
Institute of Architecture of Application Systems
University of Stuttgart
Universittsstrae 38
D–70569 Stuttgart

Diplomarbeit Nr. 3381

A decision support system for
application migration to the Cloud

Zhe Song

Course of Study: Computer Science

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dr. Vasilios Andrikopoulos

Commenced: August.08, 2012

Completed: February.08, 2013

CR-Classification: D.2.0, D.2.11, D.2.12

Abstract

Cloud computing enables the computing resources to be available for purchase on de-
mand. The benefits like elasticity, flexibility and expenditure reduction attract many
enterprises to consider the migration of their applications to the Cloud. By the rapid
expansion of Cloud computing market and the maturation of the offered solutions, the
consumers have more and more choices in selecting Cloud offerings. However, when
they face a large number of Cloud offerings which have similar features, an appropriate
choice will be the key to guarantee a comparatively low operational cost. In this thesis,
we propose a decision support system for application migration to the Cloud, by which
consumers are able to obtain recommendations on selecting suitable Cloud services. We
have evaluated this system with appropriate test cases and compared it with the existing
tools and frameworks.

iii

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Problem Definition . 2

1.3 Outline . 3

2 Background 5
2.1 Fundamentals . 5

2.2 Decision Support Systems . 8

2.3 Migration Support Systems . 9

2.4 Discussion . 12

3 Specification & Design 15
3.1 Requirements . 15

3.2 System Specification . 17

3.3 System Design . 18

3.3.1 Cloud Provider Knowledge Base 20

3.3.2 Offerings Matcher . 20

3.3.3 Costs Calculator . 22

3.3.4 User Interface . 26

3.4 Summary . 26

4 Implementation 27
4.1 Cloud Provider Knowledge Base . 27

4.2 System Outline . 29

4.3 Offerings Matcher . 30

4.4 Costs Calculator . 32

4.5 User Interface . 35

4.6 User Guide . 37

4.6.1 Selection Of Offerings . 37

4.6.2 Setting Of Parameters . 37

4.6.3 Usage Pattern . 38

4.6.4 Results Of Calculation And Selection For Ranking 38

4.6.5 Results Of Ranking . 39

5 Evaluation 41
5.1 Validation . 41

5.2 Comparison with Existing Tools . 44

5.3 Comparison with Existing Research Frameworks 46

v

6 Conclusions 49
6.1 Summary . 49
6.2 Future Work . 50

Bibliography 51

vi

List of Figures

2.1 Structure Of (MC2)2 Framework . 10

3.1 Window Azure Pricing Details . 15
3.2 Use Case Diagram . 17
3.3 Modules of Decision Support System . 18
3.4 Conceptual Model of Decision Support System 19
3.5 ER-Diagram of Cloud Knowledge Base . 21
3.6 Pricing Details of Microsoft Azure Storage Service 23

4.1 Data Model of Decision Support System 28
4.2 Overview Of Class Dependencies . 29
4.3 User Interface: Configuration Page . 35
4.4 User Interface: Selection Results Page . 36
4.5 User Interface: Ranking Results Page . 36
4.6 User Guide: Selection Of Offerings . 37
4.7 User Guide: Setting Of Parameters . 37
4.8 User Guide: Usage Pattern . 38
4.9 User Guide: Results Of Calculation . 39
4.10 User Guide: Options For Ranking . 39

vii

List of Tables

1.1 Key Concepts of the Formal Definition . 2

2.1 Service model mapping to Hierarchical model of Cloud service 6
2.2 Comparison of offerings for different provider 7
2.3 A Example for Factor-Provider Matrix . 9
2.4 Example of the Benefits and Risk . 10
2.5 Cloud Migration Systems Summary . 11
2.6 Parameters defined as Performance in different migration systems 13

3.1 Overview Of System Requirement . 16
3.2 Variants Of Usage Pattern . 25

4.1 Classification Of Values . 30

5.1 Validation of Offering Matching . 41
5.2 Validation of Cost Calculation: Fixed Unit Price 43
5.3 Validation of Cost Calculation: Dynamic Unit Price 44
5.4 Comparison with Existing Tools . 45
5.5 Comparison with Existing Research Frameworks 46

ix

List of Algorithms

1 Offering Matcher . 22
2 Cost Calculation . 24
3 Cost Calculation for Usage Pattern . 25

xi

Listings

4.1 Offering Matcher . 31
4.2 Cost Calculator . 32
4.3 SQL Query For Cost . 33
4.4 Calculation Method . 33
4.5 Usage Constructor . 34

xiii

1 Introduction

This thesis is aimed at introducing a decision support system for application migration
to the Cloud. The main contents involve the summary of related works, design and
implement of a decision support system, as well as the evaluation of the system. In the
first chapter the motivation is described, the scope of problem and the outlining of this
thesis are explained.

1.1 Motivation

The development of IT technology helps people get closer to information which they
need, whether they are end users or enterprise internal employees that want to obtain
and use the required application information or some business information, at anytime
from anywhere. How to meet these demands with the least amount of resources is a
great challenge which system developers and stakeholders have to face. For the small
and medium -sized enterprises, they may have to take the risk of upfront investment for
IT infrastructure, and need to spend additional resources to manage a team which has re-
sponsibility for maintaining the whole in-house IT system. Besides that, the uncertainty
of business growth by startups may lead to over-investment or duplicated construction.
Suleiman et al. [1] have in their reserch summarized the contradiction between comput-
ing resource capacity and economics: enterprises plan their IT infrastructure based on
maximum expected computing resource capacity which involves a large upfront capital
investment; this however could reduce enterprises cash flow considerably and increase
the period of payback. From all this, if the hardware and software resources can be
flexibly and elastically consumed, the operating costs and risk faced by enterprises will
be reduced dramatically.

Therefore, because of the advantages of Cloud computing such like scalability, flexibility,
and expenditure reduction many enterprises are attracted and begin to consider the
migration of applications into Cloud to resolve the contradiction between resource and
demand. In other words, Cloud computing realized the delivery of sophisticated virtual
services according to Service Level Agreements. Enterprises, as consumers, can obtain
resources and services which are offered by Cloud providers through the network [2].

After several years of rapid expansion, the market provides a wide variety of Cloud service
offerings. If the stakeholders have decided to migrate the application to Cloud, the choice
of a suitable Cloud service plays a central role in reducing enterprise operational costs and
improvement of work efficiency. But when stakeholders are faced with a large number of
offerings with similar features and characteristics, a correct decision on choosing service
is a great challenge, especially, even we consider that even for the same Cloud provider,
the price or performance will be changed with different usage amount in various zones.

1

1 Introduction

The comparison of Cloud offerings and a rational recommendation on choosing a suitable
service according to consumers requirement is the motivation of this thesis.

1.2 Problem Definition

This work aims to develop a Migration Decision Support System (MDSS) so that it helps
consumers to select a suitable service while migrating their application is migrating to
the Cloud. We will use a formal definition to describe the problem of selection and
decision support.

Table 1.1 presents the concepts required for the formal definition. This definition consists
of i providers from p1 to pi, j offerings from o1 to oj and k configurations from c1
to ck. Provider is the vendor who can offer Cloud services, for example, Google and
Amazon are the famous providers. The Offerings like VM and relational database service
represent the Cloud service offered by Cloud provider, and each of them contains a set
of configurations which can be identified with price and characteristic. For example,
Google Compute Engine as a offering has 20 configurations which have different CPU
cores, sizes of RAM or storage capacities. Besides that, set F contains the features
of Cloud service and features are defined with service type like VM service or storage
service. M is the set of parameters which are used to identify a configuration ck in C.
CPU cores and location are two of the parameters for identifying the configurations of
Google Compute Engine. An offering will be interpreted as function oj ← f(pi, fl), and
a configuration can be identified by ck ← f(M̂, oj) where M̂ ⊆M .

Table 1.1: Key Concepts of the Formal Definition

Concept Desciption

P = {p1, ..., pi} a set of Cloud service Providers

O = {o1, ..., oj} a set of service offerings

C = {c1, ..., ck} a set of configurations

F = {f1, ..., fl} a set of service features

M = {m1, ...,mm} a set of service parameters

R = {r1, ..., rr} a set of consumer requirements

Tak [3] and Walker [4] [5] in their research investigated the trade-off during the mi-
gration of the entire application or some components from economics and performance
aspect respectively. From their works we can see that the enterprises have to analyze
the pre-existing application architecture and determine expected computing capability
to maximize the benefits of using Cloud services. Therefore, the requirements by ser-
vice consumer will be taken into account as a prerequisite R which contains a set of
requirements from r1 to rr. At last we can interpret the problem of decision:

2 A decision support system for application migration to the Cloud

1 Introduction

Definition 1 Decision support for the migration of applications with requirements R to
the Cloud requires the identification of a function f such as Ĉ ← f(R) where Ĉ ⊆ C

The proposed system will be developed to help consumers select appropriate Cloud
services based on their requirements without considering the combination of different
services or components. In other words, the selection focuses on a set of particular
services which have similar features rather than a set of deployment patterns, in which
all necessary components are taken into account. Therefore, this thesis dose not focus
on all the migration types which are defined in [6]. In order to complete MDSS, the first
step of this work is to identify the collected data with the concepts which are described
in the formal definition. A knowledge base is needed, it should deliver indispensable data
during the process of decision support. Then according to the identified data we will
design and implement a knowledge base which is the fundamental of MDSS. At last, the
related comparison and calculation modules of MDSS will be developed to achieve the
process of decision support during the migration of existing applications to the Cloud.

1.3 Outline

In this thesis, we apply the following research approach: survey of the literature to
establish the State of the Art in fields decision support and application migration to
the Cloud, requirement analysis, system design, prototypical implementation, validation
and evaluation.

The rest of this thesis is structured as follows. In Chapter 2 the fundamentals of Cloud
computing are introduced and we reflect some related works about decision support for
Cloud migration. Some decision support approaches like singular value decomposition is
described in this chapter and we discuss several migration frameworks and identify a set
of parameters which are used by these frameworks. Chapter 3 presents the specification
of the system and the conceptual design. In Chapter 4 the implementation of a knowledge
base and the proposed migration decision support system is described. Chapter 5 shows
the validation and evaluation of the system with some test cases. Finally we conclude
this thesis in Chapter 6.

A decision support system for application migration to the Cloud 3

2 Background

In this chapter the basics concerning Cloud computing are established first, then some
related work in the fields of decision support and Cloud migration are summarized and
discussed.

2.1 Fundamentals

It is not by coincidence that Cloud computing has developed greatly in recent years.
Back in the early 60s, a concept by John McCarthy was proposed that computing can
be provided as a utility like water and electricity to the users. However, since the whole
IT industry was still in its infancy at that time, many of the necessary technology did
not appear, and the implementation of this concept got a number of constraints. The
technological breakthrough in traditional fields of computer and network like distributed
computing, parallel computing, utility computing, network storage technologies, virtual-
ization and load balance led to the concept of Cloud computing to rise. Furthermore, the
emergence of new business models also are key to enabling Cloud computing to become
a reality and new application opportunities will promote momentum in the future [7].

A recent publication by NIST described Cloud computing as a model for enabling net-
work access to a shared pool of computing resources that can be rapidly provisioned
and released with minimal management effort or service provider interaction [8]. By this
publication a Cloud model is composed of three service models.

