chapter so far are based on single-processor
debugging, i.e., there’s only one gdb-orig.exe called by gdb.exe. In order to conform to
the semi-auto debugging flow proposed in section 4.3, the extensions to dual-processor
scenario should be made.

5.3.1 Overview of the Extended Reading Model

In order to perform this extension, three more functions must be augmented:

• One more copy of gdb-orig.exe should be called.

• One more pipe (pipe3) needs to be created.

• Make necessary changes to the data which is read from pipe0, and forward the
data to the second gdb-orig.exe via writing the data into the writing-end of pipe3.

In below, the reading model for dual-processor scenario is shown in Figure 5.6:

60

Figure 5.6: GDB input stream reading model for dual-processor debugging

SDK

pipe0

gdb-orig-1.exe

gdb.exe

ReadFile() ,

store the read data
into a buffer

Buffer

pipe2

print

call

pipe3

gdb-orig-2.exe

call

processing

pipe1

61

In this model, the original GDB is copied and renamed as gdb-orig-1.exe and gdb-orig-
2.exe respectively, while in debugging process, the three executables are running in
parallel, and will not end before the debugging session is over.

Besides that, two more points should be noticed:

1. In the “processing” block, all the messages are copied from the buffer, except the
connecting-to-XMD command.

2. The STDOUT/STDERR of gdb-orig-2.exe should not be connected to the writing-
end of pipe1.

The detailed discussion and explanation of these two points will be presented in the
following two subsections.

5.3.2 Command Processing Block

From the general reading model, the commands that SDK sends to GDB are duplicated
as two copies, which are forwarded to pipe2 and pipe3 respectively. However, there’s
an exception: the connecting-to-XMD command, i.e. the following command:

156-target-select remote localhost:1234

As mentioned in section 4.3, in semi-auto dual-processor debugging scenario, two XMD
instances will be used to connect to both PowerPC targets individually, and therefore
two GDB servers are opened with different port numbers, thus, the port number
here(1234) must be modified to be different. For the automatic connection path in
Figure 4.12, SDK will get the port number from XMD automatically and use it to
generate GDB commands. However, in the manual connection path, the correct port
number is only known after the connection is set, then the C source codes of gdb.exe
must be adjusted accordingly to the correct port number, and then the compiled gdb.exe
can be copied to overwrite the formal one, lastly the debugging session can be started.
Figure 5.7 shows this processing flow:

62

Figure 5.7: The processing flow before starting debugging session

open a XMD terminal

connect XMD to PPC #1

get the TCP port number
from the printed information

of XMD terminal

adjust source code of the script
according to this port number

compile the script and
generate gdb.exe

copy and overwrite the old
gdb.exe

start debugging

disable “reset_on_run” in XMD

63

And a small piece of C codes to do the XMD port modification work (i.e. the
“processing” block in Figure 5.6), is shown in Listing 5.8:

Listing 5.8: C implementation of XMD port modification

As previously stated, the value of XMD_PORT might be re-defined, according the port
number captured after the manual XMD-PowerPC connection.

In Figure 5.7, the step “disable reset_on_run in XMD” is important, otherwise the whole
system will be reset (by default) once the debugging session is started, which will result
the automatic debugging process to be suspended and stucked.

Figure 5.8 shows the information printed in XMD terminal, with the port number
included, as well as the system debugconfig information before and after “disable
reset_on_run” is applied.

#define XMD_PORT "1234"

// copy the obtained commands into buffer
memcpy(cmd_1,stdin_buf,dwRead);

// if the connect-to-XMD command is found
if((str_fnd = strstr(stdin_buf,”remote localhost”)) != NULL)

// substitute the port number with XMD_PORT

memcpy(&cmd_1[strlen(cmd_1) -1- strlen(XMD_PORT)],
 XMD_PORT,strlen(XMD_PORT));

64

Figure 5.8: Information printed in XMD terminal

5.3.3 Connection of STDOUT/STDERR

As shown in Figure 5.6, the STDOUT/STDERR of gdb.exe and gdb-orig-1.exe are
connected to the writing-end of pipe1, while the STDOUT/STDERR of gdb-orig-2.exe
should not be connected.

The reason is gdb-orig-1.exe already passes the output/confirmation messages to SDK
via writing these messages to the writing-end of pipe1, if the STDOUT/STDERR of gdb-
orig-2.exe is again connected to the writing-end of pipe1, then SDK will receive two
copies of the feedback messages. However, SDK is defined to be able to process one
copy only at a time, thus it hangs if it receives two copies and the debugging session
cannot be continued.

65

As a conclusion, the STDOUT/STDERR of gdb-orig-2.exe can be redirecte to anywhere
else, except the writing-end of pipe1.

5.4 Output Catching/Forwarding

5.4.1 GDB Output Stream Writing Model

By taking advantage of the functionalities which are implemented up to now, the user
can debug the same piece of code synchronously in both PowerPC processors. Figure
5.9 shows the screenshot of semi-auto dual-processor debugging session:

Figure 5.9: Screenshot of semi-auto dual-processor debugging session

66

The screenshot clearly shows that the SDK auto-debugging path goes smoothly, and
the manual debugging path is proven to be also in progress by the printed information in
XMD terminal like “Accepting GDB connection”, “Software breakpoints hit” etc.

