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Zusammenfassung

Die Web Services Business Process Execution Language (BPEL WSBPEL oder

kurz) ist der Standard für die Erstellung von Geschäftsprozessen durch Or-

chestrierung von Web-Services. Allerdings ist die Modellierung von solchen

Prozessen, besonders großen Prozessen, zeitaufwendig, fehleranfällig und da-

her teuer. Mit dem Wachstum der Anzahl und der Komplexität der Prozess-

modelle in einer Organisation, wird Prozessmodellierung eine umfassendere

Herausforderung.

Wiederverwendung (Reuse) wurde als ein wirksames Konzept etabliert, um

Produktivität und Qualität in Software-Entwicklung zu steigern. Eine Teil-

prozesslogik wiederzuverwenden ist eine gewünschte Praxis in Modellierung

von anderen Prozessen. Heute stellen Teilprozesse als das einzige granulare In-

strument für die Wiederverwendung in Prozessmodellierung. Ein Teilprozess

ist in der Regel wie ein in sich geschlossener Geschäftsprozess, der durch

andere Geschäftsprozesse abgerufen wird und unterschiedliche Grade der Au-

tonomie von der übergeordneten Prozesses besitzen kann. So ist die Wiederver-

wendung von beliebigen Teilen eines Geschäftsprozesses, insbesondere Teile,

die nicht als eigenständige Prozesse gesehen werden können, zum Zeitpunkt

des Schreibens dieser Arbeit noch nicht adressiert worden. Diese Art der

Wiederverwendung ist besonders erwünscht bei der Erstellung von großen und

komplexen Prozessen.
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vi Zusammenfassung

In dieser Arbeit konzentrieren wir uns auf die Wiederverwendung solcher

Teile bei der Prozessmodellierung und präsentieren eine Reihe von Metho-

den für Modellieren, Extrahieren und Abfragen solcher wiederverwendbaren

Teile. Wir nennen solche wiederverwendbaren Teile Prozess-Fragmente. Die

Beiträge dieser Arbeit sind: (i) eine generische konzeptionelle Definition von

Prozess-Fragmenten, einschließlich einer generischen mathematischen Defi-

nition von Prozess-Fragmenten basiert auf die Graphentheorie; (ii) eine for-

male Definition von BPEL-Fragmenten, die zeigt, wie das generische Konzept

von Prozess-Fragmenten mit BPEL realisiert werden kann; (iii) einen Ansatz

zum Extrahieren ausgewählten Aktivitäten als ein BPEL-Fragment aus einem

BPEL-Prozess; (iv) einen generischen Graphen-basierten Algorithmus zum

Abfragen von BEPL-Prozessmodellen und -Fragmenten.



Abstract

The Web Services Business Process Execution Language (WSBPEL or BPEL

for short) is the standard for creating processes by orchestrating Web services.

However, modeling processes, particularly large processes, is time-consuming,

error-prone and therefore costly. With the growth of the number and complexity

of process models in an organization, process modeling becomes a more com-

prehensive challenge, because it is cumbersome and not necessary for users to

model every new process from scratch.

Reuse has been proven to be an effective concept to improve productivity

and quality in software development. With the maturing of business process

management technologies, reuse in business process modeling becomes one of

the important research topics in the academia and industrial communities for

business process management. Reusing a piece of process logic in other pro-

cesses is a desired practice based on the case studies reported in the literature.

Today, subprocesses represent the only granule of reuse. However, subpro-

cesses impose re-strictions on the syntactic and semantic completeness of the

enclosed process logic. A sub-process is in general like a self-contained busi-

ness process, but invoked by another business process and exhibits different

degree of autonomy from the parent process. Thus, reuse of arbitrary parts of

a business process, especially parts that cannot be seen as self-contained busi-

ness processes, has not been addressed at the time of writing of this thesis. That

kind of reuse is especially desired when creating large and complex processes.
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viii Abstract

In this thesis we focus on reuse of such parts during process modeling and

present a set of methods for specifying, extracting, and querying such parts of

a business process and enable their reuse. We call such arbitrary parts for reuse

process fragments.

The contributions of this thesis are: (i) a generic conceptual definition of

process fragments including a generic mathematical definition of process frag-

ments based on a graph view; (ii) a formal definition of BPEL fragments, which

shows how the generic process fragment concept can be realized within BPEL;

(iii) an approach for extracting selected activities as a BPEL fragment out of

a BPEL process; (iv) a generic graph-based algorithm for querying structural

information of BEPL process models and fragments.
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Chapter 1

Introduction

This chapter provides a general overview of the research challenges addressed

in this thesis. In Section 1.1 we motivate our research by identifying the inade-

quate capability in the current business process modeling approaches to reuse

pieces of existing process models. In Section 1.2 we raise the research ques-

tions based on the motivation and outline our main contributions to solving

them. Section 1.3 closes this chapter by giving a short description on the struc-

ture of this thesis.

1.1 Motivation

Business process management is one of the most crucial topics on the agenda

of companies which want to improve their strategic competitiveness. These

companies are challenged to optimize and redesign their business processes in

a continuous and more agile manner [69]. A business process model is a for-

mal description of a business process in the real world, which contains a set of

interrelated activities and specifies the control and data dependencies between

them. Such formalized process models1 provide a means for a better commu-

nication between professionals in the business world, e.g. business analysts,

1 In case of unambiguity we use the term process and process model interchangeably as the
short form of business process model.

1
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managers, and professionals in the IT world, e.g. software architects, devel-

opers2. IT-driven Business Process Management is a maturing discipline that

includes concepts, methods, formalisms, and techniques to support the model-

ing, configuration, execution, and analysis of such processes [156]. In this way

processes are no longer treated as static and isolated paper work, but rather

as valuable information resources [93], which can be managed with help of

Workflow Management Systems [95].

Process modeling has been established not only as the initial phase in the

business process management lifecycle [5, 157], but also as an essential con-

stituent in modeling modern enterprise architectures [121, 161]. In service ori-

ented design paradigm [50] a process can be modeled as an orchestration [96]

of the Web services [15, 68], which is, in combination with complementary

techniques from Web service [155], the dominant implementation technology

for Service-based Applications. The Web Services Business Process Execution

Language (WSBPEL or BPEL for short) [16] is the standard for creating pro-

cesses by orchestrating Web services. However, modeling processes, particu-

larly large processes, is time-consuming, error-prone and therefore costly [95].

With the growth of the number and complexity of process models in an organi-

zation, process modeling becomes a more comprehensive challenge, because it

is cumbersome and not necessary for users to model every new process from

scratch.

Reuse has been proven to be an effective concept to improve productivity

and quality in software development. With the maturing of business process

management technologies, reuse in business process modeling becomes one of

the important research topics in the academia and industrial communities for

business process management. Reusing a piece of process logic in other pro-

cesses is a desired practice based on the case studies reported in the literature

[25, 123, 132].

Today, subprocesses represent the only granule of reuse. However, subpro-

cesses impose restrictions on the syntactic and semantic completeness of the

enclosed process logic. A subprocess is in general like a self-contained busi-

2 For the purpose of simplicity and consistency, we use the term users as the umbrella term
for these different stakeholders in this thesis.
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ness process, but invoked by another business process and exhibits different

degree of autonomy from the parent process. Thus, reuse of arbitrary parts of

a business process, especially parts that cannot be seen as self-contained busi-

ness processes, has not been addressed at the time of writing of this thesis. That

kind of reuse is especially desired when creating large and complex processes.

In this thesis we focus on reuse of such parts during process modeling and

present a set of methods for specifying, extracting, and querying such parts of

a business process and enable their reuse. We call such arbitrary parts for reuse

process fragments.

1.2 Contributions

The term process fragment is used differently in different domains: for model-

ing collaborative processes, Lindert et al. [98] use process fragment as a col-

lection of activities for which an organizational unit is responsible; for veri-

fying process models, Vanhatalo et. al. use process fragment as a non-empty

sub-graph of a workflow graph that is bordered by a single entry or single

exit (SESE) edge or node [149]; for distributed execution, Khalaf [78] uses

process fragment as a partition in the original process model augmented with

additional interaction activities for retaining the original execution semantics.

When analyzing existing research on process fragments, the reuse aspect of

process fragments still needs to be addressed. Eberle et. al. [49, 48] introduce

the concept of process fragment as incomplete process knowledge which can

be dynamically stitched together at runtime. While their research focuses on

the composition of process fragment, the research in this thesis underlines the

concept, the application on BPEL, the extraction methods, and the query mech-

anism of process fragments.

To provide a common and consistent understanding of the reuse aspect of

process fragments, we provide a conceptual framework for process fragments

from a technology-independent view. We introduce a textual definition of pro-

cess fragment from the process view. The definition from the process view

emphasizes the intent and content of process fragments. It allows designing
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process logic that does not represent self-contained process logic, but can be

reused to model other processes. Furthermore, we provide a thorough analysis

of the distinctions between the concepts of process fragments and subprocesses.

The distinctions makes clear that our concept of process fragments enables en-

capsulating arbitrary process logic for reuse, while subprocess allows contain-

ing self-contained process logic.

In addition to the process view, we introduce a mathematical definition of

process fragments based on a graph view, which is independent of BPEL. In the

graph representation of a process fragment, the numbers of entry and exit nodes

of a process fragment graph characterize the shape of the process fragment. Our

definition on process fragment graph does not limit to Single-Entry-Single-Exit

(SESE) process fragments, but enables designing reusable process fragments

in arbitrary shapes.

Besides the definitions we have identified and classified different reuse

styles. A reuse style specifies which parts of a process fragment can be ma-

nipulated when reusing it. In order to support applying the concept of process

fragments to enhance reuse of arbitrary process logic in business process mod-

eling, we introduce a lifecycle for process fragments [99]. The lifecycle guides

users in applying process fragments in process modeling. On the other hand it

also guides software vendors in providing a better tooling support.

After establishing the conceptual framework of process fragments, we need

to show how the concept of process fragments can be applied to concrete pro-

cess modeling languages. BPEL has been accepted as the standard for model-

ing processes by orchestrating Web services. It gains increasing popularity and

applications both in academia and industries. For that reason we choose BPEL

as the underlying process modeling language for the implementation of our

reuse concept on process fragments. The BPEL fragment modeling language

relaxes the strict syntax of standard BPEL and introduces new modeling con-

structs such as < bag > activity to enable specifying arbitrary reusable process

logic.

A BPEL fragment can either be modeled from scratch or extracted from ex-

isting BPEL process models. The BPEL fragment modeling language enables

process modelers to model reusable BPEL fragments from scratch. To extract
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a BPEL fragment from an existing BPEL process, we introduce in this thesis a

mechanism which constructs the BPEL fragment based on the selected activi-

ties of the process modeler. Process modelers have options to let the extraction

retain or completely eliminate the original control dependencies of the selected

activities.

Efficient discovery of process fragments is of great importance: according

to lessons learned from the practices in reuse history, users tend to build from

scratch rather than to make the effort to find reusable artifacts [85]. We present

a novel query mechanism which discovers BPEL fragments and process mod-

els that have similar process structures as the query request.

In summary, the novel contributions we provide within this thesis are:

• An analysis of general requirements of process fragments for reuse;

• A generic conceptual definition of process fragments;

• A generic mathematical definition of process fragments based on a graph

view;

• A lifecycle for integrating process fragments into current process modeling

approaches;

• A formal definition of BPEL fragments, which shows how the generic pro-

cess fragment concept can be realized within BPEL;

• An approach for extracting selected activities as a BPEL fragment out of a

BPEL process;

• A generic graph-based algorithm for querying structural information of

BEPL process models and fragments.

1.3 The Structure of the Thesis

The content of this thesis is organized as follows:

Chapter 1, the current chapter, motivates the research topic on process frag-

ments for reuse and outlines our contributions.

Chapter 2 gives an overview of the related work in reuse concepts in process

modeling.

Chapter 3 introduces a generic concept of process fragments for reuse, pro-
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vides a thorough analysis of the major characteristics of process fragments, a

comparison of the concept of process fragments with the current established

reuse approaches in process modeling, and a lifecycle for integrating process

fragments into current process modeling approaches.

Chapter 4 presents the BPEL fragment modeling language. In this chapter

we first analyze the requirements of BPEL fragment modeling language, espe-

cially which kinds of reusable BPEL process logic the language should support.

Based on the analysis we introduced the syntax of BPEL fragment modeling

language.

Chapter 5 provides the methods for extracting selected activities as a BPEL

fragment. During the extraction we use opaque activities as temporary place-

holders to retain the original control dependencies of the selected activities.

Thus, we also present an approach of reducing such artificially generated

opaque activities.

Chapter 6 describes a framework for mapping a BPEL process model to a di-

rected acyclic graph, which defines a mathematical model used for the query

algorithms.

Chapter 7 presents a generic graph-based algorithm for querying structural in-

formation of BEPL process models and fragments. This algorithm is generic

enough so that it can be applied to query process models or fragments described

in other process modeling languages and notations, as long as the process mod-

els and fragments can be transformed into a directed and acyclic graph.

Chapter 8 shows the architecture and prototypical implementation of a mod-

eling tool with extended features for modeling and extracting BPEL fragments

and a BPEL repository for storing and retrieving BPEL process models and

fragments.

Chapter 9 concludes the thesis by giving a summary and identifying related

future work.



Chapter 2

Related Work

In this chapter we study the existing work that is related to the research topics

of this thesis.

2.1 Reuse in Process Modeling

Reuse has been established as a proven concept and technique to improve the

productivity and quality in software development, e.g. in object-oriented pro-

gramming [17, 61, 73], in component-based software development [7, 52, 70,

91, 107, 118]. Due to the poor outcome and benefit of ad hoc reuse, the reuse

community came to the consensus that to realize the promise of reuse a system-

atic approach is needed.

Systematic reuse is the practice of reuse according to a well-defined repeat-

able process [105]. It is in general a technique to address the need for improve-

ment of productivity, and quality and contributes to economic benefits on cost

reduction [85, 97, 112, 113]. Productivity can be improved by allowing users to

reuse existing knowledge and to develop assets like codes, models, documents

and so on instead of recreating these artifacts [22]. Quality can be improved by

well-designed process that guides the reuse of best-practice or proven software

assets [59, 158].

7
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Workflow [95] and service oriented process management [50, 156] intrinsi-

cally aim to boost reuse of software services in an interoperable and flexible

manner. Software components or modules are exposed as services, which can

be reused in different process models to collectively accomplish a business

task or activity. Well prescribed process models are reused multiple times to

instantiate the same process based on different context data. Especially, pro-

cess models that are specified using established standards [94] can be reused

across runtime platforms that are standard-compliant. We call this kind of reuse

re-apply.

However, reuse in process management is not limited to re-applying the

same process model multiple times, but also to enable process modelers to

exploit existing process modeling artifacts in creating new business process

models. In other words, reuse in process modeling is using a subset of existing

process modeling artifacts to create new process models. In this thesis we focus

on this kind of reuse.

2.1.1 Reuse by Customization

Process modelers may already practice reuse in their everyday work. When

creating a new process model, a process modeler may take an existing process

model and modify it until it meets the current requirements. This approach is a

very primitive way of reuse and requires a lot of manual intervention. Thus, it

is time-consuming, error-prone, and leads to a lot of repeated work.

As a way to overcome these shortcomings the concept of reference modeling

has been introduced [89, 54]. A reference model is a process model that repre-

sents the general process knowledge shared within a certain domain [23, 130].

Reference process models aim to increase productivity by facilitating the reuse

principle. Process models are created based on the best-practices or standards

for a certain domain, which can then be customized to meet different appli-

cation requirements. Examples of reference process models are SAP’s refer-

ence models [76] and ARIS reference models for business process management

[130].
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Since reference process models normally contain information for multiple

application scenarios, they should be projected to filter out the information that

is not relevant in the current application context. Becker et al. [24] proposed a

concept on how to configure multi-perspective process models. The different

perspectives include application, document, data, and organizational unit. Pro-

cess modelers can choose to hide or show a certain perspective of the process

model for information filtering. A similar approach is presented in [88].

Gottschalk et al [65] developed a set of process configuration operators for

hiding or blocking certain process activities. Hiding means that the execution

of the affected activity is skipped, but the corresponding path is still taken.

Blocking also disables the execution of the affected activity and the correspond-

ing path cannot be taken anymore. Rossmann et al. extended the Event-driven

Process Chains (EPCs) and presented the Configurable EPCs (C-EPCs) as an

extended reference modeling language [124].

Karastoyanova proposed an approach on parameterization of workflow mod-

els to improve their reusability and flexibility [75]. The approach is based on

the concept of workflow templates, which contain configurable parameters that

can be customized either at design time or at runtime. A parameter could be

an activity, an activity type, a transition condition on a control connector, a

variable, or even a partner service. Semantic Web Service technologies can be

utilized for (semi-)automatic substitution of parameter values. This approach

improves the reusability of the process templates at design time and the flexi-

bility of execution at runtime.

A lot of research has been conducted regarding reference process modeling

[54, 55, 56, 139], process templates [89, 77], and configurable process mod-

eling [109, 111]. Those approaches improve to certain degree the reusability

of process modeling artifacts. But in general, process models must be reused

as a whole. Enabling parts of business processes that can be reused in many

different places or business contexts is a desired practice based on the authors’

experience and case studies reported in the literature [25, 123, 132]. Modular-

ized reuse is especially desired for complex or large business processes.
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2.1.2 Reuse by Assembly

Patterns provide a means for abstracting and tackling recurring problems in a

given domain [14, 37, 119, 122]. Patterns have been used in different areas of

information technology, ranging from software design [61], to software archi-

tecture [38, 58], to enterprise application integration [71]. Research in process

modeling has revealed several reuse approaches to improve the efficiency and

quality of process modeling.

The workflow patterns: control flow patterns [128], workflow data patterns

[127], workflow resource patterns [126], and exception handling patterns [125]

aim to lay the groundwork and establish a common understanding on the re-

quirements on process modeling languages and process-aware information sys-

tems. They provide a means for evaluating the expressiveness of various busi-

ness process modeling languages and the capabilities of diverse workflow man-

agement systems. Workflow patterns can be considered as programming con-

structs in a conventional programming languages such as Java. The workflow

patterns are fine-grained and there is no support for process modelers in how

to apply these simple patterns in combination, which leads to many incorrectly

modeled processes.

Gschwind et al. presented an approach of using compound control flow pat-

terns to ensure the syntactic correctness of process modeling [67]. The authors

developed a recommendation mechanism. The mechanism considers the mod-

eled static process knowledge and known control flow patterns, based on which

it makes suggestions on how to complete the partial workflow graph to make it

a well-structured workflow graph.

Vanhatalo et al. [151] proposed another approach for computing a comple-

tion of a workflow graph. This approach can also be used to refactor existing

workflows to transform them into well-structured workflows if necessary. A

workflow graph is decomposed with the help of normal [150] and the refined

process structure tree [149] into logically atomic parts. If a subtree does not con-

sist of matching pairs of start and end node as specified in the control workflow

patterns, then the modeling tool makes a completion suggestion or undertakes

a refactoring process.
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However, both of the approaches focus on the correctness of a workflow

graph. The compound patterns do not contain process knowledge and are not

sufficiently enriched with context information to represent a reusable building

block for process modeling.

Lindert et al. proposed an approach of modeling of inter-organizational pro-

cesses using the concept of process model fragment [98]. This approach aims to

enable autonomy of the participating organizational units in process modeling.

A process model fragment describes all the activities that an organizational unit

has to perform during a given process. The respective organizational unit can

autonomously describe and execute the process fragment, e.g. using its own

workflow management approaches and systems. The notion of autonomy was

derived from the work of Warnecke [154], which means that the organization

unit must be a self-containing and self-organizing unit. Process model frag-

ments can be connected through their interfaces to build up the whole process.

There are two connection approaches: vertical and horizontal [98, 81]. Vertical

connection approach allows refining a parent process fragment by a child pro-

cess fragment. A child process fragment is a more detailed description of the

parent process fragment. Horizontal connection approach can be considered as

a composition of the interfaces of process fragments. To connect two interfaces

of process fragments, the documents and events that the interfaces provide and

consume have to match with each other. Organizing process activities based on

their organizational affiliation is only one possible view to project on a process

model. Beside this, a process model fragment must contain all of the activi-

ties that an organizational unit has to perform during a process. This constraint

extremely restricts the flexibility to reuse arbitrary process logic. This paper

primarily focuses on describing the methodology, but not on extracting and

querying process fragment models.

Adams et al. presented an approach using worklets to enable dynamic flex-

ibility and evolution of workflows during runtime [8, 9]. A worklet is defined

as a smaller, self-contained and complete workflow process which handles one

specific task in a larger and composite top-level process. The top-level process

model captures the entire workflow at the macro level. Worklets are dynam-

ically selected based on the context of each task in the macro process. Each
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task in the macro process model can be linked to a catalog of worklets, each of

which represents a possible implementation of the task. During process execu-

tion, the appropriate worklet is selected based on the context data of a particular

process instance and the rules associated with the activity. The worklet is exe-

cuted as a nested subprocess to the calling process.

Trickovic [146] analyzes three possible approaches for reuse of BPEL pro-

cesses and came to the conclusion that subprocess [83, 95] seems to be the more

general approach to solve this issue. BPEL-SPE [82] is a BPEL extension that

allows users to define certain kinds of BPEL processes as subprocesses, which

can be invoked by the same or another BPEL process.

Thom et al. introduced the concept of activity pattern [143, 144]. An ac-

tivity pattern describes a business function that occurs frequently in different

process models. The authors identified seven pattern variants based on their

empirical study, e.g. notification pattern, decision pattern, and approval pattern.

Each activity pattern is described using a pattern language, including descrip-

tion, example, problem, issues, and solution, to guide a process modeler in

reusing the activity patterns.

Worklets, subprocess, and activity pattern all require that the encapsu-

lated process logic must be a self-contained and complete workflow process.

Worklets improve the flexibility of changing process at runtime, but do not ad-

dress the flexibility of reuse existing modeling artifacts as building blocks at

design time. Subprocesses and activity patterns are in general executable and

may carry different grade of autonomy against their caller processes. To en-

able design for reuse and design by reuse to a more extended degree, process

modelers need a more flexible approach, which should allow them to define ar-

bitrary process logic as reusable building blocks, which could be syntactically

and semantically incomplete for execution.

Görlach et al. introduces an extension of BPEL for modeling reusable com-

pliance fragments [64]. A compliance fragment encompasses control and data

flow that describe compliance constraints [134].

Researchers have also identified different scenarios in the domain of busi-

ness process management, such as for business process compliance manage-

ment [134, 136, 64], and for dynamic runtime flexibility [49].
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2.2 Decomposition in Process Modeling

Process models can be decomposed into parts for different purpose. In this

section we will study the existing work on decomposing process models.

Khalaf introduced a mechanism for splitting a BPEL process into several

partitions [78]. Each partition can be outsourced to different participants and

can be executed on process engines in a distributed manner. To outsource a part

of a BPEL process a process modeler has to assign the activities to their respec-

tive partitions. The BPEL process is then spitted into disjoint partitions, each

of which contains the activities that a certain participant (role) is responsible

for [79]. Additional activities need to be added to each partition for passing

instance data and control flow. These partitions are wired together through ex-

plicit data links defined in BPEL-D, which is a BPEL extension that transforms

implicit data flow in BPEL into explicit ones by using data links. The wiring

through data links ensures that each partition can get the data needed for dis-

tributed execution. A new coordination protocol type that is plugged into the

WS-Coordination framework enables the coordinated and distributed execution

of the partition including decomposed loops and scopes [80]. This guarantees

that the distributed execution as a whole yields the same operational semantic

as the original process. However, this approach still requires a central coordi-

nator to be able to handle the execution of spitted scopes and loop constructs

[104].

Wutke developed an approach for automatically splitting BPEL processes

into logical segments in order to enable the execution of a BPEL process in a

distributed and decentralized manner [160]. The partitioning mechanism con-

sists of three phases. In the first phase, users can define to which partitions the

respective message receiving activities (<receive> and <pick>) should be

allocated. In addition, users can also specify static parameters, e.g. the vari-

able request should always be assigned to the partition receive request. In

the second phase, interaction activities (<invoke> and <reply>) are as-

signed. For each <invoke> activity the mechanism discovers first the reg-

istered services that provide equivalent functionalities and compatible inter-

faces as the <invoke> activity itself. The discovery takes also non-functional
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properties specified by users with WS-Policy [21] into consideration. The ser-

vice that results in the minimal number of partitions will be selected. Each

<reply> activity will always be assigned to the partition to which the respec-

tive <receive> activity belongs. In the third phase, all the other activities in

a BPEL process will be partitioned. The partitioning is conducted with the goal

to achieve the minimal interaction between the partitions of the BPEL process.

The partitioning mechanism does not physically split the BPEL process, but

describes which activity belongs to which logical partition in the distributed

deployment descriptor.

Automatic process partitioning can be supported by a cost function that

calculates the optimum under consideration of user defined criteria [104].

Danylevych et al. proposed an approach for producing recommendations on

how to split a process model into disjoint partitions so that the performance of

the distributed execution of the partitions is improved [45]. A process model

is considered as a global transaction, which can be partitioned into parts called

stratified transactions. The authors developed a hybrid approach utilizing algo-

rithms like hillclimbing and simulated annealing for transaction stratification

to produce recommendations depending on the optimization criteria such as

time, cost, etc.

While the previous approaches focus on decomposition of process models

for distributed process execution, the following work concentrate on process

modeling.

Vanhatalo presented an approach to decompose a workflow graph into

single-entry-single-exit subgraphs [147]. An entry node is a node in the graph

that has no incoming edge, while an exit node is a node in the graph that has no

outgoing edges. At the heart of the approach are the normal [150] and refined

process structure tree [149]. The normal process structure tree decomposes a

workflow graph at the nodes, i.e. each node belongs to only a single subgraph.

In contrary, the refined process structure tree decomposes a workflow graph

at the edges, i.e. each edge belongs to exactly one subgraph while nodes may

be shared between multiple subgraphs. Besides decomposition of workflow

graphs the normal and refined process structure trees can also be applied to

conduct control flow analysis [150], to refactor process models to ensure the
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syntactic correctness [151], and to auto-complete a workflow graph with miss-

ing end nodes [151], e.g. gateways of a process model described in BPMN.

Decomposing each process model into single-entry-single-exit subgraphs

and analyze whether they can be reused to create new process models could

be time-consuming and expensive. Gerlach developed an approach to help pro-

cess modelers discover candidates of reusable parts of existing process mod-

els [62]. The approach makes the assumption that recurring process structures

could present reusable process knowledge in creating new process models. The

mining of such recurring process structures has been reduced to the frequent
subgraph mining problem [86]. To search for frequent subgraphs users have to

define a minimal support: the minimal support specifies how many different

process models in the repository have to contain the subgraph to make it a fre-

quent subgraph. The implementation of the approach is based on the MARGIN

algorithm [145] because of the better performance in comparison to other ex-

isting algorithms. The implementation works on a set of process models and

returns a set of frequent subgraphs of the process models.

Decomposition makes complex process models better manageable, which

is also one of the major motivations to generate process views. A process view

can be considered as a projection on a process model which allows abstraction

or hiding of undesired information [117].

Eshuis et al. introduced a two-step approach for constructing customized

process views on process models that are specified using block-structured pro-

cess languages [51]. In the first step selected activities are aggregated into a

single activity. The defined rules for aggregation ensure the aggregated process

view is acyclic. In the second step, process modelers can choose the activities

in the aggregated process view that should be hidden or omitted for certain

target groups, such as customer, partners, suppliers, etc.

Schumm et al. analyzed related works of constructing process views and

categorized them into patterns of process views [135]. Their patterns are cate-

gorized into structure patterns, presentation patterns, inter-view patterns, and

augmentation patterns. Structure patterns encompass the common operations

for process model transformation, such as abstraction, aggregation, insertion,

omission, and preservation. Presentation patterns include aspects such as ap-
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pearance (color, size, etc.), layout, scheme, and theme (which information of

the process should be shown). Inter-view patterns define how to combine views

from the same process model (orchestration inter-view) and how to combine

views from different process models (choreography inter-view). Augmentation

patterns describe how a process view can be described using additional infor-

mation, such as runtime information, calculated information, and other human-

added annotations.

Similar concepts have been applied to different process modeling languages.

Process views for BPEL [16] can be found in [163], for Event-driven Process

Chains (EPCs) [60] can be found in [66], and for BPMN [4] can be found in

[42]. Further research work can be found in [90, 142, 138].

2.3 Query in Process Modeling

Corrales et al. proposes a graph-based approach for comparing the operational

semantics of two BPEL processes [43]. Each BPEL process model being com-

pared is transformed into a graph representation, which a node represents an

activity and the edge represents the control flow between the activities. In order

to simplify the comparison of the interaction activities the graph transformation

splits an <invoke> activity that models a synchronous interaction into two ac-

tivities, i.e. an <invoke> activity (one way) and a <receive> activity. The

matchmaking mechanism first examines whether the two graphs being com-

pared are isomorphic. As subgraph isomorphism cannot always be found, pro-

cess models that have approximate structure (see Section 7.2.2 Approximate

Match) as the query graph should be found: the approximate matchmaking is

based on the concept of error-correction (sub-)graph isomorphism, which com-

putes the edit distance between the two process graphs being compared. An

implementation can be found in [44]. Other approaches of measuring behav-

ioral similarity between process models can be also found in [46, 47].

Beeri et al. developed a query language BP-QL for querying BPEL pro-

cess models [26, 27, 28]. The language provides a graphical notation, which

is similar to the popular graphical notations in commercial BPMN and BPEL
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modeling tools. To query BPEL processes a user just models the query result

using the graphical notations. With the graphical notations activities, data and

their properties are modeled as nodes. Control flows are denoted by activity

flow edges, while data flow edges specify the data flow between the respective

activities. Property nodes are used to define global properties and are directly

linked to the query process. The query can be formulated in two dimensions:

a path-based dimension allows to query possible execution paths in BPEL pro-

cess models; a zoom-in dimension allows to transitively navigate into the or-

chestrated Web services and include them at any depth of nesting for the query

processing.

The formulated query is translated into a specification using Active XML

[6] for evaluation, which is a XML-based non-standard language for data inte-

gration. Neither with the proprietary graphical notation nor with Active XML

process modelers can use BPEL process models or BPEL fragments as query

request. The query evaluation of BP-QL can only return a complete BPEL pro-

cess model or a subgraph of it that has a single entry node and a single exit

node. This is also a limitation as the BPEL fragments defined in this thesis

may have multiple entries and exits. Last but not least the time complexity of

evaluating a BP-QL request is exponential in the order of the query graph.

Awad introduced another graph-based query language BPMN-Q for struc-

tural querying BPMN process models [18]. In BPMN-Q the author allows pro-

cess modelers to use some standard BPMN modeling elements, such as tasks,

events, gateways, and sequence flow. In order to improve the expressiveness

of the query language, the author has also introduced some new modeling el-

ements, including a variable activity, generic split and join gateways, and a

generic node construct. The query request will be evaluated against a process

model repository. To reduce the search space the query processor starts with

identifying the relevant process models to be compared. A relevant process

model must contain all the query nodes in its process graph [20]. The query

processing is based on path extraction, which computes paths with all lengths

between any pair of adjacent query nodes.

As the node set of the process graph must be a superset of the activity nodes

in the query graph, the query processor is not able to return process models that
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contain only a subset of the activity nodes in the query graph. In addition, com-

puting similarity based on path extraction cannot precisely reflect the similarity

between the complete process graph and the query graph (cf. Section 2.4).

Awad et al. extends the query language BPMN-Q [18] by employing an on-

tological dimension in the query processing [20]. To avoid manual annotations

of the process models the approach exploits the enhanced Topic-based Vector
Space Model (eTVSM) ([87, 116]. eTVMS uses its pre-defined ontology to

compute semantic similarities of the task labeling and transforms them into

a numeric similarity value. Thus, this approach uses only information that is

already available in the process model being compared and does not need ad-

ditional annotations. The implementation of BPMN-Q can be found in [129].

In [19] the authors provide another application of BPMN-Q for compliance

checking of process models.

Markovic et al. proposed a method for querying ontologically annotated

process models [103, 101]. To enable an expressive query of process models

each process model should be annotated with ontological concepts [102], in-

cluding functional, behavioral, organizational, and informational perspectives.

The ontology framework is specified using Web Service Modeling Language

(WSML) [140]. A query request may comprise two parts: query request on

static properties is specified using WSML logical expressions, while query re-

quest on process behavior is specified as process model definition. Querying on

static properties is performed first to narrow down the search space of query-

ing on dynamic behavior, as the latter is more expensive than querying static

properties. The authors use ontologized π-calculus to describe the query re-

quest, which is then compared using congruence and bisimulation properties

with process models stored in a process repository [101].

Vanhatalo developed a repository for BPEL process models [148]. Each

BPEL file is annotated with organizational specific metadata. Through the

repository API users can manipulate BPEL files as Java objects and query

BPEL processes using the Object Constraint Language (OCL). Another reposi-

tory for BPEL processes and fragments can be found in [133]. The query mech-

anism operates on the metadata of process fragments, such as fragment names,

keywords, the number of the entries and exits of a process fragment, etc. In
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addition, users can integrate specific query processors through an extension in-

terface of the query engine, e.g. query processor of WS-Policies that are associ-

ated with the process fragments. The structural aspect has not been addressed

in both of the repositories.

2.4 Similarity Measurement

An essential issue in discovering approximate matches based on a graph-based

matchmaking mechanism is how to measure the similarity of two graphs

that are being compared. Different approaches have been developed for that

purpose, such as edit-distance-based, path-based, index-based, and common-

subgraph-based similarity measurement approaches. In following we discuss

each of these approaches in detail.

Similarity Measurement based on Graph Edit Distance

Graph edit distance is a common way to compute the similarity between two

graphs in approximate graph matchmaking approaches [31, 34, 53]. A Graph

G1 can be transformed into another graph G2 by applying edit operations such

as insertion, deletion, and substitution of nodes and edges. Thus, the edit dis-

tance of the two graphs G1 and G2 is indicated by the shortest sequence of edit

operations that transforms G1 into G2 [34]. In addition, the author defines a

special cost function f on the edit operations. Under this cost function f , any

deletion and insertion operations on nodes has a cost equal to one. The deletion

and insertion of an edge that are connected with a node that is also deleted or

inserted respectively, has no cost. Substitutions of identical nodes and edges

have zero costs, while substitutions of different labeled nodes and edges have

infinite cost. Under this cost function, the author has proven that any function

f with the minimum cost of edit operations for transforming a graph G1 to G2

is a graph isomorphism between a subgraph Ĝ1 of G1 and a subgraph Ĝ2 of

G2, where both Ĝ1 and Ĝ2 are maximum common subgraphs of G1 and G2.