• SAAS
Cloud software as a service, compared to traditional software service, the appli-
cation running on Cloud infrastructure and has been customized to consumer’s
demand, its install, upgrades and maintenance don’t require the end user involve-
ment.

• PAAS
Cloud platform as a service, it provides basic computing capability which has busi-
ness development environment supporting deployment of application to the Cloud
infrastructure. A set of programming tools like framework, APIs or libraries is
usually provided to support consumption of computational, network and storage
resources.

• IAAS
Cloud infrastructure as a service, at this level, a set of fundamental resource like

5

2 Background

processing, storage and networks is provided by resource pool. Through virtual-
ization consumers can run their own business systems and access these resources
over network instead of construction of in-house infrastructure.

Consumers in principle cannot control and manage networks, servers, operating sys-
tems, storage and the other aspects of the underlying Cloud infrastructure on SAAS
and PAAS. In IAAS the underlying Cloud infrastructure doesn’t offer a manage or con-
trol permission for consumers, but they have control over operating systems, storage,
deployed application and limited control of some networking components [8].

Table 2.1: Service model mapping to Hierarchical model of Cloud service

Hierarchical Model Service Model

Application service PAAS

Software service SAAS

Data Service

Storage service

Infrastructure service IAAS

Besides the service model, Cloud service can be divided into a Hierarchical Model based
on its service type provided for clients. This service-oriented architecture has been
discussed in work by Wenying et al [9]. Table 2.1 presents the components of the Cloud
service hierarchical model. Application service indicates PAAS, a typical example is
App Engine by Google that users can upload their application in configured running
environment. Software service is mapping to SAAS, for that Web-based email service
can be thought of as a classic case. IAAS is expressed as Infrastructure service in
hierarchical model. Using each of the three services may generate additional networking
traffic, caching and storage costs, these can be respectively considered data service and
storage service. In our follow work, these two methods will be adopted for service
partition.

From the above scenario it is clear that the IT Architecture at all levels has been sub-
divided into different components by already existed Cloud service, and there are corre-
sponding solutions for combination and collocation of these components. In a research
by Andrikopoulos et al. [6], four migration types have been advanced for distinguishing
among the different migration approaches which contains one, several or all components
in Cloud service offering:

• Type 1. Replace
One or more components are replaced with offerings. Typically, this type of mi-
gration requires least overhead and takes the smallest risk.

6 A decision support system for application migration to the Cloud

2 Background

• Type 2. Partially migrate
Some of the application functionality is migrated to the Cloud. The functionality
may need support from a collection of components which belong to different lay-
ers. Therefore, these components exist in some sort of interconnected relationships

• Type 3. Migrate the whole software stack
As the most common type of migration, this type based on virtualization of appli-
cation and VM environment by Cloud offerings.

• Type 4. Cloudify
In this case, the application is migrated completely. The functionality of applica-
tion is executed as a composition of Cloud services [6].

We will use these migration types in the following section to discuss related migration
systems.

Table 2.2: Comparison of offerings for different provider

Provider Offering CPU Speed CPU Cores Memory SLA

Google App Engine no no no yes

Microsoft Cloud Service yes yes yes yes

In recent years many providers have provided a rich variety of products which are aimed
at different service models, and more and more products are becoming more sophisticated
and reliable. On the one hand an amount of similar types of offering facilitates prosper-
ity of Cloud computing market, simultaneously helps enterprises solve the problem of
dynamic demand or contradiction between peek and average, allowing IT departments
to focus on the provision of service and business operation. On the other hand once
consumer has determined the requirement of offerings, and then a properly effective
tradeoff is the first problem to be solved. For example, if a consumer intends to choose a
configuration in PAAS service model, Google App Engine and Microsoft Cloud Service
each have more than 4 options to meet conditions. Comparison of these options is dif-
ficult on account of mismatched parameters and non-functional requirements. In Table
2.2 the offerings with similar feature are presented. By Microsoft the details of instance
is available but Google does not provide these information. Hence we have to consider
multi-criteria decision for migration system to satisfy the requirements and correctly
evaluate the cost.

A decision support system for application migration to the Cloud 7

2 Background

2.2 Decision Support Systems

When the consumer consider migration of their in-house application into the Cloud, a
decision support system is necessary to evaluate the Cloud service, pay close attention
to the reduction of risk and trade-off between performance and cost. For a Cloud service
there are many different factors that represent the overall performance and the main
feature. An example of such factors is provided by the Service Measurement Index (SMI)
[10]. The SMI framework summarizes the most importent attribute of QoS in a high level,
such like Accountability, Agility, and Assurance of service, Cost, Performance, Security,
Privacy and Usability. In order to measure and compare Cloud services, a high-level
factor should consist of a collection of parameters which is defined as business-relevant
Key Performance Indicators (KPIs) [10]. An example is Assurance containing KPIs like
Availability, Service Stability and Service Ability.

Decision process is complicated by a large number of factors and parameters defined
in different levels, Zeleny [11] defined this problem as multiple criteria decision making
(MCDM). Because of the structured relationship between factor and parameter the
Analytic Hierarchy Process (AHP) is a proposed approach for facilitating the problem
of MCDM.

Hussain et al. has advanced a multi-criteria decision support method for Cloud service
selection in literature [12]. This method uses similarity to make an assessment of Cloud
services. By using requirement vectors and service descriptor vectors to construct a
decision matrix, we can get the similarity among service provider’s parameter and user’s
requirement. The measurement of difference in performance is enabled by Weighted
Difference (WD) and Exponential Weighted Difference (EWD). WD may get a negative
value when a Cloud service is below user’s requirement. By EWD if a Cloud service value
smaller than the requirement value, the final exponential value will be bigger than 1,
therefore a small difference means higher similarity. There is another method in literature
[13] that consider the similarity and suitability with a singular value decomposition
(SVD) approach for ranking Cloud services. This method decomposes a QoS-Provider
matrix (Table 2.3) into three matrixes: the QoS factor and provider are represented with
left and right singular vectors respectively. The approach works as follows: Choose a few
largest singular values from diagonal matrix as the dimension. Then calculate a pseudo-
provider which is the centroid of its corresponding QoS attribute points. This centroid
represents the average vector of the application required QoS vector. At last calculate the
cosine value between pseudo-provider vector and the existing provider vectors, the most
cosine value means the most suitalbe provider. Both of these two methods can generate
the most suitable result from a candidate list, and especially SVD is very elastic since
the precision of matching can be adjusted though modifying the threshold cosine value.
However, such a calculation needs numerical value, and how to translate non-numerical
value to numerical value is a problem that cannot be ignored.

8 A decision support system for application migration to the Cloud

2 Background

Table 2.3: A Example for Factor-Provider Matrix

Provider 1 Provider 2 Provider 3 Provider 4

Security 1 2 5 5

Integrity 2 1 3 4

Availability 3 2 3 3

Mean Time for
Repair

3 3 4 5

First Attempt
Fix Rate

2 3 3 3

Change Fre-
quency

2 2 1 3

Average
Server/VM
Ratio

3 3 4 5

Average IO Re-
sponse

2 3 4 5

Average CPU
Utilization

5 3 4 2

Cost 5 3 2 1

2.3 Migration Support Systems

In a common migration process a significant part is mapping requirement from consumer
to service factor. The specification of factors involves various fields and requires a uni-
form definition. The Choosing of factors which contain the main features of services
and possible impact is the foundation for comparison and filtration in a decision making
process. After that an effective and accurate ranking or selection method recommends
best suited candidate. In this section we will study several migration framework in re-
lated work and summarize the factors and parameters that were specified by different
frameworks.

In literature [14], Menzel et al. has introduced the (MC2)2 framework that specified
requirement scale as binary and ordinal to filter out all infeasible alternatives for getting
appropriate migration candidates. This framework defines criteria with questions and
corresponding values which could be quantitative and qualitative for ranking the feasi-
ble criteria. As a recommendation multi-criteria decision making process the analytic
network process (ANP) supports pair-wise comparison of non-measurable qualitative
values whose normalization is still generated from subjective rating. Figure 2.1 shows

A decision support system for application migration to the Cloud 9

2 Background

the structure of (MC2)2 framework. The criteria with questions exams factors like QoS,
security, cost etc, and the definition of alternatives, criteria and requirements needs a
knowledgebase to deliver necessary internal and external information resources.

Figure 2.1: Structure Of (MC2)2 Framework

The research by Khajeh-Hosseini et al. [15] proposed two decision support tools for Cloud
migration within IAAS. The first tool is a spreadsheet that from consumer perspective
summarizes the benefit and risk. Table 2.4 shows an example of the factors which
have been considered as benefit or risk. Another tool modeling the requirements of
application, data and infrastructure for cost estimate. It contains two main parts: a
UML deployment diagrams helps modeling the infrastructure of enterprise’s IT system
and a baseline usage of resource with an elasticity pattern.

Table 2.4: Example of the Benefits and Risk

Benefit Technical,Financial,Organizational

Risk Technical,Financial,Organizational,Legal,Security

Three main problems in [16] have been considered by another framework named the
Cloud Adoption Toolkit: cost modeling, technology suitability analysis and stakeholder
analysis. Suitability analysis contains a simple checklist of questions which is used for
evaluation and assessment of the suitability. Under this framework the consumer uses
UML tool to describe a deployment diagrams and choose feasible VM, and Cloud storage

10 A decision support system for application migration to the Cloud

2 Background

from a database as candidate. To express the elasticity requirement, a simple notation is
preferred to describe temporary and permanent patterns like the modeling tool in [15].
Beside these, the analysis of stakeholder impact refer to Benefit/Risk-list to identify the
impact of stakeholder in non-technical area. This framework focuses on analysis of cost
in a certain period and non-numerical factors about social and political impact.

CloudGenius [17] based on AHP and applies the (MC2)2 framework. It considers on
VM and Cloud infrastructure service respectively. The VM and service are sorted with
values which calculated by weighted parameters. The final ranking is from the feasi-
ble combinations of VM and service. For the selection and combination CloudGenius
constructs a formal model to describe requirements, non- and numerical attributes.

Table 2.5: Cloud Migration Systems Summary

Cloud
migration
system

Migration
types

Factors taken into account Applied decision support
techniques and methods

CloudGenius Migrate the
whole soft-
ware stack

Cloud Ser-
vice

Cost, Per-
formance,
provider,
characteris-
tic

AHP

Cloud VM Cost,
Provider

(MC2)2 Migrate the
whole soft-
ware stack

Cloud Ser-
vice

Performance,
Provider,
Cost, char-
acteristic

ANP

Cloud VM characteristic

Cloud
Adoption
Toolkit

Migrate the
whole soft-
ware stack

Cost, Characteristic

Social factors, Political
factors

Performance,Practicalities

Technology suitability analy-
sis by checklist, Cost model
by UML deployment diagram,
Stakeholder impact analysis

SMICloud Replace
Component

Performance, Cost

Characteristic
AHP

Another framework based on AHP is SMICloud [10]. AHP is used to compare parameters
of different providers with value-based ranking method. The value of the parameter is
classified with Boolean, numeric, unordered set and range type. It builds up an N×N
Relative Service Ranking Matrix (RSRM) to compare the parameters pair-wise at lowest
level , and then compute the Eigen vector as Relative Service Ranking Vector (RSRV) of
these matrixes. The result of RSRV is to create a new RSRM for the parameters which
is in a higher level and multiply corresponding weights to generate the RSRV which will

A decision support system for application migration to the Cloud 11

2 Background

be used in a higher level. The approach repeats this calculation from low level to high
level until reaching the factors, i.e., all the RSRV of all parameters can be aggregated
to generate a RSRM for all providers which we have considered. By the multiplication
of the weights of factors we can get the final RSRV.