However, it would be more convinced if the output of the GDBs can be examined, and
when a test project is applied on the hardware platform which supports DSA (in Chapter
3) with the random rounding mode applied, and different values of the same variable
can be collected and presented to users, which is also one of the pre-set targets.

As discussed in 5.2.2, the pipe structure is assumed for the communications between
SDK and GDB. Similar to Figure 5.5, a GDB output stream writing model with additional
buffer and pipe applied, is proposed here in Figure 5.10 below:

Figure 5.10: GDB Output Stream Writing Model

SDK

pipe0

gdb-orig.exe

gdb.exe

Buffer

pipe4

print

call

pipe1

…

67

Here the connection of STDIN of gdb-orig.exe is omitted due to the space limitation,
and only the STDOUT/STDERR of it should be focused.

The STDOUT/STDERR of gdb-orig.exe is redirected to a writing-end of pipe4, which is
created earlier within gdb.exe. Again ReadFile() function is applied to read data from
the reading-end of pipe4, and store them into a temporary buffer, after the contents in
buffer are printed out to an external file, these contents are also written to the writing-en
of pipe1, so that SDK can read them from the corresponding reading end.

A corresponding pseudo code is shown in Listing 5.9:

Listing 5.9: A pseudo-code of output catching implementation

By this means we’re wishing to catch the output of gdb-orig.exe without affecting the
debugging process. However, it would be not be successful, and SDK would generate
an error when entering debug perspective.

It’s due to the blocking behavior caused by the reading/writing principles of pipes: the
ReadFile() /WriteFile() function will only return, if the number of required bytes has
been read/written, or a write/read operation is completed in the writing-end/reading-end
of the pipe, respectively. Otherwise, it will keep waiting until the write/read operation is
done.

// Set all the necessary connections/redirections

for (;;) //infinite loop

{

1. perform input stream command catching (same source codes as in section
5.2)

2. perform output stream command catching

}

68

Therefore, there’s no problem, when we implement the input stream command catching
in the infinite loop: the ReadFile() function in gdb.exe will wait until some data is written
to pipe0, and a carriage return is virtually hit. Then the ReadFile() function will start to
read and in this way the data in pipe is flowing.

However, when the same procedure for the GDB output catching is implemented in the
same for loop, the ReadFile() function which is supposed to read the output of GDB, is
waiting for GDB to write its output to the writing-end of pipe4. But the input command
and the output message is not a one-by-one correspondence, which means, when GDB
receives a command from SDK, it doesn't necessarily generate one output message,
there’re also situations that GDB will generate one output message only when two or
more commands are obtained.

In this situation, the ReadFile() function is waiting for the output message, which GDB
will never generate until it receives the next command from SDK, but the “receiving”
process can only be done in the next loop run. Therefore the program is stucked in this
point.

The solution is running the input command catching codes and the output message
catching codes in two separate loops, and the two loops must be executing in parallel.

This is done by creating separate threads for both for-loops in main() function, and
waiting for the finish of both threads for infinite time

A piece of pseudo code in Listing 5.10 shows the idea:

69

Listing 5.10: A pseudo-code of input/output catching implementation

Extension to dual-processor debugging scenario is also very similar as described in
section 5.3. Instead of showing the structure for output catching only, a complete
diagram for both input and output catching implementation is shown below in Figure
5.11:

// Thread to do input command catching
DWORD WINAPI Thread_1(void* pVoid)
{
for (;;) //infinite loop
 {
 do input command catching;

}

}

// Thread to do output message catching
DWORD WINAPI Thread_2(void* pVoid)
{
for (;;) //infinite loop
 {
 do output message catching;

}

}

main()
{
//create both threads
 CreateThread1;
 CreateThread2;

//waiting for both threads to finish, for infinite time
WaitForMultipleObjects(2, hThread, TRUE, INFINITE);

}

70

Figure 5.11: A complete diagram about the input/output catching implementation

SDK

pipe0

gdb-orig-
1.exe

gdb.exe

ReadFile() ,

store the read data
into a buffer

Buffer0

pipe2

print

call

pipe3

gdb-orig-
2.exe

call

processing

pipe1

pipe4

Buffer1
print

pipe5

Buffer2

71

Here Buffer2 should not be connected to the writing-end of pipe1, according to the
discussion in section 5.3.3. In addition, the input commands catching(for both GDBs),
the output message catching for gdb-orig-1, the output message catching for gdb-orig-
2, should be included in three threads respectively.

5.4.2 Output Message Catching Results

Listing 5.11 shows a part of the output message catching result for one GDB, for the
complete catching results, please refer to Appendix A.2.

