
Automated Composition of

Adaptive Pervasive Applications

in Heterogeneous Environments

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart zur Erlangung der

Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

Vorgelegt von

Stephan Andreas Schuhmann

aus Heilbronn am Neckar

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Mitberichter: Prof. Dr. phil. nat. Christian Becker
Mitprüfer: Prof. Dr. rer. nat. Frank Leymann

Tag der mündlichen Prüfung: 29. Oktober 2012

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2012



2



Contents

Abstract 13

Deutsche Zusammenfassung 15

1. Introduction 29
1.1. Pervasive Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2. Pervasive Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3. Configuration and Adaptation of Pervasive Applications . . . . . . . 32
1.4. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.5. Focus and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2. Requirements and Assumptions 39
2.1. System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1. Devices and Environments . . . . . . . . . . . . . . . . . . . . 39
2.1.2. Application Model . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.3. System Software . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.1. Dynamic Configuration in Heterogeneous Environments . . . . 45
2.2.2. Non-functional Requirements . . . . . . . . . . . . . . . . . . 46

3. Related Work 49
3.1. Algorithms for Solving Constraint Satisfaction Problems . . . . . . . 49
3.2. Overview of Service Composition Frameworks . . . . . . . . . . . . . 53

3.2.1. Service Composition in Infrastructure-Based Environments . . 54
3.2.2. Service Composition in Infrastructure-Less Ad Hoc Environ-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3. Clustering Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4. Re-Utilization of Previous Configurations . . . . . . . . . . . . . . . . 66



4 Contents

4. A Hybrid Approach for Automatic Application Configuration 69
4.1. Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1. Towards Hybrid Application Composition . . . . . . . . . . . 70
4.1.2. Role Determination using Clustering . . . . . . . . . . . . . . 74
4.1.3. Introduction of a Pre-Configuration Process . . . . . . . . . . 80

4.2. Centralized Application Configuration . . . . . . . . . . . . . . . . . 85
4.2.1. Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.2. Proactive Backtracking Avoidance . . . . . . . . . . . . . . . . 93
4.2.3. Intelligent Backtracking . . . . . . . . . . . . . . . . . . . . . 97

4.3. A Framework for Adapting the Degree of Decentralization . . . . . . 100
4.3.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.2. Clustering Framework . . . . . . . . . . . . . . . . . . . . . . 102
4.3.3. Resource-Aware Weight Selection . . . . . . . . . . . . . . . . 103
4.3.4. Cluster Formation and Maintenance in Weakly Heterogeneous

Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.5. Virtual Containers . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.6. Efficient Support of Adaptable Configuration Algorithms . . . 109

4.4. Hybrid Application Configuration . . . . . . . . . . . . . . . . . . . . 110
4.4.1. Initial Resource-Aware Cluster Formation . . . . . . . . . . . 111
4.4.2. Cluster Maintenance . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.3. Hybrid Configuration Algorithm . . . . . . . . . . . . . . . . . 118
4.4.4. Exemplary Hybrid Configuration Process . . . . . . . . . . . . 123

4.5. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.5.1. Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.5.2. Centralized Configuration in Weakly Heterogeneous Scenarios 127
4.5.3. Hybrid Configuration in Strongly Heterogeneous Scenarios . . 132

4.6. Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 139

5. Partial Application Configurations 143
5.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2. Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3. Structure of Partial Application Configurations . . . . . . . . . . . . 147
5.4. PAC Utility Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.5. PAC Cache Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.6. Configuration involving PACs . . . . . . . . . . . . . . . . . . . . . . 153
5.7. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.7.1. Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.7.2. Mobility of Users . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.7.3. Evaluation based on Constant Resource Availability . . . . . . 158
5.7.4. Evaluation based on Dynamically Changing Resource Avail-

ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.8. Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 166

6. Prototype 169
6.1. System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2. BASE Communication Middleware . . . . . . . . . . . . . . . . . . . 170

6.2.1. Basic Functionality . . . . . . . . . . . . . . . . . . . . . . . . 171



Contents 5

6.2.2. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.3. PCOM Component System . . . . . . . . . . . . . . . . . . . . . . . . 172

6.3.1. Basic Functionality . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3.2. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4. PCOM Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.4.1. Basic Functionality . . . . . . . . . . . . . . . . . . . . . . . . 180
6.4.2. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.5. System Software Footprint . . . . . . . . . . . . . . . . . . . . . . . . 180
6.5.1. Message Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.5.2. Class Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.6. Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 182

7. Conclusion 185
7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.2.1. Application-specific Cluster Creation . . . . . . . . . . . . . . 187
7.2.2. Speculative Calculations in Hybrid Configurations . . . . . . . 188
7.2.3. Application-comprehensive Conflict Handling . . . . . . . . . 188
7.2.4. Proactive PAC Creation . . . . . . . . . . . . . . . . . . . . . 189
7.2.5. Flexibilization of Component Model . . . . . . . . . . . . . . . 189

Bibliography 191

A. List of Abbreviations 211





List of Figures

2.1. a) Travelling businessman scenario, b) Distributed Presentation Ap-
plication in businessman scenario . . . . . . . . . . . . . . . . . . . . 41

2.2. Exemplary application structure with instance IDs (IIDs) . . . . . . . 42
2.3. Extended application structure with component IDs (CoIDs) of com-

ponents which have been selected within a configuration process . . . 43

3.1. Classification of algorithms to solve CSPs . . . . . . . . . . . . . . . . 50
3.2. Classification of related projects in service and application composition 53
3.3. a) Physical spaces and b) active spaces in Gaia [RHC+02] and Olym-

pus [RCAM+05] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4. O2S [PPS+08] abstraction layers with Pebbles [Sai03] component API 56
3.5. The OSGi [MK01] Service platform framework, used within Matilda’s

Smart House [LNH03] and Gator Tech [HMEZ+05] . . . . . . . . . . 57
3.6. iROS [JFW02] component structure . . . . . . . . . . . . . . . . . . . 58
3.7. Abstract architectural framework of Aura [SG02] . . . . . . . . . . . 59
3.8. Mobile Gaia architecture [CAMCM05] . . . . . . . . . . . . . . . . . 60
3.9. Initial layered architecture of BASE [BSGR03] and PCOM [BHSR04]

with developed configuration assemblers . . . . . . . . . . . . . . . . 60
3.10. Ports concept of P2PComp [FHMO04] . . . . . . . . . . . . . . . . . 62
3.11. Typical proceeding in a Speakeasy application [NIE+02] . . . . . . . . 63
3.12. System architecture of one.world [Gri04] . . . . . . . . . . . . . . . . 64
3.13. Load-balanced clustering approaches in different research areas . . . . 65

4.1. Decentralized configuration process . . . . . . . . . . . . . . . . . . . 71
4.2. Centralized configuration process: a) Selection of configuration device

and retrieve of resource information, b) Centralized configuration and
distribution of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3. Aspired hybrid configuration process: 1. Selection of configuration
devices (Ax), 2. Retrieve of resource information from weak devices
(Py) for hybrid configuration . . . . . . . . . . . . . . . . . . . . . . . 74



8 List of Figures

4.4. Typical cluster structure, as discussed by Yu and Chong [YC05] . . . 76
4.5. Exemplary cluster creation with DMAC . . . . . . . . . . . . . . . . 79
4.6. Interaction diagram of decentralized configuration . . . . . . . . . . . 80
4.7. Interaction diagram of centralized configuration . . . . . . . . . . . . 82
4.8. Interaction diagram of centralized configuration with pre-configuration

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.9. Interaction diagram of hybrid configuration with pre-configuration

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.10. General approach of Direct Backtracking . . . . . . . . . . . . . . . . 87
4.11. Execution of initial start method and subsequent create method . . 88
4.12. Recursive calls of create method, and following recursive calls of

started method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.13. a) Call of stopped method of DBT due to unavailable component,

b) Subsequent successful selection of alternative component . . . . . . 91
4.14. Termination of exemplary application configuration with DBT . . . . 93
4.15. Proactive backtracking avoidance: Initial situation . . . . . . . . . . . 96
4.16. Proactive backtracking avoidance: Proceeding of DBT . . . . . . . . 96
4.17. Proceeding of SBT requires backtracking . . . . . . . . . . . . . . . . 97
4.18. Initial situation for backtracking . . . . . . . . . . . . . . . . . . . . . 98
4.19. Intelligent backtracking of DBT . . . . . . . . . . . . . . . . . . . . . 99
4.20. Standard backtracking of SBT . . . . . . . . . . . . . . . . . . . . . . 100
4.21. Cluster Creation in weakly heterogeneous environment: a) Initial sit-

uation, b) Cluster establishment with DMAC . . . . . . . . . . . . . 105
4.22. Cluster Maintenance in weakly heterogeneous environment: a) Ap-

pearence and disappearence of weak devices, c) Appearence of a new
powerful device, d) Disappearence of the last powerful device . . . . . 106

4.23. Creation and update of Virtual Containers . . . . . . . . . . . . . . . 107
4.24. Execution of selector algorithm in a) homogeneous Ad Hoc environ-

ment, b) weakly heterogeneous environment, c) strongly heteroge-
neous environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.25. Initial mapping in scenario with three ADs (A0 to A2) and eight PDs
(P0 to P7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.26. Cluster Maintenance: Integration of appearing Passive Devices . . . . 113
4.27. Cluster Maintenance: New Active Devices A3 and A4 re-map PDs

from the other ADs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.28. Cluster Maintenance: Passive Devices P2, P10 and P11 disappear in

this order and induce re-mappings for ADs A2 and A3 . . . . . . . . . 116
4.29. Cluster Maintenance: Active Devices A3 and A1 disappear in this

order and induce re-mappings at the other Active Devices . . . . . . 118
4.30. Cluster Structure for exemplary Hybrid Configuration . . . . . . . . . 121
4.31. Proceeding of Hybrid Configuration Algorithm . . . . . . . . . . . . . 122
4.32. Heterogeneous scenario for hybrid application configuration in initial

situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.33. Hybrid application configuration example . . . . . . . . . . . . . . . . 124
4.34. Latency of centralized configuration with DBT, relative to SBT ref-

erence (k ∈ {15, 31, 63}) . . . . . . . . . . . . . . . . . . . . . . . . . 129



List of Figures 9

4.35. Break-even points, depicted by borderline . . . . . . . . . . . . . . . . 130
4.36. Memory overhead of Direct Backtracking . . . . . . . . . . . . . . . . 131
4.37. Class loading latencies (k = 15) . . . . . . . . . . . . . . . . . . . . . 132
4.38. Configuration latencies of centralized DBT configuration and decen-

tralized ABT configuration in weakly heterogeneous environments
(k = 15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.39. Communication overhead at the different stages of one configuration
process (k2 = 127) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.40. Overall configuration latencies: a) k1 = 31 components, b) k2 = 127
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.41. Latency comparison at the different stages of the configuration . . . . 138

5.1. Configuration using Partial Application Configurations (PACs) . . . . 144
5.2. Interaction diagram of hybrid configuration with pre-configuration

process and use of PACs . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3. Use of a PAC in the distributed presentation application . . . . . . . 148
5.4. Cache structure of C with Cgreen, the PAC Repository, and Cyellow . . 151
5.5. Comparison of PAC space overhead in Cgreen (entry in cache table &

XML file) and Cyellow (only cache table entry) . . . . . . . . . . . . . 152
5.6. Exemplary configuration process involving the PAC Repository . . . . 155
5.7. Distribution of a) ST and b) ICT in different studies (in log-log scale) 158
5.8. Correlation between PAC Cache Miss Rate and configuration latency

at different cache sizes between 100 kB and 10 MB . . . . . . . . . . 159
5.9. Determination of optimal static λ values for S1, S2 and S3 . . . . . . 160
5.10. Determination of optimal size for Cyellow when LRFU-0.5 and |C| =

400 kB is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.11. Comparison of different cache replacement strategies . . . . . . . . . 162
5.12. Distribution of Cache Miss Rate in a) S1, b) S2, c) S3 . . . . . . . . . 163
5.13. Determination of optimal adaptive split factor f(s) . . . . . . . . . . 165
5.14. Determination of optimal adaptive λ(s) . . . . . . . . . . . . . . . . . 165
5.15. a) Configuration Latencies with static and adaptive cache parameters,

depending on s, b) Comparison of average configuration latencies . . 166

6.1. Extended System Architecture of BASE and PCOM: New system
elements are represented by the dark boxes . . . . . . . . . . . . . . . 170

6.2. Implementation of Clustering Framework . . . . . . . . . . . . . . . . 174
6.3. Implementation of Mobile Code Framework . . . . . . . . . . . . . . 176
6.4. Implementation of Hybrid Assembler . . . . . . . . . . . . . . . . . . 177
6.5. Cache structure with Lookup Table where green and yellow PACs

are stored, and the PAC Repository holding the corresponding XML-
based assemblies of the cached PACs . . . . . . . . . . . . . . . . . . 178

6.6. Excerpt from XML representation for exemplary PAC component
with CoID [0,1][0,1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179





List of Tables

2.1. Typical application sizes in ad hoc environments and infrastructure-
based scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1. Comparison of general properties of distributed, centralized and hy-
brid application configuration . . . . . . . . . . . . . . . . . . . . . . 75

4.2. Ordered list for specific multi-optional contract with n options . . . . 94
4.3. Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1. Overview of mobility studies’ parameters . . . . . . . . . . . . . . . . 157

6.1. Message sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2. Sizes of new framework components’ binaries . . . . . . . . . . . . . . 182





Abstract

Distributed applications for Pervasive Computing represent a research area of high
interest. Configuration processes are needed before the application execution to find
a composition of components that provides the required functionality. As dynamic
pervasive environments and device failures may yield unavailability of arbitrary com-
ponents and devices at any time, finding and maintaining such a composition re-
presents a nontrivial task. Obviously, many degrees of decentralization and even
completely centralized approaches are possible in the calculation of valid configura-
tions, spanning a wide spectrum of possible solutions. As configuration processes
produce latencies which are noticed by the application user as undesired waiting
times, configurations have to be calculated as fast as possible.

While completely distributed configuration is inevitable in infrastructure-less Ad
Hoc scenarios, many realistic Pervasive Computing environments are located in het-
erogeneous environments, where additional computation power of resource-rich de-
vices can be utilized by centralized approaches. However, in case of strongly hetero-
geneous pervasive environments including several resource-rich and resource-weak
devices, both centralized and decentralized approaches may lead to suboptimal re-
sults concerning configuration latencies: While the resource-weak devices may be
bottlenecks for decentralized configuration, the centralized approach faces the prob-
lem of not utilizing parallelism. Most of the conducted projects in Pervasive Com-
puting only focus on one specific type of environment: Either they concentrate on
heterogeneous environments, which rely on additional infrastructure devices, leading
to inapplicability in infrastructure-less environments. Or they address homogeneous
Ad Hoc environments and treat all involved devices as equal, which leads to subop-
timal results in case of present resource-rich devices, as their additional computation
power is not exploited.

Therefore, in this work we propose an advanced comprehensive adaptive approach
that particularly focuses on the efficient support of heterogeneous environments, but
is also applicable in infrastructure-less homogeneous scenarios. We provide multiple
configuration schemes with different degrees of decentralization for distributed ap-



14 Abstract

plications, optimized for specific scenarios. Our solution is adaptive in a way that
the actual scheme is chosen ba sed on the current system environment and calcu-
lates application compositions in a resource-aware efficient manner. This ensures
high efficiency even in dynamically changing environments.

Beyond this, many typical pervasive environments contain a fixed set of applica-
tions and devices that are frequently used. In such scenarios, identical resources are
part of subsequent configuration calculations. Thus, the involved devices undergo a
quite similar configuration process whenever an application is launched. However,
starting the configuration from scratch every time not only consumes a lot of time,
but also increases communication overhead and energy consumption of the involved
devices. Therefore, our solution integrates the results from previous configurations
to reduce the severity of the configuration problem in dynamic scenarios.

We prove in prototypical real-world evaluations as well as by simulation and em-
ulation that our comprehensive approach provides efficient automated configuration
in the complete spectrum of possible application scenarios. This extensive func-
tionality has not been achieved by related projects yet. Thus, our work supplies
a significant contribution towards seamless application configuration in Pervasive
Computing.



Deutsche Zusammenfassung

Automatische Komposition adaptiver verteilter
Anwendungen in heterogenen Umgebungen

1. Einleitung

Der Forschungsbereich des Pervasive Computing wird charakterisiert durch die Inter-
aktion vieler heterogener Geräte, welche von leistungsstarken Serverinfrastrukturen
bis zu winzigen, in Alltagsgegenstände integrierten mobilen Sensorknoten reichen.
Hierbei können Geräte durch standardisierte drahtlose Kommunikationstechnologien
wie Bluetooth oder Infrarot miteinander kommunizieren. Ebenso können die Geräte
lokale Funknetze aufbauen, beispielsweise gemäß dem weit verbreiteten IEEE 802.11
Standard. Die in einer bestimmten Umgebung verfügbaren Geräte stellen dabei ihre
Funktionalität anderen in der Nähe befindlichen Geräten zur Verfügung.

Die Entwicklung von Anwendungen für dynamische Pervasive Computing Umge-
bungen stellt eine nichttriviale Aufgabe dar. Durch Gerätemobilität, schwankende
Netzwerkverbindungen oder sich ändernde physikalische Kontexte variieren die zur
Verfügung stehenden Hardware- und Softwareressourcen typischerweise häufig. Die
von einer Anwendung benötigten Ressourcen werden darüber hinaus meist nicht von
einem einzigen Gerät erbracht, sondern die Anwendungslogik ist verteilt auf mehrere
Geräte. Die Anwendungen stellen somit sowohl funktionale wie auch strukturelle
Anforderungen an die Ressourcen. Des Weiteren verfügen Geräte lediglich über
beschränkte Ressourcen, welche noch dazu für eine bestimmte Anwendung nicht
verfügbar sein können, da sie momentan von einer anderen Anwendung genutzt
werden. Als Konsequenz hieraus müssen Anwendungen vor ihrer tatsächlichen
Ausführung zunächst konfiguriert werden, um sicher zu stellen, dass die von der
Anwendung benötigten Ressourcen auch wirklich zur Verfügung stehen. Darüber
hinaus müssen Anwendungen in der Lage sein, sich während ihrer Ausführungszeit



16 Deutsche Zusammenfassung

ständig an wechselnde Ausführungsumgebungen anzupassen. Da die Konfigura-
tionsvorgänge von den Anwendungsnutzern als störende Unterbrechungen wahrge-
nommen werden, müssen diese möglichst effizient durchgeführt werden, um die dabei
entstehenden Latenzen zu minimieren und dem Nutzer somit eine möglichst hohe
Dienstgüte zur Verfügung zu stellen.

In der Vergangenheit beschränkten sich die meisten verwandten Projekte bei
der Konfiguration verteilter Anwendungen lediglich auf eine bestimmte Art von
Anwendungsumgebung. Deshalb konnten Konfigurationen entweder nicht univer-
sell durchgeführt werden, da eine unterstützende Infrastruktur zwingend erfordert
wurde. Oder die Konfigurationen liefen in ressourcenreichen Umgebungen inef-
fizient ab, da die Verteilung der Konfigurationsaufgaben nicht gemäß der Leis-
tungsfähigkeit der Geräte angepasst wurde. Da Pervasive Computing Umgebungen
typischerweise hochdynamisch sind, ist die effiziente Unterstützung lediglich einer
bestimmten Umgebung inakzeptabel, um eine adäquate Dienstqualität zu erreichen.
Außerdem sind viele Umgebungen hochgradig heterogen hinsichtlich der Fähigkeiten
der enthaltenen Geräte, da sie sowohl ressourchenschwache mobile Geräte als auch
ressourcenstarke Infrastrukturen mit deutlich höherer Leistung enthalten.

Daher wird in dieser Arbeit ein neuer Ansatz verfolgt, welcher dynamisch wech-
selnde Umgebungen effizient unterstützt, indem er die Geräte in Gruppen anord-
net und die Konfigurationsaufgaben zwischen den einzelnen Gruppen gleichmäßig
aufteilt. Dadurch werden Flaschenhälse bei der Konfiguration vermieden, gleich-
zeitig aber eine parallele Berechnung von Konfigurationen ermöglicht. Um dieses
Ziel zu erreichen, wurden im Rahmen dieser Arbeit neue Konfigurationsalgorith-
men entwickelt, welche sowohl die zur Verfügung stehenden Ressourcen als auch
die Anforderungen der Anwendungen sowie die Anwendungsnutzung in vergan-
genen Konfigurationen berücksichtigen. Außerdem wird ein Verfahren integriert,
welches die tatsächlich gewählte Konfigurationsmethode in einer bestimmten Umge-
bung entsprechend anpasst. Dadurch wird die Umgebungsheterogenität, die durch
Geräte mit unterschiedlicher Leistungsfähigkeit entsteht, sinnvoll ausgenutzt. Die
unterstützende Systemsoftware wurde dabei so konzipiert, dass sie zum einen mini-
mal bezüglich ihrer Ressourcenanforderungen ist, um ressourcenschwache Geräte zu
unterstützen. Gleichzeitig wurde ihre Softwarearchitektur flexibilisiert, um die ef-
fiziente Ausnutzung von Ressourcen auf leistungsstärkeren Geräten zu ermöglichen.

Neben der automatischen, in Abhängigkeit von der aktuellen Umgebung vorge-
nommenen Anpassung des Konfigurationsverfahrens wird in dieser Arbeit ein Ver-
fahren vorgestellt, welches durch die Ausnutzung der Ergebnisse früherer Konfi-
gurationsvorgänge folgende Konfigurationsprozesse insbesondere in Szenarien mit
geringer Dynamik, aber auch in allen anderen Umgebungen optimiert. Bei diesem
Verfahren werden partielle Konfigurationen, welche innerhalb einer Konfiguration
genutzt wurden, in einem Zwischenspeicher gesichert und für zukünftige Konfig-
urationen bereitgestellt. Wenn diese Anwendungsteile sich dann in zukünftigen
Konfigurationsvorgängen als integrierbar erweisen, da sie die geforderte Funktion-
alität bereitstellen und momentan nicht von anderen Anwendungen genutzt wer-
den, so müssen für diese Anwendungsteile keine Berechnungen durchgeführt wer-
den. Stattdessen werden diese Anwendungsteile einfach aus dem Zwischenspeicher



Deutsche Zusammenfassung 17

geladen. Dadurch wird der Berechnungsaufwand reduziert, und die bei der Konfigu-
ration auftretenden Latenzen sinken, was eine nahtlosere Konfiguration ermöglicht.
Dieses Verfahren wurde unabhängig von konkreten Konfigurationsalgorithmen ent-
wickelt und kann somit in sämtlichen Umgebungen, die durch die bereitgestellten
Konfigurationsalgorithmen unterstützt werden, eingesetzt werden. Die entsprechend
entwickelten Konzepte und Mechanismen werden in den folgenden Abschnitten de-
taillierter diskutiert.

2. Systemmodell und Problemstellung

In dieser Arbeit wird zwischen zwei verschiedenen Arten von Geräten unterschieden:
Bei den ressourcenschwachen Geräten handelt es sich typischerweise um mobile trag-
bare Geräte wie Mobiltelefone oder Smart Phones. Dahingegen sind ressourcenstarke
Geräte deutlich leistungsfähiger, da sie üblicherweise Standard-PC-Hardware ver-
baut haben. Ressourcenstarke Geräte können mobil (z.B. Laptops), aber auch sta-
tionär (z.B. Arbeitsplatzrechner) sein und sind durch ihre erhöhte Leistung beson-
ders geeignet, um innerhalb einer Konfiguration berechnungsintensive Aufgaben zu
übernehmen. Durch die Zusammensetzung von Geräten dieser beiden Gerätetypen
sind Pervasive Computing Umgebungen mit verschiedenen Graden an Heterogenität
denkbar: Während manche Umgebungen lediglich ressourcenschwache Geräte ent-
halten und homogen hinsichtlich des Leistungsspektrums der Geräte sind (so genan-
nte Ad Hoc Umgebungen), weisen infrastruktur-gestützte Umgebungen, in denen
neben ressourcenschwachen auch eine Anzahl ressourcenstarker Geräte zur Ver-
fügung stehen, eine höhere Heterogenität auf.

Für diese Arbeit wird ein komponenten-basiertes Anwendungsmodell angenom-
men, in welchem eine Anwendung aus mehreren Komponenten besteht, wobei jede
Komponenteninstanz eine bestimmte Menge an Ressourcen benötigt. Anwendun-
gen werden als Baum von untereinander abhängigen Komponenten betrachtet. Die
gesamte Anwendung wird ausgeführt, nachdem passende Kompontenen für jede
Komponentenabhängigkeit entsprechend ihrer Position in der Baumstruktur ermit-
telt und anschließend rekursiv gestartet wurden. Die Wurzelkomponente des Baums
wird hierbei als Anwendungsanker bezeichnet und befindet sich auf dem Gerät, von
welchem aus die Anwendung gestartet wird. Jede Komponente befindet sich jeweils
auf genau einem Gerät, die Anwendungslogik ist somit auf die anwesenden Geräte
verteilt. Innerhalb des Anwendungsbaums ist jede Komponente eindeutig durch
eine rekursiv aufgebaute Kennung adressierbar. Typische Anwendungsgrößen für
verteilte Pervasive Computing Anwendungen wurden durch eine empirische Studie
ermittelt und führten zu Anwendungen, die aus 8 bis 34 Komponenten bestehen. In
dieser Arbeit werden daher Anwendungen in dieser Größenklasse untersucht.

Es wird außerdem angenommen, dass eine unterstützende Systemsoftware zur
Verfügung steht, die zum einen von den verwendeten Kommunikationstechnologien
abstrahiert, zum anderen für die automatische Konfiguration der Anwendungen ve-
rantwortlich ist, sodass diese für den Anwendungsnutzer transparent und automa-
tisch abläuft. Die Systemsoftware soll dabei zu jeder Zeit jedem Gerät eine kon-
sistente Sicht auf die momentan zur Verfügung stehenden Geräte sowie die von



18 Deutsche Zusammenfassung

diesen Geräten angebotenen Dienste bereitstellen. Exemplarische Systeme, welche
die gestellten Anforderungen erfüllen, sind die Systemplattform BASE [BSGR03]
und das Komponentensystem PCOM [BHSR04].

Ausgehend von den oben beschriebenen Annahmen hinsichtlich der verwendeten
Geräte, Anwendungen und unterstützenden Systemsoftware lässt sich die Problem-
stellung herleiten, die dieser Arbeit zu Grunde wird. In homogenen Umgebungen
wurde das verteilte Konfigurationsproblem bereits in vorherigen Arbeiten gelöst, in-
dem das Problem der Konfiguration auf das verteilte Bedingungserfüllungsproblem
abgebildet wurde und ein Algorithmus aus dem Bereich der verteilten künstlichen
Intelligenz zur Problemlösung angepasst wurde [Han09]. Allerdings ist die komplett
verteilte Anwendungskonfiguration suboptimal in heterogenen Umgebungen, da die
Berechnung auf sämtliche Geräte verteilt wird und somit leistungsschwache Geräte
zum Flaschenhals der Konfiguration werden können. Daher muss in einer bes-
timmten Umgebung eine geeignete Teilmenge an Geräten gefunden werden, welche
die Konfigurationsaufgaben unter sich aufteilen. Daraus ergeben sich Fragestel-
lungen wie die automatische Unterscheidung von ressourcenstarken und ressourcen-
schwachen Geräten, die Verteilung der Konfigurationslast unter den Konfigurations-
geräten, die Bereitstellung entsprechender Konfigurationsverfahren, oder die au-
tomatische Auswahl eines in einer bestimmten Umgebung passenden Verfahrens. In-
nerhalb dieser Arbeit werden Lösungen zu sämtlichen dieser Fragestellungen vorge-
schlagen.

Im Rahmen dieser Arbeit werden fünf Anforderungen an die Lösungen dieser
Probleme gestellt. Zunächst muss die vorgeschlagene Lösung adaptiv sein, also
in der Lage sein, sich automatisch an wechselnde Anforderungen und dynamische
Umgebungen anzupassen. Darüber hinaus muss die Berechnung von Konfiguratio-
nen automatisch erfolgen, um die Transparenz gegenüber dem Anwendungsnutzer
aufrecht zu erhalten. Außerdem soll die Lösung gültige Konfigurationen so schnell
wie möglich berechnen, um die Anwendung dem Nutzer möglichst ohne Verzögerung
bereit zu stellen, somit also effizient sein. Die Berechnung von Konfigurationen muss
darüber hinaus ressourcen-abhängig geschehen, um die Heterogenität der Geräte
auszunutzen und berechnungsintensive Aufgaben lediglich an die stärksten Geräte
zu verteilen. Nicht zuletzt müssen die Ergebnisse vorangegangener Konfigurationen
berücksichtigt und, sofern möglich, in zukünftige Konfigurationsprozesse integriert
werden. Dadurch wird die gesamte Konfigurationslast für alle involvierten Geräte
verringert und somit die zur Verfügung stehenden Berechnungskapazitäten in einer
ressourcenschonenden Weise verwendet.

3. Verwandte Arbeiten

Zu Beginn dieser Arbeit existierten bereits verschiedene Arbeiten, welche sich mit
der Konfiguration von verteilten Anwendungen des Pervasive Computing beschäftig-
ten. Die Projekte können gemäß deren Forschungschwerpunkten im Wesentlichen
in zwei Gruppen eingeteilt werden: Verfahren zur Anwendungskonfiguration in ho-
mogenen mobilen Ad Hoc Netzen, und Verfahren zur Anwendungskonfiguration in



Deutsche Zusammenfassung 19

infrastrukturbasierten heterogenen Umgebungen. Eine zusätzliche Diversifizierung
kann durch die Unterscheidung, ob die Konfiguration und Adaption automatisch
vom System oder manuell durch den Anwendungsprogrammierer oder Benutzer
vorgenommen werden muss, erreicht werden.

Infrastrukturen wie Oxygen [Rud01], iRoom [JFW02], Gaia [RHC+02], Olympus
[RCAM+05] oder MEDUSA [DGIR11] konzentrieren sich auf Fragestellungen, die
sich durch die Integration von Rechnersystemen in infrastruktur-gestützten Umge-
bungen ergeben. Bei der Konzeption dieser Infrastrukturen ging man allerdings
davon aus, dass bestimmte Rechnersysteme ständig für notwendige Koordination-
saufgaben zur Verfügung stehen, daher sind diese Systeme nicht in Ad Hoc Umge-
bungen anwendbar.

Projekte wie Weaves [OGT+99], Aura [SG02], P2PComp [FHMO04], Mobile
Gaia [CAMCM05] oder RUNES [CCG+07] benötigen zwar keine speziellen In-
frastrukturen und können demnach in sämtlichen Umgebungen eingesetzt werden.
Allerdings nutzen diese Systeme zusätzlich vorhandene Rechenressourcen von leis-
tungsstarken Infrastrukturgeräten nur ineffizient, da sie keine Unterscheidung zwis-
chen den Geräten vornehmen, sondern die Rechenlast gleichmäßig zwischen allen
Geräten aufteilen. Dadurch werden in heterogenen Umgebungen nur suboptimale
Ergebnisse hinsichtlich der Geschwindigkeit der Konfigurationsprozesse erzielt.

Die im Rahmen dieser Arbeit verwendete Systemsoftware, welche aus der Kom-
munikationsmiddleware BASE [BSGR03] und dem Komponentensystem PCOM
[BHSR04] besteht, kann in verschiedensten Umgebungen verwendet werden. Allerd-
ings unterstützt sie Umgebungen, welche als heterogen hinsichtlich der verfügbaren
Rechenressourcen betrachtet werden können, nicht effizient, da ihr Fokus bisher vor
allem auf komplett verteilter Anwendungskonfiguration in infrastrukturlosen Umge-
bungen lag.

Andere Systeme für Ad Hoc Umgebungen basieren hingegen nicht auf vollau-
tomatisierter Anwendungskonfiguration, sondern legen die Verantwortung hierfür
entweder in die Hände des Anwenders (z.B. Speakeasy, [ENS+02], OSCAR [NES08])
oder des Anwendungsprogrammierers (z.B. one.world, [Gri04]).

Aus diesem Überblick wird deutlich, dass keines der bisher existierenden Projekte
eine effiziente automatische Anwendungskonfiguration sowohl in homogenen Ad Hoc
Umgebungen als auch in heterogenen infrastrukturbasierten Szenarien bereitstellt.
Darüber hinaus nutzt keines der genannten Systeme die Ergebnisse vergangener
Konfigurationen für zukünftig anstehende Konfigurationsprozesse, um die Konfigu-
rationslatenzen sowie die Konfigurationslast der involvierten Geräte weiter zu ver-
ringern. Daher war ein wesentliches Ziel dieser Arbeit, erstmals im Forschungsbere-
ich des Pervasive Computing eine effiziente automatische Unterstützung von Anwen-
dungskonfigurationen in verschiedensten, dynamischen Umgebungen bereitzustellen.



20 Deutsche Zusammenfassung

4. Ein hybrider Ansatz zur automatischen
Anwendungskonfiguration

Basierend auf einem in einer vorigen Arbeit [HBR05] entwickelten komplett dezen-
tralen Algorithmus wird in diesem Kapitel der Weg über einen komplett zentralen
Ansatz [SHR08b] hin zu einem hybriden Ansatz [SHR10], welcher die Vorteile der
dezentralen und zentralen Algorithmen vereint, beschrieben. Diese Ansätze er-
lauben besonders in heterogenen Umgebungen eine effizientere Konfiguration als
der dezentrale Ansatz. Außerdem wird ein Rahmenwerk [SHR08a] präsentiert,
welches eine automatische Anpassung des Grades der Verteiltheit in den Berech-
nungen ermöglicht und somit eine optimierte Konfiguration selbst in dynamischen
Szenarien erlaubt.

Dezentrale Konfiguration in homogenen Umgebungen

Handte et al. stellten 2005 einen dezentralen Algorithmus vor, welcher besonders für
homogene Umgebungen geeignet ist, da er die Konfigurationslast gleichmäßig unter
allen verfügbaren Geräten verteilt [HBR05]. Dieser Ansatz basiert auf Algorithmen
aus dem Forschungsbereich der verteilten künstlichen Intelligenz [YDIK98]. Durch
den Verzicht auf eine zentrale Instanz ist die Anwendbarkeit in sämtlichen Umge-
bungen, vor allem in einfachen Ad Hoc Umgebungen, gewährleistet. Allerdings ist
dieser Ansatz ineffizient in Umgebungen, welche zusätzlich rechenstarke Geräte bere-
itstellen, da die Verteilung der Konfigurationslast nicht gerätespezifisch angepasst
werden kann.

Folglich ist für solche Umgebungen ein Konfigurationsverfahren erforderlich, das
die zusätzlichen Rechenressourcen effizient ausnutzt. Um mögliche Flaschenhälse bei
der Konfiguration zu vermeiden, werden bei diesem Ansatz die ressourcenschwachen
mobilen Geräte wie PDAs oder Smartphones von der Berechnung ausgeschlossen.
Sie müssen lediglich im Voraus Informationen über die von ihnen zur Verfügung
gestellten Komponenten bereitstellen. Der dezentrale Ansatz dient dabei in den
vorgenommenen Evaluationsmessungen als Referenz.

Zentrale Konfiguration in schwach heterogenen Umgebungen

Die einfachste Konfigurationsmethode in heterogenen Umgebungen besteht darin,
die Konfiguration komplett zentral auf dem ressourcenstärksten Gerät in der Umge-
bung berechnen zu lassen. Daher werden zunächst existierende zentrale Back-
tracking-Algorithmen aus dem Bereich des maschinellen Lernens untersucht und ein
erweiterter Algorithmus namens Direct Backtracking (DBT) entworfen [SHR08b].
Dieser Algorithmus baut auf dem auf Tiefensuche basierenden Synchronous Back-
tracking (SBT) [YDIK98] Algorithmus, einer zentralen und synchronen Variante
des verteilten Asynchronous Backtracking Algorithmuses, auf. Zur Beschleunigung
des Konfigurationsprozesses wird DBT um zwei zusätzliche Mechanismen erweitert:
proaktive Adaptionsvermeidung und intelligentes Backtracking.



Deutsche Zusammenfassung 21

Die proaktive Adaptionsvermeidung wird in der Weise ausgeführt, dass während
eines Konfigurationsvorgangs im Falle verschiedener zur Verfügung stehender Kom-
ponenten, die dieselbe geforderte Funktionalität bereitstellen, diejenige Kompo-
nente ausgewählt wird, welche die minimale Anzahl an Ressourcen auf dem Gerät,
durch das sie bereitgestellt wird, verbraucht. Hierdurch wird die Wahrscheinlichkeit
zukünftiger Ressourcenkonflikte auf dem entsprechenden Gerät während einer Kon-
figuration minimiert, da die Ressourcen schonend vergeben werden. Dadurch sinkt
die Anzahl nötiger Adaptionsvorgänge während einer Konfiguration.

Bei bestimmten Anwendungskonstellationen kann es dennoch vorkommen, dass
Adaptionen durchgeführt werden müssen. Dann muss die Menge der für eine Anwen-
dung ausgewählten Komponenten durch einen Adaptionsvorgang angepasst werden.
Hierbei muss berücksichtigt werden, dass die Adaption einer Komponente zusätzlich
die Adaption anderer Komponenten nach sich ziehen kann, um weiterhin sämtliche
struktulle Bedingungen der Anwendung zu erfüllen. Um diese Adaptionen mit
geringst möglichem Aufwand durchzuführen, wurde ein intelligenter Backtracking-
Mechanismus eingeführt. Dieser adaptiert diejenige Komponente, welche den ger-
ingst möglichen Adaptionsaufwand verursacht und darüber hinaus möglichst wenig
zusätzliche Adaptionen nach sich zieht.

Ein Rahmenwerk zur automatischen Anpassung des Grades der
Konfigurationsverteilung

Um den Grad der Verteilung des Konfigurationsvorgangs optimal an die momen-
tane Anwendungsumgebung anzupassen, müssen die in der Umgebung befindlichen
Geräte entsprechend vorbereitet werden. Hierfür wurde ein Rahmenwerk entwick-
elt [SHR08a], welches automatisch und proaktiv, d.h. vor tatsächlich stattfindenden
Konfigurationsprozessen, die für die Konfiguration relevanten Ressourceninformatio-
nen von entfernten Geräten überträgt, um diese Aufgaben nicht mehr zur Konfig-
urationszeit erledigen zu müssen. Dadurch wird die tatsächliche Konfigurationszeit
gesenkt und somit die Effizienz der Konfiguration erhöht. Durch das entwickelte
Rahmenwerk werden insbesondere drei Herausforderungen von heterogenen Umge-
bungen adressiert:

• Die automatische Anpassung des Verteilungsgrades der Konfigurationsberech-
nung: Um verschiedene Umgebungen effizient zu unterstützen, ist die automa-
tische Auswahl eines passenden Konfigurationsalgorithmus nötig. Dafür ist
ein Verfahren nötig, welches zunächst basierend auf der Art der verfügbaren
Geräte den Umgebungstyp – ressourcenschwache Ad Hoc-Umgebung oder res-
sourcenstarke Infrastrukturumgebung – ermittelt. Im Falle einer Ad Hoc-
Umgebung wird anschließend der verteilte, im Falle einer Infrastrukturumge-
bung der zentrale Konfigurationsalgorithmus ausgewählt. Dieser Selektions-
mechanismus ist so konzipiert, dass er einfach um die Unterstützung zusätz-
licher Konfigurationsmethoden erweitert werden kann.

• Die automatische Ermittlung der Geräte, welche in ressourcenreichen Umge-
bungen die Berechnung der Konfiguration übernehmen: Hierfür dient ein auf



22 Deutsche Zusammenfassung

Knotengruppierungen (engl. Clustering) basierendes, in die Systemsoftware
integriertes Rahmenwerk. Um die Gruppenstruktur zu ermitteln, wird ein
verteilter Algorithmus von Basagni et al. (Distributed Clustering Algorith-
mus, [BCFJ97]) verwendet, als eigentliches Gruppierungskriterium werden die
vorhandenen Rechenressourcen auf den vorhandenen Geräten gewählt. Das
ressourcenreichste Gerät in der Umgebung wird dann zum Gruppenführer
(engl. Clusterhead) bestimmt und somit verantwortlich für die Konfigura-
tionsberechnung der benachbarten Geräte gemacht.

• Das Erlangen konfigurationsspezifischer Informationen durch den Gruppen-
führer: Zur Realisierung eines effizienten Konfigurationsvorgangs auf dem
Gruppenführer, muss dieser zunächst die für die Konfiguration relevanten In-
formationen der vorhandenen Geräte – im Wesentlichen deren aktuelle Res-
sourcen- und Kompontenverfügbarkeiten – bestimmen. Hierfür dient ein Ver-
fahren, durch welches dem Gruppenführer die relevanten Informationen über
vorhandene Ressourcen automatisch durch Analyse von Veränderungen der
Gruppenstruktur im Voraus zur Verfügung gestellt werden. Geräte, deren
Ressourcenverfügbarkeit sich ändern, teilen dem Gruppenführer dabei au-
tomatisch ihre aktualisierte Ressourcenlage mit. Der Gruppenführer baut
beim Empfang dieser Informationen eine interne Repräsentation der entfernten
Geräte in Form von sogenannten virtuellen Containern (VCs) auf. Der As-
sembler greift bei einem Konfigurationsprozess dann lokal auf diese virtuellen
Container zu. Die Erzeugung der virtuellen Container stellt einen der Konfig-
uration vorgelagerten Prozess dar. Hierdurch sinkt der tatsächliche Aufwand
der Konfiguration, da während der Konfiguration keinerlei Kommunikation
zwischen den Geräten notwendig ist.

Hybride Konfiguration in stark heterogenen Umgebungen

Um das komplette Spektrum zwischen zentraler Konfiguration in schwach heteroge-
nen Umgebungen und vollständig verteilter Konfiguration in homogenen Umgebun-
gen abzudecken, ist ein erweitertes Verfahren nötig, welches die Vorteile der verteil-
ten Konfiguration – generelle Anwendbarkeit in sämtlichen Umgebungen, keine
Single-Point-of-Failure Problematik – mit denen der zentralen Konfiguration – effi-
ziente Nutzung ressourcenstarker Geräte, geringer Kommunikationsaufwand – in
stark heterogenen Umgebungen vereint.

Aufbauend auf den bisher konzipierten Ansätzen musste daher ein Verfahren en-
twickelt werden, welches eine optimierte hybride Anwendungskonfiguration ermög-
licht, die teilweise dezentral und teilweise zentral abläuft [SHR10]. Dafür wird
zunächst eine Teilmenge aller Geräte bestimmt, welche dann für die restlichen
Geräte die Konfiguration ihrer Komponenten und Ressourcen übernehmen. Um die
Effizienz des Verfahrens zu garantieren, sollen unter Nutzung des Gruppierungs-
Rahmenwerks lediglich die ressourcenstarken Geräte wie Laptops, Desktop-PCs
oder Server aktiv in die Konfiguration eingebunden werden. Hierfür muss zunächst
der eingeführte Mechanismus, welcher basierend auf der aktuellen Umgebung den
passenden Konfigurationsalgorithmus auswählt, erweitert werden, um in Umgebun-



Deutsche Zusammenfassung 23

gen mit mehreren ressourcenstarken Geräten eine Konfigurationsberechnung auf
genau diesen Geräten zu ermöglichen.

Anschließend muss sichergestellt werden, dass eine eindeutige Abbildung der res-
sourcenschwachen Geräte auf ressourcenstarke Geräte erfolgt, welche dann lokal
die ihnen zugeordneten ressourcenschwachen Geräte mittels der oben genannten
virtuellen Container emulieren und diese in den Konfigurationsprozess einbinden.
Damit eine ausgeglichene Konfigurationslast zwischen den ressourcenstarken Geräten
erreicht wird, wird ein Verfahren integriert, das gemäß dem bekannten Round-
Robin-Schema die Gerätezuordnung vornimmt. Hierdurch wird sichergestellt, dass
jedem starken Gerät annähernd gleich viele schwache Geräte zugeordnet werden
und somit die Konfigurationslast gleichverteilt wird. Um dynamische Umgebungen
zu berücksichtigen, wird zusätzlich eine automatische Aktualisierung der Geräteab-
bildungen integriert. Zur automatischen Erkennung von Änderungen der Geräte-
umgebung wird hierbei ein von der Systemsoftware bereitgestellter Mechanismus
verwendet. Im Falle neu hinzugekommener oder nicht mehr verfügbarer ressourcen-
starker und -schwacher Geräte wird durch eine Neugruppierung der Geräte die aus-
geglichene Konfigurationslast auf den starken Geräten beibehalten, sodass auch dy-
namische Umgebungen berücksichtigt werden.

Abschließend ist ein erweiterter Konfigurationsalgorithmus nötig, bei dem die er-
mittelten ressourcenstarken Geräte jeweils zentral die Teilkonfigurationen für die
ihnen zugeordneten Geräte berechnen, um anschließend dezentral untereinander die
ermittelten Teilkonfigurationen auszutauschen und somit die Gesamtkonfiguration
der Anwendung zu bestimmen.