Table 2.5 gives an overview of existing migration system. It summarizes the factors,
migration type and applied decision support method.

2.4 Discussion

From the above, it can be observed that an amount of parameters have been considered
by these migration systems to describe and evaluate Cloud services. We use a hierar-
chical taxonomy to classify parameters into four factors, which are performance, cost,
non-numerical and numerical characteristics. In Table 2.6 we use a column for each one
of these factors. Among similar offerings and configurations offered by Cloud provider,
consumer needs to choose a product which is appropriate for their requirement or ex-
pectation. For example, a research organization does not need large volume of storage
or disk but a high computing capability is necessary. In each migration support system,
the capabilities of CPU, RAM and disk are a common set of measurable, numerical pa-
rameters. The volume of RAM and disk and CPU speed can be regarded as a measure
of the capability of instance. Because most of performance parameters can be expressed
as concrete values, performance does not contain non-numerical parameters.

The parameter defined as numerical characteristic is presented in the second column in
Table 2.6. Some parameters use unit of time to measure delay in operation, response time
or maintain effort. The next column depicts non-numerical characteristics which include
some non-functional parameters like location, OS version and QoS. Adoption Toolkit and
(MC2)2 use these non-numerical parameters to ensure that an offering meets consumers’
demands and help suitability analysis. Therefore some of them have a Boolean value or
are evaluated as different levels and some have particular information to describe specific
character such like location or format. The availability, reliability, stability, usability and
other QoS quality can be represented with characteristics. A problem is that the official
information about them are not offered by the providers. A third party usually provides
these data, but the location of data center and size of the sample distribution as well
as the statistical period may have an impact on results, so the accuracy and timeliness
of the data are not guaranteed. Beside the impact of statistical methods to the result,
some potential variables greatly affect QoS quality, for example, different application
types running on a same Cloud environment exhibits high performance variability. Iosup
et al. discussed performance variability of numerical characteristic in their work [18].
Additionally Li et al. [19] observed variations of instance, storage and network transfer
to evaluate and compare the performance with framework Cloudcmp.

Cost as the last factor, normally contains usage duration, volume and read/write opera-
tion for storage as well as the size of in/out data. Offerings which have same functionality
may have multi-dimension units which is leading to an increase in difficulty of cost com-
parison. For example, storage cost can be calculated with a unit defined as $/TB per
month or as $/GB per day, hence a common unit is necessary for cost calculation and

12 A decision support system for application migration to the Cloud

2 Background

comparison. Besides the cost for using service (MC2)2 considers the additional expenses
such as training, support and regulation.

Table 2.6: Parameters defined as Performance in different migration systems

Cloud
Migration
System

Performance Characteristic Cost

Numerical Non-numerical

CloudGenius CPU Flops Max,AVG
latency

ms Location Instance
price

$/h

RAM Flops Uptime Percent OS,Version License
price

$/h

DISK Flops Popularity Percent Format

Adoption
Toolkit

Bandwidth Elasticity,security Instance
price

$/h

CPU access to hard-
ware

I/O request Request

Energy
Consump-
tion

confidentiality In/Out
data

$/GB

(MC2)2 Data Trans-
fer

MB/S Delay ms Location,Security Investment, maintenance

CPU Flops Duration
until opra-
tion

Hour Maintenance
quality

training,integration

RAM TB Maintance
effort

Hour Integration effort regulation,support

Storage TB Training ef-
fort

Hour Trustworthiness license/contract

SIMCloud CPU Upload
time

Sec Security In/Out
data

$/GB

Memory Availability Percent support service Storage $/GB

DISK Stability Percent VM $/h

Some online available toolkit such like Aotearoa [20] has applied migration support
framework as we have discussed in Section 2.3 to achieve a multi-goal Cloud decision-
making tool. Users have to define alternatives, goals and criteria themselves, that is
to say, it doesn’t contain a knowledge base to support user’s selection. Furthermore
this tool requires key-weight to achieve ranking for alternatives imported by user. The
choosing of weight has a great influence on the final result, especially user normally has
no experience on setting weights, hence it is difficult to get an accurate output for the
initial use.

Cost saving is one of the main purpose that enterprise consider migrating the application

A decision support system for application migration to the Cloud 13

2 Background

to Cloud, for this reason, stakeholder should be able to make accurate estimates by
decision support process.

Some Cloud service providers have already offered their own toolkit to support selection
of offerings and cost calculation. Microsoft Azure has an online pricing calculator [21]
that is able to make accurate estimates for the required services and TCO Comparison
Calculator by Amazon [22] provides an estimate for the price difference between Web ap-
plications with On-premises and Amazon Web Service. According to variables inputted
by consumer this toolkit calculates how many dollars could be saved per year running
on Amazon Web Service vs. running a web application on the in-house infrastructure
defined by consumer itself. It is an obvious limitation that through both toolkits they
cannot compare the performance or price against different providers.

Therefore there exists a clear demand for a system that is able to do not only cost
calculations but also considers the multi-criteria requirements supported by the various
migration support systems discussed in the previous.

14 A decision support system for application migration to the Cloud

3 Specification & Design

In this chapter the specification of system is described and the concept of system design
is explained.

3.1 Requirements

As we have identified the necessary parameters which should be considered while an
application is migrating in the Cloud, a provider knowledge base is able to be designed
to realize decision support process. And according to the formal definition in Section
1.1, we propose a migration decision support system, by which consumers can obtain
the recommendations on choosing appropriate Cloud service offerings after they have
explicitly stated their requirements during the migration of existing applications to the
Cloud.

After the consumer determines a deployment scenario, a lot of offerings with similar
service configurations may be available with diversity in factors. These differences in
performance, characteristic and usage amount induce large price swings. For example,
the lowest performance VM instance (Extra Small) by Windows Azure has a price at
0.02$ per hour with general availability state, but the price of highest performance
instance (Extra Large) is 0.92$ per hour, the price differential is up to 46 times [23].
Figure 3.1 shows the price detail of Azure VM service. Therefore consumer should choose
advisable value for factor variables to decrease expense.

Figure 3.1: Window Azure Pricing Details

15

3 Specification & Design

Based on the major feature and limitations of existing tools that we discussed in Sec-
tion 2.4, we identify the following requirements for a Cloud migration decision support
system:

• Function
The main function of our proposed system is to perform a comparison of Cloud
services from different providers. The parameters of comparison focus on perfor-
mance, characteristic and cost. This system enables offering matching and cost
forecast with users requirement based on multi-criteria analysis. Cost calculation
supports not only the price per unit time but also the details of usage pattern.

• Data
A knowledge base should be created, it contains information about Cloud service
offerings as well as their identified parameters. Given the requirement to be able
to compare service among different providers, the knowledge base should consider
the information from more than one Cloud service provider.

• Interaction
The system provides a pleasant, intuitive, user-friendly interface. The user inter-
face acts as the Frontend of the system where interaction takes place between user
and system. Entering users requirements in system and displaying feedback results
are designed to be a way to realize interaction.

• Others
User can use this system with platform independence and it has the necessity of
extensibility and scalability for the future development.

Table 3.1 shows an overview of the system requirements.

Table 3.1: Overview Of System Requirement

Requirement Type Requirements

Function Offering Matching, Cost Calculation, Usage Pattern
Design, Service Comparison

Data Knowledge Base, Multi-Provider Support

Interaction User-friendly Interface

Others Platform Independence, Extensibility

16 A decision support system for application migration to the Cloud

3 Specification & Design

3.2 System Specification

Figure 3.2 gives an overview of the use cases extracted from the requirements discussed
above. According to the requirements of the user the knowledge base can provide tar-
geted options for parameters. User chooses options and provides numerical and non-
numerical parameters based on requirement. Beside the basic usage user can also define
usage pattern with discretional period, trend, and rate. After the system has collected
the necessary data, the knowledge base should filter out infeasible configurations and
generate estimated cost. Then the user can check the results which are generated from
the Backend and should be displayed on the user interface. By these results the user
selects preferred configuration and chooses one parameter as key-variable for ranking.
Finally, the system outputs the final result s ranked by the chosen parameter.

According to the requirement of platform independence we propose a system running on
Web environment. It consists of three main parts: user interface, data handler procedure
and knowledge base.

Figure 3.2: Use Case Diagram

Knowledge base contains a data model using relation database. Development of knowl-
edge base should be aimed at Cloud service offerings which are market-oriented products.
The Offerings from different providers and their parameters are identified, additionally
finding out relationship among them to determine the classification for data modeling.
An important requirement of this system is extensibility, when providers make changes
to their services, the system should update the corresponding data in the knowledge
base without having to make changes to the basic code, therefore, some parameters
should be taken into account by knowledge base instead of realized by other modules.

A decision support system for application migration to the Cloud 17

3 Specification & Design

Construction of knowledge base is groundwork for helping database define entities and
relationship, and for supporting matching as well as cost calculation.

Figure 3.3: Modules of Decision Support System

Figure 3.3 shows the modules of decision support system. Data handler procedure is
used to manipulate matching and calculation. This process is also the key to passing
data between the modules whose implementation may depend on interactions with user
interface and knowledge base. It enables to dynamically render options to user inter-
face according to conditions defined by users and obtain necessary parameters retrieved
from user interface, in certain cases, the lack of prior knowledge cause that user cannot
determine a precise parameter value, system allows entering a value of NULL. Then the
communication with database helps it query or retrieve the data from multiple tables
based on various criteria. Typically, in order to complete the calculations that the query
with different parameters will be executed more than once. For manipulating the match-
ing and cost calculation, it is able to classify the final data or intermediate data and
manage them in an ordered set, according to condition defined by user. Finally data
handler should send results back to user interface.

3.3 System Design

Figure 3.4 gives an overview of the conceptual model of the proposed migration decision
support system. The attributes of configuration are classified as hierarchical structure.
Provider offerings can be identified with service level and service type as we have dis-
cussed in Section 2.1. One offering may contain more than one configuration, though
they are used to achieve similar functionality, but performance and price may be very
different. Hence the system must be able to distinguish between them. This model con-
siders the principal parameters in performance, characteristics and cost. Currently it is
aimed at the parameters which were official data released by service provider. However,
it should be prepared to use a wider range of parameters in the future.

We found in our investigation that parameters affecting cost of configurations with same
performance and characteristics are location of data-center and usage amount. Therefore
they are the important parameter used for definition of requirement. In order to calculate
cost this model applies formulas with multiple parameters to express basic cost. These

18 A decision support system for application migration to the Cloud

3 Specification & Design

Figure 3.4: Conceptual Model of Decision Support System

parameters in the formula are numerical and obtained from users requirement. As a
record that is stored in database, a remarkable point of this is that it can increase
scalability and extensibility of the system. Each time a provider makes changes to
pricing pattern, the system will only need to update the related entities in data model.

A decision support system for application migration to the Cloud 19

3 Specification & Design

Another parameter affecting price of configuration is the location which is non-numerical,
and it will be defined as an attribute in the basic cost entity.