Listing 5.11: A section of output messages recorded

123^done,changelist=[]
(gdb)
124^done,changelist=[]
(gdb)
125^done,changelist=[{name="var3",in_scope="true",type_changed="false"}]
(gdb)
126^done,changed-registers=["32","45","64","70","114","174"]
(gdb)
&"info sharedlibrary\n"
~"No shared libraries loaded at this time.\n"
127^done
(gdb)
128^done,stack-args=[frame={level="0",args=[]}]
(gdb)
129^done,locals=[name="a",name="b",name="c"]
(gdb)
130^done,value="2.7599999999999998"
(gdb)
131^done,value="2.7599999999999998"
(gdb)
132^running
(gdb)
132*stopped,reason="end-stepping-range",thread-
id="0",frame={addr="0x00000248",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps
_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="14"}
(gdb)

72

In this listing, it’s proved that GDB generates some output/confirmation messages as a
respond to the commands received. These messages are read and processed by SDK,
some of them are recognize as the confirmation message (e.g. ^done), while some of
them are taken as the required variable value, which will be displayed in the SDK’s
graphical debugging interface (e.g. value="2.7599999999999998").

5.5 Results Collection and Calculation of Precision

Now the actual hardware architecture which is described in Chapter 3 is applied, with a
new software application for testing our numerical accuracy debugger. Listing 5.12
shows the main source codes of the testing application:

Listing 5.12: C codes of the test software application

Here the same floating point multiplication is performed for 10 times, to make sure that
different results can be obtained with random rounding mode applied.

double x1 = 1.791234;
double x2 = 1.312123;
double mul;

int i=0;

for(i=0; i<10; i++)
{
 mul = x1*x2;

}

73

By debugging this software synchronously in both PowerPC processors based on the
hardware system with DSA support, two output .txt files can be obtained, which records
the output messages of both GDBs respectively.

By examing these two files, all the output messages are identical, except the value of
variable mul. It is shown in Figure 5.12 that different values of mul are obtained from
different PowerPC processors:

Figure 5.12: Different values of mul from different processors

74

 1

From this test, it’s proven that the numerical accuracy debugger works perfectly and the
results can be collected by checking for the output messages of GDBs. As long as the
results are gathered, the number of significant bits can be straightly calculated,
according to the equation presented in section 2.3.1.

The implementation is also not complicated. From Figure 5.11, a Collecting/Computing
block is added on top of buffer #1 and buffer #2, this block is in charge of collecting
both values of the same variable by examing the output messages of both GDBs which
are stored in the buffer. The block then extracts both values , calculates the number of
significant bits and returns it to SDK .

As discussed in section 5.4.2, SDK will take use of the output messages of GDB,
extract the values of variables and display them on the graphical debugging interface.
Therefore, after both values are collected and the number of significant bits are
estimated, the Collecting/Computing block will modify the values of the variable (e.g.
value="2.7599999999999998” will be modified) to the following format shown in Figure
5.13:

Figure 5.13: Customized format for SDK reading

Figure 5.14 shows the actual screenshot of SDK reading the modified value and display
it in the graphical debug perspective.

place holder,
1 digit

number of sig.
bits, 2 digits average value of the collected results

75

Figure 5.14: SDK reads the modified value and displays it

Lastly, Figure 5.15 shows the final diagram of the graphical numerical accuracy
debugger (the print-out lines are omitted).

76

Figure 5.15: Final diagram of the graphical numerical accuracy debugger

SDK

pipe0

gdb-orig-
1.exe

gdb.exe

ReadFile() ,

store the read data
into a buffer

Buffer0

pipe2

call

pipe3

gdb-orig-
2.exe

call

processing

pipe1

pipe4

Buffer1

pipe5

Buffer2

Collecting/Computing

77

6 Conclusions and Future Work

In this work, a graphical numerical accuracy debugger based on an FPGA computing
system is developped. Using this debugger, without source code modification, the
user’s program can be executed with random rounding on the N parallel processing
blocks of the FPGA based computing system, and numerical accuracy information of
any variable can be generated according to the Discrete Stochastic Arithmetic (DSA)
and reported to the user.

Starting from the investigation of Xilinx SDK debugging flow, a semi-auto dual-
processor debugging flow is proposed. In this debugging flow, a manual GDB-XMD-
PowerPC connection is set in parallel with the SDK‘s automatic debugging path, so that
when an executable file is required to be debugged on hardware, the commands which
are sent from SDK to GDB can be captured, processed and forwarded to another GDB
instance, which realizes the functionality of synchronously debugging.

The implementation of the proposed debugging flow is done via substituting the original
GDB by a script. Within the script, functionalities like the input commands catching,
processing, output messages catching etc, are implemented. In addition, by checking
the output messages of GDBs, different values of the same variable can be extracted
and used as the calculation of number of significant bits. Afterwards, the obtained
accuracy, as well as the computed results can be displayed in SDK‘s graphical
debugging interface by replacing the values in GDB output message with a customized
format.

Future Work

In the current graphical numerical accuracy debugger implementation, the number of
significant digits and the computed results can only be displayed in SDK graphical
debugging interface, via the method of examing the output messages of GDB and
replacing the actual values with a pre-defined format, as shown in section 5.5. By
investigating the eclipse plug-ins, it would be possible to display the number of
significant digits and both random rounding results from both processors in a more
general and user-friendly way.