Therefore, an algorithm that computes the graph edit distance can be used to
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compute the maximum common subgraph if it runs under the cost function f
introduced in [34].

It is well known that subgraph isomorphism computation is an NP-complete

problem. Consequently, approximate subgraph isomorphism (aka error-tolerant

subgraph isomorphism) is also in NP and even harder than subgraph isomor-

phism detection [108]. Based on this, we discuss whether there exist efficient

algorithms for approximate matchmaking of special graphs, e.g. tree and DAG.

As tree is a special case of DAG, if there are no efficient algorithms for trees,

then the approximate matchmaking problem of DAGs cannot be solved in an

efficient manner. The embedding problem of the exact ordered tree has been

studied in [120] and is solvable in polynomial time. However, we are interested

in unordered embedding in trees, because the elements of a BPEL process in

its corresponding XML tree do not have necessarily a fixed order [110]. For

example, order of the parallel running activities of a <flow> activity is not de-

fined. Furthermore, we are not interested in exact embedding that preserves the

parent-child relationship, but the approximate matches that have similar struc-

tures as the query request. The approximate matchmaking for unordered trees

is denoted as the approximate nearest neighbor (ANN) problem for unordered

labeled trees [162]. The authors have proven that solving the ANN problem

with edit distance is NP-complete. Therefore, we do not consider using edit

distance for the similarity measurement for the approximate query processing.

Other approaches for similarity measurement based on edit distance of two

graphs can be found in [12, 31, 131].

Similarity Measurement based on Path Extraction

Due to the high complexity of solving the ANN problem using edit distance

Shasha et al. proposed a new approach for approximate search of unordered

labeled trees [137]. The authors measure the distance between the query graph

Q and a process graph P by the total number of the root-to-leaf paths in Q
that do not appear in P. The reasons to use path extraction for similarity mea-

surement of two graphs are twofold: (i) the paths reflect the parent-child and

ancestor-descendant relationships between the nodes, which is important for di-
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rected graphs; (ii) the comparison of paths can be easily transformed to string

searching problem so that one can exploit existing efficient string searching al-

gorithms for both exact and inexact matchmaking. Query requests for inexact

matchmaking can be formulated by using wildcard characters as nodes in the

query graph. All matches of each query path are then merged together using

structural join algorithms [13, 33, 40, 41] to produce the result.

This approach requires that each root-to-leaf path in the query graph must

completely appear in the process graph being compared. That means a path

in the process graph that contains only a proper subset of a path in the query

graph will not be considered in the similarity measurement. Our algorithm also

returns process models or fragments that partially contain nodes of a path in

the query graph.

Similarity Measurement based on Maximal Common Subgraphs

Some approaches measure similarity of two graphs by computing the maximal

common subgraph (mcs) of the two graphs. The similarity of graphs G1 and

G2 can be computed as follows [36]:

s(G1,G2) =
|mcs(G1,G2) |

max(|G1|, |G2|) (2.4.1)

As the subgraph isomorphism problem, the maximal common subgraph

problem is also a famous NP-complete problem [74]. Different algorithms for

computing the maximal common subgraph have been presented in [92, 106,

35, 153]. Maximum common subgraphs can be used to compute the graph edit

distance for error-tolerant graph matchmaking approaches [34, 36]. Like graph

edit distance computing the maximal common subgraph requires exponential

time and space due to the NP-completeness of the problem. Besides the high

complexity, using maximal common subgraphs to compute the similarity of

two graphs may not reflect their actual similarity. On the one hand, there may

exist more than one maximal common subgraphs; on the other hand, the non-
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maximal common subgraphs should also be taken into account to compute the

similarity more precisely.



Chapter 3

Process Fragments for Reuse

This chapter presents the concept of process fragments for reuse. In Section 3.2

we introduce a textual definition of process fragments from the process view.

Section 3.3 presents a mathematical definition of process fragments based on

graph theory. Based on the definitions we discuss the shapes (Section 3.4), the

granularities (Section 3.5), and the reuse styles (Section 3.6) of process frag-

ments. In Section 3.7 we introduce the process fragments modeling lifecycle.

3.1 Introduction

In this chapter we introduce process fragments for reuse in a language- and

notation-independent way. Later in this thesis, we will present how this con-

cept can be applied to Business Process Execution Language (BPEL), which is

an established standard for modeling business processes. As different process

modeling languages and notations use inconsistent terminologies, we align our

vocabulary with the Workflow Management Coalition Terminology & Glos-

sary [3]. Despite our endeavor to keep a technology-independent view, using

a particular notation helps to clearly illustrate the concept and to have a better

comprehension of the concept.

We consider process fragment from two different perspectives: the process

view and the graph view. The process view provides the concept that we will

23
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apply to BPEL for defining BPEL fragments (see Cahpter 4). The BPEL def-

inition of process fragments will be used for design and extraction of BPEL

fragments (see Chapter 5). The graph view will be used to define the mapping

of BPEL fragments to graphs (see Chapter 6) and for queying BPEL fragments

(see Chapter 7) in order to use graph algorithms.

3.2 The Process View

Before starting with the definition of process fragments we examine the lin-

guistic meanings of the term fragment. Merriam-Webster’s Online Dictionary

defines the term fragment as “a part broken off, detached, or incomplete” [2].

Collins Dictionary explains that a fragment is “a piece broken off or an incom-
plete piece” [1]. From the dictionary definitions we can infer two fundamental

characteristics: partial and incomplete. As a specialization of fragments, pro-

cess fragments inherit these two characteristics.

Definition 1. Process Fragment
A process fragment is a part of a process that must contain at least one activity

and it may be syntactically and semantically incomplete. ��

A very frequent use case of process fragments is that of a reusable granule,

which is the focus of this thesis. Reuse in process modeling generally refers

to using a part of existing process logic to create new process models. Process

logic is encoded in process activities, the control and data flow between the

activities rather than in other process modeling artifacts, such as definition of

variables. For that reason, we require that a process fragment must contain at

least one activity. An activity describes a piece of work that forms a logical

step within a process [3].

A process fragment may be incomplete. In order to enable process mod-

elers to design process fragments with high reusability we need to relax the

rigid specification of the underlying process modeling languages or notations,

which otherwise enforce completeness and correctness. Loosen these restric-

tions leads to syntactic and semantic incompleteness of process fragments.
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Syntactic Incompleteness

A process fragment is syntactically incomplete if one enclosed process mod-

eling artifact does not contain all the mandatory constituents specified in the

original syntax of the underlying process modeling language or notation. In

the following we show an example that uses BPEL as the underlying process

modeling language.

With BPEL, conditional behavior can be modeled with an <if> activity.

The syntax of BPEL requires that an <if> activity must contain at least

one conditional branch, which in turn contains exactly one mandatory activity.

Further conditional branches can be defined by using <elseif> constructs

within the <if> activity. The activity container <else> within an <if> ac-

tivity defines the default behavior if no conditional branch is taken.

A process modeler may want to define an <if> activity as a reusable pro-

cess fragment, which contains only the <else> branch. The process fragment

serves as a template for modeling <if> activities that share the same default

behavior. Conditional branches can be added on demand at the time of reuse.

Figure 3.1 illustrates the process fragment. As mandatory transition condition

and primary activity of the <if> branch are missing, the <if> activity is not

compliant with the BPEL syntax. We call such incompliance with the BPEL

syntax caused by missing mandatory constituents the syntactic incompleteness.

The <if> activity shown in Figure 3.1 is syntactically incomplete.

if

else

escalate

Fig. 3.1 An if activity that has only the else branch is syntactically incomplete according to
the BPEL syntax.

Note that syntactic incompleteness is not equivalent to syntactic incorrect-

ness. Syntactic incorrectness refers to an illegal usage of process constructs.
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For example, according to the BPEL syntax it is illegal and incorrect to use a

fault handler <catch> immediately in a <flow> activity. Syntactic incom-

pleteness can be considered as a violation of the cardinality constraints defined

in the underlying syntax. We can transform a syntactically incomplete process

fragment into a syntactically complete one, if we augment the process fragment

with the mandatory process elements. But a syntactically incorrect process frag-

ment cannot necessarily be corrected in this way.

Semantic Incompleteness

A process fragment could also be semantically incomplete. Semantic incom-

pleteness means that the essential modeling artifacts that are needed to capture

the intended process logic are underspecified or missing. As shown next, two

major indicators of semantic incompleteness are: (i) the presence of variability

points and (ii) lack of adequate information on process context.

A variability point represents a placeholder of a delayed design decision

[32]. In order to increase the reusability of a process fragment, process model-

ers may specify variability points to allow others to make the specific design

decisions at the time of reuse. For example, a variability point can either be

a placeholder for an activity or be a placeholder for the value of an attribute.

Exemplary constructs that can be used as variability points in process models

can be found in existing process modeling languages and notations. For exam-

ple, an <opaqueActivity> in BPEL represents an explicit placeholder for

exactly one executable BPEL activity; while the ##opaque token represents

a placeholder for the value of an executable BPEL attribute.

Another major indicator of semantic incompleteness of a process fragment

is the missing definitions of the elements that are used in a process activity.

Let’s consider the process fragment in the following listing as an example. The

fragment contains only one <invoke> activity. Although the <invoke> con-

tains no placeholder, the semantics of the activity is unclear. How is the partner

link defined? Is the ”Provider” for booking a car, a flight, or a hotel room?

What kind of data does it need for the input variable and what kind of data do
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we get as response? Without the definitions of these elements the semantics of

the process fragment is ambiguous.

<invoke name=”booking”

suppressJoinFailure=”yes”

partnerLink=”Provider”

portType=”PRO:Booking”

operation=”Book”

inputVariable=”request”

outputVariable=”getResponse”>

Listing 3.1 The semantics of the invoke activity without definitions of partner link, port type,

variables, etc. in BPEL is ambiguous.

Note that not all process modeling languages require process context as the

mandatory constituent of a process model. For instance, correlation sets, part-

ner links, message exchanges, and variables are not mandatory in a BPEL pro-

cess. Thus, the missing definitions of these elements do not necessary lead to

syntactic incompleteness. In contrast to that, omitting the definitions of these

elements leads to semantic incompleteness, because the undefined elements

make it difficult for both humans and machines to understand and execute pro-

cess models correctly.

In the following chapters we will use the process view for defining BPEL

fragments (Chapter 4) and for extracting BPEL fragments (Chapter 5). How-

ever, our query algorithm works on a generic graph model. To use the graph-

based query algorithm (Chapter 7), we have to map a BPEL process model

or fragment to a graph model (Chapter 6). For that reason we introduce the

definition of process fragments from the graph view.

3.3 The Graph View

In a graph-based approach a process model is represented as a Directed Acyclic

Graph (DAG) [94]. The graphical representation of a process model is also

called a Process Model Graph (process graph for short) [78, 95]. In a process

graph each node represents an activity in the given process model. The directed
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edges represent the control connectors, which define the possible flow of con-

trol between the activities.

The ancestor-descendant relationship of two activities in a process graph

indicates the causal or the temporal control dependency between them. If an

activity a1 is neither an ancestor of another activity a2 nor a descendant of the

activity a2, then we say the activity a1 is parallel to the activity a2. In this case

there exist no directed path between the activities a1 and a2.

Definition 2. Process Fragment Graph
A process fragment graph consists of one or more fragmental components of

a process graph. Let G = (V,E) be a directed and acyclic process graph. V
is a set of nodes, where each node represents an activity. E is a set of edge,

where each edge represents the control flow connectors between the activities.

A fragmental component of G is a directed, acyclic, and weakly connected

graph G′ = (V ′,E ′), where V ′ ⊆ V and E ′ ⊆ E. For all e′ ∈ E ′ it satisfies one

of the following conditions:

⎧⎪⎪⎨
⎪⎪⎩

π1(e′) = v′1, π2(e′) = v′2 v′1 and v′2 ∈V ′

π1(e′) = v′1, π2(e′) =⊥ v′1 ∈V ′, ⊥ is undefined

π1(e′) =⊥, π2(e′) = v′2 ⊥ is undefined, v′2 ∈V ′

��
A fragmental component is weakly connected. For a directed graph (di-

graph) there are basically two views on connectedness: strict view and relaxed

view.

The strict view defines connectedness based on the explicit definition through

directed edges. A directed graph G = (V,E) is connected if for each pair of dis-

tinct vertexes u,v ∈ V , there exists a directed path from u to v in the graph G
[10]. Otherwise, we say the graph G is disconnected.

The relaxed view treats the connectedness of a digraph by examining its un-

derlying non-directed graph. A directed graph G = (V,E) is weakly connected
[10] if its underlying non-directed graph is connected, i.e . for each pair of dis-

tinct vertexes u,v ∈ V , there exists a path (u,v) in the graph G. As Figure 3.2

shows, the directed graph P on the left side is not connected, because there does
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not exist a directed B,C-path for the distinct vertexes pair (B,C) in P. However,

P is weakly connected, as its underlying non-directed graph P′ is connected.

P P‘

A

B

C

D A

B

C

D

Fig. 3.2 The underlying non-directed graph P′ of P is a weakly connected graph.

Consider the example illustrated in Figure 3.2. The subgraph P could be con-

sidered as a reusable process fragment even though it is not connected. Thus,

we use the term weakly connected in the definition of process fragment graph.

We say a directed graph is weakly connected, if its underlying non-directed

graph is connected [10].

A fragmental component may contain edges that have either no start node or

no end node. Incomplete incoming edges (with no start nodes) or incomplete

outgoing edges (with no end nodes) can be used to model unknown process

logic or retain the original structure when extracting a process fragment. An

edge with neither start node nor end node is not allowed in our concept.

A fragment graph may contain one or more fragmental components. Con-

sider the following example shown in Figure 3.3. The process model at the

top of the figure describes a supplier process using Business Process Modeling

Notation (BPMN). The supplier process contains two swimlanes, one for the

sales unit and one for the invoicing unit. A process modeler wants to define the

tasks A, D, and E in the sales swimlane as a process fragment, which represents

the standard behavior of the sales unit. This process fragment can be reused in

modeling new process models, in which the standard working process of the

sales unit is needed.

The designed process fragment consists of two fragmental components: one

fragmental component contains exactly one node, which represents the task A;

the other fragmental component consists of two nodes representing the tasks D
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Fig. 3.3 A process fragment graph can also contain more than one weakly connected com-
ponent. In a graph representation, the extracted process fragment contains two weakly con-
nected components.

and E respectively and an edge that connects D and E. Each of the fragmental

components represents a weakly connected graph.

Note that the control dependencies between the fragmental components are

undefined. They can be determined at the time of reuse. For example, the pro-

cess fragments shown in Figure 3.3 can be reused with a parallel gateway. It can

be reused when creating a sequence flow that originates from task A and ends

at task D. Allowing more than one fragmental component and weak connect-

edness between them provides process modelers more flexibility and increases

the reusability of the process fragment.

3.4 Shapes of Process Fragments

The shape of a process fragment is defined in terms of the corresponding num-

bers of its entry and exit points. An entry point of a process fragment is either

a start node or an incomplete incoming edge. A start node has no incoming

edges. We use d←(v) to indicate the number of the incoming edges of a node

v, called in-degree, and d→(v) to indicated the number of the outgoing edges

of a node v, called out-degree.
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Reuse with a paralle gateway

Reuse to create a sequential flowOriginal process fragment

Fig. 3.4 The control dependencies of the fragmental components of a process fragment will
be determined at the time of reuse. The original process fragment shown in the figure can
either be reused with a parallel gateway to create a parallel process logic or be reused by
creating a sequence flow that originates from task A and ends at task D.

A node v in a process fragment graph is a start node, if and only if its in-

degree d←(v) = 0. Analogously, a node in a process fragment graph is an end

node, if and only if its out-degree d→(v) = 0.

An incomplete incoming edge is an edge e with no start node but an end

node, i.e. π1 (e) = ⊥ and π2 (e) = v with v ∈ V . Analogously, an incomplete

outgoing edge is an edge e with a start node but no end node, i.e. π1 (e) = v
with v ∈V and π2 (e) =⊥.

We use start(G′) to denote the set of entry points and end(G′) the set of

exit points of a process fragment graph G′. For a given process fragment graph

G′ = (V ′,E ′) we define:

start(G′)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{v′1, ...,v′m}∪{e′1, ...,e′n} if d←(v′i) = 0

with v′i ∈V ′ and 1≤ i≤ m; OR

π1

(
e′j
)
=⊥ and

π2

(
e′j
)
= v′ with v′ ∈V ′ 1≤ j ≤ n

/0 otherwise

(3.4.1)
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end(G′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{v′1, ...,v′s}∪{e′1, ...,e′t} if d→(v′j) = 0

with v′j ∈V ′ and 1≤ i≤ s; OR

π1

(
e′j
)
= v′ with v′ ∈V ′ and

π2

(
e′j
)
=⊥ 1≤ j ≤ t

/0 otherwise

(3.4.2)

Based on the numbers of the entry and exit points of a process fragment we

identified four different shapes of process fragments:

• Single-Entry-Single-Exit (SESE): a process fragment is in the shape of

Single-Entry-Single-Exit (SESE), if |start(G′)| = |end(G′)| = 1. We call

such a process fragment a SESE process fragment.

• Single-Entry-Multiple-Exits (SEME): a process fragment is in the shape

of Single-Entry-Multiple-Exits (SEME), if |start(G′)|= 1 and |end(G′)|> 1.

We call such a process fragment a SEME process fragment. The SEME

process fragment shown in Figure 3.5 is a process fragment with Single-

Entry-Two-Exits or a SE2E fragment for short.

• Multiple-Entries-Single-Exit (MESE): a process fragment is in the shape

of Multiple-Entries-Single-Exit (MESE), if |start(G′)|> 1 and |end(G′)|=
1. We call such a process fragment a MESE process fragment. The MESE

process fragment shown in Figure 3.5 is a process fragment with Two-

Entries-Single-Exit or a 2ESE fragment for short.

• Multiple-Entry-Multiple-Exit (MEME): a process fragment is in the

shape of Multiple-Entries-Multiple-Exits (MEME), if |start(G′)| > 1 and

|end(G′)|> 1. We call such a process fragment a MEME process fragment.

The MEME process fragment shown in Figure 3.5 is a process fragment

with Three-Entries-Three-Exits or a 3E3E fragment for short.

We call a SESE process fragment a simple process fragment. A process frag-

ment with single entry but multiple exit points is called a fork process fragment,
because if we only consider the entry and the exit points of the process frag-

ment the shape of the process fragment is like a fork . Analogously, a process

fragment with multiple entry and single exit points is called a join process frag-
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Single Entry Single Exit
(SESE)

Single Entry Multiple Exits
(SEME)

Multiple Entries Single Exit
(MESE)

Multiple Entries Multiple Exits
(MEME)

Fig. 3.5 The four shapes of process fragments are characterized by the corresponding num-
bers of the entry and exit points.

ment. A complex process fragment refers to a process fragment with multiple

entries and multiple exit points.

The shape is one fundamental characteristic of process fragments that we

have identified in the research. First, the shape information can be exploited

by process modeling tools to make suggestions on how to stitch process frag-

ments together [48]. Also, the shape is useful when using process fragments to

refactor existing process models [147].

Second, the shape can be also used as a query criterion. For example, a pro-

cess modeler may formulate the query request like: give me all process frag-
ments for risk assessment that has exactly one entry point and three exit points.

Considering the shape of process fragments in query processing is especially

required when process modelers want to substitute a part of an existing process

with a process fragment. When other parts of the original process model must

not be modified, the process modeler prefers to find a process fragment whose

shape fits exactly to the rest of the process model being designed.
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3.5 Granularity of Process Fragments

Granularity is commonly used to describe to which extend a problem is bro-

ken down into smaller parts. Accordingly, the granularity of process fragments

refers to which extent a process model can be broken down into smaller pieces

for reuse. The concept of process fragments enables the reuse of one or more ar-

bitrary parts of a process model, but does not impose restrictions on the syntac-

tic and semantic completeness as (sub)processes do. Moreover, the granularity

of a process fragment spans from an activity to the whole process.

The process

Process

An activity

Subprocess

A subprocess

Arbitrary Parts

Process

Process fragment

Fig. 3.6 Process fragments can encapsulate reusable process logic in different granularities.

The term fragment indicates a relative relation. A process model P may be

used as a part to create a new process model. Thus, from the perspective of

the new process model, the process model P can be considered as a reusable

process fragment. A subprocess itself also represents a reuse granule of self-

contained process logic. Processes and subprocesses can be decomposed fur-
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ther into activities. An activity defines a piece of work that needs to be carried

out as a part of a process. It is used as an atomic unit in modeling process logic.

Thus, an activity represents also an atomic unit of modeling process fragments.

For that reason, a process fragment must contain at least one activity. Besides

the mentioned reuse granules, the concept of process fragment for reuse aims

to enable the reuse of arbitrary parts of a process model. These arbitrary parts

do not have to be syntactic and semantic complete, which is not allowed by

activities, subprocesses and processes.

3.6 Reuse Styles of Process Fragments

Considering how process fragments are reused we have identified six typical

reuse styles as shown in Figure 3.7. These reuse styles are characterized by the

exposure and modifiability of the internal process logic of a process fragment.

Black box
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Fig. 3.7 Six typical reuse styles characterized by the exposure and modifiability of the inter-
nal process logic of a process fragment.
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3.6.1 Black Box

Black box reuse style process fragments cannot be modified at the time of reuse

and the internal definition of process logic is not exposed to process modelers

reusing it.

A

B

C
?Reuse

Fig. 3.8 Without the insight into the process fragment black box reuse style may confuse
process modelers about how to connect the existing process part with the process fragment.

Process modelers have no access to modify or even view the internal process

logic and implementation of the process fragment. Generic services, such as

process model validation or data transformation, are usually reused as black

boxes. Some commercial off-the-shelf software products also belong to this

reuse style. The software product defines the input that it needs for processing

and returns the results to process modelers. The procedures that it conducts in

between and how the procedures have been implemented are totally invisible

to process modelers.

The black box reuse style is difficult to apply to process fragments. When

reusing process fragments process modelers have to ensure that the control flow

and data flow of the resulting process model is correct. For that reason, they

may need the insight into the process logic of the process fragment. Without

the insight into the process fragment process modelers may be confused about

how to connect the existing process part with the process fragment.
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3.6.2 Gray Box

The gray box reuse style requires that the internal definition of process logic

is not exposed to the fragment consumer. The fragment consumer can only

affect the internal process logic by setting predefined parameters of the process

fragment.

A

B

C
?Reuse

Empty Variability Point Configured Variability Point

Fig. 3.9 Despite the predefined variability points process modelers are still kept in dark
about the internal process logic, which hampers the integration of the process fragment with
the process part being modeled.

Most of the commercial off-the-shelf components provide customers the

possibility to parameterize the component to suit their individual needs. Such

configurable parameters are called Points of Variability (PoV) or variability

points. In addition, some services or components have deployment parameters

that can be configured to suit diverse runtime environments. An example in

the SOA world, is the configuration of the endpoints of Web services [155].

Parameterization has also be used to enhance the reusability of orchestration of

Web services [75].

In comparison with black box reuse style, gray box reuse style provides

more modifiability by allowing process modelers to configure the variability

points. However, process modelers have no knowledge about the internal pro-

cess logic, which leads to the same issue we have with black box reuse style.

In other words, without the insight into the process fragment process modelers

may still be confused about how to connect the existing process part with the

process fragment.
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3.6.3 Glass Box

The process fragment cannot be modified at the time of reuse, but the internal

definition of process logic together with the process context are exposed to

process modelers for evaluation or reviewing purpose.
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Fig. 3.10 Glass box reuse style provides insight into the process logic of the process frag-
ment but does not allow process modelers to modify it.

As the name indicates, in the glass box reuse style a process modeler has

the insight in the internal process logic of the process fragment, but has no ac-

cess to modify it. Glass box reuse style can also be found in current process

modeling scenarios. Companies may define subprocesses that prescribe stan-

dardized procedures to deal with a certain activity, such as invoice processing

or risk assessment. This kind of subprocesses must be obeyed within the com-

pany without any deviation. When reusing such subprocesses, their internal

process logic is visible to process modelers for transparency. However, process

modelers are not allowed to modify it.

The glass box reuse style is suitable for process fragments that can be reused

without any modifications. Process fragments that encode standardized and full-

fledged process logic, e.g. compliance fragments [134], are appropriate candi-

dates for the glass box reuse style.
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3.6.4 Holey Box

The internal process logic is completely visible to process modelers and pro-

cess modelers can only modify or customize the process logic at predefined

positions.
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Fig. 3.11 Holey box reuse style allows process modelers to customized variability points.
The variability point # in the process fragment on the left side has been replaced by the
activity D in the process fragment on the right side.

Continuously changing business demand may quicly make a process frag-

ment with rigid process logic obsolete. To increase and maintain the reusability

of a process fragment process modelers may want to replace specific process

activities or properties with placeholders, called variability points or parame-

ters, so that they can be customized and completed when reusing the process

fragments. The holey box reuse style enables process modelers to complete pre-

defined variability points while keeping the rest of process logic untouched as

in the glass box.

The holey box reuse style is especially useful for process fragments with

variability points. Such process fragments can be reused as templates in pro-

cess modeling. The variability points allow process modelers to customize and

modify at predetermined positions, while the other parts of the process frag-

ments ensure that the predefined process logic cannot be changed.
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3.6.5 Open Box

The internal process logic is completely visible to process modelers and pro-

cess modelers can modify or customize the process logic freely.

A

B

C
Reuse

D

G
F

#

E
F

Fig. 3.12 Open box reuse style gives process modelers the most freedom on modifiability
while ensuring the most visibility as in glass and holey box reuse styles. The variability point
# in the process fragment on the left side has been replaced by the activity D in the process
fragment on the right side. The activity E on the left side has been replaced by the activity G
on the right side.

The open box reuse style provides process modelers the most visibility and

modifiability of the process logic defined in a process fragment. It allows pro-

cess modelers to add new process activities, delete obsolete process activities,

modify existing process activities, and even change the control flow of the

process logic. We can find the open box reuse styles in the current reuse ap-

proaches for process modeling. By using reference process models, so called

best-practice process models, process modelers can extend the predefined pro-

cess models with additional activities to incorporate company-specific business

logic and refine the reference process models with implementations to make it

executable [77]. Model-by-example allows process modelers to take an exist-

ing process model and to modify it respectively to make it meet current re-

quirements. Both approaches provide process modelers with the insight into

the internal structure and implementation of process models and allow process

modelers to modify them when needed.

Despite its high flexibility in terms of modifiability the degree of freedom

changing the process logic may destroy the original intent of the process frag-

ments.
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3.6.6 Customized Reuse Style

The reuse styles are not limited to those that we discussed above. Organizations

may define their own customized reuse styles that combine the typical reuse

styles.

A

#
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D

G
F

To be completeTransition condition 
can be modified

Activity D can be 
deleted

New activities can 
be added after G

All the other 
elements are not 

changeable

Encrypted, visible only 
for Finance Supervisor

Fig. 3.13 An example of a process fragment with customized reuse style that combines the
black box, glass box, holey box, and open box reuse styles.

Figure 3.13 shows a customized reuse style. This customized reuse style

combines the black box, glass box, holey box, and open box reuse styles. As the

process fragment in Figure 3.13 contains mission-critical process logic, which

must not be visible to any process modelers, the organization applies the black

box reuse style here to hide the internal implementation of this part of process

logic. The holey reuse style is applied to allow only pre-defined placeholders

to be completed at the time of reuse. The same is applied to the transition

condition between the activity A and the placeholder activity. The activity D
may not be always needed in all possible business context, for that reason,

the open box reuse style allows process modelers to change the control flow

by deleting the activity D. Analogously, new activities can be added after G.

Besides the defined rules, all other activities like A and F must not be modified,

but are visible to process modelers. Therefore, it applies the glass box reuse

style for them.
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3.7 Process Fragments Modeling Lifecycle

Process fragments modeling lifecycle refines the process design phase in the

conventional business process management lifecycle [5]. The refined lifecycle

provides a guideline to process modelers for a better understanding and appli-

cation of the reuse concept in process modeling. On the other hand it can also

guide the development of process modeling tools and process repositories for

a better tooling support [99]. The process fragments modeling lifecycle con-

sists of the following seven phases: identification, design, annotation, storage,

retrieval, customization, and composition.

Business
Process

Process
Fragments

Management 
Lifecycle

Modeling
Lifecycle

Fig. 3.14 Process fragment modeling lifecycle refines the process design phase in the con-
ventional business process management lifecycle.

In this thesis, we address the design phase in Chapter 4 by introducing the

BPEL fragment modeling language and in Chapter 5 by introducing a design

method for extracting BPEL fragments from an existing BPEL process. As a

proof of concept we provide a prototype of a BPEL process modeling tool,

which extends Eclipse BPEL Process Designer and implements the extracting

mechanism. For the storage and retrieval phases we provide a prototype of a

BPEL repository for storing BPEL process models and fragments. Especially

for the retrieval phase, we present in Chapter 7 an algorithm for querying BPEL

process models and fragments that have approximate process structure. The
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identification, annotation, customization, and composition phases are out of

scope of this thesis. Related research works for these phases can be found in

Chapter 2 related work.

3.7.1 Identification

The identification phase aims to determine candidate of process fragments,

whose process logic represents high reusability in modeling new process mod-

els. Occurrence frequency is a useful metric for identifying reusable process

fragments, which indicates the agnosticism of the partial process logic. The

higher the occurrence frequency of the partial process logic, the higher the

possibility that the process logic can be reused in modeling new process mod-

els. However, the definition of the lower bound of the occurrence frequency

depends on each individual domain.

For identifying reusable process fragments the relations and dependencies

between business processes within given business domains should be analyzed.

The results may be used to confine the target scope for identifying process

fragments, in order to avoid considering the whole business process landscape,

which may lead to time-consuming work and high analysis complexity.

In order to detect candidates for reusable process fragments, the selected

business processes should be compared with each other for repeated or sim-

ilar subset of process logic. The comparison can be carried out in a manual

or semi-automatic manner. In the manual manner, process modelers must go

through each process and try to find frequent process fragments based on their

comprehension of the process models. Despite the high requirement on pro-

cess knowledge, this approach is also time-consuming and error-prone [84]. To

provide process modelers the clue to potential candidates of frequent process

fragments [62] presents a graph-based approach for mining frequent process

fragments among a group of process models. In this semi-automatic approach

process graphs are totally broken down to activity level. Users have to define

the lower bound of occurrence frequency, based on which candidates of fre-
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quent process fragments can be discovered. The identification phase is out of

scope of this thesis.

3.7.2 Design

The candidate process fragments identified in the preceding phase may need

to be extracted from the original process models. To extract a process frag-

ment process modelers select the process activities that have been identified

as constituents of a frequent process fragment. The modeling tool should help

process modelers to extract identified process fragments. The original control

dependencies between the activities of the resulting process fragment should

be retained, if needed. Retaining the original control dependencies can ease the

reuse, as process modelers do not have to figure out how the activities should

be connected with each other.

The resulting process fragment may need to be re-designed. For example,

process modelers may want to transform specific process activities or attributes

into placeholders so that the process fragment can be reused as a template.

In case no frequent process fragments can be identified in the preceding

phase, process fragments can be designed from scratch, especially when an

organization is undertaking a process re-engineering project. Newly introduced

process logic can be modeled as process fragments, if frequent applications of

the process fragments can be reasonably predicted.

In Chapter 5 we introduce a method for extracting BPEL fragments from

an existing BPEL process. As a proof of concept we provide a prototype of a

BPEL process modeling tool, which extends Eclipse BPEL Process Designer

and implements the extracting mechanism.

3.7.3 Annotation

One of the key issues in reusing process fragments is the ability to efficiently

find the appropriate process fragments. The annotation phase gives process
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modelers the possibility to enrich process fragments with metadata. Accurately

defined and clearly documented vocabulary of metadata will provide a consis-

tent means for annotating process fragments.

Some aspects of a process fragment are encoded in the process logic, such

as functional capabilities and involved organizational units. Extracting these

aspects of the process logic enables process modelers to search process frag-

ments in a manner similar to keyword-based query [57]. Other aspects are not

necessarily encoded in the process logic. The annotations allow process model-

ers to enrich the description of a process fragment with non-inherent properties,

such as applied compliance rules, required performance metrics, etc. [159].

In the following we identified four fundamental and common aspects re-

lated to business processes annotations. Besides reuse styles and shapes, they

represent only a subset of all possible metadata for a process fragment.

• Business function describes the functional capabilities of the process frag-

ment, such as risk assessment, check room availability, request shipping

schedule, etc.

• Business object defines the data that a process fragment processes, such as

purchase order, invoice, etc.

• Organizational unit specifies the involved roles and organizational units

in the process logic. For example, finance officer, production planer, teams,

departments, partners, etc.

• Policy covers the non-functional properties of a process fragment, such as

the performance metrics that the process fragment achieves, compliance

rules that the process fragment follows, capability to compensate, etc.

An organization can extend these aspects to meet their individual require-

ments on the description of process fragments. Establishing an agreement on

terms and usage between these descriptions and the business processes and

constituent activities/transactions is a difficult but essential aspect of the over-

all methodology. The annotation phase is out of scope of this thesis.
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3.7.4 Storage and Retrieval

The annotated process fragments should be stored and maintained in a con-

sistent and systematic manner. A process repository is an established technol-

ogy for managing engineering artifacts [30]. A process repository is a shared

database of information about process modeling artifacts produced or used by

an organization [30, 100, 115, 148]. It provides process modelers a central loca-

tion to store and share reusable process modeling artifacts. In addition to con-

ventional functionalities of a database a process repository also provides fea-

tures such as checkout/check-in, versioning, configuration management, and

access control.

When modeling a process, process modelers can query the process reposi-

tory for process modeling artifacts that they can reuse. To increase the query

capacity of the process repository and promote reuse of existing process mod-

eling artifacts, the process repository should be able to return results that either

exactly match the query request or represent approximate matches.

3.7.5 Customization

Exact or approximate matched process fragments may need to be customized

before reuse to meet the needs of the requirements. For example, new pro-

cess elements may be added; deprecated process elements may be deleted or

replaced; the sequences of the process elements may be changed; process ele-

ments and attributes of process elements may need to be completed. The reuse

styles (Section 3.6) determine which customization operations are allowed on

which process elements of the process fragment. Tools should support the reuse

styles and the needed techniques.
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3.7.6 Composition

In the composition phase, process fragments can be stitched together [48] to

specify more complex process logic. Process fragment composition can be con-

ducted in a manual or (semi)automatic manner. In the manual manner, process

modelers have to manually connect entry and exit points of process fragments.