In Figure 3.4 a requirement contains parameters and variables, the values of which will
be used by filter and other components in the data handler to compare with the data
stored in database and to calculate cost. According to the provided requirements, the
filter will check out the data entity and choose the configuration that meets the multiple
criteria. The selected configuration will be called as candidate. In order to be able to
rank candidates, the system needs to calculate the cost of each candidate.

In this conceptual model, entities used to describe attributes of configuration will be
presented as different tables in a relational database, and the components for parameter
comparison, cost calculation and ranking will be implemented in data handler with
backend code.

3.3.1 Cloud Provider Knowledge Base

A knowledge base is the fundamental part of implementing data handler procedure and
it provides information resource for every step in decision support process. Through
requirement analysis an Entity-Relation diagram is designed to support the implemen-
tation of the system’s knowledge base. This ER-model contains 6 main entities and the
relationships among them. Each principal property of a Cloud service will be abstracted
as an entity which can be used to classify offerings and their configuration. Diagram 3.5
shows the Entity-Relation diagram.

Entity Provider contains the basic information of a Cloud service provider, it has a one-
to-more relationship with Offering entity which can also be specified by entity Service
type. One offering may have more configurations which are divided into groups with
different performance or usage amount, hence each configuration has a Performance
entity of its own which includes attributes about service capability or characteristic; this
mapping can be represented by a one-to-one relationship. Additionally, cost is specified
as another important factor in decision process. For one configuration, its cost is dynamic
and depends on Location entity as well as Usage entity. These two parameters have a
one-to-more relation with Cost entity. To make a accurate cost estimate, Variable entity
will identify the necessary information about multiple parameters in each calculation.

3.3.2 Offerings Matcher

The role of offering matcher is as a component in data handler to recommend appropriate
candidates who meet all of users multiple criteria. Most parameters of major factors
are measurable, numerical like CPU, RAM, but there are some critical parameters like
license, operation system expressed as non-numerical format. To compare configurations
we need to distinguish between non-numerical and numerical parameters.

For numerical parameters, it is possible to analyze particular performance or characteris-
tic with measurement of integer or floating-point types. For example, higher frequency of
CPU or larger size of memory may signify better performance. Therefore we can simply

20 A decision support system for application migration to the Cloud

3 Specification & Design

Figure 3.5: ER-Diagram of Cloud Knowledge Base

compare numerical values to determine the candidates, and the role of value inputted
by user works as a threshold. A configuration will be filtered out if one of its parameter
is less than the value given by user.

For non-numerical parameters, the format of expression of performance or characteristic
is more diverse, and it is difficult to compare with a unified approach. Some values are
discrete variable, and are incomparable like the type of database management system.
In this case, the relationship between value defined by user and particular characteristic
parameter is one to one, this means, it will be filtered out if the discrete parameter
failed to exactly match the corresponding input value by user. Another possible format
is sorted with hierarchical levels, for example, I/O performance is described by Microsoft
Azure with low, moderate and high. Although these values are non-numerical, but based
on their hierarchical level they can be converted to numerical value, in this case, the
values of parameter on each level are able to be mapped to a constant depending on
the grade. After converting they will be comparable and the relationship between user
input and parameter value of offering is one-to-many. There could be more than one
value satisfying users need. Additionally, Boolean is also a non-numerical format used
to express some characteristic of offerings. This type is easier to check if the requested
values are available.

We propose a method whose argument value is a kind of non-numerical parameter,
although the passing value is varied, but return value should be expressed with unified

A decision support system for application migration to the Cloud 21

3 Specification & Design

Algorithm 1 Offering Matcher

INPUT:
List : Lc, Lp; V ar : baseV alue,inputV alue;
(∗ Lc = configurations that belongs to selected offerings ∗)
(∗ Lp = required parameters ∗)

Var condition: Boolean
procedure OfferingMatcher(Lc, Lp, baseV alue, inputV alue)
Begin:

for each c ∈ Lc do
for each p ∈ Lp do

if p is numericalV alue then
if baseV alue < inputV alue then

remove c from Lc;
break;

end if
else
condition := matching(inputV alue, baseV alue);
/*matching() implementation depends on
/the type of inputValue and base Value*/
if ¬condition then

remove c from Lc;
break;

end if
end if

end for
end for

endprocedure

format. We set a return value as Boolean type to determine if a service meets the
requirement of user. Any parameter of a configuration returns false, then it will be
filtered out.

Algorithm 1 shows a procedure used to match offerings. The initialization of the input
data includes four variables. List Lc contains the configuration of user preferred offerings
and the elements in Listp are the types of necessary parameters. Variable inputV alue
is assigned by user on user interface and every parameters value is represented with
baseV alue which can be obtained from knowledge base. If any numerical value less than
user input or any non-numerical value is failed to meet the condition, this configuration
will be filtered out from Lc. At last, Lc contains all configurations which satisfy every
users requirement and are ordered as candidates for the next step of decision support.

3.3.3 Costs Calculator

Cost calculator is used to estimate pricing with multiple parameters whose values are
assigned by user. Almost every offering has its own pricing, and for most services, the

22 A decision support system for application migration to the Cloud

3 Specification & Design

relationship between unit-price and consumption is fixed, this means, the coefficient of
calculation is a constant. But for some services, the price will have changed with the
increase of consumption, the change of coefficient leads to a dynamic function. Figure 3.6
shows the pricing details of Azure Storage Service [23]. We can see that, the cost of this
offering will decrease with increase of amount, but for every grades of storage capacity
the unit-price is a constant. Therefore it is necessary to set a calculation respectively
for each amount range.

Figure 3.6: Pricing Details of Microsoft Azure Storage Service

In order to effectively calculate cost for the offerings from different providers, each of-
ferings price will be determined by a formula that contains the necessary parameters. It
would have the major advantage that it would not require any changes to the backend
code while provide have changed the pricing details and it is able to facilitate system
extensibility and flexibility. The following formula is an example for calculating the cost
of Azure Storage in different ranges which we have showed in Figure 3.6. A formula may
have more than one parameters, in this case, a value given by user should correspond
to a designated parameter in formula. The relationship between input value and the
position of parameter in formula is pair-wise.

cost =

(0.125× para1) + para2× (0.01÷ 100000) First1TB/Month

(125 + 0.11× (para1− 1000)) + para2× (0.01÷ 100000) Next49TB/Month

(5514 + 0.095× (para1− 50000)) + para2× (0.01÷ 100000) Next450TB/Month

In some cases, the user is unable to estimate the consumption for a particular offering,
for that input may be null value. When this happens, for fixed unit-price we can set a
initial value with smallest amount of usage to calculate cost but for dynamic unit-price
user may want to know the cost in every amount range, hence each configuration will
have a list expressing the cost with default maximum and minimum consumption in each
amount range.

Algorithm 2 shows a procedure which is used to calculate cost. Lc contains a list of
configuration whose cost should be calculated, and Ls contains the corresponding cost

A decision support system for application migration to the Cloud 23

3 Specification & Design

Algorithm 2 Cost Calculation

INPUT:
List : Lc,Ls, Lv;
(∗ Lc =congfiguration∗)
(∗ Ls =cost string∗)
(∗ Lv =user input value∗)

Var variableList(value, position):ArrayList; defaultMin, defaultMax:Double
procedure CostCalculation(Lc, Ls, Lv)
Begin:

for each c ∈ Lc do

variableList←

value := v ∈ Lv ∀v ∈ Lv 6= NULL

value := v ∈ (initialV alue ∨ Lv) ∃v ∈ Ls = NULL

∧v ∈ fixedunit− price

value := NULL ∃v ∈ Ls = NULL

∧v ∈ dynamicunitprice
for each s ∈ Ls do

if ¬∃value = NULL ∈ variableList then
calculate(s, variableList);

else
for each value = NULL ∈ variableList do

value := defaultMin;
end for
calculate(s, variableList);
for each value = NULL ∈ variableList do

value := defaultMax;
end for
calculate(s, variableList);

end if
end for

end for
endprocedure

formula expressed as string. The element in Lv is input value assigned by user. Ad-
ditionally, ArrayList variableList consists of pair-wise element expressing the value of
parameter and its position in formula. After procedure determined the input value,
variableList will be assigned with value, and then cost can be calculated with user
required or default value.

Based on their requirement analysis users should be able to design a pattern for the de-
mand of elastic usage amount. A usage pattern covers four variants: type of parameter,
type of change trend, period and change rate. Some offerings have multiple parameters
for pricing. For example, in storage service whose parameter include the capacity of
storage and number of transactions, it may happen that capacity increases but trans-
action declines at the same time or both of them have same change trend but rate is
different. Therefore the elastic change is independent for each parameter, and the usage

24 A decision support system for application migration to the Cloud

3 Specification & Design

in months for every parameter needs to be taken into account respectively. Furthermore
the change trend has three options: increase, decrease and invariant. By each of the
trend option user can also define a period in months and rate in percentage. Table 3.2
gives an overview of the variants.

Table 3.2: Variants Of Usage Pattern

Variant Value

Type of Parame-
ter

GB, Hour ,Transaction...

Type of Trend Increase, Decrease, Invariant

Period Month

Rate Percentage

Additionally, because fixed unit-price has a constant coefficient between usage amount
and cost, we can directly calculate its cost by the change rate of usage. But for dynamic
unit-price every change may lead to an overranging amount and the former price is
no longer applicable, hence we need calculate the usage amount for every month in a
period.

Algorithm 3 Cost Calculation for Usage Pattern

INPUT:
List : Lm,Lu,usage,rate;
(∗ Lm =pattern period∗)
(∗ Lu =unit∗)
(∗ usage =usage amount for last month∗)
(∗ rate =change rate∗)

Var variableList(value, position):ArrayList;
procedure PatternCalculation(Lm, Lu, usage, rate)
Begin:

for each month ∈ Lm do
for each unit ∈ Lu do

usage := usage ∗ rate;
variableList← usage;

end for
calculate(costString, variableList);

end for
endprocedure

Algorithm 3 shows a procedure which is used for pattern calculation. Lm represents the
length of period and Lu contains parameters which should be considered in calculation.
For the difference of change trend by multiple parameters in one period the usage amount

A decision support system for application migration to the Cloud 25

3 Specification & Design

needs to be calculated on the monthly basis for every parameter respectively, and the
result will be stored in a list for obtaining the final cost.

3.3.4 User Interface

By the use case described in Section 3.2, there are three steps for the interaction of
decision support process. Because of the platform-neutrality requirement, Web Forms
are applied as user interface. Controls are arranged in an intuitive manner on forms. For
each step there will be a web page expressing particular options or calculated results.

• First step is collecting and processing users requirement. User can choose a service
type to obtain a list of offerings which are available for required service type. Then
user selects one or more offerings from this list for comparison. And user can enter
the requirements which are able to be mapped to the necessary parameters like
location, performance and usage amount. Especially, the options for requirement
must be dynamically generated, since different types of offering do not have the
same factors. Additionally, user is able to design an usage pattern for calculating
the total cost.

• Second step is displaying results and setting key performance for candidates to
rank. System shows the results from last step on user interface. Then user is able
to choose some or all candidates for ranking based on a preferred key performance.

• Last step, the final results will be expressed as a table to display configurations
recommended by the decision support process.

3.4 Summary

In this chapter the requirements of the proposed system is identified from several as-
pects. And this system is specified as three modules: user interface, data handler and
Cloud provider knowledge base. In order to realize the knowledge base, we complete an
ER-diagram to describe the relation between identified entities. Data handler involves
two important procedures: offering matching and cost calculation. The algorithms are
developed to achieve the goals of recommendation on selecting appropriate offerings and
calculation corresponding cost. Finally, we give a specification for the design of user
interface.