78

Moreover, according to the hardware platform specification, it is possible for PowerPC
processors to catch the NAU exception which is raised whenever any kind of numerical
instability is detected. Through reading the value of corresponding registers, the
syndrome (catagories of numerical instabilities) can be located. Thus it would be very
helpful if this syndrome can be displayed in SDK’s graphical debugging interface, so
that the user can have a direct view of the types of the numerical instabilities detected.

79

A Appendix

A.1 Complete Commands Catched During a Debugging session

79-gdb-set confirm off

80-gdb-set width 0

81-gdb-set height 0

82-interpreter-exec console echo

83-gdb-show prompt

84-gdb-set auto-solib-add on

85-gdb-set stop-on-solib-events 0

86-gdb-set stop-on-solib-events 1

87-target-select remote localhost:1241

88-target-download Z:\\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0\\Debug\\test_proj1_ppc0.elf

89-environment-directory Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0/Debug

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0/Debug/src

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0/src

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/code

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/include

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/lib

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/apu_fpu_virtex5_v1_00_a

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/apu_fpu_virtex5_v1_00_a/src

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/bram_v3_01_a

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/bram_v3_01_a/src

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/common_v1_00_a

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/common_v1_00_a/src

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/cpu_ppc440_v2_01_a

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/cpu_ppc440_v2_01_a/src

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/lldma_v2_00_a

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/lldma_v2_00_a/src

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/memcon_v2_00_a

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/memcon_v2_00_a/src

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/standalone_v3_07_a

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/standalone_v3_07_a/src

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/standalone_v3_07_a/src/profile

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/uartlite_v2_00_a

Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/uartlite_v2_00_a/src

Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_platform

Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_platform/cache

Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_platform/settings Z:/

90 info threads

91-data-list-register-names

92-break-insert -t exit

80

93-stack-info-depth

94-stack-list-frames 0 1

95-break-insert -t main

96-exec-continue

97 info threads

98-stack-info-depth

99-stack-list-frames 0 1

100-data-list-changed-registers

101 info sharedlibrary

102-stack-list-arguments 0 0 0

103-stack-list-locals 0

104 whatis a

105 whatis b

106 whatis c

107-var-create - * a

108-var-evaluate-expression var1

109-var-create - * b

110-var-evaluate-expression var1

111-var-create - * c

112-var-evaluate-expression var2

113-var-evaluate-expression var2

114-var-evaluate-expression var3

115-var-evaluate-expression var3

116-exec-next 1

117 info threads

118-stack-info-depth

119-stack-list-frames 0 1

120-var-update var1

121-var-update var2

122-var-update var3

123-data-list-changed-registers

124 info sharedlibrary

125-stack-list-arguments 0 0 0

126-stack-list-locals 0

127-exec-next 1

128 info threads

129-stack-info-depth

130-stack-list-frames 0 1

131-var-update var1

132-var-update var2

133-var-update var3

134-data-list-changed-registers

135 info sharedlibrary

136-stack-list-arguments 0 0 0

137-stack-list-locals 0

138-var-evaluate-expression var1

139-var-evaluate-expression var1

140-exec-next 1

141 info threads

142-stack-info-depth

143-stack-list-frames 0 1

144-var-update var1

81

145-var-update var2

146-var-update var3

147-data-list-changed-registers

148 info sharedlibrary

149-stack-list-arguments 0 0 0

150-stack-list-locals 0

151-var-evaluate-expression var2

152-var-evaluate-expression var2

153-exec-next 1

154 info threads

155-stack-info-depth

156-stack-list-frames 0 1

157-var-update var1

158-var-update var2

159-var-update var3

160-data-list-changed-registers

161 info sharedlibrary

162-stack-list-arguments 0 0 0

163-stack-list-locals 0

164-var-evaluate-expression var3

165-var-evaluate-expression var3

166-exec-next 1

167 info threads

168-stack-info-depth

169-stack-list-frames 0 1

170-var-update var1

171-var-update var2

172-var-update var3

173-data-list-changed-registers

174 info sharedlibrary

175-stack-list-arguments 0 0 0

176-stack-list-locals 0

177-exec-next 1

178 info threads

179-stack-info-depth

180-stack-list-frames 0 1

181-var-update var1

182-var-update var2

183-var-update var3

184-data-list-changed-registers

185 info sharedlibrary

186-stack-list-arguments 0 0 0

187-stack-list-locals 0

188-exec-next 1

189 info threads

190-stack-info-depth

191-stack-info-depth

192-stack-list-frames 0 2

193-var-update var1

194-var-update var2

195-var-update var3

196-data-list-changed-registers

82

197 info sharedlibrary

198-stack-list-arguments 0 0 0

199-stack-list-locals 0

200 kill

201-gdb-exit

A.2 Complete Output (for 1 GDB) Catched During a Debugging session

&".gdbinit: No such file or directory.\n"

(gdb)

45^done

(gdb)

46^done

(gdb)

47^done

(gdb)

48^done

(gdb)

49^done,value="(gdb) "

(gdb)

50^done

(gdb)

51^done

(gdb)

52^done

(gdb)

Connected to a PPC440 target.