Evaluation der entwickelten Verfahren

Bei vergleichenden Messungen zur Ermittlung der Leistungsfähigkeit der einzel-
nen Verfahren wurde zunächst in einer schwach heterogenen Umgebung, in welcher
lediglich ein starkes Gerät zur Verfügung steht, der entwickelte zentralisierte Direct
Backtracking-Konfigurationsalgorithmus mit dem verwandten Synchronous Back-
tracking-Algorithmus hinsichtlich der zu erwartenden Konfigurationslatenz verglichen.
Dabei zeigte sich, dass der neue Algorithmus aufgrund seiner fortschrittlichen Mech-
anismen deutlich leistungsfähiger als der verwandte Algorithmus ist. In den Messun-
gen ergab sich durch Nutzung der erweiterten Mechanismen zur proaktiven Adap-
tionsvermeidung sowie intelligentem Backtracking für Direct Backtracking ein im
Vergleich zu Synchronous Backtracking signifkant beschleunigter Konfigurations-
prozess, welcher die Konfigurationslatenz bis auf unter 10 % der entsprechenden
Latenz von Synchronous Backtracking senkte.

Anschließend wurde, wiederum in einem schwach heterogenen Szenario, der zen-
trale Algorithmus mit dem in einer vorigen Arbeit entwickelten verteilten Algo-
rithmus verglichen, um zu überprüfen, ob die zentrale Konfiguration durch lokale
Berechnungen auf dem stärksten Gerät die Konfigurationseffizienz tatsächlich stei-
gert. Bei den Messungen zeigte sich, dass der zentrale Ansatz die Latenzen im Durch-
schnitt um fast 40 % reduziert, da er durch Ausnutzung des Vorkonfigurationspro-



24 Deutsche Zusammenfassung

zesses sowie der Heterogenität der Umgebung eine effiziente zentrale Konfiguration
ermöglicht. Die maximale Reduzierung der Konfigurationslatenz betrug sogar 84 %.

Daraufhin wurde der hybride Ansatz in stark heterogenen Umgebungen mit den
zentralen und verteilten Ansätzen verglichen. Dabei stellte sich heraus, dass durch
die parallele Berechnung, die lediglich auf den ressourcenstarken Geräten abläuft,
die Latenzen nochmals um mehr als 25 % verringert werden können.

In den vergleichenden Messungen konnte also gezeigt werden, dass in Umgebungen
mit verschiedenen Graden an Heterogenität jeweils unterschiedliche Konfigurations-
ansätze zu den geringsten Konfigurationslatenzen führten. So war in homoge-
nen, ressourcenschwachen Umgebungen die verteilte Anwendungskonfiguration am
Schnellsten, während in schwach heterogenen Umgebungen die zentralisierte und
in stark heterogenen Umgebungen die hybride Anwendungskonfiguration zu besten
Ergebnissen hinsichtlich der auftretenden Konfigurationslatenz führten. Durch diese
Ergebnisse wurde schließlich die entwickelte einfache Verteilungsheuristik bestätigt,
welche abhängig vom Grad der Heterogenität der Umgebung die automatische Aus-
wahl der zu diesem Szenario passendsten Konfigurationsmethode durchführt.

5. Partielle Anwendungskonfigurationen

In vielen typischen Szenarien wie Hörsälen oder Konferenzräumen werden häufig
identische Anwendungskomponenten auf denselben Geräten wiederverwendet. Diese
Komponenten beschreiben sogenannte partielle Anwendungskonfigurationen (PACs).
Allerdings wurden diese durch die zuvor beschriebenen Ansätze nicht genutzt, we-
shalb in solchen Fällen trotzdem jeweils der komplette Konfigurationsprozess für
jede einzelne Komponente durchgeführt werden musste. Durch Berücksichtigung
der Ergebnisse voriger Konfigurationsprozesse kann die Konfigurationslatenz jedoch
effektiv verringert werden. Dafür ist ein Verfahren erforderlich, um automatisch par-
tielle Anwendungskonfigurationen zu bestimmen und zu speichern, effektiv an die
in der Umgebung vorhandenen Geräte zu verteilen und automatisch in zukünftige
Konfigurationsvorgänge einzubinden [SHRB13].

Die im Rahmen dieser Arbeit verwendeten PACs werden von unten nach oben
aufgebaut, also von den Blattknoten des Anwendungsbaums ausgehend hin zur
Wurzel des Baums. Daher sind bei jeder Komponente, die Teil einer PAC ist, auch
sämtliche Kindskomponenten in der PAC enthalten, wodurch keine unaufgelösten
Abhängigkeiten durch diese PAC in den Konfigurationsprozess eingebracht werden.
PACs, die dieser Methode folgen, sind umgebungsspezifisch und vor allem in solchen
Szenarien sinnvoll, in denen immer dieselben Komponenten einer bestimmten Umge-
bung verwendet werden. Umgebungsspezifische PACs bieten damit einen hohen
Nutzwert für heterogene Umgebungen mit geringer Dynamik und führen nicht zu
unaufgelösten Abhängigkeiten im Konfigurationsprozess. Hierdurch wird der Rekon-
figurationsaufwand in den meisten Fällen deutlich reduziert.

Zur Speicherung dieser partiellen Anwendungskonfigurationen wird ein auf XML
basierendes Verfahren verwendet, welches nach einer erfolgreichen Konfiguration
automatisch sämtliche entstehende Teilkonfigurationen lokal speichert. Um diese



Deutsche Zusammenfassung 25

Teilkonfigurationen anschließend zu verteilen und die Konsistenz unter den vorhan-
denen Geräten zu gewährleisten, werden unter Nutzung der Kommunikationsmech-
anismen der verwendeten Systemsoftware die erzeugten PACs per Broadcast an die
Geräte in der Umgebung gesendet. Mit Hilfe der Überwachung der Umgebung
durch die Systemsoftware kann der Grad der Verteilung der PACs außerdem au-
tomatisch angepasst werden, um die Anwendbarkeit dieser Konfigurationen auch in
dynamischen Umgebungen und bei komplett verteilter Anwendungskonfiguration zu
ermöglichen.

Außerdem müssen die bisher verwendeten Konfigurationsalgorithmen erweitert
werden, damit sie für gespeicherte partielle Konfigurationen automatisch die Verfüg-
barkeit der von ihnen verwendeten Komponenten überprüfen und diese dann in den
Konfigurationsprozess einbeziehen können. Hierfür wird zunächst eine initiale Bew-
ertung der neu zu speichernden partiellen Konfigurationen definiert. Basierend auf
vorhergegangenen Konfigurationen und Adaptationen werden anschließend Schlüsse
für zukünftige Konfigurations- und Adaptionsprozesse gezogen und der Nützlich-
keitswert jeder partiellen Anwendungskonfiguration für zukünftige Anwendungskon-
figurationen, basierend auf der zur Konfigurationszeit verfügbaren Anwendungskom-
ponenten, dynamisch angepasst. Die Konfigurationsalgorithmen wurden in der Art
erweitert, dass sie bei der Konfiguration von Komponenten zunächst überprüfen,
ob gespeicherte Teilkonfigurationen genutzt werden können, da sämtliche in den
Teilkonfigurationen enthaltene Komponenten der Anwendung aktuell zur Verfügung
stehen. Nur wenn keine nutzbaren Teilkonfigurationen integriert werden können,
muss eine gültige Belegung der jeweiligen Komponenten neu berechnet werden.

Schließlich werden Messungen durchgeführt, die den Ansatz der partiellen Anwen-
dungskonfiguration in die Konfigurationsberechnung einschließen. Dadurch kann in
sämtlichen homogenen wie heterogenen Umgebungen die Latenz reduziert werden,
wobei die Leistungsfähigkeit dieses Ansatzes in stark heterogenen Umgebungen mit
geringer Dynamik am höchsten ist, da die Verfügbarkeit der einzelnen Komponen-
ten sich hier am wenigsten ändert und die im Zwischenspeicher gehaltenen partiellen
Konfigurationen somit am längsten nutzbar bleiben.

In abschließenden Messungen wird gezeigt, dass der Ansatz der partiellen An-
wendungskonfigurationen mit adaptiven Parametern nur um 9 % höhere Konfigura-
tionslatenzen verursacht als der optimale Fall, in welchem der Zwischenspeicher von
unbeschränkter Größe ist und somit sämtliche jemals benutzten partiellen Konfig-
urationen dauerhaft zur Verfügung stehen. Die absoluten Latenzen pendeln sich in
diesem Fall bei lediglich 1,5 Sekunden ein, was im Vergleich zur Konfiguration ohne
partielle Konfigurationen (rund 2,5 Sekunden) die Dienstqualität deutlich erhöht.

6. Prototyp

Die entwickelten Verfahren und Mechanismen wurden in eine prototypische Imple-
mentierung der Systeme BASE [BSGR03] und PCOM [BHSR04] integriert und mit
diesen Systemen evaluiert. Die Systemplattform BASE wurde hierfür um einen



26 Deutsche Zusammenfassung

Dienst erweitert, der den automatischen Abruf der Konfigurationsklassen von ent-
fernten Geräten ermöglicht. Außerdem wurde ein verteilter Ereignisdienst inte-
griert, durch den ein Gerät automatisch über Änderungen an der Ressourcenlage
anderer Geräte informiert wird. Dies ist nötig, um bei der lokalen Konfiguration
entfernter Komponenten die Gültigkeit der aktuellen Ressourcenverfügbarkeit zu
gewährleisten.

Das Komponentensystem PCOM wurde an mehreren Stellen erweitert: Zunächst
einmal wurde das Rahmenwerk integriert, welches die automatische Gruppierung
von Geräten abhängig von bestimmten, erweiterbaren Gruppierungsstrategien er-
möglicht. Zur lokalen Emulation von entfernten Geräten wurde das Konzept der
virtuellen Container realisiert, welche mit Hilfe der neuen Dienste von BASE die
aktuelle Ressourcenlage entfernter Geräte abbilden, ohne Anfragen an diese stellen
zu müssen. Dadurch wird eine komplett lokale Konfiguration ermöglicht. Zur Un-
terstützung verschiedenster Umgebungen wurde außerdem ein Auswahlverfahren im-
plementiert, welches den Grad der Dezentralisierung bei der automatischen Konfig-
uration abhängig vom Grad der Heterogenität in der Umgebung anpasst. Durch
neu entwickelte zentrale und hybride Konfigurationsalgorithmen (sogenannte As-
sembler) werden dabei verschiedenste heterogene Umgebungen effizient unterstützt.
Die Ausnutzung vergangener Konfigurationsvorgänge wird mittels der Bereitstellung
eines Zwischenspeichers beschränkter Größe und eines Speicherersetzungsverfahrens,
welches für die Erhaltung der nützlichsten Konfigurationen innerhalb des Speichers
sorgt, ermöglicht. Die zuvor entwickelten Konfigurationsverfahren mussten dabei
nur geringfügig angepasst werden, um die Ausnutzung der Ergebnisse vergangener
Konfigurationen zu ermöglichen.

Zur Evaluation großer Anwendungen und hochdynamischer Umgebungen wurde
neben dem Prototyp noch ein ereignisdiskreter Simulator von PCOM in der Weise
erweitert, dass die Verfügbarkeit und Nichtverfügbarkeit von Geräten realitätsgetreu
nachgebildet werden kann. Außerdem wurden zentralisierte Konfigurationsverfahren
in diesem Simulator implementiert, um deren Effizienz in verschiedenen Szenarien
einfach vergleichen zu können. Um die Leistungsfähigkeit der entwickelten Konzepte
beispielhaft darzulegen, wurden auf dem Prototypen die in den Kapiteln 4 und 5
präsentierten Messungen in verschiedenen homogenen sowie heterogenen Umgebun-
gen vorgenommen.

7. Ausblick

Für zukünftige Arbeiten bietet sich die Erforschung erweiterter Verfahren zur in-
telligenten automatischen Vorberechnung und Verteilung von Konfigurationen und
Teilkonfigurationen an. Dafür können spekulativ ermittelte (Teil-)Konfigurationen,
die ausgehend von der aktuellen Ressourcenlage in berechnungsfreien (engl. idle)
Zeiten vorgenommen werden, verwendet werden. Außerdem bietet es sich an, das
bestehende Komponentenmodell zu flexibilisieren, um alternative Konfigurationen
zu ermöglichen und somit die Anzahl gültiger Konfigurationen zu erhöhen. Diese
erweiterten Untersuchungen sollen zu einer weiteren Reduktion des Kommunika-



Deutsche Zusammenfassung 27

tionsaufwandes und der Konfigurationslatenz sowie einer Erhöhung der Anwen-
dungsverfügbarkeit führen.





1
Introduction

In this chapter, we lay the foundations for this work. Therefore, we first present
the emergence of the Pervasive Computing research area in Section 1.1. Then in
Section 1.2, we discuss distributed Pervasive Applications as the aspect of Pervasive
Computing which is most important for this work. These applications need to be
configured and possibly adapted at runtime, as Section 1.3 states. Following, we give
a motivation for this work in Section 1.4, and present the focus and our contribution
in Section 1.5. Finally in Section 1.6, we give an overview of the remainder of this
thesis.

1.1. Pervasive Computing

The founding manifesto of Pervasive Computing was a ground-breaking work by
Mark Weiser who observed that ”the most profound technologies are those that
disappear. They weave themselves into the fabric of everyday life until they are
indistinguishable from it.” [Wei91, Wei99]. In his work, Weiser defines Pervasive
Computing as ”the method of enhancing computer use by making many comput-
ers available throughout the physical environment while making them effectively
invisible to the user.” Thus, the essence of Pervasive Computing is the creation
of environments saturated with computing and communication, yet gracefully inte-
grated with human users.

The road towards Pervasive Computing can be described as an evolution in three
steps [Sat01], starting with Distributed Systems [TS06] in the 1970s, then turning
to Mobile Computing [Sch03] within the 1990s and finally, evolving to Pervasive
Computing at the beginning of the 21st century.

Distributed Systems have already covered many areas that have become fun-
damental for Pervasive Computing, such as remote communication [BN84], fault
tolerance by transaction processing [GR92], high availability through consistency
[DGMS85], access to remote information, e.g. by distributed databases [Sat90], or
security through encryption techniques [NS78]. In a second evolutionary step, the



30 1. Introduction

emergence of fully functional laptops and wireless networks lead to the new field
of Mobile Computing, which added many important technological improvements
such as location sensitivity [WFG92], mobile networking [BPT96] or energy saving
techniques [FS99]. Finally, the consecutive technological miniaturization yielded the
appearence of completely new types of sensors (e.g., digital compasses, GPS sensors,
proximity sensors) and devices (e.g., PDAs, Smart Phones, netbooks). This enabled
the introduction of Smart Spaces [SBK06] and the invisibility in means of complete
disappearence of the technology from the user’s mind [WB97], leading to the age of
Pervasive Computing.

In recent years, computing has mobilized itself beyond the desktop PC. Beyond
this, models for Pervasive Computing have evolved [SM03] which particularly ad-
dress four system components:

• Devices now not only cover traditional input and output devices such as key-
boards or speakers, but also wireless mobile devices such as pagers, PDAs
or smart phones. Furthermore, everyday objects like cups [GBK99] or furni-
ture [IIS+03] are becoming more and more smart [Mat03] by equipping them
with sensors and wireless technology.

• Networking technologies have to be redesigned to support an evergrowing
number of people and devices that participate in a wireless network. Further-
more, these networks now cover types of devices which have never been used in
networks before, like vending machines, toasters, or refridgerators. It is sup-
posed that one day, a billion people will interact with a million e-businesses
via a trillion of interconnected intelligent devices [Amo01].

• Applications in Pervasive Computing are much more environment-centric
than mobile applications. This is established by providing location informa-
tion services [CBW03] to the users, which may be working in outdoor (e.g.,
GPS-based [AK06]) or even indoor scenarios (e.g., WLAN-based [SHR+08c]).
For instance, in the domain of pervasive healthcare [Var07], patients are au-
tomatically monitored by scattered sensors in their environment. Further
typical application scenarios are e-learning [NGL+09], ambient assisted liv-
ing [SDFGB10], home entertainment [BFM+06, NES08] or disaster opera-
tions [CLM+08, CCG+07].

• Social contexts have strongly changed the application landscape with the
rise of Web 2.0 technology [O’R05]. In recent years, a multitude of new socio-
centric applications have been developed. Thus, the integration of social con-
texts has become an additonal important key aspect for pervasive applica-
tions [BB02].

Along with these research fields, various new kinds of challenges arise, covering
scalability, heterogeneity, integration, invisibility, context-awareness and context-
management [SM03]. To overcome these challenges, system support by means of
frameworks and middleware platforms has been developed in the past years. Like
in traditional distributed and mobile computing, middleware platforms introduce a
logical abstraction layer between the hardware and the software. Through this, they
interact with the networking kernel on the user’s behalf and keep the users immersed



1.2. Pervasive Applications 31

in the pervasive computing space. Thus, they provide a uniform homogeneous soft-
ware development environment on physically heterogeneous hardware systems. The
primary objectives of middleware systems are to foster application portability, dis-
tributed application component interoperability, and facilitate software component
integration. Moreover, the middleware wants to abstract from specific technolo-
gies and increase the quality of service for the users. Therefore, such platforms
try to hide the heterogeneity of underlying layers. Common middleware platforms
include CORBA [Vin97], DCOM [Ses98], Java RMI [Dow97], J2EE [SSJ02] and
others. Recent research additionally provides a unique programming model for ap-
plication scenarios like nomadic computing or human-centric computing. Some of
these projects are Cooltown [KBM+00], Oxygen [Rud01], or Aura [SG02].

Besides the term Pervasive Computing, another notion which has emerged since
the early 1990s for these new types of disappearing computing systems is Ubiquitous
Computing. These terms are considered to be more or less equivalent [CPFJ04],
[WP05], so we also use them synonymously.

1.2. Pervasive Applications

From its beginning, the research area of Pervasive Computing was about applica-
tions. Pervasive applications are more environment-centric than Web-based applica-
tions or mobile computing [SM03]. Thus, pervasive applications can be characterized
by the following main properties:

• Distributed nature: In most typical Pervasive Computing scenarios, a sin-
gle device cannot provide the entire functionality required by an application
because of limited resources. Hence, a main characteristic of a pervasive appli-
cation is the fact that the required functionality is distributed among multiple
devices. In consequence, these devices have to collaborate while maintaining
distribution transparency to the user. To achieve this, the systems automati-
cally configure the application without user interaction to find a suitable com-
position of resources that provide the functionality required by the application.
McKinley et al. [MSKC04] provide a survey on adaptive system composition.

• High degree of dynamics: Since the corresponding runtime environments
for Pervasive Applications usually include mobile devices, there is a high fluc-
tuation in the presence of the devices whose resources provide functionalities
for the applications. Obviously, this influences the availability of the resources
to the applications, as specific resources may become unavailable at any time
and, thus, also during the execution of an application. Therefore, pervasive
systems have to specifically take care of these dynamic changes in the envi-
ronment by adapting parts of the application [HHS+07].

• Resource constraints: Many Pervasive Computing scenarios often have
to deal with strictly limited resources, especially in sensor network scenar-
ios [KNK05], or in Ad Hoc scenarios where people meet spontaneously with
their wireless mobile devices [HBR05]. Hence, application developers, but also



32 1. Introduction

system software developers need to consider these resource constraints in their
design decisions.

Due to the mentioned main characteristics of Pervasive Applications, finding an
application model for Pervasive Computing is very challenging and was first ad-
dressed by Banavar et al. [BBG+00]: According to the authors, the lifecycle of an
application consists of three different parts: Design-time (when the user creates the
application), load-time (when the system configures the application composition)
and run-time (when the end-user executes the application). At design time, the
application programmer has to identify interaction elements, specify an abstract
service description language, create a task-based model for the program structure
and integrate a navigation model to identify the application’s programming model.
Moreover, one has to think about the development methodology to realize the appli-
cation from a set of requirements. Tang et al. [TYZ+11] have discussed challenges
and presented solutions to enable rapid Pervasive Application design. The load-time
of a pervasive application is typically much more dynamic than in traditional appli-
cations. Therefore, the available applications and services in a specific environment
have to be dynamically discovered and, among these, a suitable set of components
has to be determined. Furthermore, the user interface has to be dynamically selected
and adapted from a set of available interfaces [Sch10]. At run-time of an application,
the environment has to be monitored to detect service or resource changes, to no-
tice disconnections, e.g. because of problems with the wireless interfaces. For such
situations, failure detection as well as recovery mechanisms have to be established
to identify and understand the arising problems.

Pervasive Applications are integrated within their physical environment and are
aware of their location. They are independent of underlying architectures or other
specific software or hardware that is used [DR07]. Recent research in Pervasive Com-
puting covers the development of customizable pervasive applications [WHKB06],
decentralized bootstrapping [KWSW07], or the formal specification and verification
of pervasive applications [CP09, DBGW10]. Another important issue deals with the
increase of security in mobile wireless and pervasive systems, e.g., via Intrusion De-
tection Systems [ZLH03, SV08]. Furthermore, some works even enlighten the vision
of complete future pervasive cities like New Songdo [WRvK+08].

1.3. Configuration and Adaptation of Pervasive
Applications

Due to their distributed nature, applications in pervasive computing environments
need to be configured prior to their execution, as the availability of the needed re-
sources may change over time. Application configuration, as part of the middleware,
tries to make optimal decisions about which services on which devices have to be
used by a specific application. A valid configuration covers a set of components
available in the current execution environment that fulfills the requirements posed
by the application. To achieve true pervasiveness, this configuration should be cal-
culated automatically without user intervention to enable technology abstraction. In



1.4. Motivation 33

order to additionally increase the quality of service for the user, new configurations
should be calculated and installed as fast as possible.

However, it may also happen during execution of an application that specific
resources are no longer available and, thus, parts of the application fail due to
resource shortages. Typical situations in which this may happen are:

• Users leaving the environment with their mobile devices

• Device failures, e.g. a desktop PC crashes and has to be re-booted

• Mobile devices that are running out of battery

In such situations, runtime support for the adaptation – also called re-configuration
– of these applications is required. This means alternative resources need to be
found that provide an adequate functionality. As it is possible that these alternative
resources are currently providing the functionality of another part of the application,
adaptation processes oftenly also require a re-configuration of additional parts of the
application, enforcing the need for efficient adaptation algorithms. These algorithms
have to analyze the application structure and the currently available resources and
services and decide depending on this information about the contracts that have to
be adapted.

A formal and more precise problem statement concerning configuration and adap-
tation of distributed applications is given in Section 2.2.1.

1.4. Motivation

In Pervasive Computing, different types of systems have emerged over the past years.
Initially, most projects focused on developing an infrastructure which provides basic
services and resources, e.g. input and output sources like keyboards, touchscreens,
graphical user interfaces or speaker systems. However, in recent years, system sup-
port for Ad Hoc scenarios without any infrastructure has also become an important
research field.

While the first class of environments require services that form an underlying
infrastructure, Ad Hoc environments do not rely on any existing infrastructure at all;
all devices are spontaneously connected. Thus, Ad Hoc scenarios are typically highly
homogeneous with respect to the computation capabilities of the involved devices.
In such scenarios, completely decentralized configuration approaches [HBR05] have
shown to be perfectly suited: they distribute the configuration load equally among
all involved devices, do not rely on specific devices or services to be available and,
thus, are generally applicable.

However, many typical application scenarios for Pervasive Computing include ad-
ditional powerful devices, which may form a stationary infrastructure (e.g., desktop
PCs, servers) or a mobile backbone (e.g., laptops with high performance). Due to
the significantly increased computation resources of these devices compared to the
small mobile devices, the respective scenarios can be characterized as heterogeneous
with respect to the computational performance of the involved devices. A typical



34 1. Introduction

representation for such a heterogeneous scenario is an auditorium environment that
features powerful devices like a stationary presentation PC or the laptops of audi-
tors, as well as mobile devices such as smart phones or PDAs. In heterogenenous
scenarios, totally decentralized configuration approaches are obviously also usable,
but they do not exploit the device heterogeneity efficiently, as they distribute the
computation tasks equally among powerful and weak devices. This leads to sub-
optimal results concerning the arising latencies for configuration and adaptation
processes [HHS+07]. Thus, alternative configuration approaches that distribute the
configuration load according to the capabilities of the present devices may increase
efficiency.

Most of the currently existing research projects solely focus on one specific class
of scenarios: They rather concentrate on pure Ad Hoc scenarios, like the projects
P2PComp [FHMO04] or Mobile Gaia [CAMCM05] do, or they rely on mandatory
infrastructure support, such as the projects iRoom [JFW02] or Gaia [RHC+02].
However, none of these projects provides efficient support for both kinds of applica-
tion scenarios and different degrees of heterogeneity. Hence, the currently existing
approaches have restricted flexibility in dynamically changing scenarios.

Thus, an advanced approach is required which supports a broad spectrum of en-
vironments, ranging from homogeneous peer-based scenarios without any powerful
devices, up to strongly heterogeneous infrastructure-based environments with many
powerful devices. Moreover, the current environmental conditions have to be mon-
itored and an automatic adaptation of the currently fitting configuration approach
is needed. Additionally, it is worthwhile to investigate mechanisms that addition-
ally exploit the results of previous configuration processes, as it is very likely that
specific services and components are frequently used in a specific scenario. This is
especially the case in infrastructure-based environments where a set of devices – the
stationary infrastructure – is supposed to be always available.

1.5. Focus and Contribution

As we want to provide automated system support for a broad spectrum of pervasive
environments in this thesis, we only concentrate on systems that supply automated
system-level configuration and adaptation: Infrastructure-based heterogeneous envi-
ronments, and infrastructure-less homogeneous environments which are also known
as Ad Hoc environments.

The contribution of this thesis is twofold: Firstly, we comprehensively discuss an
efficient and resource-aware hybrid configuration scheme for highly heterogeneous
environments. And secondly, we introduce a scheme that automatically caches par-
tial compositions used in previous application configurations for their future re-use
to reduce the configuration load, independent from the actually chosen configuration
algorithm.

In a first step, we present a new centralized configuration algorithm called Direct
Backtracking (DBT). This algorithm is tailored to weakly heterogenenous envi-
ronments like offices where one additional powerful device, e.g., a desktop PC or



1.5. Focus and Contribution 35

a laptop, is available besides several mobile devices with low computation power.
Direct Backtracking is employed on this powerful device to configure Pervasive Ap-
plications in a completely local manner, i.e., without the need of communication
to remote devices during the configuration process. DBT features two new innova-
tive mechanisms in backtracking: proactive backtracking avoidance, and intelligent
backtracking. Proactive backtracking avoidance tries to avoid conflict situations
within application configuration right from the beginning and reduces the number
of situations in which adaptations are really needed. The intelligent backtrack-
ing mechanism handles the remaining conflict situations, i.e., adaptations which
cannot be avoided, without producing thrashing effects (repetitive unnecessary re-
configurations). In our evaluation, we show that Direct Backtracking shows vastly
improved performance compared to other approaches and, therefore, enables fast
centralized configurations and adaptations even in very large Pervasive Applica-
tions.

Following, we present an approach to allow the automatic adaptation of the de-
gree of decentralization for the application composition algorithms. The presented
scheme enables the efficient support of both infrastructure-based and Ad Hoc envi-
ronments. It represents an important step towards hybrid application configuration
by enabling the automatic selection of exchangeable configuration algorithms. To
provide particular support of infrastructure-based heterogeneous environments, we
introduce a new concept called Virtual Container (VC). This concept enables the lo-
cal emulation of remote devices and allows proactive and local access to the relevant
configuration logic on these devices. This enables centralized application configu-
ration on a distinguished device without the necessity of remote validation of the
obtained configuration. In order to identify powerful devices that are suited for per-
forming centralized configuration and act as coordinators for the other devices, we
introduce a clustering scheme. Moreover, we provide several strategies to access the
required distributed configuration logic for further reduction of the configuration la-
tency, and we present an advanced algorithm which uses the Virtual Containers and
the provided access strategies. As the remote information is obtained prior to config-
urations by this algorithm, the configuration latency as well as the communication
overhead during configurations is drastically reduced.

Centralized configuration algorithms like Direct Backtracking represent an effi-
cient solution in environments where one resource-rich device is available. They
only require the devices to communicate their current resource situation. How-
ever, they introduce a single point of failure and prevent the parallel calculation
of configurations like in decentralized approaches. Contrary to this, decentralized
approaches increase the robustness of the configuration process, but imply exten-
sive communication between all devices during configuration. Moreover, they dis-
seminate the configuration tasks equally among all devices and do not efficiently
exploit the increased computation power of specific devices in heterogeneous en-
vironments. Thus, we present an efficient and resource-aware hybrid configuration
approach which combines the beneficial properties of both the centralized and the
decentralized approaches and enables a broad range of efficient configuration so-
lutions with different degrees of decentralization in heterogenenous environments
with multiple resource-rich devices. This approach represents a generalization of



36 1. Introduction

the existing centralized and decentralized approaches. It relies on an advanced clus-
tering scheme and enables the application configuration to be computed on multiple
powerful devices simultaneously, which eliminates the single point of failure that
is common in centralized approaches. The resource-poor devices stay passive dur-
ing the hybrid configuration process. Thus, computation bottlenecks within the
calculations are avoided, giving our approach an advantage over fully decentral-
ized approaches. Moreover, the advanced clustering mechanism enables a balanced
configuration load among the powerful devices and allows the clusters to compute
compositions independently from other clusters in the environment. As we provide
cluster maintenance methods which react to device changes in the environment, we
sustain the balanced configuration load even in dynamically changing environments.
Hence, this hybrid approach reduces the configuration latencies by more than 30 %
in heterogeneous environments, as our evaluations show.

Besides our efforts to realize a hybrid configuration scheme for a broad spectrum
of different scenarios, we propose a novel approach to increase the efficiency of all
of the developed configuration approaches that reduces the number of components
which actually need to be configured. We refer to this concept as Partial Appli-
cation Configuration (PAC) of Pervasive Applications. This approach is based on
the fact that in many typical ubiquitous environments, there is often a fixed set of
devices and services that are used by distributed applications. If many identical
component sets are frequently used in subsequent configuration calculations, the
involved devices undergo a quite similar configuration process whenever an appli-
cation is launched. However, starting the composition from scratch every time not
only consumes a lot of time, but also increases communication overhead and energy
consumption of the involved devices. Our approach takes care of such consecutively
ongoing configuration processes by caching component sets with high potential for
further re-use, distributing them among the configuration devices, and integrating
them into future compositions. This minimizes the number of components that ac-
tually need to be configured and reduces the latencies for decentralized, hybrid and
centralized configuration further. To enable their future re-use, PACs are stored in
a cache of limited size after they were used in a configuration. Additionally, we pro-
vide a replacement strategy that decides based on the recency and the frequency of
their usage which PACs are removed from cache if the cache space is exceeded. Our
approach checks, whether at configuration time all components included in a PAC
are currently available to make this PAC usable. Then, the cached PAC is auto-
matically integrated into the current composition and only those components which
are not included in any of the cached PACs have to be configured in the conven-
tional way. In our evaluations, we show that when PACs are used, the configuration
latencies are drastically reduced compared to standard configuration approaches.

1.6. Overview

The remainder of this dissertation thesis is structured as follows: In Chapter 2, we
introduce our system model, present an exemplary scenario, and discuss our problem
statement and the requirements for this work. In Chapter 3, we give an overview of



1.6. Overview 37

the projects and algorithms which are most related to this thesis. Subsequently, in
Chapter 4, we discuss the way towards a hybrid application configuration scheme for
strongly heterogeneous Pervasive Computing environments. Therefore, we present
new centralized and hybrid approaches for application configuration and compare
the different approaches in real-world evaluations which show that our new schemes
significantly outperform the previously used schemes. Chapter 5 discusses the PAC
concept to re-use the results of previous configuration processes which is based
on caching previously used parts of an application configuration. This concept
supports a replacement strategy for outdated cache entries, as well as the support of
dynamic scenarios. Next in Chapter 6, we present the overall architecture of the used
system software and discuss the extensions we made to implement the developed
concepts. Finally, Chapter 7 concludes this thesis, giving at first a summary and
then identifying open challenges and enhancements for future research.





2
Requirements and Assumptions

In this chapter, we lay the foundations for this work. Therefore, we first present
our system model in Section 2.1, covering devices, environments, applications, and
the required system software. Then in Section 2.2, we discuss the problem that is
addressed within this thesis: the dynamic configuration of distributed applications
in heterogeneous environments. At last, we deduce the requirements we pose on our
solutions.

2.1. System Model

As this work especially focuses on the exploitation of the device heterogeneity, we
start with a discussion of the devices and the Pervasive Computing environments
that are formed by these devices in Section 2.1.1. The applications themselves rep-
resent another important aspect for service composition, so with argue the structure
and typical sizes of distributed applications in Section 2.1.2. Finally in Section 2.1.3,
we take a closer look on the system software we are relying on.

2.1.1. Devices and Environments

We particularly focus on Pervasive Computing scenarios that include devices with
different properties and computation power. Each device has a unique device ID1.
Furthermore, we suppose that all devices, which host components of a distributed
application, are in direct communication range, i.e., we rely on one-hop communica-
tion environments. Conference rooms, offices, auditoriums, or living rooms represent
typical exemplary application scenarios. Moreover, we assume that all devices act
in a cooperative way, i.e., they are trustworthy and provide their computation power

1For this thesis, we are relying on randomly chosen 32 bit identifiers. Thus, the probability that
two arbitrary devices get the same ID is neglectable with only around 0.00000002 %



40 2. Requirements and Assumptions

and resources to the other nodes in order to enable a distributed application execu-
tion with a high quality of service. In terms of scenario heterogeneity, we distinguish
between two different types of involved devices:

• Resource-poor devices are usually represented by mobile devices, such as Smart
Phones or PDAs. Due to their limited computation power, they can slow down
the complete configuration if too much workload is put on them. Resource-
poor devices, which we will also call weak devices within this work, typically
have a low degree of availability, as they are highly mobile and their battery
power is strictly limited. Thus, resource-poor devices should preferably not
be burdened with computationally intensive tasks. We call environments with
only resource-poor devices homogeneous.

• Resource-rich devices are usually stationary infrastructure devices such as
desktop PCs, but may also be mobile devices with high computation power,
such as laptops. Due to their increased computation resources, resource-rich
devices are perfectly suited for performing computationally intensive tasks
such as the calculation of configurations or adaptations. We call an envi-
ronment heterogeneous if at least one resource-rich device is present besides
the resource-poor devices. Furthermore, several degrees of heterogeneity are
possible, reaching from environments where only one resource-rich device is
available (e.g., an office scenario with one desktop PC) up to scenarios with
various resource-rich devices (e.g., an auditorium during a conference). In this
thesis, resource-rich devices are also called powerful devices.

Obviously, relying on only two different types of devices concerning the compu-
tation power represents a rather coarse-grained approach. However, it represents a
simple yet powerful way to enable a resource-aware distribution of the configuration
load among the present devices, as we will show in Chapter 4. We will go into details
concerning the determination of the device roles in Section 4.1.2, where we describe
the cluster-based approach that we have chosen.

2.1.2. Application Model

As mentioned in the introduction, one main characteristic of a pervasive application
is the fact that the required functionality is distributed among multiple devices which
have to collaborate. As a typical example for Pervasive Computing, Figure 2.1a
shows a scenario of a businessman who controls distributed applications only using
his Smart Phone, thereby travelling from his home by car to his office. As you can
see, the available set of components that may be used by applications varies widely,
reaching from home entertainment devices and white goods to car entertainment
and outdoor navigation up to office components like video projectors, headsets or
tablet PCs.

We assume a component-based application model, i.e., an application consists
of several components and each component instance requires a certain amount of
resources. An application is represented by a tree of interdependent components
that is constructed by recursively starting the components required by a root in-
stance, the so-called application anchor. Figure 2.1b shows the component tree of



2.1. System Model 41

Figure 2.1.: a) Travelling businessman scenario, b) Distributed Presentation Appli-
cation in businessman scenario

an exemplary distributed presentation application in an office environment, where
the businessman may present a new product to business partners. The application
automatically uses the resources available in the vicinity as the required input and
output functionalities, e.g. display, microphones, or speakers.

A single component is resident on a specific device which is represented by a con-
tainer that carries a unique identifier, called device ID. The number of components
per container is not restricted. Interdependencies between components as well as
resource requirements are described by directed contracts which specify the func-
tionality required by the parent instance and provided by the child instance of this
contract. A parent instance may have an arbitrary number of child instances and,
thus, contracts. Every instance can uniquely be identified within the application
tree structure by its Instance Identifier (IID). An IID is built up in a top-to-down
manner following the levels of the application tree up to the respective instance.
This enables the identification of all ancestors of an instance within the application
tree. The root instance of the application is called anchor and has IID [0]. For
every level down the tree, the instance ID is determined by taking the direct an-
censtor instance’s IID and attaching the ordinal number of the instance within all
of its siblings, ordered from left to right. As an example, consider the concrete ap-
plication structure with IIDs of the distributed presentation application introduced
in Figure 2.1b, which is displayed in Figure 2.2. Its application anchor (IID [0])
requires the provision of three child contracts (ctc. 0 to 2) to provide instances for
the source file’s input device (IID [0][0]), the acoustic and haptic input device (IID
[0][1]), and the acoustic and optical output device (IID [0][2]). Furthermore, each
of these three contracts relies on additional child contracts, e.g., the acoustic and
haptic input device instance needs one acoustic input instance (IID [0][1][0]) and one
haptic input instance (IID [0][1][1]). The structure represented here is given by the
application developer and is independent from the provision of specific components,
but solely forces the functionality that has to be provided by a component.

If there exists more than just one component that provides the required func-
tionality for a contract, the parent component can choose among several options.
In the following, this is called a multi-optional contract. Obviously, the number
of multi-optional contracts is relying on the currently available resources and may
change over time in dynamic environments. As long as the anchor component of
an application is executed, its container ensures that dependencies are recursively



42 2. Requirements and Assumptions

[0]

[0][2]

[0][0][0] [0][2][0] [0][2][1][0][1][1]

Acoustic & Optical
Output Device

Optical
Output

Acoustic & Haptic
Input Device

Source File
Input Device

[0][0]

Acoustic
Input 

Haptic
Input 

[0][1][0]

Application Anchor
(Root)

[0][1]

Acoustic
Output

Source
File 

ctc. 0 ctc. 2
ctc

. 1

ct
c.

 0 ctc
. 0

ctc. 1

ctc
. 0

ctc. 1instance ID

ctc. = contract

Figure 2.2.: Exemplary application structure with instance IDs (IIDs)

resolved by binding adequate components to them. Since a parent component relies
on its child components, it can only be instantiated if all of its children have been
instantiated previously. An application is successfully started if all dependencies
have been resolved so that for each contract, a suitable component which satisfies
all requirements could be found.

In a specific environment, several components are available which represent the
resources that can potentially fulfill the requirements given by the contracts and,
thus, become instances of the application. Each component is resident on a specific
device which is represented by a container.

A component which fulfills the requirements of a specific contract and is used
within a configuration can uniquely be identified within the application tree by its
component identifier (CoID). Like for the instance IDs, the CoID of a component is
built up in a top-down manner following the levels of the application tree unto the
respective component. However, as it is possible that there exist multiple compo-
nents which can fulfill the requirements of a specific contract, the CoID additionally
includes a parameter representing the option for this component among all com-
ponents that provide the required functionality of this contract. This enables the
identification of all predecessors of a component. The root component of the applica-
tion is called anchor and has the component ID [0,0]. For every level down the tree,
the component ID is determined by taking the parent component’s ID and attaching
a tuple [a, b], where a represents the ordinal number of the dependency of the parent
component that is resolved by this component, and b represents the option (meaning
the index number of the alternative components) for that dependency. If there is
only one possible component for a dependency, b becomes 0. Otherwise, the differ-
ent alternatives are labelled with increasing option numbers. To clarify this, regard
Figure 2.3 which shows the previously introduced distributed presentation applica-
tion with known application structure, but extended by the available components.
The contract which covers the acoustic input devices, for instance, is multi-optional,
as there are two different options that fulfil the application’s requirements: using
a microphone (CoID [0,0][1,0][0,0], i.e. option 0 for that dependency) or, alterna-
tively, using a headset (CoID [0,0][1,0][0,1], i.e. option 1) that is also available in the



2.1. System Model 43

[0,0]

[0,0]
[2,0]

[0,0]
[0,0]
[0,0]

[0,0]
[2,0]
[0,0]

[0,0]
[2,0]
[1,0]

[0,0]
[2,0]
[1,1]

[0,0]
[1,0]
[1,2]

Acoustic & Optical
Output Device

Optical
Output

Acoustic & Haptic
Input Device

[0,0]
[1,0]
[1,1]

[0,0]
[1,0]
[1,0]

Source File
Input Device

[0,0]
[0,0] Acoustic

Input 
Haptic
Input 

[0,0]
[1,0]
[0,1]

[0,0]
[1,0]
[0,0]

Application Anchor
(Root)

[0,0]
[1,0]

Acoustic
Output

ctc. 0 ctc. 2
ctc. 1

ct
c.

 0

ctc. 0 ctc. 1

ctc. 0
ctc. 1

op
t. 0

op
t. 

1 opt. 2 op
t. 

0 opt. 1op
t. 0

opt. 1

Source
File

Figure 2.3.: Extended application structure with component IDs (CoIDs) of compo-
nents which have been selected within a configuration process

environment. The application developer may define priorities between the different
options relevant for the configuration algorithm, i.e. using a video projector leads
to a higher quality for the application execution than using the flat screen. Further
multi-optional contracts cover the instance for the haptic input with optional usage
of a mouse (CoID [0,0]1,0][1,0]), a keyboard (CoID [0,0][1,0][1,1]), or a touch pad
(CoID [0,0][1,0][1,2]) as well as the optical output, where the configuration algo-
rithm can choose between a video projector (CoID [0,0][2,0][1,0]) or a flat screen TV
(CoID [0,0][2,0][1,1]).

To get a feeling about typical application sizes in the mentioned scenarios, we
investigated the applications used in related research projects. Typical applications
and their sizes are shown in Table 2.1, divided into applications for Ad Hoc scenarios,
and applications for infrastructure-based scenarios. One can see that applications
for Ad Hoc scenarios typically involve mobile users (e.g., in navigation or tracking
scenarios), while infrastructure-based scenarios are usually indoor environments with
a lower degree of dynamics, such as medical support, health care, or residents’
support by providing smart homes. The applications listed here cover 8 up to 34
components. It can also be seen that applications in Ad Hoc scenarios are typically
smaller than those created for infrastructure-supported environments. We rely on
applications in the same order of magnitude in the evaluations within this work.

2.1.3. System Software

For the work presented here, we rely on a communication middleware which provides
basic services to enable distributed applications and supports different communica-
tion models. Moreover, the communication middleware supplies a registry which
contains all currently reachable devices. Through this registry, global knowledge
among all devices is established. Usually in mobile networks, global knowledge is
critical, as it may cause inconsistencies among the different devices, e.g. because



44 2. Requirements and Assumptions

Reference Application Scenario Typical Size(s)
[CAMCM05] Indoor/Outdoor Navigation 8 components

[Gri04] Travelling consultant scenario 10 components
[ENS+02] Resource sharing among users 10 components
[OGT+99] Tracking application 8 components
[OGT+99] Cargo routing logistics scenario 12 components

[Sai03] Typical O2S system application 13 components
[BHSR04] Evaluation of distrib. application 8/15/17 comp.s
[HUB+06] Pervasive Presenter 8 components

Average size for ad hoc scenarios 10.1 comp.s

[JFW02] Smart Room 20 components
[CCS08] Wireless Medical Info System 20 components
[LNH03] Smart Flat for elderly people 30 components
[Tan01] Smart Board & connected display 12 components
[Tan01] Smart Board & intelligent chair 19 components
[Tan01] Multi-user Smart Board 34 components

[HMEZ+05] Smart House with 17 ”hot spots” 30 components
Average size for infrastructure scenarios 23.5 comp.s

Table 2.1.: Typical application sizes in ad hoc environments and infrastructure-
based scenarios

of network failures or very high dynamics. However, as mentioned in Section 2.1.1,
we rely on single-hop environments. Furthermore, these environments are charac-
terized by a relatively low degree of dynamics, as devices typically stay within an
environment for at least several minutes, as we will show in Section 5.7.2. Thus, we
consider the access on global knowledge to be uncritical here.

An exemplary system for Pervasive Computing environments which supports the
requirements discussed here is BASE [BSGR03]. This communication middleware
has been developed in the Peer-to-Peer Pervasive Computing (3PC, [HSM+12])
project. BASE provides basic services to enable distributed applications and features
a plug-in architecture to support different communication models such as RPC via
exchangeable plug-ins. Beyond this, BASE supplies a device registry (as mentioned
above), maintaining a list of all currently reachable devices. The device registry is
kept up to date as every device periodically broadcasts heartbeat messages.

Beyond the mentioned communication middleware, we rely on a component sys-
tem that is executed on top of the communication middleware and provides system
support at the application level. To enable application configuration and runtime
adaptation, the component system needs to provide event-based signaling mecha-
nisms to detect changes in the availability and quality of specific devices and services.
Moreover, the system needs to be capable to supply algorithms which enable the
automatic configuration and adaptation of distributed applications based on the in-
formation provided by the communication middleware and the component system
itself.