26 A decision support system for application migration to the Cloud

4 Implementation

This chapter describes the realization of a Cloud provider knowledge base and the im-
plementation of the proposed migration decision support system.

4.1 Cloud Provider Knowledge Base

A relational database is developed for realizing Cloud provider knowledge base with
the ER-model presented in Section 3.3.1. Through queries to the database the system
can obtain necessary resources which are used to match offerings and calculate cost.
The relational database is based on Microsoft SQL Server 2008 Express and contains 14
entities (Figure 4.1).

Attributes in entity Offering includes information about provider, service type and be-
longs to which level in service model. Configuration entity will inherit these attributes
from Offering. Additionally there is a one-to-one relationship between Performance and
Configuration, every configuration has different attributes in performance respectively.

For matching offerings, the system should first generate performance options and display
them on Web forms. Different services have different performance characteristics; as a
user has determined the service type he needs, the system should also be able to create
corresponding performance options for this service. For all Cloud service providers,
segmentation of the market allows the vendor to tailor its scenario to the consumers
requirement, this means, every offering will have more than one configurations. As
a precondition for comparing and ranking configurations, user need to submit their
requirements to the system, therefore the generation of parameter options is dynamic
and it depends on the service type selected by user. For this reason, we need an entity to
express which performance parameters are contained in a particular service type. There
is a mapping between performance and service type in knowledge base. This ensures
that system can give the appropriate options depending on users choice.

The relationship between configuration and cost will be one-to-many. Parameters like
usage amount or location can lead to generate a number of different costs for the same
configuration. For some services like data transfer or storage, price has a direct rela-
tionship with amount of usage. The attribute costString in cost express formula with
numerical parameter. In some cases, there are more than one parameter in one formula
and every parameter has different units. For example, the parameters of Google Cloud
SQL for cost calculation includes instance type, size of storage and usage period, a total
of three parameters [24]. We need a mapping between costString and variables, in order
to dynamically generate options for amount of usage and to let the system know how

27

4 Implementation

Figure 4.1: Data Model of Decision Support System

to set parameters in formula with corresponding variables. Location of datacenter and
usage amount must be able to have respective entity and have a relationship with cost.

28 A decision support system for application migration to the Cloud

4 Implementation

4.2 System Outline

Figure 4.2: Overview Of Class Dependencies

The development tool is Microsoft Visual Studio 2010 based on Microsoft .NET Frame-
work 4.0, development language is Microsoft Visual C# and ASP.NET.

In ASP.NET Web pages, user interface consists of two parts, the visual component and
the logic. The variables and methods of the Web pages are defined in class Configuration,
SelectionResults and RankingResults as logic part respectively. In these classes some
methods are used to control the life cycle of Web page and some methods are used
to handle the events from Controls on form like Button, DropDownList. When an
event occurs on client, it will be automatically captured and trigger the corresponding
method. The invoked method will be processed by handling the event with server-side
code instead of client script.

To filter out infeasible configuration the corresponding values must be able to be com-
pared and the cost calculation involves multiple variables. In other words, multiple type
variables or data will be used in different procedures over and over. Hence a type-safe
encapsulating method without committing to actual data types is required for using data
which have the same properties. Generic is applied to construct several classes to enhance
the reusability of code. Class Performance and Unit encapsulate the input data for

A decision support system for application migration to the Cloud 29

4 Implementation

offering matcher and cost calculator respectively. Class NonNumericalPerformance
is used to compare the non-functional parameters and Class RankingData includes the
necessary properties to sort the candidates which are defined in class Candidate. For
handling the usage pattern class Pattern and Usage are created to record pattern de-
fined by user and store the temporary intermediate variables.

Figure 4.2 shows the dependencies between classes. Page Configuration is responsible
for matching and calculation, it has independencies with class Unit, Performance and
NonNumericalPerformance, furthermore it needs an instance of class ScriptControl
to enable calculation with CostString. In page SelectionResults ranking is realized by
reference to class DataCompare and RankingData.

4.3 Offerings Matcher

As an important component in data handler procedure, offering matcher plays a central
role in decision support process. The main task of offering matcher is to obtain a
collection of configurations whose performance and characteristic are enough to satisfy
users requirement.

First of all, we have an initial collection including offerings selected by user, and each
offering contains more than one configurations. In offering matcher each element in this
collection must be able to have comparison process to filter out the infeasible configu-
ration by iterating through them. On the beginning a query is created that joins the
Performance table and the Configuration table on the PerformanceID fields. The
result of this query consists of the performance values which belong to the configuration
in the collection at the current position of the loop. Typically, through the above query
every configuration has a set of performance values. Hence by iterating query record
the comparison will focus on each of the performance values for offering matching. Ad-
ditionally, for this comparison we need another loop for iterating all values assigned by
user. From all this, offering matcher uses a nested loop to generate a List which contains
the identifiers of suitable configurations.

Table 4.1: Classification Of Values

Numerical Non-Numerical

Requirement value1 value2

Knowledge Base value3 value4

Table 4.1 shows that the performance value can be classified with four types. From the
aspect of parameter type performance value can be divided into numerical value and
non-numerical value, furthermore these values can be identified by the source of value,
this means, a performance value may be assigned with users requirement(value require)
or be the property of a configuration stored in knowledge base(value provide). There is
fundamental work to be done that can compare the values between users requirement and
knowledge base with two different methods. First the parameter type of a performance

30 A decision support system for application migration to the Cloud

4 Implementation

value should be identified. There is a List nonNumericalPerformanceName that
consists of identifier of all non-numerical performances. For one value at the current
position of assigned value loop its parameter type will be checked. As a Boolean type,
the result of this check is used to control the comparison method.

Listing 4.1: Offering Matcher

1

2 f o r (i n t i = 0 ; i < conigIDWithPerformanceList . Count ; i++){
3 St r ing sq l pe r f o rmance query = ” s e l e c t ” + para query +
4 ” from Performance j o i n Conf igurat ion on ” +
5 ”Conf igurat ion . PerformanceID=Performance . PerformanceID where” +
6 ”ConfigID=”+conigIDWithPerformanceList [i] . ToString () ;
7 SqlCommand comm = new SqlCommand(sq l per fo rmance query , conn) ;
8 SqlDataReader reader = comm. ExecuteReader () ;
9 whi le (reader . Read ()) {

10 f o r each (Performance p in inputPer formanceLis t) {
11 double va l u e r equ i r e , va lue p rov ide ;
12 Boolean Condit ion ;
13 f o r each (S t r ing s in nonNumericalPerformanceName) {
14 i f (s . Equals (p . RequiredPerformance)) {
15 i sNumer ica l = f a l s e ;}
16 }
17 i f (i sNumer ica l) {
18 i f (! (p . Input . Equals (””) | | p . Input . Equals (p . RequiredPerformance)) {
19 va l u e r e qu i r e = double . Parse (p . Input) ;
20 } e l s e {
21 va l u e r e qu i r e = 0 ;
22 }
23 i f (r eader [p . RequiredPerformance] . ToString () . Equals (””)) {
24 va lue prov ide = va l u e r e qu i r e ;
25 } e l s e {
26 va lue prov ide = double . Parse (reader [p . RequiredPerformance] . ToString ()) ;
27 }
28 i f (va lue p rov ide < va l u e r e qu i r e) {
29 conigIDWithPerformanceList . RemoveAt(i) ;
30 i−−;
31 break ;
32 }
33 } e l s e {
34 i f (! (p . Input . Equals (””) | | p . Input . Equals (p . RequiredPerformance)) {
35 NonNumericalPerformance nonNumerical = new NonNumericalPerformance (
36 p . Input , p . RequiredPerformance , r eader [p . RequiredPerformance] . ToString ()) ;
37 nonNumerical . Comparsion () ;
38 Condit ion = nonNumerical . Condit ion ;
39 } e l s e {
40 Condit ion = true ;
41 }
42 i f (! Condit ion) {
43 conigIDWithPerformanceList . RemoveAt(i) ;
44 i−−;
45 i sNumer ica l = true ;
46 break ;
47 }
48 }
49 i sNumer ica l = true ;
50 }
51 }
52 r eader . Close () ;
53 }

If the parameter type is numerical, the assigned value will be directly compared with the
value obtained from knowledge base. If the assigned value is bigger, this configuration
must be removed from the configuration list. Note that if the users requirement is

A decision support system for application migration to the Cloud 31

4 Implementation

default or corresponding value in data base is null, the performance will be considered
as matched. This means that the system is optimistic with respect to fulfilling users’
requirements in the absence of additional information.

If the parameter type is non-numerical, the two values with different sources will be the
arguments to generate an instance of class NonNumericalPerformance; this instance
is able to use a method to compare the non-numerical value.

Listing 4.1 shows the implementation details of offering matcher procedure.

4.4 Costs Calculator

After the candidates have been generated by offering matcher, as an indispensable step
the corresponding pricing must be calculated. The cost calculator is responsible for
providing an estimate cost by users requirement. Listing 4.2 gives the related code for
implementing calculation.

Listing 4.2: Cost Calculator

1

2 f o r each (Object o in c o n f i g L i s t) {
3 f o r each (S t r ing [] s in v a r i a b l e L i s t) {
4 i f (s [0] . ToString () . Equals (o . ToString ())) {
5 f o r each (Unit inputValue in inputValueLi s t) {
6 i f (inputValue . UnitValue . Equals (s [2] . ToString ())) {
7 i n t i = in t . Parse (s [3] . ToString ()) ;
8 i f (! (inputValue . Input . Equals (””) | | inputValue . Input . Equals (
9 inputValue . UnitValue)) { po s i t i o n [i − 1] = inputValue . Input ;

10 i f (inputValue . UnitValue . Equals (”GB”) | | inputValue . UnitValue . Equals (
11 ”GB f o r Network”)) { input1 = inputValue . Input . ToString () ;
12 para1 = ”9” ;
13 }
14 } e l s e {
15 po s i t i o n [i − 1] = ”1” ;
16 i f (inputValue . UnitValue . Equals (”GB”) | | inputValue . UnitValue . Equals (
17 ”GB f o r Network”)) {
18 l o c a t o r = i − 1 ;
19 para1 = ”1” ;
20 input1 = ”0” ;
21 }
22 . . . SQL Query
23 whi le (reader . Read ()) {
24 f unc t i on = reader [”CostStr ing ”] . ToString () ;
25 i f (r eader [”UsageAmountID”] . ToString () . Equals (””) | | para1 . Equals (”9”)) {
26 double co s t = Ca l cu la t i on (funct ion , p o s i t i o n [0] , p o s i t i o n [1] , p o s i t i o n [2] ,

p o s i t i o n [3]) ;
27 } e l s e {
28 po s i t i o n [l o c a t o r] = reader [”Min”] . ToString () ;
29 double min = Ca l cu l a t i on (funct ion , p o s i t i o n [0] , p o s i t i o n [1] , p o s i t i o n [2] ,

p o s i t i o n [3]) ;
30 po s i t i o n [l o c a t o r] = reader [”Max”] . ToString () ;
31 double max = Ca l cu l a t i on (funct ion , p o s i t i o n [0] , p o s i t i o n [1] , p o s i t i o n [2] ,

p o s i t i o n [3]) ;
32 }
33 }
34 r eader . Close () ;
35 }

32 A decision support system for application migration to the Cloud

4 Implementation

For every configuration stored in a list, at the first step the values entered by user and
their corresponding positions have to be determined. For one configuration each param-
eter for cost calculation will have a unique identifier to associate the value assigned by
user with its position in cost formula. The variable variableList contains a set of String
array which consists of the data about unique identifier and its position. The elements
in another variable inputV alueList are instance of class Unit which encapsulates the
information of input value and identifier. If a unique identifier in these two lists can be
matched, then the input value will be associated with a position.