53^connected,thread-

id="0",frame={addr="0x00000218",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="8"}

(gdb)

54+download,{section=".text",section-size="2352",total-size="42981"}

54+download,{section=".text",section-sent="2352",section-size="2352",total-sent="2352",total-

size="42981"}

54+download,{section=".init",section-size="36",total-size="42981"}

54+download,{section=".fini",section-size="32",total-size="42981"}

54+download,{section=".rodata",section-size="18",total-size="42981"}

54+download,{section=".data",section-size="248",total-size="42981"}

54+download,{section=".got2",section-size="28",total-size="42981"}

54+download,{section=".ctors",section-size="8",total-size="42981"}

54+download,{section=".dtors",section-size="8",total-size="42981"}

54+download,{section=".eh_frame",section-size="8",total-size="42981"}

54+download,{section=".jcr",section-size="4",total-size="42981"}

54+download,{section=".sdata",section-size="8",total-size="42981"}

54+download,{section=".boot0",section-size="204",total-size="42981"}

54+download,{section=".boot",section-size="4",total-size="42981"}

54^done,address="0xfffffffc",load-size="2958",transfer-rate="94656",write-rate="227"

(gdb)

83

55^done,source-

path="Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc

0/Debug:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0/Debug/src:Z:/Xps_proj3/SDK/SDK_Workspace/te

st_proj1_ppc0/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp:Z:/Xps_proj3/SDK/SDK_Workspac

e/test_proj1_ppc0_bsp/ppc440_0:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/code:Z:

/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/include:Z:/Xps_proj3/SDK/SDK_Workspace/t

est_proj1_ppc0_bsp/ppc440_0/lib:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc

:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/apu_fpu_virtex5_v1_00_a:Z:/Xps

_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/apu_fpu_virtex5_v1_00_a/src:Z:/Xps_pr

oj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/bram_v3_01_a:Z:/Xps_proj3/SDK/SDK_Worksp

ace/test_proj1_ppc0_bsp/ppc440_0/libsrc/bram_v3_01_a/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1

_ppc0_bsp/ppc440_0/libsrc/common_v1_00_a:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440

_0/libsrc/common_v1_00_a/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/cp

u_ppc440_v2_01_a:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/cpu_ppc440_v2_

01_a/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/lldma_v2_00_a:Z:/Xps_p

roj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/lldma_v2_00_a/src:Z:/Xps_proj3/SDK/SDK_

Work-

space/test_proj1_ppc0_bsp/ppc440_0/libsrc/memcon_v2_00_a:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1

_ppc0_bsp/ppc440_0/libsrc/memcon_v2_00_a/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/pp

c440_0/libsrc/standalone_v3_07_a:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsr

c/standalone_v3_07_a/src:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/standa

lone_v3_07_a/src/profile:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/uartli

te_v2_00_a:Z:/Xps_proj3/SDK/SDK_Workspace/test_proj1_ppc0_bsp/ppc440_0/libsrc/uartlite_v2_00_a/src

:Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_platform:Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_

platform/cache:Z:/Xps_proj3/SDK/SDK_Workspace/Xps_proj3_hw_platform/settings:Z:/:$cdir:$cwd"

(gdb)

&"info threads\n"

&"warning: RMT ERROR : failed to get remote thread list.\n"

56^done

(gdb)

57^done,register-

names=["r0","r1","r2","r3","r4","r5","r6","r7","r8","r9","r10","r11","r12","r13","r14","r15","r16"

,"r17","r18","r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29","r30","r31","f0","f

1","f2","f3","f4","f5","f6","f7","f8","f9","f10","f11","f12","f13","f14","f15","f16","f17","f18","

f19","f20","f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31","pc","msr","cr","lr",

"ctr","xer","fpscr","","","","","","","","","","","","","","","","","pvr","","","","","","","","",

"","","","","","","","","","","","","sprg0","sprg1","sprg2","sprg3","srr0","srr1","tbl","tbu","","

","","icdbdr","esr","dear","ivpr","","tsr","tcr","dec","","","csrr0","csrr1","dbsr","dbcr0","iac1"

,"iac2","dac1","dac2","pir","rstcfg","mmucr","pid","ccr1","dbdr","ccr0","dbcr1","dvc1","dvc2","iac

3","iac4","dbcr2","sprg4","sprg5","sprg6","sprg7","decar","usprg0","ivor0","ivor1","ivor2","ivor3"

,"ivor4","ivor5","ivor6","ivor7","ivor8","ivor9","ivor10","ivor11","ivor12","ivor13","ivor14","ivo

r15","inv0","inv1","inv2","inv3","itv0","itv1","itv2","itv3","dnv0","dnv1","dnv2","dnv3","dtv0","d

tv1","dtv2","dtv3","dvlim","ivlim","dcdbtrl","dcdbtrh","icdbtrl","icdbtrh","mcsr","mcsrr0","mcsrr1

"]

(gdb)

58^done,depth="1"

(gdb)

59^done,bkpt={number="1",type="breakpoint",disp="del",enabled="y",addr="0x00000750",at="<exit+24>"