In the semi-automatic manner, the process modeling tool should suggest rea-

sonable possibilities for composing the process fragments. The automatic man-

ner allows the modeling tool to compose process fragments without human

intervention. Both for the manual and the (semi)automatic manner, the shape

of process fragments provides an important clue on how to stitch the process

fragments together [48].





Chapter 4

Defining BPEL Fragments

This chapter introduces the BPEL fragment modeling language, which imple-

ments the concept of process fragments. In Section 4.2 we analyze the require-

ments on BPEL fragments and the language for modeling BPEL fragments.

As BPEL provides two syntax variants for different purposes, we evaluate in

Section 4.3 which syntax is the most suitable as the basis for BPEL fragment

modeling language. In Section 4.4 we address the special needs for a new root

element of BPEL fragments. As a result of the previous sections, we introduce

in Section 4.5 the syntax of the BPEL fragment modeling language. Last but

not least, not every arbitrary part represents a BPEL fragment according to

the definition we introduced in this thesis. In Section 4.6 we compare BPEL

fragments with such parts called BPEL modeling snippets.

4.1 Introduction

Web Services Business Process Execution Language (BPEL) [16] is the de jure

standard for modeling both executable and abstract business processes. The cur-

rent version of the BPEL language does not support the design of reusable parts

of process logic, especially parts that cannot be seen as a self-contained process.

The BPEL extension BPEL-SPE [82] was developed to foster reuse of BPEL

49
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process logic by introducing subprocesses into BPEL: standalone subprocesses

or inline subprocesses.

A standalone subprocess must be defined as a self-contained process, so that

it can be invoked by another BPEL process. Thus, standalone subprocesses do

not allow process modelers to design incomplete parts of a BPEL process for

reuse.

An inline subprocess does not need to be a self-contained process, however,

it can only be defined within a BPEL <scope>. Thus, inline subprocesses

do not allow process modelers to reuse parts of a BPEL process within other

modeling constructs, e.g. a <flow> activity.

As a conclusion, both standalone and inline subprocesses have restrictions

on reusing parts of process logic in BPEL process models.

In this chapter we present one realization of the concept of process frag-

ments which takes BPEL as the technological basis. In Section 4.2 we analyze

the requirements on BPEL fragments. Some of the requirements are derived

from the concept of process fragments themselves, while other requirements

originate from the language design of BPEL itself. Based on the identified

requirements we study in Section 4.4 whether one of the available BPEL con-

structs can serve as the root element of BPEL fragments. As none of the avail-

able BPEL constructs is suitable for this, we introduce in Section 4.5 the spec-

ification of the language for modeling BPEL fragments for reuse, the BPEL

fragment modeling language (BPEL-Frag for short). It combines both the lan-

guage constructs for modeling executable and abstract BPEL processes. More-

over, it enables process modelers to define arbitrary parts of a BPEL process

as process fragments. Such arbitrary parts are not syntactically allowed by the

BPEL language itself and its already defined extensions.

4.2 Requirements on BPEL Fragments

In this section we analyze the requirements on BPEL fragments. BPEL frag-

ments must satisfy the requirements that are imposed by the definition of pro-
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cess fragments (Definition 1). Specific requirements originate from the lan-

guage design of BPEL itself.

Adhering to the BPEL Language (Requirement R1)

Generally speaking, there are two different approaches to design a BPEL frag-

ment. One approach is to design a reusable BPEL fragment from scratch. An-

other approach is to design a BPEL fragment by reusing extracted parts of

existing BPEL processes (see Section 3.7.2 in process fragment modeling life-

cycle). The extracted parts of existing BPEL processes may contain BPEL con-

structs of either executable BPEL or abstract BPEL. As abstract BPEL allows

the use of all BPEL constructs of executable BPEL, it is sufficient if the BPEL

fragment modeling language provides constructs of abstract BPEL. In addition,

BPEL fragment modeling language should relax the rigid constraints of the

original BPEL constructs and provide new constructs, if needed, to meet the

following requirements.

Requirement 1: the syntax of BPEL fragments should take BPEL as the

common base and extend it to meet the requirements discussed in the following

subsections.

Containing At Least One Basic Activity (Requirement R2)

A process fragment must contain at least one activity (Definition 1). As an

implementation of process fragments a BPEL fragment must also contain at

least on activity.

BPEL defines two different kinds of activities: basic and structured activi-

ties. Basic activities specify elemental steps of the business logic, which is used

as atomic units for encoding the actual business logic. Structured activities are

used to organize basic activities into a logical structure and to define their con-

trol dependencies, but do not describe a piece of work that forms a logical step

within a process [3]. As the concept of BPEL fragments is introduced to en-
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able process modelers to reuse existing process logic, a BPEL fragment must

contain at least on basic activity.

Requirement 2: a BPEL fragment must contain at least one basic activity.

The basic activity can either be located immediately within the root element

of the BPEL fragment or be enclosed in any compound constructs in arbitrary

depth.

Using Syntactically Incomplete Constructs (Requirement R3)

A process fragment may be syntactically incomplete (Definition 1). As we dis-

cussed in R1, the syntax of BPEL fragment modeling language should extend

the common base of the BPEL language. But the syntactic constructs of exe-

cutable BPEL language have mandatory constituents. For example, an <if>

activity must have one mandatory if branch, which contains exactly one condi-

tion and exactly one activity. However, under certain circumstances a process

modeler may only want to capture the default process logic in the <else>

branch in a BPEL fragment. Thus, we have identified the following require-

ment:

Requirement 3: the syntax of BPEL fragment modeling language should

allow process modelers to use syntactically incomplete constructs in modeling

BPEL fragments. For that purpose, the syntax should eliminate the syntacti-

cal constraints on mandatory constituents of BPEL constructs, so that process

modelers can leave out certain parts of the process logic when needed1.

Using Variability Points (Requirement R4)

A process fragment may also be semantically incomplete (Definition 1). As dis-

cussed in the preceding chapter, one of the major indicators of semantic incom-

pleteness is the presence of variability points. The BPEL language provides

opaque activity as an explicit placeholder for exactly one executable BPEL ac-

tivity. But process modelers may need to define a variability point in a BPEL

1 A similar requirement led to the definition of abstract BPEL
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fragment, which can be replaced either by exactly one BPEL activity or by a

BPEL fragment.

For example, a process modeler may want to create a BPEL fragment that

contains the standardized activities for claims processing. Each team can reuse

this BPEL fragment to model its local claims handling processes based on the

local economic situation, legislation, man power, and other factors that cannot

be foreseen at the time of modeling. Important is that all the claims handling

processes begin with the activity receiveClaimRequest followed by the activ-

ity getCustomerInfo. Depending on whether the claim requester is a business

customer or a private customer each local team should be able to decide on its

activities according to their current priority to each customer category. All the

claim processing processes end with the activity recordResult and the activity

closeCase. Each team can define the activities between getCustomerInfo and

recordResult individually. In this case, the process modeler does not known the

local process logic at the time of designing this BPEL fragment, which could

be one single activity or more than one activity.

Requirement 4: besides <opaqueActivity> the syntax of BPEL frag-

ment modeling language should allow process modelers to define explicit place-

holders that can be replaced by a BPEL fragment.

Including or Excluding Process Context (Requirement R5)

Another major indicator of semantic incompleteness is the lack of adequate

information about the process context (Definition 1). We use the term process
context to refer the collection of variables, partner links, message exchanges,

correlation sets, extension, and imported documents in a BPEL process.

Including process context helps process modelers in discovering and reusing

BPEL fragments appropriately. This can be achieved by providing additional

environmental information that goes beyond the pure process logic.

For example, a partner link specifies the relationship of the BPEL process

and an interaction partner. Without the definitions of the partner links it is diffi-

cult to figure out through which communication channel an <invoke> activ-

ity interacts with the partner process. Similarly, variables carry the data that are
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used in a BPEL process internally or exchanged between the BPEL process and

its partners. In addition, when reusing a BPEL fragment as the basis to model

a new BPEL process, including process context as part of the BPEL fragment

avoids repeated modeling work.

Excluding the process context in a BPEL fragment should also be allowed.

A BPEL fragment without process context consists of process logic only. Such

a BPEL fragment allows process modelers to reuse it in different process con-

texts. At the time of reuse, process modelers can either define the process con-

text from scratch or embed the BPEL fragment into an already defined process

context.

Requirement 5: the syntax of BPEL fragment modeling language should

allow process modelers either to include process context in or to omit process

context from a BPEL fragment.

Defining a Single Activity as a BPEL Fragment (Requirement R6)

The BPEL language uses activities as modeling constructs to specify pure pro-

cess logic. When decomposing a BPEL process into BPEL fragments, the most

intuitive way is to split the BPEL process into different kinds of activities. Each

of these obtained activities could represent a reusable BPEL fragment for pro-

cess modelers.

For example, the obtained BPEL fragment could be a basic activity: because

it is time-consuming and error-prone to define an <assign> activity manually,

especially when it is dealing with complex data mapping procedures, reuse

of such an assign activity is a valid use case for a single activity fragment.

Thus, one process modeler may define a fully-specified <assign> activity

as a BPEL fragment and many other process modelers may reuse it later in

different BPEL processes when the same data mapping rules apply.

As another example, the obtained BPEL fragment could be a complex struc-

tured activity: a <scope> activity in an order-to-cash process encodes the

standardized process logic for billing customers. In addition it defines also cor-

responding fault handlers for exception handling and compensation handler in

case of rollback. As the process logic encoded in the <scope> is standard-
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ized and can be reused across more than one order-to-cash processes, process

modelers may also define the <scope> as a BPEL fragment.

Requirement 6: the syntax of BPEL fragment modeling language should

allow process modelers to define a single BPEL activity as a BPEL fragment.

Delayed Decision on Control Dependencies (Requirement R7)

When designing reusable BPEL fragments, a process modeler may want to

determine the control dependencies of the enclosed activities at the time of

reuse.

For example, a process modeler wants to create a BPEL fragment that com-

prises two activities: delivery orders and billing customer. The process mod-

eler intends to reuse the BPEL fragment in modeling new order-to-cash pro-

cesses. The control dependencies of the activities delivery orders and billing
customer depend on the actual business logic that should be described by

reusing the BPEL fragment. Assume that a company has the following poli-

cies: (i) for key accounts these two activities should run in parallel in order to

reduce the delivery time; (ii) for private customers the activity delivery orders
can be started only if the activity billing customer has been completed success-

fully. In case (i), the two activities can be embedded in a <flow> activity; in

case (ii), the two activities can be reused within a <sequence> activity in the

proper order.

Note that control dependencies of a group of activities are either specified

implicitly by the immediate nesting construct or explicitly using links. Thus,

to enable delayed decision on control dependencies of the immediate child

elements in a BPEL fragment, we identified the following requirement:

Requirement 7: the syntax of BPEL fragment modeling language should

allow using BPEL constructs as its immediate child elements without an imme-

diate enclosing construct and BPEL links.
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Associating Partial Process Logic with Condition (Requirement R8)

In BPEL, the bundling of a <condition> element and an activity can be

used in two cases: for specifying conditional behavior and for defining repeti-

tive process logic.

The bundling of a <condition> element and an activity is used in <if>

activities for specifying conditional behavior. Each branch of an <if> activ-

ity consists of a pair of a <condition> and an activity. The activity of the

branch, whose condition has been first evaluated to be true, is performed.

The bundling of a <condition> element and an activity is also used in

modeling <while> and <repeatUntil> activities. In these activities the

<condition> controls the iteration of repetitive execution and the activity

defines the actual process logic for each iteration.

As <if>, <while>, and <repeatUntil> activities share the same syn-

tactical constituents, the bundling of a <condition> element and an activity

can be considered as a granule of reuse, which allows process modelers to de-

fine building blocks for modeling conditional behavior and repetitive process

logic.

Note that the BPEL language allows to associate exactly one activity with a

<condition> element. To design a reusable BPEL fragment, a process mod-

eler may want to associate a partial process logic, which may contain more

than one activity with a condition. Let us consider the example discussed in

the section of Requirement R7. Besides the delayed decision on the control

dependencies of the activities delivery orders and billing customer, the process

modeler wants to associate a condition with the partial process logic. The condi-

tion determines when the activities should be executed. But how the activities

should be executed, i.e. in which execution order, will be determined by the

delayed specification of the control dependencies between the two activities at

the time of reuse.

Requirement R8: the syntax of BPEL fragment modeling language should

allow to associate a <condition> element with one or more activities and

use them as its immediate child elements.
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Grouping of Handlers (Requirement R9)

A group of BPEL handlers alone could also represent a reusable part of a BPEL

process.

For example, a process modeler may want to define the fault handlers credit-
CardCanNotBeAuthroized, creditCardCanNotBeCharged, and creditCardIsIn-
valid, and the compensation handler cancelPurchageOrder as a BPEL frag-

ment. These handlers together represent a logical group of process logic for

dealing with frequent exceptions that may be thrown during payment process-

ing of credit cards. Thus, they could be identified as a reusable BPEL fragment.

BPEL uses the <scope> activity to bundle actual process logic with BPEL

handlers. Using a <scope> activity for the purpose of grouping BPEL han-

dlers would introduce redundant nesting of a <scope> activity in the target

BPEL fragment.

Requirement 8: the syntax of BPEL fragment modeling language should

allow to define a group of BPEL handlers without the nesting <scope> activ-

ity.

Associating Partial Process Logic with Handlers (Requirement R10)

Only grouping BPEL handlers is not sufficient for designing reusable parts of

a <scope> activity. As handlers are generally used in combination with a

<scope> activity, under certain circumstances they cannot be considered and

reused in isolation. Thus, when designing a primary activity of a <scope>

activity as a BPEL fragment, a process modeler may also want to include the

corresponding BPEL handlers that are related to the partial process logic of the

BPEL fragment being designed.

For example, a process modeler may want to create a BPEL fragment that

comprises two activities, i.e. delivery orders and billing customer and decide on

their control dependencies at the time of reuse (refer to the example used for

Requirement R8). In addition, the process modeler wants also to include the

fault handlers creditCardCanNotBeAuthroized, creditCardCanNotBeCharged,

and creditCardIsInvalid to handle the exceptions that could be caused by the
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activity billing customer. The original <scope> activity cannot be used to

serve this purpose, as its syntax requires exactly one activity as its immediate

primary activity.

Requirement R10: the syntax of BPEL fragment modeling language should

allow associating partial process logic with BPEL handlers without the nesting

<scope> activity.

Extensibility (Requirement R11)

The syntax of the BPEL fragment modeling language provides only the syn-

tactical constructs for describing reusable process logic. The actual process

logic of each BPEL fragment and the evaluation of its reusability depend on

each individual application domain. Therefore, it is impossible to exhaust all

the needs for different domains in this thesis. The identified requirements on

BPEL fragment modeling language above represent the reasonable ones from

the perspective of the author.

Requirement R11: the syntax of BPEL fragments should be extensible.

The extensibility should allow process modelers to use the extended elements

defined with the extension mechanisms provided by the original BPEL lan-

guage. Also, the extensibility should allow process modelers to introduce new

types of BPEL fragments that are not foreseen in the BPEL fragment modeling

language.

4.3 Deciding on the Basis of BPEL Fragment Syntax

BPEL provides two language variants for specifying BPEL processes: one for

modeling executable BPEL processes and one for specifying abstract BPEL

processes. In this section we examine which language variant we can use as the

basis for defining BPEL fragment modeling language (R1). The comparison of

the two language variants is based on the identified requirements on BPEL

fragments. Figure 4.1 shows the result of our comparison.
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Requirements Abstract BPEL Syntax Executable BPEL Syntax
R1 � �
R2 � �
R3 � �
R4 � �
R5 � �
R6 � �
R7 � �
R8 � �
R9 � �

R10 � �
R11 � �

� Satisfies � Dissatisfies

Fig. 4.1 Comparison of the syntax of abstract and executable BPEL.

Instead of simply choosing the language variant (i.e. abstract BPEL) that

satisfies most of our requirements, we argue in the following that the manner

in which abstract BPEL satisfies the requirements makes it more suitable as the

basis of the modeling language of BPEL fragments.

Expressiveness

Abstract BPEL provides more expressive power than executable BPEL. Ab-

stract BPEL shares the common base of modeling constructs that are also

allowed for executable BPEL. In addition, abstract BPEL introduces opaque

constructs as explicit placeholders, which are not allowed in executable BPEL.

Thus, abstract BPEL is preferable from the expressiveness perspective.

Syntactical Incompleteness

Abstract BPEL globally removes the cardinality constraints on the constituents

of BPEL constructs: BPEL elements and attributes that are defined as manda-

tory in the syntax of executable BPEL processes are now defined as optional.

This allows using BPEL constructs that are not syntactical complete with re-
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gards to their definitions in executable BPEL (R3). Thus, from the perspective

of syntactically incompleteness abstract BPEL is preferable.

Variability Points

Abstract BPEL provides opaque constructs for defining variability points, i.e.

<opaqueActivity>, <opaqueFrom/>, opaque attributes, and opaque

value ##opaque. Defining variability points is not allowed in executable

BPEL. Although the opaque constructs of abstract BPEL only partially satisfy

the requirement on variability points R4, it is preferred over executable BPEL.

Design Decision

In summary, abstract BPEL surpass executable BPEL in the following aspects:

(i) it provides more expressiveness; (ii) the opaque constructs can be used to

define variability points in BPEL fragments; (iii) the elimination of cardinality

constraints allows process modelers to use syntactical incomplete constructs to

model BPEL fragments. Therefore, we choose abstract BPEL as the basis of

the BPEL fragment modeling language.

4.4 The Need for a Separate BPEL Fragment Root

In this section we discuss whether we can reuse a BPEL construct as the root

element for BPEL fragments. As we choose the syntax of abstract BPEL as

the basis of BPEL fragment modeling language, the analysis takes only con-

structs defined in the syntax of abstract BPEL into consideration (see Figure

4.2). In the following we discuss only the entries in Figure 4.2 for <scope>

and <extensionActivity> in detail. The detailed analysis of the other

entries can be conducted analogously.

In the following discussion, we use the (+Rx) to indicate that the constructs

satisfies the requirement x, while (-Rx) means the dissatisfaction of require-
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ment x. As the requirement R1 is a requirement on the overall design of BPEL

fragment modeling language, it cannot be evaluated on each single constructs.

For that reason, we evaluate the requirement (R1) for each construct to ”-” as

a symbol for undefined in the Table 4.2.

The Scope Activity

The <process> construct is the root element of BPEL processes. Therefore,

one may first consider whether the <process> construct can be reused as the

root element of BPEL fragments. As the <process> construct is a special

case of the <scope> activity, we discuss here only the <scope> activity. If

the <scope> activity does not satisfy all the requirements, as a specialization

of the <scope> activity, the <process> construct would also dissatisfy the

requirements.

The <scope> activity in abstract BPEL allows process modelers to leave

out constituents of BPEL constructs when needed (+R3). In addition, it allows

using explicit placeholders, i.e. opaque activities, opaque attributes, opaque

from, and opaque value, for defining variability points (+R4). The <scope>

activity also allows defining local process context for its enclosed process ac-

tivities (+R5). Process context are defined as optional in abstract BPEL. This

allows process modelers to omit process context (+R5). The <scope> ac-

tivity allows to use exactly one activity as its primary activity (+R6). Last

but not least, in a <scope> activity process modelers can define Fault-,

Compensation-, Termination- and Event-handlers (+R9).

However, the <scope> activity does not satisfy the following requirements:

the <scope> activity allows maximal one primary activity as its immediate

enclosed activity (-R7); <condition> is not allowed to be used immediately

within the <scope> activity (-R8); as the <scope> activity does not satisfy

R7 and R8, it also dissatisfy the requirement R10 (-R10); in BPEL the extensi-

bility is introduced to define new activities and attributes, but the main structure

of the scope cannot be changed (-R11).
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The Extension Activity

The BPEL language defines extension mechanisms allowing process modelers

to introduce new attributes or activities that are not defined in the BPEL stan-

dard. One extension mechanism allows introducing new attributes for any stan-

dard element. Another extension mechanism supports the definition of specific

assign operations within an <assign> activity. Both of these extension mech-

anisms do not satisfy the identified requirements on BPEL fragments, thus, we

do not discuss them here further.

The <extensionActivity> element represents another extension mech-

anism of BPEL, which allows process modelers to introduce new activity types.

The content of an extension activity must be a single element qualified with a

namespace that is different from the BPEL namespace [16].

This requirement does not allow to use a BPEL activity or any standard ele-

ments of BPEL as the single element within an extension activity, because the

namespace of the single element must be different than the BPEL namespace

(-R5, -R6). In addition, an extension activity requires a single element as its

immediately enclosed activity. This dissatisfies the requirement that the root

element should be able to enclose more than one activities as the immediate

enclosed elements of a BPEL fragment (-R7, -R8, -R9, -R10).

We evaluate requirements R2, R3, and R4 to be undefined, as they are not

defined explicitly in BPEL. The evaluation depends on the each individual def-

inition of extension activities.

Other BPEL constructs do not satisfy the basic requirement of the process

fragment concept, i.e. a process fragment must contain at least one activity.

Thus, we do not show them in the Figure 4.2 to keep it short. As the analysis

in the Figure 4.2 shows, no constructs in BPEL satisfy the requirements on the

root element of BPEL fragments. Therefore, we introduce a new root element

into the BPEL fragment modeling language.
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Name R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
<assign> � � � � � � � � � � �
<catch> � � � � � � � � � � �

<catchAll> � � � � � � � � � � �
<compensate> � � � � � � � � � � �

<compensateScope> � � � � � � � � � � �
<compensationHandler> � � � � � � � � � � �

<empty> � � � � � � � � � � �
<eventHandlers> � � � � � � � � � � �

<exit> � � � � � � � � � � �
<extensionActivity> � - - - - - - - - - -

<faultHandlers> � � � � � � � � � � �
<flow> � � � � � � � � � � �

<forEach> � � � � � � � � � � �
<if> � � � � � � � � � � �

<invoke> � � � � � � � � � � �
<onAlarmEvent> � � � � � � � � � � �
<onAlarmPick> � � � � � � � � � � �

<onEvent> � � � � � � � � � � �
<onMessage> � � � � � � � � � � �

<opaqueActivity> � � � � � � � � � � �
<pick> � � � � � � � � � � �

<process> � � � � � � � � � � �
<receive> � � � � � � � � � � �

<repeatUntil> � � � � � � � � � � �
<reply> � � � � � � � � � � �

<rethrow> � � � � � � � � � � �
<scope> � � � � � � � � � � �

<sequence> � � � � � � � � � � �
<terminationHandler> � � � � � � � � � � �

<throw> � � � � � � � � � � �
<validate> � � � � � � � � � � �

<wait> � � � � � � � � � � �
<while> � � � � � � � � � � �

� Satisfies � Dissatisfies - undefined

Fig. 4.2 No constructs of abstract BPEL in the table above satisfy all the identified require-
ments on BPEL fragments.

4.5 The BPEL Fragment Modeling Language

Based on the discussions above, it is clear that we do not only need to intro-

duce new types of modeling constructs but also need to change the semantics

of the root element of abstract BPEL and the allowed combinations of origi-
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nal BPEL constructs. Therefore, instead of extending abstract BPEL by using

the extension mechanisms provided by the language itself, we introduce the

BPEL fragment modeling language as a new language variant into the BPEL

language family. In the BPEL fragment modeling language the root element is

the <fragment> element (4.5.2). In addition, the BPEL fragment modeling

language introduces two new elements: (i) the <bagActivity> construct

(4.5.1) is an extension of <opaqueActivity> and can be completed with

one or more activities; (ii) the <extensionFragment> (4.5.2.4) which en-

ables process modelers to introduce new types of BPEL fragments. Besides

these changes, all the other constructs in the BPEL fragment modeling lan-

guage are the same as those defined in abstract BPEL.

In general we will use the grammar representation for the discussions of

BPEL fragment modeling language. However, under certain circumstances us-

ing XSD schema helps to make the discussion more clear and precise. Thus, in

the following discussions XSD schema is used if necessary.

4.5.1 The Bag Activity

We introduce a new activity type called <bagActivity>, which has similar

semantics as <opaqueActivity> of abstract BPEL. A <bagActivity>

enables process modelers to use it as an additional explicit placeholder to

model unknown process logic. It inherits the standard attributes and elements

of all BPEL activities and is defined as follows:

<bagActivity standard-attributes>

standard-elements

</bagActivity>

Listing 4.1 The structure of a bag activity.

The difference between the bag activity and the opaque activity is twofold:

(i) a bag activity can be substituted by one or more abstract or executable BPEL

activities, while an opaque activity represents an explicit placeholder for ex-

actly one executable BPEL activity; (ii) a bag activity is allowed to have both
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unified and ununified links (unified Links and non-unified Links are described

in the following paragraph) while an opaque activity, as other BPEL activities,

may only use unified links.

Substitution

One exemplary usage of bag activity is in the creation of BPEL fragments. A

bag activity marks the points of variability in a BPEL fragment and indicates

the unknown process logic at the time of design. A bag activity can be replaced

by an executable or an abstract BPEL activity. It can even be replaced by an-

other BPEL fragment.

Although a bag activity can be replaced by one or more BPEL activities,

the immediately enclosing construct of the bag activity determines per defini-

tion how many BPEL activities are allowed to replace the bag activity. Some

BPEL constructs require exactly one BPEL activity as their immediate en-

closed activity, e.g. <if>, <scope>, <catch>, etc. A bag activity that is

used as the immediate enclosed activity in such constructs can only be replaced

by exactly one BPEL activity. Some other BPEL activities, i.e. <flow> and

<sequence>, allow more than one BPEL activities as their immediate child

activities. Thus, a bag activity that is used as an immediate enclosed activity of

these BPEL activities can be replaced by one or more BPEL activities.

Unified Links

A bag activity indicates that the process logic is unknown at the time of model-

ing. If a bag activity has exactly one incoming link, the semantic of the single

incoming link may be twofold: (i) the substitution must have exactly one en-

try point; (ii) the process modeler does not know what the process logic could

be. Thus, she/he uses a single incoming link just as a means to connect the

bag activity with other parts of the BPEL fragment. The same also applies to

the single outgoing link of a bag activity. In order to distinguish the different
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semantics of the unified incoming or outgoing link of the bag activity we intro-

duce two different modes: the restricted mode and the relaxed mode.

The restricted mode is introduced for the former case (i). In the restricted

mode, the unified incoming or outgoing link of the bag activity must not be

modified when substituting the bag activity. This requires that the substitution

of the bag activity must have exactly one entry point if the bag activity has

exactly one incoming link. Analogously, the replacement must have exactly

one exit point if the bag activity has exactly one outgoing link. The entry point

of the substitution inherits the join condition of the bag activity. And the exit

point of the replacement inherits the transition condition of the bag activity.

The relaxed mode enables the latter case (ii). In the relaxed mode, both the

unified incoming and outgoing links can be replaced by a new set of incoming

and outgoing links when substituting the bag activity. The join condition and

transition condition of the bag activity should be verified after the substitution.

For example, the unified incoming link of a bag activity can be duplicated

when substituting the bag activity with a BPEL fragment with more than one

entry points. If the original incoming or outgoing link carries a transition condi-

tion, it can be copied to each link. However, the respective transition conditions

should be verified whether they are still valid for the resulting process logic. If

the target activity of the single outgoing link carries a join condition, then the

join condition should be adjusted, if necessary, by process modelers to include

also the duplicated links.

The mode should be specified in the BPEL fragment profile2, which de-

scribes how to use the respective BPEL fragment, e.g. reuse styles applied,

how to resolve unified links, etc. However, BPEL fragment profile is out of the

scope of this thesis. We consider it as our future work.

Non-unified Links

When using a bag activity in a <flow> activity, the bag activity may have more

than one incoming or outgoing links that all share the same source activity.

2 similar to abstract BPEL profile
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For example, a company has standardized some processing steps of their

claim handling processes as shown in Figure 4.3. All the claim handling teams

must follow these standardized steps. Each local team can define different ac-

tivities for handling different customer categories accordingly: business cus-

tomers and private customers. However, how they interact with their customers

depends on local culture, legislation, economic situation, etc. Thus, they should

be granted certain flexibility in designing the business processes. To accommo-

date this need, a process modeler creates a BPEL fragment for reuse, which

contains the standardized steps and can be reused when modeling each local

claims handling process. As the local activities must distinguish business cus-

tomers from private customers, the bag activity has two incoming links with

the corresponding transition conditions.

receiveClaimRequest

getCustomerInfogetCustomerInfo

bagActivity

recordResult

closeCase

a) Use bag activity

Fig. 4.3 A bag activity may have non-unified incoming or outgoing links.

Such incoming links of the bag activity as shown in Figure 4.3 are called

in this thesis non-unified links. Non-unified links violate the static constraint

defined in the BPEL standard. The static constraint [SA00067] specifies that:
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two different links MUST NOT share the same source and target activities; that
is, at most one link may be used to connect two activities.

To solve the problem, we have three alternatives: (i) introduce a new link

type into BPEL fragment modeling language; (ii) create for each incoming

link a bag activity; (iii) relax the static constraint in BPEL fragment modeling

language to enable this use case.

(i) Introducing new types of modeling constructs in the BPEL fragment mod-

eling language leads to the need to transform specific modeling constructs in

the BPEL fragment modeling language to the original BPEL constructs. The

design of the BPEL fragment modeling language aims to reuse existing BPEL

constructs as much as possible, in order to ease the reuse of BPEL fragments in

modeling new BPEL processes. Thus, we do not follow this alternative towards

a solution.

(ii) Instead of introducing new type of link we could split the bag activity to

avoid non-unified links. For each new created bag activity through splitting we

have to duplicate the outgoing links of the original bag activity. The splitting

introduces both the redundancy of the bag activity and the redundancy of the

outgoing links, which is against the reusability that we want to achieve with

this work. In addition, the redundancy could make the substitution of the bag

activities more difficult and error-prone. Thus, we do not prefer this alternative.

Based on this discussion we propose to use the alternative (iii) and relax the

static constraint as follows: a bag activity MAY have more than one incoming
link that share the same source activity and MAY have more than one outgoing
link that share the same target activity. When substituting the bag activity with
standard BPEL constructs, all the non-unified links of the original bag activity
must be resolved.

4.5.1.1 The Namespace

In order to distinguish BPEL fragments from executable and abstract BPEL

processes, we introduce a new namespace. The syntax of BPEL fragments is

denoted under the following namespace:

http://www.iaas.uni-stuttgart.de/wsbpel/2.0/process/fragment
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4.5.2 The Root Element

The construct <fragment> is the root element of a BPEL fragment. It al-

lows process modelers to define the process context information, i.e. declara-

tion of extensions, imported documents, partner links, variables, message ex-

changes, and correlation sets. These elements are defined as optional in the

syntax, which enables process modelers either to include or exclude the pro-

cess context information in BPEL fragments (R5). In addition, the syntax of

BPEL fragments allows process modelers to design different types of BPEL

fragments. In the following subsection we discuss each of these types and the

newly introduced elements for modeling BPEL fragments in detail. We use el-

lipsis to denote the omission of the standard attributes of the root element and

the process context in the syntax.

The static constraints discussed in this section are only valid for BPEL frag-

ments. When reusing a BPEL fragment to construct a BPEL process, the syntax

of the corresponding BPEL language variant and the corresponding static con-

straints must be followed.

The following listing shows the basic structure of a BPEL fragment.

<xsd:complexType name=”tFragment”>

<xsd:complexContent>

<xsd:extension base=”tExtensibleElements”>

<xsd:sequence>

<xsd:element ref=”extensions” minOccurs=”0”/>

<xsd:element ref=”import” minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element ref=”partnerLinks” minOccurs=”0”/>

<xsd:element ref=”messageExchanges” minOccurs=”0”/>

<xsd:element ref=”variables” minOccurs=”0”/>

<xsd:element ref=”correlationSets” minOccurs=”0”/>

<xsd:element ref=”faultHandlers” minOccurs=”0”/>

<xsd:element ref=”compensationHandler” minOccurs=”0”/>

<xsd:element ref=”terminationHandler” minOccurs=”0”/>

<xsd:element ref=”eventHandlers” minOccurs=”0”/>

<xsd:element ref=”condition” minOccurs=”0”/>

<xsd:element ref=”links” minOccurs=”0”

maxOccurs=”unbounded”/>
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<xsd:group ref=”activity” minOccurs=”0”/>

<xsd:element ref=”extensionFragment” minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”name” type=”xsd:NCName”

use=”optional”/>

<xsd:attribute name=”targetNamespace”

type=”xsd−derived:anyURI” use=”optional”/>

<xsd:attribute name=”queryLanguage” type=”xsd−derived:anyURI”

default=”urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0”/>

<xsd:attribute name=”expressionLanguage”

type=”xsd−derived:anyURI”

default=”urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0”/>

<xsd:attribute name=”suppressJoinFailure” type=”tBoolean”

default=”no”/>

<xsd:attribute name=”exitOnStandardFault” type=”tBoolean”

default=”no”/>

<xsd:attribute name=”abstractProcessProfile” type=”xsd:anyURI”

use=”optional”/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Listing 4.2 The Basic Structure of a BPEL Fragment

The <fragment> construct allows a graph-based modeling approach. Dif-

ferent from the <flow> activity, the <fragment> represents only a wrapper

of the process logic in a BPEL fragment. It does not impose any semantics on

the control dependencies of its immediately enclosed activities.

The group activity contains all the activities defined in BPEL. In addition, it

contains also the new activity <bagActivity>. The attribute minOccurs

specifies that the number of activities immediately enclosed within the root ele-

ment is unbounded. The definition of process fragments requires that a process

fragment must contain at least one activity. Taking this constraint in the schema

definition into consideration would make the schema unreadable. Tools that im-

plement the schema of BPEL fragment should conduct static analysis to make

sure that the BPEL fragment being designed has at least one activity.
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4.5.2.1 The Top-Level Attributes

The root element of a BPEL fragment is the <fragment> construct. It in-

herits the standard top-level attributes defined in abstract BPEL as shown in

the Listing 4.2. The purpose of the inheritance is twofold: (i) the top-level at-

tributes provides useful information for human beings and machines to better

understand the process fragment; (ii) it saves repeated modeling work when

process modelers use the BPEL fragment as the starting point for modeling a

complete BPEL process.