2.2. Problem Statement 45

PCOM [BHSR04] represents an exemplary system that fulfills the requirements
posed here. This component system initially was developed as a middleware for
self-organizing software systems in Mobile Ad Hoc Networks (MANETs) without
supporting infrastructure devices. However, the PCOM middleware provides auto-
matic adaptation on system level. PCOM supports a wide range of end-user devices
and can integrate additional infrastructure devices, but it does not take special
care of their computation power and, hence, does not exploit available resources
efficiently in many scenarios. Within the system, devices are represented by con-
tainers : They host components and manage their dependencies, so they act as a
distributed application execution environment. Containers re-use the discovery and
communication capabilities of the communication middleware. More details about
the specific algorithms and mechanisms as well as the system architecture can be
found in Section 3.2.2.

2.2. Problem Statement

In the following, we first discuss the dynamic configuration (Section 2.2.1) of dis-
tributed Pervasive Applications in heterogeneous environments, which represents
the main challenge we focus on in this work. Based on this discussion, we derive the
requirements for an adequate solution in Section 2.2.2.

2.2.1. Dynamic Configuration in Heterogeneous Environments

Configuration denotes the task of determining a valid composition of components
that can be instantiated simultaneously as an application. Such a composition is
subject to two classes of constraints: Structural constraints, describing the func-
tionality that is required by the parent and provided by the children of a specific
component for resolving a dependency (e.g., the access to a remote database), and
resource constraints due to limited resources (e.g., a single display cannot be used by
two applications simultaneously). The complexity of finding a configuration arises
from the fact that both types of constraints must be fulfilled coevally. An applica-
tion is successfully started if all dependencies have been resolved by a configuration
algorithm such that for each contract, a suitable component which satisfies all re-
quirements was found.

The problem of configuring an application in a distributed manner can be rep-
resented as an NP-complete Distributed Constraint Satisfaction Problem (DCSP)
[HBR05]. Generally, a DCSP is a mathematical problem that is defined as a set of
objects whose state must satisfy a number of constraints. Backtracking algorithms
from the domain of Distributed Artificial Intelligence [YDIK92] represent typical
solutions to this problem. More details on Distributed Constraint Satisfaction will
follow in Sections 3.1 and 4.1.1.

All of the algorithms considered within this work follow a depth-first search ap-
proach. This means that an algorithm proceeds from the top to the bottom of the
tree and, within a sublevel of the tree, from left to right. Whenever an algorithm



46 2. Requirements and Assumptions

has found a suitable component for a contract dependency, this component is added
to the so-called assembly, which represents the configuration that has been found so
far.

Dynamic configuration means that the validity of calculated configurations needs
to be maintained even in environments where the availability of specific components
dynamically changes, e.g., due to device failures or user mobility. In such situations,
components which are part of the current application configuration may become
unavailable during application execution. This induces that the respective parts of
the configurations have to be adapted at runtime. Then, the corresponding con-
tracts that are conflicted have to be identified by the configuration algorithm, and
alternative components have to be found which can provide the same functionality.
Therefore, a currently instantiated component of another contract has to be stopped
to free resources, and an alternative component that fulfills this contract’s require-
ments with less resource consumption has to be instantiated afterwards. If it is not
considered whether the adapted contract requires the same type of resource as the
conflicted contract, it is possible that many adaptations are needless since they do
not solve the problem. Then, the number of necessary adaptations increases and
leads to an additional configuration latency. This undesired effect is called thrashing
and has to be avoided by providing efficient configuration algorithms.

While the configuration latency comprises the time between the user’s applica-
tion start and the availability of the application to the user, the adaptation la-
tency covers the time span between the unavailability of specific components until
the re-execution of the application after alternative components have been found.
Configuration and adaptation latencies include the delays for (re-)calculating the
configuration and instantiating all application components. Both latencies should
be minimized to provide a seamless user experience even in dynamically changing
scenarios.

The configuration and adaptation problems have already been solved for homo-
geneous scenarios by providing decentralized algorithms for peer-based application
composition (e.g., [HBR05, HHS+07]). However, decentralized schemes perform
suboptimal in heterogeneous environments, since they do not exploit the scenario
heterogeneity by distributing the configuration tasks in a resource-aware manner
among the currently available devices. To provide such efficient heterogeneity sup-
port, issues like distinguishing resource-rich from resource-poor devices, distributing
the load in a unique manner among several devices, or the provision of configuration
schemes tailored to specific scenarios and the automatic selection of a fitting scheme
have to be regarded. In this article, we present solutions to these issues.

2.2.2. Non-functional Requirements

Besides the functional requirement of providing a valid composition in dynamic en-
vironments, there are several non-functional requirements that an adequate solution
has to fulfill. According to the challenges discussed above, we pose the following
non-functional requirements to configuration and adaptation processes:



2.2. Problem Statement 47

• Adaptivity: Pervasive Computing scenarios are characterized by a high de-
gree of dynamics, as they involve mobile devices with limited battery ca-
pacities. Thus, the execution environment of an application may change
dynamically. As different environments promote different configuration ap-
proaches, the provision of approaches optimized for specific scenarios is manda-
tory. Moreover, the most suitable approach has to be selected automatically.
This means that the chosen configuration algorithm needs to be automatically
adapted in dynamically changing scenarios.

• Automation: Many related projects demand users or application program-
mers to handle configuration and adaptation issues. However, providing an
automated solution where only the system software is responsible for deter-
mining valid configurations yields Pervasive Computing systems that are much
more transparent to users and application developers.

• Efficiency: Configuration and adaptation calculations induce latencies which
users perceive as undesired delays, as the application is not available before
these processes are completed. To sustain the user’s interest for distributed
applications, these distractions should be as low as possible. Thus, a major
goal is to achieve efficiency by minimizing the arising configuration latencies.

• Resource-Awareness: In heterogeneous environments, the computation re-
sources on the available devices differ significantly. To exploit this heterogene-
ity effectively and avoid bottlenecks for the configuration, solutions have to
be aware of the computation resources of the involved devices. Crucial tasks
within a configuration should be performed by the resource-richest devices, as
they can perform these tasks much faster than slow devices.

• Resource Conservation: Many scenarios involve a fixed set of applications
and devices which are frequently used. As the involved devices undergo a sim-
ilar configuration process whenever an application is launched, starting a com-
position from scratch every time unnecessarily wastes computation resources
on the configuration devices. Instead, the results of previous configuration pro-
cesses have to be analyzed, cached, and automatically integrated into future
configurations to reduce the complexity of the configuration problem in terms
of the number of components that have to be configured.





3
Related Work

In this chapter, we give an overview of those projects and research efforts dealing
with issues which are also highlighted in this thesis. Initially, we describe algorithms
that solve Constraint Satisfaction Problems in Section 3.1. Following in Section 3.2,
we present related research projects that also focus on service composition in Perva-
sive Computing. Here, we distinguish between projects which rely on heterogeneous
infrastructure-based environments (Section 3.2.1), and projects which concentrate
on homogeneous mobile Ad Hoc scenarios (Section 3.2.2). As clustering a group of
nodes is used in this thesis to separate different classes of devices, we give a summary
of related work on clustering frameworks in Section 3.3. Finally in Section 3.4 of
this chapter, we discuss projects that try to exploit the results gained from previous
configuration runs, which is also one of the main issues here.

3.1. Algorithms for Solving Constraint Satisfaction
Problems

As presented in Section 2.2.1, the adaptation of tree-based applications where the
functionality is distributed among the devices in the environment can be mapped to
a Constraint Satisfaction Problem (CSP, [YDIK92]). CSPs appear in many areas
such as artificial intelligence, operational research or hardware design. They can be
solved either in a centralized and synchronous way where one specific device locally
calculates the complete configuration, or in a distributed and asynchronous way
where all present devices are included in the calculations. Furthermore, there can
be distinguished between two different methods to solve CSPs: search algorithms,
and consistency algorithms [ZM91]. Moreover, search algorithms can further be
divided into backtracking algorithms and iterative improvement algorithms. This
leads to six different classes of algorithms to solve CSPs, as shown in Figure 3.1.

Consistency algorithms are pre-processing procedures that are invoked before the
actual search. They aim at reducing futile backtracking. Path consistency [Mon74],



50 3. Related Work

  Centralized CSP
   (sequential processing)

  Distributed CSP
   (concurrent processing)

   
   

   
Se

ar
ch

   
   

   
 A

lg
or

ith
m

s
   

C
on

si
st

en
cy

   
 A

lg
or

ith
m

s

Asynchronous Weak 
Commitment, Distributed 
Breakout, Local Search

Breakout Method, WalkSAT, 
Lagrangian-based Global 

Search

Synchronous BT, 
Synchronous Backjumping, 
Dependency-Directed BT, 
Dynamic BT, Direct BT

Asynchronous Backtracking, 
Min-Conflict-Backtracking

Path Consistency, 
Arc Consistency, 

k-Consistency

Parallel Consistent Labeling, 
Distributed Arc Consistency

Iterative Improvement

Backtracking (BT)

Figure 3.1.: Classification of algorithms to solve CSPs

arc consistency [Mac77, MH86, Bes94], k-consistency [Fre78] as well as parallel con-
sistent labeling [SH87] or distributed arc consistency [ND98, Ham02] are popular
efficient consistency algorithms. Because of their pre-processing nature, consistency
algorithms are not applicable in dynamic pervasive environments where the availabil-
ity of specific components may change at any time and, hence, runtime configuration
is needed. So, we put the focus on search algorithms in the following.

In case of a fully distributed application configuration, the CSP problem can
be solved by distributed algorithms from the research domain of Artificial Intelli-
gence [YDIK98]. When using distributed algorithms for solving CSPs, all of the
involved agents perform their search procedures concurrently while communicat-
ing information on their search processes with each other. Exemplary distributed
algorithms from the class of backtracking schemes are min-conflict backtracking
[MPJL92] or asynchronous backtracking [YDIK98]. Moreover, there exist solutions
which are based on iterative improvement algorithms [HY05]. Since these algorithms
are hill-climbing search algorithms, they are occasionally trapped in local-minima.
Local-minima represent states violating some constraints, but the number of con-
straint violations cannot be decreased by changing any single variable value. To
escape from local minima, these algorithms typically provide heuristics like the min-
conflict heuristic [MPJL92] which changes a variable value so that the number of
violated constraints is minimized. Thus, a mistake can be revised without conduct-
ing an exhaustive search, that is, the same variable can be revised again and again.



3.1. Algorithms for Solving Constraint Satisfaction Problems 51

Therefore, these algorithms may be efficient, but their completeness cannot be guar-
anteed. Typically used distributed improvement algorithms are asynchronous weak-
commitment search [Yok94], distributed breakout [YH96], or local search [HY02].

Decentralized algorithms have a common drawback: they cause huge communica-
tion overhead for resolving dependencies between components. In case of n devices
that are involved in the application configuration, the worst-case amount of mes-
sages to be sent is O(n2). In centralized algorithms, every involved device has to
send only one message to the configuration device to inform this device about its
available resources, which leads to a worst-case message amount of only O(n). Fur-
thermore, distributed algorithms do not take special care of potential strong devices
that are present in heterogeneous environments.

Thus, we concentrate on centralized algorithms from now on. Synchronous ap-
proaches for centralized CSPs that belong to the class of iterative schemes are the
Breakout method [Mor93], WalkSAT [SKC94], or Lagrangian-based global search
[SW98]. However, they suffer from the same local minima problem than their dis-
tributed versions do.

Backtracking algorithms are complete algorithms that do not get stuck in local
minima, so we only focus on them in this thesis. A survey of these algorithms is
given by Andrew Baker [Bak05]. The simplest approach imaginable is to generate
every possible composition until one is found that satisfies all of the constraints given
by the application. This algorithm performs an exhaustive search and is obviously
very inefficient, as it does not check any of the constraints until it arrives at the
bottom of the application tree.

An improved centralized backtracking algorithm which is not relying on exhaus-
tive search is Synchronous Backtracking (SBT) [BM04]. SBT executes a depth-first
search in the application tree. The only difference between Synchronous Backtrack-
ing and the exhaustive search algorithm is in the location of the consistency check:
After Synchronous Backtracking assigns a value to a variable, it checks at once
whether the partial assignment still satisfies the constraints. If it does not, the
procedure immediately moves on to the next value for this variable. Because of the
consistency check of these partial assignments, SBT significantly reduces the number
of possible configurations at an early stage. However, SBT has one huge drawback
concerning adaptations: Since it does not consider the reason for backtracking and
tries to adapt the first possible multi-optional contract (cf. Section 2.1.2), it suffers
from thrashing. Thrashing represents the problem of wasting time while exploring
portions of the search space that cannot possibly contain any solutions because the
respective contracts address different functionalities. Thrashing leads to an enor-
mous overhead and, thus, increased latency, especially if the application is huge and
contains many multi-optional contracts.

Several approaches to reduce this thrashing effect have been developed. Since
SBT lacks mechanisms to recognize the reasons for a failure, an advanced algorithm
called Synchronous Backjumping (SBJ) [Gas77] tries to keep track of the reasons
that led to a backtrack operation. In case of a necessary backtracking process,
i.e., when a contract could not be instantiated by any component, SBJ at first
computes the so-called conflict set that represents the subset of all contracts which



52 3. Related Work

are currently resolved by a component that is also needed to fulfill the conflicting
contract. This means SBJ searches for multi-optional contracts that depend on the
same kind of resource as the contract that was the reason for backtracking. SBJ does
not adapt contracts that are independent of the backtracking cause. This helps to
reduce thrashing, but it cannot avoid it completely since SBJ does not keep previous
intermediate results for subsequent adaptations. Furthermore, SBJ relies on a stack
during backtracking, causing additional computation and storage overhead.

Dependency-Directed Backtracking (DDB) [SS77] solves the problem of thrashing
by storing a set of so-called nogoods which are partial configurations without a
solution for the complete application. Every time a backtrack is about to occur,
DDB learns a new nogood from the current conflict set and the current partial
assignment. This nogood states that it is not possible for every dependency in the
conflict set to simultaneously have their current assignments. The set of nogoods
is used when the current partial assignment is checked both against the original
constraints and the nogoods that have been learned so far. Therefore, it can avoid
infeasible solutions subsequently. While DDB avoids thrashing, its main drawback
is its enormous memory consumption: Every time the algorithm has to perform
a backtrack, it learns a new nogood and adds it to the nogoods set. Because of
this ever-increasing set of nogoods on the stack, the space complexity of DDB is
comparable to its time complexity. Since the Constraint Satisfaction Problem is
NP-hard, both complexities may be exponential. Such backtracking procedures
which use exponential space are often too expensive for practical use [Bak05]. One
possibility to reduce this extraordinary memory waste is to retain only those nogoods
up to a certain size k. This approach is called k-order learning [Dec90] and uses
only polynomial space, but may introduce thrashing again because of the limited
set of nogoods that can be stored.

Dynamic Backtracking (DyBT) by Ginsberg [Gin93] is an algorithm which out-
performs all of the previously discussed approaches since it removes thrashing com-
pletely without excessive waste of memory. Similar to SBJ and DDB, this algorithm
immediately moves to a point which conflicts with the latest assignment in case of a
conflict. DyBT neither forgets intermediate values, nor is it memory-intensive since
it does not rely on a stack. It is an iterative algorithm that stores a set of so-called
culprits which represent forbidden assignments. DyBT does not only retain the
chosen value for a contract C, but also the culprit set of C. If the instantiation
of a component for a contract fails, the algorithm can easily decide which of the
formerly configured contracts conflict with this contract, and directly jump back to
them. Proceeding like this, DyBT achieves to produce only polynomial space over-
head [Bak05]. However, DyBT changes the order of contracts to resolve conflicts.
This is not an option in our problem of tree-based application configuration since
parent-child relationships and differences in resource consumption are encoded in
the order of contracts. This order needs to be preserved to ensure useful config-
urations. So, DyBT cannot be used for the configuration of tree-based Pervasive
Applications.

Our algorithm Direct Backtracking, as discussed in Section 4.2, proceeds similar
to DyBT in general, but in addition, it also adapts the adherent subtree of a com-



3.2. Overview of Service Composition Frameworks 53

ponent during an adaptation process. Thus, Direct Backtracking does not need to
perform any changes in the order of components. Moreover, DBT provides two ad-
vanced mechanisms to reduce the number of adaptations and render the remaining
adaptations more efficiently.

3.2. Overview of Service Composition Frameworks

Projects for composition of services and applications in Pervasive Computing can
be classified according to Christian Becker [Bec04] along the two axes scenario sup-
port – either with or without infrastructure support – and level of composition –
either automatically by the system or manually by the application programmer or
application user. This leads to the four classes shown in Figure 3.2. As also shown
in the figure, various projects have been presented for each of these classes. The
figure shows that the scope of this thesis covers automated composition both in
infrastructure-less and infrastructure-based scenarios, i.e. two of the introduced
system classes, giving our system an advance over most of the related projects.

In
fr

as
tr

uc
tu

re
-

le
ss

 s
ce

na
rio

s 
(A

d 
H

oc
 

En
vi

ro
nm

en
ts

)

 Automatic Composition
 (System-level)

   Manual Composition
    (Application-level)

   
In

fr
as

tr
uc

tu
re

-
ba

se
d 

sc
en

ar
io

s
(S

m
ar

t 
En

vi
ro

nm
en

ts
)

Aura, 
Mobile Gaia,

PCOM/BASE, 
RUNES, 
Weaves,
Pebbles

P2PComp,
Speakeasy, 
one.world

Gaia,
Olympus,
Project 

Oxygen,
BEACH

Matilda's Smart 
House, 

Gator Tech, 
iRoom,

MEDUSA,
CAMP, Pervasive 

Collaboration

M
ob

iG
o

Fo
cu

s 
of

 th
is

 th
es

is

iC
A

P,
 O

S
C

AR

Figure 3.2.: Classification of related projects in service and application composition

In the following, we first discuss the most related systems for infrastructure-based
environments, beginning with the projects Gaia, Olympus and Oxygen that pro-
vide automated composition, and then switching to systems that provide manual
composition, namely Matilda’s Smart House, Gator Tech and iRoom.

Then, we switch to systems for infrastructure-less Ad Hoc scenarios, again be-
ginning with systems that perform automated composition, which are Aura, Mobile



54 3. Related Work

Gaia, and the previous version of the systems PCOM and BASE at time the works
for this thesis started. Finally, we discuss the systems P2PComp, Speakeasy and
one.world that perform manual composition.

Further pervasive service composition projects which are included in the classifi-
cation, but are not described in detail here are the following:

• The BEACH [Tan01] project provides a middleware system that supports
automated composition in infrastructure-based scenarios, without supporting
Ad Hoc scenarios.

• The projects RUNES [CCG+07], Weaves [OGT+99] and Pebbles [Sai03] also
supply automated composition, but they rely on infrastructure-less Ad Hoc
scenarios and lack efficiency in heterogeneous scenarios.

• MobiGo [SR07] supports both infrastructure-less and infrastructure-based sce-
narios, but puts its focus rather on service migration and virtualization. Fur-
thermore, it defines only a fixed set of environments called ”spaces”, while we
dynamically adapt to environments with various degrees of heterogeneity.

• MEDUSA [DGIR11] and Pervasive Collaboration [PWR+09] rely on end-user
composition in infrastructure-based scenarios, thus not providing the aspired
automatic composition.

• CAMP [THA04], iCAP [DSSK06] and OSCAR [NES08] even rely on end-user
programming, which contradicts the paradigm of pervasiveness. While iCAP
and OSCAR do not pose any requirements on an existing infrastructure and
support both infrastructure-based and infrastructure-less scenarios, CAMP
relies on infrastructure-based Smart Home environments.

We refer the interested reader to the respective references for further details con-
cerning these systems.

3.2.1. Service Composition in Infrastructure-Based
Environments

Gaia [RHC+02] is a project which provides a Corba [Vin97]-based middleware
for resource-rich environments, Gaia OS. It supports developers by providing ser-
vices for the development of user-centric, resource-aware, multi-device and context-
sensitive mobile distributed applications. Gaia represents a highly integrated en-
vironment that supplies runtime adaptation and supports various kinds of devices,
such as audio devices, video cameras, or even fingerprint sensors. The system is
transparent to the user, but yet regards security aspects. Gaia distinguishes be-
tween two kinds of spaces: physical spaces and active spaces. A physical space (Fig-
ure 3.3a) is a geographic region with limited and well defined physical boundaries,
containing physical objects, heterogeneous networked devices, and users performing
a range of activities. Contrary to this, an active space (Figure 3.3b) is a phys-
ical space coordinated by a responsive context-based software infrastructure that
enhances the ability of mobile users to interact and configure their physical and



3.2. Overview of Service Composition Frameworks 55

Figure 3.3.: a) Physical spaces and b) active spaces in Gaia [RHC+02] and Olym-
pus [RCAM+05]

digital environment seamlessly. A basic requirement of active spaces is to support
the development and execution of user-centric mobile applications.

For environments with a higher degree of dynamics, the developers of Gaia pre-
sented a new high-level programming model named Olympus [RCAM+05]. Olym-
pus uses semantic descriptions and ontological hierarchies to automate the mapping
process and specify active spaces at an abstract, high level. Therefore, Olympus
comes with an associated framework which takes care of resolving virtual entities
into actual active space entities. This resolution is based on constraints that are
specified by the developer, the resources available in the current space, space-level
policies and the space’s current context. Furthermore, Olympus’ framework uses a
utility model to find the most suitable entity that is available in a space to perform
a specific task.

While Gaia and Olympus support stationary as well as mobile devices, they are
however not applicable in infrastructure-less Ad Hoc environments, as they rely on
specific system infrastructure that is strictly required.

The Oxygen project at the Massachusetts Institute of Technology (MIT) pro-
poses a programming paradigm called goal-oriented programming [Sai03]. In Oxy-
gen, goals represent user requirements that have to be met by the system. However,
contrary to procedure calls, goals do not provide an implementation, but rather may
have various alternative implementations that are selectable at runtime, called tech-
niques. Goals are satisfied by dynamically assembling a set of generic components,
so-called pebbles, to implement the high-level function that is encoded by the goal.
Pebbles represent lightweight, policy-neutral distributed components, conforming
to a standardized API whose abstraction layers – the planning layer covering the
goals, the abstraction layer which represents the composites, and the component
layer with the pebbles – are shown in Figure 3.4. Every pebble typically imple-
ments a single function. Pebbles are designed to be standalone components with
well-defined, explicit ports of communication with other components. By focussing
on a single operation, pebbles are easily reusable in many different applications.



56 3. Related Work

Pebble1

Planning Layer: 
Goals

Abstraction: 
Composites

Component Layer: 
Pebbles ...

Pebble3

Pebble2 Pebblen

Figure 3.4.: O2S [PPS+08] abstraction layers with Pebbles [Sai03] component API

As a part of the Oxygen project, the system software O2S [PPS+08] has been
developed for highly dynamic environments. O2S represents an indirect specification
via the above mentioned goals to refrain from specifying a single configuration.
It provides an extensible mechanism to manage users’ system runtime decisions
and scan the vicinity for techniques that satisfy the user’s goals. O2S enables a
model in which an application programmer specifies the behavior of an adaptive
application as a set of open-ended decision points. The respective system allows
hierarchical decomposition of applications through technique-based sub-goals and
provides a framework for declaring dependencies between sub-goals to programmers.
By technique-based goal resolution, O2S performs a hierarchical decomposition of
goals down to the technique-level. Same as the projects mentioned before, the
Oxygen system requires infrastructure support.

Another project which depends on infrastructure devices is Matilda’s Smart
House [LNH03] which focuses on Pervasive Healthcare support. This multidisci-
plinary project at the University of Florida explores the use of emerging Smart
Phones and other wireless technologies to create a smarter environment that allows
elder people with disabilities to monitor, interact with, and control their surround-
ings. The system creates a lucent environment for users via mobile sensors and end-
user devices. Matilda represents a research robot with an onboard computer and a
vest fitted with location sensors used for indoor location tracking research. Matilda’s
Smart House uses the Open Services Gateway initiative (OSGi) framework [MK01]
as an extensible software infrastructure that can adapt to environmental changes
such as introducing and integrating new devices and services. This project also
supports remote monitoring and administration by family members and caregivers.

The OSGi Service Platform is an execution environment for remotely deployed
services that provides added services to the Gateway Operator which combines and
verifies services received from service providers, and delivers them to the customer.
OSGi provides platform independence, application independence, multiple service
support, security, simplicity and multiple network technology support. OSGi’s ser-
vice platform provides abstractions allowing a multitude of different communication



3.2. Overview of Service Composition Frameworks 57

technologies. Figure 3.5 illustrates the Service Platform framework. The Execution
Environment is the Java runtime environment, building on the Operating System
and the Hardware. The Modules layer represents a class loading model that is based
on Java, but with added modularization. The Life Cycle layer allows bundles to be
dynamically installed, started, stopped, updated, and uninstalled. The Service Reg-
istry layer controls the services and allows for a cooperation model between bundles.
The Services layer maintains services grouped by bundles, and provides function-
ality required by the user. Finally, the Security layer provides basic application
security and spans across all upper layers.

Figure 3.5.: The OSGi [MK01] Service platform framework, used within Matilda’s
Smart House [LNH03] and Gator Tech [HMEZ+05]

After creating Matilda’s Smart House, researchers from the University of Florida
realized that the outcome of this project resulted in some impressive demonstrations,
but not something people could actually live in. Thus, they designed the second-
generation Gator Tech Smart House [HMEZ+05] to outlive existing technologies
and be open for new applications that researchers might develop in the future. The
Gator Tech Smart House represents a new programmable space that consists of 17
”hot spots” that can sense specific contexts and the house’s residents within an
environment. The house’s ”hot spots” enable mappings between the physical world
and remote monitoring and intervention services.

The iRoom project [JFW02] aims at an increased user experience of distributed
visualization, as it focuses on integrating high-resolution displays into application
configuration. iRoom originates from the Interactive Workspaces project at Stan-
ford University. The main component of this project is a software infrastructure
called interactive Room Operating System (iROS) that provides services for the im-
plementation of distributed applications by the use of infrastructure devices. iRoom
supports the automatic adaptation of graphical user interfaces depending on the
available devices, e.g., PDAs or laptops.

Figure 3.6 shows iROS’ component structure. iROS has three main subsystems
that are designed to address the three user modalities of moving data, moving con-
trol, and dynamic application coordination: The Event Heap stores and forwards



58 3. Related Work

Figure 3.6.: iROS [JFW02] component structure

messages called events. Each event is a collection of name-type-value fields. It pro-
vides a central repository to which all applications in an interactive workspace can
post events. The Data Heap facilitates data movement by allowing any application
to place data into a store associated with the local environment. The data is stored
with an arbitrary number of attributes that characterize it. The iCrafter system
provides a system for service advertisement and invocation, along with a user inter-
face generator for services. iCrafter services are similar to those provided by systems
such as Jini [ASW+99], except that the invocation happens through the Event Heap.

Summing up this paragraph, it became obvious that all of the systems and projects
discussed here are capable of strongly supporting users in resource-rich, heteroge-
neous environments. However, due to their strictly required stationary infrastruc-
ture support, these systems lack the flexibility for their use in Ad Hoc environments,
which is one of the main goals of this work.

3.2.2. Service Composition in Infrastructure-Less Ad Hoc
Environments

The project Aura [SG02] provides a highly integrated environment for Ad Hoc per-
vasive computing that consists of various modules. Aura features an architecture
where user tasks become first class entities in such a way that user proxies, or Auras,
use models of user tasks to set up, monitor and adapt computing environments
proactively. Aura’s architectural framework represents the central component of
Project Aura, the campus-wide ubiquitous computing effort at the Carnegie Mellon
University in Pittsburgh. Aura enables mobile users to make the most of pervasive
computing environments, while shielding those users from managing heterogeneity
and dynamic variability of capabilities and resources. This is achieved by three
key features: Firstly, user tasks are represented explicitly and autonomously from a
specific environment. Secondly, user tasks are represented as coalitions of abstract
services. Thirdly, environments are equipped to self-monitor and re-negotiate task
support in the presence of runtime variation of capabilities and resources. Besides
mobile devices such as laptops, Gaia seamlessly integrates existing infrastructure to
support users in their daily work. Therefore, a context observer recognizes changes
in the current user context and reports them to the task manager which exploits



3.2. Overview of Service Composition Frameworks 59

this information to adapt the system to the changed conditions. Figure 3.7 shows
an abstract view of Aura’s architectural framework. The Task Manager (Prism)
encapsulates the concept of a personal aura. It aims to minimize user distractions
in the face of four kinds of changes: environmental changes, task changes, context
changes, and user mobility. The major idea behind Prism is to provide platform
independence for user task descriptions. Service Suppliers provide the abstract ser-
vices that tasks are composed of. The Context Observer provides information about
the physical context and reports events in the physical context back to Prism and
the Environment Manager. Finally, the Environment Manager component repre-
sents a gateway to the environment: it is aware of the available suppliers, and where
their services can be deployed. It also encapsulates the mechanisms for distributed
file access.

Figure 3.7.: Abstract architectural framework of Aura [SG02]

More recent works within Project Aura focus on the access to people’s context
and location information [JS03, Hen05] or the dynamic configuration and task-based
adaptation of resource-aware services [PSGS04, SPG+06].

Mobile Gaia [CAMCM05] is a successor of Gaia and, like the above discussed
project Aura, represents a middleware for Ad Hoc Pervasive Computing environ-
ments. It is a service-based middleware that integrates resources of various devices.
Mobile Gaia manages several functions such as forming and maintaining device
collections and sharing resources among devices, and it enables seamless service in-
teractions. It also provides an application framework to develop applications for the
device collection. The application framework decomposes the whole application into
smaller components that can run on different devices in this collection. Mobile Gaia
considers pervasive environments as a cluster of personal devices that can commu-
nicate and share resources among each other. This cluster is referred to as personal
active space and has a coordinator device and zero or more client devices.

Mobile Gaia is composed of a set of core services that manage the device clus-
ter. These services enable the devices in the cluster to share resources and data
seamlessly. Figure 3.8 shows Mobile Gaia’s architecture. The core services for com-
munication, component management, service development and several services, e.g.,
for discovery or security, make up the Mobile Gaia Kernel. On top of the kernel is
Mobile Gaia’s Application Framework which provides automated patterns for multi-



60 3. Related Work

Figure 3.8.: Mobile Gaia architecture [CAMCM05]

Application Manager

Assembler
Container

Asynchronous 
Backtracking
Assembler

Greedy 
Distributed
Assembler

Plug-in Manager & Plug-ins

Device Registry Service Registry

Invocation Broker

Device Capability Layer (Platform)

Greedy 
Centralized
Assembler

PC
O
M

B
A
SE M

ic
ro

B
ro

ke
r

Figure 3.9.: Initial layered architecture of BASE [BSGR03] and PCOM [BHSR04]
with developed configuration assemblers

device support, runtime adaptation, mobility, or context-awareness. Moreover, the
application framework facilitates the creation and management of distributed appli-
cations and their components.

The system PCOM [BHSR04] which we rely on for the works in this thesis
represents another system that was created for the use in peer-to-peer based Ad Hoc
environments. PCOM relies on the BASE Micro-Broker [BSGR03] to provide
automatic adaptation of protocols on the communication layer. Figure 3.9 gives an
overview of the initial PCOM/BASE system architecture at time the research for
this thesis started.

The BASE Micro-Broker was developed to support automatic configuration and
adaptation of communication protocols at runtime. This enables a very stable and
flexible communication platform. BASE provides distribution-independent access
to the offered services and decouples the application from the underlying commu-
nication protocols. The main component of BASE is the invocation broker which
delegates method calls to the corresponding services on the mobile devices and,



3.2. Overview of Service Composition Frameworks 61

thus, realizes BASE’s core functionality. Furthermore, BASE manages the devices
which can currently be reached through its device registry and the services that are
available on a device through its service registry.

The automatic configuration of the supported protocols is possible by the plug-in
manager, as the protocols are outsourced in plug-ins which represent the entities
that are capable of receiving invocation. Plug-ins are loaded and configured at
runtime. Typical representations of plug-ins are transport protocols, interoperability
protocols, or service discovery protocols. The plug-in concept allows the BASE
micro-broker to support a wide spectrum of end-user devices, reaching from simple
micro controllers to mobile phones, standard desktop PCs or even servers. The only
requirement a device has to meet is the presence of a JVM [LY99] that supports the
Connected Limited Device Configuration version (CLDC, [Sun03]) profile. Plug-ins
typically involve interaction with the underlying operating system or directly with
the hardware to offer access to a device capability or transport. The device capability
layer as BASE’s lowest layer represents the platform of a device with its supported
hardware and software, e.g., a WLAN antenna, a GPS sensor, or an XML library.

Since BASE does not offer adaptation support at higher levels, the component
middleware PCOM was developed to provide a runtime environment for distributed
applications. PCOM enables automatic runtime configuration and adaptation at
application level without user intervention. In PCOM, application components are
executed within a container that provides an interface to the PCOM middleware.
Moreover, a PCOM container offers and manages basic services for the components.
Thus, containers act as a distribution execution environment for components. They
are implemented as a single service on top of BASE. The automatic configuration
of components is performed by the so-called assemblers which enable access to com-
ponents prior to their instantiation and, thus, decouple the configuration processes
from the lifecycle management of the components. The lifecycle management of
applications and components is realized by the application manager that enables to
start, stop or configure distributed applications. Therefore, it uses the containers
and assemblers.

Initially, PCOM was designed to provide system support in spontaneous Ad Hoc
scenarios. Therefore, a configuration approach based on Distributed Constraint
satisfaction [YDIK92] was presented [HBR05]. This approach features an algorithm
which is based on Asynchronous Backtracking [YDIK98]. To avoid that specific
devices have to be present in environments with strict resource constraints, this
algorithm configures applications in a completely decentralized manner.

After the development of this initial configuration approach, an algorithm was
developed which enables the re-configuration of running applications that may be
needed due to device failures or mobility of users [HHS+07]. In this work, the com-
ponent model is modified so that fully automatic adaptation is possible. Moreover, a
simple, but yet powerful cost model is presented to capture the complexity of specific
adaptations. Additionally, an online optimization heuristic is discussed that extends
the distributed configuration algorithm [HBR05] in a way that it is able to switch to
a configuration with low costs whenever the current application configuration needs
to be adapted.



62 3. Related Work

In a subsequent work [HHSB07], the PCOM container was extended in a way that
it enables the support of exchangeable configuration algorithms to optimize the con-
figuration processes in environments where additional infrastructure devices may be
available. Therefore, two non-complete algorithm which select resources in a greedy
manner were presented: a completely decentralized one called Greedy Distributed
Assembler, and a completely centralized one called Greedy Centralized Assembler.
In the evaluations, the authors could show that this new architecture enables signif-
icant performance optimizations by providing pluggable configuration algorithms.
However, an automatic switching between different configuration approaches is not
provided.

Most recent works on PCOM and BASE cover the development of a dynamic
conflict management system (COMITY, [TSB07]) that detects and resolves con-
flicts according to the user’s preferences [TSB09], the context-based coordination of
resources in multi-application environments [Maj10, MSS+10], and the introduction
of modular plug-ins into BASE to increase flexibility and code re-use via efficient
runtime composition of plug-ins [HWS+10]. However, none of these works cover an
efficient exploitation of scenario heterogeneity or the re-use of data about historic
configuration processes, which we focus on in this thesis.

Figure 3.10.: Ports concept of P2PComp [FHMO04]

P2PComp [FHMO04] is a project to provide context-aware mobile devices by a
Peer-to-Peer (P2P) pervasive computing middleware. P2PComp’s lightweight soft-
ware component model addresses the development needs of peer-based mobile appli-
cations. It provides an abstract, flexible, and high-level communication mechanism
among components via a ports concept that is displayed in Figure 3.10 and consists
of three different types of ports: Access Ports represent communication endpoints
of a communication channel between two components and abstracts from the next-
lower protocol layer. Single peers can supply services via Provide Ports as well as
consume them via Uses Ports. Moreover, services can migrate between containers,
and services are ranked to support Quality of Service (QoS) choices. P2PComp’s
lightweight container realization leverages the OSGi platform and can utilize various
P2P communication mechanisms such as JXTA [Gon01].

Speakeasy [ENS+02, NIE+02] is an Ad Hoc peer-to-peer framework that offers
seamless flexibility in terms of discovery protocols, network usage, and data trans-
port. In the Speakeasy framework, any entity that can be accessed over a network
is cast as a component. Components are discrete elements of functionality that may



3.2. Overview of Service Composition Frameworks 63

Browser 
Application

File System Projector

Session
Object

Session
Object

Event
notifications

Controller

Browser Application
displays Controller

Event
registration

Session
Object

1

2

Figure 3.11.: Typical proceeding in a Speakeasy application [NIE+02]

be interconnected with other components or used by applications. Components may
represent devices such as printers or projectors, services such as search engines or
file servers, or information such as files and images. Applications engage in a dis-
covery process to find components ”around” them in the network. These may be
components that are running locally (that is, on the same machine as the applica-
tion itself), on nearby machines (potentially discovered using some proximity- based
networking technology such as Bluetooth), on remote intranets or the Internet itself.
Speakeasy applications do not use a fixed set of discovery protocols. Instead, ap-
plications dynamically adopt new discovery protocols as their underlying networks
change. Likewise, Speakeasy applications do not depend on fixed data exchange
protocols or data types. Instead, they acquire new behaviour as they interact with
the components around them. Speakeasy applications use these interfaces to access
component functionality. Because the set of interfaces is fixed, any new component
can be used by any existing application that understands the interfaces.

Figure 3.11 shows an exemplary Speakeasy application where a user controls a
projector for showing contents on the projector’s screen. In a first step, the Session
Object of the projector notifies the session objects of the other present components
(file system and browser application) that may be accessed using a controller. In the
second step, the browser application registers an event at the projector that enables
the user to locally access the controller of the projector.

Speakeasy provides a platform for extensible peer-to-peer computing that can be
applied to a number of domains where flexibility is paramount, including Pervasive
Computing and collaboration. Still, the system itself is not architected exclusively
for collaboration, but can be considered as a good framework for building collabo-
rative applications. In Speakeasy applications, the user is responsible for choosing
the components needed for configuration.

The one.world [Gri04] system is an architecture that provides an integrated and
comprehensive framework for building pervasive applications. It targets applications
that automatically adapt to highly dynamic computing environments, and it includes
services that make it easier for developers to manage constant changes. One.world
puts the responsibility of application configuration and adaptation on the application
developer through providing a set of APIs and tools to manage this task. Figure 3.12
gives an overview of one.world’s system architecture.



64 3. Related Work

Applications

Libraries System Utilities

System Services (Migration, Discovery, 
Unified I/O, Checkpointing, Remote Events, Query Engine)

Foundation Services 
(Virtual Machine, Tuples, Asynchronous Events, Environments)

User
Space

Kernel
Space

Figure 3.12.: System architecture of one.world [Gri04]

To overcome the limitations of distributed systems, one.world identifies three re-
quirements to provide system support for pervasive applications: Firstly, system
support must embrace contextual changes, not hide them from the applications.
Secondly, system support must encourage Ad Hoc composition and not assume a
static computing environment with just a few interactions. Thirdly, system support
must facilitate sharing between applications and between devices.

One.world’s architecture is centered on meeting these three requirements. It em-
ploys a classic user/kernel split: Foundation and system services like discovery,
migration, or unified I/O run in the kernel, while applications, libraries, and system
utilities run in user space. One.world’s foundation services provide the basis for the
architecture’s system services, which in turn serve as common building blocks for
pervasive applications. The four foundation services are a virtual machine to ensure
that applications and devices are composable, tuples which define a common model
for all data to simplify data sharing, asynchronous events for all communication
concerning changes in the runtime context, and environments that host running
applications and isolate them one from another.

3.3. Clustering Frameworks

When introducing our approach for adapting the distribution of automatic appli-
cation configuration in Section 4.3, we will present a clustering framework to elect
the most powerful device as cluster head, being responsible for centralized configu-
ration calculations. Moreover, for our hybrid configuration scheme, we will extend
this framework to support multiple cluster heads in strongly heterogeneous environ-
ments and provide a balanced configuration load among the cluster heads. Cluster-
ing schemes that try to achieve a balanced load among several nodes have widely
been used in different research areas for many years. Here, we present the most
related approaches. Figure 3.13 gives an overview of the discussed schemes in the
various areas.

The election of specific nodes to become a coordinator for a group of nodes via
clustering is a common subject in the research area of Mobile Ad Hoc Networks
(MANETs) [YC05]. Many of these related approaches also aim at balancing the load
among nodes. Schemes like the Weighted Clustering Algorithm (WCA, [CDT02]),



3.3. Clustering Frameworks 65

Mobile Ad Hoc 
Networks

Multicomputer
Operating Systems Solaris MC, MOSIX, GLUnix, ...

Client-based WC, DNS-based WC, 
dispatcher-based WC, server-based WC

GRACE, MinEX, DRUM, ...

Grid
Computing

Web
Clustering

WCA, DEECA, DLBC, AMC, ...

Figure 3.13.: Load-balanced clustering approaches in different research areas

the Dynamic Energy Efficient Clustering Algorithm (DEECA, [SMA08]) or Degree-
Load-Balancing Clustering (DLBC, [AP00]) balance the load in infrastructure-less
scenarios to extend the overall network lifetime. Thus, these schemes equally dis-
tribute the load among all nodes. In addition, schemes like Adaptive Multihop
Clustering (AMC, [OIK03]) focus on highly dynamic mobile devices and multi-hop
connections. Thus, the merging and split-up of clusters are common actions, yield-
ing low cluster stability. In contrast, we only want to balance the load between the
subset of strong infrastructure devices to minimize the (re-)configuration latencies,
with as few re-clustering processes as possible. As this infrastructure is typically
continuously available, the respective subset of strong devices is rather static.

In some approaches for MANETs, clustering is often used to save the energy of
mobile and battery-constrained nodes. This is achieved by determining clusters such
that cluster members can be deactivated to save energy. Typical energy-efficient
schemes are GAF [XHE01], Span [CJBM02], or SANDMAN [Sch07], where the
latter especially focuses on Pervasive Computing environments. These approaches
are usually used for routing and try to minimize the influence of deactivating nodes
to the network’s connectivity. However, the respective clustering schemes strictly
focus on energy-efficiency, which differs from our goal of minimizing the latencies of
configuration processes by exploiting the scenario heterogeneity.

In Multicomputer Operating Systems [BK87], load-balancing approaches have
been introduced to achieve dynamic work distribution and load sharing in high per-
formance computing, where some form of remote execution and process migration
is used. Some of the proposed systems are Solaris MC [KBM+96], MOSIX [BL98],
or GLUnix [GPR+98]. Like the schemes that were proposed for MANETs, the
approaches discussed here have goals which are completely different to ours.

In the research area of Web Clusters, scheduling algorithms like Dynamic Weight-
ing Scheduling (DWS, [QCH08]) try to balance the load distribution on the servers
to increase the loading capacity of the cluster [CICY99]. The respective cluster-
ing approaches can be classified whether they are client-based (e.g., [BBM+97]),
DNS-based (e.g., [CCY99]), dispatcher-based (e.g., [HGKM98]), or server-based (e.g.,
[BCLM99]). Furthermore, many balanced-load clustering schemes have been devel-
oped in the research area of grid computing, as grid computing environments repre-
sents highly heterogeneous, dynamic and shared environments and, thus, widely dif-



66 3. Related Work

fer from most traditional distributed or parallel systems. Exemplary projects which
provide load-balancing clustering schemes for grid computing are GRACE [BAG01],
MinEX [DHB02], or DRUM [Fai05]. A broader survey is given by Li and Lan [LL05].
However, the mentioned schemes for web clusters or grid computing do not consider
aspects like mobility or node failures. Hence, they do not provide the re-clustering
strategies needed here and are not suited to solve our problem of balancing the
configuration load between the strong devices.

3.4. Re-Utilization of Previous Configurations

Most of the systems discussed in Sections 3.2 do not provide concepts for the re-use
of previous configuration results, so we only discuss those systems here which supply
the respective functionality.

The re-utilization approach has already been introduced in the project OSCAR
[NES08], which deals with applications for distributed media device control. OSCAR
builds on the Speakeasy system [NIE+02] and provides flexible and generic control
of services and devices in home media networks. OSCAR represents an end-user
composition tool which provides flexible and generic control of services and devices
for home media networks that builds upon user experience goals. These goals are
extended by allowing the construction of reusable compositions for common tasks.
In OSCAR, it is supposed that most users will find regular patterns of connections
that they want to re-use on a regular basis. OSCAR provides a setup concept.
Setups describe how components are to be found, selected, and connected together
in order to carry out a routine activity. Each setup consists of slots for sources
and destinations. A slot contains a query in order to generate a set of candidate
components. Moreover, each slot includes a selection rule dictating how active
components are selected in case of alternative components at invocation time. While
OSCAR supports the re-use of compositions, it relies on end-user composition, i.e.,
OSCAR does not provide automated configuration by the system as we do, but only
manual composition by the user.