Another necessary part in this step is to check if the input value is null. We have to give
every null input an initial value for the later calculation. As we have discussed in Section
3.3.3 the dynamic unit-price like GB has more than one usage range and for everyone
in them there will be a different cost formula needs the initial value. Hence this kind of
unit-price must be able to be handled separately. If the input for dynamic unit-price is
null, a marker will be updated for expressing the state that will be used in a query for
cost formula.

Listing 4.3 shows a SQL query for the next step. It compares fields by using one field
as a criterion for the other. Through determining the state of marker the query can be
aimed at achieving initial value for null input of dynamic unit. In this case, the query
result may have a set of formulas. Additionally, the initial value for every usage range
will also be included in the record set, if the marker has been updated at the previous
step. We will use these formulas and the value assigned by user or by initialization to
calculate cost.

Listing 4.3: SQL Query For Cost

1

2 Se l e c t ∗ from Cost j o i n Conf igurat ion on Conf igurat ion . ConfigID= Cost . ConfigID
3 l e f t j o i n UsageAmount on UsageAmount . UsageAmountID = Cost . UsageAmountID
4 j o i n Locat ion on Locat ion . LocationID = Cost . LocationID
5 j o i n O f f e r i ng on Of f e r i ng . Of fer ingID=Conf igurat ion . Of fe r ingID
6 j o i n Provider on Provider . ProviderID=Of f e r i ng . ProviderID
7 where (Cost . UsageAmountID i s nu l l or Cost . UsageAmountID=
8 (case when (1=%usageParameter) then Cost . UsageAmountID e l s e (
9 s e l e c t d i s t i n c t Cost . UsageAmountID from Cost

10 l e f t j o i n UsageAmount as t1 on t1 . UsageAmountID = Cost . UsageAmountID
11 where t1 .Min<=%input and t1 .Max>=%input and Cost . ConfigID=%conf ig ID) end))
12 and (Locat ion . LocationID=12 or Locat ion . LocationID= case when (0=%

locat ionParameter) then
13 Locat ion . LocationID e l s e 0 end)
14 and Cost . ConfigID=%conf ig ID

Listing 4.4: Calculation Method

1

2 pub l i c double Ca l cu l a t i on (St r ing funct ion , S t r ing para1 , S t r ing para2 , S t r ing
para3 , S t r ing para4) {

3 St r ing r e s a u l t = St r ing . Format (funct ion , para1 , para2 , para3 , para4) ;
4 MSScriptControl . Sc r ip tCont ro l sc = new MSScriptControl . S c r ip tCont ro l () ;
5 sc . Language = ” JavaScr ipt ” ;
6 double va lue = sc . Eval (r e s a u l t) ;
7 double co s t = Math . Round(value , 2) ;
8 r e turn co s t ;}

A decision support system for application migration to the Cloud 33

4 Implementation

Before the last step, either the users input or the initial value will be assigned to every
parameter except dynamic unit. At the last step, if the unit is fixed then the formula and
its parameter value in each position will be as arguments passed in calculation method,
else the data in Max and Min field of query result will be assigned to the corresponding
position respectively, and using this to calculate minimum and maximum cost for every
usage range. Listing 4.4 show the code for String calculation.

If user defines a usage pattern for a certain period, system should calculate the total cost
for every month in the pattern. Because the cost will tend to change as usage amount
increase or decrease, especially usage amount has relationship with period. Therefore
we need a mapping between the usage of every parameter to their period in months.
For that, we have defined a Generic Usage to encapsulate the information about pa-
rameter, its usage amount and the corresponding month. In one month the change
rate of different cost parameters may have different values, in order to obtain the total
cost in a whole period the calculation will focus on a Cartesian product result set of
months and usage amount of each parameter. This set will be stored in a list and can be
used as the argument for the calculation process. Listing 4.5 shows the code of method
UsageConstructor which can generate a list described above.

Listing 4.5: Usage Constructor

1

2 pub l i c L i s t<Usage> UsageConstructor ()
3 {
4 double usage = 1 ;
5 List<Usage> monthList = new List<Usage>() ;
6 f o r each (Unit un i t in Globa lVar iab le . i npu tL i s t)
7 {
8 i n t month = 1 ;
9 i f (! un i t . Input . Equals (un i t . UnitValue))

10 {
11 usage = double . Parse (un i t . Input) ;
12 }
13 f o r each (Pattern pattern in Globa lVar iab le . pa t t e rnL i s t)
14 {
15 i f (pattern . Unit . Equals (un i t . UnitValue))
16 {
17 f o r (i n t i = 0 ; i < Convert . ToInt32 (pattern . Period) ; i++)
18 {
19 month = month + 1 ;
20 usage = usage ∗ (1 + double . Parse (pattern . Rate) / 100) ;
21 monthList .Add(new Usage (un i t . UnitValue , usage . ToString () , month . ToString

())) ;
22 }
23 }
24 }
25 i f (month > Globa lVar iab le . monthCounter)
26 {
27 Globa lVar iab le . monthCounter = month ;
28 }
29 }
30 r e turn monthList ;
31 }

34 A decision support system for application migration to the Cloud

4 Implementation

4.5 User Interface

A Web application form is created for achieving interaction between user and system.
The Frontend runs in ASP.NET environment and contains three pages. Every page
expresses a decision step separately. By three menu items on top of the page user can
move more easily through sites.

Figure 4.3: User Interface: Configuration Page

Figure 4.3 shows the Configuration page which is used to collect requirements. Through
some controls such like radio button, check list and text box users can choose offerings,
input their requirements and design usage patterns.

Figure 4.4 is an example for SelectionResults page. After collecting necessary data from
the first page the system will output its result of calculation on SelectionResults page. A
list view is applied to describe the details of candidates. Every row in the list expresses a
configuration. Its cost and other information are displayed in a separate column. Under
this list view we use a diagram with spline to demonstrate cost movements in usage
pattern for a certain configuration. Beyond this user can also choose a key parameter
and preferred candidates to complete the second step of decision process.

A decision support system for application migration to the Cloud 35

4 Implementation

Figure 4.4: User Interface: Selection Results Page

Figure 4.5: User Interface: Ranking Results Page

The last step of decision process is presented in Figure 4.5. Similar with SelectionResults
page, this RankingResults page uses a list view to demonstrate the results from Back-
end, but a significant difference is that the sequence of items in list is ranked by a key
parameter.

36 A decision support system for application migration to the Cloud

4 Implementation

4.6 User Guide

4.6.1 Selection Of Offerings

Through choosing one of the service type a list of corresponding offerings will be showed
in the DropDownList. The selected offerings will be displayed on form. Service type
of Application points to PAAS, Data represents data transfer during network access,
Storage includes relation database service and data storage service, Infrastructure
contains visual machine instance and Software is aimed at SAAS. Figure 4.6 shows the
related controls for selecting offering.

Figure 4.6: User Guide: Selection Of Offerings

4.6.2 Setting Of Parameters

Figure 4.7: User Guide: Setting Of Parameters

Figure 4.7 gives an overview of setting interface. This step includes three parts. First
user assigns values to parameters displayed in panel Performance, these parameter
will be used to match suitable service. If user does not define the value of a particular
parameter, system will assign a default value to ignore the effect of this parameter in the

A decision support system for application migration to the Cloud 37

4 Implementation

matching process. Then the usage amount in a basic unit time can be defined in panel
UsageOptions. If an entering is empty, system will define usage with smallest unit for
fixed unit-price and in case of dynamic unit-price the minimum as well as maximum usage
amount in each range will be listed automatically. At last, location as a characteristic
parameter is able to be selected in panel LocationOptions. Option of DefaultLocation
means avoiding restriction of location. Additionally, in panel Hint the information
prompts the user to enter a specific type or correct format of requirements.

4.6.3 Usage Pattern

User can define usage patterns to forecast total cost in periods. Figure 4.8 shows the
options for usage pattern. The first check list represents type of parameters which
belongs to usage options. This means that patterns of every parameter will be created
separately. Next one is used to determine a trend of change. Option Period contain
months from 1 to 12. The change rate can be assigned by the text box. For any
parameter, a period in subsequent pattern will be strictly connected with the period
in previous defined pattern that they must be the same parameter. For example, the
period in first pattern is 3 months with increase rate of 15% per month and the period
in second pattern contains 5 months with decrease rate of 5% per month. Therefore,
the total period is 9 month, peak appears in the fourth month and the usage from fifth
month will start to decline and over the next four months. For one offering, if total
periods of multiple parameters are different, from boundary point system will complete
the missing months with invariant trend for the parameters whose total period is shorter.
In a similar case, if there are no patterns defined for a particular parameter, its trend
will be considered as invariant and the corresponding period is as same as the longest
period of patterns which belongs to the same offering.

Figure 4.8: User Guide: Usage Pattern

4.6.4 Results Of Calculation And Selection For Ranking

Figure 4.9 is the results of calculation which are listed in a table. Every row represents
a configuration. The basic cost, total cost, specific parameters and other necessary
information retrieved from knowledge base will be indicated in different columns. By
clicking the Info button which is at the end of each row a diagram with spline and a
table of details will be displayed under the results table. The x- and y-coordinates of
the diagram contain values of months and cost respectively. This diagram enables users

38 A decision support system for application migration to the Cloud

4 Implementation

to watch the trend of estimate cost in the whole period. Additionally, there is a table
to show all parameter details for a selected configuration. One or more configurations
can be chosen for ranking by clicking the check box at the head of each row. User can
also click the All button (Figure 4.10) to enable selecting all configurations. After user
has chosen their preferred configurations as candidates, system needs a key parameter
to start ranking process that can be completed with a check list at the bottom of page
(Figure 4.10). This check list contains the options of parameter which can be used for
ranking.

Figure 4.9: User Guide: Results Of Calculation

Figure 4.10: User Guide: Options For Ranking

4.6.5 Results Of Ranking

The configurations which are selected from the last step will have a sequence in the
table. They are sorted by magnitude of key parameter. If key parameter is cost, the
sequence is from smallest to largest, otherwise will be reverse. As same as the table with
results of calculation (Figure 4.9), user can get cost and parameter details by clicking
Info buttons at the end of each row.

A decision support system for application migration to the Cloud 39

5 Evaluation

In this chapter some test cases for offering matching and cost calculation will be used to
validate the results of data handling. Then we will compare the functionality of MDSS
with some online available decision support system and calculation toolkit. At last
MDSS is compared with some migration support frameworks which we have discussed
in Section 2.3.

5.1 Validation

As the first step in the decision process, offering matching should filter out unsuitable
configurations and generate a list which contains the feasible candidates. MDSS can
compare each requirement defined by user against all of the offerings data in data base.
The implementation of matching component requires support of a provider knowledge
base. We choose the results of PlanForCloud [25] as the comparison data, because its
knowledge base supports more than one provider.