We reuse the attribute abstractProcessProfile for process model-

ers to specify the profile for the BPEL fragment being designed. Here we fol-

lowed the same design principle of reusing existing BPEL constructs as much

as possible. The URI of the attribute value makes the profiles distinguishable.

We recommend using the target namespace of BPEL fragment as the prefix of

the URI. For example, a process modeler may associate a profile for using the

BPEL fragment as a template. Then the URI could look like:

http://www.iaas.uni-stuttgart.de/wsbpel/2.0/process/fragment/simple-

template/2012/03

4.5.2.2 Flow Fragment

A flow fragment contains one or more activities and optionally links that spec-

ify the control dependencies of the enclosed activities. The grammar of a flow

fragment is defined as follows:

<fragment ...>

...

<links>?

<link name=”NCName” />*
</links>

activity+

</fragment>

Listing 4.3 The structure of a flow fragment.
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In case no links are used in a flow fragment, the control dependencies of the

enclosed activities depend on the target construct in which the fragment content

is reused. If the target construct is a <sequence> activity, then the enclosed

activities should be executed in the same order as they have been specified. If

the target construct is a <flow> activity, then all the enclosed activities should

be executed in parallel. Note that a flow fragment does not necessarily origin

from a <flow> activity. For example, we can define a subset of the enclosed

activities in a <sequence> as a flow fragment.

Recalled that from the graph-based point of view a connected component of

a BPEL fragment is called a fragment component. In case at least one link

is defined in a flow fragment, then a fragment component that uses BPEL

<link>s to explicitly define control flow can only be reused immediately

within a <flow> activity. Activities that have neither incoming nor outgoing

links can be reused within a block-structured or a graph-based modeling con-

struct.

BPEL requires that every link declared within a <flow> activity MUST
have exactly one activity within the <flow> as its source AND exactly one
activity within the <flow> as its target. But a flow fragment may contain

links that do not have a source activity or a target activity. We call such links

incomplete links. An incomplete link is defined as follows:

Definition 3. Incomplete Link
An incomplete link is a link that has either no source activity or no target activ-

ity. An incomplete link that has no source activity is called incomplete incom-
ing link; while an incomplete link that has no target activity is called incomplete
outgoing link. ��

An example of a BPEL fragment that contains incomplete links is illustrated

in Figure 4.4. To enable the use of incomplete links in the BPEL fragment mod-

eling language, we choose to relax the static constraint instead of introducing

a new type of links. Introducing incomplete link as a new type of links would

lead to the need of a transformation of the incomplete links to the original

BPEL links when reusing a BPEL fragment with incomplete links to model

a new BPEL process. The design of the BPEL fragment modeling language
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check4EyesPrinciple

escalate

true false

join

Fig. 4.4 An example BPEL fragment that contains incomplete links.

aims to reuse as much as possible the original BPEL constructs. Thus, we de-

fine the static constraint for the BPEL fragment modeling language as follows:

every link declared within a <fragment> elemement or a <flow> activity
MUST have either exactly one activity within the <fragment> elemement or
the <flow> as its source OR exactly one activity within the <fragment>
element or the <flow> activity as its target.

An incomplete link has an open end. Process modelers can either attach

exactly one activity or a BPEL fragment to close the open end of the link. An

incomplete link that has no source activity is equivalent to a BPEL link with

a bag activity as its source. Similarly, an incomplete link that has no target

activity is equivalent to a BPEL link with a bag activity as its target activity.

Thus, we consider an incomplete link as a shortcut of a bag activity. We will

discuss the usage of incomplete links in Section 5.2.3.2.

4.5.2.3 Conditional Fragment

A conditional fragment comprises of a <condition> element and one or

more activities (R8). The grammar of a conditional fragment is defined as fol-

lows:

<fragment ...>

...

<condition expressionLanguage=”anyURI”?>bool-expr</condition>

<links>?
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<link name=”NCName” />*
</links>

activity+

</fragment>

Listing 4.4 The structure of a conditional fragment.

Constructs such as <if>, <while>, and <repeatUntil> share the

same syntactical constituents, i.e. a <condition> element and an activity.

Thus, conditional fragments can be used as building blocks for modeling con-

ditional or repetitive behavior of a process.

4.5.2.4 Extension Fragment

As we discussed in the previous chapter, the identification of reusable BPEL

fragments depends strongly on the individual business domain and its corre-

sponding reuse scenarios. Thus, it is impossible to address all the needs of dif-

ferent domains in this thesis. Therefore, we introduce an extension mechanism

into the BPEL fragment language (a similar mechanism as in BPEL) (R11),

called extension fragment. The schema of the extension fragment is defined as

follows:

<xsd:element name=”extensionFragment” type=”tExtensionFragment”/>

<xsd:complexType name=”tExtensionFragment”>

<xsd:sequence>

<xsd:any namespace=”##other”, processContents=”lax”/>

</xsd:sequence>

</xsd:complexType>

Listing 4.5 The XSD schema of extension fragment

The definition of an extension fragment enables process modelers to use any

elements that are not defined in the target namespace of the BPEL fragments

to define new types of BPEL fragments.

For example, a process modeler may use the BPEL extension BPEL4People

[11] to model human workflows. After analyzing the process model the process

modeler may want to define a BPEL fragment that contains a people activity

and the definition of the potential owners. The potential owners are the person
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who can claim and complete the human task [11]. As BPEL fragment modeling

language is not capable of modeling human tasks, process modelers can use

the extension mechanism to extend the expressiveness. Listing 4.6 shows an

example.

<xsd:schema

targetNamespace=”http://www.iaas.uni−stuttgart.de/wsbpel/2.0/process/fragment”

xmlns=”http://www.iaas.uni−stuttgart .de/wsbpel /2.0/ process /fragment”

xmlns:bpel=”http://docs.oasis−open.org/wsbpel/2.0/process/ abstract ”

xmlns:b4p=”http://www.example.org/BPEL4People”

xmlns:htd=”http://www.example.org/WS−HT”

...>

...

<xsd:element name=”peopleActivityWithOwners”

type=”tPeopleActivityWithOwners”/>

<xsd:complexType name=”tPeopleActivityWithOwners”>

<xsd:complexContent>

<xsd:extension base=”tExtensionFragment”>

<xsd:element name=”potentialOwners” type=”htd:tPotentialOwners”

minOccurs=”0”/>

<xsd:element name=”peopleActivity” type=”b4p:tPeopleActivity”

minOccurs=”0”/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Listing 4.6 An example of extension fragment.

4.5.2.5 Broken Scope

When defining partial process logic of a <scope> activity as a BPEL frag-

ment, process modelers may also enclose the corresponding handlers that are

related to the activities used in the target BPEL fragment (R10). Therefore, we

introduce a new type of BPEL fragment, called broken scope. A broken scope

allows process modelers to associate BPEL handlers with partial process logic
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of a scope, i.e. a flow fragment, a conditional fragment, or an extension frag-

ment. The grammar of a broken scope is defined as follows:

<fragment ...>

...

<compensationHandler>?

activity?

</compensationHandler>

<faultHandlers>?

<catch faultName=”QName”?

faultVariable=”BPELVariableName”?

( faultMessageType=”QName” | faultElement=”QName” )? >*
activity?

</catch>

<catchAll>?

activity

</catchAll>

</faultHandlers>

<terminationHandler>?

activity?

</terminationHandler>

<eventHandlers>?

<onEvent partnerLink=”NCName”

portType=”QName”?

operation=”NCName”

( messageType=”QName” | element=”QName” )?

variable=”BPELVariableName”?

messageExchange=”NCName”?>*
<correlations>?

<correlation set=”NCName” initiate=”yes|join|no”? />+

</correlations>

<fromParts>?

<fromPart part=”NCName” toVariable=”BPELVariableName” />+

</fromParts>

<scope ...>...</scope>?

</onEvent>

<onAlarm>*
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(

<for expressionLanguage=”anyURI”?>duration-expr</for>

|

<until

expressionLanguage=”anyURI”?>deadline-expr</until>

)?

<repeatEvery expressionLanguage=”anyURI”?>?

duration-expr

</repeatEvery>

<scope ...>...</scope>?

</onAlarm>

</eventHandlers>

partialProcessLogic

</fragment>

Listing 4.7 The grammar of a broken scope.

The term partialProcessLogic in the Listing 4.7 represents a placeholder for

a flow fragment, a conditional fragment, or an extension fragment. A broken

scope with defined BPEL handlers can only be reused within the <process>

construct or a <scope> activity. In this case, the partial process logic should

be embedded into the primary child activity of the target scope properly and

the handlers of the broken scope should be merged with the handlers of the

target scope.

Note that merged fault handlers may have identical <catch> constructs.

For BPEL fragments two <catch> constructs are considered to be identical,

if their faultName, faultElement and faultMessageType attributes have identi-

cal non-opaque values. If an attribute is not present in a <catch> construct,

its value is considered as opaque. Identical <catch> constructs should be

resolved at the time of reuse.

4.5.2.6 Handler Fragment

If a BPEL fragment contains only fault, compensation, termination, or event

handlers, then we call it a handler fragment (R9). It allows process modelers to
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define a group of handlers that can be reused as a whole. The only difference

between a broken scope and a handler fragment is that a broken scope contains

partial process logic while a handler fragment does not. The grammar of a

handler fragment is defined as follows:

<fragment ...>

...

<compensationHandler>?

activity?

</compensationHandler>

<faultHandlers>?

<catch faultName=”QName”?

faultVariable=”BPELVariableName”?

( faultMessageType=”QName” | faultElement=”QName” )? >*
activity?

</catch>

<catchAll>?

activity

</catchAll>

</faultHandlers>

<terminationHandler>?

activity?

</terminationHandler>

<eventHandlers>?

<onEvent partnerLink=”NCName”

portType=”QName”?

operation=”NCName”

( messageType=”QName” | element=”QName” )?

variable=”BPELVariableName”?

messageExchange=”NCName”?>*
<correlations>?

<correlation set=”NCName” initiate=”yes|join|no”? />+

</correlations>

<fromParts>?

<fromPart part=”NCName” toVariable=”BPELVariableName” />+

</fromParts>

<scope ...>...</scope>?
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</onEvent>

<onAlarm>*
(

<for expressionLanguage=”anyURI”?>duration-expr</for>

|

<until

expressionLanguage=”anyURI”?>deadline-expr</until>

)?

<repeatEvery expressionLanguage=”anyURI”?>?

duration-expr

</repeatEvery>

<scope ...>...</scope>?

</onAlarm>

</eventHandlers>

</fragment>

Listing 4.8 The structure of a handler fragment.

As the cardinality indicates, fault handlers, compensation handler, termina-

tion handler, and event-handlers do not have to appear together in a handler

fragment. A process modeler can define a single handler or any combination

of the four handlers as a BPEL fragment. For example, a process modeler may

have noticed that a scope for processing purchase order has always a compensa-

tion handler for cancellation the purchase order and a fault handler to deal with

the case that the purchase order cannot be completed. In this case the process

modeler can define a handler fragment that contains a compensation handler

cancelPurchaseOrder and a fault handler orderCanNotBeCompleted as shown

in the following list:

<fragment>

<compensationHandler>

<invoke partnerLink=”Seller”

portType=”lns:purchaseOrderPT”

operation=”CancelPurchase”

inputVariable=”getResponse”

outputVariable=”getConfirmation” />

</compensationHandler>

<faultHandlers>

<catch faultName=”lns:orderCanNotBeCompleted”
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faultVariable=”POFault”

faultMessageType=”lns:orderFaultType”>

<reply partnerLink=”purchasing”

portType=”lns:purchaseOrderPT”

operation=”sendPurchaseOrder” variable=”POFault”

faultName=”orderCanNotBeCompleted” />

</catch>

</faultHandlers>

</fragment>

Listing 4.9 An example of handler fragments.

4.5.3 Static Syntactical Constraint

A BPEL fragment must have at least one basic activity (R2). However, we do

not encode this constraint into the syntax definition of BPEL fragment model-

ing language, as it would lead to verbosity and reduces its readability. Instead

we require that the modeling tool should verify whether the modeled BPEL

fragment satisfies this static constraint.

4.6 BPEL Modeling Snippets

A part of a BPEL process that does not contain a basic activity may also be

reusable. As such reusable parts do not encode process knowledge, we call

them reusable BPEL modeling snippets in order to distinguish them from

BPEL fragments. In general, a reusable BPEL modeling snippet can be a con-

textual snippet or a structural snippet.

A contextual snippet contains process context such as variable, partner link,

message exchanges, correlation sets, extension, imported documents, etc. A

contextual snippet can be reused to complete the context information of a BPEL

fragment. It avoids repeated modeling work and enables a rapid switching of

process context for the same BPEL fragment.
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A structural snippet contains no basic activities but only block-structured

modeling constructs. It could be used as a structure template to avoid repeated

modeling work. For example, a process modeler may have noticed that the

structure as shown in Listing 4.10 has been frequently needed in modeling

BPEL processes. Reusing it allows process modelers to fill the structure with

BPEL activities that are needed for different use cases without having to draw

the structure again.

<scope>

<eventHandlers>

</eventHandlers>

<faultHandlers>

<catchAll>

</catchAll>

</faultHandlers>

<compensationHandler>

</compensationHandler>

<flow>

<sequence>

<\sequence>

<sequence>

<\sequence>

</flow>

</scope>

Listing 4.10 A snippet of a BPEL process that does not contain at least one basic activity

should not be considered as a valid BPEL fragment.





Chapter 5

Extracting BPEL Fragments

This chapter provides a mechanism for extracting BPEL fragments from ex-

isting BPEL processes. In Section 5.2 we introduce disjoint selection classes

and extraction modes that will influence the results of extracting the selected

process activities. In Section 5.3 we present the algorithms for extracting the

selected process activities according to their respective extraction mode. Sec-

tion 5.4 provides algorithms for reducing redundant process elements in the

resulting BPEL fragment.

5.1 Introduction

In this chapter we present a mechanism for extracting arbitrary parts as a

reusable BPEL fragment from an existing BPEL process. The extraction mech-

anism comprises three phases: the selection phase, the construction phase, and

the reduction phase.

In the selection phase, process modelers select the process activities that

should be included in the BPEL fragment. In addition, they also have the pos-

sibility to specify, in which mode the selected process activities should be ex-

tracted, i.e. whether the original control dependencies between the selected

process activities should be retained in the resulting BPEL fragment or not.

83
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In the construction phase, selected process activities are extracted in the

respective mode that the process modeler chose in the selection phase. Depend-

ing on the extraction mode, opaque activities may be used to replace the not

selected process activities between the selected ones, so that the original con-

trol dependencies of the selected ones can be retained.

In the reduction phase, redundant process elements that do not belong to the

original selection of the process modeler are removed, such as opaque activities

that are generated during the construction phase, empty structured activities,

etc. The reduction preserves the original control dependencies of the remaining

process activities in the resulting BPEL fragment.

5.2 Selection Phase

The selection phase is the starting point to extract a BPEL fragment. In this

phase, a process modeler selects which BPEL constructs should be extracted

and specifies how the selected elements should be included in the BPEL frag-

ment being designed. The selections can be conducted either (semi)automatically

or manually.

In a (semi)automatic manner, process modelers could extract BPEL frag-

ments by using an SQL-like query. For example, if a process modeler wants

to extract a BPEL fragment that contains all the activities that are dealing with

invoicing, then he can execute the following query: SELECT activities WHERE
partnerLink.name=”invoicing”. For more sophisticated queries, process mod-

elers may have to tag the process artifacts with additional metadata, which can

then be used in the statements for extraction. The (semi)automatic manner is

out of the scope of this thesis. An exemplary implementation can be found in

[141]. The (semi)automatic manner requires that all the needed information

for the query is available. If the BPEL constructs to be selected do not share

common properties, then the query request could be complex and unreadable

for a human being. Thus, the (semi)automatic manner is suitable for selecting

activities that share common properties and the properties are already captured

and made available.
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In the manual manner, process modelers manually select the BPEL con-

structs that should be included in the target BPEL fragment. The manual man-

ner can be used as a complementary mechanism for (semi)automatic selections.

Regardless how the selections have been made, process modelers have to

specify in which extraction mode the selected process activities should be ex-

tracted (see Section 5.2.2).

5.2.1 Disjoint Selection Classes

To extract a BPEL fragment process modelers have to select which elements in

the existing BPEL process should be included in the BPEL fragment. Different

selections represent four disjoint classes for a given complex construct: enve-

lope selection, complete selection, partial selection, and inner selection (Figure

5.1). Boldfaced lines in the figure demonstrate the selections.

B C

A F

(a)

(1) Envelop (2) Complete (3) Partial (4) Inside

B C

A F

B C

A F

B C

A F

B C

A F

Fig. 5.1 Disjoint Selection Classes.
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Envelope Selection

For a given complex construct, an envelope selection contains only the complex

construct itself without selecting any of its enclosed activities. An envelope

selection is very useful to design a BPEL fragment that represents structural

patterns.

For example, a process modeler may have identified that the following

BPEL fragment represents a frequent process pattern (Figure 5.2). The sam-

ple fragment gets the customer information and use it to route the control flow

based on this information. For example, for order-to-cash processes it decides

on the execution path based on the customer category, e.g. cooperate customer,

premium customer, or regular customer; while for invoicing processes the ex-

ecution path is chosen based on payment methods and the respective credit

history. Besides the transition conditions the process logic of each branch is

also different. As the process modeler needs the combination of the activity

getCustomerInfo and the following <if> activity very often, it represents a

frequent pattern. Therefore, the process modeler wants to extract it as a BPEL

fragment to avoid repeated modeling work. To do so the process modeler can

select the activity getCustomerInfo and the <if> activity without any of its

constituents.

If

If Else If Else

getCustomerInfo

Fig. 5.2 A BPEL fragment with an empty if activity.
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Complete Selection

For a given complex construct a complete selection contains both the complex

construct itself and all its enclosed elements. To make a complete selection, a

process modeler selects the complex construct and all the enclosed elements

of the complex construct. However, this approach would be cumbersome; espe-

cially when the complex constructs contains a great number of elements.

An alternative approach would be to allow process modelers to select only

the complex construct itself as a shortcut to make a complete selection. But

only selecting the complex construct itself is ambiguous in this case: does the

process modeler mean an envelope selection or a complete selection? To avoid

this ambiguity the implementation should ask the process modeler for his/her

intension before extracting the selected elements.

When using the shortcut to make a complete selection all the enclosed ele-

ments will inherit the extraction mode of the complex construct on which the

shortcut selection has been made. If a process modeler needs to extract the

complex construct in a different extraction mode than its enclosed elements,

then the shortcut cannot be used. In this case, the process modeler has to select

the enclosed elements and assign the required extraction mode to them. Also

the extraction mode of the enclosing complex construct could be inherited by

the enclosed elements until certain nesting level. Enclosed elements that are be-

yond the specified nesting level require explicit assignment of extraction mode.

Partial Selection

For a give complex construct a partial selection contains the complex construct

itself and a proper subset of its immediately enclosed elements.

Inner Selection

For a given complex construct an inner selection does not contain the complex

construct itself but a subset of its immediately enclosed elements. Depending

on the extraction mode and the selections, an inner selection may result in
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the same BPEL fragment as an partial selection. We will discuss this later in

Section 5.2.2 Extraction Modes.

5.2.2 Extraction Modes

Extraction modes define how the control dependencies of the selected activi-

ties should be handled during the extraction. In this section we introduce two

extraction modes: the connected mode and the isolated mode. The extraction

algorithm will be discussed in Section 5.3.

Connected Mode

The connected mode enables process modelers to extract parts of an existing

BPEL process while retaining the original control dependencies between the

enclosed process activities in the BPEL fragment. BPEL integrates two differ-

ent process modeling approaches: block-structured and graph-based modeling

approaches.

In the block-structured process modeling approach, control dependencies

are specified solely by the immediate enclosing construct. In this case, whether

the original control dependencies of the immediate enclosed process activities

can be retained after the extraction in the connected mode depends on the selec-

tion of the process modeler. If the process modeler selects the block-structured

construct, then the control dependencies of its immediate enclosed process ac-

tivities are retained. Otherwise, they are lost. The reason why we allow the

latter case is that, we want to enable process modelers to make delayed deci-

sions on the control dependencies of the selected process activities at the time

of reuse.

In the graph-based modeling approach, control dependencies are explicitly

specified by using BPEL links. When extracting process logic that are modeled

using the graph-based approach links are extracted with the selected process ac-

tivities. Intermediate modeling constructs that are not explicitly selected by the
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process modeler may be needed in order to retain the original control depen-

dencies.

For example, a process modeler wants to extract the activities X , A, and C
in connected mode (Figure 5.3 (a)). Although the flow activity F itself has not

been selected explicitly, it is included in the BPEL fragment in order to retain

the control dependencies between the activity X and A (see Figure 5.3 (b)).

(a)

X

(b)

B C

A F

X

C

A F

Fig. 5.3 The flow activity F is needed to retain the original control dependencies of the
selected activities.

An alternative is to remove the flow activity F and to connect the activity X
with the activity A. However, this would change the original process structure

of selected activities. One of our design goals is to retain the original process

structure during the extraction phase as much as possible, so that process mod-

elers can easily recognize the BPEL fragments that they have extracted. For

that reason we do not consider this alternative in this thesis.

Isolated Mode

In the isolated mode the extraction mechanism eliminates completely the con-

trol dependencies between the selected activities. Each selected activity that

should be extracted in the isolated mode is placed as an immediate enclosed

activity of the root element in the BPEL fragment being designed.
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For example, a process modeler may want to extract the activities A and B
from the BPEL snippet shown in Figure 5.4 for reuse. The activities can either

be reused in a <flow> activity or a <sequence> activity. The control de-

pendencies between A and B should be determined at the time of reuse. If we

extract activities A and B in the connected mode without having selected the

<flow> activity, then we get a BPEL fragment, in which the control depen-

dencies A and B are retained. The resulting BPEL fragment does not meet our

needs. To enable this scenario we introduce the isolated mode. Extracting A
and B in the isolated mode results in a BPEL fragment as shown in Figure 5.4.

A
Flow

A

B C B

(a) (b)
Fig. 5.4 Extracting activities A and B in isolated mode.

5.2.3 Retaining Process Structure

In the present modeling approach, a process modeler selects only the BPEL

constructs that should be included in the BPEL fragment being designed. How-

ever, in certain use cases, this approach retains the required process structure

during the extraction.

Let’s consider an example: A process modeler wants to extract a part of a

BPEL process as a BPEL fragment. The extraction should preserve the same

process structure as shown in Figure 5.5, which represents a frequent pattern for

modeling four-eyes-principle. In addition, the BPEL fragment should contain

the activities check4EyesPrinciple and escalate, because they are mandatory

constituents for modeling four-eyes-principle in the organization. The activities
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costClaim, internalRevision, and certificatAssignment are optional and can be

substitued by other activities. Therefore, they should not be included in the

target BPEL fragment. In other words, the process fragment should contain the

activities check4EyesPrinciple, escalate, and the links l1, l2, l3, and l4.

join

opaqueActivity 1 opaqueActivity 2

check4EyesPrinciple

join
l1 l2

escalate

true false

opaqueActivity 3

l3 l4

Fig. 5.5 A part of a BPEL process that models the four eyes principle.

In order to retain the original control flow, the fragment should be ex-

tracted in the connected mode. As we discussed before, to extract a BPEL frag-

ment process modelers have to select the constructs that should be included

in the resulting BPEL fragment. If the process modeler selects the activities

check4Eyes-Principle and escalate, then the resulting fragment (Figure 5.6)

would only contain the selected activities. The reason is that unselected activ-

ities will be replaced by opaque activities in the construction phase, which in

turn will be removed in the reduction phase. Alternatively, if the process mod-

eler selects all five activities, then the resulting fragment would also contain

activities costClaim, internalRevision, and certificatAssignment which are not

required. Thus, we need an approach for retaining process structures of BPEL

fragments without having to include any unneeded BPEL constructs.

5.2.3.1 Using Opaque Activity to Retain Process Structure

Opaque activities are used as explicit placeholders in BPEL. It represents an

ideal construct to hide unneeded activities in a BPEL fragment.
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check4EyesPrinciple

escalate

false

Fig. 5.6 Only extracting the required process activities in the connected mode cannot retain
the original process structure.

In the example above, the process modeler can replace the activity cost-
Claim, internalRevision, and certificateAssignment with opaque activities and

then extract them together with the activity check4EyesPrinciple and escalate
in the connected mode. The resulting fragment is shown in Figure 5.7.

check4EyesPrinciple

escalate

true false

join

opaqueActivity opaqueActivity

opaqueActivity

Fig. 5.7 Using opaque activities to retain the original process structure.

We call the opaque activities that are explicitly modeled by process model-

ers modeled opaque activities. To the contrary, opaque activities that are gener-

ated during the construction phase to retain the original control dependencies

are called generated opaque activities. Generated opaque activities can be re-

moved in the reduction phase, while modeled opaque activities cannot.

5.2.3.2 Using Incomplete Link to Retain Process Structure

Although using opaque activities in the selection phase can retain the required

process structure during the extraction, opaque activities per definition have
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restricted semantics: an opaque activity represents an explicit placeholder for

exactly one BPEL activity. But, under certain circumstances process modelers

may want to replace an opaque activity with a BPEL fragment.

projectFinalReview

createFormC

h k4E P i i l

join

internalAudit externalAudit

check4EyesPrinciple

true false

addAuditCost escalateaddAuditCost
ToFormC

assignAudit

Fragment 1

assignAudit
Certificate

Fragment 2

Fig. 5.8 An exemplary use case shows that a process modeler may want to replace the place-
holder with more than one BPEL activities.

For example, a process modeler wants to reuse the process fragment shown

in Figure 5.8. He may want to replace the opaque activities with reusable BPEL

fragments. However, this is not allowed due to the strict semantics of opaque

activity. In this case, we can use incomplete links (see Section 4.5.2.2) to retain

the required process structure.

To do so, the process modeler first selects the activities in Figure 5.8

that should be included in the BPEL fragment, i.e. check4EyesPrinciple and

escalate. After that the process modeler selects the two incoming links of the

activity check4EyesPrinciple and the outgoing link of the activity check4Eyes-
Principle.
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As the source activities of the incoming links of the activity check4Eyes-
Principle are not selected, they will be replaced by opaque activities in the

construction phase. As the opaque activities are generated opaque activities,

they will be removed in the reduction phase. Their incoming and outgoing

links will also be removed, if they have any. Therefore, the explicit selection

of the links is necessary to tell the extraction algorithm to keep them in the

reduction phase. The resulting BPEL fragment is shown in Figure 5.9.

check4EyesPrinciple

escalate

true false

join

Fig. 5.9 Using incomplete links to retain the original process structure.

5.2.3.3 Using Bag Activity to Retain Process Structure

An alternative to the usage of incomplete links for retaining process structure is

to use the <bagActivity>. Both constructs can be used to model unknown

process logic in a BPEL fragment. The difference between using a bag activity

and an incomplete link is that a bag activity can be used to model unknown

process logic while avoiding splitting a process fragment into several parts.

Let’s consider the following example in Figure 5.10.

In the figure a) the process modeler uses a bag activity to model unknown

process logic. It is clear that some unknown process logic should take place

after the activity getCustomerInfo and that the activity recordResult should be

performed immediately after the unknown process logic, if the transition con-

dition evaluates to be true. When the original control dependencies of the
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receiveClaimRequest

getCustomerInfo

receiveClaimRequest

getCustomerInfogetCustomerInfo getCustomerInfo

bagActivity

recordResult recordResult

closeCase closeCase

a) Use bag activity b) Use incomplete links

Fig. 5.10 A bag activity acts as an intermediate part of a process fragment.

remaining activities should be retained, process modelers should follow this

approach.

In the figure b), the process modeler uses incomplete links to model un-

known process logic. The control dependencies between the two isolated parts

are not specified. It is not clear which part should be performed before the other

one. But it allows process modelers to decide on the control dependencies of

the parts at the time of reuse. Thus, if delayed decision on control dependencies

of the parts in a process fragment is required, process modelers should choose

this approach.

5.3 Construction Phase

The construction phase conducts the extraction of the BPEL fragment based on

the selections and the extraction modes that the process modeler specified in the

selection phase. We use the BPEL process illustrated in Figure 5.11 for our dis-

cussion in this section. The illustration uses different borders to distinguish the

different extraction modes of the selections as well as the unselected elements

in the BPEL process. Simple border lines denotes the unselected process ele-
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ments; boldfaced lines highlight the selected elements that should be extracted

in the connected mode; double border lines show the selected elements that

should be extracted in the isolated mode; dashed border lines represents the se-

lected elements that should be extracted in the isolated mode. The labeling in

braces shown in the BPEL process are the abbreviations that we will use later

in this section.

Process (P)

Sequence (SE)

If (IF)

Else If (EI) Else (EL)invoke1

( )

reply

assign

Flow1 (FL1)

invoke2 invoke3

invoke4

Flow2 (FL2)

invoke5 invoke6

invoke7invoke7

Fig. 5.11 An example of a BPEL process. Simple border lines denotes the unselected process
elements; boldfaced lines highlights the selected elements that should be extracted in the
connected mode; doubled border lines shows the selected elements that should be extracted
in the isolated mode; dashed border lines represents the selected elements that should be
extracted in the stand-alone mode. The labeling in the braces shown in the BPEL process are
the abbreviations that we will use later in this section.
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5.3.1 Extract in Connected Mode

In the connected mode, the resulting BPEL fragment must contain all the se-

lected BPEL constructs for the extraction in connected mode while retaining

their original control dependencies. An intuitive solution would be to find the

minimal connected subgraph of the process graph that contains all the selected

BPEL constructs. However, finding the minimal subgraph that contains a given

set of nodes in a DAG is equivalent to the Steiner tree problem [72], which is

NP-complete.

In BPEL, each element is located in a nesting construct. The utmost nesting

construct is the <process> element. If we can find a nesting construct that

contains all the selected elements, then we can extract the nesting construct

with all its enclosed elements. The not selected activities will then be replaced

by opaque activities, which can be removed in the reduction phase, if needed.

To realize this approach we have to find the lowest common nesting construct

which contains all the selected elements.

Definition 4. Lowest Common Nesting Construct (LCNC)
For a given set of BPEL constructs S, a complex construct x is the lowest com-

mon nesting construct of S, if x satisfies the following conditions:

• x encloses all the constructs in S;

• let R be the set of all complex constructs that enclose all the elements in S,

then ∀y ∈ R, y encloses x. ��
The lowest common nesting construct can be efficiently computed with the

help of the Nesting Hierarchy Tree (NHT).

5.3.1.1 Nesting Hierarchy Tree (NHT)

The nesting hierarchy tree of a BPEL process is built based on the nesting

relations between the complex constructs used in the BPEL process. A nesting

relation is defined as follows:

Definition 5. Nesting Relation
A nesting relation is a binary relation Γ ⊆ C×C, where C denotes a set of
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complex constructs. We say a complex construct c1 is in a nesting relation with

a complex construct c2, only if c1 encloses c2. The nesting relation Γ is an

irreflexive, asymmetric, and transitive relation:

• irreflexive: ∀c ∈C it holds (c,c) /∈ Γ ;

• asymmetric: ∀x and y ∈C, if (x,y) ∈ Γ , then (y,x) /∈ Γ ;

• transitive: ∀x, y, and z ∈C, if (x,y) ∈ Γ and (y,z) ∈ Γ , then (x,z) ∈ Γ . ��

In a nesting hierarchy tree, nodes represent instances of complex constructs

that are used in a given BPEL process, and edges represent the nesting relations

between the complex constructs.

Definition 6. Nesting Hierarchy Tree (NHT)
A nesting hierarchy tree of a BPEL process is a directed tree T = (V,E), where

V is the set of instances of complex constructs used in the BPEL process, and

E is the set of directed edges represent the nesting relations between the com-

plex constructs. A directed edge (u,v) ∈ E only if the complex construct u
immediately encloses the complex construct v. ��

The level of a node v in a NHT is the length of the longest path from the

root r to v. We use the notion level(v) to denote the level of the node v in the

NHT. The level of the root r is zero. For a node v with level(v) = i with i ∈ N

we also say that the node v is at level i. The leaf nodes in a NHT represent com-

plex constructs in a BPEL process that contain no further complex constructs

but only basic activities. Algorithm 1 presents the algorithm for creating the

nesting hierarchy tree with a depth-first approach.

The Algorithm 1 works in a recursive manner. It begins with a complex

construct c. At the beginning of the algorithm, the node set V of the NHT is

empty. If the construct c is a complex construct, then c is added to V . Then the

algorithm recursively examines each immediately enclosed element x of c. If x
is a complex construct, then x is added to V . As c immediately encloses x, an

edge (c,x) that represents the nesting relation is created and added to the set E.

Let P = (VP,EP) be the process graph. The worst-case time complexity of

creating the Nesting Hierarchy Tree is O(max({|VP|, |EP|})). Note that as the

process graph P is a weakly connected DAG, it has at least |VP|−1 edges. Thus,

the worst-case run time of the algorithm is O(max({|VP|, |EP|})) ≈ O(|EP|).
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Algorithm 1: creatNHT(c)

1 begin
2 if c is a complex construct then
3 add c to V ;

4 forall the immediately enclosed constructs x of c do
5 if x is a complex construct then
6 add x to V ;

7 add (c,x) to E;

8 createNHT (x);

When applying the Algorithm 1 on the BPEL process in Figure 5.11 we get

the nesting hierarchy tree as shown in Figure 5.12.

FL1

P

SE

IF

EI EL

FL2

Immediately contains

Level 0

Level 1

Level 2

Level 3

Level 4

Fig. 5.12 The nesting hierarchy tree of the BPEL process P shown in Figure 5.11. The
directed edges in this figure represent the nesting relations between the complex constructs.

5.3.1.2 Finding The Lowest Common Nesting Construct

A lowest common nesting construct is defined as follows:
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Definition 7. Lowest Common Nesting Construct (LCNC)
For a given set of BPEL constructs S⊆V of a NHT T = (V,E), a complex con-

struct x ∈ V is a lowest common nesting construct, if x satisfies the following

conditions:

• x is a common nesting construct of S: x contains all the BPEL constructs in

S, i.e. ∀s ∈ S there exists a path (x, ...,s) ∈ T ;

• let R is the set of other common nesting constructs of S, then ∀y∈ R we have

level(y)< level(x). ��

Before we present the algorithm for finding the lowest common nesting con-

struct, we introduce the lemma and theorems that are used as the basis of our

algorithm.

As BPEL is a XML representation, the XML elements used in the BPEL

language must be well-formed. Therefore, we can derive Lemma 1.