,times="0"}

(gdb)

84

60^done,bkpt={number="2",type="breakpoint",disp="del",enabled="y",addr="0x00000218",func="main",fi

le="../src/main1.c",fullname="Z:\\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c"

,line="8",times="0"}

(gdb)

61^done,stack=[frame={level="0",addr="0x00000218",func="main",file="../src/main1.c",fullname="Z:\\

Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="8"}]

(gdb)

62^running

(gdb)

62*stopped,thread-

id="0",frame={addr="0x00000218",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="8"}

(gdb)

&"info threads\n"

&"warning: RMT ERROR : failed to get remote thread list.\n"

63^done

(gdb)

64^done,depth="1"

(gdb)

65^done,stack=[frame={level="0",addr="0x00000218",func="main",file="../src/main1.c",fullname="Z:\\

Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="8"}]

(gdb)

66^done,changed-

regis-

ters=["0","1","2","3","4","5","6","7","8","9","12","13","14","15","16","17","18","19","20","21","2

2","23","24","25","26","27","28","29","30","31","33","64","65","66","67","69","87","108","109","11

0","111","113","114","119","121","122","124","129","131","132","133","134","135","136","137","143"

,"145","146","147","148","150","151","152","153","155","156","157","158","159","160","161","162","

163","164","165","166","167","168","169","170","171","172","175","180","181","182","183","190","19

1","192","193","195"]

(gdb)

&"info sharedlibrary\n"

~"No shared libraries loaded at this time.\n"

67^done

(gdb)

68^done,stack-args=[frame={level="0",args=[]}]

(gdb)

69^done,locals=[name="a",name="b",name="c"]

(gdb)

&"whatis a\n"

~"type = double\n"

70^done

(gdb)

&"whatis b\n"

~"type = double\n"

71^done

(gdb)

&"whatis c\n"

~"type = double\n"

72^done

(gdb)

73^done,name="var1",numchild="0",type="double"

85

(gdb)

74^done,value="2.1219815974473986e-314"

(gdb)

75^done,name="var2",numchild="0",type="double"

(gdb)

76^done,value="2.1219815974473986e-314"

(gdb)

77^done,name="var3",numchild="0",type="double"

(gdb)

78^done,value="-nan(0xf8fe800000000)"

(gdb)

79^done,value="-nan(0xf8fe800000000)"

(gdb)

80^done,value="0"

(gdb)

81^done,value="0"

(gdb)

82^running

(gdb)

82*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x0000021c",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="9"}

(gdb)

&"info threads\n"

&"warning: RMT ERROR : failed to get remote thread list.\n"

83^done

(gdb)

84^done,depth="1"

(gdb)

85^done,stack=[frame={level="0",addr="0x0000021c",func="main",file="../src/main1.c",fullname="Z:\\

Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="9"}]

(gdb)

86^done,changelist=[]

(gdb)

87^done,changelist=[]

(gdb)

88^done,changelist=[]

(gdb)

89^done,changed-

registers=["0","3","9","11","64","66","67","114","172","173","174","175","181","182","183"]

(gdb)

&"info sharedlibrary\n"

~"No shared libraries loaded at this time.\n"

90^done

(gdb)

91^done,stack-args=[frame={level="0",args=[]}]

(gdb)

92^done,locals=[name="a",name="b",name="c"]

(gdb)

93^running

(gdb)

86

93*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x00000228",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="10"}

(gdb)

&"info threads\n"

&"warning: RMT ERROR : failed to get remote thread list.\n"

94^done

(gdb)

95^done,depth="1"

(gdb)

96^done,stack=[frame={level="0",addr="0x00000228",func="main",file="../src/main1.c",fullname="Z:\\

Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="10"}]

(gdb)

97^done,changelist=[{name="var1",in_scope="true",type_changed="false"}]

(gdb)

98^done,changelist=[]

(gdb)

99^done,changelist=[]

(gdb)

100^done,changed-registers=["9","32","64","114","115","181","182","183"]

(gdb)

&"info sharedlibrary\n"

~"No shared libraries loaded at this time.\n"

101^done

(gdb)

102^done,stack-args=[frame={level="0",args=[]}]

(gdb)

103^done,locals=[name="a",name="b",name="c"]

(gdb)

104^done,value="1.2"

(gdb)

105^done,value="1.2"

(gdb)

106^running

(gdb)

106*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x00000234",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="11"}

(gdb)

&"info threads\n"

&"warning: RMT ERROR : failed to get remote thread list.\n"

107^done

(gdb)

108^done,depth="1"

(gdb)

109^done,stack=[frame={level="0",addr="0x00000234",func="main",file="../src/main1.c",fullname="Z:\

\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="11"}]

(gdb)

110^done,changelist=[]

(gdb)

111^done,changelist=[{name="var2",in_scope="true",type_changed="false"}]

(gdb)

87

112^done,changelist=[]

(gdb)

113^done,changed-registers=["32","64","114","172","183"]

(gdb)

&"info sharedlibrary\n"

~"No shared libraries loaded at this time.\n"