A solution quite similar to OSCAR is ICrafter [PLF+01] from Stanford University.
ICrafter is a sub-system of iROS [JFW02] and represents a framework for services
and their user interfaces in a class of pervasive computing scenarios to allow user in-
teraction with the services in their environment using various input devices. ICrafter
allows the reuse of User Interface (UI) templates across workspaces. Additionally to
manual composition, it also allows automatic generation of UIs, giving ICrafter an
advance over OSCAR. However, as already mentioned in Section 3.2, iROS is only
usable when a specific infrastructure is available, and it only provides automatic
creation of UIs, while the overall service composition has to be done manually.

In the area of home entertainment, universal remotes [OPID06] such as the Log-
itech Harmony [Log13] or Philips Prestigo [Phi10] provide a single point of control
for interacting with multiple devices. Most of these remotes also allow the storage of
specific profiles to easily allow their future re-use. However, these devices are limited
in the way that their initial set up is tedious. Moreover, they cannot adapt to new



3.4. Re-Utilization of Previous Configurations 67

devices without being explicitly told, e.g. by cumbersome user programming on a
PC. Furthermore, the present universal remotes cannot create Ad Hoc connections
among networked services; they can only activate connections among devices that
are already hard-wired together, which restricts their applicability to rather static
scenarios. In contrast, mobile computers can control arbitrary numbers of device
instances [OD07].

The provision of configured sets of services is also a typical issue of Web Services
[ACKM03]. Web Service compositions compose high-level functionalities (e.g., ”Col-
lect sensor data”) by services that have lower-level functionalities. Many schemes
and patterns [YP02, HY04, MF04, PA05] have been proposed to enable reusable
compositions in Web Services. The compositions are reused by applying them to or-
chestrate different component services. However, the mentioned papers and articles
do not present strategies and mechanisms for the automatic provision of a limited
set of high quality compositions in dynamic environments. Lamparter et al. [LAS07]
provide a strategy which automatically selects dynamic service compositions accord-
ing to a quality ranking using ontologies, but they still do not present a replacement
strategy for memory-restricted environments or deal with highly-dynamic pervasive
scenarios.





4
A Hybrid Approach for
Automatic Application
Configuration

With the concepts and algorithms presented here, we want to cover a broad spectrum
of possible pervasive scenarios with various degrees of heterogeneity. Decentralized
approaches (e.g., [FHMO04, HBR05, CAMCM05]) do not pose any requirements
on the scenarios and, thus, are generally usable. However, decentralized configu-
ration may yield inefficient configurations in heterogeneous environments, as these
approaches balance the configuration load among all nodes, but do not exploit the
increased computation resources of specific infrastructure devices. This leads to
increased configuration latencies [SHR08b].

Thus in this chapter, we first present an extensive discussion of our design ratio-
nale in Section 4.1. Subsequently, we present an efficient centralized configuration
algorithm in Section 4.2. Then, we introduce a concept to support various configu-
ration algorithms and allow the automatic switching between them in Section 4.3.
Following in Section 4.4, we present an advanced hybrid configuration approach for
strongly heterogeneous environments. Then, we show in Section 4.5 by evaluation
that our new concepts, mechanisms, and algorithms perform well in realistic sce-
narios. Finally in Section 4.6, we summarize and give a broader discussion on the
achievements made by our contributions.

4.1. Design Rationale

In this section, we describe the rationale for a framework to enable an automatic
adaptation of the degree of decentralization. Moreover, we focus on the support of
a wide spectrum of possible Pervasive Computing scenarios by tailored configura-
tion algorithms. First in Section 4.1.1, we depict the path from supporting only
completely decentralized configuration that involves all present devices towards an



70 4. A Hybrid Approach for Automatic Application Configuration

adaptable degree of (de-)centralization. This adaptable scheme covers centralized
and decentralized schemes as well as hybrid approaches that lie between those two
”extreme” approaches. Then in Section 4.1.2, we discuss clustering schemes as a typ-
ical mechanism to distinguish between different device roles, which is important for
our centralized and hybrid configuration approaches, as they distribute the configu-
ration tasks only among a selected subset S of all devices. Finally in Section 4.1.3,
we argue for the introduction of a pre- configuration process to automatically and
proactively retrieve the relevant configuration information by the devices included
in S.

4.1.1. Towards Hybrid Application Composition

In this section, we first formally introduce the configuration problem. Then, we
sketch the way from decentralized configuration via centralized configuration to a
hybrid approach, providing highest efficiency and best adaptiveness by combining
the beneficial properties of the decentralized approach and the centralized approach.

As mentioned in Section 2.2.1, configuring an application denotes the task of de-
termining a set of components that can be instantiated at the same time. These
components have to provide the functionality required by the application while con-
sidering both structural and resource constraints. The configuration task is resolved
by a configuration algorithm which matches the offered component functionality
with the application requirements for each contract. Whenever the algorithm fails
to find such a component for a contract (e.g., due to lack of resources), an adaptation
process has to be initiated to resolve this conflict.

In our context, the application configuration problem can be mapped to an NP-
complete Distributed Constraint Satisfaction Problem (DCSP), as Handte et al.
have shown [HBR05]. A DCSP is a special case of a Constraint Satisfaction Prob-
lem (CSP) in which the variables are distributed among automated agents. Agents
communicate by sending messages with finite, though random delivering delays.
Generally, a CSP consists of n variables X = {x1, x2, · · · , xn}, whose values are
taken from finite, discrete domains D = {D1, D2, · · · , Dn}, respectively, and a set
of m constraints C = {C1, . . . , Cm} on their values [YDIK98]. A constraint is de-
fined by a predicate. That is, the constraint pk(xk1, · · · , xkj) is a predicate that
is defined on the Cartesian product Dk1 × · · · × Dkj. This predicate is true iff
the value assignment of these variables satisfies this constraint. Solving a CSP is
equivalent to finding an assignment of values x = {x1 ∈ D1, . . . , xn ∈ Dn} to all
variables such that all constraints are satisfied. If we map the components to the dis-
crete domains D, the dependencies between components to the variable set X, and
the resource dependencies to the constraints C, we obtain the following configura-
tion problem statement: The DCSP (D,X,C) consists of n structural dependencies
X = {x1, . . . , xn} and m resource dependencies C = {C1, . . . , Cm} between the
component domains D = {D1, . . . , Dn}. Then, the following equation needs to be
fulfilled to solve the application configuration problem:

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m} : xi ∈ Di ∧ Cj ⊆ Di1 × ...×Dik (4.1)



4.1. Design Rationale 71

The configuration latency comprises the time between the user’s application start
and the availability of the application to the user. This latency includes the delays
for calculating the configuration, distributing the configuration results among the
present devices, and instantiating all determined application components. In this
work, we aim at minimizing the configuration latency to provide a seamless user
experience.

Decentralized configuration which relies on backtracking algorithms from the
research area of Distributed Artificial Intelligence [YDIK98], as discussed in the
previous paragraph, is widely used because of its universal applicability in different
environments, without relying on specific instances or devices to be available. The
decentralized configuration process is shown in Figure 4.1: Configuration begins
when a user wants to start a distributed application on his or her mobile device
(step 1). In the shown example, an application is started on the mobile device with
id 3. Following, the other devices are notified about the requirements that have
to be met to execute the application, and the devices try to cooperatively resolve
all dependencies (step 2). After a valid application composition was found, the
determined component set is transmitted back to device 3 in the third step. In
the example, the devices 1 and 4 provide partial solutions of the application, while
device 2 cannot provide any of the required functionality. Finally in step 4, the
bindings between the components on the devices 1, 3 and 4 that were determined
within the configuration process are instantiated. Now, the successfully configured
application can be executed. The configuration latency represents the sum of the
times which steps 1 to 4 take.

Figure 4.1.: Decentralized configuration process

When a single node fails during configuration, the other devices can notice this
by the communication middleware because of missing messages from this node, and
another node can adopt the part of the configuration of the failed device. Thus, de-
centralized configuration, as shown in Figure 4.1, is still efficiently applicable if some
device fails because it distributes the configuration tasks among various devices. The
decentralized approach is particularly suited for the use in homogeneous scenarios
and shows good scalability in such environments, as it equally distributes the con-
figuration tasks among all devices. However, decentralized configuration introduces
a drawback in heterogeneous environments with additional powerful devices: there,
weak devices may become bottlenecks for decentralized configuration due to their
reduced computation power.



72 4. A Hybrid Approach for Automatic Application Configuration

In order to additionally exploit the increased performance on powerful devices in
heterogeneous environments, we aspire a new approach where the configuration cal-
culation is performed in a completely centralized manner on the most powerful
device in the environment to keep the configuration latencies as small as possible.
In this approach, a particular node has to be found that performs this central-
ized calculation. We suggest to use clustering for this issue and discuss this topic
in more detail soon. As an example for centralized configuration, regard the sce-
nario shown in Figure 4.2a. Here, the desktop PC is significantly more powerful
than every other device, as identified in step 1. This device then needs to collect
configuration-relevant data to create an internal representation of the application
tree that comprises dependencies, components, and incorporated devices with their
available resources before the actual calculation of a valid configuration. Thus, the
cluster members automatically transfer their current resource and component con-
ditions to the selected powerful device in step 2.

1
2

2

2

2

2
id=1

id=2

id=3

id=4
id=5

a)

3

5

5

5

4
id=1

id=2

id=3

id=4id=5

6

6

6

b)

Figure 4.2.: Centralized configuration process: a) Selection of configuration device
and retrieve of resource information, b) Centralized configuration and
distribution of results

Now, when a user wants to start an application, as noted in step 3 of Figure 4.2b,
the most powerful device is notified about this application start by transferring the
application information from the user’s mobile device 5 to device 1. Following in
step 4, device 1 calculates a valid configuration completely locally using a central-
ized configuration algorithm. If the configuration process was successful, device 1
distributes the configuration results amongst the involved devices in step 5. In the
example, device 1 informs devices 2 and 3 about which part of the application tree
they have to provide. Furthermore, device 1 notifies device 5 (as the device where
the application is executed) about all involved components and the devices that host
these components. Finally, the found components are instantiated in step 6 and the
application is successfully executed. This approach aims at reducing the noticeable
configuration latencies in heterogeneous environments since the available additional
computation power is efficiently used and communication is not needed during con-
figuration, as the resource information of each device has already been transmitted
in step 2 (see above). We will present our approach for centralized configuration in
more details in Section 4.2.



4.1. Design Rationale 73

Summing up the centralized approach’s advantages, it reduces the noticeable con-
figuration latencies in heterogeneous environments and does not produce any mes-
sage overhead during configuration. Furthermore, as the resource-weak devices are
not involved in the actual configuration (they only need to communicate their re-
source situation whenever it changes, independent from configuration processes),
their computational burden during configuration is lowered. However, the central-
ized approach also has some general drawbacks: The message overhead before and
after the configuration is increased because of the communication between the clus-
ter head and its cluster members. Moreover, the centralized approach scales quite
bad as it does not perform parallel calculations, but instead puts all computational
burden on one single device. Additionally, the cluster head may represent a poten-
tial single point of failure: if it fails during configuration, another node has to be
elected as cluster head and needs to configure the application again from scratch,
which significantly increases the configuration latency. The biggest drawback, how-
ever, is that centralized configuration is not generally applicable, as it relies on the
permanent availability of one powerful device. However, this cannot be guaranteed
in highly-dynamic Ad Hoc scenarios and induces many re-clustering processes there.

Concerning the degree of distribution in the configuration, the decentralized and
centralized configuration approaches represent the extreme cases: Decentralized con-
figuration distributes the load equally among all devices, thus being perfectly suited
for homogeneous Ad Hoc scenarios where only weak mobile devices are available. As
the opposite extremum, centralized configuration does not distribute the load at all,
but puts the complete configuration calculations on one single device – the one with
most computation power. Because of this, centralized configuration is optimized
for environments with one additional powerful device. Our design rationale for a
hybrid configuration is to provide a tradeoff that partially relies on decentral-
ized and partially relies on centralized configuration. Thus, such a hybrid approach
should combine the best properties of these two configuration approaches: Only the
powerful devices like laptops, servers, or desktop PCs should calculate valid con-
figurations in a cooperative fashion. This reduces the risk of possible bottlenecks
due to the mobile devices’ weak computation power. The weak devices only have
to provide their resource information and receive the results of the configuration
from the powerful devices. This significantly helps to conserve their resources dur-
ing configuration processes. The main goal posed to this configuration approach is
the further reduction of the latencies in the whole spectrum of possible Pervasive
Computing scenarios.

Figure 4.3 sketches the hybrid configuration scheme we aspire. Different to the
previously described approaches, hybrid configuration is neither performed by all
devices (decentralized), nor by one specific device (centralized), but by a selected
subset of all devices, the set of powerful devices. Therefore, the hybrid scheme
initially has to determine the specific devices (step 1), e.g., by the aid of a clustering
scheme (cf. Sections 4.1.2, 4.3.2). Then, each weak device has to be mapped to
exactly one powerful device, which hereby takes the responsibility for configuring
the weak device’s components (step 2). Subsequently, the powerful devices calculate
the configuration for their mapped devices in a decentralized manner, and distribute
the configuration results to their mapped devices, respectively.



74 4. A Hybrid Approach for Automatic Application Configuration

Figure 4.3.: Aspired hybrid configuration process: 1. Selection of configuration de-
vices (Ax), 2. Retrieve of resource information from weak devices (Py)
for hybrid configuration

As shown in Table 4.1.1, which represents our comparison of the properties of
the three discussed configuration approaches, only a hybrid approach is efficiently
applicable both in homogeneous and heterogeneous environments and represents a
tradeoff between pure decentralized configuration on all devices, and pure central-
ized application configuration on a single resource-rich device.

4.1.2. Role Determination using Clustering

As discussed in the last section, centralized and hybrid configuration distinguish
between two different roles in configuration: the one class of the devices, the powerful
devices, are actively calculating configurations, while the second class of the devices,
the weak devices, remain passive during the configuration and only provide their
resource information prior to the configuration. In centralized configuration, there
is obviously only one active configuration device, while hybrid configuration has to
deal with several active configuration devices. Thus, before centralized or hybrid
configuration can take place, one or more dedicated devices have to be identified
which perform the actual configuration and act as coordinators for the configuration
process.

The election of specific devices – also called nodes in our context – to become
coordinators for a group of nodes is a common subject in the research area of Mobile
Ad Hoc Networks (MANETs). This problem is typically solved by the introduction
of clustering schemes which introduce different device roles and form a hierarchy
of disinguished groups of nodes. A lot of schemes for organizing nodes to clusters
exist. Clustering scheme can be classified according to their overall goal, whereas
typical goals of common schemes are to achieve a low maintenance overhead, a
high energy efficiency, or a balanced load among the cluster heads. Furthermore,
clustering schemes either rely on a central server which coordinates the clustering



4.1. Design Rationale 75

Property Distributed Centralized Hybrid
Efficiency in homogeneous

environments High (+) Low (-) High (+)

Efficiency in heterogeneous
environments Low (-) High (+) High (+)

Message overhead before/after
configuration Low (+) High (-) Medium (o)

Message overhead during
configuration High (-) None (+) Medium (o)

Burden of mobile devices High (-) Low (+) Low (+)
Pre-configuration process

possible No (-) Yes (+) Yes (+)

Scalability in target scenario Good (+) Bad (-) Okay (+/o)
Single point of failure No (+) Yes (-) No (+)

Table 4.1.: Comparison of general properties of distributed, centralized and hybrid
application configuration

process, or they are performed in a distributed manner without a central instance.
Yu and Chong [YC05] give a survey on existing approaches and classes of MANET
clustering schemes. Furthermore, we discuss clustering schemes in our Related Work
section 3.3.

A clustering scheme divides the nodes in a MANET into different virtual groups
based on certain rules. Under a cluster structure, mobile nodes are typically as-
signed a different status or function. Generally, most clustering schemes introduce
three different node roles: cluster heads, cluster members, and cluster gateways. A
Cluster Head (CH) represents an exclusive node within a cluster and usually serves
as a local coordinator within its cluster. The cluster head is connected to every
other node within its cluster and is responsible for tasks such as intra-cluster trans-
mission arrangement or data forwarding. In this work, the cluster heads are the only
nodes within a cluster which are responsible for calculating configurations. Thus,
they take the responsibility for selecting the components of the other cluster nodes
within a configuration process. Therefore, it is vital that the cluster heads have
high computation power to enable highly efficient configuration processes. A Cluster
Member (CM) is usually also called an ordinary node and represents a non-cluster
head node without any inter-cluster links. In this work, the cluster members are
represented by the resource-poor devices and are not actively involved in the config-
uration processes. They only have to allow the cluster heads to access their current
resource conditions. Finally, Cluster Gateway (CG)s represent the non-clusterhead
nodes with inter-cluster links, so they can access neighboring clusters and forward
information between clusters. Figure 4.4 shows an exemplary established cluster
structure consisting of three cluster heads with their transmission ranges, and sev-
eral cluster members and cluster gateways.

Cluster gateways are only relevant in environments where some nodes are not
in transmission range to every other node. According to our environment model



76 4. A Hybrid Approach for Automatic Application Configuration

Cluster head

Cluster member

Cluster gateway

Figure 4.4.: Typical cluster structure, as discussed by Yu and Chong [YC05]

presented in Section 2.1.1, we rely on one-hop environments where each device is
directly connected to any other device participating in the application configuration,
so we do not need cluster gateways here.

Two key attributes that designers have to consider when creating a cluster-
ing scheme for environments where the availability of devices dynamically changes
[KDLS08] are the selection criteria for CHs and CMs (also called the initial cluster
formation), and the provision of a repair mechanism in case of changing availability
of nodes (also called the cluster maintenance). The first phase of cluster formation
is accomplished by selecting some nodes as cluster heads that act as coordinators of
the clustering process. Then, a cluster is formed by associating a cluster head with
some of its neighbors that become its cluster members. In this phase, clustering
schemes assume that there are no changes in the environment, i.e., nodes are sta-
tionary, and no new devices appear or available devices disappear. Once the nodes
are partitioned into clusters, the assumption that nodes are stationary is released
and the cluster maintenance organizes the cluster structure in the presence of dy-
namic changes in the environment. Obviously, this may induce re-organization of
the cluster structure, called re-clustering. During re-clustering processes, the net-
work (and, thus, the applications) cannot rely on the cluster organization, making
clustering only a feasible solution if re-organizations are not needed too frequently.
Relying on the user mobility discussed in Section 5.7.2, mobile devices are typically
available for several minutes, while stationary devices have very high availability.
Thus, relying on clustering is practicable in this work.

As we want to maximize efficiency by exploiting the device heterogeneity in Per-
vasive Computing environments, the properties of the available devices have to be
investigated prior to cluster formation to find a suitable set of cluster heads that
represent the configuration devices. This obviously has to be done in a distributed
manner to retain applicability in Ad Hoc environments, so we do not consider cen-
tralized clustering approaches and only focus on distributed clustering schemes here.



4.1. Design Rationale 77

Moreover, as Pervasive Computing environments are typically very dynamic, the
provision of cluster maintenance strategies for the different undesired events that
may appear at system runtime (e.g., the failure of a specific node and the consecu-
tive breakdown of the corresponding configuration entity) require special attention.
Therefore, we will discuss the possible erronous situations that may appear, and pro-
vide solutions to each of these situations when introducing our clustering schemes
in Sections 4.3 and 4.4.

As mentioned before, a lot of schemes for organizing devices to clusters exist
[YC05], focusing on different goals such as finding a connected set of dominat-
ing nodes [WL99], providing low cluster maintenance costs [CWLG97], mobility-
awareness [BKL01], energy-efficiency [RSC02], or load-balancing [OIK03]. However,
we want to provide a clustering scheme in a one-hop environment which satisfies
three main goals: Firstly, the scheme should select the cluster heads in a resource-
aware manner, i.e., only powerful devices are elected as cluster head and actively
involved in configuration processes. Secondly, to avoid bottlenecks in the configu-
ration phase, each weak device has to be mapped to exactly one strong device in a
way that enables a balanced configuration load among the powerful devices. And
thirdly, as clustering causes additional latencies, the provided clustering scheme
should guarantee stable clusters and particularly avoid many reclustering processes.
Relying on computational resources typically yields high cluster stability, as these
resources normally do not change for the short term. So far, none of the previously
presented schemes provide this functionality, so we discuss some convenient basic
schemes here and adapt these schemes correspondingly to satisfy our needs.

Two classical clustering schemes which represent the base for our new scheme
are Lowest ID Clustering (LID, [LG06]) and Highest Connectivity Clustering (HCC,
[GTCT95]). Both schemes rely on unique device IDs, but select the cluster heads
in a different manner: While LID elects those devices which have the lowest ID
within their neighborhood as cluster heads, HCC chooses those devices as cluster
heads which have the highest number of neighbors (also called the highest degree of
connectivity).

1 INPUT: G = (V,E): network, w: weights, N [v]: set of neighors of node v
2 OUTPUT: {Ci}i∈I⊂V : clustering
3 begin
4 i:=0;
5 while V 6= ∅ {
6 i := i + 1;
7 // Pick the node with the lowest ID
8 // among those with maximum weight:
9 v := min{u ∈ V : wu = max{wz : z ∈ V }};

10 Ci := {v} ∪N [v];
11 V := V \ Ci;
12 }
13 end

Listing 4.1: Generalized Clustering Algorithm (GCA) [BCFJ97]



78 4. A Hybrid Approach for Automatic Application Configuration

Both LID and HCC can be generalized by Basagni’s Generalized Clustering Algo-
rithm (GCA, [BCFJ97]), which is shown in Listing 4.1. Here, the network graph G
is represented by nodes V and edges E, representing bidirectional transmission links
between two nodes. GCA assigns each node Vi a cluster weight wi ∈ [0, 1] and then
elects the node with highest cluster weight within its neighborhood as cluster head.
Weight-based algorithms are suited for expressing preferences on which nodes are
better suited to be cluster heads. The generalization of LID and HCC to GCA can
be performed by assigning the cluster weights as reciprocals of the (w.l.o.g. positive)
devices’ IDs idi (in LID), or the degree of connectivity dci (in HCC):

LID: wi =
1

idi
(4.2)

HCC: wi =
1

dci
(4.3)

To allow its use in distributed environments, a clustering framework needs to
rely on a completely distributed clustering scheme to obtain the cluster heads
that act as a coordinator for the cluster members within configuration processes.
The distributed version of the Generalized Clustering Algorithm called Distributed
Mobility-Adaptive Clustering Algorithm (DMAC, [Bas99]) represents such a dis-
tributed scheme. DMAC is executed on each node and enables the initial set up as
well as the maintenance of cluster organizations, since it is able to adapt to changes
in the network topology, e.g., due to mobility of the nodes or node additions and/or
removals.

In DMAC, a node decides its own role, i.e., cluster head or ordinary cluster mem-
ber, solely knowing its current one-hop neighbors. DMAC assumes that a message
sent by a node is received correctly within a finite time by all of its neighbors.
Furthermore, it assumes that each node knows

• its own unique device ID,

• its cluster weight,

• its role (if already selected), and

• the weight and the role of all of it neighbors (which is, in our case, the role of
all nodes).

DMAC is a message-driven algorithm where a generic node v communicates via
two different types of broadcast messages: CH(v) notifies all neighboring devices
that this node obtains the cluster head role, while a join(v, u) message indicates
that this node will be part of the cluster whose cluster head is node u. The DMAC
algorithm is executed at each node in such a way that a node v decides its own role,
i.e., cluster head or cluster member, based on its own weight and the weights of its
neighbors. Initially, only nodes u with the biggest weight in their neighborhood will
broadcast a CH(u) message to all of their direct neighbors to maintain the cluster
head role, and wait for other nodes in the neighborhood to join their cluster. On
receiving such a CH(u) message, a node v decides to join the neighboring cluster
head u′ with biggest weight and, thus, sends a join(v, u’) message. If all of the



4.1. Design Rationale 79

neighbored nodes of v with a higher weight have sent a join message indicating they
have joined another cluster head, then v itself becomes an additional cluster head
and sends a CH(v) message. In the following, v waits until all of its neighbors have
sent a join message and either joined its own cluster, or the cluster of another node.
Then, v exits the algorithm. The cluster formation is finished when all nodes have
exited the algorithm. A more detailed description of the standard DMAC algorithm
is given by Basagni [Bas99].

v1
v0

v3

v2

v4

v5 v6

DMAC, Step 2

Key: Unclustered node Cluster head Cluster member

v1
v0

v3

v2

v4

v5 v6

DMAC, Step 3

v1
w1 = 0.8

v0
w0 = 0.3

v3
w3 = 0.6

v2

w2 = 0.2

v4
w4 = 0.5

v5
w5 = 0.4

v6
w6 = 0.2

Initial situation

v1
v0

v3

v2

v4

v5 v6

DMAC, Step 1

CH message join message

v1
v0

v3

v2

v4

v5 v6

DMAC, Step 4

Figure 4.5.: Exemplary cluster creation with DMAC

As an example, consider the initial situation in Figure 4.5 with seven unclustered
nodes v0 to v6 and the given edges between the nodes representing direct wireless
connectivity. In the first step, nodes v1 and v3 notice they have highest weight
within their neighborhood and, thus, send a CH message. In step 2, the node v0 joins
v1, as v1 has higher weight than v3. Furthermore, v2 and v4 join v3, and the nodes
v0 to v4 finish the DMAC algorithm. Next in step 3, v5 notices that v4 (which has
higher weight) has joined v3. Now, v5 is the node with highest weight within its
neighborhood that is unclustered, and broadcasts a CH message. Finally in step 4,
v6 joins v5, and the cluster structure is completed.

We decided to choose DMAC as general clustering algorithm, as it has been proven
[Bas99] that DMAC

• is correct,

• terminates at each node (i.e., the node having selected its role) after the max-
imum of D + 1 steps in a network with diameter1 D. In our work, this yields
the maximum number of only two steps.

• requires each node to send exactly one message (a CH or a Join message),

• has a low message complexity of O(n) in an environment with n nodes,

• guarantees that each node belongs to exactly one cluster, and

• does not produce clusters with neighboring cluster head.

1The diameter of a network determines the maximum number of hops between two arbitrary
nodes.



80 4. A Hybrid Approach for Automatic Application Configuration

We present the clustering framework we developed to enable the automatic selec-
tion of the cluster head and cluster member roles in Section 4.3.2. This clustering
framework represents the basis for the automatic adaptation of the degree of decen-
tralization in the application configuration. For centralized configuration, it only
introduces one single cluster around the most powerful device. Later in Section 4.4,
we extend the clustering strategy to enable multiple clusters for hybrid configura-
tion with a balanced configuration load among the powerful devices, and we present
cluster maintenance strategies to keep the balanced configuration load even in dy-
namically changing environments.

4.1.3. Introduction of a Pre-Configuration Process

In order to clarify the configuration process and the arising latencies, one needs to
take a closer look on the interactions that take place within a configuration. To show
the differences between decentralized configuration in homogeneous Ad Hoc envi-
ronments and centralized configuration in infrastructure-supported heterogeneous
environments, let us take a look on the interaction model of a typical decentralized
configuration scheme, which is exemplarily shown in Figure 4.6.

Figure 4.6.: Interaction diagram of decentralized configuration



4.1. Design Rationale 81

A configuration process is initiated when the user starts an application on his or
her mobile device. Then, the relevant information about the application, i.e. the
application structure and information about the dependencies that have to be re-
solved, is automatically transmitted to all present devices. The arising latency is
heavily depending on the wireless network and is denoted by Tn (network latency).
In the following, the present devices cooperatively calculate a valid configuration in
a distributed manner, i.e., using the algorithm proposed by Handte et al. [HBR05].
The corresponding latency is called distributed configuration latency, or Tdc. After
the devices have found a valid composition, the initialization of the bindings be-
tween the different components is started, yielding the initialization latency Ti.
Thus, the application configuration process (covering calculations and component
initialization) lasts for Ta,decent = Tdc + Ti. Finally, the complete composition is
transmitted to the user’s device, causing again latency TN as this transmission de-
pends on the wireless network. Now, the application is executed and available to the
user. Consequently, the overall waiting time Tw,decent of a user which covers the time
span between the user’s application start and the can be expressed by the following
equation:

Tw,decent = 2 · Tn + Ta,decent = 2 · Tn + Tdc + Ti (4.4)

(Waiting time of decentralized configuration)

Switching from decentralized to centralized configuration, the corresponding inter-
action model changes, as Figure 4.7 shows. When the user starts an application that
is to be configured in a centralized manner, then at first the most powerful device
has to be found. Subsequently, the cluster around this device needs to be estab-
lished, which takes the additional cluster time Tc. In the next step, the cluster head
requests the resource information of the other devices in order to enable the local
calculation of a composition on the powerful device. The time between the cluster
head’s request and the receipt of all resource information is denoted by the resource
retrieve time Tr. After the weak devices have sent their resource information to
the cluster head, this device calculates a valid composition, without involvement of
the other devices. We denote the respective centralized configuration latency by the
centralized configuration time Tcc. Then, the powerful device sends the configuration
information to the other devices, which initialize the respective component bindings
then. The final step is the same as in the decentralized approach: The assembly
is sent back to the user’s device, and the application is executed. Like before, we
can easily determine the arising waiting time for the user as follows, where Ta,cent
denotes the changed latency for the centralized configuration process:

Tw,cent = 2 · Tn + Ta,cent = 2 · Tn + Tc + Tr + Tcc + Ti (4.5)

(Waiting time of centralized configuration)

The local calculation on the powerful device does not involve message communi-
cation with the other weak devices. Furthermore, it is supposed that the powerful



82 4. A Hybrid Approach for Automatic Application Configuration

device calculates valid compositions faster than the weak devices, due to its signif-
icantly increased computation power, i.e. Tcc < Tdc. However, centralized configu-
ration introduces the times Tc to establish the cluster and Tr to gather the resource
information from the weak devices. So, the centralized configuration is only faster
than the decentralized configuration (i.e., Tw,cent < Tw,decent) if Tc + Tr + Tcc < Tdc.

Figure 4.7.: Interaction diagram of centralized configuration

As the centralized configuration as shown above needs a powerful device to retrieve
resource information (which introduces the additional time Tr), a main focus for
a centralized configuration approach is to increase its efficiency by speeding up
specific parts of the configuration. Therefore, we evaluate the arising latencies from
Figure 4.7 according to their potential for speed ups:

• As the times Tn for transmitting information about the application and found
compositions mainly depend on the bandwidth of the network connection,
reducing these latencies is only possible if the wireless technology is changed,
e.g., from IEEE 802.11b (11 Mbit/s) to 802.11g (54 Mbit/s) or 802.11n (up to
600 Mbit/s). We do not follow this approach here.



4.1. Design Rationale 83

• As the interaction model in Figure 4.7 shows, the times Tc for establishing the
cluster and Tr for retrieving the resource information of the weak devices are
included in the overall latency Tw. However, the powerful device does not need
to wait for the user’s application start to request the resource information, but
may already request this information prior to the configuration, i.e. when
the weak devices come into communication range. The same holds for the
retrieval of the resource information. So, an approach to increase efficiency
of centralized configuration is to accomplish some configuration-relevant tasks
before the user actually starts an application. We follow this approach in Sec-
tion 4.3.5 and call the premature cluster establishment and resource retrieval
a pre-configuration process.

Figure 4.8.: Interaction diagram of centralized configuration with pre-configuration
process

• The time Tcc for the actual configuration depends solely on the centralized
configuration algorithm. Therefore, it is important to have an efficient config-
uration algorithm to be executed on the powerful devices, without involving
thrashing effects or unnecessary subsequent adaptations within a configura-
tion. For this purpose, we present Direct Backtracking as an efficient central-
ized algorithm in Section 4.2.



84 4. A Hybrid Approach for Automatic Application Configuration

• Initializing the bindings between those components which have been deter-
mined as valid components is only depending on the determined composition
and the location of the components among the present devices. Reducing this
binding overhead by finding special configurations that involve many neigh-
boring components on the application tree which are resident on the same
device is left for future work, as Section 7.2.1 will briefly discuss.

So, the main challenge to reduce the overall latencies is to provide a mechanism
that automatically loads the weak devices’ resource information to the powerful
devices, prior to a configuration, as Figure 4.8 shows. This reduces the overall
waiting time to

Tw,preconf = 2 · Tn + Ta,preconf = 2 · Tn + Tcc + Ti (4.6)

(Waiting time of centralized configuration with pre-configuration process)

So, centralized configuration that involves a pre-configuration process is always
faster than centralized configuration without pre-configuration (i.e., Tw,preconf <
Tw,cent) when no configuration information needs to be obtained at configuration
time. Moreover, centralized configuration is also faster than decentralized config-
uration (i.e., Tw,preconf < Tw,decent) if Tcc < Tdc, which is – in compliance with the
discussion we led above – typically the case in heterogeneous environments. To
achieve such an efficient centralized configuration, we will take a closer look on
how to proactively and automatically retrieve remote resource information by the
powerful device in Section 4.3.5.

As introduced above, a hybrid configuration scheme has to combine the advantages
of both decentralized and centralized configuration. Figure 4.9 shows the interaction
diagram of the hybrid approach. As main difference to the centralized scheme, there
are several powerful devices involved in the configuration. Like in centralized con-
figuration, the powerful devices also perform a pre-configuration process, covering
the establishment of several clusters (contrary to the centralized approach where
only one cluster is established), and the retrieval of the resource information of the
mapped weak devices. Furthermore, another difference arises at the configuration
calculation stage, where the powerful devices cooperatively calculate a valid config-
uration. As this configuration is performed in parallel and only on the resource-rich
devices without involvinh the weak devices, the configuration latency Thc of the hy-
brid configuration is supposed to be lower than the configuration latency Tcc of the
centralized configuration.

In consequence, the waiting time Tw,hybrid for an application user when hybrid
configuration with pre-configuration is used can be denoted as follows:

Tw,hybrid = 2 · Tn + Ta,hybrid = 2 · Tn + Thc + Ti (4.7)

(Waiting time of hybrid configuration with pre-configuration process)



4.2. Centralized Application Configuration 85

Figure 4.9.: Interaction diagram of hybrid configuration with pre-configuration
process

Comparing Tw,hybrid to the waiting time Tw,preconf of centralized configuration
with pre-configuration, the hybrid approach is faster iff Thc < Tcc. In our evalua-
tions in Section 4.5.3, we will prove this by comparing the latencies of decentralized
configuration to those of centralized and hybrid configuration with implemented
pre-configuration processes.

4.2. Centralized Application Configuration

In weakly heterogeneous environments with exactly one powerful device, we aspire
to put the complete burden of a configuration to this device which then completely
locally calculates a configuration using a centralized configuration algorithm. To ex-
ecute centralized configuration processes in an efficient manner, we now present an
algorithm called Direct Backtracking (DBT) [SHR08b], which is generally described
in Section 4.2.1. Furthermore, we present two specific mechanisms of the algorithm
to ensure its efficiency in application configuration and adaptation: Proactive back-
tracking avoidance, as described in Section 4.2.2, eliminates most of the adaptation



86 4. A Hybrid Approach for Automatic Application Configuration

processes from the start, while intelligent backtracking (Section 4.2.3) helps to render
the remaining adaptation processes more efficiently. Furthermore, after having per-
formed centralized configuration using Direct Backtracking, the configuration device
distributes the found configuration assembly to those devices whose components are
involved, and to the user’s device where the application was started. Finally, after
creating the bindings between the found components and the respective devices, the
application is successfully executed.

We assume that a single device which performs centralized configuration and
adaptation collects the relevant data beforehand. Therefore, the clustering mech-
anism which we describe in Section 4.3.2 is used. Thus, the configuration device
can create an internal representation of the application tree that comprises depen-
dencies, components, and incorporated devices with their available resources. After
the configuration is complete, the configuration results have to be distributed to the
respective devices whose resources represent components of the configuration.

While we solely focus on the actual centralized configuration calculation here,
we will present a general framework to obtain the required knowledge about the
resources and services as well as distributing the found configurations in a distributed
environment in Section 4.3.

4.2.1. Approach

Like many other backtracking algorithms, DBT proceeds in a depth-first search
manner: It starts with the root of the application tree and descends the contracts
of the tree, from left to right, until it arrives at a leaf contract of the tree. Then,
it tries to find a suitable component for that dependency using contract matching
(i.e., it compares the demand of the parent component to the provision of the child
component), and returns the identified child component to the parent component.
This is performed recursively until DBT either has found a suitable component for
each dependency (i.e., it terminates with a valid configuration), or it could not
find a component for at least one dependency (i.e., it terminates unsuccessfully).
Figure 4.10 shows the depth-first ordered proceeding of DBT and one exemplary
configuration in the application tree shown in Figure 2.2. In the following, we will
show the DBT approach in detail on the basis of this example.

The DBT algorithm only needs to have access to the following information in
order to be executed:

• The complete application tree with the interdependencies between the com-
ponents in terms of contracts, and

• the available resources on the present devices that may provide the required
functionalities to fulfill specific contracts.

The listings in this section illustrate DBT in Java-like pseudo code. DBT is
method-driven and uses, besides several helper methods, six different main meth-
ods which are called within the configuration: start, create, started, stopped,
backtrack, and terminate.



4.2. Centralized Application Configuration 87

1 3 4

5 8

6 7

2

Figure 4.10.: General approach of Direct Backtracking

1 start(Component anchor) {
2 Assembly ass = new Assembly();
3 create(anchor.getChild(0, determOption()), ass);
4 }

Listing 4.2: Initial start method of DBT

The start(anchor) method (Listing 4.2) initiates the configuration process at
the application anchor component, anchor. It creates a new assembly where each
component that is determined within the configuration is added. Then, it calls a
create(cmp, ass) method to resolve the first dependency of the anchor by find-
ing a suitable child component cmp which then is added to the assembly ass. In
this regard, the respective component cmp is determined by the helper method
getChild(i, j), which returns the j-th option of the i-th dependency of the cur-
rent component. Initially, i is set to zero (as we want to resolve the first dependency
of the anchor), and the selection of an option in case of a multi-optional contract
is performed within the helper method determOption which tries to decrease the
number of conflict situations that make a backtracking process inevitable. This fun-
damental mechanism of DBT implemented within determOption is called proactive
backtracking avoidance and is described in detail in Section 4.2.2.

Figure 4.11 shows the start of the configuration process in the exemplary dis-
tributed presentation application. The anchor has instance ID (IID) [0] and is unique
(i.e., there is only one suitable component on the device of the user who started the
application), so the respective component ID (CoID) is [0,0] and the configuration
starts within the start([0, 0]) method. Then, a suitable component option for
the child instance with IID [0][0] is determined within the determOption function.
Let us suppose there is only one component – a hard disk where the presentation
source file is stored – that fulfills the needs of the instance with IID [0][0], so this



88 4. A Hybrid Approach for Automatic Application Configuration

[0]

[0][0] [0][1]

... ... ...

start([0,0])

create([0,0][0,0], ass)

1

2

...

[0][1]

...

Figure 4.11.: Execution of initial start method and subsequent create method

contract is not multi-optional. Thus, the create method is called with parameters
[0,0][0,0] (as CoID) and the current assembly ass, including only the anchor
component so far.

1 create(Component comp, Assembly ass) {
2 if (enoughResourcesAvailableForInstantiation())
3 if (leafReached()) {
4 ass.addComponent(comp);
5 started(comp.getParent(), ass);
6 }
7 else
8 create(comp.getChildComp(0, determOption()), ass);
9 else

10 stopped(comp.getParent(), ass);
11 }

Listing 4.3: create method of DBT

In the next step, the create method, as illustrated in Listing 4.3, is executed by
the algorithm, trying to fulfill the needs of the current contract. If there are enough
resources available to resolve a dependency (checked within the helper method
enoughResourcesAvailableForInstantiation in line 2), two possibilities exist:

1. The component to be started represents an inner node, i.e., no leaf of the
tree. In this case, the create function is called recursively for the first child
contract to instantiate the components on the next lower level of the tree,
thus following the depth-first search approach. In Figure 4.12, the steps 2
and 3 of the algorithm represent this situation: After having found the hard
disk where the source file is stored as suitable component for the instance
with IID [0][0], the configuration is continued with the first (and, in this case,
only) child instance of [0][0], the instance with IID [0][0][0]. Thus, the create

method is called recursively, but this time with a changed IID of [0][0][0] as
first parameter.



4.2. Centralized Application Configuration 89

2. The component to be started represents a leaf of the tree. In this case, the
component is added to the current assembly, and the started method is called
subsequently to indicate this instantiation of a leaf component to its parent
component, which is obtained by comp.getParent. In Figure 4.12, when the
create([0,0][0,0][0,0]) method is called as third step of the algorithm,
a leaf of the tree is reached, and as the found component – the presentation
source file – fits the requirements of the application, the started method
(which we will describe in the following) is called with the parent contract
(with CoID [0,0][0,0] as parameter), indicating the successful configuration of
the respective contract to the parent node.

The started(comp, ass) method, as displayed in Listing 4.4, indicates to the
parent component comp of a contract that its child component (the caller of this
method) was successfully started, and includes the updated assembly ass. Then, the
parent component comp first checks if there are additional unresolved dependencies.
In this case, the parent component tries to resolve the first of these remaining
unresolved dependencies by calling the create method recursively, however this
time with an incremented parameter for the dependency parameter (line 3). If there
are no more unresolved dependencies available for this instance, then the algorithm
proves if it has reached the anchor component. In this case, the configuration is
complete and the terminate method is called with the included assembly ass to
create the bindings between the components. Otherwise, the assembly is extended
by the found component comp, and the started method is called again, with the
parent component (comp.getParent) and the extended assembly as parameters. As
an example for the recursive call of the started method, consider steps 4 and 5 of
the algorithm in Figure 4.12, which indicate that components for the respective
contracts have been found.

1 started(Component comp, Assembly ass) {
2 if (unresolvedDependenciesAvailable()) // resolve next dependency
3 create(comp.getChild(comp.getDependency() + 1, determOption()), ass);
4 else // no unresolved dependencies left
5 if (comp == [0,0]) { // anchor reached?
6 terminate(ass); // terminate successfully with found assembly
7 }
8 else { // go one level up in the tree
9 ass.addComponent(comp);

10 started(comp.getParent(), ass);
11 }
12 }

Listing 4.4: started method of DBT

So far in the exemplary scenario, each dependency could successfully be instanti-
ated, as a suitable component which provides all of the required functionality was
found, respectively. However, in case that not enough resources are available to
instantiate a contract at the moment, then the stopped function displayed in List-
ing 4.5 is called to indicate a resource conflict situation to the parent component. In



90 4. A Hybrid Approach for Automatic Application Configuration

[0][0]

...

create([0,0][0,0], ass)2

[0][0][0]

create([0,0][0,0][0,0], ass)3
started([0,0][0,0], ass)4

...

[0]

...

4

CID: [0,0][0,0][0,0]

CID: [0,0][0,0]

started([0,0], ass)5

Figure 4.12.: Recursive calls of create method, and following recursive calls of
started method

this case, DBT at first calls the helper method alternativeComponentsAvailable

and checks if there are additional components that can potentially resolve this
contract. If alternativeComponentsAvailable resolves to true, then the create

method is called again, with the next component option as parameter. If no further
option exists, a backtrack process has to be initiated. This function at first stops
the adherent subtree of the selected backtracking component instance toStop, then
stops the component toStop itself, and instantiates another component toStart

(which is found by the already discussed helper method determOption and the pre-
viously stopped subtree components). toStop has been determined before within
the helper method findBacktrackContract (line 5) that implements the intelligent
backtracking process which is further described in Section 4.2.3. Afterwards, DBT
re-tries to instantiate the component comp.getOption (line 11) which could not be
instantiated previously.

1 stopped(Component comp) {
2 if (alternativeComponentsAvailable())
3 create(comp.getChild(comp.getDependency(), determOption()));
4 else { // backtrack needed
5 Contract btContract = findBacktrackContract(); // intelligent backtracking
6 if (btContract == null)
7 terminate(null); // terminate unsuccessfully
8 Instance toStop = btContract.getInstance();
9 Component toStart = btContract.determOption();

10 backtrack(toStop, toStart);
11 create(comp.getChild(comp.getDependency(), comp.getOption()), ass);
12 }
13 }

Listing 4.5: stopped method of DBT

As an example, consider the situation illustrated in Figure 4.13a. At first in
steps 6 and 7, the create method is called to resolve the dependencies for the



4.2. Centralized Application Configuration 91

[0][0]

...
[0][0][0]

[0]

...

[0][1]

...

...

[0][1][0]

create([0,0][1,0], ass)6

create([0,0][1,0][0,0], ass)7
stopped([0,0][1,0], ass)8

X(not available)

a)

[0][0]

...
[0][0][0]

[0]

...

[0][1]

...

...

[0][1][0]

create([0,0][1,0][0,1], ass)9
started([0,0][1,0], ass)10

b)

CID: [0,0][1,0][0,0]

CID: [0,0][1,0][0,1]

Figure 4.13.: a) Call of stopped method of DBT due to unavailable component, b)
Subsequent successful selection of alternative component

instances with IIDs [0][1] and [0][1][0]. However, the microphone component (CoID
[0,0][1,0][0,0]) which is initially chosen for instance [0][1][0] is currently not plugged
in and, thus, cannot be used by the application. So, the algorithm calls the stopped
method to notify its parent instance [0][1] that another component has to be found
for this dependency. Next in step 9, shown in Figure 4.13b, DBT tries to instantiate
the alternative headset component with CoID [0,0][1,0][0,1]. As this component is
available, the respective started method is called (step 10).