Lemma 1. For a given BPEL construct c in a BPEL process, there exists ex-
actly one complex construct that immediately encloses c. We call the enclosing
complex construct the parent nesting construct of c. ��

Theorem 1. Each node that is not the root of a NHT has exactly one incoming
edge.

Proof. Assume to the contrary that there exists a node w in a NHT which has

two incoming edges (u,w) and (v,w). According to the definition of NHT, an

edge (u,w) denotes that u immediately encloses w. Analogously, (v,w) denotes

that v immediately encloses w. Then there exist two complex constructs u and

v that immediately enclose w, which contradicts Lemma 1. ��

Theorem 2. For a given BPEL construct c in a BPEL process, let x and y be
complex constructs. If both (x,c) ∈ Γ and (y,c) ∈ Γ , then either (x,y) ∈ Γ or
(y,x) ∈ Γ .

Proof. Assume to the contrary that if (x,c) ∈ Γ and (y,c) ∈ Γ then neither

(x,y)∈Γ nor (y,x)∈Γ . As x encloses c, there exists a path p1 from x to c with

(x,vi, ...,vi+k,c) and y is not in p1 . Also, there exists a path p2 from y to c with

(y,v j, ...,v j+l ,c) and x is not in p2. As both (x,c) ∈ Γ and (y,c) ∈ Γ , the two
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paths must have an intersection point, i.e. there exists either a node vm in p1 and

a node vn in p2 with vm = vn or the node c is the intersection point. In the first

case, the node vm has two incoming edges, i.e. (vm−1,vm) and (vn−1,vm). In

the second case, the node c has two incoming edges, i.e. (vi+k,c) and (v j+l ,c).
Both cases contradict Theorem 1. ��

Theorem 3. For a given set of complex constructs S, there exist exactly one
lowest common nesting construct.

Proof. Assume to the contrary that there exist two lowest common nesting

constructs x and y for a given set of complex constructs S. Then both x and y
contain all the elements in S. Especially, there exists an s ∈ S with (x,s) ∈ Γ
and (y,s)∈Γ . According to Theorem 2, it applies either (x,y)∈Γ or (y,x)∈Γ .

If (x,y) ∈ Γ , then y is not a lowest common nesting construct; if (y,x) ∈ Γ ,

then y is not a lowest common nesting construct. Both cases contradict our

assumption. ��

Theorem 4. Two complex constructs x and y that are at the same level in
the nesting hierarchy tree do not have a nesting relation. In other words, if
level(x) = level(y), then neither (x,y) ∈ Γ nor (y,x) ∈ Γ .

Proof. Assume to the contrary that level(x) = level(y) and (x,y) ∈ Γ . Accord-

ing to the definition of a NHT, an edge in a NHT represents the containing re-

lation of two complex constructs, there must exist a path p from x to y with the

length length(p) = level(y)− level(x), where length(p)≥ 1. As y has exactly

one incoming edge, the path over x is the only path from the root to y. Thus, the

longest path from the root to y must be level(x)+ length(p), which contradicts

our assumption of level(x) = level(y). Analogously, y does not enclose x. ��

Theorem 5. For a given set of constructs S ⊆V of a NHT T = (V,E), let c be
the lowest common nesting construct of S. Then ∀s ∈ S it applies level(s) ≥
level(c).

Proof. Assume to the contrary that c is the lowest common nesting construct

of S and there exists an s ∈ S with level(c) > level(s). As level(c) > level(s),
the complex construct c does not enclose the complex construct s. Otherwise,
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there must exist a directed edge (c,s) ∈ E and level(c)< level(s). Therefore, c
is not the lowest common nesting construct of all the constructs in S, which is

in contradiction to our assumption. ��

The Algorithm

The algorithm of finding the lowest common nesting construct for a set of

BPEL constructs in a BPEL process is developed based on the theorems we

introduced above. Here we present a summary of how the algorithm works. It

takes a set of selected constructs S that should be extracted in the connected

mode as input. As S may contain basic activities at the beginning, we invoke

the algorithm with lowestLevel = −1 so that the algorithm knows it should

examine whether S contains basic activities. In case S contains basic activities,

the algorithm begins with replacing each basic activity with its parent nesting

construct x (Algorithm 2, line 4-9).

After having replaced the basic activities the algorithm tries to find the low-

est common nesting construct. Algorithm 2 is a recursive algorithm, which

repeats until S has exactly one element.

In case S contains no basic activities, we compare the level of each complex

construct and keep the lowest level of the complex constructs in the variable

lowestLevel.
If S contains exactly one complex construct, then it applies Theorem 3. Thus,

this complex construct is the lowest common nesting construct of all the origi-

nally selected elements (Algorithm 2, line 14-15).

If S contains more than one element, then the lowest common nesting con-

struct could be either in S or an ancestor of all the elements in S. In fact, the

lowest common nesting construct locates at least at the lowest level of all the

elements in S (Theorem 5). The complex constructs in S may be located at dif-

ferent levels in the nesting hierarchy tree. Thus, for each element in S whose

level is greater than the lowest level (lowestLevel) of the elements in S we re-

place it with its ancestor nesting construct, whose level is at the lowest level

lowestLevel. As S is a set, S has no duplicate elements. Therefore, if some el-

ements in S have the same ancestor at level lowestLevel, the ancestor appears
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Algorithm 2: findLCNC(S, lowestLevel)

1 S: a set of constructs;

2 lowestLevel: the lowest level of the elements in S;

3 begin
4 if lowestLevel =−1 then
5 forall the s in S do
6 if s is a basic activity then
7 x = the parent nesting construct of s;

8 remove s from S;

9 S = S∪{x};
10 if level(x)< lowestLevel then
11 lowestLevel = level(x);
12 findLCNC(S, lowestLevel);
13 else
14 if |S|= 1 then
15 return s in S ; /* s is then the lowest common

nesting construct */
16 else
17 forall the s in S do
18 while level(s)> lowestLevel do
19 x = the parent nesting construct of s;

20 remove s from S;

21 S = S∪{x};
22 lowestLevel = lowestLevel−1;

23 findLCNC(S, lowestLevel);
24 end

only once in S. Now all the elements in S are at the same level and the algorithm

begins with a new recursion by invoking itself ((Algorithm 2, line 23).

If S still contains more than one element, then none of them is the lowest

common nesting construct. As for any two complex constructs at the same level

of the nesting hierarchy tree they do not have a nesting relation (Theorem 4).

Thus, the lowest common nesting construct of them must locate at the lower

level in the nesting hierarchy tree. Therefore, we decrease the lowest level by

1 and recursively invoke the Algorithm 2 again.
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If S contains exactly one element s, then s is the lowest common nesting con-

struct of all the originally selected constructs (Theorem 3). As s is the ancestor

of all the originally selected constructs except itself, it encloses directly or in-

directly all of them. Therefore, s is a common nesting construct of the other

complex constructs. And for any complex construct x that encloses all the ele-

ments in S, it must enclose s. Thus, x must be higher in the hierarchy than s, i.e.

level(x)< level(s). Therefore, s is the lowest common nesting construct.

Let’s consider the example shown in Figure 5.11 again. As highlighted in

Figure 5.11 the process modeler has selected to extract the whole <else>

branch and the activities invoke4 and invoke5 in the connected mode. Thus, the

initial set S contains the three elements {Else, invoke4, invoke5}.

InvokeInvokeElse (EL)S: Invoke5Invoke4Else (EL)

Flow2 (FL2)Else (EL)

Step 1

S:

S:

Flow2 (FL2)If (IF)

Step 2

S:

Sequence (SE)

Step 3

S:

Fig. 5.13 An example of finding the lowest common nesting construct using the Algorithm
2.

Step 1: we replace the basic activities in S with their parent nesting con-

structs. Both invoke4 and invoke5 have the same parent nesting construct

Flow2. The resulting set S is then {Else,Flow2}.
Step 2: we replace the elements in S with their ancestors at the level

lowestLevel. In the nesting hierarchy tree of the process P in Figure 5.12, the

element Else is located at level 3 while the element Flow2 is located at level

2. The lowest level of them is then level 2. Therefore, we replace the element

Else with its ancestor at level 2 in the nesting hierarchy tree. The ancestor of

Else at level 2 is the I f activity. After the replacement S = {I f ,Flow2}. All of

the elements in S are now at the same level in the nesting hierarchy tree. But S
contains more than one elements, thus, we have to continue with our algorithm.
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Step 3: we continue our search to the next higher level, i.e. level 1. We re-

place all the elements in S with their parent nesting construct. Both I f and

Flow2 have the same parent nesting construct, which is Sequence at level 1.

After the replacement S contains exactly one complex construct. And the com-

plex construct Sequence is the lowest common nesting construct of the selected

elements {Else, invoke4, invoke5}.
After having found the LCNC, i.e. the <if> activity, it will be extracted

with all its constituents from the original process and placed as an immediate

child element within the <fragment> element.

5.3.2 Extraction in Isolated Mode

In the isolated mode, each selected element will be placed as an immediate

child element within the root element of the BPEL fragment apart from some

exceptions. BPEL uses activity containers to logically group activities together.

Some of these activity containers are not allowed used as immediate child ele-

ments of the <fragment> element. They include:

• <else> and <elseIf> of an <if> activity;

• <onMessage> and <onAlarm> of a <pick> activity;

• <catch> and <catchAll> of a <faultHandlers>;

• <onEvent> and <onAlarm> of an <eventHandlers>.

Thus, if a process modeler wants to extract these activity containers in the

isolated mode, the extraction algorithm will include both the immediate enclos-

ing construct and the activity container in the target fragment.

However, <faultHandlers> and <eventHandlers> can be used

once as an immediate child element of the <fragment> element. As dis-

cussed before, when extracting their activity containers in the isolated mode,

the algorithm will also include the <faultHandlers> or <event- Handlers>

in the target BPEL fragment. If the BPEL fragment already contains the

<faultHandlers> element, then the selected <catch> and <catchAll>

containers will be placed in the existing <faultHandlers> element. In
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this case we can avoid the duplication of the <faultHandlers> element.

When extracting selected <catch> and <catchAll> elements, the extrac-

tion algorithm may examine whether there are duplicated fault handlers in

the <faultHandlers> element, e.g. based on the qualified fault name.

This may require domain-specific knowledge and is out of the scope of this

thesis and its prototypical implementation. If the BPEL fragment contains

no <faultHandlers> element, then the extraction algorithm will add a

<faultHandlers> element within the root element <fragment> and

place the selected <catch> and <catchAll> in it. The same also applies

for event handlers.

Compensation and termination handlers can also be used once as immedi-

ate child element of the <fragment> element. If a process modeler wants to

extract a compensation handler or a termination handler in the isolated mode,

the extraction algorithm should also examine possible duplication. As a com-

pensation handler allows exactly one activity as its immediate child element,

it is not possible to add the immediate child activity to the existing compensa-

tion handler. Therefore, if the BPEL fragment contains already a compensation

handler, then the modeling tool should ask the process modeler whether the ex-

isting compensation should be replaced by the new one. If the BPEL fragment

contains no compensation handler as its immediate child element, then extrac-

tion algorithm places the selected compensation handler as an immediate child

element of the <fragment> element. The same also applies for termination

handler.

5.4 Reduction Phase

The constructed BPEL fragment may contain generated opaque activities. Pro-

cess modelers may want to (i) retain or (ii) remove the generated opaque activ-

ities in the BPEL fragment.

In case (i), process modelers may want to keep the generated opaque activ-

ities in the resulting BPEL fragment. In this case, the BPEL fragment can be

reused as a template. The generated opaque activities hide certain process de-
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tails that allow completing and adding execution behavior at the time of reuse.

For this use case, process modelers may also define a profile for the usage of

the BPEL fragment as a template1.

In case (ii), generated opaque activities are considered as redundant. They

make a BPEL fragment verbose and hard to read. In this case, the process

modeler may want to remove the redundant opaque activities. Cleaning the

redundant generated opaque activities makes the BPEL fragment more com-

pact, therefore, enables process modelers to concentrate on the essential pro-

cess logic.

The reduction phase removes the redundant generated opaque activities in a

BPEL fragment (case (ii)). Because we want to enable process modelers also

to use the resulting BPEL fragment without removing the generated opaque

activities (case (i)), the reduction phase has been considered as an optional

phase.

5.4.1 Reduction Rules

We introduce the reduction rules as the basis of the reduction algorithms for

removing generated opaque activities. Considering the incoming and outgoing

links, generated opaque activities can be classified into three categories: iso-

lated opaque activities, terminal opaque activities, and inner opaque activities.

Isolated opaque activities have neither incoming nor outgoing links. Termi-

nal opaque activities include entry opaque activities and exit opaque activities.

Entry opaque activities have only outgoing links, while exit opaque activities

have only incoming links. Inner opaque activities have both incoming and out-

going links. We call terminal and inner opaque activities non-isolated opaque

activities.

The reduction rules do not consider the operational semantics of the activi-

ties (e.g. transition conditions, join conditions, and dead path elimination), but

focuses solely on the syntactical process logic. When removing a link, its tran-

1 similar motivation for the abstract process profile for template specified in the BPEL stan-
dard
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sition condition will also be removed. When removing a generated opaque ac-

tivity with a join condition, the join condition will also be removed.

We use o to indicate modeled opaque activity, b to indicate bag activity, g
to indicate generated opaque activity, p to indicate the preceding activity of g,

and s to indicate the succeeding activity of g.

5.4.1.1 Isolated Opaque Reduction Rule

The isolated opaque reduction rule is introduced to remove generated opaque

activities that have no incoming and outgoing links. Let’s consider the example

shown in Figure 5.14. A process modeler selects the sequence activity and two

of its enclosed activities A and B and wants to extract them in the connected

mode (denoted by the bold border lines in Figure a)). The lowest common

ancestor of all the selected activities is the sequence activity itself. In this case,

the algorithm extracts the complete sequence activity including all its enclosed

activities. The not selected activity C is then replaced by a generated opaque

activity, which is an isolated generated opaque activity (Figure b)).

Sequence Sequence

B

A

q

B

A

q

C #

(a) (b)

Fig. 5.14 As the not selected activity C has neither incoming nor outgoing links, the gener-
ated opaque activity that replaces it is an isolated generated opaque activity.

In a graph-structured construct the control dependencies are explicitly spec-

ified by links. Removing the generated opaque activity that has no incoming

and outgoing links does not change the original control dependencies of the

remaining activities.
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In a block-structured construct the control dependencies are defined by the

order of the enclosed activities. As the generated opaque activity has no in-

coming and outgoing links, its control dependency is solely determined by its

position in the block-structured construct. Removing it does not change the re-

lation of its preceding and succeeding activities within the structured construct.

Therefore, we introduce the following rule:

Rule 1. If a generated opaque activity g has neither incoming nor outgoing

links, then remove g. ��

5.4.1.2 Non-Isolated Opaque Reduction Rules

As defined before a non-isolated opaque activity has either incoming links, or

outgoing links, or even both. The basic idea to remove a generated non-isolated

opaque activity g is to remove its incoming and outgoing links firstly, unless

they have been selected in the selection phase (see Section 5.2.3.2 Retain Pro-

cess Structure by Links). After that g becomes an isolated opaque activity. Then

we can apply Rule 1 to remove it.

Before we begin with the discussion on reduction rules for removing in-

coming and outgoing links, we introduce some terms that we will use for the

discussion.

We say an activity p is a preceding activity of an activity a, if a can only be

started after p is completed. In other words, if there exists an execution path

from p to a and p is not an enclosing construct of a, then p is a preceding

activity of a. And a is a succeeding activity of p. We do not consider an enclos-

ing activity of a as its preceding activity, as the start of a does not require the

completion of the enclosing activity.

Let P be the set of all preceding activities of a, p∈P is an immediate preced-

ing activity of a, only if for all p′ ∈ P it applies level(p)≤ level(p′). Similarly,

let S be the set of all succeeding activities of a, s is an immediate succeeding

activity of a, only if for all s′ ∈ S it applies level(s)≤ level(s′).
When removing an outgoing link l of g we have to make sure that removing

l does not change the control dependencies between the succeeding activity s
(the target activity of l) and the remaining activities (except g). In fact, we have
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to examine the following cases: (i) the control dependencies between s and its

enclosed constructs; (ii) the control dependencies s and its enclosing constructs;

(iii) the control dependencies between s and g’s preceding activities; (iv) the

control dependencies between s and its succeeding activities.

Case (i): removing l does not change the enclosing relationships between s
and its enclosed constructs, if s is not a basic activity. If s is a basic activity,

then s has no enclosed activities.

Case (ii): similarly, removing l also does not change the enclosed relation-

ship between s and its enclosing constructs.

Case (iii): removing l could make s lose its control dependencies on g’s

preceding activities. The control dependencies are lost only if g has preceding

activities within the Lowest Common Nesting Construct (LCNC) of g and s.

Let’s consider the example illustrated in Figure 5.15.
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Fig. 5.15 Removing l will change the control dependencies between s and p, which is a
preceding activity that is located within the LCNC of g and s.

In Figure 5.15 f low1 is the LCNC of g and s. We can find two preceding

activities of g in the example: p and p′. The activity p is the preceding activity

of g that is enclosed within the LCNC of g and s, i.e. in f low1. While p′ is a

preceding activity that is located outside the LCNC of g and s. When removing

the outgoing link l of g, the activity s loses its control dependency on p. In the

original process model p completes before s can start. After removing the link

l, p becomes a parallel activity to s. Thus, removing l will change the control
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dependencies between s and g’s preceding activities that are located within the

LCNC of g and s.

However, without the link l the original control dependencies of p′ and s are

retained. As removing the link l does not change the enclosing relationships, s
is still enclosed within f low1. The activity s can only starts, after f low1 has

been started. And f low1 can only starts, after p′ is completed. That means,

regardless whether the link l has been removed, as long as s is enclosed within

f low1, its control dependency on p′ does not change. Thus, removing l does

not change the control dependencies between s and g’s preceding activities that

are located outside the LCNC of g and s.

Case (iv): removing l does not change the control dependencies between s
and its succeeding activities. From the example shown in Figure 5.15 we can

see that removing the link l does not change the original control dependencies

between s and its succeeding activity s′.
According to the discussion above, removing the outgoing link l of g will

makes s lose the control dependencies on g’s preceding activities, only if g’s

preceding activities are located within the LCNC of g and s. Otherwise, re-

moving l does not change the original control dependencies of the remaining

activities.

The same discussion can be conducted for removing an incoming link of g.

Now let l be an incoming link and p be a preceding activity of g (the source

activity of l). Analogously, removing l will makes p lose the control dependen-

cies on g’s succeeding activities, only if g’s succeeding activities are located

within the LCNC of g and p. Otherwise, removing l does not change the origi-

nal control dependencies of the remaining activities.

Based on the discussions we introduce in the following the reduction rules

for removing incoming and outgoing links of a generated opaque activity.

Removing Outgoing Links

For a generated opaque activity g, let l be an outgoing link of g and s be the

target activity of l.
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According to the discussion above, removing l will change the control de-

pendencies between s and g’s preceding activities that are located within the

LCNC of g and s. Thus, we consider the following two cases: (i) g has pre-

ceding activities within the LCNC of g and s; (ii) g has no preceding activities

within the LCNC of g and s.

Rule 2. If a generated opaque activity g has no preceding activities within the

LCNC of g and s, then remove l. ��

As shown in Figure 5.16, g has no preceding activities within the LCNC of

g and s, after removing the outgoing link l the original control dependencies of

the remaining activities are retained.
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Fig. 5.16 If g does not have preceding activities within the LCNC of g and s, then removing
l does not change the original control dependencies between s and the remaining activities
except g.

Rule 3. If a generated opaque activity g has a preceding activity p within the

LCNC of g and s and there exits an alternative path from p to s that does not

contain g, then remove l. ��
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Fig. 5.17 Through the alternative path over the sequence activity, the original control depen-
dency between p and s is retained.

As g has preceding activities within the LCNC of g and s, removing l will

make s lost the original control dependency of p. However, there exists an alter-

native path from p to s that does not contain g, which means that the alternative

path does not contain l. The original control dependencies between p and s is

retained through the alternative path. In this case, the outgoing link can be re-

moved.

Rule 4. If a generated opaque activity g has a preceding activity p within the

LCNC of g and s and there exists no alternative path from p to s that does not

contain g, then remove the link l and add a new link (p,s). ��
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Fig. 5.18 As there exists no alternative path from p to s, we create a new link (p,s) after
removing l to restore the original control dependency between p and s.

As there exists no alternative execution path from p to s that does not con-

tain g, the control dependency between p and s depends solely on the link l.
Thus, after removing the link l we have to rebuild the original control depen-

dency between p and s. In the original process model, the activity s can only

be started after the completion of p. To restore this control dependency without

considering the original transition condition and data flow, we create a new link

(p,s) after having removed l. The transition condition of the new link is set to

unde f ined, as neither the original transition condition of p’s outgoing link nor

that of s’s incoming link may apply. Thus, we let the process modeler redefine

the transition condition.

Removing Incoming Links

For a generated opaque activity g, let l be an incoming link of g and p be the

source activity of l.
Similarly, removing l will change the control dependencies between p and

g’s succeeding activities that are located within the LCNC of g and p. Thus,

we consider the following two cases: (i) g has succeeding activities within the

LCNC of g and p; (ii) g has no succeeding activities within the LCNC of g and
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p. Rule 5 is introduced for case (i), while Rule 6 and Rule 7 are introduced for

case (ii).

Rule 5. If a generated opaque activity g has no succeeding activities within the

LCNC of g and p, then remove l. ��

Rule 6. If a generated opaque activity g has a succeeding activity s within the

LCNC of g and p and there exits an alternative path from p to s that does not

contain g, then remove l. ��

Rule 7. If a generated opaque activity g has a succeeding activity s within the

LCNC of g and p and there exists no alternative path from p to s that does not

contain g, then remove the link l and add a new link (p,s). ��

5.4.2 Reduction Algorithms

The reduction algorithms are developed based on the reduction rules we intro-

duced in the previous section. In this section we first introduce several support-

ing algorithms and then present the algorithms for removing generated opaque

activities in modeling constructs of BPEL fragments.

5.4.2.1 Find Immediate Preceding Activities

As discussed before, to remove an outgoing link l of g we have to examine

whether there are immediate preceding activities within the LCNC of g and s,

where s is the target activity of l. The Algorithm 3 f indPrecedings(g,s, lcnc)
is introduced for that purpose.

The source activities of g’s incoming links are per definition the immediate

preceding activities of g. Thus, at the beginning of the Algorithm 3 we examine

whether g has incoming links.

If g has incoming links, then the source activities of these incoming links

are the immediate preceding activities of g (Algorithm 3, line 4-7). In this case,

we add tuple (p,k) to precedings, where k is an incoming link of g and p is
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Algorithm 3: f indPrecedings(g,s, lcnc)

1 begin
2 n = the immediate enclosing activity of g;

3 precedings = /0 ;

4 if Lincoming
g �= /0 then

5 forall the k ∈ Lincoming
g do

6 p = source activity of k;

7 precedings = precedings∪{p};
8 if n is instanceO f sequence then
9 activities = child activities in n;

10 i = index of g in activities;

11 if i �= 0 then
12 ai−1 = the activity at index i−1;

13 precedings = precedings∪{(ai−1,null)};
14 return precedings;

15 else
16 if n = lcnc then
17 return null;
18 else
19 if lcnc = null then
20 lcnc = f indLCNC(g,s);
21 f indPrecedings(n,s, lcnc);
22 continue in Algorithm 4

23 end

the source activity of k. The link k in the tuple will be used when removing

the outgoing links in Algorithm 6. Otherwise, g has no incoming links and the

algorithm continues searching for preceding activities of g.

Depending on the immediate enclosing activity, the algorithm continues

with different approaches. We distinguish three kinds of immediate enclosing

activity n of g: (i) n is a <sequence>, (ii) n is a <flow> activity or a

<fragment> element, (iii) n is an instance of other structured constructs.

Case (i): the activity g is immediately enclosed in a <sequence> activity

n (Algorithm 3, line 8). According to the index of g in the child activities of n,

we can determine whether g has preceding activities.
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If the value of g’s index i is not 0, then g is not the first activity in n. Thus, the

immediate preceding activity of g is then the activity that appears before g in n,

i.e. the activity ai with the index (i−1) (Algorithm 3, line 12). As there exists

no link between g and ai, we add the tuple (ai,null) to precedings (Algorithm 3,

line 13). The value null indicates that there exists no BPEL link between g and

ai. The algorithm terminates by returning the immediate preceding activities

found (Algorithm 3, line 14).

If the value of i equals to 0 (Algorithm 3, line 15), then g is the first activity

in n. In this case, the preceding activity could locate outside n. Thus, we have

to continue the search until the algorithm reaches the LCNC of g and s.

If the <sequence> activity n of g is the LCNC of g and s (Algorithm 3,

line 16), then there exists no preceding activities of g in the <sequence> ac-

tivity, as g is the first activity in it. Thus, the algorithm returns null (Algorithm

3, line 17).

Otherwise, n is not the LCNC (Algorithm 3, line 18). That means the algo-

rithm has not reached the LCNC of g and s yet. If the LCNC of g and s is null,
then we have to find the LCNC of g and s (Algorithm 3, line 19-20). After that

we invoke the Algorithm 3 recursively to continue the searching (Algorithm 3,

line 21).

Case (ii): the activity g is immediately enclosed in a <flow> activity or a

<fragment> element (Algorithm 4, line 2).

If g has incoming links (Algorithm 4, line 4), then the source activities of the

incoming links could be the immediate preceding activities of g. Recall that at

the beginning of the algorithm (Algorithm 3, line 4-7) we have already added

the source activities of g. However, if all the source activities of g’s incoming

links are located outside n, then g may also have immediate preceding activities

outside n but within the LCNC of g and s as shown in Figure 5.19. We can see

the activity p2 is also an immediate preceding activity, which has not been

considered in the algorithm yet.

To find p2 we have to make sure that all source activities of g’s incoming

links are all located outside n. Otherwise, p2 is not the immediate preceding

activity of g. We use a Boolean variable isAnEntry as a flag. At the beginning

we assume that g has no immediate preceding activities within n. Thus, we set
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Algorithm 4: f indPrecedings(g,s, lcnc) continue 1

1 begin
2 else if n is instanceO f f low OR f ragment then
3 isAnEntry = true;

4 if Lincoming
g �= /0 then

5 while isAnEntry AND Lincoming
g .hasNext do

6 l = Lincoming
g .next;

7 a = the source activity of l;
8 m = immediate enclosing activity of a;

9 if m = n then
10 isAnEntry = f alse;

11 if NOT isAnEntry then
12 return precedings;

13 else
14 if n = lcnc then
15 return precedings;

16 else
17 if lcnc = null then
18 lcnc = f indLCNC(g,s);
19 precedings =

precedings∪ f indPrecedings(n,s, lcnc);
20 else
21 if n = lcnc OR n is instanceO f f ragment then
22 return null;
23 else
24 if lcnc = null then
25 lcnc = f indLCNC(g,s);
26 f indPrecedings(n,s, lcnc);
27 Continue in Algorithm 5

the flag isAnEntry = true (Algorithm 4, line 3). We iterate all the incoming

links of g, as long as we still have not found an immediate preceding activity

of g. If the immediate enclosing activity of the source activity a is n (Algorithm

4, line 7-8), then a is an immediate preceding activity of g in n. Thus, we set

the flag isAnEntry to f alse.
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Fig. 5.19 The activity p2 is also a preceding activity of g within the LCNC of g and s.

If isAnEntry is f alse, we found all the immediate preceding activities of g
and the algorithm terminates by returning the results (Algorithm 4, line 11-12).

Otherwise, isAnEntry is true (Algorithm 4, line 13). It means that all source

activities of g’s incoming links are all located outside n. In this case, there

may exist an immediate preceding activity of g, which may have immediate

preceding activities outside n but within the LCNC of g and s.

If n is the LCNC of g and s, then there exists no further immediate preceding

activities of g within the LCNC of g and s. In this case, we terminates the algo-

rithm by returning the result precedings (Algorithm 4, line 14-15). Otherwise,

the algorithm continues. If the LCNC of g and s is unknown, then we invoke

the Algorithm 2 find the LCNC (Algorithm 4, line 17). After that we invoke

the algorithm recursively to continue searching immediate preceding activities

of g (Algorithm 4, line 19).

If g has no incoming links (Algorithm 4, line 20), the g may have immediate

preceding activities outside n. However, if n is already the LCNC of g and

s, then the searching completed. Or if n is root element, then there exists no

activities outside n. Thus, the algorithm terminates either (Algorithm 4, line

21-22). Otherwise, the searching continues as discussed before (Algorithm 4,

line 23-26).

Case (iii): the activity g is immediately enclosed in a structured construct

that is not a <sequence>, a <flow>, or a <fragment> (Algorithm 5, line
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Algorithm 5: f indPrecedings(g,s, lcnc) continue 2

1 begin
2 else
3 if n = lcnc then
4 return null;
5 else
6 if lcnc = null then
7 lcnc = f indLCNC(g,s);
8 f indPrecedings(n,s, lcnc);
9 end

2). For example, n could be <if>, <else>, <while>, <scope>, etc. These

constructs allow only enclosing exactly one activity. This means that the imme-

diate preceding activity of g must be located outside n. Thus, we invoke the

algorithm recursively to continue searching as discussed before (Algorithm 5,

line 3-8).

5.4.2.2 Clean Outgoing Links

Now we continue the discussion of the Algorithm 6 cleanOutgoingLinks(g).
We iterate the outgoing links of g (Algorithm 6, line 3). We examine whether

there are preceding activities of g within the LCNC of g and s (Algorithm 6,

line 5), where s denotes the target activity of the outgoing link l.
If g has preceding activities within the LCNC of g and s (Algorithm 6, line

6), then we first remove the link l (Algorithm 6, line 7).

If s is not reachable from p any more (Algorithm 6, line 9), then there exists

no alternative path from p to s besides the path over the link l. According to

Rule 4 we create a new link (p,s) to restore the original control dependency

between p and s (Algorithm 6, line 10).

If s is still reachable after removing l, then there exists an alternative path

from p to s that not contains l. The original control dependency between p
and s is retained through the alternative path. Thus, according to Rule 3 the
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Algorithm 6: cleanOutgoingLinks(g)

1 begin
2 u = null;
3 forall the l ∈ Loutgoing

g do
4 s = target activity of l;
5 precedings = f indPrecedings(g,s,null);
6 if precedings �= /0 then
7 remove l;
8 forall the p ∈ precedings do
9 if s is not reachable from p then

10 create the link (p,s);
11 else
12 remove l;
13 end

algorithm does nothing, as the link l has already been removed (Algorithm 6,

line 7).

If g has no preceding activities within the LCNC of g and s (Algorithm 6,

line 11), then according to Rule 2 the algorithm removes l.

5.4.2.3 Find Succeeding Activities

Analogously, the Algorithm 10 cleanIncomingLinks(g) uses the Algorithm 7

f indSucceedings to discover the immediate succeeding activities of the gener-

ated opaque activity g. As the algorithms work in the similar manner as the

algorithms for removing outgoing links of an opaque activity, we do not dis-
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cuss them here in details. Here we use p to denote the source activity of the

incoming link of g that will be removed through the algorithm below.

Algorithm 7: f indSucceedings(g, p, lcnc)

1 begin
2 n = the immediate enclosing activity of g;

3 succeedings = /0 ;

4 if Loutgoing
g �= /0 then

5 forall the k ∈ Loutgoing
g do

6 s = target activity of k;

7 succeedings = succeedings∪{s};
8 if n is instanceO f sequence then
9 activities = child activities in n;

10 i = index of g in activities;

11 k = the number of activities in n;

12 if i �= k−1 then
13 ai+1 = the activity at index i+1;

14 add (ai+1,null) to succeedings;

15 return succeedings;

16 else
17 if n = lcnc then
18 return null;
19 else
20 if lcnc = null then
21 lcnc = f indLCNC(g, p);
22 f indSucceedings(n, p, lcnc);

23 Continue in Algorithm 8
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Algorithm 8: f indSucceedings(g, p, lcnc) continue 1

1 begin
2 else if n is instanceO f f low OR f ragment then
3 isAnExit = true;

4 if Loutgoing
g �= /0 then

5 while isAnExit AND Loutgoing
g .hasNext do

6 l = Loutgoing
g .next;

7 a = the target activity of l;
8 m = immediate enclosing activity of a;

9 if m = n then
10 isAnExit = f alse;

11 if NOT isAnExit then
12 return succeedings;

13 else
14 if n = lcnc then
15 return succeedings;

16 else
17 if lcnc = null then
18 lcnc = f indLCNC(g, p);
19 succeedings =

succeedings∪ f indSucceedings(n, p, lcnc);

20 else
21 if n = lcnc OR n is instanceO f f ragment then
22 return null;
23 else
24 if lcnc = null then
25 lcnc = f indLCNC(g, p);
26 f indSucceedings(n, p, lcnc);

27 end
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Algorithm 9: f indSucceedings(g, p, lcnc) continue 2

1 begin
2 else
3 if n = lcnc then
4 return null;
5 else
6 if lcnc = null then
7 lcnc = f indLCNC(g, p);
8 f indSucceedings(n, p, lcnc);

9 end

Algorithm 10: cleanIncomingLinks(g)

1 begin
2 forall the l ∈ Lincoming

g do
3 p = source activity of l;
4 succeedings = f indSucceedings(g, p,null);
5 if succeedings �= /0 then
6 remove l;
7 forall the s ∈ succeedings do
8 if s is not reachable from p then
9 create the link (p,s);

10 else
11 remove l;

12 end

5.4.2.4 Clean Fragment, Flow, and Sequence Constructs

The modeling constructs <fragment>, <flow>, and <sequence> share

the same procedure for removing generated opaque activities. Thus, we intro-

duce the Algorithm 11 clean(construct) for cleaning the generated opaque ac-

tivities from these constructs.
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Algorithm 11 examines each activity a that is immediately enclosed in

construct (Algorithm 11, line 2). The basic idea is still first to remove all the

incoming and outgoing links of a generated opaque activity, then to remove the

generated opaque activity itself.

Algorithm 11: clean(construct)

1 begin
2 forall the immediate enclosed activity a in construct do
3 if a is a generated opaque then
4 if a has incoming links then
5 cleanIncomingLinks(a);
6 if a has outgoing links then
7 cleanOutgoingLinks(a);
8 remove a;

9 else if a is not a basic activity then
10 cleanConstruct(a);
11 end

If the activity a is a generated opaque activity (Algorithm 11, line 3), then

the algorithm examines which reduction rules can be applied to remove it.