Table 5.1: Validation of Offering Matching

Migration Support System PlanForCloud

Google Microsoft
Azure

Google Microsoft
Azure

US EU Worldwide

n1-standard-8-d n1-standard-8-d ExtraLarge n1-standard-8-d ExtraLarge

n1-standard-8 n1-standard-8 n1-standard-8

n1-highmem-8-d n1-highmem-8-d n1-highmem-8-d

n1-highmem-8 n1-highmem-8 n1-highmem-8

In the test case user wants to select a VM service among Windows Azure and Google
Computer Engine. The multi-criteria restriction conditions are that CPU must have
at least 8 cores and RAM must reach at least 8 GB. Table 5.1 shows the results from
these two systems. According to MDSS Google has 4 configurations that satisfy the
test requirements and Window Azure has one feasible configuration. The output by
PlanForCloud has the same candidates but a noticeable difference between them is

41

5 Evaluation

that each configuration has a location information by MDSS. An instance pricing will
depend on the location where it has been hosted by Google, although they have the same
performance. Therefore location is an important parameter in characteristic factor and
has been considered by MDSS. By the results of the two systems we can see that both
of them support multi-criteria matching and more parameters can be taken into account
by MDSS.

Through checking the official pricing details by Google [26] and Windows Azure [23]
we can validate that both of these two systems can recommend correct candidate after
matching requirements.

Because unit-price consists of fixed and dynamic case, we will handle the validation of
cost calculation with both cases separately. First we focus on calculating with fixed
unit-price. Suppose that a user wants to purchase VM service from Windows Azure or
Google Compute Engine. Usage amount as an input parameter will be set to 720 hours
per month. We will compare the calculated cost of each configuration which belongs to
Google and Azure VM offering. Comparison data is from Microsoft Price Calculator
(MPC) which is an official cost calculator and from PlanForCloud (PFC) as third-party
data.

Table 5.2 shows the results of calculation from the three tools. For the instances by
Google, MDSS contains cost distinction between US and EU, but PFC does not have
the related location information, hence location parameter is a cause of differences which
exist among their results. But when we compute the average value of US and EU cost
from results of MDSS, we find that dissimilarity still exists , and the ratio of difference
on average value to the results of PFC is floating between 2% and 3%. As we have no
information about the PFC knowledge base, therefore, we assume that the basic unit-
price of PFC may be different from MDSS. For each instance in Azure, the results of
calculation from MDSS are identical to the data from MPC. But PFC has the differences,
and the maximum ratio of difference reaches 59%. Therefore we still surmise that the
basic unit-price is the main cause of the difference in calculation of cost. After the
comparison of calculation results, we may reasonably come to the conclusion that MDSS
is able to make accurate estimates for fixed unit-price.

Table 5.3 shows an overview of the comparison of calculation results with dynamic unit-
price. In the test cases, the user has decided to choose a Cloud storage offering from
Azure or Google. Because the unit-price and calculation formula will be different with
variation of usage amount, the storage capacity is chosen in each usage range randomly
as input value. The comparison data are obtained from PFC and MPC.

In the case with offering Google Cloud Storage, the difference between MDSS and PFC
is less than 0.003% of cost in each usage range. For Azure Storage Geographically
Redundant, the results by these three tools are exactly the same in the first usage range
with values of 0.525TB, but from the second usage range a difference appears and begins
to rise from the third range. Although the absolute value of the difference increases as the
usage amount rises, the percentage is falling, and the ratio of difference on values from
MDSS to values from the other two tools is floating between 0.001% and 0.003%. Except
from the precision of calculation and rounding-off reasons, a probable cause of difference
in aggregate total cost is that the basic unit-price in knowledge base may have different

42 A decision support system for application migration to the Cloud

5 Evaluation

Table 5.2: Validation of Cost Calculation: Fixed Unit Price

Provider Configuration MDSS PFC MPC Unit Price

US EU US EU

Google n1-standard-1-d $99.36 $108.72 $102.67 $0.138 $0.151

n1-standard-2-d $198.72 $217.44 $205.34 $0.276 $0.302

n1-standard-4-d $397.44 $434.88 $410.69 $0.552 $0.604

n1-standard-8-d $794.88 $869.76 $821.38 $1.104 $1.208

n1-standard-1 $86.4 $95.04 $89.28 $0.12 $0.132

n1-standard-2 $172.8 $190.08 $178.56 $0.24 $0.264

n1-standard-4 $345.6 $380.16 $357.12 $0.48 $0.528

n1-standard-8 $691.2 $760.32 $714.24 $0.96 $1.056

n1-highmem-2-d $228.96 $257.76 $236.59 $0.318 $0.358

n1-highmem-4-d $457.92 $515.52 $473.18 $0.636 $0.716

n1-highmem-8-d $915.84 $1031.04 $946.37 $1.272 $1.432

n1-highmem-2 $182.88 $205.92 $188.98 $0.254 $0.286

n1-highmem-4 $365.76 $411.84 $377.95 $0.508 $0.572

n1-highmem-8 $731.52 $823.68 $755.9 $1.016 $1.144

n1-highcpu-2-d $122.4 $138.24 $126.48 $0.17 $0.192

n1-highcpu-4-d $244.8 $276.48 $252.96 $0.34 $0.384

n1-highcpu-8-d $489.6 $552.96 $505.92 $0.68 $0.768

n1-highcpu-2 $97.92 $109.44 $101.18 $0.136 $0.152

n1-highcpu-4 $195.84 $218.88 $202.37 $0.272 $0.304

n1-highcpu-8 $391.68 $437.76 $404.74 $0.544 $0.608

Microsoft ExtraSmall $9.36 $14.88 $9.36 $0.013

Small $57.6 $63.24 $57.6 $0.08

Medium $115.2 $126.48 $115.2 $0.16

Large $230.4 $252.96 $230.4 $0.32

ExtraLarge $460.8 $505.92 $460.8 $0.64

value. Taking into account of the validation data, we may reach the conclusion that in
case of dynamic unit-price MDSS can output the calculated value with low deviations
when compared to the official provider calculator and a third party calculator.

A decision support system for application migration to the Cloud 43

5 Evaluation

Table 5.3: Validation of Cost Calculation: Dynamic Unit Price

Usage Offering MDSS PFC MPC Unit
Price

0.525 TB Azure Storage Geo-
graphically Redundant

$49.88 $49.88 $49.88 $0.095/GB

Google Cloud Storage $44.62 $44.63 $0.085/GB

5.125 TB Azure Storage Geo-
graphically Redundant

$425 $425.36 $425.36 $0.08/GB

Google Cloud Storage $398.5 $398.72 $0.076/GB

80.075
TB

Azure Storage Geo-
graphically Redundant

$6120.25 $6132.61 $6132.53 $0.07/GB

Google Cloud Storage $5464.2 $5464.4 $0.067/GB

500 TB Azure Storage Geo-
graphically Redundant

$35515 $35527.36 $0.065/GB

Google Cloud Storage $31999 $32010 $0.063/GB

2000 TB Azure Storage Geo-
graphically Redundant

$128015 $128207.36 $0.06/GB

Google Cloud Storage $112999 $113118.98 $0.054/GB

5.2 Comparison with Existing Tools

We will compare the functionality of MDSS with that of the tools which are already
on-line available. As we have discussed in Section 2.4, some providers have offered cost
calculator tools like Azure Calculator or TCO by Amazon and some third-party com-
panies put related decision support products into the market like PlanForCloud which
plays a role as expert consultant in choosing Cloud services. Since a knowledge base is a
cornerstone of decision support, and performance, characteristic as well as cost are the
three most important factors in specification of offerings, the comparison with existing
tools will start with following aspects: knowledge base for multiple providers, offering
matching, cost calculation, design deployment and design usage pattern. Table 5.4 gives
an overview of the features of the existing tools.

• Knowledge base for multiple providers

There exists a large number of Cloud service offerings with similar functionalities
on market, and a knowledge base is typically used to classify and identify these

44 A decision support system for application migration to the Cloud

5 Evaluation

Table 5.4: Comparison with Existing Tools

System Knowledge
Base For
Multiple
Provider

Offering
Matching

Cost Cal-
culation

Design
Deploy-
ment

Design
Usage
Pattern

MDSS yes yes yes no yes

PFC yes yes yes yes yes

MPC no no yes no no

TCO no no yes yes yes

offerings with their parameters. PFC supports the latest cost and performance pa-
rameter for multiple providers. Similarly for MDSS, a knowledge base is designed
and implemented by relation database whose data is the core of the match and
calculation process. The knowledge base of TCO and MPC only include the infor-
mation about their own offerings, therefore the comparison with different providers
is impossible.

• Offering matching

MDSS enables users to add multi-criteria requirements which cover the perfor-
mance and characteristic parameters. The component of offering matcher is able
to pack the requirements as arguments to retrieve the necessary data from knowl-
edge base. Through querying the database and manipulating the retrieved data,
users can obtain the output which is generated with their demands. PFC allows
user to choose configurations according to the parameters, but a limitation of PFC
is that only a few of the most basic parameters are covered. As a calculator tool
TCO and MPC cannot recommend suitable configuration for user.

• Cost calculation

By a given usage amount TCO, MPC and PFC can make an accurate cost estimate
for the user preferred configuration. MDSS is not only able to calculate cost based
on user defined usage amount, but also can output the expenses in each usage
range, if no value of usage is entered by the user. Notably, when compared with
other tools, more parameters in cost calculation are taken into account by MDSS,
for example the location information as a non-numerical parameter has effect on the
unit-price. Additionally, some offerings have more than one numerical parameter
such like storage service whose cost consists of number of transaction and storage
capacity. MDSS allows cost formulas to import multiple parameters and obtains
total cost but MPC calculates and outputs the cost of these parameters separately.

• Design deployment

A decision support system for application migration to the Cloud 45

5 Evaluation

TCO and PFC enable users to design a Cloud deployment which contains server,
storage, database and data transfer. But MDSS can only calculate the cost of these
Cloud resources separately. Therefore, TCO and PFC can be used to support more
types of migration as discussed in Section 2.1.

• Design usage pattern

A significant advantage of Cloud computing is elastic consumption on demand.
Hence usage pattern design is a practical feature to help users check out the costs in
the long term. In TCO users can choose three kinds of patterns: spiky predictable,
uncertain unpredictable and steady state. But the limitation is that user cannot set
the change rate or period, if user has already determined when a peak will appear.
PFC and MDSS enables user to attach patterns which defined with flexible change
rate and period.

5.3 Comparison with Existing Research Frameworks

As we have discussed in Section 2.3, some related works introduced several frameworks
which are aimed at the fields of decision support and application migration. We will
compare MDSS with these frameworks. Table 5.5 gives an overview of the comparison.

Table 5.5: Comparison with Existing Research Frameworks

Frameworks
and Systems

Highlights Factors Taken Into
Account

Ranking
Methods

MDSS Offering selection, Cost
calculation, Ranking

Performance, Charac-
teristic, Cost

Ranking by
key param-
eter

CloudGenius Offering selection, Com-
bination between VM
and infrastructure ser-
vice, Ranking

Performance, Charac-
teristic, Cost,Provider

AHP

(MC2)2 Alternative selection,
Ranking

Performance, Charac-
teristic, Cost,Provider

ANP

Cloud Adoption
Toolkit

Suitability analysis,
Cost modeling, Stake-
holder impact analysis

Performance, Charac-
teristic, Cost,Social and
political factors

SMICloud Ranking Performance, Charac-
teristic, Cost

AHP

46 A decision support system for application migration to the Cloud

5 Evaluation

From the table we can see that every framework consider the performance, characteristic
and cost factors. But a lot of parameters produced by these frameworks are not covered
in MDSS, because the measurement and evaluation of these parameters are difficult and
not accurate. For example, in (MC2)2 the factor cost involves more parameters like
training costs, insurance costs or regulation costs, and in MDSS the factor cost only
contains purchase. However, MDSS takes the most important parameters into account
which are able to impact the results of offering selection.