114^done

(gdb)

115^done,stack-args=[frame={level="0",args=[]}]

(gdb)

116^done,locals=[name="a",name="b",name="c"]

(gdb)

117^done,value="2.2999999999999998"

(gdb)

118^done,value="2.2999999999999998"

(gdb)

119^running

(gdb)

119*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x00000244",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="12"}

(gdb)

&"info threads\n"

&"warning: RMT ERROR : failed to get remote thread list.\n"

120^done

(gdb)

121^done,depth="1"

(gdb)

122^done,stack=[frame={level="0",addr="0x00000244",func="main",file="../src/main1.c",fullname="Z:\

\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="12"}]

(gdb)

123^done,changelist=[]

(gdb)

124^done,changelist=[]

(gdb)

125^done,changelist=[{name="var3",in_scope="true",type_changed="false"}]

(gdb)

126^done,changed-registers=["32","45","64","70","114","174"]

(gdb)

&"info sharedlibrary\n"

~"No shared libraries loaded at this time.\n"

127^done

(gdb)

128^done,stack-args=[frame={level="0",args=[]}]

(gdb)

129^done,locals=[name="a",name="b",name="c"]

(gdb)

130^done,value="2.7599999999999998"

(gdb)

131^done,value="2.7599999999999998"

(gdb)

132^running

88

(gdb)

132*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x00000248",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="14"}

(gdb)

&"info threads\n"

&"warning: RMT ERROR : failed to get remote thread list.\n"

133^done

(gdb)

134^done,depth="1"

(gdb)

135^done,stack=[frame={level="0",addr="0x00000248",func="main",file="../src/main1.c",fullname="Z:\

\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="14"}]

(gdb)

136^done,changelist=[]

(gdb)

137^done,changelist=[]

(gdb)

138^done,changelist=[]

(gdb)

139^done,changed-registers=["0","9","10","64","66","67","114","115","172","173","174","180"]

(gdb)

&"info sharedlibrary\n"

~"No shared libraries loaded at this time.\n"

140^done

(gdb)

141^done,stack-args=[frame={level="0",args=[]}]

(gdb)

142^done,locals=[name="a",name="b",name="c"]

(gdb)

143^running

(gdb)

143*stopped,reason="end-stepping-range",thread-

id="0",frame={addr="0x0000024c",func="main",args=[],file="../src/main1.c",fullname="Z:\\Xps_proj3\

\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="15"}

(gdb)

&"info threads\n"

&"warning: RMT ERROR : failed to get remote thread list.\n"

144^done

(gdb)

145^done,depth="1"

(gdb)

146^done,stack=[frame={level="0",addr="0x0000024c",func="main",file="../src/main1.c",fullname="Z:\

\Xps_proj3\\SDK\\SDK_Workspace\\test_proj1_ppc0/Z/../src/main1.c",line="15"}]

(gdb)

147^done,changelist=[]

(gdb)

148^done,changelist=[]

(gdb)

149^done,changelist=[]

(gdb)

150^done,changed-registers=["0","64","114"]

89

(gdb)

&"info sharedlibrary\n"

~"No shared libraries loaded at this time.\n"

151^done

(gdb)

152^done,stack-args=[frame={level="0",args=[]}]

(gdb)

153^done,locals=[name="a",name="b",name="c"]

(gdb)

&"kill\n"

154^done

(gdb)

155^exit

90

91

References

[1] R. Avot-Chotin, H. Mehrez. „Hardware implementation of discrete stochastic
arithmetic“. Numerical Algorithms, pp.21-33,2004.

[2] M.J. Schulte, E.E. Swartzlander Jr., „Hardware design and Arithmetic Algorithms
for a Variable-Precision, Interval Arithmetic Coprocessor“. Proceedings of the 12th
symposium on computer arithmetic, pp. 163-171, 1995.

[3] M.S. Cohen, T.E. Hull, and V.C. Hamarcher, „CADAC: A controlled-precision
decimal arithmetic unit“. IEEE Transactions on Computers, vol . C-32, pp.370-
377, 1983.d

[4] J. Vignes „Discrete stochastic arithmetic for validating results of numerical
software”. Numerical Algorithms vol. 37, pp. 377–390, 2004.

[5] J.-M. Chesneaux, CADNA: „ An ADA tool for round-off errors analysis and for
numerical debugging“. Congres on ADA in Aerospace, Barcelone, pp. 390–396.
1990.

[6] „CADNA for Fortran/C/C++ source codes“.URL: http://www-pequan.lip6.fr/cadna/

[7] Y. Baroud, „A Hardware Architecture for Numerical Instability Detection Based on
Discrete Stochastic Alrithmetic“, University of Stuttgart, 2012.