If a has incoming links, then we use the Algorithm 10 cleanIncomingLinks
to removing them (Algorithm 11, line 4-5). If a has outgoing links, then the

algorithm uses the Algorithm 6 cleanOutgoingLinks to removing them (Algo-

rithm 11, line 6-7).

If a is not a basic activity, then we invoke the Algorithm 12 to process the

structured activities (Algorithm 11, line 9-10).
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Algorithm 12: cleanConstruct(a)

1 begin
2 switch a do
3 case f ragment
4 clean(construct);
5 case f low
6 clean(construct);
7 case f orEach
8 cleanLoop(a);
9 case i f

10 cleanI f (a);
11 case pick
12 cleanPick(a);
13 case repeatUntil
14 cleanLoop(a);
15 case sequence
16 clean(construct);
17 case scope
18 cleanScope(a);
19 case while
20 cleanLoop(a);
21 case compensationHandler
22 cleanCompensationHandler(a);
23 case eventHandlers
24 cleanEventHandlers(a);
25 case f aultHandlers
26 cleanFaultHandlers(a);
27 case terminationHandler
28 cleanTerminationHandler(a);

29 end
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5.4.2.5 Clean If Activity

An <if> activity may contain more than one branches, each of which allows

only exactly one primary activity (let’s call it a). For each branch we follow

the same logic for cleaning generated opaque activities as the one described

for cleaning <fragment>, <flow>, and <sequence> constructs.

Algorithm 13: cleanI f (i f )

1 begin
2 a = the primary activity of i f ;

3 if a is a generated opaque activity then
4 cleanIncomingLinks(a);
5 cleanOutgoingLinks(a);
6 remove a;

7 else if a is not a basic activity then
8 cleanConstruct(a);
9 forall the elseI f in i f do

10 a = the primary activity of elseI f ;

11 if a is a generated opaque activity then
12 cleanIncomingLinks(a);
13 cleanOutgoingLinks(a);
14 remove a;

15 else if a is not a basic activity then
16 cleanConstruct(a);
17 if i f has else branch then
18 a = the primary activity of else;

19 if a is a generated opaque activity then
20 cleanIncomingLinks(a);
21 cleanOutgoingLinks(a);
22 remove a;

23 else if a is not a basic activity then
24 cleanConstruct(a);
25 end
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5.4.2.6 Clean Pick Activity

A <pick> activity contains at least one <onMessage> construct and may

contain one or more <onAlarm> constructs, each of which contains exactly

one activity. To clean a <onMessage> and the <onAlarm> we also use the

same procedures as discussed before.

Algorithm 14: cleanPick(pick)

1 begin
2 forall the onMessage in pick do
3 a = the primary activity of onMessage;

4 if a is a generated opaque activity then
5 cleanIncomingLinks(a);
6 cleanOutgoingLinks(a);
7 remove a;

8 else if a is not a basic activity then
9 cleanConstruct(a);

10 forall the onAlarm in pick do
11 a = the primary activity of onAlarm;

12 if a is a generated opaque activity then
13 cleanIncomingLinks(a);
14 cleanOutgoingLinks(a);
15 remove a;

16 else if a is not a basic activity then
17 cleanConstruct(a);
18 end

5.4.2.7 Clean Scope Activity

A <scope> activity allows to immediately enclose exactly one primary ac-

tivity. If the primary activity a is a generated opaque activity, then we use the

same procedure to remove it as discussed before (Algorithm 15, line 3-8).
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A <scope> activity may also contain compensation, fault, event, and ter-

mination handlers. The algorithm examines whether such handlers are immedi-

ately used in the <scope> activity and apply the corresponding algorithm for

further processing. We will discuss these algorithms later in details.

Algorithm 15: cleanScope(scope)

1 begin
2 a = the primary activity of scope;

3 if a is a generated opaque activity then
4 cleanIncomingLinks(a);
5 cleanOutgoingLinks(a);
6 remove a;

7 else if a is not a basic activity then
8 cleanConstruct(a);
9 if scope contains compensation handler ch then

10 cleanCompensationHandler(ch);
11 if scope contains event handlers eh then
12 cleanEventHandlers(eh);
13 if scope contains fault handlers f h then
14 cleanFaultHandlers( f h);
15 if scope contains terminate handlers th then
16 cleanTerminationHandler(th);
17 end

5.4.2.8 Clean Compensation Handler

A <compensationHandler> allows also only a single primary activity.

However, a link must not cross the boundary of a <compensationHandler>

[16]. Thus, if the primary activity a of a <compensationHandler> is a

generated opaque activity, then it has neither incoming nor outgoing links and

is an isolated opaque activity. Therefore, the algorithm can simply remove it

(Rule 1) (line 3-4).
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Algorithm 16: cleanCompensationHandler(ch)

1 begin
2 a = the primary activity of ch;

3 if a is a generated opaque activity then
4 remove a;

5 else if a is not a basic activity then
6 cleanConstruct(a);
7 end

5.4.2.9 Clean Event Handlers

The algorithm for cleaning <eventHandler> works in an analogous man-

ner as that for a <pick> activity. Here we know in advance that the primary

activity of each <onEvent> and <onAlarm> construct is a <scope> ac-

tivity. Thus, the algorithm can directly invoke the algorithm cleanScope for

further processing.

Algorithm 17: cleanEventHandlers(eh)

1 begin
2 forall the onEvent in eh do
3 a = the primary activity in onEvent;
4 cleanScope(a);
5 forall the onAlarm in pick do
6 a = the primary activity in onAlarm;

7 cleanScope(a);
8 end

5.4.2.10 Clean Fault Handlers

The <faultHandlers> construct may contain one or more <catch> con-

structs and one <catchAll> construct. As the link that crosses the boundary

of a <catch> or a <catchAll> construct must be a outgoing link [16],
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they are not allowed to have incoming links. In case the primary activity of a

<catch> or a <catchAll> construct is a generated opaque activity, we only

have to examine whether it has outgoing links. In case there are none, the gen-

erated opaque activity is then an isolated opaque activity. Thus, the algorithm

can simply remove it (Rule 1).

Algorithm 18: cleanFaultHandlers( f h)

1 begin
2 forall the catch in f h do
3 a = the primary activity of catch;

4 if a is a generated opaque activity then
5 if Loutgoing

a = /0 then
6 remove a;

7 else
8 cleanOutgoingLinks(a);
9 remove a;

10 else if a is not a basic activity then
11 cleanConstruct(a);
12 if f h has catchAll then
13 a = the primary activity of catchAll;
14 if a is a generated opaque activity then
15 if Loutgoing

a = /0 then
16 remove a;

17 else
18 cleanOutgoingLinks(a);
19 remove a;

20 else if a is not a basic activity then
21 cleanConstruct(a);
22 end

5.4.2.11 Clean Termination Handler

The <terminationHandler> allows also exactly one primary activity.

And a link that crosses the boundary of <terminationHandler> must
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be a outgoing link. Thus, if the primary activity a does not have outgoing links,

then it is an isolated opaque activity.

Algorithm 19: cleanTerminationHandler(th)

1 begin
2 a = the primary activity of th;

3 if a is a generated opaque activity then
4 if Loutgoing

a = /0 then
5 remove a;

6 else
7 cleanOutgoingLinks(a);
8 remove a;

9 else if a is not a basic activity then
10 cleanConstruct(a);
11 end

5.4.2.12 Clean Repeatable Construct

The Algorithm 20 cleanLoopConstruct removes generated opaque activities

in all repeatable constructs of BPEL, i.e. <while>, <repeatUntil>, and

<forEach>. As specified in the BPEL standard, a link must not cross the

boundary of a repeatable construct. Thus, if the primary activity in the repeat-

able construct is a generated opaque activity, then it is an isolated opaque ac-

tivity. Thus, it can be simply removed. Otherwise, the algorithm invokes the

Algorithm 12 cleanConstruct to apply the appropriate algorithm for further

processing.

5.4.2.13 Clean Empty Complex Constructs

Some complex constructs may contain only generated opaque activities. After

removing the generated opaque activities, the complex construct becomes an

empty construct. If the complex construct itself has not been selected in the
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Algorithm 20: cleanLoopConstruct(loop)

1 begin
2 a = the primary activity of loop;

3 if a is a generated opaque activity then
4 remove a;

5 else if a is not a basic activity then
6 cleanConstruct(a);
7 end

selection phase, then it should also be removed to keep the resulting BPEL

fragment compact.

The Algorithm 21 utilizes the Nesting Hierarchy Tree (NHT) (Algorithm 21,

line 2) to clean empty complex constructs. It traverses the NHT in a bottom-up

approach (Algorithm 21, line 3), i.e. from the leaves to the root. If a leaf node

in the NHT contains no basic activities and is not in the original selection of the

process modeler, then the algorithm removes the leaf node from the fragment

(Algorithm 21, line 4-7).

Algorithm 21: cleanEmptyComplexConstruct( f ragment,selection)

1 begin
2 nht = createNHT ( f ragment);
3 nodes[] = a sorted array of the nodes in nht in descending order of

their level;

4 for i = 0 to nodes[].size−1 do
5 if nodes[i] is empty then
6 if nodes[i] /∈ selection then
7 remove nodes[i];
8 end





Chapter 6

Mapping BPEL Process Models to Graph

This chapter provides a mathematical framework for mapping a BPEL process

or a BPEL fragment to a Directed and Acyclic Graph (DAG). In Section 6.1

we outline the needs of extending the graph-based meta-model proposed by

Khalaf [78]. Section 6.2 describe the common mapping rules that apply for

the whole mapping framework. In Section 6.3 we define the rules for mapping

basic activities in BPEL to a graph representation. Section 6.4 presents the

rules for mapping structured activities (except for a scope activity) in BPEL

to a graph representation. Due to the specialty of the scope activity in BPEL

we introduce the rules for mapping BPEL scopes and its immediately enclosed

handlers in Section 6.5.

6.1 Introduction

In a graph-based approach a process model can be represented as a rooted, Di-

rected, and Acyclic Graph (DAG), in which nodes represent activities in the

given process model and directed edges represent control flow of the activities.

Leymann et al. [95] developed a graph-based meta-model. The meta-model

provides the syntactical constructs for users to create workflow models. In ad-

dition, it also defines the operational semantics so that process engines are able

to execute process models in a consistent way. Khalaf [78] extended the meta-

135



136 6 Mapping BPEL Process Models to Graph

model to adapt to specific characteristics of BPEL process models, such as

loops, nested scopes, fault handling, etc. Khalaf also defined a mapping frame-

work for transforming BPEL process models to a graph-based formalism. The

mapping framework lays groundwork for our graph mapping framework for

BPEL process models and fragments, but does not meet all the requirements

that we have identified in our research.

In the mapping framework of Khalaf, a BPEL scope is mapped to a hyper-

edge of a hypergraph [29]. As a hyperedge can connect any number of nodes,

the parent-child relationships of the nodes does not reflect exactly the original

control dependencies. The algorithms we present in this thesis need a graph

representation that captures the exact process structure of the BPEL process

or fragment. Process structure refers to the way in which process activities are

connected. It does not consider the operational semantics of the process model.

It is a static representation of the construction of the BPEL process or fragment.

In addition, the mapping framework in [78] connects a flow activity with

all its enclosed activities. The redundant edges may distort the original con-

trol dependencies of the activities. The query algorithm in this thesis processes

the structural matchmaking by examining the parent-child relationships of the

matching nodes. For that reason the edges in the graph representation of BPEL

processes or fragments should explicitly reflect the original parent-child rela-

tionships between the process activities.

Last but not least, in the mapping framework of Kahlaf, an invoke activ-

ity is mapped to exactly one node, even though the invoke activity may con-

tain compensation and fault handlers. Semantically, an invoke activity with

enclosed compensation and fault handler is equivalent to a scope activity that

immediately encloses the invoke activity as well as the compensation and fault

handlers. To enable the matchmaking of such invoke activities with scope ac-

tivities, we need to transform the invoke activity to a scope activity and map

the resulting scope activity to the graph representation.

In the following we introduce our mapping framework that will be used

in Chapter 7 for query processing. We use G = (V,E) to denote the graph

representation of a BPEL process or fragment, where V is the set of nodes and

E is the set of edges.
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6.2 Common Mapping Rules

The graph-based meta-model is aiming to provide a formalized representation

of the process structures of a BPEL process or fragment. As we discussed in

the beginning of this chapter, the structure refers to the way in which process

activities are connected together. It focuses on the static snapshot of the con-

struction of BPEL processes and fragments at design time rather than their op-

erational semantics at runtime. Transition conditions, join conditions, partner

links, variables, correlation sets, and message exchanges will not be mapped to

the graph representation. However, in the prototypical implementation we use

this data for keyword-based query processing, which provides users, in combi-

nation with the structural matchmaking, a more powerful query capability.

Attributes of process activities can be used as predicates for matchmaking

of activity nodes in our query algorithm. As a general rule, we use tx as the

unique identifier of a node in the graph representation. The letter t denotes

the type of the BPEL activity, such as invoke, flow, scope, etc. The subscript x
indicates different instances of the same activity type in the graph. All the other

attributes of an activity are mapped as labels of the respective node.

We use V to denote the set of nodes and E to denote the set of edges in the

resulting graph. The function γ : A→ P(V ) maps a set of BPEL activities A to

a power set (P(V )) of nodes in the process graph. The function θ : A→ P(E)
maps a set of BPEL activities A to a power set of (P(V )) of edges in the process

graph.

The function γ is defined as follows:

⎧⎨
⎩γ (a) = {v} a ∈ A is basic activity

γ (a) = {αa,βa} a ∈ A is not a basic activity

The function θ is defined as follows:⎧⎨
⎩θ (a) = /0 a ∈ A is basic activity

θ (a) = {αa,βa} a ∈ A is not a basic activity
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In our mapping framework we do not address the mapping rules for incom-

plete links. We leave it as future work.

6.3 Mapping Basic Activities

A basic activity is mapped to a single node v ∈ V in the process graph. BPEL

allows users to define extension activities. The graph mapping framework also

maps an extension activity to a single node in the graph. However, the imple-

mentation of the mapping framework is designed to be extensible, so that users

can define domain specific mappings for extension activities.

We use a to denote an activity. The function γ : A→ P(V ) maps a set of

BPEL activities A to a power set (P(V )) of nodes in the process graph. The

function γ is defined as follows:

γ (a) = {v} , a ∈ A is basic activity

A special case occurs when mapping an <invoke> activity with enclosed

compensation and fault handlers. Such an <invoke> activity is semantically

equivalent to a <scope> activity that immediately encloses the <invoke>

activity as well as the compensation and fault handlers [16]. In order to pro-

vide a consistent graph-based representation on the structure of BPEL process

models and fragments, we transform each <invoke> activity with enclosed

compensation and fault handlers in the following steps:

1. Create a new and empty <scope>;

2. Move the enclosed elements of the <invoke> activity, such as correla-

tions, sources, targets, the compensation handler, and fault handlers into the

<scope> activity;

3. Set the <scope> activity as the target activity of all the incoming links of

the <invoke> activity;

4. Set the <scope> activity as the source activity of all the outgoing links of

the <invoke> activity;



6.4 Mapping Structured Activities 139

5. Replace <fromParts> and <toParts> with <assign> activities as

specified in BPEL Standard [16];

6. Add the <invoke> activity as the primary activity of the target <scope>

activity.

The resulting <scope> activity is then be mapped to the graph according

to the rules specified in Section 6.5.

6.4 Mapping Structured Activities

A structured activity is mapped to two nodes in the graph, i.e. one start node
and one end node. The start and end nodes are used to indicate the boundary of

the structured activity.

6.4.1 Mapping Sequential Processing - Sequence

A <sequence> activity contains one or more activities that should be exe-

cuted sequentially. The order of their appearance indicates the sequential order

of their execution. We denote a sequence activity Asequence as a set of BPEL

activities, i.e.

Asequence = {a1,a2, ...,an}

A <sequence> activity itself is mapped to a start node αsequence and an

end node βsequence. All its immediately enclosed activities {a1,a2, ...,an} in the

<sequence> are mapped recursively according to the mapping rules speci-

fied in this chapter. Thus, the set of nodes Vsequence resulted by mapping the

<sequence> activity is defined as follows:
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Vsequence = γ(sequence) =
{

αsequence,βsequence
}∪ n⋃

i=1

γ(ai) (6.4.1)

The mapping function θsequence creates edges to connect the transformed

nodes together. The execution semantic of a <sequence> activity is that the

first activity a1 may not start, until the <sequence> itself has started. And

the <sequence> activity completes in the normal mode when the last ac-

tivity an in the <sequence> activity has completed. Each activity ai+1 may

not start until its preceding activity ai has completed. Therefore, we create a

directed edge from the start node of the sequence αsequence to the start node

of the graph representation of the first activity α(γ(a1)). For the immediately

enclosed activities in the <sequence> activity we connect the end node of

the preceding activity β (γ(ai)) with the start node of the following activity

α(γ(ai+1)). At the end, an edge is created from the end node of the last im-

mediately enclosed activity in the <sequence> activity β (γ(an)) to the end

node of the <sequence> activity βsequence.

The mapping function θ(sequence) is defined as follows:

θ(sequence) =
{
(αsequence,α(γ(a1))), true

}∪
n−1⋃
i=1

{β (γ(ai)),α(γ(ai+1))), true}∪
{
(β (γ(an)),βsequence), true

}
(6.4.2)

Thus, the set of edges Esequence resulted by mapping the <sequence> ac-

tivity is the union of θ(sequence) with the edges created by mapping each

enclosed activity in the <sequence> activity.

Esequence = θ(sequence)∪
n⋃

i=1

θ(ai) (6.4.3)
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6.4.2 Mapping Parallel Processing - Flow

A <flow> activity comprises a set of activities and a set of links, which

specifies the control dependencies between its enclosed activities. We denote

a <flow> activity as a tuple (A f low,L f low). Note that the L f low denotes the

<link>s that are immediately used within the <flow> activity.

A f low = {a1,a2, ...,an}
L f low = {l1, l2, ..., lm}

Analogous to the mapping of a <sequence> activity, we also map a

<flow> activity itself to a start node and an end node. In addition, we also

map the immediately enclosed activities according to the mapping rules defined

in this chapter. Thus, the set of nodes Vf low resulted by mapping the <flow>

activity is defined as follows:

Vf low = γ( f low) =
{

α f low,β f low
}∪ n⋃

i=1

γ(ai) (6.4.4)

A fundamental semantic of a flow activity is to enable modeling concur-

rency of a group of activities. None of the enclosed activities in a flow can be

activated unless the flow activity itself has been activated. A group of imme-

diately enclosed activities in a flow activity with no incoming links that are

defined in the flow activity are called candidate start activities in this thesis.

These activities may have incoming links that are defined in an enclosing flow

activity. In this case, the start of the activities does not depend solely on the

activation state of the immediate enclosing flow activity but depends also on

the evaluation of the transition condition of the incoming link.

A flow activity completes when all enclosed activities in the flow activity

have been completed or reached the state dead during the dead path elimination.

Immediately enclosed activities in the flow activity with no outgoing links that

are defined in the flow activity are called end activities. Thus, the set of start

activities Astart and the set of end activities Aend are defined as follows:
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Astart =
{

ai|(Lincoming
ai

= /0)∨ (∨i(ai = π2(l)∧π1(l) /∈ A f low)), l ∈ Lincoming
ai

}
Aend =

{
ai|(Loutgoing

ai
= /0)∨ (∨i(ai = π1(l)∧π2(l) /∈ A f low)), l ∈ Loutgoing

ai

}
\Astart

The mapping function θ( f low) for mapping the edges is defined as follows.

In the formula below we use the function φ(l j) to denote the transition condi-

tion that is associated with the link l j.

θ( f low) =
⋃

ai∈Astart

{
(α f low,α(γ(ai))), true

}∪
m⋃

j=1

{
(β (γ(π1(l j)))),α(γ(π2(l j))),φ(l j)

}∪
⋃

ak∈Aend

{(β (γ(ak)),β f low), true}

(6.4.5)

The set of edges E f low resulted by mapping the <flow> activity is the

union of θ( f low) with the edges created by mapping each enclosed activity in

the <flow> activity.

E f low = θ( f low)∪
n⋃

i=1

θ(ai) (6.4.6)

6.4.3 Mapping Conditional Behavior - If

An <if> activity comprises of one or more conditional branches and an op-

tional branch, each of which contains an activity. As only one branch can be

performed, the first branch that satisfies the condition is taken and its contained

activity is executed. If no conditional branch is taken and a default branch is

present, then the default branch is performed. An <if> activity completes,

when (i) the contained activity in the selected branch completes; (ii) no con-
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dition evaluates to true and no default branch is present. We denote an <if>

activity as a set of (condition,activity) tuples, where ci denotes the condition

and ai denotes the activity.

Ai f = {(c1,a1),(c2,a2), ...,(cn,an))} (6.4.7)

In an <if> activity, the elements <elseIf> and <else> are only used

as wrappers to structure conditional branches. We do not map <elseIf> and

<else> to the graph, but link the activity in each branch with the start node

of the <if> activity and bind the respective condition with the corresponding

directed edge. To do so we can avoid redundant start and end nodes of the

conditional branches and makes the graph more compact. Thus, the set of nodes

Vi f resulted by mapping the <if> activity is defined as follows:

Vi f = γ(i f ) =
{

αi f ,βi f
}∪ n⋃

i=1

γ(ai) (6.4.8)

The mapping function θ(i f ) is defined as follows:

θ(i f ) =
n⋃

i=1

{
(αi f ,α(γ(ai)),ci)

}∪ n⋃
j=1

{
(β (γ(a j)),βi f ), true

}
(6.4.9)

The set of edges Ei f resulted by mapping the <if> activity is the union of

θ(i f ) with the edges created by mapping the enclosed activity in each branch.

Ei f = θ(i f )∪
n⋃

i=1

θ(ai) (6.4.10)

6.4.4 Mapping Repetitive Execution - While

A <while> activity is used to specify repeated execution of a contained activ-

ity. The contained activity is executed as long as the loop condition evaluates

to true the beginning of each iteration. We denote a <while> activity as a
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(condition,activity) tuple, where c denotes the condition and a denotes the

activity.

Awhile = {(c,a)}

Thus, the set of nodes Vwhile resulted by mapping the <while> activity is

defined as follows:

Vwhile = γ(while) ={αwhile,βwhile}∪ γ(a) (6.4.11)

The mapping function θ(while) is defined as follows:

θ(while) = {(αwhile,α(γ(a)),c)}∪{(β (γ(a)),βwhile, true)} (6.4.12)

The set of edges Ewhile resulted by mapping the <while> activity is the

union of θ(while) with the edges created by mapping the enclosed activity.

Ewhile = θ(while)∪θ(a) (6.4.13)

6.4.5 Mapping Repetitive Execution - RepeatUntil

A <repeatUntil> activity provides another possibility to define repeti-

tive execution. Different to the <while> activity, the contained activity in

a <repeatUntil> activity is executed at least once. The condition is evalu-

ated after each execution of the contained activity and the <repeatUntil>

activity completes when the condition evaluates to true. We denote a

<repeatUntil> activity as a (condition,activity) tuple, where c denotes

the condition and a denotes the activity.

ArepeatUntil = {(c,a)}

Thus, the set of nodes VrepeatUntil resulted by mapping the <repeatUntil>

activity is defined as follows:
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VrepeatUntil = γ(repeatUntil) =
{

αrepeatUntil ,βrepeatUntil
}∪ γ(a) (6.4.14)

Likewise, the mapping of a <repeatUnitl> activity generates a set of

nodes including the start node and the end node for the <repeatUnitl>

activity and all the nodes created by mapping the activity a enclosed in it. Un-

like the mapping of the <while> activity we bound the iteration condition

of the <repeatUnitl> activity with the edge that linking the end node of

the enclosing activity and the end node of the <repeatUnitl> activity. This

transformation reflects the fact that the enclosing activity is executed at least

once.

The mapping function θ(repeatUntil) is defined as follows:

θ(repeatUntil) =
{
(αrepeatUntil ,α(γ(a)), true)

}∪{
(β (γ(a)),βrepeatUntil ,c)

} (6.4.15)

The set of edges ErepeatUntil resulted by mapping the <repeatUntil>

activity is the union of θ(repeatUntil) with the edges created by mapping the

enclosed activity.

ErepeatUntil = θ(repeatUntil)∪θ(a) (6.4.16)

6.4.6 Mapping Selective Event Processing - Pick

A <pick> activity allows a process to react to the occurrence of exactly one

event among a set of pre-defined events. It comprises a set of branches, each

of which is a event-activity pair. The activity associated with the selected event

will be executed and all the other events are ignored by the <pick> activity.

A <pick> activity completes when the selected activity completes. As BPEL

provides two types of events, i.e. the <onMessage> event and the time-based

<onAlarm> event, we denote a <pick> activity as a set of (event,activity)
tuples.
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Apick =Amessage∪Aalarm

=
{
(omessage1

,a1),(omessage2
,a2), ...,(omessagem ,am)

}∪{
(oalarm1

,am+1),(oalarm2
,am+2), ...,(oalarmn ,am+n)

}
1≤ m and 1≤ n

Thus, the set of nodes Vpick resulted by mapping the <pick> activity is

defined as follows:

Vpick = γ(pick) =
{

αpick,βpick
}∪ m⋃

i=1

{
αomessagei

,βomessagei

}
∪

n⋃
j=1

{
αoalarm j

,βoalarm j

}
∪

m+n⋃
k=m+1

γ(ak)

(6.4.17)

The mapping function θ(pick) is defined as follows:

θ(pick) =
m⋃

i=1

{
(αpick,α(omessagei), true)

}∪
n⋃

j=1

{
(αpick,α(oalarm j), true)

}
∪

m⋃
i=1

{
(α(omessagei),α(γ(ai)), true)

}∪
n⋃

j=1

{
(α(oalarm j),α(γ(am+ j)), true)

}
∪

m⋃
i=1

{
(β (γ(ai)),β (omessagei), true)

}∪
n⋃

j=1

{
(β (γ(am+ j)),β (oalarm j), true)

}
∪

m⋃
i=1

{
(β (omessagei),βpick, true)

}∪
n⋃

j=1

{
(β (oalarm j),βpick, true)

}

(6.4.18)
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The set of edges Epick resulted by mapping the <pick> activity is the union

of θ(pick) with the edges created by mapping the enclosed activity of each

branch.

Epick = θ(pick)∪
m+n⋃
k=1

θ(a) (6.4.19)

6.4.7 Processing Multiple Branches - ForEach

A <forEach> activity allows to execute the enclosed <scope> activity ex-

actly N+1 times, where N is the difference between the values of the start and

the final counter. The enclosed activity can be repeated in a serial or a parallel

manner. In case of parallelism parallel branches will be dynamically generated,

whose number is not known at design time. However, our mapping framework

considers only the static process structure but no operational semantics. Thus,

both serial and parallel <forEach> activities will be mapped according to its

static process structure defined at design time. We denote a <forEach> activ-

ity as a tuple of (condition,scope), where c denotes the condition and scope
denotes the <scope> activity.

A f orEach = {(c,scope)}

Thus, the set of nodes Vf orEach resulted by mapping the <forEach> activ-

ity is defined as follows:

Vf orEach = γ( f orEach) =
{

α f orEach,β f orEach
}∪ γ(scope) (6.4.20)

The mapping function θ( f orEach) is defined as follows:

θ( f orEach) =
{
(α f orEach,α(γ(scope)),c)

}∪ (6.4.21){
(β (γ(scope)),β f orEach, true)

}
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The set of edges E f orEach resulted by mapping the <forEach> activity

is the union of θ( f orEach) with the edges created by mapping the enclosed

activity.

E f orEach = θ( f orEach)∪θ(scope) (6.4.22)

6.5 Mapping BPEL Scope

A <scope> activity defines a local context which influences the behavior of

its enclosed activities at run time. The local context may include variables, part-

ner links, message exchanges, correlation sets, event handlers, fault handlers, a

compensation handler, and a termination handler. As our mapping framework

focuses on the static process structure of a BPEL process or fragment, it does

not map the variables, partner links, message exchanges, and correlation sets

to the graph representation. However, handlers will be mapped to the graph

representation. We consider a <scope> as tuple of (Ascope,Ahandlers). In the

following we use ch to denote compensation handler, eh to denote event han-

dlers, f h to denote fault handlers, and th to denote termination handler.

Ascope = {a}
Ahandlers = {ch,eh, f h, th}

Thus, the set of nodes Vscope resulted by mapping the <scope> activity is

defined as follows:

Vscope =γ(scope)∪ γ(handlers)

=
{

αscope,βscope
}∪ γ(a)∪

γ(ch)∪ γ(eh)∪ γ( f h)∪ γ(th)

(6.5.1)

The mapping function θ(scope) is defined as follows:
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θ(scope) =
{
(αscope,α(γ(a))), true

}∪{
(αscope,α(γ(ch))),unde f ined

}∪{
(αscope,α(γ(eh))), true

}∪{
(αscope,α(γ( f h))), true

}∪{
(αscope,α(γ(th))), true

}∪{
(β (γ(a)),βscope, true)

}∪{
(β (γ(ch)),βscope, true)

}∪{
(β (γ(eh)),βscope, true)

}∪{
(β (γ( f h)),βscope, true)

}∪{
(β (γ(th)),βscope, true)

}∪

(6.5.2)

The edges created for the <scope> activity are the union of θ(scope) with

the edges created by mapping the enclosed primary activity and by mapping

the handlers.

Escope = θ(scope)∪θ(a)∪θ(ch)∪θ(eh)∪θ( f h)∪θ(th) (6.5.3)

6.5.1 Mapping Compensation Handler

A <compensationHandler> is a wrapper for an activity that performs the

compensation [16]. We denote a compensation handler as:

Ach = {a}

Thus, the set of nodes Vch resulted by mapping the compensation handler is

defined as follows:

Vch = γ(ch) = {αch,βch}∪ γ(a) (6.5.4)

The mapping function θ(ch) is defined as follows:
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θ(ch) ={(αch,α(γ(a)), true)}∪
{(β (γ(a)),βch, true)}

(6.5.5)

The edges created for the <compensationHandler> are the union of

θ(ch) with the edges created by mapping the enclosed activity.

Ech = θ(ch)∪θ(a) (6.5.6)

6.5.2 Mapping Event Handlers

Similarly to the mapping of a <pick> activity, <eventHandlers> can be

mapped as follows:

Aeh =Aevent ∪Aalarm

={(oevent1 ,a1),(oevent2 ,a2), ...,(oeventm ,am)}∪{
(oalarm1

,am+1),(oalarm2
,am+2), ...,(oalarmn ,am+n)

}
1≤ m and 1≤ n

Thus, the set of nodes Veh resulted by mapping the event handler is defined

as follows:

Veh = γ(eh) ={αeh,βeh}∪
m⋃

i=1

{
αoeventi

,βoeventi

}
∪

n⋃
j=1

{
αoalarm j

,βoalarm j

}
∪

m+n⋃
k=1

γ(ak)

(6.5.7)

The mapping function θ(eh) is defined as follows:



6.5 Mapping BPEL Scope 151

θ(eh) =
m⋃

i=1

{(αeh,α(oeventi), true)}∪
n⋃

j=1

{
(αeh,α(oalarm j), true)

}
∪

m⋃
i=1

{(α(oeventi),α(γ(ai)), true)}∪
n⋃

j=1

{
(α(oalarm j),α(γ(am+ j)), true)

}
∪

m⋃
i=1

{(β (γ(ai)),β (oeventi), true)}∪
n⋃

j=1

{
(β (γ(am+ j)),β (oalarm j), true)

}
∪

m⋃
i=1

{(β (oeventi),βeh, true)}∪
n⋃

j=1

{
(β (oalarm j),βeh, true)

}

(6.5.8)

The edges created for the <eventHandlers> activity are the union of

θ(eh) with the edges created by mapping the enclosed activities in each branch.

Eeh = θ(eh)∪
m+n⋃
k=1

θ(a) (6.5.9)

6.5.3 Mapping Fault Handlers

A <faultHandlers> is a wrapper for a set of specific fault handling activ-

ities defined by <catch> constructs or a default fault handling logic defined

by the <catchAll> construct. We denote the fault handlers as a tuple of spe-

cific handlers ( f ault,activity) and the default handler (unde f ined,a). As the

default fault handler catches all the faults that have not been caught by a more

specific fault handler, thus, the element in the tuple is set to unde f ined. In the
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following we use ( fi to denote fault handlers and ai to denote the corresponding

activity for fault handling.

A f h = {( f1,a1),( f2,a2), ...,( fk,ak),(unde f ined,ak+1)}

Thus, the set of nodes Vf h resulted by mapping the fault handlers is defined

as follows:

Vf h = γ( f h) =
{

α f h,β f h
}∪ k+1⋃

i=1

γ(ai) (6.5.10)

The mapping function θ( f h) is defined as follows:

θ( f h) =
k⋃

i=1

{
(α f h,α(γ(ai)), fi)

}∪
{
(α f h,α(γ(ak+1)),unde f ined)

}
k+1⋃
i=1

{
(β (γ(ai)),β f h, true)

}
(6.5.11)

The edges created for the <faultHandlers> are the union of θ( f h) with

the edges created by mapping each enclosed activity in each fault handler.

E f h = θ( f h)∪
k+1⋃
i=1

θ(ai) (6.5.12)

6.5.4 Mapping Termination Handler

A <terminationHandler> can be denoted as:

Ath = {a}
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Thus, the set of nodes Vth resulted by mapping the termination handler is

defined as follows:

Vth = γ(th) = {αth,βth}∪ γ(a) (6.5.13)

The mapping function θ(th) is defined as follows:

θ(th) ={(αth,α(γ(a)), true)}∪
{(β (γ(a)),βth, true)}

(6.5.14)

The edges created for the <terminaationHandler> are the union of

θ(th) with the edges created by mapping its enclosed activity.

Eth = θ(th)∪θ(a) (6.5.15)

6.6 Mapping the Root Elements

Recall that in our mapping framework we consider only activities, activity con-

tainers, and their static structure. When only considering these constructs for

the mapping, we can reuse the rules of mapping a <scope> activity to map

the <process> element.

Different from the <process> element, the <fragment> element al-

lows to immediately enclose more than one activities, <link>s, compen-

sation and termination handlers. Thus, we need to introduce new mapping

rules for the <fragment> element. We consider a fragment as a tuple

(A f ragment ,L f ragment ,Ahandlers). Note that L f ragment denotes <link>s that are

immediately used within the <fragment> element.