The combination between VM and Cloud infrastructure service in CloudGenius is a
marked difference from MDSS. According to user requirements, CloudGenius first focuses
on the selection of image and infrastructure service separately and builds all possible
pair, then evaluate the feasible pair to generate the best combination. In MDSS, when
users select candidates for using infrastructure service, system offers all necessary options
based on requirements. In other words, the compatibility is described as a parameter in
MDSS and used to match appropriate offerings.

Cloud Adoption Toolkit (CAT) applies a suitability analysis to filter out infeasible ser-
vice. The suitability analysis involves a check list which covers the main issues during
migration. MDSS collects users requirements and compares with the service parameter
stored in knowledge base to output the suitable services. Both of CAT and MDSS focus
on cost calculation and can estimate the cost in the long term with usage pattern.

The key points in each existing research frameworks are the selection of appropriate
offerings or cost calculation. However, they are not implemented as an on-line available
system or do not have a provider knowledge base. Therefore we cannot compare the
results of MDSS with the other frameworks.

As another highlight, the ranking method in SMICloud is based on AHP. CloudGenius
applies also AHP and (MC2)2 uses ANP to achieve ranking. But how to select the
weights for parameters is still a problem, therefore MDSS ranks the services by the
value of a key parameter. This enables users to check out the list of offering candidates
with a dynamic sequence which is specified based on the key parameter.

A decision support system for application migration to the Cloud 47

6 Conclusions

6.1 Summary

Cloud computing poses both an opportunity and a challenge for enterprises. It allows
consumers to access computing resources through the network elastically; and it enables
enterprises to put in more capital and human resources to develop their business. The
Cloud computing market is booming, driven by the benefits of Cloud computing and the
corresponding maturing technologies. But at the same time, a large number of Cloud
service offerings with similar feature and different pricing make it difficult for consumers
to select suitable solutions. A rational decision helps consumers to mitigate the risk
while their existing applications are migrating to the Cloud. Therefore, we propose a
system to realize the decision support process, by which consumers are able to obtain
recommendations on selecting appropriate configurations.

For achieving the goal, we have first studied the related works in the fields of deci-
sion support and migration systems. The similarities and differences of the parameters
considered by these works are summarized in this thesis. With the collected data and in-
formation a knowledge base for Cloud provider is created. The design of this knowledge
base takes the extensibility and scalability into account. Furthermore, it has the official
data captured from some Cloud providers and covers the parameters which we have
identified. We implemented the proposed system as a Web application. The Frontend
contains three Web forms which allow the user to enter their requirements and check
the returned results; the Backend involves the offerings matching and cost calculation
procedures, by which the infeasible configurations will be filtered out, then the estimate
basic monthly cost and the forecast total cost with usage pattern will be calculated
respectively.

In order to validate the outputs of implemented system, we set up the tests with some
cases and analyze the results of them. We choose an official cost calculator MPC from
Microsoft and a third-party migration support system PlanForCloud, their outputs will
be used as the data in comparative analysis. As an important feature of MDSS, the
results of cost calculation are validated by comparison with other systems. Finally the
functionalities of our system are compared with several existing tools for the evaluation.
MDSS have realized most of the functionalities and covered the most parameters which
should be taken into account during application migration.

To conclude, this thesis introduces a decision support system for migration application
in the Cloud, by which consumers can efficiently and accurately choose the suitable
configuration based on their requirements.

49

6 Conclusions

6.2 Future Work

While writing this thesis, we summarized the limitations and the features which can be
extended in the future work.

• Cover more migration types

The cost calculation and ranking do not support the combination of different com-
ponents in this thesis, not all migration types described in Section 2.1 are covered.
Up to now, the migration types of Replace and Migrate the whole software stack
are applicable. As a proposed solution to deal with this limitation, a procedure
should be designed to store and manipulate the encapsulated cost of each service
in a deployment pattern, and the deployment pattern can be defined as a Generic
to achieve the comparison between different deployment patterns.

• Creation of the profiles for multiple services

In this thesis, the implemented system can only consider one type of the offerings
at each time. In other words, we can only focus on one of the components in a given
deployment pattern. We suggest that, the system allows user to create several pro-
files which involve all components. For every profile, user can choose the feasible
services for each component. Therefore, all profiles have different costs or per-
formance, and the optimal one will be recommended. To achieve this, the cost of
each component should be stored as an attribute in a new defined Generic Profile.

• Extension of the number of providers in the knowledge base

By now the implemented knowledge base contains two providers. It should be
extended with more data of other providers (like Amazon) to afford a further wide
field of application.

• Horizontal elasticity

Another point should be considered in the future is that the usage pattern should
reach horizontal elasticity [6], this means users can not only define the change trend
of computational resource, but also specify the change numbers of instance or stor-
age. To achieve this, more parameters should be defined when the corresponding
procedures generate the instance of Generic Pattern.

50 A decision support system for application migration to the Cloud

Bibliography

[1] B. Suleiman, S. Sakr, R. Jeffery, and A. Liu, “On understanding the economics and
elasticity challenges of deploying business applications on public cloud infrastruc-
ture,” Journal of Internet Services and Applications, pp. 1–21, 2011.

[2] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th
utility,” Future Generation computer systems, vol. 25, no. 6, pp. 599–616, 2009.

[3] B. Tak, B. Urgaonkar, and A. Sivasubramaniam, “To move or not to move: The
economics of cloud computing,” in Proceedings of the 3rd USENIX conference on
Hot topics in cloud computing, pp. 5–5, USENIX Association, 2011.

[4] E. Walker, W. Brisken, and J. Romney, “To lease or not to lease from storage
clouds,” Computer, vol. 43, no. 4, pp. 44–50, 2010.

[5] E. Walker, “The real cost of a cpu hour,” Computer, vol. 42, no. 4, pp. 35–41, 2009.

[6] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How to adapt applications
for the cloud environment - challenges and solutions in migrating applications to
the cloud,” Computing (to appear), 2013.

[7] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al., “Above the clouds: A view of cloud
computing,” tech. rep., Technical report, 2010.

[8] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “Draft cloud computing synopsis
and recommendations,” NIST Special Publication, vol. 800, p. 146, 2011.

[9] W. Zeng, Y. Zhao, and J. Zeng, “Cloud service and service selection algorithm
research,” in Proceedings of the first ACM/SIGEVO Summit on Genetic and Evo-
lutionary Computation, pp. 1045–1048, ACM, 2009.

[10] S. Garg, S. Versteeg, and R. Buyya, “Smicloud: A framework for comparing and
ranking cloud services,” in Utility and Cloud Computing (UCC), 2011 Fourth IEEE
International Conference on, pp. 210–218, IEEE, 2011.

[11] M. Zeleny, Multiple criteria decision making, vol. 25. McGraw-Hill New York, 1982.

[12] F. Hussain, O. Hussain, et al., “Towards multi-criteria cloud service selection,”
in Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2011
Fifth International Conference on, pp. 44–48, IEEE, 2011.

[13] H. Chan and T. Chieu, “Ranking and mapping of applications to cloud computing
services by svd,” in Network Operations and Management Symposium Workshops
(NOMS Wksps), 2010 IEEE/IFIP, pp. 362–369, IEEE, 2010.

51

6 Bibliography

[14] M. Menzel, M. Schönherr, and S. Tai, “(mc2) 2: criteria, requirements and a soft-
ware prototype for cloud infrastructure decisions,” Software: Practice and Experi-
ence, 2011.

[15] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and P. Teregowda, “Decision sup-
port tools for cloud migration in the enterprise,” in Cloud Computing (CLOUD),
2011 IEEE International Conference on, pp. 541–548, IEEE, 2011.

[16] A. Khajeh-Hosseini, D. Greenwood, J. Smith, and I. Sommerville, “The cloud adop-
tion toolkit: supporting cloud adoption decisions in the enterprise,” Software: Prac-
tice and Experience, vol. 42, no. 4, pp. 447–465, 2012.

[17] M. Menzel and R. Ranjan, “Cloudgenius: decision support for web server cloud
migration,” in Proceedings of the 21st international conference on World Wide Web,
pp. 979–988, ACM, 2012.

[18] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance variability of produc-
tion cloud services,” in Cluster, Cloud and Grid Computing (CCGrid), 2011 11th
IEEE/ACM International Symposium on, pp. 104–113, IEEE, 2011.

[19] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: comparing public cloud
providers,” in Proceedings of the 10th annual conference on Internet measurement,
pp. 1–14, ACM, 2010.

[20] aotearoa, “aotearoa.” http://aotearoadecisions.appspot.com/, November
2012.

[21] Microsoft, “Windows azure pricing calculator.” http://www.windowsazure.com/

en-us/pricing/calculator/, November 2012.

[22] Amazon, “Tco comparison calculator for web applications.” http://tco.

2ndwatch.com/, November 2012.

[23] Microsoft, “Pricing details.” http://www.windowsazure.com/en-us/pricing/

details/?l=en-us, November 2012.

[24] Google, “Google cloud sql pricing.” https://cloud.google.com/pricing/

cloud-sql, November 2012.

[25] R. Scale, “Cloud cost forecasting web site from right scale.” http://www.

planforcloud.com/, November 2012.

[26] Google, “Google compute engine.” https://cloud.google.com/pricing/

compute-engine, January 2013.

52 A decision support system for application migration to the Cloud

http://aotearoadecisions.appspot.com/
http://www.windowsazure.com/en-us/pricing/calculator/
http://www.windowsazure.com/en-us/pricing/calculator/
http://tco.2ndwatch.com/
http://tco.2ndwatch.com/
http://www.windowsazure.com/en-us/pricing/details/?l=en-us
http://www.windowsazure.com/en-us/pricing/details/?l=en-us
https://cloud.google.com/pricing/cloud-sql
https://cloud.google.com/pricing/cloud-sql
http://www.planforcloud.com/
http://www.planforcloud.com/
https://cloud.google.com/pricing/compute-engine
https://cloud.google.com/pricing/compute-engine

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

Ort, Datum, Unterschift

53

	Introduction
	Motivation
	Problem Definition
	Outline

	Background
	Fundamentals
	Decision Support Systems
	Migration Support Systems
	Discussion

	Specification & Design
	Requirements
	System Specification
	System Design
	Cloud Provider Knowledge Base
	Offerings Matcher
	Costs Calculator
	User Interface

	Summary

	Implementation
	Cloud Provider Knowledge Base
	System Outline
	Offerings Matcher
	Costs Calculator
	User Interface
	User Guide
	Selection Of Offerings
	Setting Of Parameters
	Usage Pattern
	Results Of Calculation And Selection For Ranking
	Results Of Ranking

	Evaluation
	Validation
	Comparison with Existing Tools
	Comparison with Existing Research Frameworks

	Conclusions
	Summary
	Future Work

	Bibliography