Here, the call of the stopped method increased the runtime of the algorithm,
but as an alternative component was available, the configuration of this contract
was successful at the second attempt. However, it may also be possible that none
of the alternative components is currently available (lines 4ff. in Listing 4.5). In
this situation, the backtrack (line 10) method is called to resolve this resource
conflict by re-configuring (or adapting) a previously configured contract. Therefore,
the algorithm determines the contract instance toStop that is stopped (line 8) and
chooses an alternative component toStart (line 9) beforehand. After a successful
backtrack, the algorithm re-calls the create method (line 11) to re-instantiate the
component which could previously not be started because of the resource conflict.



92 4. A Hybrid Approach for Automatic Application Configuration

The actual backtrack method is shown in Listing 4.6 and consists of the execution
of the following four helper methods:

• stopSubtreeInstances(toStop): As the adaptation of a contract instance
toStop also requires the adaptation of all of its child contracts (to remain
valid links between the chosen components), the complete subtree instances
are stopped in a first step within this helper method. To minimize the number
of subsequent adaptations, we will discuss an intelligent backtracking process
in Section 4.2.3 which takes the size of the subtree into consideration when
choosing a contract for adaptation.

• stopInstance(toStop): After having stopped all instances of the subtree
from instance toStop on, the instance itself is stopped to make the component
available for the contract where the backtracking process was started.

• startInstance(toStart): The component toStart – which was selected
within the stopped method (cf. Listing 4.5) and represents an alternative
component to the component whose instance was previously stopped within
stopInstance – is instantiated. This guarantees that the functionality previ-
ously provided by the instance toStop is still supplied.

• startSubtreeInstances(toStart): Finally, the subtree instances that have
been stopped within the helper method stopSubtreeInstances need to be
re-instantiated. However, as their parent component has been changed, the
links between the components as well as the CoIDs of the subtree components
need to be adapted.

An example for the backtrack process is given in Section 4.2.3 where the intelligent
backtracking is described.

1 backtrack(Instance toStop, Component toStart) {
2 stopSubtreeInstances(toStop);
3 stopInstance(toStop);
4 startInstance(toStart);
5 startSubtreeInstances(toStart);
6 return;
7 }

Listing 4.6: backtrack method of DBT

In the last step of the algorithm, the terminate(ass) method is executed. Here,
two possibilities exist:

• The provided assembly ass is null. This indicates that a valid configuration
could not be found due to missing resources. In this case, the user is notified
about the configuration failure.

• The provided assembly ass represents the found complete application config-
uration. Then, the devices are notified about the successful configuration by
transmitting the found assembly to them, and creating the bindings between
the determined component instances. After the bindings are established, the
application is successfully configured and can be used.



4.2. Centralized Application Configuration 93

Figure 4.14.: Termination of exemplary application configuration with DBT

1 terminate(Assembly ass) {
2 if (ass != null) { // start application
3 notifyDevices(ass);
4 createInstanceBindings();
5 }
6 else // notify user of failure
7 System.out.println(’’Configuration not successful − missing resources!’’);
8 }

Listing 4.7: Final terminate method of DBT

To finish the configuration of the exemplary application, Figure 4.14 shows the
final steps of the configuration process. Here, we suggest that each of the requested
components was available and, thus, no more stopped and backtrack calls were
needed. The algorithm continues with the instance with IID [0][1][1], where we sup-
pose that the keyboard component (CoID [0,0][1,0][1,1]) is available and is chosen
for instantiation (step 10). Then, the started method for the instances with IIDs
[0][1][1] and [0][1] is called (steps 11 and 12). Finally, the create and started meth-
ods for the right subtree are called (steps 13 to 18), and the algorithm successfully
terminates by calling the terminate method in step 19.

4.2.2. Proactive Backtracking Avoidance

In case a contract for a certain dependency is multi-optional, the selection of a
component has to be made cautiously in order to avoid conflict situations right from



94 4. A Hybrid Approach for Automatic Application Configuration

Index Component ID Available Resources Container ID
0 C0 α0 ci
1 C1 α1 (< α0) cj
2 C2 α1 ck (> cj)

. . . . . . . . . . . .
n− 1 Cn−1 αm (< αm−1) cl

Table 4.2.: Ordered list for specific multi-optional contract with n options

the start and reduce the number of situations in which backtracking is necessary. For
this purpose, Direct Backtracking contains a proactive mechanism which carefully
selects the component option to be instantiated in order to avoid backtracking.

Within multi-optional contracts, options are ordered in a list according to their
resource availability: The component with most available resources has highest pri-
ority. If there exist multiple options with the same number of available resources,
they are additionally ordered according to their container ID, i.e., a component on
a container with a lower ID has higher configuration priority. Table 4.2 shows the
structure of the list which is descendingly ordered by the globally available amounts
αi of the resources and, as a secondary criterion, by the ascending container IDs ci.

1 determOption() {
2 Contract ctc = getCurrentContract();
3 boolean looping = true;
4 int i = 0; // Index of selected component in list
5 while (looping) {
6 comp = option[i];
7 while (comp.consumed >= comp.getContainer().getAvailableResources()) {
8 i++;
9 if (i > list.length)

10 performBacktracking(); // no suitable component found
11 else
12 comp = option[i];
13 }
14 if (freeResources >= comp.consumed)
15 looping = false;
16 else {
17 i++;
18 if (i > list.length)
19 performBacktracking(); // no suitable component found
20 }
21 }
22 return comp;

Listing 4.8: Pseudo-code of DBT’s determOption helper method

Listing 4.8 is a pseudo-code presentation of Direct Backtracking’s Proactive Back-
tracking Avoidance, which decides in favor of a specific component option and tries



4.2. Centralized Application Configuration 95

to proactively avoid backtrackings. As one can see, Direct Backtracking performs
the following steps on the ordered list of options in the given order:

1. Initially, DBT selects the first component option in the list to be instantiated,
i.e., the highest-prior component with most available resources.

2. If the currently selected component consumes more than a defined threshold
of the currently unassigned amount of a resource R, the algorithm scans the
ordered list of options (option[]) for alternatives. Then, the component with
highest priority is selected. This reduces the conflict potential for the contracts
which have not yet been configured.

3. For the currently selected component, DBT verifies that there are enough
global resources remaining (variable freeResources) to fulfill all missing con-
tracts in theory after the initialization of the selected component comp. This
means that there have to exist at least i free components among all devices
with sufficient resources to fulfill the i dependencies of the application that
have not been resolved yet. Otherwise, comp is not instantiated at this
moment, as this would yield a future inevitable backtrack process. In this
case, the algorithm selects the next lower-prior option in the ordered list
and continues with step 2. If no further option is remaining, the intelligent
backtracking process, as described in the following, is performed by calling
performBacktracking().

As an example, consider the situation depicted in Figure 4.15. The figure rep-
resents a part of an application that deals with visual output components. The
component instance with IID [0][0] represents the required Graphical User Inter-
face (GUI) for the user with which he or she can control the output components
for displaying the presentation slides (IID [0][0][0]) and the additional video support
(IID [0][0][1]). As it can be seen in the table within Figure 4.15, there are four dif-
ferent output components available in the environment: a laptop display (device ID
0), a standard PC monitor (device ID 1), and two video projectors (device IDs 2 and
3). Furthermore, let us consider that additional restrictions such as a minimum size
of the display component or a minimum resolution restrict the fulfillment of specific
contracts, leading to the possible options for specific dependencies as depicted in
the figure.

In this situation, Direct Backtracking would initially priorize the component op-
tions as described above. Since there are two video projectors, but only one PC
monitor available, the use of a video projector as component for the instance with
IID [0][0] is priorized over the use of the PC monitor. Thus, DBT creates the video
projector instance for [0][0] and continues with instance [0][0][0]. For this instance,
there are one laptop display and one video projector available. Thus, DBT chooses
according to the container IDs: As the container ID of the laptop is lower than
the container ID of the PC, DBT selects the laptop display as instance for [0][0][0].
In the following, DBT uses the still available PC monitor as component instance
[0][0][0] and does not need to perform any backtrackings here.

Now, regard Figure 4.17 which illustrates the effects of the related Synchronous
Backtracking (SBT) algorithm in the same situation. SBT only uses the container



96 4. A Hybrid Approach for Automatic Application Configuration

Figure 4.15.: Proactive backtracking avoidance: Initial situation

Figure 4.16.: Proactive backtracking avoidance: Proceeding of DBT

IDs and does not priorize over additional criteria. As the container ID of the PC is
lower than the one of the devices where the video projectors are connected to, the
PC monitor is selected as component for the instance with IID [0][0]. Regarding
instance [0][0][0], SBT simply chooses the laptop. However, SBT is not able to
instantiate the PC monitor for instance [0][0][1] now, since this component has
already been used within instance [0][0]. As no alternative component option is
available at the moment, this represents a conflict situation where SBT needs to
perform backtracking: It adapts the next higher- prior instance, which is (due to
the depth-first approach) [0][0][0]. Thus, the laptop display component is stopped,
and one of the video projectors is instantiated. Then, it retries to instantiate the
PC monitor. However, since the PC monitor is still not yet available, another
backtracking is required: SBT adapts instance [0][0] by stopping the PC monitor and
starting the video projector. Then, the PC monitor can be used as instance [0][0][1].
In summary, SBT required two adaptation processes to start the three needed visual
output components, leading to significantly increased latencies compared to DBT
which did not need any adaptation at all. An evaluational comparison of SBT and
DBT is given in Section 4.5.2.



4.2. Centralized Application Configuration 97

Figure 4.17.: Proceeding of SBT requires backtracking

4.2.3. Intelligent Backtracking

Direct Backtracking is able to avoid most backtracking processes by proactive back-
tracking avoidance, which was described above. However, there may still be situa-
tions where none of the possible components for a contract Ctr0 are available and,
thus, backtracking has to be initiated. This means that another contract must be
found whose adaptation yields the availability of the required resource. If there
are several multi-optional contracts that have already been instantiated within the
current configuration process, there is more than just one candidate for an adapta-
tion. In such a case, DBT performs intelligent backtracking by carefully selecting a
contract whose components can be adapted with little overhead.

The general approach of DBT’s intelligent backtracking mechanism is as follows:

1. First, determine all components of Ctr0 which could not be instantiated be-
cause of a missing resource R, and all devices D which host a component that
consumes a specific amount of R.

2. Then, determine the set S of contracts on the devices found in step 1 that have
been configured before by DBT and consume an amount of R on D. Steps 1
and 2 are performed to reduce the number of possible backtracking goals.

3. Subsequently, order the set S of contracts found in step 2 in descending order
according to the amount of R they consume. Due to this specific order, we
aspire a considerable deallocation of resources when backtracking is performed
in step 4.

4. Adapt the first contract in S, i.e., perform backtracking.

5. Re-try to configure Ctr0. If the configuration now is possible, intelligent back-
tracking was successful and DBT continues by configuring the next contract of
the application. Otherwise, remove the first contract from S, and re-execute
step 4.

6. If step 4 could not be performed for any contract in the set, DBT terminates
unsuccessfully and notifies the user of scarce resources.

We will describe this approach more formally now. First, let us assume that every
possible component Cmpi (i ∈ {1, ...,m}) of the relevant contract Ctr0 could not



98 4. A Hybrid Approach for Automatic Application Configuration

C5 C7

C8

C9

C6

C1

C2 C3

[0][3]

[0][0][1]

[0]

[0][1][0]

C4

[0][2][0][1]

[0][3][0][0][0][0]

[0][0]

[0][2][0]

= instantiated component

Figure 4.18.: Initial situation for backtracking

be instantiated due to a shortage of a specific resource R. Thus, Cmpi form a set
S1 of m components, i.e.,

S1 = {Cmp1, Cmp2, ..., Cmpm} (4.8)

If Ctr0 is not multi-optional, then m = 1, i.e., S1 includes only one component.
Now, DBT determines the set S2 of n devices

S2 = {D1, D2, ..., Dn} (4.9)

which host at least one component Cmpk that is included in S1. More formal, this
condition can be described by the following equation:

∃k ∈ {1, ...,m}, l ∈ {1, ..., n} : (Cmpk ∈ S1 ∧ Cmpk ∈h Dl)⇒ Dl ∈ S2, (4.10)

whereas Cmpk ∈h Dl denotes that device Dl hosts component Cmpk.

Subsequently, DBT determines a third set S3 of p multi-optional contracts

S3 = {Ctr1, Ctr2, ..., Ctrp} (4.11)

This set contains only those multi-optional contracts Ctrk (k ∈ {1, ..., p}) for which
the following three conditions hold:

1. Ctrk is of higher priority than Ctr0. This means that Ctrk has already been
configured by DBT due to its depth-first approach.

2. The currently selected component Cmpk of Ctrk is resident on a device Dk

which is included in S2, i.e., Cmpk ∈ S1.

3. There exists an alternative component on another device Dy that can be in-
stantiated now due to sufficient free amount of R on Dy.

The contracts in S3 are ordered descendingly according to the amount of resource R
that is consumed by the instantiated component. This means that the instantiated
component which consumes the largest amount of R is at the beginning of the list,
because its termination would cause a considerable deallocation of resources. This



4.2. Centralized Application Configuration 99

C5 C7

C8

C9

C6

C1

C2 C3

[0][3]

[0][0][1]

[0]

[0][1][0]

C4

[0][2][0][1]

[0][3][0][0][0][0]

[0][0]

[0][2][0]

= instantiated component

1

PreferPrefer CC22 duedue to to smallersmaller subtreesubtree!!

Figure 4.19.: Intelligent backtracking of DBT

helps to decrease the number of needless adaptations which would have to be revised
later. If only one suitable component exists, the backtracking target is obviously
found and the adaptation process can be initiated.

In case of more than one suitable backtracking targets that consume an identical
amount of R, an additional selection criterion is necessary for weighting them ac-
cording to their suitability for adaptation. Since adaptation is simpler for contracts
with small adherent subtrees (as the subtree also has to be adapted), DBT selects
the component C that has least descendants (number of all successors down to the
leaves) and, hence, is closest to the bottom of the tree. Thus, contracts with little
adaptation overhead are preferred. In case of multiple contracts with a subtree of
the same size, the algorithm randomly selects one of these contracts and adapts this
contract.

If the resource conflict cannot be solved by adapting the first contract in S2, DBT
tries to solve it by adapting the second contract in S2, and so on. If the conflict
cannot be solved by adapting any contract included in S2, this indicates that there
are not sufficient resources in the environment. Thus, the algorithm terminates
unsuccessfully within the stopped function and notifies the user of this failure.

To clarify how DBT proceeds in intelligent backtracking, consider the exemplary
application shown in Figure 4.18. Here, all contracts have successfully been con-
figured by selecting the highlighted components. However, the PC monitor used
as component instance [0][3][0] for contract C9 suddenly fails, leaving this contract
unconfigured. Besides the PC monitor, the introduced set S1 includes a video pro-
jector as alternative component. However, as the two video projectors are currently
used within other contracts (C1 and C2), the configuration has to be adapted, i.e.,
backtracking has to be performed.

In this situation, Direct Backtracking first determines the set S3 of multi-optional
contracts with higher priority which have currently instantiated a component that
is able to resolve the dependencies required by C9. As the instances [0][0] for C1 and
[0][0][0] for C2 are currently represented by the two video projectors (which form set
S2), these two contracts are possible backtracking target for Direct Backtracking,
as it can be seen in Figure 4.19. Since instance [0][0][0] does not have any child



100 4. A Hybrid Approach for Automatic Application Configuration

C5 C7

C8

C9

C6

C1

C2 C3

[0][3]

[0][0][1]

[0]

[0][1][0]

C4

[0][2][0][1]

[0][3][0][0][0][0]

[0][0]

[0][2][0]

= instantiated component

1

2

3

4

5

Figure 4.20.: Standard backtracking of SBT

components at all, DBT selects C2 as backtracking target, stops the use of the
instantiated video projector, and subsequently starts to bind the laptop display
component to dependency C2. Then, DBT returns to instance [0][3][0], where the
video projector is available now. In the following, the adaptation is completed, and
the application is available to the user again.

Now, regard how Synchronous Backtracking (SBT) acts in the same situation, as
depicted in Figure 4.20. SBT does not incorporate the cause of backtracking into its
considerations, so it simply adapts the nearest multi-optional contract according to
the depth-first approach (i.e., the multi-optional contract with highest ID) to resolve
the resource conflict. Therefore in this situation, SBT initially adapts the multi-
optional contract C7 by stopping the currently instantiated loudspeaker component
and instantiating the alternative desktop speakers. Obviously, this does not help
to resolve the resource conflict with the visual output components, so SBT has to
perform another backtracking. This time, contract C6 is adapted, which is however
also not resolving this conflict. In the following, SBT unsuccessfully tries to resolve
the resource conflict by adapting contract C4, until the subsequent adaptation of
C2 finally represents the solution to the resource conflict problem. Summarizing,
SBT needs four adaptations, which yields significantly increased adaptation latencies
compared to the single adaptation that DBT has to take. Section 4.5.2 presents more
extensive evaluations which compare DBT to SBT.

4.3. A Framework for Adapting the Degree of
Decentralization

In heterogeneous environments, approaches alternative to the decentralized one may
exploit the computation resources more efficiently. Therefore, concepts to support
algorithms with various degrees of decentralization in their calculations, as well as
a mechanism to automatically switch between the provided approaches is needed.
In approaches different to the decentralized one, specific devices need to obtain
information about the available resources and services of remote devices. If this



4.3. A Framework for Adapting the Degree of Decentralization 101

information is not obtained before runtime, it increases the configuration latencies,
since the configuration device(s) cannot start the configuration process before. To
increase efficiency of non-decentralized configuration, we suggest the introduction of
a pre-configuration process that is performed in time periods prior to configuration
calculations and reduces the configuration latencies effectively [SHR08a].

Thus in this section, we first discuss the requirements for a framework to enable
the automatic adaptation of configuration algorithms in Section 4.3.1. Then, we
introduce a clustering framework (Section 4.3.2) to identify different device types
and establish unique clusters. Following in Section 4.3.3, we introduce a strategy
which selects the node weights in a resource-aware manner. Then, we discuss the
initial cluster formation as well as the cluster maintenance by using an adapted
version of the DMAC algorithm in Section 4.3.4. Next in Section 4.3.5, we present
the VC concept which enables the local emulation of remote devices and is used
by the centralized and hybrid configuration schemes. This enables the exclusion
of the weak devices from configurations. Finally, we present a simple algorithm to
automatically switch between different configuration approaches in Section 4.3.6.

4.3.1. Requirements

At time the research for this thesis started, the system software PCOM only sup-
ported static distributed configuration of pervasive applications, because the focus
lay on peer-to-peer based homogeneous Ad Hoc scenarios in previous research ef-
forts. In order to dynamically support heterogeneous environments, a framework is
needed to enable the adaptation of the degree of decentralization and the automatic
selection of the most suitable configuration algorithm in a specific environment. Ac-
cording to our system model from Section 2.1 and the problem analysis discussed in
Section 2.2, we pose the following requirements to such a framework:

Information retrieval: Typical clustering schemes require specific information to
guarantee their operability, like the ID, the computation resources, or the remaining
battery capacity of the devices. The respective information for specific clustering
strategies is deduced in Section 4.3.2. The framework needs to have automatic access
on this information to enable the strategy-specific creation of the cluster topology.

Resource efficiency: The framework has to support powerful as well as weak de-
vices. This means that the framework has to be runnable on weak devices with
restricted functionalities by posing minimal requirements on the devices’ capabili-
ties, i.e., by only relying on the Java 2 ME Connected Limited Device Configuration
Profile (CLDC) profile2. However, the framework also needs to exploit the increased
functionality of powerful devices, e.g., class loaders to support the dynamic and au-
tomatic transfer of remote classes. Generally, the implemented clustering strategies

2CLDC represents the J2ME configuration with minimum requirements. CLDC does not provide
floating point operations. Devices only need to allocate 160 kB of RAM for the Java Virtual
Machine, guaranteeing the support of a broad spectrum of devices.



102 4. A Hybrid Approach for Automatic Application Configuration

of the framework have to consider the restricted capabilities of the weak mobile
devices, e.g., slow mobile CPUs.

Scalability: Besides small applications which are typically used in Ad Hoc environ-
ments, larger-sized applications in the magnitude of those discussed in Section 2.1.2
also have to be supported. For this purpose, the space and communication overhead
of the framework have to be as low as possible.

Adaptivity: The framework has to be able to react on dynamic changes in the
network topology and the availability of specific devices. Therefore, the framework
has to be designed in a way that it supports cluster changes by adapting the clus-
ter structure and automatically providing the relevant configuration information to
newly arriving configuration devices.

Re-use of previously developed applications: The framework needs to be seam-
lessly integrated into PCOM in order to enable the re- use of applications which
have been developed before.

Transparency: The distribution of the application configuration among the present
devices has to be performed automatically and without user interaction. Alike, the
cluster formation and maintenance also need to be performed independently from
the user. Therefore, the framework needs to be transparent to the user.

4.3.2. Clustering Framework

For centralized and hybrid configuration approaches, we establish a clustering frame-
work to identify devices that perform the actual configuration and act as cluster
heads (i.e., coordinators) for the configuration process. As basic clustering algo-
rithm, we rely on the DMAC algorithm introduced in Section 4.1.2 where devices
communicate via the mentioned CH and join messages. DMAC establishes clusters
where each cluster member has at least one cluster head as neighbor and affiliates
with the cluster head that has highest weight.

To achieve applicability of DMAC in our context, we need to provide information
that is relevant for this algorithm, which is the node IDs, the cluster weights, and
the roles of each node. While a node achieves its own role directly by the algorithm,
the remaining required knowledge is obtained as following:

• Node ID: A node obtains its unique ID at node initialization by relying on
the MAC address of its wireless communication interface.

• Cluster weight: Basagni provides a generalized algorithm for establishing
clusters based on the nodes’ weights. However, he does not provide clustering
strategies which assign specific weights to the nodes. As the cluster weights
are critical for selecting the role of a node within a cluster, they should be



4.3. A Framework for Adapting the Degree of Decentralization 103

chosen by taking into account the resources, since only the powerful devices
should become cluster heads. Therefore, we introduce a benchmarking process
to determine the cluster weights of nodes in a resource-aware manner. This
process is described in more detail in Section 4.3.3.

• Weight and role of neighbors: We use BASE’s Lease mechanism [BSGR03]
which defines that each node periodically has to broadcast a heartbeat message
to communicate this node is still alive. Therefore, the heartbeat message is
extended so that it additionally transmits the cluster weight and the role of a
node (as a simple boolean variable which distinguishes between cluster member
and cluster head) to all other nodes.

However, as we focus on environments where all devices are directly connected
to each other (cf. Sections 2.1.1, 4.1.2), i.e., all nodes are neighbors and the net-
work’s diameter D is 1, relying on pure DMAC would always lead to exactly one
cluster head, which is the node with highest cluster weight among all nodes. This
may be the fitting scheme for weakly heterogeneous environments where exactly
one powerful device is available, but needs to be adapted for strongly heterogeneous
environments where multiple powerful devices are available. To achieve multiple
cluster heads with high computation power in a one-hop environment, we introduce
a benchmarking process to determine the cluster weights taking into account the
devices’ resources, in combination with a threshold for the weights that differenti-
ates betweeen cluster heads and cluster members: Devices with weights above the
threshold declare themselves as cluster heads, while the other devices become simple
cluster members and have to be mapped to one of the cluster heads. Mapping means
assigning a weak device to exactly one strong device which then is responsible for
configuring this weak device’s components.

We discuss the initial weight selection, the cluster formation, and the cluster
maintenance in weakly heterogeneous environments in the following paragraphs.
Furthermore, we introduce a modified version of DMAC which enables multiple
clusters with balanced configuration load among the cluster heads within a one
hop environment in Section 4.4. This scheme represents the base for the hybrid
configuration.

4.3.3. Resource-Aware Weight Selection

In Section 2.2.2, we have stated that one of our main goals is to the minimize config-
uration latencies by efficiently exploiting the scenario heterogeneity. To achieve this,
we aspire to select only those nodes as cluster heads which have high computation
power. In particular, the configuration devices have to be especially performant in
calculating application configurations. Therefore, the cluster weight of a device has
to be assigned according to the computation power of this device. After having per-
formed this benchmark, a device vi can decide its role in the cluster by comparing
its weight wi to a pre-defined threshold weight wth: If wi ≥ wth, then vi becomes a
cluster head; otherwise, it becomes an ordinary cluster member.

Therefore, we introduce a benchmarking process which is performed when the sys-
tem software is started on a device to determine its computational power: Given an



104 4. A Hybrid Approach for Automatic Application Configuration

Device Type CPU Speed RAM Time in 1/tmin Weight
Desktop PC 8x 4.2 GHz 8 GB 1.0 1.0
Desktop PC 4x 3.0 GHz 6 GB 1.37 0.730
Desktop PC 2x 2.9 GHz 4 GB 1.588 0.630
Laptop 2x 2.4 GHz 2 GB 1.736 0.576
Laptop 2x 2.0 GHz 2 GB 1.901 0.526

Netbook 1.6 GHz 1 GB 4.684 0.213
Smart Phone 667 MHz 256 MB 7.705 0.130
Smart Phone 520 MHz 64 MB 8.405 0.119
PDA 400 MHz 128 MB 9.401 0.106
Mobile Phone 166 MHz 32 MB 16.721 0.060

Table 4.3.: Benchmark Results

application tree with a number of dependencies that have to be resolved and a set of
resources which can resolve the dependencies, the device calculates a valid configu-
ration using the centralized greedy heuristic introduced by Handte et al. [HHS+07].
To make this benchmark more realistic, three different abstract applications of dif-
ferent sizes (7, 15, and 31 components) which are typical for the scenarios we rely on
(cf. Section 2.1.2) have to be configured within this benchmark. Furthermore, the
applications are constructed in a way that, with the available resources, the greedy
algorithm has to perform some re-configurations and, thus, backtracking processes
within the configuration process.

Benchmark processes have been performed with different types of devices that
are typical for heterogeneous environments, and the overall configuration times have
been measured. Table 4.3 gives an overview of the benchmarks. In this table, the
overall latencies are given relative to the latency tmin of the fastest configuration
device, in our case a fast desktop PC with octacore CPU and 8 GB of RAM. To
achieve that devices with lower benchmark configuration latencies get higher weights,
the weight wi of a device vi with benchmark latency ti are calculated as follows:

wi = (
tmin
ti

)α, (4.12)

where α is a freely selectable scaling factor. For the values given in Table 4.3.3, the
scaling factor was set to α = 1. From the results shown in the table, it is obvious
that the weight selection criterion given in Equation 4.12 in combination with α = 1
is suited to reliably distribute the cluster weights, since powerful devices such as
desktop PCs or laptop get weights close to 1, while weak mobile devices such as
netbook or smart phones are assigned weights that are lower than 0.3. As threshold
weight, we suggest to use wth = 0.5. In all of our measurements, this yielded cluster
heads which were significantly more powerful than the cluster members [SHR08a].



4.3. A Framework for Adapting the Degree of Decentralization 105

4.3.4. Cluster Formation and Maintenance in Weakly
Heterogeneous Environments

As mentioned in Section 4.3.2, we rely on the DMAC algorithm to establish and
maintain clusters in dynamic environments. In the initial situation where the cluster
is not yet established, a node v has two possibilities: if it determines that none of
its neighbored nodes has a higher cluster weight, it assigns itself the cluster head
role and broadcasts a CH(v) to all of its neighbors. Otherwise, it determines its
neighbor u with highest cluster weight and sends a join(u, v) to join the cluster
of u. Proceeding like this, a unique cluster structure with exactly one cluster head
is established in a weakly heterogeneous one-hop environment with one strong and
several weak devices. The cluster head maintains a complete list which contains all
devices that are mapped as cluster members to itself, while the cluster members
only need to maintain the ID of their cluster head in order to transmit changes in
their resource conditions to their cluster head.

Figure 4.21a gives an exemplary initial cluster establishment in a corresponding
environment where all devices are in direct communication range. Let us assume all
devices have already performed the benchmarking process discussed in Section 4.3.3
and assigned themselves their cluster weights as given in the figure. Figure 4.21b
shows the situation after having finished the DMAC algorithm, as presented in
Section 4.1.2: v3 as the only node with a weight above the threshold weight 0.5 is
assigned the cluster head role, and all other nodes have joined v3’s cluster. Each
cluster member stores the device ID of its cluster head, while the cluster head stores
the IDs of its mapped cluster members. When a user wants to start an application
now, the selector decides in favor of centralized configuration, which we described
in detail in Section 4.2.

b)

Key: Unclustered node Cluster head Cluster member

v1
w1 = 0.4

v0

w0 = 0.3

v3w3 = 0.8

v2

w2 = 0.2

v4

w4 = 0.2

a)

v1
v0

v3

v2

v4

CMs: {v0, v1, v2, v4}

Figure 4.21.: Cluster Creation in weakly heterogeneous environment: a) Initial sit-
uation, b) Cluster establishment with DMAC

Regarding cluster maintenance, one has to distinguish between four different cases
that may happen: the disappearence or appearence of a weak device, and the dis-
appearence or appearence of a powerful device. The situation of (dis-)appearing
weak devices is shown in Figure 4.22, representing the cluster structure established



106 4. A Hybrid Approach for Automatic Application Configuration

in Figure 4.21b. In this situation, consider the case that device v1 disappears, e.g.,
because this device runs out of energy. Then, no more heartbeat messages from
this device are transmitted, and the cluster head updates its cluster structure by
removing v1 from the list of its mapped devices. In the same situation, it may hap-
pen that a new mobile device, v5, appears in transmission range, since its owner
enters the room. With the first received heartbeat message from this device, the
cluster head v3 notices v5 has a weight lower than the threshold and sends a CH(v3)
message. Then, v5 joins the cluster of v3 by sending a join(v5, v3) message which
includes its resource information. Subsequently, v3 adds v5 to its list of mapped
cluster members.

Key: Unclustered node Cluster head Cluster member

b)
v0

v3

v2

v4

v6

Re-clustering needed! Cluster dissolved!

w6 = 0.7

a)

v1
v0

v3

v2

v4

v5

X
X

CMs: 
{v0, v2, v4, v5}

w5 = 0.1
v5 X

X

CMs: {v2, v4}

c)
v0

v3

v2

v4

v5 X

CMs: {v0, v5}

Figure 4.22.: Cluster Maintenance in weakly heterogeneous environment: a) Ap-
pearence and disappearence of weak devices, c) Appearence of a new
powerful device, d) Disappearence of the last powerful device

In the situation described above, it may happen that a new powerful device v5
with a weight above the chosen threshold appears (Figure 4.22b). Then, the cluster
has to be split up into two clusters3. To keep a balanced configuration load among
the two powerful devices, some of the cluster members from v3 have to be re-mapped
to the cluster of v5. Details concerning these re-clustering processes will be given in
Section 4.4 where we describe the hybrid configuration which is applied in such a
situation.

Returning to the situation shown in Figure 4.22a, it may also happen that the
powerful device v3 disappears, for example because of a device failure. In this
situation, illustrated in Figure 4.22c, there are no more powerful devices available
in the environment, and the cluster structure is dissolved, leading to a pure Ad Hoc
environment.

The Direct Backtracking (DBT) algorithm introduced in Section 4.2 was specif-
ically developed for weakly heterogeneous scenarios, as it represents an efficient
scheme for centralized configuration and adaptation of distributed applications in
such scenarios. DBT relies on the clustering framework presented in Section 4.3.2
to proactively obtain the relevant resource information of the other devices, which

3In Section 4.3.6, we will present a selection mechanism to automatically decide in favor of a
specific configuration algorithm based on the cluster structure.



4.3. A Framework for Adapting the Degree of Decentralization 107

is needed to perform centralized configuration completely locally, i.e., without in-
volving any other devices.

4.3.5. Virtual Containers

In Section 4.3.3, a scheme to distinguish between strong and weak devices was
introduced. Following in Section 4.3.4, we presented an approach to cluster the
environment where the strong devices represent the cluster heads and the weak
devices represent the cluster members. The cluster heads perform configurations
and represent the coordinators for the adjacent devices, i.e., the cluster members.
This means that the cluster head’s resources are used for configuration, while the
logic for validating a configuration is distributed among the devices involved in a
configuration process.

Figure 4.23.: Creation and update of Virtual Containers

This presumes that the cluster heads proactively acquire knowledge of the cur-
rently available components and resources on the mapped devices. For this purpose,
we introduce the Virtual Container (VC) concept. Within our system software, a
component container is responsible for hosting components and resources [Han09].
Correspondingly, a VC represents the emulation of another device – a mapped clus-
ter member – at a cluster head. The VC contains the cluster member’s information
that is relevant for configuration processes, i.e., its resources and its components.
Thus, in the broader sense, a VC represents a proxy for another device. Therefore,
when a cluster member v maps itself to a cluster head u by sending a join(v, u)

message, v additionally communicates its resource information to the cluster head.
It is vital that this transmission happens at time of the cluster creation and, thus,
prior to the configuration, to implement the pre-configuration process discussed in
Section 4.1.3. If the creation of the Virtual Containers would be performed at con-
figuration time, then the cluster head would not yet have local access to the remote
components. Thus, the cluster head would need to manually request the resource
information from the respective devices, like in the previously developed decentral-
ized [HBR05] or centralized [HHSB07] configuration algorithm, causing additional
configuration latencies and significantly reduced efficiency.



108 4. A Hybrid Approach for Automatic Application Configuration

As an example for proactive creation of Virtual Containers, consider the situation
in Figure 4.23a where we suppose that device v1 has already sent a CH(v1) message,
as it is the device with highest cluster weight (w1 = 0.9) in its neighborhood. Then,
the two devices v3 and v4 join v1’s cluster and transmit their resource information.
In the following, v1 builds up two Virtual Containers as proxies for the remote
devices, including the Virtual Components (abbreviated by VC in the figure) of the
mapped devices that enable v1’s configuration assembler (the component which is
responsible for computing configurations and adaptations) to configure these remote
components by accessing their local proxies. In the situation which is shown in
Figure 4.23b, the containers on the mapped devices are inactive, because the cluster
head is responsible for the configurations now. However, as it may be possible that
the cluster head device fails and, thus, the cluster members possibly are responsible
for performing configurations again, v3 and v4 still conserve their containers as well
as the assemblers in an inactive state.

In the future, it may be possible that the availability of mapped devices’ compo-
nents changes, e.g., because a component fails or is used by another application. To
keep a consistent state of the remote components at the corresponding cluster head,
a mapped device v sends an update(v, cmp[]) message to the cluster head, con-
taining its ID and a vector cmp which contains the availabilities of its components.
Then, the cluster head updates the respective Virtual Container by marking these
Virtual Components as currently available or unavailable. Such a situation is shown
in Figure 4.23c where the mapped device v3’s component C1 and the mapped device
v4’s component C2 become unavailable.

With the introduction of Virtual Containers, a device can locally calculate config-
urations for components that are hosted by other devices. Because of this, a cluster
head does not need to perform remote procedure calls to obtain the current resource
situation of other devices, thus completely avoiding communication overhead during
the configuration process, which would significantly increase the latencies that are
noticeable by the application users, especially if wireless communication technology
with low bandwidth or high failure rates is used. Therefore, Virtual Containers
enable a strong decoupling of the configuration processes from the real devices.

However, it has to be mentioned that Virtual Containers also introduce a disad-
vantage, since they are updated in case of changing resource conditions even if there
are no configuration processes. This may increase the communication overhead un-
necessarily. As the class sizes of the Virtual Containers are rather small with 8.8 kB
per instance (cf. Section 6.5.2), we consider this to be a rather minor drawback.

The information which is needed to create a Virtual Container is sent from a
cluster member to its cluster head using Mobile Code [CPV97]. Mobile Code enables
the transmission of code segments from one runtime environment to another. It has
to be considered that Mobile Code normally is subject to security risks, as the
transmission of threats such as viruses or worms is potentially possible. However,
as we assume cooperative user behaviours (cf. Section 2.1.1), the use of Mobile
Code without the necessity of using digital signatures and, thus, the management of
certificates is enabled. The only requirement is the existence of a class loader, which
is even the case if a device supports the minimum Java CLDC profile specification.



4.3. A Framework for Adapting the Degree of Decentralization 109

4.3.6. Efficient Support of Adaptable Configuration Algorithms

To adapt the distribution of automatic application configuration, the need for a
mechanism to allow the automatic selection of an assembler suited for application
configuration in a specific environment arises. Therefore, we introduce the so-called
Selector abstraction that enables the automatic selection of arbitrary assemblers on
any container. Whenever a user wants to start an application on his or her device,
a selection algorithm is started on this device to ask the provided selector about
the way the configuration has to be taken. The selection strategy we provide so
far supports the three different configuration approaches presented in this thesis: a
decentralized scheme, a centralized scheme, and a hybrid scheme4.

1 selection algorithm(int strong) {
2 if (strong == 0) {
3 broadcastApplicationInformation();
4 Container[] allDevices = (Container[])deviceRegistry.getAllDevices();
5 foreach (Container c in allDevices) {
6 c.startDecentralizedConfig();
7 }
8 }
9 else if (strong == 1) {

10 Container strongDevice = (Container)deviceRegistry.getStrongDevices();
11 Container[] weakDevices = (Container[])deviceRegistry.getWeakDevices();
12 foreach (Container c in weakDevices) {
13 c.unicastApplicationInformation(strongDevice);
14 }
15 strongDevice.startCentralizedConfig();
16 }
17 else {
18 Container[] strongDevices = (Container[])deviceRegistry.getStrongDevices();
19 Container[] weakDevices = (Container[])deviceRegistry.getWeakDevices();
20 foreach (Container c in weakDevices) {
21 c.unicastApplicationInformation(c.getClusterHead());
22 }
23 foreach (Container c in strongDevices) {
24 c.startHybridConfig();
25 }
26 }
27 }

Listing 4.9: Provided selection strategy

Listing 4.9 shows the implementation of the selection strategy in pseudo code:
Based on the number of currently available strong devices (strong), the selector de-
cides which of the provided configuration algorithms is chosen for the configuration:
In case of an Ad Hoc scenario with no strong devices, the decentralized scheme is

4This scheme is discussed in the next section.



110 4. A Hybrid Approach for Automatic Application Configuration

chosen and started on all devices. If exactly one strong device is available, the selec-
tor chooses the centralized approach and initiates the application configuration on
this strong device (strongDevice). In case of multiple strong devices, configurations
are calculated in a hybrid way involving all strong devices (strongDevices).

As the current environmental condition is provided by BASE’s device registry
and BASE is running on every device, the selectors on each device always have
the identical view on the current scenario situation, i.e., each device knows which
powerful and weak devices are currently available. Thus, when a user starts an
application on his or her device, the system software running on this device looks
up the currently available devices and decides to which other devices it has to send
the information about a pending configuration and the corresponding application
structure, i.e., to all present devices (Ad Hoc environment), to the single powerful
device (weakly heterogenenous environment), or to the group of powerful devices5

(strongly heterogeneous environment). Figures 4.24a to c show three exemplary
scenarios where a user starts an application in different scenarios.

a) b) c)

Figure 4.24.: Execution of selector algorithm in a) homogeneous Ad Hoc environ-
ment, b) weakly heterogeneous environment, c) strongly heterogeneous
environment

The selector abstraction is designed in a way that the implementation of additional
strategies is easily possible, if further configuration schemes are developed. This
represents a flexible solution for supporting an adaptable degree of decentralization
in various homogeneous as well as heterogeneous Pervasive Computing scenarios.

4.4. Hybrid Application Configuration

Both the decentralized and centralized approaches have advantages, but also draw-
backs that prevent an efficient configuration in all possible pervasive environments.
A hybrid approach is able to combine the best properties of these two approaches
to minimize the configuration latency [SHR10]. For this purpose, only the strong

5For sending a message to a specific group of devices, multicast is usually used. However, in
one-hop environments, sending multicast messages simply degrades to sending multiple unicast
messages



4.4. Hybrid Application Configuration 111

devices actively calculate application configurations. We call them Active Devices
(ADs) in the following. Contrary to this, the resource-weak devices only provide
information about their available resources and services, prior to configuration pro-
cesses. As the weak devices stay passive during the actual configuration calculations,
we call them Passive Devices (PDs).

In a hybrid configuration process, initially, the AD and the PD roles need to
be assigned to the devices in the environment, since the configuration for each PD
should be calculated by exactly one AD to minimize the interdepencies between
the ADs. We call this assignment of a PD to an AD a mapping. Subsequently,
the ADs need to obtain the configuration-specific information from their mapped
PDs. Finally, a hybrid configuration algorithm is necessary which calculates valid
configurations on the ADs and distributes the configuration results to the PDs6.

4.4.1. Initial Resource-Aware Cluster Formation

The following scheme establishes multiple stable clusters in heterogeneous environ-
ments with several strong devices. These devices automatically become the cluster
heads (and, hence, the ADs) if a resource-aware clustering strategy (e.g., like in
[SHR08a]) is used. Our new scheme balances the configuration algorithm’s load
among these ADs such that a) they are not overloaded and b) the configuration is
parallelized. The main goal of the scheme is to reduce the configuration latencies.

We assume there are m ADs Ai with cluster indices (CIDs) i ∈ {0, . . . ,m−1} and
n PDs Pj with cluster indices j ∈ {0, . . . , n − 1}. Initially, each AD assigns itself
a CID i according to its device ID, i.e. the AD with lowest device ID (of all ADs)
assigns itself CID i = 0, and the AD with highest device ID gets CID i = m−1. The
same holds for the PDs that assign themselves CIDs j according to their device ID.
This means we rely on global knowledge among all devices. As we focus on single-
hop environments like conference rooms and a relatively low degree of dynamics (cf.
Sections 2.1 and 5.7.2) where devices typically stay within an environment for some
time, we consider to maintain global knowledge as a feasible solution.

There is an overhead for each AD to retrieve its mapped PDs’ resource informa-
tion, calculate its mapped PDs’ components’ configuration, and send the configu-
ration results back to them. This overhead highly depends on the number of PDs
within each cluster. Thus, if the mapping of PDs to ADs is balanced, each AD takes
the responsibility for about the same amount of configuration work. This testab-
lishes the load balance among the ADs that is important to reduce the configuration
latency. To achieve this, each AD has to map at least

⌊
n
m

⌋
PDs to itself. If n modulo

m = z > 0, the ADs 0, . . . , z − 1 need to map one additional PD to ensure all PDs
are mapped to an AD.

6Actually, this distinction between ADs and PDs was also taken in the centralized approach dis-
cussed in Section 4.2. However, as centralized configuration relies on exactly one configuration
device, we did not introduce these notions there for simplification reasons.



112 4. A Hybrid Approach for Automatic Application Configuration

This leads to the so-called Balancing Condition that has to be fulfilled at each
Active Device:

mapped(Ai) =


⌊
n
m

⌋
+ 1, i < n modulo m⌊

n
m

⌋
, i ≥ n modulo m

, (4.13)

where mapped(Ai) is the number of PDs that need to be mapped to AD Ai. The
fulfillment of this condition is verified on each AD, initially on startup of the device
and whenever the number of ADs or PDs changes. For the actual mapping, a simple
round robin scheme is used where each AD maps every m-th PD, starting with A0

that maps P0, Pm, P2m, and so on.

A mapping procedure is initiated by an AD by sending a mapping request to the
PD it wants to map. The PD reacts by transmitting its current resource information
to the respective AD so that the AD can create a local representation of the remote
PD. This scheme is performed in parallel on all ADs, as they map disjoint sets of
PDs. They just need to know their own CID i and the number of ADs and PDs,
which can be looked up in the device registry.

P0 P1 P2

P3

P6

P4 P5

P7

A0 A1 A2
P0

P1

P2

P4

P3

P5

P6

P7

A0

A1

A2

m = 3 ADs:

n = 8 PDs:

n modulo m = 8 modulo 3 = 2

A0: CID = 0 → 0 < 2 → mapped(A0) =  8/3  + 1 = 3 
   → A0 maps 3 PDs: P0, P0+3, P0+2·3, i.e. P0, P3, P6

A1: CID = 1 → 1 < 2 → mapped(A1) =  8/3  + 1 = 3 
   → A1 maps 3 PDs: P1, P1+3, P1+2·3, i.e. P1, P4, P7

A2: CID = 2 → 2 ≥ 2 → mapped(A2) = 8/3  = 2 
   → A2 maps 2 PDs: P2, P2+3, i.e. P2, P5

Cluster Formation Algorithm

Figure 4.25.: Initial mapping in scenario with three ADs (A0 to A2) and eight PDs
(P0 to P7)

For clarification, let us consider an exemplary scenario depicted in Figure 4.25,
consisting of m = 3 ADs A0 to A2 and n = 8 unmapped PDs P0 to P7. Furthermore
in this scenario, n modulo m resolves to 8 modulo 3 = 2. The CID of A0 is i = 0 < 2,
so A0 maps

⌊
8
3

⌋
+ 1 = 3 PDs, i.e., one additional PD. The same holds for A1, as

i = 1 < 2. However, A2 with CID i = 2 ≥ 2 maps only
⌊
8
3

⌋
= 2 PDs. Using the

described cluster formation scheme, A0 maps P0, P3, and P6. Furthermore, A1 maps
P1, P4, and P7, and A2 maps P2 and P5. The arising cluster structure is shown on
the right hand side of Figure 4.25.