A f ragment = {a1,a2, ...,an}
L f ragment = {l1, l2, ..., lm}
Ahandlers = {(ch,eh, f h, th)}
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Thus, the set of nodes Vf ragment resulted by mapping the <fragment>

activity is defined as follows:

Vf ragment =γ( f ragment)∪ γ(handlers)

=
{

α f ragment ,β f ragment
}∪ n⋃

i=1

γ(ai)∪

γ(ch)∪ γ(eh)∪ γ( f h)∪ γ(th)

(6.6.1)

Similar to mapping a <flow> activity, we need also to identify the start

and end activities that are immediately enclosed in the <fragment> element.

They are defined as follows:

Astart =
{

ai|Lincoming
ai

= /0
}

Aend =
{

ai|Loutgoing
ai

= /0
}\Astart

The mapping function θ( f ragment) is defined as follows:

θ( f ragment) =
⋃

ai∈Astart

{
(α f ragment ,α(γ(ai)), true)

}∪
{
(α f ragment ,α(γ(ch))),unde f ined

}∪{
(α f ragment ,α(γ(eh))), true

}∪{
(α f ragment ,α(γ( f h))), true

}∪{
(α f ragment ,α(γ(th))), true

}∪
m⋃

j=1

{
(β (γ(π1(l j)))),α(γ(π2(l j))),ϕ(l j)

}∪
{
(β (γ(ch)),β f ragment , true)

}∪{
(β (γ(eh)),β f ragment , true)

}∪{
(β (γ( f h)),β f ragment , true)

}∪{
(β (γ(th)),β f ragment , true)

}∪⋃
ak∈Aend

{
(β (γ(ak)),α f ragment , true)

}

(6.6.2)
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The edges created by the mapping are the union of θ( f ragment) with the

edges created by mapping each immediately enclosed activity and the handlers

within the <fragment> element.

E f ragment = θ( f ragment)∪
n⋃

i=1

θ(ai)∪θ(ch)∪θ(eh)∪θ( f h)∪θ(th)

(6.6.3)





Chapter 7

Querying BPEL Fragments

This chapter presents a novel mechanism for querying BPEL fragments and

process models. In Section 7.2 we analyze different matching types of struc-

tural matchmaking. In Section 7.3 we introduce the preliminaries for the query

algorithm. In Section 7.4 we present the query algorithm for approximate struc-

tural matchmaking of BPEL fragments and process models.

7.1 Introduction

In this chapter we focus on querying structural information of process frag-

ments or models to support reuse in process modeling. Based on an empirical

study conducted in the e-science community, users tend to use structural infor-

mation to discover process models [63]. However, querying structural informa-

tion of processes models could also be of interest in other application areas. The

structure of a process model refers to the way in which process activities are

connected together, arranged or organized. Process structure does not consider

the business semantics of the process model, such as transition conditions, join

conditions, etc. It is a snapshot of the static construction of the process model.

One interesting usage scenario for structural query is auto-completion. Based

on lessons learned from the reuse practices, the main barrier to a successful

implementation of reuse is not technological but cultural [39], i.e. users of

157
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reusable artifacts are not trained to apply the design by reuse principle [114].

One of the major issues is that users do not know where to find reusable ar-

tifacts. Even with a centralized reuse repository in place, users may not be

willing to make the effort to search for reusable artifacts, but tend to build a

new one on their own. Motivated by this knowledge, auto-completion aims to

promote the reuse of proven process models and fragments stored in a process

repository.

Assume that a user begins to model a process model from scratch. While the

user is drawing modeling elements on the canvas, in background, the process

modeling tool could capture the already modeled part and send it as a query

request to the process repository. The process repository would try to find pro-

cess models or fragments that contain the same or similar structure as the query

request. In case the query was successful, the process repository could return

the results sorted by the similarity degree of their process structure. Otherwise,

there exist no process models or fragments that can be reused.

To provide a better support for reuse, the retrieve mechanism in the pro-

cess repository should not only be able to return process models and fragments

that match exactly the process structure of the query request, but also be able

to return process models and fragments that approximately match the process

structure of the query request (see. Section 7.2.2).

In the following sections we introduce an algorithm for querying BPEL pro-

cess models and fragments that approximately match the process structure of

the query request. In our algorithm we do not consider incomplete links for

query processing. We leave it as future work.

7.2 Types of Structural Matchmaking

In a graph-based approach for structural matchmaking, we consider the fol-

lowing matching types: (sub)graph isomorphism, inexact match, and vertex

coverage.
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7.2.1 Isomorphism

Isomorphism represents the case where the process graph matches exactly to

the query request. In a graph representation the graph isomorphism can be

defined as follows.

Let Q = (VQ,EQ) be the query graph, and P = (VP,EP) be the process graph.

The process graph P is said to be a isomorphic matchmaking of the query graph

Q, if there exist a bijective function f : VQ→VP such that ( f (u), f (v)) ∈ EP if

and only if (u,v) ∈ EQ. If there is a graph isomorphism between Q and P then

P is said to be isomorphic to Q, written P∼= Q.

7.2.2 Approximate Match

To provide a better support for reuse, the retrieve mechanism in the process

repository should not only be able to return process models and fragments that

are isomorphic to the request of a user, but also be able to deliver similar ones.

In case no isomorphic process models or fragments can be found, query con-

straints should be relaxed and results with slight deviations should be returned

to users.

Approximate match requires that i) for a subset of the nodes in the query

graph, each of them has a distinctive matching node in the graph of a process

model or fragment; ii) for each pair of the nodes in the subset of the query graph,

their respective matching nodes in the process graph have the same parent-child

or ancestor-descendant relationship as the nodes in the query graph.

Assume that Q = (VQ,EQ) is a query graph and P = (VP,EP) is a process

graph, P is said to be an approximate match of Q if and only if the following

conditions satisfy:

• for a subset V̂Q ⊆VQ, there exists injective function f : V̂Q→VP

• ∀u and v ∈ V̂Q, if there exists a directed path (u,v1,v2, ...,vk,v) where

v1,v2, ...,vk ∈VQ, then there exists a directed path ( f (u),vk+1,vk+2, ...,vk+m, f (v))
in P, where f (u),vk+1,vk+2, ...,vk+m, f (v) ∈VP
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7.2.3 Vertex Coverage

When further relaxing the matchmaking criteria of the edges, we have the

matching type vertex coverage. Vertex coverage requires that the process graph

contains all the nodes in the query graph that have the same values of the match-

ing criteria, e.g. the same activity name, the same activity type, etc. As isomor-

phic graphs and exact matches contain all the nodes in the query graph, they

are also special cases of vertex coverage.

Let Q = (VQ,EQ) be the query graph, and P = (VP,EP) be the process graph.

The process graph P is said to be a vertex coverage on Q if there exists an

injective function f : VQ→VP.

7.3 Preliminaries

7.3.1 Matching Semantics

Let Q = (VQ,EQ) be a query graph and P = (VP,EP) be a process graph. We

say an assignment over VQ is a function μ : VQ→VP∪{⊥}. We use the symbol

⊥ to indicate an undefined node. If μ(v) �=⊥, we say that the query node v has

a matching node in P or the query node v is bound. Otherwise, the query node

v has no matching nodes in P and its value is undefined.

An edge is a matching edge , if and only if μ(u) �=⊥, μ(v) �=⊥, (u,v)∈ EQ,

i.e. μ(u) is ancestor of μ(v) where μ(u),μ(v) ∈VP.

Figure 7.1 shows an example of a query graph Q and a process graph P. The

labels in each graph represent the identifiers of the nodes. The same letter with

different subscripts indicates different instances of the matching nodes. For

example, the nodes o1,o2 in the process graph P are two different matching

instances of the node o in the query graph Q. The matchmaking can be based

on different matching predicate like activity names, activity types, etc.

In this thesis, we consider the level of a node q in a rooted, directed, acyclic

graph (DAG) as the length of the longest path from the root to q. We use qr to

denote the root of Q and call it the level−0 node. Similarly, we call a node qi
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Fig. 7.1 The query graph Q and the process graph P.

at level i a level− i node. We use qi j to denote both the level and the instance

index, where i indicates the level of the node and j indicates the instance index

of the node in the graph.

If there exist an assignment that maps a subgraph rooted at qi j to a subgraph

of P rooted at pk, then we call this assignment a level− i assignment . The

assignment of the root element of the subgraph qi j μ : qi j → pk is called the

start assignment of the level− i assignment . We use the representation [qi j/pk]

to denote the start assignment.

For example, for the two graphs shown in Figure 7.1, a start assignment for

the graph Q is [o/o1]. And the start assignment for the subgraph rooted at b is

[b/⊥], where the symbol ⊥ indicates that b has no matching node in P.

An assignment that maps the whole query graph Q to the process graph

P is called a global assignment. As a level − 0 assignment maps the whole

query graph to the process graph, it is a global assignment. An assignment that

maps only a subgraph of Q to a subgraph of P a local assignment. A level− i
assignment (i > 0) maps only a subgraph rooted at a node of level i of the query

graph to a subgraph of the process graph, thus, it is a local assignment.

Let’s consider again the example shown in Figure 7.1. For the query graph Q
there are 8 level−0 assignments (global assignments). We call them (level−0)1,
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Level o x y z a b c d e f g h
(Level-0)1 o1 x1 y1 z1 a1 � c1 � � f1 � �
(Level-0)2 o1 x1 y1 z1 a2 � � � � � � �
(Level-0)3 o1 x1 y3 z2 a2 � � � � � � �
(Level-0)4 o1 x2 y1 z1 a1 � c1 � � f1 � �
(Level-0)5 o1 x2 y2 � a1 � c1 � � f1 � �
(Level-0)6 o1 x2 y2 � a2 � � � � � � �
(Level-0)7 o1 x2 y3 z2 a2 � � � � � � �
(Level-0)8 o2 � y3 z2 a2 � � � � � � �

(Level-2)1 � � � � � � c2 d1 e1 f2 g1 h1
(Level-2)2 � � y z � � � � � � � �

…

…

Fig. 7.2 Some example assignments found between the query graph Q and the process graph
P.

(level−0)2, ..., (level−0)8 assignments as shown in Figure 7.2. Also, we have

two level−2 assignments in the table: (level−2)1 is a local assignment of the

subgraph rooted at c; (level−2)2 is a local assignment of the subgraph rooted

at y.

7.3.2 Similarity Measurement

Based on the discussion on matching types in the previous section we introduce

in this section three approaches for similarity measurement of approximate

matches: vertex similarity, structural similarity, and hybrid similarity. The sim-

ilarity measurements will be used for the query algorithm that we will discuss

in the following sections.

Structural similarity

Structural similarity computes the similarity of two graphs based on the num-

ber of their matching edges, because a matching edge indicates both the match-
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ing nodes and their ancestor-descendant relationship. For a subgraph G′ of the

query graph G, if all the edges in G′ are matching edges, then we call the

subgraph G′ a similarity component. If there exists no ambiguity, we use com-
ponent for short in the following discussions.

When computing the similarity between two (sub)graphs, we use a set of

disjoint components. Two components Ci = (VCi ,ECi) and Cj = (VCj ,ECj) are

disjoint, if they do not have common edges, i.e. ECi ∩ECj = /0. Using disjoint

components ensures that the same matching edges are not counted twice during

similarity measurement.

Let {Cm1,Cm2, ...,Cmn} be a set of disjoint components of the query graph

Q. Assume that a set of assignments Um =
{

μm j|μm j : Cm j→ Pm j
}

maps each

component to a subgraph of a process graph P, where Pm j is a subgraph of

P, m,n ∈ N, and 1 ≤ j ≤ n. We use |μm j| to denote the number of matching

edges of the assignment μm j and call it the matching size of μm j. We use |EQ|
to denote the number of edges in the graph Q. The structural similarity of the

process graph P and the query graph Q can be computed as follows:

Sstructural =
|μmk|+ kstructural ∗∑(|μmi|)

|EQ| (7.3.1)

with μmi ∈Um\{μmk}, where μmk is the biggest matching component with

μmk ∈ {μml ||μml |= max(|μm1|, |μm2|, ..., |μmn|)} and kstructural is a customiz-

able weighting factor with 0 < kstructural < 1, which should be determined by

users.

To explain the reason of introducing the weighting factor kstructural , let’s

consider the following example. Figure 7.3 illustrates a process graph P′ and a

query graph Q′. In the example, we find three assignments as shown in Figure

7.4. Each of these assignments maps a component of Q′ to a subgraph of P′. For

the three assignments we can identify three similarity components that have no

common edges (as shown in Figure 7.3). Thus, they are disjoint components of

Q′.
If we simply sum up the number of matching edges of the components and

divide it by the size of query graph Q′, i.e. (|μC1
|+ |μC2

|+ |μC3
|)/|EQ′ |= (3+
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Fig. 7.3 Without the weighting factor the structural similarity maybe distorted.

Level m x u a y b c
(Level-0)1 m1 � � a1 � b1 c1
(Level-0)2 m2 x3 u1 � � � �
(Level-1)1 � x1 � � y1 � �

Fig. 7.4 Three assignments found between the process graph P′ and the query graph Q′.

2+1)/6, then we get a similarity equals to 1. This result would indicate that the

structure of the query graph Q′ was identical with the structure of the process

graph P′, which is obviously not true. Therefore, we introduce the weighting

factor kstructural to prevent this kind of distorted similarity. The value of the

weighted factor ranges from 0 to 1 and should be determined by users based on

experimentations.

However, we should not apply the weighting factor kstructural to all the com-

ponents that are used to calculate the similarity. For example, assume that a

process graph P′ is isomorphic to the query graph Q′. Thus, the only matching

component is Q′ itself, which is then also the biggest matching component. If

we apply the weighting factor kstructural to the biggest matching component Q′,
then similarity of P′′ and Q′ would be kstructural ∗ |EQ′ |/|EQ′ | = kstructural with

0 < kstructural < 1. In other words, the value of the structural similarity of P′′

and Q′ is smaller than 1. Apparently, this is not true. Because P′′ and Q′ are

isomorphic, the actual value of their structural similarity should be 1. For that

reason, we use a maximal component (i.e. a component with the most num-
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ber of matching edges) without the weighting factor and apply kstructural to the

other disjoint components.

Note that if the similarity between a query graph and a process graph equals

to 1, it does not necessarily indicate that the query graph and the process graph

are isomorphic. The process graph could also be an exact match of the query

graph.

Back to the example shown in Figure 7.3, let the value of the weighting

factor kstructural be 0.9. The structural similarity between P′ and Q′ can be cal-

culated as (3+0.9∗ (2+1))/6 = 0.95.

Vertex Similarity

Vertex similarity computes the similarity between a query graph and a pro-

cess graph solely based on the number of their matching nodes. This approach

ignores the ancestor-descendant relationships of the matching nodes. Vertex

similarity is especially useful, when a process modeler wants to find process

models or fragments that contain a subset of process activities as specified in

the query request but does not care how they are orchestrated.

Vertex similarity can be calculated as follows:

Svertex =
|V match

Q |
|VQ| (7.3.2)

|V match
Q | denotes the number of nodes in the query graph Q that have a match-

ing node in the process graph P and |VQ| denotes the number of nodes of the

graph Q.

For the example shown in Figure 7.3, the vertex similarity can be calculated

as Svertex = 7/7 = 1, which means all the nodes in the query graph Q′ have

matching nodes in the process graph P′.
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Hybrid similarity

Hybrid similarity takes both structural and vertex similarities into considera-

tion.

The hybrid similarity is defined as follows:

Shybrid =
k1 ∗ (|μmk|+ kstructural ∗∑(|μmi|))+ k2 ∗ |V match

Q |
k1 ∗ |EQ|+ k2 ∗ |VQ| (7.3.3)

where 0≤ k1,k2 ≤ 1 and k1 + k2 = 1

In the formula above we introduced two weighting factors: (i) k1 is the

weighting factor for structural similarity; (ii) and k2 is the weighting factor for

vertex similarity. These two weighting factors allow users to define which pro-

portion the structural and vertex similarities should be considered in the over-

all similarity measurement. Which of the weighting factors should be larger

depends on whether the structural similarity or the vertex similarity is more

important for users. Both structural and vertex similarity are special cases of

hybrid similarity. We will use the numerator in the Formula (7.3.3) as the match
size later in this chapter.

Let’s consider the example shown in Figure 7.3 again. Let the weighting

factor for structural similarity k1 = 0.7 and the weighting factor for vertex simi-

larity k1 = 0.3. Also, let kstructural = 0.9. Then we can calculate the hybrid sim-

ilarity Shybrid = (0.7∗ (3+0.9∗ (2+1))+0.3∗7)/(0.7∗6+0.3∗7) ≈ 0.97.

Apparently, the vertex similarity increases the overall similarity than only con-

sidering the structural similarity.

7.3.3 Data Structure

Our query algorithm works on a novel data structure called solution stream,

which captures all the necessary data needed in different phases of the query

algorithm. In the following we use the example shown in Figure 7.1 to explain

the data structure.
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Each node in the query graph has a solution stream. Figure 7.5 illustrates a

snippet of the solution streams initialized by using the example shown in Figure

7.1. Let’s begin with the root o of the query graph Q. The solution stream So

for the root o comprises of: (i) a list of stream items; (ii) the maximal match

size of its stream items; (iii) a set of assignments (maxAssignmentSet) of the

subgraph rooted at o that have the maximal matching size.

o1 -1
Ref. Map

x a b

o2 -1
Ref. Map

x a b maxMatchSize: -1

Solution Stream So

Solution Stream Sa

a1 -1
Ref. Map

y c

a2 -1
Ref. Map

y c

x1 -1
Ref. Map

y

x2 -1
Ref. Map

y
Solution Stream Sx

a stream
item list 

the matching 
process node

the maximal matching 
size for o and o1

a reference map of 
child nodes

the maximal matching
size of the subgraph

rooted at omaxAssignmentSet

maxMatchSize: -1

maxAssignmentSet

maxMatchSize: -1

maxAssignmentSet

a set of maximal 
assignments of the 

subgraph rooted at o

Fig. 7.5 A part of initialized solution streams.

Each matching node of o in the process graph P has a stream item. In the

example shown in Figure 7.1 the root o has two matching nodes in P, i.e. o1

and o2. Thus, the stream item list consists of two stream items.

A stream item stores the information of the matchmaking of a node in the

query graph and the respective node in the process graph. Taking the root o and

a matching node o1 as an example the stream item sio1
o contains the following

data:

• the matching node o1 in the process graph P;

• the maximal match size of the assignments that maps the subgraph rooted

at o to the subgraph rooted at o1 with an initial value of −1;

• a reference map of child nodes of o in the query graph, i.e. x, a, and b. As

(o1,x1) is a matching edge, the reference map stores also a reference from

the child node x to the stream item six1
x . Similarly, the reference maps stores
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also the reference from x to the stream item six1
x , from a to the stream items

sia1
a and sia2

a .

Likewise, further solution streams and stream items can be created as dis-

cussed above. As solution stream may contain more than one stream items,

we use maxMatchSize to store the maximal matching size in the initialization

phase. It allows the algorithm to retrieve the maximal matching size without

having to go through each assignment and compute the maximal matching size

again. The set maxAssignmentSet stores the corresponding assignments with

the maximal matching size.

7.4 An Approximate Query Algorithm

In this section we present an approximate query algorithm. The basic idea of

our algorithm is to find all the maximal local assignments for subgraphs rooted

at each query node and then to examine which combinations of the maximal

local assignments results in an overall maximal similarity value.

For example, as shown in Figure 7.2 the maximal level−0 assignments do

not reflect the total similarity between P and Q. The two graphs P and Q have

an isomorphic common subgraph rooted at c. But this local assignment is not

included in any of the level−0 assignments.

If we combine the part of the assignment (level − 0)1 (assignment for o,

x, y, z, a, and b) with the part of the assignment (level− 2)1 (assignment for

c, d, e, f , g and h), then the new global assignment would result in a larger

similarity value than each individual assignment would. Thus, we cannot sim-

ply compute the similarity between the query graph and the process graph from

maximal level−0 assignments. In the following, We introduce a corresponding

approach for measuring the similarity. The algorithm comprises of three phases:

the initialization phase, the assignment phase, and the combination phase.
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7.4.1 The Initialization Phase

The initialization phase creates for each query node a solution stream and

populate the solution streams with the data needed for the following two

phases. The procedure of the initialization phase is shown in Algorithm 22.

At the beginning of the algorithm (Algorithm 22, line 2) we use a sorted array

(queryNodes[]) of all the query nodes in the query graph Q. The query nodes

in queryNodes[] are sorted in an descending order of their topological levels in

Q. The rest of the algorithm can be divided into two logical parts.

The first logical part (Algorithm 22, line 5-24) traverses the query graph Q.

For each query node qi the algorithm creates a solution stream Sqi (Algorithm

22, line 6). If the query node qi is a leaf node, then the subgraph rooted at qi

does not contain any edges. Thus, its structural matching size is 0. Otherwise,

its structural matching size is undefined. In this case, we set the value of its

maximal structural similarity to −1.

Then the algorithm compares the query node qi with each node p in the

process graph P (Algorithm 22, line 11). If the predicates of qi (e.g. activity

name, variable name, partner link type, etc.) being compared match those of

the node p, then the algorithm creates a stream item sip
qi (Algorithm 22, line 14)

and stores the matching process node p in it (22, line 15). Analogously, if the

query node qi is a leaf node, then we set its maximal match size to 0; otherwise,

we set it to −1 (Algorithm 22, line 16-19). Recall that a query node may have

more than one matching process node. The boolean variable vertexMatchFlag
is used to ensure that a matching query node will be counted only once. If the

query node qi does not match the process node p, then the algorithm does not

create the stream item for qi.

The second part (Algorithm 22, line 25-30) of the algorithm examines

whether the matching nodes in the process graph have the same ancestor-

descendant relationships as their corresponding query nodes.

Assume that qi is a query node and qchild
i is a child node of qi. Let pi in

the process graph P be a matching node of qi and p′i in the process graph P be

a matching node of qchild
i . If qi is an ancestor of qchild

i in the process graph P,

then (qi,qchild
i ) is a matching edge. Thus, the stream item sipi

qi stores a reference
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Algorithm 22: Initialization phase

Input: a query graph Q and a process graph P
Output: Initialized solution streams for the query graph Q

1 begin
2 queryNodes[] = [q0,q1,q2, ...,qk];
3 vertexCounter = 0;

4 vertexMatchFlag = false;

5 for i = 0 to k do
6 create a new solution stream Sqi ;

7 if isLeaf(qi) then
8 Sqi .maxMatchSize = 0;

9 else
10 Sqi .maxMatchSize =−1;

11 for each p in VP do
12 if isMatching(qi, p) then
13 vertexMatchFlag = true;

14 create a new stream item sip
qi ;

15 sip
qi .processNode = p;

16 if isLeaf(qi) then
17 sip

qi .maxMatchSize = 0;

18 else
19 sip

qi .maxMatchSize =−1;

20 add all the child nodes of qi in sip
qi ;

21 add sip
qi to Sqi ;

22 if vertexMatchFlag = true then
23 vertexCounter = vertexCounter + 1;

24 vertextMatchFlag = false;

25 for each solution item sip
qi in the solution stream Sqi do

26 p = siqi .prcessNode;

27 for each child node qchild
i of qi in siqi do

28 p′ = siqchild
i

.processNode;

29 if isAncestor(p, p′) then
30 add reference from qchild

i to sip′
qchild

i
in the reference

map of sip
qi ;

31 end
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from the child node qchild
i to the stream item sip′i

qchild
i

. The reference indicates that

the edge (qi,qchild
i ) is a matching edge.

The worst case time complexity of the initialization phase is the sum of the

time complexity of the two parts in the algorithm, i.e. O
(|VQ||VP|+ |VQ|cb2

)
,

where |VQ| and |VP| denote the order of the query graph and the process graph

respectively, c is the average number of the child nodes of the query nodes, and

b is the average number of solution items of the query nodes.

7.4.2 The Assignment Phase

The assignment phase computes the maximal assignments for all the subgraphs

that are rooted at a query node in the query graph Q (maximal level-i assign-

ments). A maximal level-i assignment of a query node qi can be efficiently

calculated by combining the maximal assignments of its child nodes. Thus, we

follow a bottom-up approach and begin with the leaf nodes in the query graph

and work towards the root.

Algorithm 23: Assignment phase

Input: a query graph Q and a process graph P
Output: the maximal assignments for each query node in Q

1 begin
2 queryNodes[] = [q0,q1,q2, ...,qk];
3 sort the array queryNodes[];
4 for i = 0 to k do
5 if isLeaf(qi) then
6 compute maximal assignment for leaf nodes;

7 else
8 compute maximal assignments for non-leaf nodes;

9 end

As shown in Algorithm 23, the algorithm takes a query graph Q and a pro-

cess graph P as input and calculates the maximal assignments for each query
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node in Q. At the beginning of the algorithm we sort the query nodes in a de-

scending order of their levels and store them in an array (Algorithm 23, line

3). Then we iterate each element in the array. If the query node being process-

ing is a leaf node, then we invoke the Algorithm 24; otherwise, we invoke the

Algorithm 25 for further processing.

If a query node qi is a leaf node in the query graph, then we first examine

whether its solution stream has stream items ((Algorithm 24, line 2). If a query

node has stream items, then the query node has matching node in the process

graph. Otherwise, the query node has no matching node in the process graph.

If qi has stream items, then the algorithm iterates the stream items and create

for each stream item an assignment from qi to its corresponding matching pro-

cess node pi (Algorithm 24, line 2-5). Otherwise, it means that qi has no match-

ing process nodes and the algorithm assigns pi to ⊥ (Algorithm 24, line 6-7).

In both cases, there are no matching edges. Therefore, the maximal matching

size of each solution item siqi is 0 (Algorithm 24, line 8) and μqi is the maximal

assignment of qi (Algorithm 24, line 9-10).

Algorithm 24: Compute maximal assignments for leaf nodes

1 begin
2 if Sqi has stream items then
3 for each stream item siqi do
4 pi = siqi .processNode;

5 μqi = [qi/pi];

6 else
7 μqi = [qi/⊥];
8 siqi .maxMatchSize = 0;

9 tempMaxAssignmentSet [qi/pi] =
{

μqi

}
;

10 maxAssignmentSet [qi] = maxAssignmentSet [qi]∪
{

μqi

}
11 end

If a query node qi is an inner node, we can calculate the maximal assign-

ments for it by combining the maximal assignments of its child nodes (Algo-

rithm 25). The start assignment of the maximal assignment μpi is [qi/pi] (Al-
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gorithm 25, line 5), which is also the current temporary maximal assignment

of qi (Algorithm 25, line 6).

Algorithm 25: Compute maximal assignments for inner nodes

1 begin
2 if Sqi has stream items then
3 for each stream item siqi do
4 pi = siqi .processNode;

5 μqi = [qi/pi];

6 tempMaxAssignmentSet [qi, pi] =
{

μqi

}
;

7 processedDescendants = {};
8 let childNodes be a sorted list of child nodes of qi;

9 for each child node qc in childNodes do
10 let descendantsqc be the set of all descendants of qc;

11 commonNodes =
(processedDescendants∩descendantsqc);

12 if siqi has no references to any stream items of qc then
13 Set assignments to ⊥;

14 else
15 Compute the combination of assignments;

16 processedDescendants.add (descendantsqc);

17 Set the value of maxAssignmentSet;

18 end

Subgraphs rooted at child nodes may overlap with each other. If we sim-

ply combine the assignments of the subgraphs, a larger assignment may be

overwritten by a smaller one, which would lower the actual similarity value

between the query graph and the process graph. Figure 7.6 shows an exmaple

with a query graph Q and a process graph P. The symbole ′ in the labeling of a

process node indicates that the process node has a matching node in the query

graph Q. For exmaple, the process node a′ is a matching node of the query node

a in the query graph Q. Assume that we have already calculated the maximal

assignments for subgraphs rooted at b with μb = {[b/b′] [d/d′] [e/e′]} and the

maximal assignments for subgraphs rooted at c with μc = {[c/c′] [d/⊥] [e/⊥]}.
Now let’s calculate the maximal assignments of the subgraph rooted at a.
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The start assignment of the subgraph rooted at a is [a/a′]. To compute the

maximal assignment of a we first combine its start assignment with μb. As a

result we get μ1 = {[a/a′] [b/b′] [d/d′] [e/e′]}. The subgraph rooted at b has

common nodes with the subgraph rooted at c, i.e. d and e. Simply combining

μ1 with μc would overwrite the assignments [d/d′] [e/e′] by the assignments

[d/⊥] [e/⊥]. The combined assignment is

μ2 =
{[

a/a′
][

b/b′
][

c/c′
]
[d/⊥] [e/⊥]} .

Due to the overwritting, we lost two matching edges in the assignment μ2,

i.e. (b,d) and (d,e). Therefore, when computing the maximal assignments for

inner nodes, we have to make sure that none of the common nodes of the as-

signments with larger matching size are overwritten.

r r’

a g

hb c

a' k

h'x c'

i jd

e

i' j'
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b'

e'

Query Graph Q Process Graph P

Fig. 7.6 Assignments of the subgraphs rooted at the child nodes may overlap with each other.

Thus, we first sort the child nodes of qi based on the following conditions

(Algorithm 25, line 8): (i) child nodes whose stream items are referenced by

stream items of qi are placed before child nodes whose stream items have no

references; (ii) child nodes that are referenced by stream items of qi are sorted

in descending order of their maximal matching size. Condition (i) let us fo-

cus on processing matching process nodes that represent the same ancestor-

descendant relationships as the query nodes. Condition (ii) ensures that assign-
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ments with larger matching size are processed before the assignments with

smaller matching size.

We then use the set processedDescendants to store all the descendants of

qi’s child nodes that have been processed. Assume that the algorithm is going

to process the next child node qc of qi. If the subgraph rooted at qc has com-

mon nodes with already processed subgraphs, then the common nodes are the

intersection of processedDescendants and the descendants of qc (Algorithm

25, line 11).

When computing the combination of the child assignments, there exist two

cases: (i) siqi has no references to siqc ; (ii) siqi has references to siqc .

Case (i): if none of the stream items of qc has been referenced by the stream

item siqi (Algorithm 25, line 12), then the matching process node of qi is not an

ancestor of the matching process node of qc. In other words, the edge (qi,qc) is

not a matching edge. Thus, we invoke the Algorithm 26 to assign all the nodes

of the subgraph rooted at qc to ⊥ (Algorithm 25, line 13).

Algorithm 26: Set assignments to ⊥
1 begin
2 for each assignment μqi in tempMaxAssignmentSet [qi, pi] do
3 if commonNodes is empty then
4 for each qx ∈Vqc do
5 μqi = μqi ⊕μqx ;

6 else
7 for each qx ∈ (Vqc\commonNodes) do
8 μqi = μqi ⊕ [qx/⊥];
9 end

Algorithm 26 combines each assignments in tempMaxAssignments [qi, px]

with assignments that maps each query nodes in the subgraph rooted at qc to

undefined (⊥). As discussed above, subgraphs rooted at the child nodes of qi

may overlap with each other. When combining their assignments, we have to

examine whether they have common nodes.
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We first introduce two operations that are needed in the following algorithms

for combining two assignments: the union operation and the difference opera-

tion.

Definition 8. The Union Operation ⊕
Let μ : VQ→VP∪⊥ and μ ′ : V ′Q→V ′P∪⊥ be two assignments and VQ∩V ′Q = /0.

The union of the assignments μ and μ ′ is a function μ ′′ : VQ∪V ′Q→VP∪V ′P∪⊥.

We use the symbol ⊕ to denote the union operation. Thus, μ ′′ = μ⊕μ ′. ��

Definition 9. The Difference Operation �
Let μ : VQ→VP∪⊥ and μ ′ : V ′Q→V ′P∪⊥ be two assignments. The difference

of the assignments μ and μ ′ is a function

μ ′′ =

{
VQ\V ′Q→VP∪⊥ V ′Q �=VQ

unde f ined V ′Q =VQ

We use the symbol� to denote the difference operation. Thus, μ ′′ = μ�μ ′.
��

If commonNodes is empty, which means the subgraph being processed has

no common nodes with already processed subgraphs (Algorithm 26, line 3),

we can just combine the two assignments (Algorithm 26, line 5).

If commonNodes is not empty, then it means that some of the nodes in

the subgraph rooted at qc have already been assigned. Recall that the child

nodes of qi have been processed in a descending order of the maximal matching

size of their assignments. Thus, the existing assignments of the common nodes

must result in a larger matching size than the new assignments defined by qc.

Therefore, the algorithm adds the complement of the common nodes in Vqc to

each of the temporary maximal assignments (Algorithm 26, line 7-8).

Case (ii): if the stream item siqi has references to at least one stream item of

qc (Algorithm 25, line 14), then it means the edge (qi,qc) is a matching edge.

Thus, we should combine the assignments of qi with the assignments of qc.

This is described in Algorithm 27.

As we are looking for the maximal assignments for the subgraph rooted at qi,

it is sufficient to take only the maximal assignments of qc into account. For that
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Algorithm 27: Compute the combination of assignments

1 begin
2 let SIqc be a set of stream items referenced by siqi ;

3 m = max
{

siqc .maxMatchSize|siqc ∈ SIqc

}
;

4 SImax
qc =

{
siqc |siqc ∈ SIqc ∧ siqc .maxMatchSize = m

}
;

5 for each μqi in tempMaxAssignmentSet [qi, pi] do
6 for each siqc in SImax

qc do
7 pc = siqc .processNode;

8 for each μqc in tempMaxAssignmentSet [qc, pc] do
9 if commonNodes is empty then

10 newMaxAssignments =
newMaxAssignments∪{μqi ⊕μqc

}
;

11 newMatchSize = k1 ∗ (m+1)+ k2 ∗ |V match
μqc

|;
12 siqi .maxMatchSize =

siqi .maxMatchSize+newMatchSize;

13 else
14 Combine assignments;

15 tempMaxAssignmentSet [qi, pi] = newMaxAssignments;

16 end

reason, we select all the stream items of qc with the following properties: (i)

stream items that are referenced by siqi ; (ii) stream items that have the maximal

matching size in the solution stream of qc. These stream items are stored in the

set SImax
qc (Algorithm 27, line 4).

Next, the algorithm combines the existing assignments of qi with the maxi-

mal assignments of qc (Algorithm 27, line 5-14). The maximal assignments of

qc can be retrieved by iterating the assignments in tempMaxAssignmentSet that

is associated with each stream item in SImax
qc (line Algorithm 27, 6-8). With the

matching process node pc we can get tempMaxAssignmentSet [qc, pc], which

stores all the local maximal assignments for the subgraph rooted at qc. The al-

gorithm then iterates the assignments in tempMaxAssignmentSet [qc, pc] (Algo-

rithm 27, line 10). When combining the assignments, the algorithm examines

whether there are possible overlaps of the subgraphs.