[8] „IEEE Standard for Floating-Point Arithmetic," IEEE Std 754-2008 , vol., no., pp.1-
58, Aug. 29 2008 doi: 10.1109/IEEESTD.2008.4610935
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935&isnumber=461
0934

[9] „EDK Concepts, Tools and Techniques“ URL:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/edk_ctt.pdf

[10] „Embedded System Tools Reference Manual“ URL:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/est_rm.pdf

[11] „GDB the GNU project debugger“ URL: http://www.gnu.org/software/gdb/

[12] J. Vignes, „Error analysis in computing“, International Federation for Information
Processing Congress, Stockholm, August 1974, pp. 610–614.

http://www-pequan.lip6.fr/cadna/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935&isnumber=4610934
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935&isnumber=4610934
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/edk_ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/est_rm.pdf
http://www.gnu.org/software/gdb/

92

[13] J. Vignes, „New methods for evaluating the validity of the results of mathematical
computations“. Math.Comput. Simulation 20 (1978) pp. 227–249.

[14] J. Vignes, „ A stochastic arithmetic for reliable scientific Computation“,Mathematics
and Computers in Simulation, Vol. 35, Issue 3, pp. 233–261,September 1993.

[15] W.Li, „Numerical Accuracy Analysis in Simulations on Hybrid High-Performance
Computing Systems“, Technical report, Institute of Parallel and Distributed
Systems, University of Stuttgart, 2010.

[16] R.E. Moore, „Interval Analysis“, Prentice-Hall, Englewood Cliffs, N.J., 1966.

[17] J.-M. Chesneaux, „Study of the Computing Accuracy by Using Probabilistic
Approach“. Contribution to computer arithmetic and Self Validating Numerical
Methods, pp. 19-30, 1990.

[18] „Debug overview, Xilinx software Development Kit Help Contents“ URL:
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/SDK_Doc/index.ht
ml

[19] „Invoking GDB, GDB user manual“ URL:
http://sourceware.org/gdb/current/onlinedocs/gdb/Invoking-GDB.html#Invoking-GDB

[20] „27 The GDB/MI interface“ URL:
http://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html

[21] „Console (Windows), Windows Environment Development“ URL:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682055(v=vs.85).aspx

[22] „Creation of a Console (Windows), Windows Environment Development“ URL:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682528(v=vs.85).aspx

[23] „CreateProcess function, msdn“ URL: http://msdn.microsoft.com/en-
us/library/ms682425%28v=VS.85%29.aspx

http://www.sciencedirect.com/science/article/pii/037847549390003D
http://www.sciencedirect.com/science/journal/03784754
http://www.sciencedirect.com/science/journal/03784754
http://www.sciencedirect.com/science/journal/03784754/35/3
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/SDK_Doc/index.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/SDK_Doc/index.html
http://sourceware.org/gdb/current/onlinedocs/gdb/Invoking-GDB.html#Invoking-GDB
http://sourceware.org/gdb/onlinedocs/gdb/GDB_002fMI.html
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682055(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682528(v=vs.85).aspx

93

Declaration

All the work contained within this thesis, except where otherwise acknowledged, was
solely the effort of the author. At no stage was any collaboration entered into with any
other party.

Kailai Wang, Stuttgart, 17 Dec, 2012

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Listings
	1 Introduction
	1.1 Background Knowledge
	1.2 Motivation
	1.3 Hardware Platform and Software Tools
	1.3.1 Hardware Devices
	1.3.2 Software Tools

	1.4 Main Steps

	2 Recall of Discrete Stochastic Arithmetic (DSA)
	2.1 Floating Point Number Representation
	2.2 Rounding Mode
	2.3 Discrete Stochastic Arithmetic (DSA)
	2.3.1 CESTAC Method
	2.3.2 Informational Zero

	3 Hardware Platform Support
	3.1 Overview of the Hardware System
	3.2 Discrete Stochastic Floating Point Unit (DSFPU)
	3.3 Synchronization Unit
	3.4 Numerical Analysis Unit (NAU)

	4 SDK Debugging Session
	4.1 Xilinx EDK Concepts and Tools
	4.1.1 Software Development Kit (SDK)
	4.1.2 Xilinx Microprocessor Debugger (XMD)
	4.1.3 GNU Debugger (GDB)

	4.2 Work Flow of SDK Debugging Session
	4.2.1 Creation of A Test Project
	4.2.2 Work Flow of Single-processor Debugging
	4.2.3 Work Flow of Dual-processor Debugging

	4.3 A Semi-auto Dual-processor Debugging Flow

	5 Implementation of the Semi-auto Dual-processor Debugging Flow
	5.1 Basic Principle for Implementation
	5.2 Command Catching/Forwarding
	5.2.1 Arguments Passing
	5.2.2 GDB Input Stream Reading Model
	5.2.3 Process Calling
	5.2.4 Command Cathing Results

	5.3 Extensions to Dual-processor Debugging
	5.3.1 Overview of the Extended Reading Model
	5.3.2 Command Processing Block
	5.3.3 Connection of STDOUT/STDERR

	5.4 Output Catching/Forwarding
	5.4.1 GDB Output Stream Writing Model
	5.4.2 Output Message Catching Results

	5.5 Results Collection and Calculation of Precision

	6 Conclusions and Future Work
	A Appendix
	A.1 Complete Commands Catched During a Debugging session
	A.2 Complete Output (for 1 GDB) Catched During a Debugging session

	References
	Declaration