4.4.2. Cluster Maintenance

Re-clustering is needed to maintain a balanced load in dynamic environments. Our
scheme avoids unnecessary merging and splitting of clusters by simply re-mapping



4.4. Hybrid Application Configuration 113

single PDs. Generally, cluster maintenance has to deal with newly appearing de-
vices, and with disappearing devices. More specifically, re-clustering comprises four
different cases:

• The appearance of new PDs

• The appearance of new ADs

• The disappearance of PDs

• The disappearance of ADs

In the following, we will describe how our scheme performs in case of each of these
situations.

If a new device appears, it assigns itself the lowest free CID within its class, e.g.,
if it is an AD and there are m other ADs with indices 0, . . . ,m−1 present, it assigns
itself index i = m. Each device decrements its CID if another device from the same
class (i.e., AD or PD) with a lower CID disappears.

Appearance of new PDs: If a new PD appears, the AD with cluster index
i = n modulo m maps this device. Proceeding like this, the round robin distribution
of the PDs to the ADs is continued. After this mapping, each device increments the
number n of PDs.

As an example, consider Figure 4.26 which shows at the left hand side the cluster
established in the example above. In this situation, a group of four people with
mobile devices (PDs P8 to P11) enters the environment. By broadcasting heartbeat
messages including their cluster weight, the users’ mobile devices announce them-
selves as new PDs. Then, each cluster head updates the number of Passive Devices
to n = 12 and re-calculates the number of PDs it has to map. In this situation,
each cluster head calculates the number of mapped PDs as mapped(Ai) =

⌊
12
3

⌋
= 4.

Proceeding in the round robin manner, A0 maps the new PD P9, A1 maps P10, and
A2 maps P8 and P11, leading to the updated clusters as shown on the right hand
side of Figure 4.26.

P0

P1

P2

P4

P3

P5

P6

P7

A0

A1

A2

n modulo m = 12 modulo 3 = 0

A0: CID = 0 → 0 ≥ 0 → mapped(A0) =  12/3  = 4
   → A0 maps 4 PDs: P0, P3, P6 (already mapped), 

   P9 (new)

A1: CID = 1 → 1 ≥ 0 → mapped(A1) =  12/3  = 4 
   → A1 maps 4 PDs: P1, P4, P7 (already mapped), 

   P10 (new)

A2: CID = 2 → 2 ≥ 0 → mapped(A2) = 12/3  = 4 
   → A2 maps 4 PDs: P2, P5 (already mapped),

   P8, P11 (new)

Cluster Maintenance: New PDs
Initial

Situation:
Updated 
Clusters:

New PDs:
P8 P9 P10 P11

P0

P1

P2

P4

P3

P5

P6

P10

A0

A1

A2
P8

P9

P7

P11

Figure 4.26.: Cluster Maintenance: Integration of appearing Passive Devices



114 4. A Hybrid Approach for Automatic Application Configuration

Appearance of new ADs: Listing 4.10 shows the algorithm that is performed on
a newly appearing Active Device Ax with CID x when y new ADs appear coevally:
Ax needs to map

⌊
n
m

⌋
devices to itself7 so that the Balancing Condition is still

fulfilled for all PDs. The re-mappings are executed in the following way: Initially
in lines 2 to 4 of Listing 4.10, Ax initializes the variables mapped (which denotes
the number of currently mapped own PDs), remap (which denotes the total number
of PDs that have been mapped by newly appearing ADs with lower CIDs), and
remappings(Ax) (which denotes the number of PDs to be mapped by Ax). Then,
Ax initiates

⌊
n
m

⌋
re-mappings of PDs from other ADs (lines 5 to 10): Initially, Ax

re-maps a PD from the AD that has the maximum number of mapped PDs (and
the highest index i, in case of multiple options), which yields the AD with index

i = (n− 1) modulo (m− y) (4.14)

due to the round robin scheme (line 6). Ax sends a remapping request to the
corresponding AD, which then notifies its mapped PD with highest CID that this
PD has to be remapped to Ax. Ax awaits the resource information from the PD and
creates the respective Virtual Container (line 8), increments the variable mapped,
and repeats the re-mapping process

⌊
n
m

⌋
times. As the ADs whose PDs are re-

mapped by Ax are chosen in a round robin manner, the Balancing Condition is still
fulfilled on all ADs after these re-mappings.

1 request remappings(){
2 mapped := 0;
3 remap :=

∑
i<x remappings(Ai);

4 remappings(Ax) := floor(n/m);
5 while (mapped < remappings(Ax)) {
6 remapId = (n−1−remap) modulo (m−y);
7 send remap request to AD(remapId);
8 create virtual container();
9 mapped++;

10 }
11 }

Listing 4.10: Reclustering process executed by a newly appearing AD Ax (CID x)
when y new ADs appear at the same time

If multiple ADs appear at almost the same time (i.e., y > 1), the problem of race
conditions during the mapping process may arise and potentially lead to inconsistent
mappings, e.g., two new ADs may map the same device. To analyze this problem,
we did multiple real- world tests where we started two devices timely close to each
other and regarded the arising mappings. We found out that inconsistent mappings
started to emerge when the time span between two subsequent appearances of new
devices fell below 30 ms. To avoid inconsistencies, every new AD broadcasts a
notification message including its own CID, notifying the other ADs that it will
start the mapping process now. Every other new AD receiving a notification message
answers with a notification message, so the new devices know about the CIDs of

7Here, Ax is already included in the number m of ADs



4.4. Hybrid Application Configuration 115

other new devices. All other ADs answer with a simple OK status message without
body, representing their agreement to the new AD’s mapping process.

n mod m = 12 mod 5 = 2; remap = 0, y = 2

A3: CID = 3 → 3 ≥ 2 → mapped(A3) =  12/5  = 2
→ A3 re-maps 2 PDs: 
  1 PD from A(12-1-0 mod 5-2), i.e. A2 → P11 (remap = 1)
  1 PD from A(12-1-1 mod 5-2), i.e. A1 → P10 (remap = 2)

A4: CID = 4 → 4 ≥ 2 → mapped(A4) =  12/5  = 2 
→ A4 re-maps 2 PDs:
  1 PD from A(12-1-2 mod 5-2), i.e. A0 → P9 (remap = 3)
  1 PD from A(12-1-3 mod 5-2), i.e. A2 → P8 (remap = 4)

→ Balancing Condition still fulfilled!

Cluster Maintenance: New ADsInitial
Situation:

Updated 
Clusters:

New ADs:

P0

P1

P2

P4

P3

P5

P6

P10

A0

A1

A2
P8

P9

P7

P11

A3 A4

P0

P1

P2

P4

P3

P5

P6

P10

A0

A1

A2

P8 P9

P7

P11A3

A4

Figure 4.27.: Cluster Maintenance: New Active Devices A3 and A4 re-map PDs from
the other ADs

As an example, consider Figure 4.27 where y = 2 new Active Devices appear at
almost the same time and assign themselves the CIDs 3 and 4. After AD 3 has sent
its notification message, AD 4 answers with a notification message, while the other
ADs respond with an OK message. Then, the new ADs start their mapping processes.
As the environment now covers n = 12 PDs and m = 5 ADs (whereas 2 of them are
new), n modulo m calculates to 12 modulo 5 = 2. Since the CID of A3 as well as
A4 is higher than 2, both devices only map

⌊
n
m

⌋
=
⌊
12
5

⌋
= 2 devices, according to

Equation 4.13. According to line 6 from Listing 4.10, A3 finds out it needs to remap
one PD from device (12-1-0) modulo (5-2) = 11 modulo 3 = 2, and one PD from
device (12-1-1) modulo 3 = 10 modulo 3 = 1. Thus, it sends re-mapping requests
to these devices. A2 requests P11 (as its mapped PD with highest CID) to re-map to
A3, and A1 requests P10 to re-map to A3. After P11 and P10 have sent their resource
information to A3, the respective Virtual Containers are created by A3 and enable
the integration of the resources from P11 and P10 into local configurations at A3.

A4 proceeds in the same way, as it can be seen in the central box of Figure 4.27.
Since A4 can simply calculate that A3 (as new AD with lower CID) re-maps two
PDs, it sets remap to 2 and calculates the CIDs of the ADs from which it request
to re-map PDs: As (12-1-2) modulo (5-2) = 9 modulo 3 = 0 and (12-1-3) modulo
(5-2) = 8 modulo 3 = 2, A4 requests one PD from A0 and one PD from A2 to be
re-mapped to itself. Then, A0 and A2 notify their mapped PDs with highest CIDs
(i.e., P9 for A0, and P8 for A2) to re-map to A4. Finally, P9 and P8 send their
resource information to A4, the respective Virtual Containers are created, and the
re-mapping process is completed. The emerging updated cluster structure is shown
at the right hand side of Figure 4.27.

Disappearance of PDs: If a PD Pj disappears, all ADs need to decrement
the number n of PDs, and Pj’s mapping needs to be removed at the AD Aj to



116 4. A Hybrid Approach for Automatic Application Configuration

which it was mapped. Additionally, Aj verifies if the Balancing Condition is still
fulfilled for itself. If this is not the case, Aj sends a remapping request to the AD
with index k = n modulo m. Then, Ak notifies its mapped PD with highest CID
that this PD needs to be remapped to Aj. The chosen PD finishes this remapping
process by sending its resource information to Aj. Additionally, if Pj disappears
during an ongoing configuration process, Aj recognizes those parts of the application
which were provided by Pj’s components and adapts the configuration by selecting
alternative components for them, if available.

P2 disappears → n modulo m = 11 modulo 5 = 1

A2: CID = 2 → 2 ≥ 1 → mapped(A2) =  11/5  = 2
   → Re-map 1 PD from AD with CID n mod m = 1
   → P7 (A1's PD with highest CID) re-maps to A2! 

P10 disappears → n modulo m = 10 modulo 5 = 0

A3: CID = 3 → 3 ≥ 0 → mapped(A3) =  10/5  = 2 
   → Re-map 1 PD from AD with CID n mod m = 0
   → P6 (A0's PD with highest CID) re-maps to A3!

P11 disappears → n modulo m = 9 modulo 5 = 4

A3: CID = 3 → 3 < 4 → mapped(A3) =  9/5  + 1 = 2 
   → Re-map 1 PD from AD with CID n mod m = 4
   → P9 (A4's PD with highest CID) re-maps to A3!

Cluster Maintenance: Disappearing PDsInitial
Situation:

Updated 
Clusters:

P0

P1

P2

P4

P3

P5

P6

P10

A0

A1

A2

P8 P9

P7

P11A3

A4

X

P2, P10, and P11
disappear!

X X

(For clarification, 
CIDs of PDs 
not adapted)

P0

P1

P7

P4

P3

P5

P6

P6

A0

A1

A2

P8 P9

P7

P9A3

A4

Figure 4.28.: Cluster Maintenance: Passive Devices P2, P10 and P11 disappear in
this order and induce re-mappings for ADs A2 and A3

As an example, consider the situation depicted at the left hand side of Figure 4.28,
where three Passive Devices – P2, P10, and P11 – disappear in this order. When P2

disappears, A2 (as the Active Device to which P2 was mapped to) finds out that
it needs to have two devices mapped (cf. Equation 4.13), but only has one device
mapped. Thus, it send a re-mapping request to the AD with CID n modulo m = 1.
In the following, A1 requests its mapped PD with highest CID (i.e., P7) to send its
resource information to A2, which then creates the corresponding Virtual Container.

Now, consider the case that P10 which was mapped to A3 disappears. A3 de-
termines it needs to have

⌊
10
5

⌋
= 2 devices mapped, and requests to re-map one

PD from the AD with CID 10 modulo 5 = 0. After having received the resource
information of P6, A3 creates the corresponding Virtual Container, and the clusters
are balanced again.

When P11 – which was also mapped to A3 – disappears, A3 needs to re-map again
one PD from another AD, and determines the AD with CID 9 modulo 5 = 4 as the
respective device. Finally after A3 has re-mapped P9 from A4, the cluster structure
as shown at the right hand side of Figure 4.28 is established. As one can see, the
Balancing Condition is obviously fulfilled again due to the taken re-mappings. It
has to be mentioned that in this example, the CIDs of those PDs with a higher CID



4.4. Hybrid Application Configuration 117

than the disappearing PDs (i.e., the PDs with CID higher than 2) are not adapted
in this example for the sake of clearness. Actually, the CIDs of the remaining PDs
would need to be reduced accordingly when PDs with lower indices disappear, e.g.,
if P2 disappears, the PDs with CID 3 up to 11 would reduce their CID by 1.

Disappearance of ADs: Finally, the case of a disappearing AD Ax remains.
If Ax was the last available AD, then each PD notices that the cluster structure is
dissolved, and the decentralized configuration approach is chosen in future config-
uration processes. Otherwise, re-mapping processes are necessary: Each PD that
recognizes that its cluster head Ax is gone broadcasts a so-called Unmapped Message
to notify the other nodes that it is currently unmapped and needs to be remapped
to another AD. If an AD Ay notices the disappearance of Ax, it at first checks if Ax
had a lower CID than itself. In this case, it decrements its CID. Then, Ay needs
to calculate the number of required remappings (remap(Ax)) for itself: In order to
fulfill the Balancing Condition, Ay needs to remap at least

⌊
n
m

⌋
devices, minus the

number of its currently mapped devices (mapped(Ay)). As before, if Ay recognizes
that there are some remaining unmapped devices, i.e., n modulo m = z > 0, the ADs
with device indices 0, . . . , z − 1 need to remap one additional device. Subsequently,
each AD broadcasts how many remappings it will perform. Then, each AD waits for
a certain time T1 to gather all remapping and unmapped messages. The value of T1
has to be large enough to cover the whole gathering process. Otherwise, T1 expires
without all messages having been received, causing inconsistencies and potentially
thrashing effects in the remapping processes. However, as too large values of T1 un-
necessarily increase the time for (re-)clusterings, T1 must also not be chosen too high.
A reasonable compromise is to determine the average time a gathering process takes
in typical scenarios, and add some additional time to be on the safe side. Further in-
formation about the value we chose for T1 is given in our evaluations in Section 4.5.3.
After this waiting time, each AD knows which PDs are unmapped, and how many
PDs the other ADs will remap. Finally, the remappings are performed according
to the indices of the involved ADs and PDs: AD A0 with lowest CID 0 maps the
remap(A0) unmapped PDs with lowest CIDs, i.e., the unmapped PDs with CIDs
0, . . . , remap(A0)−1. AD A1 with the second lowest CID maps the remap(A1) PDs
with next higher indices, i.e. remap(A0), . . . , remap(A0) + remap(A1) − 1, and so
on up to the AD with highest CID which maps the unmapped PDs with highest
CIDs. In the special case of a disappearing AD Ax during an ongoing configuration
process, those parts of the application which were calculated by Ax are no longer
available, making a remapping of the PDs that were mapped to Ax and a subsequent
restart of the configuration process inevitable. This increases the arising latencies.
However, a disappearing infrastructure-device exactly at a configuration process is
quite unlikely and should happen rather seldom.

Figure 4.29 shows a scenario where at first, AD A3 disappears, and then, A1

disappears. When A3 disappears, the PDs of A3 are unmapped. Moreover, the
number of ADs is reduced to m = 4 and, thus, n modulo m = 1. This induces
that A0 has to have three PDs mapped, and A1, A2, and A4 need to have two PDs
mapped. As each AD can simply calculate how many PDs every other AD needs to
have mapped (since the numbers n and m and the CIDs of all devices are known
to each device), every AD knows that A0 and A4 re-map the two PDs P5 and P8



118 4. A Hybrid Approach for Automatic Application Configuration

(which were previously mapped to A3). Since the CID of A0 is lower than the CID
of A4, A0 re-maps P5 (as the unmapped PD with lower CID), and A4 re-maps P8.
Now, every PD is mapped to one AD again, and the Balancing Condition remains
fulfilled. After A1 has disappeared, m is reduced to 3, and P1 and P3 are unmapped
now. Same as above, every AD can simply calculate how many PDs it needs to have
mapped. In the situation given, all ADs need to have 3 PDs mapped, so A2 and
A4 have to take care for P1 and P3. Regarding their CIDs, A2 re-maps P1 and A4

re-maps P3. This leads to the situation shown at the right hand side of Figure 4.29.

A3 disappears → n modulo m = 9 modulo 4 = 1

A0: CID = 0 → 0 < 1 → mapped(A0) =  9/4  + 1 = 3
   → Re-map 1 PD from AD A3 → P5 is re-mapped!
A1: CID = 1 → 1 ≥ 1 → mapped(A1) =  9/4  = 2
   → No re-mappings needed!
A2: CID = 2 → 2 ≥ 1 → mapped(A2) =  9/4  = 2
   → No re-mappings needed!
A4: CID = 4 → 4 ≥ 1 → mapped(A4) =  9/4  = 2
   → Re-map 1 PD from AD A3 → P8 is re-mapped!

A1 disappears → n modulo m = 9 modulo 3 = 0

A0: CID = 0 → 0 ≥ 0 → mapped(A0) =  9/3  = 3
   → No re-mappings needed!
A2: CID = 2 → 2 ≥ 0 → mapped(A2) =  9/3  = 3
   → Re-map 1 PD from AD A1 → P1 is re-mapped!
A4: CID = 4 → 4 ≥ 0 → mapped(A4) =  9/3  = 3
   → Re-map 1 PD from AD A1 → P3 is re-mapped!

Cluster Maintenance: Disappearing ADsInitial
Situation:

Updated 
Clusters:

A3 and A1
disappear!

(For clarification, 
CIDs of ADs 
not adapted)

P0

P1

P6

P3

P2

P4

P5

A0

A1

A2

P7

P8A3

A4

P0

P1

P6

P3

P2

P4

P5

A0

A1

A2

P7

P8A3

A4

X

P5

P8

P1

P3

A1 A3

X

X X

Figure 4.29.: Cluster Maintenance: Active Devices A3 and A1 disappear in this order
and induce re-mappings at the other Active Devices

If in the depicted situation, two of the three remaining ADs A0, A2 and A4 would
disappear, all PDs would be mapped to the remaining AD. This AD would manage
n Virtual Containers then and calculate upcoming application configurations in a
centralized fashion using Direct Backtracking which was presented in Section 4.2.
In case the single remaining AD would also disappear, the cluster structure would
be dissolved, and completely decentralized configuration would be performed.

4.4.3. Hybrid Configuration Algorithm

Our new approach calculates configurations in a decentralized manner involving the
subset of ADs, while the configuration of each PD’s components is performed locally
on the AD it was mapped to, i.e., in a centralized way. Therefore, the created VCs
are used (cf. Section 4.3.5). This leads to faster configuration calculations compared
to the decentralized configuration, as we will show in the evaluations. Moreover, the
resource-weak PDs are not involved in these calculations. This helps to conserve
the (usually limited) energy resources of the PDs and ensures a configuration which



4.4. Hybrid Application Configuration 119

is aware of the devices’ computation resources. In summary, the decentralized and
centralized parts of the configuration resolve to the aspired hybrid configuration
approach. We suppose that the resource conditions are stable during configuration.

An adapted version of Yokoo’s Asynchronous Backtracking (ABT, [YDIK98]) al-
gorithm which was introduced by Handte et al. [HBR05] is used for the cooperative
configuration between the ADs. ABT is a decentralized algorithm which enables
the concurrent configuration of components and utilizes the available parallelism.
It performs a depth-first search in the tree of dependencies. In case a dependency
cannot be fulfilled, dependency-directed backtracking that is solely based on look-
back techniques is used. This means that the scheme tries to improve the value
assignment by learning from previous assignments that failed. Thus, Asynchronous
Backtracking tries to avoid failures that have been made in the past to some ex-
tent. ABT needs total priority ordered variables [Han09]. Moreover, unidirectional
communication links between variables sharing a constraint have to be established
from the variables with higher priority to the variables with lower priority. In the
following, ABT is started in parallel: Each agent assigns some value to its variable
so that it does not conflict with its known constraints. According to the depth-first
search approach, the priorities are given from left to right and from top to bottom
of the tree. This means that the top-left instance has highest priority, while the
bottom-right instance gets the lowest priority. While agents with variables with
higher priority send their current assignment to linked agents with variables with
lower priority on every variable change, agents with lower priority have to evaluate
the constraints that they share with agents with higher priority. If an agent needs
to change an assignment, it sends its new assignment to all linked agents. How-
ever, when an agent detects that it cannot assign a value to its variable without
conflicting with a constraint, it creates a so-called nogood, containing the set of as-
signments from higher prior agents that caused the conflict. Then, this nogood is
sent to the agent that created this assignment, which then checks whether the no-
good is still valid by comparing the value assignments of variables that it has already
recorded with those contained in the nogood: The nogood is only valid, if all the
recorded variable assignments and the variable assignments contained in the nogood
match. As decentralized configuration is not in the focus of this thesis, we refer to
Handte [Han09] for further details concerning configuration of an application using
Asynchronous Backtracking.

For the local configuration of the PDs’ components on the ADs, we use the Direct
Backtracking algorithm introduced in Section 4.2 to reduce the number of required
backtracking processes and minimize the overhead of the remaining backtrackings
to guarantee efficient centralized configuration processes. However, regarding the
choice of the backtracking goals as described in Section 4.2.3, the scheme used within
hybrid configuration differs from the completely centralized approach by introducing
an additional selection criterion which priorizes the components to be chosen in a
more fine-grained way that additionally considers the locality of the components: If
several components are available that fulfill the requirements given by a dependency,
the algorithm at first decides in favor of a component which is locally available on
an Active Device A, since this does not produce any communication overhead at
all. If there is no local component available on A, the algorithm tries to choose a



120 4. A Hybrid Approach for Automatic Application Configuration

component which is available on a Passive Device that has been mapped to A, as
this does not produce communication overhead during the configuration calculation
phase (due to the established VC), but only at the subsequent initialization of the
component bindings.

In case there is neither a local component nor a component on a mapped device via
emulated VC available, the algorithm decides in favor of a component available on a
remote device which is not mapped to A. This represents the worst case for resolving
an application dependency with the hybrid scheme, as it produces communication
overhead both at the configuration calculation phase and at the initialization of the
component bindings. As a secondary criterion for selecting an application compo-
nent (in case the locality criterion does not yield a unique decision in favor of a
specific component), the available resource amount and the resource consumption
of a specific component are evaluated, as described for the centralized configuration
algorithm (cf. Section 4.2.2). Thus, the locality of backtracking goals represents
the highest selection priority and is more important in the hybrid scheme than the
amount of resources a component consumes, as remote communication significantly
increases configuration latencies and introduces waiting times at the involved Active
Devices within configuration calculations. Furthermore, it also reduces the achiev-
able degree of parallelism.

To illustrate how decentralized and centralized configuration are combined by the
hybrid approach, we now present an exemplary hybrid configuration on the basis
of the exemplary distributed presentation application introduced in Section 2.1.2.
Therefore, consider Figure 4.30 which presents the devices and the established clus-
ter structure using the scheme discussed previously in this section. The regarded
scenario consists of two strong devices, a desktop PC (Active Device A0) and a lap-
top (A1). Concerning locally available components, the PC provides a microphone,
a keyboard and a connected video projector, while the laptop supplies a headset
and a mouse. Regarding the available weak devices, a netbook (Passive Device P0,
providing access to loudspeakers) and a tablet device (P2, providing access to a TV
monitor) have been mapped to the PC, and a smart phone (P1, providing the presen-
tation source file and a touch display as GUI) has been mapped to the laptop. This
leads to the illustrated two clusters and the fulfillment of the Balancing Condition
for every AD.

For the actual hybrid configuration, consider Figure 4.31 which presents the struc-
ture of the distributed presentation application and the proceeding of the involved
decentralized (Asynchronous Backtracking, [HBR05]) and centralized (Direct Back-
tracking, [SHR08b]) configuration algorithms. When the user wants to start the ap-
plication on his or her smart phone P1, the application anchor is initialized and the
application information is sent to A1 as the Active Device to which P1 is mapped to.
The anchor instance has three child components, whereas one of these child compo-
nents (CoID [0,0][2,0]) is locally available on A0, and two of these child components
(CoIDs [0,0][0,0] and [0,0][1,0]) are resident on devices for which A1 is responsible.
Thus, A1 tries to configure the left and the middle subtree of the application anchor,
and A1 requests A0 to configure the right subtree, as the requirements of component
instance [0,0][2,0] cannot be fulfilled by any component for which A1 is responsible.



4.4. Hybrid Application Configuration 121

Cluster 1

A0
A1

P1

Cluster 0

P0

P2

Figure 4.30.: Cluster Structure for exemplary Hybrid Configuration

The two contracts of the left subtree are not multi-optional, so A1 simply selects
the smart phone as source file input device (CoID [0,0][0,0]) and the presentation
file on the smart phone (CoID [0,0][0,0][0,0]) as actual source file. In the middle
subtree, A1 can decide between the microphone available at A0 (CoID [0,0][1,0][0,0])
and the headset which is locally available (CoID [0,0][1,0][0,1]). According to the
locality selection criterion introduced above, A1 decides in favor of the headset to
avoid remote communication both at the configuration calculation stage and the
component initialization phase. For the haptic input component, A1 can choose
amongst the locally available mouse (CoID [0,0][1,0][1,0)), the keyboard at the re-
mote device A0 (CoID [0,0][1,0][1,1]), and the touch display (CoID [0,0][1,0][1,2]) of
the smart phone which is mapped to A1. Again, A1 decides in favor of the local
component and selects the mouse.

For the contract with component ID [0,0][2,0] of the right subtree, configured
by A0, the loudspeakers (CoID [0,0][2,0][0,0]) connected to the netbook represent
the only possible component. Thus, A0 selects these loudspeakers which are locally
available within a Virtual Container. Concerning the optical output component,
A0 prefers the locally connected video projector (CoID [0,0][2,0][1,0]) over the TV
(CoID [0,0][2,0][1,1]) to avoid communication overhead at the subsequent component
binding phase, as the TV is connected to the tablet PC that is mapped to A0 and,
hence, only available via VC.

The components which are configured by A0 are independent from the configura-
tion results that are provided by A1, as the respective contracts deal with different
types of resources. Thus, nogoods do not have to be created and, subsequently, no
distributed adaptation processes are required. Instead, the configuration results are
made permanent by instiantiating the respective components and establishing the
bindings between parent and child components of a contract.



122 4. A Hybrid Approach for Automatic Application Configuration

[0,0]

[0,0]
[2,0]

[0,0]
[2,0]
[0,0]

[0,0]
[2,0]
[1,1]

[0,0]
[1,0]
[1,2]

Optical
Output

Acoustic & Haptic
Input Device

[0,0]
[1,0]
[1,1]

Source File
Input Device

[0,0]
[0,0] Acoustic

Input 
Haptic
Input 

[0,0]
[1,0]
[0,1]

[0,0]
[1,0]
[0,0]

Application Anchor
(Root)

[0,0]
[1,0]

Acoustic
Output

Source
File

[0,0]

[0,0] Local component on A1 (Laptop)

[0,0]
VC

Virtual Component on A0 (PC)

[0,0]
VC

Virtual Component on A1 (Laptop)

VC

VC

VC VCVC

Local component on A0 (PC)Key:

[0,0]
[2,0]
[1,0]

[0,0]
[1,0]
[1,0]

[0,0]
[0,0]
[0,0]

Acoustic & Optical
Output Device

Local calculation on A0
(centralized)
Local calculation on A1
(centralized)
Distributed calculation,
involving A0 and A1
(decentralized)

VC

Unused component binding

Figure 4.31.: Proceeding of Hybrid Configuration Algorithm

In summary, it can be seen from Figure 4.31 that only one remote communication
between A0 and A1 (for the configuration of the acoustic and optical output device
instance with CoID [0,0][2,0]) was needed during the configuration calculation phase,
and two additional communications are required at the component binding phase
because of components which are resident on mapped Passive Devices and, thus,
only available through the provided Virtual Containers at the configuration phase.
The respective bindings have to be established between the instances with CoIDs
[0,0] (resident on the smart phone P1) and [0,0][1,0] (resident on the laptop A1),
and between the instances with CoID [0,0][2,0] (resident on the PC A0) and CoID
[0,0][2,0][0,0] (resident on the netbook P2).

After successful hybrid configuration, the ADs distribute the configuration results
among their PDs to notify them about which of their components were chosen. The
respective messages only contain the relevant information about the chosen compo-
nents on the recipient PDs. Thus, the average message overhead per application
component is just 9 kB. Finally, the component bindings are established, yielding
the application execution.

Comparing hybrid configuration to pure decentralized and centralized approaches
in this example would yield the following differences:

• Decentralized configuration would provide a higher degree of parallelism, as
the left and the middle subtree could be calculated independently by the Smart



4.4. Hybrid Application Configuration 123

Phone and the laptop. However, it would involve additional communication
overhead between the weak and strong devices, and the weak devices may
probably slow down the configuration calculation phase due to their reduced
computation power.

• Centralized configuration is performed completely locally on the single config-
uration device, but at the same time does not perform any kind of parallel
calculations. Furthermore, the complete configuration results would have to
be distributed to all other devices after the configuration, thus increasing the
latencies for the component binding stage of the configuration.

A more fine-grained comparison is given in the Evaluation Section 4.5.3.

4.4.4. Exemplary Hybrid Configuration Process

To clarify the proceeding of our hybrid scheme, we present a complete configuration
process here, covering the initial clustering, the actual hybrid configuration, and the
distribution of the configuration results. Resuming the introductory scenario from
Section 2.1.2, Figure 4.33 shows an exemplary environment where a distributed pre-
sentation application is executed in a strongly heterogeneous environment. When
a speaker wants to give a presentation, the configuration algorithm needs to auto-
matically find suitable components for the distributed application on these devices.
For instance, if a speaker wants to switch between the slides using the touchscreen
of his or her mobile phone (P2), a touch-based graphical user interface needs to be
provided on this device. Moreover, all presentation files may potentially be resident
on a remote device, like for instance the conference organizer’s smart phone (P3).
The speaker also needs supporting input and output devices such as the audito-
rium’s multimedia system covering video projector, loudspeakers and a microphone,
which are connected to the auditorium’s stationary PC (A0). As some auditors may
potentially be sitting far from the presentation screen, it might be more convenient
for them to have the slides displayed on their own mobile devices, e.g. their laptop
(A1) or even their mobile phone (P1). Thus, the application tree to be configured
could look quite similar like the one displayed in Figure 4.10.

Initially as first step, each device performs the benchmarking process to discover
its own resource power for configuration processes. In the examplary scenarios, this
yields clustering weights which are above the threshold of 0.5 for the desktop PC
(becoming Active Device A0 as it has lowest ID among the devices with high cluster
weights), the laptop (A1) and the server (A2). As the four Smart Phones assign
themselves cluster weights below 0.5, they become the Passive Devices P0 to P3,
assigned according to their device IDs, as shown in Figure 4.32.

In step 2, the cluster structure is established using the round robin scheme dis-
cussed in Section 4.4.1. This yields the desktop PC (A0) as cluster head for the PDs
P0 and P3, the laptop (A1) as cluster head for P1, and the server (A2) as cluster head
for P2. Then, the PDs transfer their current resource information to their respective
ADs. On the basis of this information, the ADs build the local representations of
the mapped PDs within Virtual Containers.



124 4. A Hybrid Approach for Automatic Application Configuration

ID: 0x170412B7 

ID: 0x33C27680 

ID: 0x01051985 

ID: 0x418F3CB7 

ID: 0x97A4EC3B 

ID: 0xBB3F7A26 

w = 0.72 

w = 0.18 

w = 0.65 

w = 0.81 

w = 0.28 

w = 0.15 

w = 0.21 

ID: 0x51B362D3 

Figure 4.32.: Heterogeneous scenario for hybrid application configuration in initial
situation

11

1

2

2

2

2

A0

P0

P3
P2

P1

a) b)

A1 A2

A0

P0

P3

P2

P1
A2

4

4

5

5

6
4

A1

3

6
6

5

6

Figure 4.33.: Hybrid application configuration example

Now, regard the situation when a user wants to start an application on his or
her mobile device, represented by P2, as it is shown within step 3 in Figure 4.33b.
Subsequently, the information about the application start is transmitted to A2, as
the responsible cluster head for P2.

In the following, A2 initiates the hybrid configuration of the application, which
is shown in step 4: At first, A2 verifies which of the dependencies can be resolved
by components of its local container and the Virtual Container that represents its
mapped device P2. For the remaining unresolved functionalities, A2 requests ADs A0

and A1 to resolve these dependencies: While A0 provides the presentation file avail-
able on the conference organizer’s smart phone (P3), A1 supplies the corresponding
information about the listener’s available display components for showing the slides
(using the laptop’s (A1) and the smart phone’s (P1) displays) and the auditorium’s
multimedia components which are connected to the laptop (A1).

Subsequently, the complete configuration is constructed by A2 from the partial
information provided by ADs A0 and A1. After successful configuration, the cluster
heads inform their mapped passive devices whose components are used in the con-
figuration, i.e., P1 (display as visual output component), P2 (display as GUI), and



4.5. Evaluation 125

P3 (presentation file as input component), about their component configurations
(step 5).

Finally in step 6, the determined components are initialized, the bindings between
the components – as negotiated within step 5 – are established, and the application
is successfully executed.

4.5. Evaluation

In the following evaluations, two significant results are shown:

1. In weakly heterogeneous environments, a centralized configuration approach in
combination with a proactive loading of the relevant resource information from
other devices reduces the latencies drastically. If the centralized configuration
is calculated on the resource-richest device, latencies drop by almost 40 % on
average compared to decentralized configuration.

2. In strongly heterogeneous environments, a hybrid scheme further reduces the
configuration latencies by around 35 % both compared to centralized and
to decentralized configuration. This is because configurations are calculated
cooperatively and parallel by the resource-rich devices only, without involving
the resource-poor devices.

4.5.1. Evaluation Setup

We evaluated our approaches using applications with a binary tree structure and
varying tree heights between 2 and 6, yielding application sizes between 7 and 127
components. The evaluations of applications with more than 31 components were
conducted to show scalability of the approaches. Unless otherwise stated, each value
given in a graph represents the average of 50 measurements, respectively. Standard
deviations did not exceed 15 %. We performed three different kinds of evaluation:

1. Prototype Implementation: We implemented the concepts in a prototype of
the component system PCOM [BHSR04], which is described in more de-
tails in Section 6.3. We performed measurements on devices which are typi-
cally used in Pervasive Computing environments: Laptops (Pentium M CPU,
1.6 GHz) represent the resource-rich devices, while the resource-poor devices
are represented by Smart Phones (PXA 270 CPU, 528 MHz). We used IEEE
802.11b (11 MBit/s) as standard wireless communication technology and rely
on the device and service registry provided by the communication middleware
BASE [BSGR03], as described in Section 6.2 in detail. In scenarios with more
than 12 devices, we used simulation or emulation.

2. Simulation: We used a discrete-event simulator of PCOM (cf. Section 6.4) to
compare our algorithm Direct Backtracking (DBT) with Synchronous Back-
tracking (SBT) as a standard backtracking algorithm. This simulator enables
fast and easy comparisons of different configuration algorithms at large scales
concerning the pure computation time of the algorithm.



126 4. A Hybrid Approach for Automatic Application Configuration

3. Emulation: The PCOM simulator cannot simulate the arising communication
latencies of distributed algorithms. Since we wanted to perform our evaluations
on the middleware systems PCOM and BASE to obtain realistic results, we
performed the configuration latency measurements in scenarios with more than
12 devices on the network emulation cluster NET [HR02, GHR09] available at
our institute.

Below, we will describe in more detail the evaluation methods and the parame-
ters we used for the specific measurements in weakly and strongly heterogeneous
environments.

The scenarios where we took our evaluations can generally be distinguished by
the heterogeneity of the involved devices. In accordance with the different con-
figuration approaches which have been developed (decentralized, centralized, and
hybrid), we rely on three different kinds of Pervasive Computing environments for
our evaluations:

• Homogeneous MANET scenario (denoted S1 below): This scenario typically
emerges spontaneously. There is no supporting infrastructure, the computa-
tional resources on the devices are quite low and almost homogeneous. In
such environments, the configuration needs to be performed in a decentralized
manner, as infrastructure support cannot be guaranteed. Common use cases of
this scenario are meetings of businessmen or students carrying mobile devices
like Smart Phones or PDAs. In this work, we mainly focus on heterogeneous
scenarios. However, to show the general applicability of our approach, evalua-
tions in homogeneous Ad Hoc scenarios have also been taken. We prove that
our concepts are efficiently realizable in the complete spectrum of Pervasive
Computing environments. Configuration in a homogeneous MANET scenario
is evaluated in combination with our new PAC approach in Section 5.7.

• Weakly heterogeneous scenarios (S2): Besides the resource-weak mobile de-
vices, exactly one additional resource-rich infrastructure device is available in
weakly heterogeneous scenarios. This device has significantly increased com-
putational power. A typical realistic scenario is an office where a desktop PC
or a laptop is present besides the user’s mobile devices. A reasonable approach
to reduce configuration latencies here is to perform centralized configuration
on the single resource-rich infrastructure device.

• Strongly heterogeneous scenarios (S3): In this scenario, multiple resource-rich
devices as well as various mobile devices are present, which may be the case
in an auditorium during a presentation where users bring their resource-rich
laptops, but also their rather resource-weak Smart Phones or netbooks. In
such scenarios, utilizing a hybrid configuration scheme, which combines the
advantages of the centralized and decentralized approaches, increases the con-
figuration efficiency. Hence, it improves the performance of the configuration,
as we will show in Section 4.5.3. Strongly heterogeneous scenarios are also
evaluated in combination with the PAC concept.

Obviously, it is possible that the kind of scenario changes during the execution
of an application. Such dynamic scenarios are evaluated in combination with the
determination of suitable dynamic parameters for the PAC concept in Section 5.7.



4.5. Evaluation 127

4.5.2. Centralized Configuration in Weakly Heterogeneous
Scenarios

Initially, we focused on weakly heterogeneous environments, consisting of exactly one
powerful device and several weak devices. In these scenarios, we first compare the
new centralized Direct Backtracking algorithm to its closest competitor to show the
efficiency of our algorithm. Then, we evaluate Direct Backtracking in comparison
to the decentralized algorithm which was previously used in our system.

Experimental Setup

We first evaluate the centralized DBT algorithm in the PCOM Simulator and com-
pare our algorithm to Synchronous Backtracking (SBT, [YDIK98]), which is a depth-
first search algorithm that does neither perform backtracking avoidance, nor does it
provide intelligent backtracking mechanisms. As mentioned in Section 3.1, advanta-
geous algorithms like Synchronous Backjumping, Dependency-Directed Backtrack-
ing or Dynamic Backtraking either rely on a stack with monotonously growing space
consumption, or change the order of the variables, which is not an option here.

After having shown that DBT significantly outperforms SBT in typical Pervasive
Computing scenarios, we compare DBT to the distributed assembler that is based on
Asynchronous Backtracking (ABT, [Bak05]) and was developed in an earlier work
by Handte et al. [HBR05].

For our evaluations, we use the following variable system input parameters to
distinguish between different scenarios:

• Application size: For these evaluations, we use applications with abstract
components which form binary trees. By selecting different depths for the
application trees, we adapt the size of the applications to analyze the behavior
of the algorithms in various realistic scenarios.

• Number of multi-optional contracts: Multi-optional contracts have a
large impact on the efficiency of specific configuration algorithms, as they rep-
resent points where the algorithm can choose among several options. Thus,
when we compare DBT to SBT, we evaluate different numbers of multi-
optional contracts to compare the performance of the algorithms in scenarios
with difference degrees of resource availability.

• Number of involved devices: While the efficiency of the actual centralized
configuration calculation is rather depending on the computation power of
the single configuration device, the number of totally available devices has a
strong impact on decentralized configuration approaches, as all devices have
to communicate to each other there. Furthermore, the number of available
devices also influences the time it takes to gather the resource information of
the remote devices as well as distributing the results after the configuration to
the other devices.



128 4. A Hybrid Approach for Automatic Application Configuration

Furthermore, we evaluate the algorithms according to the following metrics:

• Configuration latencies: The most important metric in our evaluatiosn
to identify the efficiency of an algorithm is the configuration latency, which
represents the time span between the start of the configuration process and
the provision of the calculated application composition. Thus, we present
results of extensive measurements where we compare our centralized approach
with related centralized and decentralized approaches in weakly heterogeneous
environments.

• Space and memory overhead of Direct Backtracking: We compare
DBT and SBT according to the space consumption of their Java classes on
the device’s hard disk, and according to the consumed Random Access Memory
(RAM) while the algorithms are running.

• Class loading latencies of the clustering framework: As the developed
pre-configuration process requires a proactive loading of the needed configura-
tion classes, we measure the latencies that arise by this process. Please notice
that these times do not affect the configuration calculation latencies, since
these tasks are supposed to be performed prior to the configuration.

Moreover, we determine the break-even points when we compare DBT to SBT.
There, we show that there exist only few scenarios where SBT outperforms DBT.
However, by determining the break-even points in scenarios with different appli-
cation sizes and fractions of multi-optional contracts, we will discover that DBT
performs better than SBT in the vast majority of the evaluated scenarios.

Latency Comparison of Direct Backtracking and Synchronous Backtracking

The main goal in the development of an advanced centralized configuration algo-
rithm was the reduction of the configuration latency that is noticeable for the user.
Figure 4.34 shows DBT’s latency relative to the respective SBT performance with
three different application sizes (15, 31, and – to evaluate scalability of the ap-
proaches – 63 components). Values above 1.0 indicate a DBT performance that is
worse than that of SBT, while values below 1.0 indicate better performance.

On average, there is an immense improvement when using DBT, which becomes
particularly large when many contracts are multi-optional: SBT needs to perform
many backtracking processes there, while DBT avoids most backtracking processes
due to its proactive backtracking avoidance. Furthermore, it performs the remaining
adaptations much smoother due to its intelligent backtracking, and avoids thrash-
ing effects by considering the cause of a backtrack. DBT’s performance gain even
increases with increasing application size, as adaptation processes cover more com-
ponents then. For instance, DBT induces just about 4.2 % of the latency of SBT if
an application consists of 63 contracts and 14 of these contracts are multi-optional.

Nevertheless, it must be mentioned that for small fractions of multi-optional con-
tracts, SBT performs better than DBT by up to 20 %. This is because of DBT’s
additional checks for avoiding conflict situations and the process of storing the back-



4.5. Evaluation 129

Figure 4.34.: Latency of centralized configuration with DBT, relative to SBT refer-
ence (k ∈ {15, 31, 63})

tracking causes. Since absolute latencies were very small in those cases (in the range
of few milliseconds), we consider this overhead as neglectable.

Subsequently, we determine the break-even points, which represent the fractions of
multi-optional contracts where DBT starts to outperform SBT when an application
of a specific size is used. Therefore, we perform measurements with various tree
heights (i.e., application sizes) and numbers of multi-optional contracts. Figure 4.35
shows the relative performance of DBT and SBT depending on these two param-
eters. The figure shows that with an increasing tree height, the break-even points
exponentially decrease in dependence of the fraction of multi-optional contracts.
This means that for huge applications, even if just a small amount of contracts
is multi-optional, DBT is the better choice regarding configuration latency. Thus,
DBT is particularly helpful in reducing the latencies when extensive calculations
have to be performed.

Besides the configuration latencies, we evaluated the following issues:

• Communication overhead: Compared to the other centralized backtracking
algorithms presented in Section 3.1, no additional communication overhead
arises during runtime of our algorithm, as the calculations are solely performed
on a single device.

• Success quota: The scenarios have been created in a way that at least one
valid configuration exists for each scenario. In every single simulation run, both
SBT and DBT terminated successfully with a valid application configuration.

• Memory overhead: Compared to SBT, DBT needs to store additional in-
formation about arising conflicts, especially the contract chosen for adaptation
and the contract where the algorithm has to continue after an adaptation has
been performed. We measured the average random access memory consump-



130 4. A Hybrid Approach for Automatic Application Configuration

Figure 4.35.: Break-even points, depicted by borderline

tion of the algorithm on a common desktop PC and compared it to SBT.
While the memory consumption of SBT was almost independent from the ap-
plication size and the number of conflicts (the standard deviation was below
2 % in all runs), the overhead of DBT increased with the application size and
the number of multi-optional contracts, but remained within acceptable limits.
The average memory overhead of DBT varies between 8.0 % for small applica-
tions with tree height 2, and 27.6 % for very large applications with tree height
10. The maximum overhead of DBT compared to SBT in a single simulation
run was 38.5 %, the absolute amount of required memory was 19.2 Megabytes.
The results of the memory evaluation are shown in Figure 4.36.