178 7 Querying BPEL Fragments

If there exists no common nodes between the subgraph rooted at qc and the

processed descendants of qi, then we can simply combine the assignment μqi

with the assignment μqc . The combination is kept in the set newMaxAssignments
(Algorithm 27, line 10). The current maximal match size of qi can be calculated

as maxMatchSizeqi = maxMatchSizeqi +m+ 1, where m is the match size of

μpc and 1 represents the new matching edge (qi,qc).

If there exist common nodes between the subgraph rooted at qc and the

processed descendants of qi, we invoke Algorithm 28. In order to avoid over-

writing the assignments of the processed descendants of qi we remove the as-

signments of the common nodes from μqc (Algorithm 28, line 2) and combine

the remainder with μqi (Algorithm 28, line 3). However, whether the new as-

signment is a maximal assignment of the subgraph rooted at qi is unknown.

We have to compare the matching size of the new assignment of qi with the

matching size of the original maximal assignments of qi.

Algorithm 28: Combine assignments

1 begin
2 μ ′qc = μpc � commonNodes;

3 μnew
qi

= μqi ⊕μ ′qc ;

4 newMatchSize = k1 ∗ |μnew
qi
|+ k2 ∗ |V match

μnew
qi
|;

5 if newMatchSize > siqi .maxMatchSize then
6 newMaxAssignments =

{
μnew

qi

}
;

7 siqi .maxMatchSize = newMatchSize;

8 else if newMatchSize = siqi .maxMatchSize then
9 newMaxAssignments = newMaxAssignments∪{μnew

qi

}
;

10 end

If the match size of the new assignment is greater than that of the maximal

assignment μqi , then the new assignment is the maximal assignment. Thus,

we set the match size of μqi as the new maximal match size and replace all

the assignments in the set newMaxAssignments with μnew
qi

((Algorithm 28, line

5-7).



7.4 An Approximate Query Algorithm 179

If the match size of the new assignment equals to that of the maximal

assignments μqi , then the new assignment together with the assignments in

newMaxAssignments are all the maximal assignments of the subgraph rooted

at qi (Gqi for short). Thus, we add μnew
qi

to the set newMaxAssignments ((Algo-

rithm 28, line 8-9).

In both cases, the maximal match size of the stream item siqi is k1 ∗ |μnew
qi
|+

k2 ∗V match
μnew

qi
.

Algorithm 29: Set the value of maxAssignmentSet

1 begin
2 if Sqi .maxMatchSize < siqi .maxMatchSize then
3 Sqi .maxMatchSize = siqi .maxMatchSize;

4 maxAssignmentSet [qi] = tempMaxAssignmentSet [qc, pqc ];

5 else if Sqi .maxMatchSize = siqi .maxMatchSize then
6 maxAssignmentSet [qi] =

maxAssignmentSet [qi]∪ tempMaxAssignmentSet [qc, pqc ];

7 end

At the end of the iteration of each stream item siqi in Algorithm 25, we

update the maximal match size and the maximal assignment set associated with

the solution stream Sqi (Algorithm 29).

The worst case time complexity of the assignment phase is

O
(|VQ|(b+bc(c+n+n2b))

)
where |VQ| denotes the number of the nodes of the query graph Q, b is average

number of the stream items of the query nodes, c is the average number of child

nodes of the, n is the average number of assignments in maxAssignmentSet.
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7.4.3 Combination Phase

Before we begin with the algorithm of the combination phase, let’s first con-

sider the example shown in Figure 7.1 again. In the assignment phase, we found

two maximal level-0 assignments (global assignments) for the query graph,

i.e. (level−0)1 and (level−0)4. Both of the maximal level-0 assignments has

7 matching edges and 7 matching nodes. Apparently, none of these maximal

level-0 assignments reflect the actual similarity between the query graph and

the process graph. The query graph and the process graph have an isomorphic

subgraph rooted at c. But the mapping of the subgraph has not been included

in any of the level-0 assignments. Thus, we cannot simply compute the actual

similarity between the query graph and the process graph solely based on the

maximal level-0 assignments. Instead, combining the maximal level-0 assign-

ments with some maximal local assignments (maximal level-i assignments)

could result in a more precise similarity value.

For example, we can combine the assignment (level−0)1 with (level−2)1,

i.e. use the assignment for the query nodes {c,d,e, f ,g,h} in (level−2)1 to

substitute their assignments in (level−0)1 as shown in Figure 7.7. The combi-

nation results in 10 matching edges and 11 matching nodes, which reflects the

similarity between the query graph and the process graph more precisely. We

use U =
{

μ part
o ,μ part

c
}

to denote the combination of the assignments, where

μ part
o refers to the partial assignment that maps the query nodes {o,x,y,z,a,b}

and μ part
c maps the rest of the query nodes {c,d,e, f ,g,h}.

o x y z a b c d e f g h
o1 x1 y1 z1 a1 � c2 d1 e1 f2 g1 h1

(Level-0)1 (Level-2)1

Fig. 7.7 A maximal assignment for Q.

The combination phase tries to build global assignments that have the max-

imal similarity value by combining the maximal assignments found in the as-

signment phase. The basic idea is to successively use the maximal local as-
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signments to substitute the assignments of the common nodes in the maximal

global assignments. The substitution splits the original assignment that con-

tains the common nodes into two partial assignments (cf. the example in Figure

7.7). We call an assignment that consists of more than one partial assignment a

compound assignment. After the substitution, the algorithm compares the new

similarity value with the previous similarity value. If the similarity after the sub-

stitution is greater than the previous similarity value, then the new compound

assignment is defined to be the maximal global assignment. If the similarity

after the substitution equals to the previous similarity value, then the new com-

pound assignment is one of the maximal global assignments. Otherwise, the

algorithm ignores the combination and continues with the examination until all

maximal local assignments of the query nodes have been iterated. The proce-

dures are shown in Algorithm 30.

At the beginning of the algorithm we store all the query nodes in the array

nodes[] sorted according to the following conditions: (i) it contains only query

nodes where the maxMatchSize of their solution streams is greater than 0; (ii)

the query nodes are sorted in a descending order of the maxMatchSize of their

solution streams. Condition (i) lets the algorithm consider only query nodes

whose maximal assignments may contribute to increase the overall similarity

value. Condition (ii) ensures that the larger assignments are processed before

the smaller ones (same motivation as in the assignment phase).

Then we initialize the similarity value s of the maximal level-0 assignments

(root assignments). The similarity value can be calculated based on the maxi-

mal matching size stored with respective solution stream of the root qr of the

query graph (Algorithm 30, line 3-6). The combination starts with combining a

maximal level-0 assignment with one of the biggest local assignments. If there

is no maximal level-0 assignment in maxAssignmentSet[qr], we initialize an

assignment μ⊥ to start with (Algorithm 30, line 7-8). The assignment μ⊥ maps

all the query nodes in Q to ⊥. M is used to store the compound assignments

that resulted from the combination algorithm. The initial elements of M are the

maximal level-0 assignments (Algorithm 30, line 9-10).

For each query node qi in nodes[] we iterate each global assignment U . As

U could also be a compound assignment, we have to find the partial assign-
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Algorithm 30: Combination Phase

1 begin
2 nodes[] = [q0,q1,q2, ...,qk];
3 M = /0;

4 if Sqr .maxMatchSize≤ 0 then
5 s = 0;

6 else
7 s = Sqr .maxMatchSize

k1∗|EQ|+k2∗|V match
Q | ;

8 if maxAssignmentSet[qr] is empty then
9 maxAssignmentSet[qr] = {μ⊥};

10 for each μqr ∈ maxAssignmentSet[qr] do
11 M = M∪{μqr

}
;

12 if nodes[] is not empty then
13 for i = 0 to k do
14 Mtemp = M;

15 for each U ∈M do
16 let μmax

qi
∈U be an assignment that includes qi;

17 pi = μmaxqi (q0);
18 if pi =⊥ or sipi

qi .maxMatchSize < Sqi .maxMatchSize then
19 common =Vμmax

qi
∩Vqi ;

20 μ ′max
qi

= μmax
qi
�μcommon

qi
;

21 for each μqi ∈ maxAssignmentSet[qi] do
22 let μ ′qi

be the partial assignment of μqi that only

maps the common nodes;

23 for each μpart ∈
(
U\μmax

qi

)∪{μ ′max
qi

}
do

24 if haveLostEdges
(
μpart ,μ ′qi

)
then

25 μ ′′qi
= μpart ⊕μ ′qi

;

26 U ′ =
(
U\{μpart ,μcommon

qi

})∪{μ ′′qi

}
;

27 computeMaxAssignment (U ′,s);
28 else
29 if μpart = μ ′max

qi
then

30 U ′ =
(
U\{μmax

qi

})∪{μ ′max
qi

,μ ′qi

}
;

31 computeMaxAssignment (U ′,s);
32 M = Mtemp;

33 end
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ment μmax
qi

in U that contains the query node qi (Algorithm 30, line 15). The

substitution is only meaningful when one of the following two conditions are

satisfied (Algorithm 30, line 17): (i) the assignment μmax
qi

maps qi to undefined,

i.e. ⊥; (ii) the assignment μmax
qi

maps qi to a process node pi and the maximal

match size of the stream item sipi
qi is smaller than the maximal match size of the

solution stream Sqi .

Condition (i) means that the subgraph rooted at qi has been assigned to ⊥,

which means its match size is 0. Substituting the assignment for the subgraph

rooted at qi would increase the overall similarity value. Condition (ii) indicates

that the assignment associated with the stream item sipi
qi is not the stream item

with the largest match size among other stream items in the solution stream

Sqi . So substituting the assignment for the subgraph rooted at qi would also

increase the overall similarity value. Otherwise, if the maximal match size of

the stream item sipi
qi equals to the maximal match size of the solution stream Sqi ,

then the partial assignment for the subgraph Gqi is already a maximal assign-

ment. Therefore, it is not necessary to substitute it with another maximal local

assignment, as they have the same match size.

The next step is to identify the common nodes for the substitution. The

common nodes is the intersection of the query nodes in μmaxqi and the query

nodes of the subgraph Gqi (Algorithm 30, line 18). For each maximal local

assignment μqi we are only interested in the partial assignment μ ′qi
that maps

the common nodes (Algorithm 30, line 21). And for each partial assignment

in U we are only interested in the partial assignment μpart that does not map

the common nodes (Algorithm 30, line 22). Now we try to combine the partial

assignment μ ′qi
with the partial assignment μpart and to examine whether the

combination would result in a larger similarity value. However, when removing

common nodes from the assignment μmax
qi

, we could have lost some matching

edges. We call this the lost-matching-edge problem.

The lost-matching-edge problem is illustrated in Figure 7.8. In the fig-

ure we have a query graph Q and a process graph P. Nodes with the same

index are the matching nodes. The maximal level − 0 assignment is μqr =

{[qr/pr][q0/p0][x/⊥][q1/p1][q2/⊥][q3/p3][q4/⊥][q5/p5]}. Note that the match-

ing nodes of the subgraph rooted at q2 are not in the level− 0 assignments.
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Thus, we want to combine the maximal level − 2 assignment μq2
with μqr

and to examine whether the similarity is greater after the combination, where

μq2
= {[q2/p2] [q3/p3] [q4/p4] [q5/p5]}. The assignments μqr and μq2

have

common nodes {q2,q3,q4,q5}. In order to combine the two assignments we

subtract the mapping of the common nodes from μqr and combine the map-

pings of the remaining nodes in μqr with μq2
to form a compound assignment

that maps all the nodes of the query graph. The compound assignment

μcompound
qr =

{
μ ′qr ,μq2

}
= {{[qr/pr][q0/p0][x/⊥][q1/p1]} ,{[q2/p2][q3/p3][q4/p4][q5/p5]}} .

qr prLevel 0

q0 x

q2q1

p0 z

p2p1

Level 1

Level 2

q3

q5

q4 p3

p5

p4Level 3

Level 4 q5 p5

Query Graph Q Process Graph P

Fig. 7.8 Combine two assignments may lead to lost matching edges.

The number of matching edges of the compound assignment μcompound
qr is

|μ ′qr |+ |μq2
|= 2+3 = 5. But from the example shown in Figure 7.8 we can see

that the two graphs have actually 6 matching edges. The edge elost = (q1,q3) is

also a matching edge for the compound assignment, but getting lost after hav-

ing split up the original assignment μqr . This is the lost-matching-edge prob-

lem.

We can see from the example: if there exists at least one lost matching edge

between two partial assignments, then we should not treat them as separate
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assignments, but combine them to form one assignment as a whole. In the

example above, we have two partial assignments μ ′qr and μq2
in μcompound

qr . As

there exist one lost matching edge between μ ′qr and μq2
, we combine them to

form a larger single assignment, i.e.

μnew
qr = μ ′qr⊕μq2

= {[qr/pr][q0/p0][x/⊥][q1/p1][q2/p2][q3/p3][q4/p4][q5/p5]} .

Algorithm 31: haveLostEdges(μ1,μ2)

1 begin
2 for each node q in Vμ2

do
3 for each parent node qparent of q do
4 if qparent ∈Vμ1

then
5 p1 = μ1 (qparent);
6 p2 = μ2 (q);
7 if(

(p2 �=⊥)∧ there exists a reference from sip1
qparent to sip2

q
)

then
8 return true;

9 for each child node qchild of q do
10 if qchild ∈Vμ1

then
11 p1 = μ1 (qchild);
12 p2 = μ2 (q);
13 if(

(p1 �=⊥)∧ there exists a reference from sip2
q to sip1

qchild

)
then

14 return true;

15 return f alse;

16 end

In the combination phase we have to examine whether there exist lost match-

ing edges between two partial assignments, so that we can decide whether to

leave the assignments as separated or combine them into one (Algorithm 30,

line 23). The lost matching edge problem occurs only if the start node of the

edge is in one assignment and the end node of the edge is in another assignment.
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Therefore, in Algorithm 31 we iterate the query nodes in one assignment and

examine whether its parent or child node is in another assignment. As shown in

Algorithm 31 we iterate the query nodes of μ2 and examine the parent nodes of

the query node q. If a parent node qparent is in the assignment μ1, then the edge

e = (qparent ,q) is a lost matching edge only if e is a matching edge. If there

exists a reference from siqparent to siq, then the edge e is a matching edge, thus,

also a lost matching edge. As soon as we found one lost matching edge, we can

terminate the algorithm. Otherwise, the algorithm continues until all the query

nodes are examined. Depending on the result of the Algorithm 31 we will (i)

merge or (ii) split the assignments.

(i) If there exists a lost matching edge between μ ′qi
and any partial assign-

ment in U , then we should merge the two assignments into one assignment

(Algorithm 30, line 24). The the assignment of the common nodes μ ′qi
and the

assignment μpart in the original compound assignment U should be replaced

by the merged assignment μ ′′qi
. The new compound assignment U ′ is then the

union of U\{μpart ,μcommon
qi

}
and μ ′′qi

(Algorithm 30, line 25).

We use the function computeMaxAssignment (U ′,s) (Algorithm 32) to de-

termine how we should deal with the new compound assignment U ′. First, we

need to determine whether U ′ delivers a larger similarity value (Algorithm 32,

line 4-9). The compound assignment U ′ may contain more than one partial

assignments. According to the Formula (7.3.3) we need to determine which

partial assignment in U ′ is the biggest one. For that reason we iterate the par-

tial assignments in the compound assignment and mark the biggest partial as-

signment with cmax (Algorithm 32, line 6-8). Then, we calculate the similarity

using the Formula (7.3.3) (Algorithm 32, line 9). Next, based on the similarity

value we can decide how to deal with the new compound assignment U ′. If the

similarity value snew of U ′ is larger than the original one, then U ′ is the com-

pound assignment that has the biggest similarity. Thus, we replace Mtemp with

{U ′}. If snew equals to s, then U ′ is one of the biggest compound assignments.

Then, we add U ′ to Mtemp. Otherwise, we do not achieve a larger similarity

value through the combination and just drop U ′.
(ii)If there exists no lost matching edges between μ ′max

qi
and μ ′qi

(Algorithm

30, line 27), then we can split the partial assignment μmax
qi

into two parts: (a)
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Algorithm 32: computeMaxAssignment (U ′,s)
1 begin
2 maxMatchSize = 0;

3 cmax = /0;

4 for each assignment μ ∈U ′ do
5 matchSizeμ = k1 ∗ |μ|+ k2 ∗ |V match

μ |;
6 if matchSizeμ > maxMatchSize then
7 maxMatchSize = matchSizeμ ;

8 cmax = μ;

9 snew =
k1∗(|cmax|+kstructural∗∑{|μ ′| | μ ′∈U ′\{cmax}})+k2∗|V match

U ′ |
k1∗|EQ|+k2∗|VQ| ;

10 if snew > s then
11 s = snew;

12 Mtemp = {U ′};
13 else if snew = s then
14 Mtemp = Mtemp∪{U ′};
15 end

the mappings of the common nodes; (b) the mappings of the remaining nodes

in μmax
qi

. Part (a) will be replaced by the partial assignment μ ′qi
, as the maxi-

mal match size of μ ′qi
is larger that that resulted through the mappings of the

common nodes in μ ′max
qi

(Algorithm 30, line 17). Thus, we remove the partial as-

signment μmax
qi

form U and use the partial assignments μ ′qi
(part (a)) and μ ′max

qi

(part (b)) (Algorithm 30, line 29). Also, here we have to examine whether U ′

has a larger similarity value than U (Algorithm 30, line 30).

And the end of each iteration of the query nodes the algorithm assigns Mtemp

to M (Algorithm 30, line 32).

The worst case time complexity of the combination phase is

O(m1 + |VQ|tnm2(l1 pc(1+m2)) ,

where m1 denotes the number of the maximal root assignments, t is the

number of the maximal assignments in M, m2 is the average number of partial

assignments of maximal global assignments, l1 is the average length of the

partial assignments, p is the average number of the parent nodes of the query
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nodes, c is the average number of the child nodes of the query nodes, n is the

average number of assignments in maxAssignmentSet of all the query nodes.



Chapter 8

Architecture and Implementation

8.1 Introduction

This chapter presents the architecture and the implementation of an integrated

modeling environment for supporting the design and reuse of BPEL fragments.

The integrated modeling environment consists of a BPEL fragment editor and a

BPEL repository. The BPEL fragment editor is a graphical editor for modeling

BPEL processes and fragments. It extends the BPEL designer1 with the support

for modeling BPEL fragments and an extraction module that enables process

modelers to extract BPEL fragments from existing BPEL process models. The

BPEL repository is designed for storing BPEL process models and fragments.

It provides the usual repository functionalities, such as versioning, locking, ac-

cess control. It also integrates a query component that provides query capabil-

ities for processing query requests on both the structure and the metadata of

BPEL process models and fragments.

8.2 BPEL Fragment Editor

The BPEL fragment editor has been implemented based on the open source

Eclipse BPEL Designer Project. The BPEL editor consists of an EMF data

1 BPEL Designer Project, http://www.eclipse.org/bpel/
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model that represents the XML schema of BPEL 2.0, a GEF-based graphical

editor for modeling BPEL processes, a validator, a runtime framework that

allows deployment and execution of BPEL processes on a BPEL engine, and a

debug framework.

One of the major advantages of Eclipse platform is that it allows developers

to extend the capabilities by installing Eclipse plug-ins. As the BPEL fragment

editor aims at providing process modelers the capabilities of modeling both

BPEL processes and BPEL fragments, we decide to implement the functional-

ities for modeling and extracting BPEL fragments as plug-ins. Our implemen-

tation extends the BPEL designer project with three subsystems:

• de.uni.stuttgart.iaas.bpel.fragment.model: implements the EMF model

of the XML schema of BPEL fragment including utility functionalities such

as serializer and deserializer;

• de.uni.stuttgart.iaas.bpel.fragment.ui: provides the graphical modeling

elements and user interfaces for modeling BPEL fragments such as figures,

palette, dialogs, and related actions for modeling operations;

• de.uni.stuttgart.iaas.bpel.fragment.extraction: provides capabilities for

extracting BPEL fragments.

To model a BPEL fragment a process modeler can drag and drop the

graphical modeling elements provided on the palette. The implementation ex-

tends the palette with additional modeling elements including < f ragment >,

< bagActvity >, and other BPEL 2.0 standard modeling constructs that have

been promoted as first class modeling elements in the BPEL fragment schema

(e.g. < catch >, < catchAll >, < onEvent >, etc.).

To extract a BPEL fragment a process modeler has to first select the activi-

ties and constructs that he/she wants to include in the resulting fragment. After

having selected the respective elements on the canvas, the process modeler

can add the selections to a Fragment Element Set. Then, the process modeler

has to specify in which extraction mode the selected elements should be ex-

tracted. The extraction modes include the connected mode, the isolated mode,

and the connected (opaque) mode. The connected (opaque) mode enables pro-

cess modelers to use opaque activities for retaining the original process struc-

ture. During the extraction, elements that should be extracted in the connected
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(opaque) mode will be extracted in the connected mode and will be replaced by

< opaqueActivity > after the extraction. The fragment element set stores both

the selections and their respective extraction modes. Selections can be made

in a successive manner for convenience. New Selections can be append to the

fragment element set by repeating the add selection operation. Also process

modelers can undo their added selections by selecting the elements and invoke

the remove activities from FragmentSet in the popup context menu. Elements

stored in the fragment selection set will be completely removed when the pro-

cess modeler invokes clear fragment set or extract fragment from the context

menu. Show activities in FragmentSet gives process modelers the possibility

to gain an overview of their current constituents of the BPEL fragment being

designed.

Extractions of BPEL fragments can be conducted in a successive manner.

After extracting a BPEL fragment, a process modeler may want to add another

part to the resulting BPEL fragment. Thus, the BPEL fragment editor provides

a capability for appending a BPEL fragment to the previous extracted BPEL

fragment. The successive extraction can also be used to avoid the effort on re-

ducing a lot of generated opaque activities when there are a lot of not required

intermediate activities lying between the required activities of a BPEL frag-

ment. To append the extracted BPEL elements the process modeler has just to

invoke the context menu append fragment.
Both extract fragment and append fragment trigger the extraction process-

ing of the selected elements. Before the extraction the implementation exam-

ines whether the process modeler has selected a compound construct without

having select any of its enclosed elements. In this case the implementation has

to make sure whether the process modeler wants to extract the construct as an

empty construct or with all its enclosed elements. A popup dialog will give the

process modeler the possibility to refine the selection.

For selected elements that should be extracted in the connected mode, the

implementation provides two options for the extraction. With the option with-
out reduction the resulting BPEL fragments contain all generated opaque ac-

tivities that are necessary for retaining the original control dependencies of the

selected elements. The option with reduction results in a BPEL fragment whose
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generated opaque activities have been removed with the help of the reduction

algorithms that we have presented in the Section 5.4.

8.3 The BPEL Reuse Repository

The BPEL reuse repository (BPEL repository for short) enables process model-

ers to manage the reusable modeling artifacts. It is a shared database of model-

ing artifacts of BPEL processes and fragments as well as their associated meta-

data (cf. [30, 100, 148]). The architecture of the BPEL repository is shown in

Figure 8.1.

Service Layer

Query Manager

Presentation Layer Repository API

Query ManagerVersion Manager

Lock Manager

Security Manager

Weighting and Ranking 
AnalyzerUser Management

Event Manager Meta-data
Analyzer

Structure
AnalyzerAccess Control

Persistence LayerData Access Objects

Relational Database

Fig. 8.1 The architecture of BPEL repository.
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8.3.1 Presentation Layer

The presentation layer provides a Web interface, which enables process mod-

elers to interact with the BPEL repository from a browser, such as searching

for BPEL process models and fragments based on their meta data, checking

out a BPEL process model or fragment, managing user accounts, viewing and

releasing existing locks in the BPEL repository.

8.3.2 Repository API

Besides the Web Interface, the BPEL repository provides also a set of API to

enable programmatic access to the repository. It can be used to integrate tools

that interact with the BPEL repository, e.g. the BPEL fragment editor. The

repository API provides the functions such as create, check− in, check− out,
import, export, lock, unlock, and also functions for user management. Details

about the repository API can be found in [152].

8.3.3 Service Layer

The service layers compasses functionalities for storing, retrieving, and man-

aging the modeling artifacts and their associated metadata stored in the BPEL

repository. The BPEL repository uses five service managers to implement these

functionalities.

8.3.3.1 Version Manager

Typically, a BPEL process model or a BPEL fragment undergoes a series of

revisions during the modeling phase. Each can be captured as a version. A ver-

sion is a snapshot of the BPEL process model or BPEL fragment being mod-

eled at some point in its modeling lifecycle [30]. The version manager provides
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functionalities for capturing the version history of a modeling artifact. It coordi-

nates with the locking manager to set and release a lock when checking out and

checking in modeling artifacts. Modeling artifacts in the BPEL repository are

not isolated. A BPEL process model may reuse one or more BPEL fragments.

The version mananger also captures the reuse relationships between the BPEL

process model and the BPEL fragments.

8.3.3.2 Lock Manager

The lock manager is responsible for setting and releasing locks on modeling

artifacts. The BPEL repository implements a pessimistic locking mechanism.

It means that a modeling artifact is exclusively locked for the process modeler

who checked it out. If there exists already a lock on it, then the check-out can

only be conducted after the lock has been released. The releasing of a lock

can either be trigger by checking in the modeling artifact again by the process

modeler who checked out the modeling artifact before or be released by the

repository administrator manually.

8.3.3.3 Security Manager

In order to prevent unauthorized access to the BPEL repository, each user has to

authenticate herself/himself before interacting with the BPEL repository. The

security manager of the BPEL repository comprises of two logical components:

user manager and access control. User manager implements three different

roles: administrator, designer, and basic user. A basic user can only search and

export modeling artifacts. A designer can also check out and check in modeling

artifacts. Administrators have full access to the BPEL repository. In addition,

they can also interact with the locking manager to release existing locks manu-

ally and manage user accounts and rights of the BPEL repository. Access con-

trol implements the functionalities for assigning the appropriate rights to each

user account and the authentication mechanism. The functionalities of the secu-



8.3 The BPEL Reuse Repository 195

rity manager have been implemented by using the Spring security framework
2.

8.3.3.4 Query Manager

The query manager comprises of three logical components: structure analyzer,

metadata analyzer, and the weighting and ranking analyzer.

The metadata analyzer implements the query mechanism for the metadata

that are associated with the modeling artifacts in the BPEL repository. The

metadata analyzer has been implemented with Apache Lucene, which is a

search engine library written in Java. Lucene brings several convenient features,

such as an algorithm for ranking the query results based on their relevance to

the query phrases, pagination of query results, i.e. query results are not returned

all at once, but page by page.

The structure analyzer implements the query algorithm that we have dis-

cussed in Chapter 7. It takes XML-representation of a BPEL fragment or pro-

cess model as the query request and transforms it into the graph representation

that we discussed in Chapter 6. As the graph matchmaking of the query re-

quest with all the BPEL fragments and process models in the repository could

be very expensive, the structure analyzer invokes the metadata analyzer to filter

BPEL fragments and process models that should be considered in the structural

matchmaking, if the metadata are available in the query request.

After the query processing, the weighting and ranking analyzer will rank

the query results based on their values in metadata similarity and structural

similarity. The weighting factors can be set when configuring the repository.

8.3.4 Persistence Layer

The persistence layer uses Data Access Object (DAO), which provides an ab-

stract interface to storage mechanisms of BPEL fragments and process mod-

2 http://static.springsource.org/spring-security/site/
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els. As BPEL fragments and process models are specified using a XML-

representation, it would be convenient to manipulate and access them in an

object model. We use JAXB map the XML schema to object classes and Hi-

bernate to map object classes to database tables in a relational database, e.g.

MySQL.



Chapter 9

Conclusion and Outlook

In this thesis we introduced BPEL fragments to enhance reuse of process logic

in BPEL process models. In Chapter 1 we discussed the motivation of our

research work. Reuse is an established concept to improve productivity and

quality. Today, subprocesses represent the only granule of reuse. A subprocess

is either a self-contained business process invoked by another business process

or an inline process that must be defined in a scope activity. In both cases,

subprocesses do not allow process modelers to reuse arbitrary parts of a busi-

ness process, especially parts that cannot be seen as self-contained business

processes and parts that need to be reused within other BPEL constructs rather

than a scope activity.

Based on this motivation we studied the related work in Chapter 2. Besides

subprocesses we discussed related approaches for reusing process models as

a whole. After that we gave an overview of decomposing process models into

process fragments. Especially, we analyzed approaches of decomposing BPEL

process models for distributed execution, for analyzing purpose, for generating

process views, etc. A reuse approach should allow users easily finding reusable

modeling artifacts. Thus, we took a look on existing query approaches for pro-

cess models. One key procedure in these approaches is similarity measurement,

which is also a part of the related work that we discussed at the end of Chapter

2.
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In Chapter 3 we introduced the concept of process fragments for reuse. First

we defined process fragments from the process point of view. Second, we also

presented a formal definition of process fragments from the graph point of

view, in order to use graph-based query algorithms later. Based on the graph

view we have identified 4 different shapes of process fragments according to

the numbers of their entry and exit nodes. The discussion on granularity helps

us to understand in which extend a process model can be broken down into

process fragments. And different reuse styles specify to which extend a process

fragment can be modified at the time of reuse. Last but not least, the lifecycle of

process fragments refines the process design phase in the conventional business

process management lifecycle. We outlined the phases of the lifecycle that are

addressed in this thesis.

In Chapter 4 we presented the BPEL fragment modeling language. The chap-

ter began with the requirement analysis, which considered characteristics in

the definition of process fragments from the process view, such as syntactical

and semantic incompleteness. In addition, the analysis took also main possi-

ble types of BPEL fragments into account. One of the design goals is to reuse

as much modeling constructs of BPEL as possible. Thus, we also evaluated

whether executable BPEL or abstract BPEL should be used as the basis for

designing BPEL fragment modeling language. BPEL fragment modeling lan-

guage also introduced <bagActivity>. Similar to opaque activities, the bag

activity enables process modelers to model unknown process logic. Different

from opaque activities, a bag activity can be completed either by exactly one

activity or by a BPEL fragment.

Reusable process logic can be either modeled from scratch or be extracted

from existing BPEL process models. In Chapter 5 we introduced a mechanism

for extracting BPEL fragments from BPEL process models. The extracting

mechanism comprises three phases: the selection phase, the construction phase,

and the reduction phase. In the selection phase process modelers manually se-

lect process activities for extraction and specify whether the original control

dependencies should be retained after the extraction. In the construction phase,

our approach extracts the Lowest Common Nesting Ancestor (LCNC) of all

the selected activities and replaces the not selected activities with opaque activ-
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ities that are generated by our algorithm. The generated opaque activities can

be considered as redundant. Thus, we defined reduction rules for removing the

generated opaque activities while still retaining the original control dependen-

cies of the remaining activities. Also we presented the reduction algorithms

that are designed according on the reduction rules.

In order to use graph-based algorithms we describe in Chapter 6 a mapping

framework to map a BPEL process model or fragment to a directed and acyclic

graph. The mapping framework extends the one proposed by Khalaf [78] to

meet the requirements that we have identified in our research.

Chapter 7 presented the graph-based query algorithm. The query algorithm

returns not only BPEL process models and fragments that satisfy exactly the

query request, but are also able to find process models and fragments that par-

tially match the query request. The query algorithm consists of three phases:

the initialization phase, the assignment phase, and the combination phase. In

the initialization phase the algorithm compares each node with the nodes in the

process graph. For each matching node a stream item is created and associated

with the corresponding query node. Based on the data generated in the initial-

ization phase, the algorithm computes for each subgraph of the query graph

the maximal similarity in the assignment phase. In the combination phase the

algorithm computes the maximal similarity between the process graph and the

query graph by combining the subgraphs that found in the assignment phase.

As proof of concept we described in Chapter 8 the prototypical implemen-

tation of the concepts discussed in this thesis. The BPEL process designer

demonstrates a modeling tool that enables process modelers to extract BPEL

fragments from existing BPEL process models. A reuse repository allows pro-

cess modelers to store BPEL process models and fragments. It also implements

the query algorithm that we discussed in Chapter 7. We also discussed the ar-

chitecture of the implementations and the key components.

Outlook

During the course of the thesis we have identified several topics for future

work.
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Process fragment profile: similar to abstract process profiles, a BPEL frag-

ment profile should specify how the BPEL fragment language can be used. For

example, the profile could specify reuse styles for each element in the BPEL

fragment, completion rules for opaque and bag activities, resolving non-unified

links, etc.

Selecting activities through SQL-query: to extract a BPEL fragment pro-

cess modelers have to manually select the activities in a BPEL process model

for extraction. If the selection contains a large amount of activities then the

manual selection could be cumbersome and error-prone. In this case, selection

using SQL-like queries could be helpful. The required activities may not share

common attributes so that they can be selected at once by one query. Thus,

the modeling tool should enable process modelers to successively select the

required activities through more that one query. Also when making a complete

selection, the enclosed activities inherit the extraction mode of the enclosing

activity. A more flexible inheritance strategy is, for example, to inherit the ex-

traction mode to level k. From the level k + 1 process modelers can assign

another extraction mode to the elements.

Transition and join conditions during extraction: In this thesis, transition and

join conditions are removed during the extraction. However, they could be use-

ful for process modelers to understand the operational semantics of the BPEL

fragment. Also, transition and join conditions could be reused in modeling new

process models.

Duplicated handlers during extraction: when extracting fault handlers the

extraction algorithm should examine whether the fault handlers already exists

in the BPEL fragment, e.g. through comparing qualified fault names. However,

this requires domain-specific knowledge to be able to judging whether the two

fault handlers have the same operational semantics.

Query with incomplete links and bag activities: the query mechanism in this

thesis does not take incomplete links into consideration. BPEL fragments with

incomplete links could be also needed, especially when composing with other

BPEL fragments as presented in [48]. Also we did not consider bag activities in

the query algorithm in this thesis. If the process graph contains a bag activity, it

can match to every activity in the query request, and vice versa. An intelligent
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matchmaking method for bag activities that reduces the number of matching

activities is needed.

Composition of BPEL fragments: the composition phase in the process frag-

ment lifecycle embodies the value of reuse of process fragments. This phase

has not been addressed in this thesis. However, Eberle [48] has conducted re-

search work in that area. The open questions include: how to match the exit

points of the preceding fragment with the entry points of the succeeding frag-

ment; how to validate the control flow and data flow after composition, etc.
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