• Source code size: While our Synchronous Backtracking implementation
needs 10.8 kB of disk space, Direct Backtracking consumes about 96.9 kB,
mainly because of the code overhead for proactive backtracking avoidance and
intelligent backtracking.

Regarding that the algorithm is optimized for the use on resource-rich devices be-
cause of its centralized nature, the additional code overhead as well as the memory
overhead do not prevent the use of DBT.

Latency Comparison of Direct Backtracking and Asynchronous Backtracking

In the previous section, we have shown that DBT significantly outperforms SBT
due to its advanced backtracking mechanisms. Now, we focus on the efficient ex-
ploitation of the computation power of an available resource-rich device in a weakly
heterogeneous environment now.

Therefore, we perform measurements on our prototype and compare centralized
configuration that uses DBT (cf. Section 4.2.1) and VCs (cf. Section 4.3.5) to
the decentralized approach [HBR05] based on Asynchronous Backtracking (ABT)



4.5. Evaluation 131

Figure 4.36.: Memory overhead of Direct Backtracking

[YDIK98] in two environments: a homogeneous environment consisting only of
resource-weak devices, and a weakly heterogeneous environment that consists of
one resource-rich device and up to six resource-poor devices.

As the realized configuration process uses the presented Virtual Container con-
cept, the required classes have to be loaded via mobile code, which causes additional
latencies. This has to happen initially, and also after environmental changes, e.g.
the presence of new devices, have taken place. These latencies are presented in Fig-
ure 4.37. The figure states that in the heterogeneous environment, the class loading
is performed by 33 % faster in case of two devices, and up to 55 % if five devices are
involved compared to the homogeneous environment (where the classes were loaded
on one of the resource-weak devices). This is because the loading of remote classes
is performed significantly faster on a resource-rich device.

When the cluster head changes, a handover mechanism (implemented within the
so-called Handover Mobile Code Accessor, cf. Section 6.3.2) immediately transmits
the previous cluster head’s state to the new cluster head. Because of this, the new
cluster head does not need to request the configuration classes from the involved
devices. Figure 4.37 displays that when the cluster head changes for a number of
resource-weak devices, the use of this handover mechanism reduces class loading
latencies up to 33 % in a pure Ad Hoc environment with five involved devices, and
around 31 % in the corresponding heterogeneous scenario. Thus, the use of such a
handover mechanism can significantly speed up class loading processes, particularly
when the number of involved devices rises.

Figure 4.38 shows the measured overall configuration latencies in the same scenar-
ios. In every single measurement, DBT calculates a valid configuration much faster
than ABT. On average, DBT outperforms ABT by around 38.6 %. This is because
DBT calculates configurations completely local on the cluster head, as the required
resource information is proactively obtained when a cluster member is mapped and



132 4. A Hybrid Approach for Automatic Application Configuration

Figure 4.37.: Class loading latencies (k = 15)

stored in the Virtual Containers. Hence, the resource-rich cluster head does not
have to wait for I/O operations.

Thus, centralized DBT configuration should be preferred over decentralized ABT
configuration whenever exactly one resource-rich device is available, as this leads to
considerable performance gains.

4.5.3. Hybrid Configuration in Strongly Heterogeneous Scenarios

In scenarios with several strong devices, relying on a hybrid configuration that com-
bines the advantages of centralized and decentralized configuration as discussed in
Section 4.4 is highly reasonable, as we will show in the following evaluations. To
measure the performance of the hybrid approach in strongly heterogeneous scenarios,
we compare its overall latencies with those of the decentralized and centralized ap-
proaches. We perform evaluations on our prototype as well as an emulation testbed
in heterogeneous scenarios with two different application sizes and different numbers
of devices, and 50 % resource-rich devices in each scenario.

Experimental Setup

For evaluations based on our prototypical implementation, we use six laptops and
six Smart Phones with the specifications as described in Section 4.5.1. The laptops
are assigned cluster heads (ADs), while the Smart Phones become cluster members
(PDs) and are equally distributed among the cluster heads by the clustering scheme
introduced in Section 4.4. In all scenarios, we use the IEEE 802.11b Ad Hoc mode
in combination with broadcast messages between the devices. The configuration
process is initiated by invoking the application anchor on one of the smart phones.
Apart from the evaluations where we rely on our prototype implementation, we also



4.5. Evaluation 133

Figure 4.38.: Configuration latencies of centralized DBT configuration and decen-
tralized ABT configuration in weakly heterogeneous environments
(k = 15)

perform extensive experiments using the Network Emulation Testbed (NET, [HR02])
to evaluate the scalability of our approach in larger scenarios with up to 85 devices.
In these evaluations, we rely on the same wireless network setup. To find a suitable
value for the parameter T1 for gathering the unmapped and remapping messages (cf.
Section 4.4.2), we perform 50 measurements to identify the time it takes to gather
this information from the other devices. The average time to receive all of these
messages is 0.57 s. Furthermore, the gathering process never takes longer than 0.83 s,
even in large scenarios. As a precaution, we initialize T1 with a slightly increased
value of 1 s for the evaluations. Consequently, we did not face any thrashing effects
or race conditions in the remapping processes during any of the taken evaluations.
In the shown graphs, each measurement represents the average of 50 evaluation
runs. Standard deviations are below 15 % in all cases and below 10% in 90% of all
measurements.

We use the PCOM [BHSR04] system for our evaluations. We measure the con-
figuration latencies in a scenario with a binary tree of depth 4, i.e. k1 = 31, which
represents a typical application size according to the conducted survey we presented
in Section 2.1.2. Additionally, we perform scalability measurements using a larger
binary tree of depth 6, i.e., the application consists of k2 = 127 components. In the
evaluations, the laptops get an increased number of resources compared to the Smart
Phones (factor 2 to 5, randomly chosen per laptop) to consider that they are usually
equipped with more resources. We evaluate the hybrid scheme in comparison to the
totally decentralized and centralized approaches to show the advantage over these
standard approaches. We measure the message overhead and the latencies that arise
at the various stages – preconfiguration, configuration, result distribution, compo-



134 4. A Hybrid Approach for Automatic Application Configuration

nent bindings – of the configuration process. Moreover, we evaluate an adaptation
process, where only 50 % of the components need to be adapted.

Communication Overhead Measurements

Figure 4.39 shows the message overhead at the various stages of the configuration
at the large scale scenario (k2 = 127). In these graphs, “Hybrid-x” denotes mea-
surements for the hybrid approach with x ADs (laptops), where 2 ≤ x ≤ 6. The
remaining devices (smart phones) represent the PDs.

In the preconfiguration process (Figure 4.39a), an average overhead of 53 kB per
device and configuration process arises for the centralized and hybrid schemes, since
these schemes need to build the cluster structure and to transmit the configuration-
specific information for the VCs. For hybrid configuration, this overhead arises only
at every PD, as they need to transmit their resource information to their cluster
head. The decentralized scheme does not use preconfiguration and, thus, does not
produce any overhead here.

Figure 4.39b shows the message overhead required for the configuration calcu-
lations. In centralized configuration, the device where the application was started
initially transmits the application information to the cluster head. The resulting
overhead only depends on the application size, i.e., the involved components. As
we use a fixed-size application, the overhead is static with 183 kB in total per con-
figuration process. The hybrid approach’s message overhead mainly depends on
the number of involved ADs, as only they calculate configurations. Thus, a rising
number of available PDs does not have an impact on the message overhead. The
message overhead for decentralized configuration increases with a rising number of
involved devices, as all devices have to communicate with each other. However, this
overhead converges for a larger number of involved devices, since the per-device-
overhead decreases due to a lower number of components per device. The central-
ized approach’s distribution overhead (Figure 4.39c) and the component binding
overhead (Figure 4.39d) converge for the same reason.

As the devices piggyback the configuration results during the decentralized con-
figuration process to increase efficiency of this approach, no further messages are
needed for distributing the results, as it can be seen in Figure 4.39c. Compared to
the centralized approach, the piggybacking increases the overhead during the config-
uration process by 403 kB, but reduces the result distribution overhead by 1418 kB
on average. In centralized configuration, the cluster head broadcasts the complete
composition, yielding high communication overhead. In hybrid configuration, the
cluster heads only need to notify their PDs about which of their components were
chosen. Thus, the hybrid approach’s overhead rises linearly with the number of PDs.

The overhead for establishing the component bindings (Figure 4.39d) is the same
for all configuration schemes, as it is independent from the actual configuration.
This overhead rises with a rising number of involved devices, since bindings between
components on different devices are likely to emerge more often then.

Figure 4.39e shows the total message overhead for one configuration process as the
sum of all previously described overheads. The decentralized approach scales best,



4.5. Evaluation 135

Figure 4.39.: Communication overhead at the different stages of one configuration
process (k2 = 127)



136 4. A Hybrid Approach for Automatic Application Configuration

EmulationPrototype
b)

Figure 4.40.: Overall configuration latencies: a) k1 = 31 components, b) k2 = 127
components

as the configuration result are already piggybacked at the configuration process. Its
total message overhead converges with a rising number of involved devices because of
the almost constant overhead for configuration and no further distribution overhead
(cf. Figures 4.39b and 4.39c). The centralized approach performs worst because of
a high overhead for preconfiguration and result distribution. The hybrid approach
produces an average overhead at all stages of configuration, yielding a moderate
total overhead and showing its applicability concerning message overhead.

Regarding adaptation of only 50 % of all application components, the total mes-
sage overhead is shown in Figure 4.39f. Compared to configuration, the overheads
for the centralized and decentralized schemes are reduced by around 30 %, as only
parts of the application need to be re-calculated and distributed. The message over-
head of the hybrid scheme decreases by 25 % only, as the remapping messages need
to be sent, too. Thus, the hybrid and centralized schemes produce a comparable
message overhead, while the decentralized schemes’ overhead is around 22 % lower.

Configuration Latency Measurements

We compare the overall latencies of the three investigated approaches with the two
mentioned application sizes (k1 = 31 components, k2 = 127 components) and with
differing device numbers and 50 % resource-rich devices in each scenario. Figure 4.40
shows the total latencies. The evaluations on our prototype (Figure 4.40a) were per-
formed with 4 to 12 devices, and the emulations in the large- scale scenario with
k2 = 127 with up to 85 devices, where each laptop holds two resources and each
smart phone holds one resource. Increasing the number of devices above 85 would
not lead to changing results, since some of the devices would not hold any resources
then. Figure 4.40b shows that the latencies for the hybrid and the decentralized
approach at first drop with a rising number of devices. This happens because of an
increasing absolute number of resource-rich devices that are involved in configura-
tion calculations, while in centralized configuration, only one resource-rich device is
always used to calculate configurations. When the total number of devices exceeds



4.5. Evaluation 137

12 (distributed) or 16 (hybrid) devices, the overall latencies start to slightly in-
crease again, as the latencies for establishing the component bindings grow stronger
than the latencies for the configuration calculation drop. The latencies of centralized
configuration show continuous growth, as the latencies for distribution and establish-
ment of the bindings increase with a rising number of devices, while the configuration
latency remains constant. It can be seen that the hybrid approach outperforms the
decentralized approach by 35.7 % (k = 31) and by 34.5 % (k = 127) on average, and
the centralized approach by 26.3 % (k1 = 31) and by 44.1 % (k2 = 127), respectively.
These results point out the hybrid approach’s scalability concerning the arising con-
figuration latencies, as latency reduction still holds with large applications and many
involved devices.

For clarification, Figure 4.41 shows the latencies at the different configuration
stages in a specific scenario with k = 127, four ADs and up to six PDs. The
clustering of devices produces a negligible latency of below 30 ms per PD, as you can
see in Figure 4.41a. Re-clustering processes due to dynamics take a constant time of
1.1 s more than the initial clustering, mainly because of the chosen value of 1 s for
T1 (cf. Section 4.5.3). The loading of the resource information increases linear with
an overhead of 400 ms per device. The clustering and resource information loading
latencies are not included in the overall latencies in Figures 4.41e and 4.41f, as they
are performed once prior to the configuration. However, the re-clustering latency is
included in the overall adaptation latency shown in Figure 4.41f.

Regarding the latency for the configuration calculation itself (Figure 4.41b), the
centralized approach performs best, as the resource-richest device locally calculates
the configuration, without having to wait for partial results from remote devices.
The decentralized approach is significantly slowed down due to the fact that the
resource-limited devices are involved in the calculations. Another factor is the im-
mense communication overhead of the decentralized approach at the configuration
stage (cf. Figure 4.39b). In the hybrid approach, only the resource-rich devices
perform the calculation, but message exchanges between them still take time. Thus,
the latencies of hybrid configuration are slightly above the centralized scheme’s la-
tencies.

Figure 4.41c shows the latencies to distribute the configuration results. The cen-
tralized scheme has the highest latency, as the single configuration device needs
to distribute the complete configuration (cf. Figure 4.39c). In contrast, the other
approaches have already piggybacked information about configured components in
the configuration messages, in case of decentralized configuration even between all
devices. Thus, these approaches have much lower distribution latencies.

The initialization of the component bindings (Figure 4.41d) comprises the sum of
the import of the received configuration results and the establishment of the respec-
tive component links. Since message overhead and delay for the result distribution
are much higher for the centralized approach, as depicted in Figures 4.39c and 4.41c,
the configuration import is responsible for a big fraction of the latency, especially on
the resource-weak devices. The establishment of the links is performed in the same
way by all approaches and, hence, takes the same amount of time, respectively.



138 4. A Hybrid Approach for Automatic Application Configuration

Figure 4.41.: Latency comparison at the different stages of the configuration



4.6. Summary and Discussion 139

Figure 4.41e shows the total latencies as sum of the latencies from Figures 4.41b
to d. The centralized approach is slowest due to its increased result distribution
and component binding overhead. The decentralized scheme performs 14 % better
on average, although the resource-weak devices are involved. The hybrid approach
avoids the drawbacks of the other schemes and performs fine in all configuration
stages. Thus, it outperforms the decentralized scheme by 34.2 % and the centralized
scheme even by 40.7 % on average. Regarding the total latencies for an adaptation
process (Figure 4.41f), the advantage of the hybrid approach decreases to 20.4 %
compared to decentralized and to 30.2 % compared to the centralized scheme, due
to the additional re-clustering overhead which only arises at the hybrid approach
(cf. Figure 4.41a).

4.6. Summary and Discussion

In this chapter, we have presented our approach to efficiently exploit the hetero-
geneity of resource-rich Pervasive Computing environments. To achieve this, we
have developed configuration approaches which fundamentally differ from the de-
centralized one designed for homogeneous Ad Hoc scenarios.

First of all, we have discussed our design rationale: Starting from a completely de-
centralized approach developed within an earlier work for Ad Hoc scenarios [HBR05],
we have sketched the way towards an efficient support of the device heterogeneity
which is typical in infrastructure-based environments. In such scenarios, a hybrid
approach where configuration calculations are only conducted on the subset of pow-
erful devices has shown to be more efficient than decentralized configuration, as the
weak mobile devices such as Smart Phones or PDAs (as possible performance bot-
tlenecks) are excluded from the configuration calculations. To distinguish between
strong and weak devices, we suggest the use of a clustering scheme. Based on this
scheme, the introduction of a pre-configuration process where configuration-relevant
information is proactively transmitted to the subset of strong configuration devices
increases the efficiency of the configuration.

For the flexible support of dynamically changing environments, a framework was
introduced [SHR08a] which enables, based on the monitoring functionalities pro-
vided by the communication middleware BASE [BSGR03], the support of various
configuration schemes and the automatic selection of a fitting scheme when an appli-
cation configuration is outstanding in a specific environment. The framework pro-
vides generic interfaces to enable the simple inclusion of various clustering schemes,
supports the efficient exploitation of the scenario heterogeneity via a resource-aware
cluster generation, and causes only low overheads in terms of space and commu-
nication for transmitting clustering messages. Furthermore, our framework adapts
the clustering schemes transparent to the application user and allows the re-use of
previously developed applications. The framework additionally implies a completely
new concept called Virtual Containers (VCs). A VC represents the emulation of
a remote device for local configuration processes without requiring communications
between the devices. This concept enables the proactive loading of weak devices’



140 4. A Hybrid Approach for Automatic Application Configuration

resource information at the strong devices and is capable to drop the configuration
latencies, as parts of the configuration work are performed before an actual con-
figuration process is initiated. The efficient support of exchangeable configuration
algorithms is established by a simple selection strategy which is, however, easily
extendable to support additional configuration schemes in the future. Most of the
commonly known clustering schemes try to equally distribute the load among all
nodes or aim at extending the overall network lifetime and, thus, frequently merge
or split clusters, which leads to rather low cluster stability. In contrast, our new
scheme balances the load only among the subset of strong infrastructure devices to
minimize the (re-)configuration latencies. It performs re-clustering processes only
when they are needed to obtain the balanced configuration load among the strong
devices.

Decentralized configuration is usually considered to be the right choice for homoge-
neous MANET scenarios where the availability of any device cannot be guaranteed.
However, when an additional strong device is available, e.g., a desktop PC in an of-
fice environment, decentralized algorithms calculate configurations in an inefficient
way, as they distribute the configuration load among all devices. A strong device,
though, has much higher computation power than the weak mobile devices. Thus,
performing the configuration calculations locally on the strong device increases the
efficiency and reduces the communication overhead during the configuration phase.
To efficiently exploit this increased computation power of a single device in config-
uration calculations, we have presented Direct Backtracking (DBT, [SHR08b]), an
advanced centralized configuration algorithm which features two mechanisms to ren-
der configuration processes more efficiently than standard backtracking algorithms
from the research area of distributed artificial intelligence: the proactive backtrack-
ing avoidance of DBT helps to reduce the number of needed adaptations within
a configuration by carefully selecting the components to be instantiated based on
their resource consumption and the currently available resources. DBT’s intelli-
gent backtracking performs unavoidable adaptation processes with lower overhead
than its closest competitor, Synchronous Backtracking, by considering the cause of a
backtracking process and choosing the backtracking goal according to the expected
adaptation overhead.

Direct Backtracking relies on the clustering framework presented in Section 4.3.2
and the established Virtual Containers, which enable completely local calculations
without the need of any remote communication during the configuration phase.
After a valid configuration has been found by Direct Backtracking, the configuration
results are distributed to all devices whose components are part of the configuration.

Compared to its most related competitors like Synchronous Backtracking [BM04]
or Dynamic Backtracking [Gin93], DBT does not rely on a large set of no-goods,
considers the cause of adaptation processes, cautiously chooses the components to
be instantiated to avoid adaptations, and does not need to change the value ordering
of its variables, giving it an advantage over related approaches.

Centralized configuration using DBT performs fine in weakly heterogeneous en-
vironments where exactly one strong device is available. However in strongly het-
erogeneous environments, it does not distribute the configuration load on several



4.6. Summary and Discussion 141

strong devices and, thus, cannot be applied in parallel. For such scenarios, we have
presented an advanced hybrid configuration scheme [SHR10] which combines the
advantages of decentralized and centralized configuration: The configuration is cal-
culated only on the subset of strong devices in a decentralized manner, whereas the
strong devices gain access to the resources of the weak devices via Virtual Contain-
ers and, thus, perform centralized configuration for the weak devices. Therefore, the
hybrid scheme relies on the previously developed decentralized [HBR05] and central-
ized [SHR08b] schemes. To uniquely identify which strong device is responsible for
the configuration calculation of a weak device, we have presented an advanced clus-
tering scheme which relies on the clustering framework discussed in Section 4.3.2, but
establishes several clusters around the strong devices (which represent the cluster
heads) and maps each weak device to exactly one strong device. This ensures a strict
task sharing among the strong devices within configuration calculations. Further-
more, the new clustering scheme balances the configuration load among the strong
devices by mapping similar numbers of weak devices. Because of this, bottlenecks
for the configuration are avoided and the degree of parallelism within configuration
calculations is maximized.

With the introduced centralized and hybrid configuration approaches and the de-
veloped framework to automatically select the configuration algorithm that is most
appropriate for a specific environment, our solution reduces configuration latencies
compared to standard decentralized configuration by more than 35 % in average,
as our evaluation results have shown. Moreover, our system exceeds the related
projects dealing with service composition and application configuration concerning
the flexibility and the support of a broad range of possible Pervasive Computing
scenarios by far: While many projects such as Gaia [RHC+02] or BEACH [Tan01]
provide system-level composition for resource-rich environments, they cannot be ap-
plied to Ad Hoc scenarios, as they rely on an existing infrastructure. Some projects
for infrastructure-based environments like iRoom [JFW02] or MEDUSA [DGIR11]
even rely on manual composition by users or application programmers. Manual
composition is also supplied by projects such as P2PComp [FHMO04] or Speakeasy
[ENS+02], which are however at least applicable in pure Ad Hoc scenarios, but are
not capable to efficiently exploit the device heterogeneity. Automatic configuration
in Ad Hoc scenarios without efficient heterogeneity support is provided by systems
such as Aura [SG02] or a previous version of our system PCOM [BHSR04]. In
summary, it can be seen that only our system provides such an efficient support of
various typical Pervasive Computing environments.





5
Partial Application
Configurations

In this chapter, we introduce a completely new approach that integrates the results
from configuration processes that have taken place before to reduce the number of
contracts which actually need to be configured [SHRB13]. Thus, the configuration
latency is significantly reduced in all of the scenarios and algorithms introduced in
Section 4, as we will show in our evaluations. In Section 5.1, we give a motivation
for the use of Partial Application Configurations (PACs). Following in Section 5.2,
we discuss the challenges that come along with the partial application configura-
tion concept and have to be addressed by the aspired solution. After discussing
the structure of the PACs in Section 5.3, we suggest a solution which is based on
the introduction of utility values for each partial application configuration (Sec-
tion 5.4). As the partial application configurations are stored in a cache of limited
size, the maintenance of the cache entries is addressed in Section 5.5. Following in
Section 5.6, we illustrate the integration of the PAC concept into the existing con-
figuration approaches. After presenting the results of our evaluation measurements
in Section 5.7, we summarize this chapter in Section 5.8 and discuss the developed
approach.

5.1. Motivation

In many typical Pervasive Computing environments, there is often a fixed set of
applications, devices and components which are frequently used, e.g., a presentation
application in combination with an auditorium’s multimedia system, covering video
projectors, microphones and the stationary speaker system. In such scenarios, the
same set of components is used in subsequent configuration calculations. Thus, the
involved devices undergo a quite similar configuration process whenever an appli-
cation is launched. However, starting the composition from scratch every time not
only consumes a lot of time, but also increases communication overhead and energy



144 5. Partial Application Configurations

needs of the involved devices. Using pre-cached component sets in configuration pro-
cesses helps in solving these problems. As they represent pre-configured application
parts, we refer to one of these component sets as a Partial Application Configu-
ration (PAC). The components involved within a PAC represent a pre-computed
subtree of the complete application tree. If all components included in a cached PAC
are currently available, this PAC can be integrated into the current configuration.
As the cache size is typically limited due to practicability issues, only those PACs
with the largest expected utility for future configuration processes should be cached.

[0,0]

[0,0]
[2,0]

[0,0]
[0,0]
[0,0]

[0,0]
[2,0]
[0,0]

[0,0]
[2,0]
[1,0]

[0,0]
[2,0]
[1,1]

[0,0]
[1,0]
[1,2]

Acoustic & Optical
Output Device

Optical
Output

Acoustic & Haptic
Input Device

[0,0]
[1,0]
[1,1]

[0,0]
[1,0]
[1,0]

Source File
Input Device

[0,0]
[0,0] Acoustic

Input 
Haptic
Input 

[0,0]
[1,0]
[0,1]

[0,0]
[1,0]
[0,0]

Application Anchor
(Root)

[0,0]
[1,0]

Acoustic
OutputSource

File

PAC0 PAC1

PAC2

Figure 5.1.: Configuration using Partial Application Configurations (PACs)

As an exemplary scenario where the PAC concept is suited to reduce configuration
latencies, consider Figure 5.1 which shows the distributed presentation application
introduced before, and three PACs which have been determined and cached for their
future re-use:

• When a speaker gives a talk, he or she may have the presentation file stored on
his or her Smart Phone. If the speaker gives the same talk (e.g., the presenta-
tion of a new product) several times for changing audiences, the configuration
always comprises the use of the Smart Phone and the presentation file main-
tained on the Smart Phone’s internal storage. Because of this, PAC0 which
covers these two components is created and cached.

• The input components are typically provided using the speaker’s laptop or
a dedicated presentation device. Thus, PAC1 – which covers the speaker’s
laptop (CoID [0,0][1,0]), the microphone (CoID [0,0][1,0][0,1]) and the mouse
(CoID [0,0][1,0][1,0]) that are connected to the laptop – is frequently used and
represents another suitable candidate for caching.

• Concerning the components for acoustic and optical output, PAC2 – cov-
ering a speaker system (CoID [0,0][2,0][0,0]) and a video projector (CoID
[0,0][2,0][1,0]), which are connected to a control PC (CoID [0,0][2,0]) – rep-
resents a third possible PAC for caching.



5.1. Motivation 145

Figure 5.2 shows the interaction diagram of a configuration process which uses
the PAC concept. Please note that in this figure, PACs are used in combination
with the hybrid configuration approach. We expect that strongly heterogeneous
environments offer the highest potential for the use of PACs because of the available
resource-rich, typically stationary infrastructure devices. However, the PAC concept
itself is independent from specific configuration algorithms and, thus, can also be
used by configuration algorithms other than the hybrid one, i.e., by centralized or
decentralized algorithms (cf. Chapter 4).

Figure 5.2.: Interaction diagram of hybrid configuration with pre-configuration pro-
cess and use of PACs

As major difference compared to the configuration without PACs (as illustrated
in Figure 5.2), each configuration device has access to a so-called PAC Repository,
which contains the Partial Application Configurations that have been used in previ-
ous configuration processes and cached locally in this repository. Configuration with
PACs should also use the pre-configuration process introduced in Section 4.3.2 to
maintain the up-to-date resource information of the mapped Passive Devices on the
Active Devices. Furthermore, the pre-configuration process is used to update the
validity of a PAC: A PAC is supposed to be valid and, thus, usable within a config-



146 5. Partial Application Configurations

uration process only if all components which are covered by the PAC are currently
available, meaning the device where they are resident is up and the component is
not used by any other currently executed application. More formally, the validity
V (P ) of a PAC P consisting of n components C1, . . . , Cn can be determined by

V (P ) = V (C1) ∧ V (C2) ∧ · · · ∧ V (Cn), (5.1)

where V (Ci) represents the validity of a component Ci (i ∈ 1, . . . , n). In the
configuration phase, the applied configuration algorithm tries to configure as many
components as possible via the cached PACs to reduce the number of contracts
which actually need to be configured, i.e., by matching the available components’
offers of functionality with a contract’s requirements. As the simple integration of
pre-cached components is much faster than the standard configuration (we will show
more details on that issue in our evaluations in Section 5.7), the configuration la-
tency Thc,PAC is reduced compared to the latency Thc of hybrid configuration which
does not rely on a PAC framework. As the initialization phase remains unchanged,
the application configuration latency Ta,PAC becomes the sum of the configuration
calculation latency Thc,PAC and the component initialization latency TI . In conse-
quence, the total latency

Tw,PAC = 2 · Tn + Ta,PAC = 2 · Tn + Thc,PAC + TI , (5.2)

where Tn represents the network latency, is also reduced compared to configuration
without PAC use.

After a successful configuration process, the configuration devices update their
PAC Repository by including new PACs and, in case of exceeded cache space, re-
move selected PACs from the repository. We will present more details on the utility
of specific PACs in Section 5.4, and introduce cache replacement strategies in Sec-
tion 5.5.

5.2. Challenges

The goal of the PAC approach is to reduce the configuration load on the involved
devices by providing a cached set of partial configurations which have been used in
previous configurations. To achieve this, the system needs to be extended by several
services to solve the challenges which arise.

First of all, a discussion about the structure of the PACs is needed, as the number
of possible PACs may be considerable in resource- rich environments with many dif-
ferent devices and components. Hence, limiting the number of valid PACs to be used
in application configurations significantly helps to reduce storage and computation
overhead for the involved devices. An issue that arises is the cache space that has to
be provided to enable the storage of these configurations. As a cache of unlimited
space does not exist, the size of the cache needs to be restricted. A question that
arises is about this cache size: On the one hand, the cache space should be minimal
to reduce the requirements on the involved devices, since some mobile devices still



5.3. Structure of Partial Application Configurations 147

have to face close restrictions on their internal disk space. On the other hand, a
large-sized cache is able to store an enormous number of configurations and usually
reduces the cache miss rate drastically, which leads to a much higher PAC use rate.

The restriction of the cache size introduces another issue that becomes relevant
when the cache space is exceeded: Which of the pre-cached partial configurations
should be maintained, and which should be removed from the cache to provide
space for currently more relevant PACs? To solve this challenge, cache replacement
strategies are typically provided that decide which cache entries are removed when
the cache space is exceeded. Typical replacement strategies [PB03] consider influence
factors like the usage recency (e.g., LRU), the usage frequency ( e.g., LFU), the
time when an entry was stored (e.g., FIFO), or a (possibly weighted) combination
of several factors for evaluating cache entries and determining a unique order for the
required replacements.

When a user wants to start a distributed application and, thus, a configuration
process is initiated, the configuration algorithm needs to access the cached partial
configuration and integrate them into the assembly. Therefore, the existing config-
uration algorithms have to be adapted to enable the automatic use of the cached
components. Moreover, it has to be ensured that only those PACs are used within
the configuration whose components are currently available.

We will present our solutions to these challenges in the following sections.

5.3. Structure of Partial Application Configurations

We construct PACs in a bottom-up approach, beginning with the application tree
leaves (which represent basic functionalities available in a specific environment) and
combining them to higher-level functionalities. Consequently, PACs consist of com-
pletely dissolved dependencies which are specific for an environment and may be
used by various applications. Because of this, PACs are environment-based.

This model partitions the application tree based on the type of the devices hosting
the involved components, i.e., based on the Pervasive Computing scenario present
at the time of configuration. The partitions that are hosted by infrastructure de-
vices are added to the partial solution of the application and are reused when the
application starts in the future on the same device and after proper validation that
the respective components are available at configuration time.

In practice, the environment-based partial solution model describes a subtree of
the whole application tree that is completely resolved. This subtree always includes
a subset of the application tree leaves. This particular model is suitable if the same
initial resources are always available and offered by the environment. A typical
scenario where such PACs may be extremely useful are heterogeneous environments
like auditoriums where some infrastructure devices are assumed to be present at
all times. These devices are typically used by many applications to utilize their
services, like a Smart Board for displaying presentation slides. Hence, the respective
configuration processes are quite similar whenever these applications are started.



148 5. Partial Application Configurations

The part of the application tree that represents components which are hosted by
these devices is added to the partial solution after the first configuration process is
completed. This partial solution is reused whenever the application is started again.

Figure 5.3.: Use of a PAC in the distributed presentation application

As a concrete example, consider Figure 5.3, showing again the distributed pre-
sentation application as it could be represented in an auditorium where a research
conference takes place. In the application tree, there are three components of the
right subtree highlighted as PAC. This partial configuration represents this envi-
ronment’s output devices: the room’s speaker system as acoustic output, the video
projector in combination with a screen as visual output, and the infrastructure PC
as control device for these output components.

An alternative way of structuring PACs is to model them in a top-down ap-
proach, where the application root – or, as we call it, the anchor of the application
– and a subset of the application tree components which are connected to each other
are part of the PAC. Moreover, a hybrid approach which includes the application
anchor, one or more of the leaves, and a subset of the components in between may be
possible. However, both the top-down and the hybrid approaches may face one huge
drawback due to partially unresolved dependencies. As we proceed in a depth-first
approach in our configuration processes, the configuration algorithm would first load
the anchor-based PACs, and then try to resolve the remaining (i.e., the lower-level)
dependencies of the respective subtrees. However, when deciding to use a specific
PAC for an application execution, it is not yet known if the lower-level components
that represent the basis for the higher-level functionalities of the PAC are currently
available, leading to a higher number of adaptations that have to be performed.
This problem becomes particularly severe when the respective PAC covers a large
number of components, as a larger part of the application needs to be re-configured
then. But especially large PACs promise large reductions at the configuration time,
as they significantly reduce the number of components which have to be configured
in the traditional way.

The severity of this drawback could be decreased when introducing speculative
calculations into the application configuration that reduce the number of adaptations



5.4. PAC Utility Value 149

that have to be taken during a configuration. However, speculative calculations and
proactive PAC creation are beyond the scope of this thesis and left as future research
directions, as we state in our outlook (cf. Sections 7.2.2 and 7.2.4).

5.4. PAC Utility Value

The utility value up(t) of a PAC p at a specific time t is introduced for expressing the
expected gain when a PAC is used within a configuration process at time t. The two
most important factors for defining the value of a PAC for automatic configuration
processes are the frequency of use of the PAC within configuration processes, and
the expected latency reduction when a PAC is used. Both of these factors are
depending on the size and the involved devices within a PAC: On the one hand,
small PACs that cover just few components usually tend to involve only a low number
of different devices. As all components of a PAC need to be available at the same
time to make this PAC thus usable for configuration, small PACs whose components
are spread among only few devices are more often usable compared to large PACs
which involve a larger number of different devices. On the other hand, the usage
of large PACs leads to a much higher expected configuration latency reduction, as
they cover a larger subset of the application. However, large PACs need more space
in the cache than smaller PACs. Thus, neither providing only large PACs, nor only
small PACs is obviously the preferable choice. Therefore, we use a utility function
which was initially suggested for web caching [LCK+01] and also used for location-
based routing [DR08]. This function defines the utility, up(t), of a PAC p at time t
in our context. The utility value considers the recency and the frequency of a PAC’s
usage when it is updated, yielding a mix of Least Recently Used (LRU) and Least
Frequently Used (LFU) as replacement strategy. Each device which is involved in
the configuration process updates the utility of each cached PAC at time tc of a
configuration process. The utility up(t) ∈ [0, 1] of a specific PAC p at the current
configuration’s time tc = t′ + x (where t′ = time of the previous configuration, x
= time span between the previous and the current configuration) is calculated as
follows:

up(t
′ + x) =

{
up(t

′) · f(x) + f(x), if PAC p was usable

up(t
′) · f(x), if PAC p was unusable

(5.3)

When f(x) is a monotonously decreasing function, the utility value of a PAC is in-
creased if it was usable at configuration time tc (i.e., all respective components
were available), and reduced if it was not usable. As proposed by related ap-
proaches [BKMN02, DR08], we use f(x) = 0.5λ·x with parameter λ ∈ [0, 1] that
defines the influence of reference recency and frequency, leading to the above men-
tioned Least Recently/Frequently Used (LRFU) policy. With a used radix of 0.5
in f(x), switching to simple LFU (λ = 0) and LRU (λ = 1) strategies is easily
possible by just adjusting λ. The question of how to choose λ is discussed later
in the evaluation section 5.7.3. As we rely on a communication middleware that
provides a device registry [BSGR03], all configuration devices have a global view on
the currently available devices. Hence, the current utility values of the cached PACs



150 5. Partial Application Configurations

are identical at each configuration device. With this utility value definition, every
past reference contributes to the current utility of p, but just the utility value at the
last reference time needs to be stored. Thus, the summary of the reference history
of a PAC is stored efficiently with constant space overhead.

With this scheme, we aim at maximizing efficiency of the cache usage by storing
only those PACs which are supposed to be often usable in the near future due to their
historical usage. Regarding the initial utility values for PACs when they are cached,
Dürr et al. [DR08] suggest an initial utility of a = 0 for new cache entries. However,
this leads to the fact that new PACs are initially stored at the end of the cache
table. Hence, there is the risk for new PACs to be removed from the cache quickly
after their creation, considering the typically high degree of dynamics in Pervasive
Computing environments. Contrary to this, giving new PACs the maximum possible
initial utility value initially puts them at the beginning of the cache table. This could
lead to the problem of a polluted cache: if PACs are no longer usable shortly after
their creation, they would still stay in the cache for a long period due to their high
initial value. Thus, a reasonable compromise is to give new PACs the average value
of all PACs p1, · · · , pn from the current cache table as an initial utility value, i.e.

up(t
′ + x) =

∑n
i=1 upi(t

′ + x)

n
. (5.4)

Accordingly, new PACs are placed around the middle of the cache table. If the cache
is empty, all PACs stored after the first configuration process get an initial utility
value of 0.5.

Besides the PAC utility value determined by LRFU, alternative well-known ap-
proaches to identify which PACs are to be removed when the cache space is exceeded
are the following:

• First In First Out (FIFO): If the cache size is exceeded, the PACs which
are in the cache for the longest time are removed first, as they are supposed
not to be valid anymore because of the dynamic environment.

• Remove Smallest First (RSF): If the cache size is exceeded, the smallest
PACs (in terms of covered components) are replaced first, since these PACs
only cover a low portion of the overall application and, thus, do not help
significantly to reduce the configuration problem.

• Remove Largest First (RLF): If the cache size is exceeded, the largest
PACs are replaced first, as they are composed of many different components.
Thus, it is very likely that they are not usable at the moment because one or
more components are currently not available.

We show by evaluation in Section 5.7.3 that LRFU with the determined parame-
ters significantly outperforms these approaches concerning the arising configuration
latencies when PACs are used.



5.5. PAC Cache Maintenance 151

...

PA
C

A 
R

ep
os

ito
ry

PAC ID Components Utility Usable
1 ... α1 yes/no

2 ... α2 ≤ α1 yes/no

... ... ... ...
n ... αn ≤ αn-1 yes/no

n+1 ... αn+1 ≤ αn yes/no

... ... ... yes/no
n+m ... αn+m ≤ αn+m-1 yes/no

C
gr

ee
n

C
ye

llo
w

Figure 5.4.: Cache structure of C with Cgreen, the PAC Repository, and Cyellow

5.5. PAC Cache Maintenance

According to the introduced PAC utility values, each active configuration algorithm
can easily determine which PACs should be cached on which devices for their further
use in configuration processes. As the available cache space is limited, it has to be
used as efficient as possible.

The structure information of each PAC is stored in the PAC Cache C of size |C|.
Figure 5.4 shows that C is divided into two areas, Cgreen and Cyellow, that hold the
respective PAC information described in the following. Cyellow can be regarded as
a ”waiting area”, allowing PACs to increase their utility values due to recent and
frequent usage. Each entry in C contains the following fields:

• the involved PAC components and the devices which host these components,

• the utility value of the PAC, and

• its current validity V (P ), as stated in Equation 5.1 as the conjunction of the
availabilities of the involved components. Only currently available PACs are
usable in a configuration.

According to the cache division in Cgreen and Cyellow, we distinguish between two
different types of PACs that are relevant for PAC configuration and are stored in
the respective fraction of the cache1:

• Green PACs represent the PACs with currently highest utility value among
all PACs. The information that is relevant for configuration processes – the
PAC components, the involved devices and the utility values – is stored in
the cache table. Furthermore, the complete information about the involved
components and devices is stored in the component middleware’s specific XML
format in the so-called PAC Repository. The XML file includes information
about the involved components – the functionality provided by them and the
hosting device – as well as their interdepencies within the application tree,
i.e., the PAC structure. This complete XML representation is called the PAC
Assembly and enables the integration of the PAC into the complete application
assembly within a configuration process.

• Yellow PACs have been used in configuration processes in the past, but
not as frequently or recently as green PACs, leading to a lower utility value.

1A similar concept is used for efficient geographic routing by Dürr and Rothermel [DR08]



152 5. Partial Application Configurations

Figure 5.5.: Comparison of PAC space overhead in Cgreen (entry in cache table &
XML file) and Cyellow (only cache table entry)

Yellow PACs comprise only the cache table entries. Thus, the information is
stored in a more compact form to reduce their space consumption. Thus, a
yellow PAC consumes only around 1/6 of the space that the corresponding
green PAC consumes, as shown in Figure 5.5. However, a yellow PAC is not
directly usable in configuration processes, as the configuration algorithms rely
on uncompressed XML assemblies. But as its utility value is recorded, it
may become green in the future. Then, the XML assembly is automatically
constructed from the information maintained in the yellow PAC. Relying on
yellow PACs helps to reduce cache miss rates in most Pervasive Computing
scenarios, as our evaluations will show.

The remaining PACs – those which are neither green nor yellow – are not relevant
for configuration, either because they have never been referenced before, or a long
time ago and, hence, they have been removed from the cache in the meantime. Thus,
no information is currently stored about them in the tables. Hence, they are not
relevant for application configuration and not considered anymore in the following.

Cgreen is of limited size |Cgreen| < |C|. |Cgreen| defines how many green PAC
can be stored in the cache. Correspondingly, the maximum allowed size for Cyellow
is |Cyellow| = |C| − |Cgreen|. A main issue in the evaluations is to find the optimal
partitioning of |C| between |Cgreen| and |Cyellow| in specific environments to maximize
cache efficiency. As utilities of PACs may change over time because of dynamic
pervasive environments or device failures, yellow PACs may obtain larger utility
values than green PACs. This means a replacement condition is required which
defines when a PAC in Cyellow replaces a PAC in Cgreen. The replaced PAC is moved
from Cgreen to Cyellow. Similar to Dürr and Rothermel [DR08], we define the Least-
Green PAC, plg, as the PAC with the minimum utility value in Cgreen at a specific
time t:

∀p ∈ Cgreen : uplg(t) ≤ up(t) (5.5)



5.6. Configuration involving PACs 153

Then, PAC p′ as the PAC with highest utility value within Cyellow at configuration
time tc replaces plg, if

up′(tc) > uplg(tc) (5.6)

Subsequently, the PAC Assembly is created and added for the (now green) PAC
p′, while the assembly of plg is removed. These replacements are continuously ac-
complished until the replacement condition from Equation 5.6 is no longer fulfilled.

One problem that may arise are oscillating PACs, switching their status frequently
from green to yellow and vice versa. However, this would mean that the correspond-
ing devices are either at the border of the configuration environment and often lose
contact to the other devices (which makes it likely that they are not interested
in the application execution and, thus, seldomly involved in the configuration), or
they consecutively appear and disappear at a frequency similar to the application
execution period, which is a rather unlikely user behavior according to conducted
user mobility studies. We refer to Section 5.7.2 and [SHRB13] for further details
concerning this issue.

5.6. Configuration involving PACs

The PAC concept was developed without focusing on specific configuration ap-
proaches. It can rather be seen as an extension which provides additional function-
ality to the previously developed algorithms. Thus, the changes to the configuration
approaches are of minor nature: When the configuration algorithm tries to configure
a contract ctc, it first scans the list of green PACs in the PAC Repository for cur-
rently usable PACs which fulfill the constraints given by ctc. Furthermore, the al-
gorithm tries to avoid remote communications at the subsequent component binding
phase by selecting the PAC with the highest degree of locality, i.e., the PAC where
the highest number maxLocalComps of components is locally available at a configura-
tion device (meaning, the device hosts the components). For each PAC, the number
of locally available components is obtained via the function getLocalComps(), which
counts the number of local components. If this criterion does not lead to a definite
PAC, the highest number of components (variable maxVcComps), which are accessed
via the Virtual Containers established locally at a configuration device (function
getVcComps()), is chosen as a secondary selection criterion. In case of continuing
ambiguity, the PAC with highest utility value (i.e., with lowest rank within the PAC
Repository) is chosen.

The integration of PACs into configurations is exemplarily shown in Listing 5.1
for the centralized Direct Backtracking (cf. Section 4.2.1) configuration approach.
The code that integrates PACs covers only 14 lines of the pseudo-code (lines 4 to 17)
(plus the additional (simple) functions to determine the number of local components
and VC components) to find a usable PAC that matches the requirements of the
application. The remaining code represents the standard approach of Direct Back-
tracking to proactively avoid backtracking processes, as presented in Section 4.2.2.



154 5. Partial Application Configurations

1 determOption() {
2 Contract ctc = getCurrentContract();
3 boolean continue = true;
4 Pac[] greenPacs = pacRepository.getGreenPacs();
5 int maxLocalComps = −1, maxVcComps = −1, maxValue = −1;
6 for (int p = 0; p < greenPacs.length; p++) {
7 if (greenPacs[p].isUsable() && greenPacs[p].getRootComp().matches(ctc)) {
8 if ((greenPacs[p].getLocalComps() > maxLocalComps)
9 || (greenPacs[p].getLocalComps() == localComps

10 && greenPacs[p].getVcComps() > maxVcComps)
11 || (greenPacs[p].getLocalComps() == localComps
12 && greenPacs[p].getVcComps() == vcComps
13 && greenPacs[p].getValue() > maxValue)) {
14 comp = greenPacs[p].getRootComp();
15 markCoveredComponentsAsConfigured();
16 continue = false;
17 }}}
18 int i = 0; // Index of selected component in list
19 while (continue) { // standard proceeding as before
20 comp = option[i];
21 while (comp.consumed >= comp.getContainer().getAvailableResources()) {
22 i++;
23 if (i > list.length)
24 performBacktracking(); // no suitable component found
25 else
26 comp = option[i];
27 }
28 if (freeResources >= comp.consumedResources)
29 continue = false;
30 else {
31 i++;
32 if (i > list.length)
33 performBacktracking(); // no suitable component found
34 }}
35 return comp;
36 }

Listing 5.1: Integration of PACs in Direct Backtracking

To clarify how an application configuration that uses cached PACs is executed,
regard again the distributed presentation application introduced in Section 2.1.2,
which is shown in Figure 5.6. When the user starts the application, the configura-
tion algorithm tries to configure the application with the use of the nine green PACs
that were cached before and are shown in the table in Figure 5.6. According to the
depth-first search manner which our algorithms follow (cf. Section 2.1), the config-
uration starts at the application root (CoID [0,0]). There is one pre-stored PAC (ID



5.6. Configuration involving PACs 155

ID PAC Root Further Components Utility Usable?
0 [0,0][1,0] [0,0][1,0][0,1], [0,0][1,0][1,2] 0.85 no
1 [0,0][0,0] [0,0][0,0][0,0] 0.73 no
2 [0,0][1,0] [0,0][1,0][0,1], [0,0][1,0][1,1] 0.68 no
3 [0,0][2,0] [0,0][2,0][0,0], [0,0][2,0][1,1] 0.54 no
4 [0,0][2,0] [0,0][2,0][0,0], [0,0][2,0][1,0] 0.43 yes
5 [0,0][1,0] [0,0][1,0][0,1], [0,0][1,0][1,0] 0.34 yes
6 [0,0][1,0] [0,0][1,0][0,0], [0,0][1,0][1,0] 0.29 yes
7 [0,0][0,0] [0,0][0,0][0,0] 0.28 no
8 [0,0] [0,0][0,0], [0,0][0,0][0,0], [0,0][1,0], … 0.21 no

[0,0]

[0,0]
[2,0]

[0,0]
[0,0]
[0,0]

[0,0]
[2,0]
[0,0]

[0,0]
[2,0]
[1,0]

[0,0]
[2,0]
[1,1]

[0,0]
[1,0]
[1,2]

Acoustic & Optical
Output Device

Optical
Output

Acoustic & Haptic
Input Device

[0,0]
[1,0]
[1,1]

[0,0]
[1,0]
[1,0]

Source File
Input Device

[0,0]
[0,0] Acoustic

Input 
Haptic
Input 

[0,0]
[1,0]
[0,1]

[0,0]
[1,0]
[0,0]

Application Anchor
(Root)

[0,0]
[1,0]

Acoustic
OutputSource

File

PAC 5

PAC 4

C
gr

ee
n

Figure 5.6.: Exemplary configuration process involving the PAC Repository

8) in the table, which represents a previously used complete configuration. However,
this PAC is currently not usable because of components that are not available at
the moment (e.g., the external hard disk which was used to access the presentation
source file). Thus, the algorithm continues on the next level of the tree and tries
to configure the instance with CoID [0,0][0,0]. For this component, it finds PACs
1 and 7 in the table. However, both of them are not usable, as the corresponding
devices are no longer available. So, the algorithm configures this part of the ap-
plication without PAC usage by determining suitable components, e.g., the current
speaker’s USB stick that holds his or her presentation file. This is performed using
the centralized [SHR08b], hybrid [SHR10], or decentralized [HBR05] configuration
approach, according to the current environmental conditions. Then, the algorithm
continues with the next sub-tree – the acoustic and haptic input devices, beginning
with the component with CoID [0,0][1,0]. Cgreen currently holds PAC 5 which uses
a headset (CoID [0,0][1,0][0,1]) as input device for the user’s voice, and the mouse
(CoID [0,0][1,0][1,0]) of the presentation laptop (CoID [0,0][1,0]) to allow the speaker
to switch between the slides. As all corresponding components are locally available
(which is not the case for the alternative PAC 6, as the microphone is connected
to another device), the algorithm uses PAC 5 and does not need to configure these



156 5. Partial Application Configurations

components in the standard way. For the output devices, the algorithm finds the
cached PAC 4 which uses the stationary speaker system (CoID [0,0][2,0][0,0]) and
the video projector (CoID [0,0][2,0][1,0]) that are both connected to the multimedia
system’s control PC (CoID [0,0][2,0]) and currently available. Subsequently, the
application configuration is finished, and the presentation application is executed.
Consider that only the components in the left sub-tree needed to be configured in
the standard way, while the rest of the application was resolved just by importing
the PACs stored in Cgreen, which takes much less time than standard configuration.

5.7. Evaluation

In the following evaluations, we show that the re-use of previous configurations’
results decreases the configuration latencies in all of the regarded homogeneous and
heterogeneous environments. We determine reasonable static values for the most
relevant cache parameters – the overall cache size |C|, the fractions of |C| which are
provided for Cgreen and Cyellow, and the factor λ which determines the influence of
the recency and the frequency for the LRFU cache replacement strategy. Moreover,
we evaluate parameter values which automatically adapt to dynamically changing
environments. We show in the following performance evaluations that latencies are
reduced by up to 31 % when static parameters are used, and even by up to 66 %
when adaptive parameters are used.

5.7.1. Evaluation Setup

We evaluate the PAC approach using applications with a binary tree structure and
varying tree heights between h1 = 2 and h2 = 4, yielding application sizes between
k1 = 7 and k2 = 31 components. We measure the time it takes to configure a single
application. Unless otherwise stated, the values given in the graphs represent the
average of 50 measurements. Two different kinds of evaluation are performed:

1. Prototype Implementation: The PAC concepts were implemented in the pro-
totype of PCOM [BHSR04] (cf. Section 6) for scenarios with up to 12 devices.
Measurements are performed using Laptops (Core 2 Duo, 2 · 2.0 GHz) as
powerful devices, Smart Phones (PXA 270 CPU, 528 MHz) as weak devices,
and IEEE 802.11b (max. 11 MBit/s) as standard wireless communication
technology.

2. Emulation: We perform the configuration latency measurements in scenarios
with more than 12 devices on the network emulation cluster NET [HR02,
GHR09], as the inclusion into this emulation cluster allows to obtain realistic
results by executing our system software PCOM’s code in a distributed large-
scale environment.

In a first step, we investigate three different static scenarios, correspondingly to the
environments introduced in Section 2.1.1: (1) a homogeneous Ad Hoc environment
(denoted by S1), consisting only of weak mobile devices; (2) a weakly heterogeneous



5.7. Evaluation 157

Environment & Reference Scen. αst xm,st αict xm,ict
ACM SIGCOMM 2001 [BVBR02] Infra 1.78 1.23 - -
UCSD Campus, San Diego [MV03] Infra 1.58 0.33 1.33 0.52

Corporate Environment [BC03] Infra 2.36 0.55 - -
Dartmouth College Campus [HKA04] Infra 1.44 0.46 1.33 0.94

MIT Laboratory, Boston [EP06] Infra - - 1.4 0.35
MIT Laboratory, Boston [EP06] Ad Hoc - - 1.21 0.43

Microsoft Cambridge Res. [CHC+05] Ad Hoc 1.5 0.65 1.6 0.94
IEEE Infocom 2005 [HCS+05] Ad Hoc 2.1 1.29 1.4 0.71

Average values 1.79 0.845 1.38 0.674

Table 5.1.: Overview of mobility studies’ parameters

environment with one powerful infrastructure device (S2); (3) a strongly heteroge-
neous environment (S3), consisting of 50 % powerful devices and 50 % weak devices.
Then, we evaluate the PAC concept in dynamically changing environments. Ac-
cording to the typical application sizes we determined in Table 2.1 of Section 2.1.2,
we use applications consisting of 7 (S1), 15 (S2), and 31 (S3) components for these
evaluations. Then, we switch to dynamic cache parameters in Section 5.7.4 to allow
the adaptation of the configuration process to changing environments.

5.7.2. Mobility of Users

Several studies analyzed the mobility of users in typical infrastructure-based as well
as Ad Hoc pervasive scenarios, such as conference environments [BVBR02, HCS+05],
University campuses [MV03, HKA04] or research laboratories [EP06, CHC+05]. In
this respect, we do not focus on specific mobility models, but rather on the probabil-
ity distributions for the (un-)availability of devices. The Session Time (ST) deter-
mines the average time a user’s device is connected to a network, the so-called con-
nection session length [BVBR02]. It represents the interval until the session is termi-
nated, e.g., because the user is mobile. Furthermore, the Inter-Contact Time (ICT)
specifies the average time span a user device is disconnected between two sessions,
i.e. the time interval over which devices are not in contact [KLBV07]. Thus, the
time can be divided into alternating ST and ICT slots. Karagiannis et al. [KLBV07]
found that the ICT of users in four studies [MV03, EP06, CHC+05, HCS+05] can
closely be approximated by the General Pareto Distribution (GPD) for times up to
several hours. The GPD represents a specific power law distribution function: Let
X be a random variable with Pareto distribution Pr(xm, α) with the scale parameter
xm > 0, and the shape parameter α > 0. Then, the probability that X is greater
than some number x is given by

Pr(X > x) =

{
(xm
x

)α, for x ≥ xm
1, for x < xm

(5.7)

We determined the GPD parameters for the Session Times (xm,st, αst) and the
Inter-Contact Times (xm,ict, αict) by the graphs given in the corresponding papers.



158 5. Partial Application Configurations

Figure 5.7.: Distribution of a) ST and b) ICT in different studies (in log-log scale)

Table 5.1 gives a summary of our investigations. It can be seen that there is no
significant general difference between the GPD parameters in infrastructure-based
and in Ad Hoc scenarios. Thus, we chose the average parameters given in the table
for all of our evaluations.

Figures 5.7a and b show the ST (a) and ICT (b) distribution functions of three
studies that focus on scenarios which are very similar to ours [MV03, HKA04,
HCS+05] and the one used in our evaluations. The power law nature of the distri-
bution function becomes obvious as the graphs represent straight lines in the log-log
scale figures. It can be seen the distribution we have chosen for our measurements
is close to these studies, particularly to the one conducted by Hui et al. [HCS+05]
which was gained in a conference environment. This indicates that the simulated
user mobility in the following evaluations is based on realistic distributions in typical
Pervasive Computing environments.

5.7.3. Evaluation based on Constant Resource Availability

First of all, we are looking for reasonable values for the fixed cache size |C|. For this
purpose, suitable overall cache sizes for the different environments where the resource
conditions are supposed to do not change over time are investigated. Regarding
the space consumption of the PACs, as discussed in Section 5.5 and illustrated in
Figure 5.5, a green PAC for the larger application with k2 = 31 components consumes
around 100 kB, while a yellow PAC consumes around 18 kB. Accordingly, the PACs
for the smaller application with k1 = 7 components consume only 23 kB (green
PAC) or 4 kB (yellow PAC). In the following, we determine the size |C| which has
to be reserved per single application with k2 = 31 components.

The application user obviously wants to have the application configured as fast as
possible, which is the case when the cache miss rate is close to zero and a pre-stored
configuration is just loaded from disk. However, no cache misses at all can only be
achieved with an unbounded cache, which is not possible in practical use, particularly
in resource-constrained Ad Hoc environments. Thus, a tradeoff between small cache



5.7. Evaluation 159

Figure 5.8.: Correlation between PAC Cache Miss Rate and configuration latency
at different cache sizes between 100 kB and 10 MB

size at the one hand and low cache miss rate at the other hand is needed. Figure 5.8
shows the correlation between the cache miss rate and the expected configuration
latency, relative to the latency of a configuration that does not rely on PACs at all,
when different cache sizes between 100 kB and 10 MB per application are used. A
cache with 10 MB capacity can be seen as an unbounded cache, as all PACs that are
possible for the investigated application can be stored simultaneously in that cache.
For all cache sizes, the configuration latency is lowest when no cache misses appear at
all, and rises monotonously with increasing cache miss rates. From the figure, it can
also be seen that when the cache miss rate exceeds a specific value, then the latency
with PAC usage becomes higher than the latency of the standard configuration,
due to the contract matchings that have to be performed for the cached PACs.
With a rising cache size, the expected latency at specific cache miss rates decreases
monotonously, as the number of PACs that can be stored concurrently becomes
higher and, thus, the percentage of the application that needs to be configured
in the traditional way is reduced. When increasing the cache from 100 kB up to
400 kB, the latency significantly drops. From these results, it becomes obvious that
cache sizes of 100 kB and 200 kB are too restrictive for a reasonable use of the PAC
approach. The figure also shows that when increasing the cache size to values above
400 kB, the latency reduction is minor compared to the increased space overhead
for the involved devices. For example, when comparing the results of 400 kB and
1 MB cache size measurements, the factor between the space overheads is 2.5, while
the latency reduction at the same time is only around 4 %. From these results, we
conclude that choosing 400 kB as value for the cache size |C| per application with
k2 = 31 components is a reasonable choice, as the latency overhead compared to
the best possible latency – when choosing a cache size of 10 MB – represents only
7 %. Thus, we rely on a 400 kB cache size limit in the following. With this cache
size, the latency with PAC usage exceeds the latency of the standard configuration
when the cache miss rate becomes higher than 71 %. In case of cache miss rates



160 5. Partial Application Configurations

close to 1 (i.e., none of the application contracts are covered by a PAC), the PAC
approach’s configuration latency is around 5 % higher than standard configuration
without PAC use.

Figure 5.9.: Determination of optimal static λ values for S1, S2 and S3

Next, we determine the optimal static values for λ for the LRFU strategy (cf.
Section 5.4) in the different scenarios, i.e. the values where the cache miss rate
becomes minimal. In these initial evaluations, we set |Cyellow| = 0. In Figure 5.9,
it can be seen that neither choosing pure LFU (λ = 0) nor choosing pure LRU
(λ = 1) leads to the best results: On the one hand, the recency is relevant, as
we consider dynamic environments where components may be available only for a
limited amount of time. Thus, relying on PACs which have recently shown to be
usable makes sense. On the other hand, the frequency also needs to be regarded,
as devices which were previously available, but are unavailable now may return
again in the future, e.g., due to periodically repeating activities like working days.
In this case, it needs to be considered how often PACs have been used before,
leading to a higher utility only for these PACs. Thus, both the recency and the
frequency of a PAC’s availability need to be taken into account to maximize the
usefulness of the PAC approach and minimize the cache miss rate. The optimal λ
changes from 0.4 in the Ad Hoc scenario to slightly higher values of 0.5 (S2) and
0.6 (S3), since the degree of dynamics decreases and, thus, the recency of a PAC’s
availability becomes more relevant, as the PACs are valid for a longer average period
of time in the heterogeneous scenarios S2 and S3. Moreover, the general influence
of λ to the variance of the resulting cache miss rate increases with the dynamics
of the environment. We decided to use a static value of λ = 0.5 in the following
measurements, as this leads to a low cache miss rate in all three environments.

Subsequently, we determine the optimal split factor f which determines the rela-
tive amount of |C| that is spent for Cyellow and, thus, the partitioning of the cache
into the areas for green and yellow PACs. Therefore, we perform several simulation
runs with differing fractions of cache space for Cyellow. The results are shown in
Figure 5.10. It can be seen that reserving an increasing portion of the cache size for



5.7. Evaluation 161

Figure 5.10.: Determination of optimal size for Cyellow when LRFU-0.5 and |C| =
400 kB is used

the yellow PACs monotonously increases the cache miss rate in the homogeneous
scenario S1. This is because S1 represents a highly dynamic scenario, as it involves
only mobile devices. Thus, the cache content changes very rapidly, which yields
more frequent replacements in the cache. However, when |Cgreen| is reduced in fa-
vor of |Cyellow|, the overall number of green PACs that can be stored and used in
the configuration becomes the limiting factor in this highly dynamic scenario. In
the heterogeneous environment (S2 and S3), the degree of dynamics is lower due to
additonal infrastructure devices which are supposed to be continuously available.
Thus, the cache is filled with some PACs whose components are resident only on
infrastructure devices. These PACs durably reserve a specific fraction of Cgreen and
form the basis for a large coverage of the application components. Moreover, the
cache content changes much less between two subsequent configuration processes,
and the overall cache size for Cgreen is not that crucial as in scenario S1. So, shifting
some space from Cgreen to Cyellow, particularly for PACs involving components on
the mobile devices, leads to a lower cache miss rate, as the cache holds more infor-
mation about yellow PACs, which may possibly change to green PACs after some
time. In Figure 5.10, you can also see that the cache miss rate increases again in
S2 and S3 when a specific fraction for Cyellow is exceeded, as the reduced size of
Cgreen then starts to become the limiting factor. This optimal fraction for Cyellow’s
space increases from 16.3 % in scenario S2 to 25.1 % in scenario S3, as the degree of
dynamics in S3 is lower because it features more resource-rich devices. Introducing
yellow PACs in the scenarios S2 and S3 with these optimal fractions of the overall
cache size reduces the cache miss rate from 10.2 % to 7.6 % (i.e., by more than a
quarter) in S2, and from 6.4 % to 4.4 % (i.e., by almost a third) in S3.

In the following, we compare the LRFU strategy (with λ = 0.5 and optimal cache
size fractions for Cyellow) with the standard replacement strategies First In First
Out (FIFO), Remove Smallest First (RSF), and Remove Largest First (RLF), as
described in Section 5.4, to show its outstanding performance.



162 5. Partial Application Configurations

Figure 5.11.: Comparison of different cache replacement strategies

Figure 5.11 illustrates that even LRFU-0.5 without usage of Cyellow outperforms
FIFO, RSF and RLF in all scenarios. FIFO performs better than RSF and RLF,
as it keeps all cached PACs for a certain time in the cache, but worse than LRFU,
as FIFO does not consider the usability of the involved components. RSF faces
the problem of only storing large PACs, which are potentially not usable for a
large amount of time, as they involve much more devices and components. RLF
only keeps small PACs in the cache. Because of this, it usually does not cover the
complete application and leaves some components uncovered. This problem becomes
even more severe in the heterogeneous environments S2 and S3, as the application
size increases, leading to very bad performance there. Moreover, introducing yellow
PACs (with the optimal fractions determined in Figure 5.10) further drops the cache
miss rate in the heterogeneous environments. Thus, using LRFU with λ = 0.5 and
yellow PACs2 leads to much less cache misses than standard strategies like FIFO.

Figure 5.12 shows the cache miss rate (depicted in z-axis) with variable overall
cache sizes (x-axis) and split factors f (y-axis) in the three evaluated scenarios. It
can be seen that the cache miss rate is comparatively high in all scenarios in case
of low cache limits and for large values of f . In this case, the cache space for Cgreen
becomes the limiting factor, yielding only few PACs that actually fit into the cache.
Moreover, the contour lines of the figures (which represent the 2.5 %, 5 %, 7.5 %,
and 10 % cache miss rate bounds) show that the resource-richer the environment
gets, the smaller the achieved cache miss rates become. For example, if the cache
miss rate should not exceed 10 %, then you can infer from Figures 5.12a to c that
the previously determined static cache size of 400 kB is sufficient to stay below this
limit: With |C| = 400 kB, the cache miss rates are 9.2 % (S1), 8.6 % (S2), and 7.3 %
(S3). Regarding the choice of f , the cache miss rates become minimal if we choose
values of 0 % (S1), 16.3 % (S2) and 25.1 % (S3) for f . The corresponding data points
X1 (400 kB, 0 %, 9.2 %), X2 (400 kB, 16.3 %, 8.6 %) and X3 (400 kB, 25.1 %, 7.3 %)
are drawn in Figures 5.12a to c.

2As determined before, yellow PACs should only be used in heterogeneous environments



5.7. Evaluation 163

Figure 5.12.: Distribution of Cache Miss Rate in a) S1, b) S2, c) S3



164 5. Partial Application Configurations

5.7.4. Evaluation based on Dynamically Changing Resource
Availability

Since static parameters obviously perform suboptimal in dynamic environments, we
now focus on gaining adaptive parameters for f and λ which automatically adjust
themselves to changing resource conditions. For this purpose, we simulate the user
mobility based on a Pareto distribution with the average parameters gained from
Table 5.1. Regarding |C|, we decided to retain the static value of 400 kB, since this
value provided good performance in all scenarios and an adaptive |C| would require
to allocate and de-allocate memory every time |C| is changed, yielding significant
overhead especially on the weak mobile devices. From our experiences with the
developed configuration approaches [SHR10], we found that the ratio s of powerful
devices (i.e., s = # strong devices

# all devices
) is the most important factor for the choice of a

specific configuration scheme in an environment. Thus, we determine the adaptive
parameters solely dependent on this ratio s.

At first, we focus on determining an adaptive split factor f . Therefore, we evaluate
the arising cache miss rates with various values of s (from 0 % to 40 %) and determine
the optimal f value for each scenario. To find if there are interdependencies between
λ and f , we perform these measurements with three different values of λ: 0.25, 0.5,
and 0.75. The results of these measurements are shown in Figure 5.13. This figure
reveals two things: 1.) The results with varying λ values are very close to each
other. We infer from these results that the parameters f and λ have only little
interdependency on each other. 2.) The optimal f values (i.e., the values where the
cache miss rate becomes minimal) rise with increasing values of s. This is because an
increasing number of powerful devices leads to a lower degree of dynamic, yielding
less frequent replacements in the cache. Thus, the cache size |Cgreen| for the green
PACs is not that crucial as in higher dynamic scenarios. So, shifting some space
from Cgreen to Cyellow leads to a lower cache miss rate, as the cache holds more
information about yellow PACs, which may possibly become green PACs after some
time. Figure 5.13 also shows that a polynomial approximation by the Least Mean
Squares Method (LMS) method is very accurate, so we rely on this approximation
function in the following.

Figure 5.14 shows the optimal adaptive λ values (i.e., the values where the cache
miss rate becomes minimal) which we gained by evaluating the same scenarios with
the determined LMS-approximated adaptive f values and differing λ values between
0.0 and 1.0. The optimal adaptive λ becomes slightly larger with a rising number
of strong devices, since the degree of dynamic decreases and, thus, the recency of
a PAC’s availability becomes more relevant, as the PACs are valid for a longer
average period of time. Typical optimal values for λ are around 0.3 in case of few
strong devices (s ≤ 15 %), and around 0.6 if we have many strong devices in the
environment (s ≈ 40 %).

Finally, we perform evaluation runs over a time span of 3600 s where we periodi-
cally configure an application with a period time of 50 s, i.e., we perform 72 config-
urations in total. The availability of the devices is dynamically changing, according
to the GPD discussed in Section 5.7.2, and the fitting configuration scheme ac-



5.7. Evaluation 165

Figure 5.13.: Determination of optimal adaptive split factor f(s)

Figure 5.14.: Determination of optimal adaptive λ(s)

cording to the selection strategy presented in Section 4.3.6 is chosen. We compare
configuration without PAC use to PAC configuration with |C| = 400 kB and static
and adaptive cache parameters (f , λ), and to the optimal case (PAC use with un-
bounded cache, i.e., every used PAC is cached forever and does not need to be
replaced). Figure 5.15a shows the latency overhead compared to the optimum with
different values for s. PAC configuration with adaptive parameters is very close to
the optimum with only around 9 % overhead, particularly if many powerful devices
are available. PAC use with static parameters leads to an increased overhead of
around 31 % compared to the optimum, since the parameters do not adapt to the
dynamic scenarios. Configuration without PACs performs worst with an average
overhead of 66 % and can only compete with PAC configuration which uses static
parameters in configuration runs where no powerful devices are available, but shows
very poor performance with an increasing number of powerful devices. Figure 5.15b
shows the overall average latencies. This figure illustrates that PAC configuration
with adaptive parameters is only around 150 ms slower than the optimal case of
PAC use with unbounded cache, despite the 400 kB cache size restriction. PAC



166 5. Partial Application Configurations

Figure 5.15.: a) Configuration Latencies with static and adaptive cache parameters,
depending on s, b) Comparison of average configuration latencies

configuration with static parameters is around 450 ms worse than the optimum,
so you see that dynamic parameters increase the efficiency of the PAC approach.
Standard configuration without PAC use needs around 950 ms more time than the
optimum, but works without a cache.

Thus, in scenarios where fast configuration processes are vital, the use of PACs
with adaptive parameters is strongly recommended. If timing constraints are lowered
for specific scenarios, PAC use with static parameters or even no use of PACs may
be the fitting choice.

5.8. Summary and Discussion

In this chapter, we have introduced the concept of integrating the results from pre-
vious configurations into future configuration processes. This is achieved by caching
parts of a valid configuration for their future re-use. We call a set of components
which have been used within a previous application configuration in combination and
form a subset of the application tree a Partial Application Configuration (PAC).

We have addressed several issues that have to be regarded while integrating par-
tial configurations into application compositions. In order to enable the storage of
PACs, a cache has to be provided. This cache needs to be of limited size to obtain
applicability of the approach in realistic pervasive scenarios. The determination of a
suitable cache size which is neither too small, nor too large has shown to be a main
issue for the performance and the applicability of the PAC approach.

Another important issue that arised was how to proceed when the cache space
is exceeded. Therefore, we have suggested to use a replacement strategy which



5.8. Summary and Discussion 167

introduces a utility value for each cached PAC that is based on the recency and
frequency of the PAC’s availability. The PAC utility values are updated whenever
a configuration process is taken. When the cache space is exceeded, only the PACs
with the lowest utility values are replaced. Moreover, to increase the efficiency of
the cache space usage, we have decided to distinguish between two different types
of PACs in the cache: While green PACs represent the PACs with currently highest
utility value and are stored in a complete format which can simply be integrated into
configuration assemblies, yellow PACs represent partial configurations with lower
utility values that store the information about the PAC components in a much
more compact format. Because of this, the number of storable PACs is significantly
increased. However, yellow PACs cannot be directly integrated into configuration
assemblies. But as their utility values are recorded, they may become green PACs
in the future when their utility value increases. In this case, the complete format
of this PAC is automatically created, which is possible as the yellow PACs contain
all required information. Then, the formerly green PAC with lowest utility value is
replaced. The provision of a reasonable number of green PACs in combination with
additional yellow PACs guarantees to always have a large set of highly usable PACs
in the cache, yielding low cache miss rates, as our evaluations have shown.

To integrate PACs into configuration processes, the configuration approaches pre-
sented in Chapter 4 needed to be extended so that they first check if a usable PAC
exists that fulfills the dependencies given by an application contract. In this case,
the PAC is simply loaded from cache, and no calculations need to be taken for the
respective application parts. Otherwise, the contract dependency needs to be re-
solved in the standard way using contract matching. The corresponding extensions
of the configuration assemblers are of minor nature, so the simple integration of the
PAC concept into additional assemblers is ensured.

In our evaluations, we have determined suitable parameters of the PAC approach
for the overall cache size, the distribution of the cache into green and yellow PACs,
and the influence of the recency and frequency for the replacement strategy. In these
measurements, we have shown that a replacement strategy which equally weighs the
recency and frequency of the PAC availability provides the lowest average cache
miss rates. This strategy also yields significantly lower cache miss rates than stan-
dard replacement strategies like FIFO or pure LRU or LFU. Following, we have
determined an overall cache size of 400 kB as a good tradeoff that provides a low
cache miss rate and, hence, a low configuration latency, while at the same time,
keeps the disk space requirements on the involved devices low. The fraction f of
cache space which should be reserved for yellow PACs has shown to monotonously
rise with an increasing fraction of resource-rich devices. After having determined
static values for the PAC parameters (overall cache size, fraction of cache for yellow
PACs, recency/frequency parameter of the replacement strategy), we focused on
providing dynamic parameters which automatically adapt themselves to changing
environments. Therefore, we have presented approximation functions that solely
depend on the relative amount of resource-rich devices as input parameter, since
this parameter has shown to have the highest influence on the performance of the
PAC approach in our measurements. With dynamic parameters, the configuration
latencies could further be reduced compared to the use of static parameters.



168 5. Partial Application Configurations

In summary, we have presented a solution for the effective caching and use of
PACs that are highly valuable for future configuration. Through this, the number
of components that actually need to be configured is reduced, leading to configura-
tion processes which are around 35 % faster on average than configuration without
PAC use. This leads to less user distraction and, in consequence, to more seam-
less configurations and adaptations. So far, none of the related projects features a
similar mechanism. Thus, the use of PACs represents a completely novel approach
in the research area of automated composition of distributed applications. Corre-
spondingly, the PAC concept represents a large step towards realizing the vision of
Pervasive Computing in configuring adaptive distributed applications.



6
Prototype

6.1. System Architecture

To realize the concepts and mechanisms developed in this work and discussed in
the previous Chapters 4 and 5, we extended the systems BASE [BSGR03] and
PCOM [BHSR04], which represent communication and component middleware sys-
tems for Pervasive Computing developed at the University of Stuttgart. The ex-
tended system architecture with the newly integrated elements (highlighted by dark
black boxes) is shown in Figure 6.1.

The foundation of the BASE micro-broker is the device capability layer, i.e., the
device platform. On top of this platform, the plug-in manager is resident, enabling
flexible and extensible automatic configuration of the supported protocols and ser-
vices. The BASE Invocation Broker delegates method calls to the corresponding
services on the mobile devices. Registries maintain the currently available devices
and services. While our new Event Service realizes the automatic update of mapped
devices’ resource conditions at the cluster heads, the Mobile Code Service is respon-
sible for the actual transmission of the resource information classes. These two new
components of BASE are described in more details in Section 6.2.

The component system PCOM provides a runtime environment for the design
of distributed applications with automated runtime configuration and adaptation.
Within PCOM, devices are represented by containers. Besides the standard contain-
ers, Virtual Containers are additionally provided and allow the remote configuration
of application components. The access and retrieval of remote devices’ configuration
information happens via mobile code, using specific Mobile Code Accessors.

So-called assemblers with different degrees of decentralization represent the con-
figuration algorithms. While some of the assemblers are complete algorithms, oth-
ers represent greedy heuristics. Handte et al. [HBR05] have developed a greedy
distributed and a greedy centralized assembler, as well as a complete distributed as-
sembler based on Asynchronous Backtracking. We provide a new centralized Mobile
Code Assembler based on our Direct Backtracking algorithm for weakly hetero-



170 6. Prototype

Application Manager

Assembler

Container

Asynchronous 
Backtracking
Assembler

Greedy 
Distributed
Assembler

Plug-in Manager & Plug-ins

Device Registry Service Registry

Invocation Broker

Device Capability Layer (Platform)

PC
O
M

B
A
SE M

ic
ro

B
ro

ke
r

Greedy 
Centralized
Assembler

Mobile Code
Assembler

(based on DBT)

Virtual Containers

Mobile Code
AccessorClustering Framework

Event Service Mobile Code Service

PAC Repository

Hybrid
Assembler

PAC Framework

Selector

CentralStrategy

HybridStrategy

DecentralStrategy

PA
C

In
te

gr
at

io
n

Figure 6.1.: Extended System Architecture of BASE and PCOM: New system ele-
ments are represented by the dark boxes

geneous environments, and a hybrid assembler tailored for strongly heterogeneous
environments.

On top of the assemblers, the application manager performs the lifecycle man-
agement of applications and allows to start, stop, and configure the distributed
applications with the aid of the containers and assemblers. The actual selection of
a specific assembler in a distinct environment is regulated by selectors, which can
additionally decide whether Partial Application Configurations are used or not. In
case of PAC use, the PAC Framework automatically controls the access and update
of the PACs that are cached in the PAC Repository.

Thus, the BASE extensions are of rather minor nature, while PCOM’s architec-
tural changes are wide-ranging to enable efficient heterogeneity support. In the
following, we will discuss the main components of BASE (Section 6.2) and PCOM
(Section 6.3) in more details.

6.2. BASE Communication Middleware

In this section, we first briefly present the basic functionality of the communica-
tion middleware BASE, as presented by Becker et al. [BSGR03]. Then, we discuss
the extensions we made to BASE to enable the automated and proactive loading
of remote devices’ resource information and to create the Virtual Containers (cf.
Section 4.3.5).



6.2. BASE Communication Middleware 171

6.2.1. Basic Functionality

As middleware system which handles all aspects of communication, we rely on the
BASE Microbroker [BSGR03] to support automatic configuration and adaptation
of communication protocols at runtime. This enables a more stable and flexible
communication platform. BASE provides distribution-independent access to the
offered services and decouples the application from the underlying communication
protocols.

The main component of BASE is the Invocation Broker which delegates method
calls to the corresponding services on the mobile devices. Furthermore, BASE man-
ages the devices in range through the Device Registry and the services available
on a device through the Service Registry. A Lease mechanism – relying on peri-
odic heartbeat message exchange – guarantees the up-to-dateness of the registries.
The automatic configuration of the supported protocols is possible by the Plugin
Manager, as the protocols are outsourced in plugins which are loaded and config-
ured at runtime. The plugin concept of BASE allows the microbroker to support a
wide range of end-user devices that reaches from simple microcontrollers and mobile
phones up to full servers. The only requirement is the presence of a JVM that sup-
ports the Connected Limited Device Configuration Profile (CLDC) [Sun03] profile.

6.2.2. Extensions

The proactive loading of resource information from cluster members to their clus-
ter head requires the communication middleware to provide two additional services:
Firstly, a mechanism is needed to automatically transfer configuration classes be-
tween different devices. And secondly, as the cluster heads always needs to have
up-to-date information of their cluster members’ resource conditions, a mechanism
to notify devices about resource changes at specific remote devices is required. As
one can see in Figure 6.1, the Event Service and the Mobile Code Service were
realized to provide these two functionalities.

Event Service

The basic idea of the Virtual Container concept presented in Section 4.3.5 is the
creation of one artificial container at a strong device per remote device that is
mapped to this strong device. This Virtual Container emulates the remote con-
tainer. As availability of resources on remote containers may change over time, the
Virtual Containers have to be updated. This happens via the new Event Service
which implements a distributed event service that supports undoable events and is
seamlessly integrated into the BASE event framework. It provides the IListener

interface and is therefore pluggable to nearly all components. In detail, this service
works as follows: Whenever a cluster member joins a cluster head, this cluster head
registers at the cluster member for changes in its resource information. In case of
changed resource conditions, e.g., due to additional applications which allocate or
deallocate resources, the cluster member fires a Resource Change Event to notify



172 6. Prototype

its cluster head (as its listener) about the updated resource conditions. The listener
then updates the resources in its Virtual Container correspondingly. Obviously,
when a cluster head notices that one of its cluster members leaves the cluster since
it does not receive any heartbeat messages for a specific period of time, it deregisters
from this cluster member, as the respective resource changes are no longer relevant
for the cluster head’s configuration.

Mobile Code Service

In order to actually update the state of a remote container, the configuration logic
has to be transfered to the current cluster head. This is possible using the new
Mobile Code Service of BASE, which allows the loading of class files from a
remote system. The Mobile Code Service provides standard proxy and skeleton
implementations for remote communications and is capable of transfering general
classes, which also enables the distribution of specific classes such as BASE plug-ins,
for instance.

There exist multiple ways to obtain remote code. Carzaniga et al. [CPV97] present
three paradigms besides the classical client-server model where code is only executed
on a server: Remote Evaluation, Code On Demand, and Mobile Agents. In our case,
Code On Demand is the preferrable choice, as it represents the scenario that a pro-
cess A on device DA possesses the required resources for configuration and loads the
executable code of process B on another device DB to execute it locally. Further-
more, this code may effectively be constrained to solely executing uncritical actions
if Code On Demand is used, avoiding the necessity of using security mechanisms
like digital signatures and, thus, the management of certificates.

6.3. PCOM Component System

While BASE provides basic communication features that are required by distributed
applications, the actual configuration of the applications as well as the management
of the devices and their resources requires an independent system which builds upon
BASE’s functionality. We use the component system PCOM for this purpose. Here,
we first discuss the initial functionality of PCOM at the beginning of the works
for this thesis, as presented by Becker et al. [BHSR04] and Handte et al. [HBR05,
HHSB07, HHS+07]. Then, we present our extensions to PCOM which enable the
use of the concepts we introduced in the Chapters 4 and 5.

6.3.1. Basic Functionality

Originally, PCOM was designed for the use in Mobile Ad Hoc Networks without
additional infrastructure. Thus, PCOM is a system that does not rely on any central
instance. This has serious impacts on PCOM’s inital system architecture.

PCOM provides a runtime environment for the components with contractually
specified interfaces for the design of distributed applications that are automatically



6.3. PCOM Component System 173

configured and adapted during runtime without user interaction. Cooperative user
behavior is assumed, i.e., all users are trustworthy. A demonstration of PCOM was
shown at the IEEE PerCom 2006 conference [HUB+06].

Container

The components which may be used by applications are executed within a PCOM
Container that provides a specified interface to the PCOM middleware and basic ser-
vices for the components. A component features factories which are representatives
for locally installed components and support a negotiation phase that recursively
determines the non-functional parameters of a component without starting it. This
enables a resource-conserving configuration of the components. In order to support
contracts (i.e., resource dependencies between components), PCOM provides allo-
cators that encapsulate the access to exclusive resources (e.g., a single display) and,
thus, allow transparent access to these resources. Allocators are used both during
configuration and execution process of an application. Such as factories, they have
to be registered on the corresponding container which then can determine a valid
configuration for the distributed application, and execute the application.

Assemblers

The automatic configuration of components is performed by so-called assemblers
which enable access to components prior to their instantiation and, thus, decouple
the configuration processes from the lifecycle management of the components. At
the time this thesis started, PCOM supplied a complete, distributed assembler based
on the Asynchronous Backtracking (ABT) algorithm by Yokoo et al. [YDIK98], and
a distributed (Greedy Distributed Assembler (GDA)) as well as centralized greedy
heuristic (Generalized Clustering Algorithm (GCA)) [HBR05]. These assemblers are
optimized for the use on resource-poor mobile devices.

Application Manager

Lifecycle management of applications is performed by the Application Manager
which was introduced in 2007 in the system [HHSB07]. The application manager
allows to start, stop, and configure the distributed application with the aid of the
containers and the assemblers. With the help of the application manager, a user
can also request that a certain anchor should be started or a running anchor should
be stopped.

6.3.2. Extensions

Clustering Framework

The Clustering Framework is a main component of the new PCOM system archi-
tecture. Figure 6.2 shows the UML class diagram of the clustering framework. The



174 6. Prototype

Figure 6.2.: Implementation of Clustering Framework

central component of this framework is a service within the Cluster Manager which
provides methods for requesting the current cluster head and the cluster members.
It delegates occurring events (e.g., neighborhood changes) to the corresponding clus-
tering strategies, which have to implement the interface IStrategy. Regarding the
clustering strategies, we have implemented the completely distributed version of the
Generalized Clustering Algorithm of Basagni (GCA, [BCFJ97]) as basic clustering
strategy. In this algorithm, adjacent nodes initially exchange their node weights. To
assign the clustering weights to the present nodes, we used the well-known Strat-
egy design pattern [HW03] and implemented standard strategies like Highest De-
gree Clustering (HDCStrategy, [GTCT95]) or Lowest ID Clustering (LIDStrategy,
[LG06]), and the developed Resource-Aware strategy (RAStrategy) that is based
on the introduced benchmarking process and determines a threshold to distinguish
between cluster heads and cluster members, as discussed in Section 4.3.3. In each
of these schemes, the nodes with highest weight become cluster heads. Obviously,
the implementation of additional clustering strategies is easily possible.

Via the IStrategy interface, the clustering strategies get access on the Clus-
ter Manager that provides services to send messages to neighbored nodes (via the
interface IMessagingProvider), access the current state of the cluster (via the in-
terface IInterceptor) or the selection of a specific assembler (via the interface
IAssemblerSelector). As the cluster strategies may widely differ in their clus-
ter formation and cluster maintenance phases, the Cluster Context class provides
information about the internal cluster state and the current cluster nodes, whose
properties are stored within the Node Description class.

Mobile Code Framework

In order to allow the loading of remote classes via Mobile Code, a framework to
access the required classes was realized. The main part of this Mobile Code Accessor
Framework are various so-called Accessors that allow different access methods.

Those parts of the original Allocators and Factories which are relevant for config-
uration processes were outsourced into new serializable configuration classes. This



6.3. PCOM Component System 175

enables their transmission to the cluster head which then can locally calculate a
valid configuration. As resources typically are limited, changes in the state of re-
mote resources have to be transmitted to the cluster head. This happens by the
previously described BASE Event Service that represents a distributed event lis-
tener. Every configurator has to report changes in its state by events. To enable
access to context objects on remote containers for the cluster head, we introduced
the Virtual Container (VC) concept described in Section 4.3.5, where every con-
figuration class is administrated within its own VC. The actual configuration is
performed on the cluster heads by accessing their own container and the established
Virtual Containers.

Following, we focus on the realized access methods. Besides the already existing
Remote Accessor which simply delegates requests by remote invocation to other
containers and does not rely on Mobile Code, three new accessors were developed
and represent different strategies for obtaining the required configuration logic:

• Eager Mobile Code Accessor: This accessor loads configuration classes
from cluster members in advance, as soon as they are in communication range.
Thus, it implements the pre-configuration process presented in Section 4.1.3.
In case a cluster head changes, the old head unloads all classes to deallo-
cate memory, as they are no longer needed. This yields the advantage that
the system performs proactive class loading to reduce the latency in a pos-
sibly following application configuration. In highly dynamic scenarios or if
the cluster head frequently changes, the Eager Mobile Code Accessor perma-
nently transfers remote configuration classes, leading to increased communi-
cation overhead. This drawback can be reduced by choosing a suitable cluster
strategy or the use of the Handover Mobile Code Accessor (see below).

• Lazy Mobile Code Accessor: Using a lazy strategy, the required classes are
not loaded until the time they are really needed. This complements with eager
class loading and implicates that the cluster head’s resources are conserved.
Furthermore, the traffic load of the network is reduced. A disadvantage of this
method is the increased configuration latency for the user, as the class loading
happens during the user interaction period.

• Handover Mobile Code Accessor: Frequent cluster head changes can sig-
nificantly burden the network in case of eager class loading. To reduce this
network load, we have implemented an additional Handover Mobile Code Ac-
cessor which performs eager class loading. In case the cluster head changes,
this accessor immediately transmits the previous cluster head’s state to the
new cluster head. Consequently, the new cluster head does not need to inquire
the configuration classes from the involved devices. This helps to decrease the
configuration latency, as our evaluations have shown.

The Mobile Code framework and the implemented access strategies are depicted
in Figure 6.3.



176 6. Prototype

Figure 6.3.: Implementation of Mobile Code Framework

Mobile Code Assembler

The Mobile Code Assembler (MCA) represents a part of the Virtual Container con-
cept discussed in Section 4.3.5. It is an assembler that uses mobile code to get
the needed configuration logic. A component is configured if it finds all required
resources or additional components. The participating configuration classes con-
tain a configure() method that is recursively called for every element of the tree
and, thus, follow the depth-first search approach of Direct Backtracking (cf. Sec-
tion 4.2.1). Each class of the application tree configures itself and then calls the
configure() method of its child components. Finally, the obtained configuration is
serialized into a particular object which then can be transmitted to other assemblers.
A demonstration of the PCOM system which relies on centralized MCA configura-
tion on a laptop and involved smart phones [Sch09] was shown at the review meeting
of the European Union-funded project ALLOW which deals with adaptation issues
in flow-based Pervasive Computing environments [HRKD08].

Hybrid Assembler

The hybrid assembler is the central component of the hybrid application configura-
tion that is described in Section 4.4. The hybrid approach’s architecture is shown
in Figure 6.4. This assembler is based on the Mobile Code Assembler as described
above, since it uses the same mechanisms for the configuration: the active devices
create Virtual Containers for every mapped passive device which store the current
resource information of the remote devices. The access of the hybrid assembler on
the containers is abstracted via the accessors described in the previous paragraph.
The hybrid assembler is only running on the resource-rich devices and equally dis-
tributes the load among the configuration devices by relying on the resource-aware
clustering strategy introduced in Sections 4.4.1 and 4.4.2, thus combining the VC
concept with the ability of a parallel and distributed configuration process.

To clarify the hybrid approach’s proceeding, we will describe the interaction of the
distributed components within a hybrid configuration process now. Let us suppose
that the user starts a distributed application on his or her mobile device which is rep-
resented in Figure 6.4 as Container 2. First, the application manager on this device
calls the selector which decides to use the hybrid assembler, as several resource-rich



6.3. PCOM Component System 177

Figure 6.4.: Implementation of Hybrid Assembler

devices are available – and start the application configuration on cluster head 1, to
which the user’s device is mapped. Within the configuration process, the hybrid
assemblers on the cluster heads access the local container of the respective resource-
rich device as well as the Virtual Containers of the mapped devices. To maximize
the configuration efficiency, the Virtual Containers are only accessed if the local
container could not resolve the resource requirements of a dependency. If both the
local and the Virtual Containers cannot resolve a resource dependency, the hybrid
assembler requests the other cluster heads to resolve this resource conflict and waits
for the configuration results from the other devices. If the configuration process
was successful, the hybrid assembler supplies the complete assembly (which main-
tains the references to the determined resources) to the device where the application
was started and, after the component bindings have been established, executes the
application.

PAC Framework

The PAC Framework contains the logic to create and update the cached set of
PACs. It contains the PAC replacement strategy presented in Section 5.5 to update
the utilities of PACs and replace specific PACs if the cache space is exceeded. Fur-
thermore, the PAC Framework enables the automatic distribution of stored PACs
to newly arriving devices. If a cluster head realizes a new cluster member has joined
its cluster, the PAC Framework transmits the cached PAC set as a serialized object
to this device.



178 6. Prototype

Figure 6.5.: Cache structure with Lookup Table where green and yellow PACs are
stored, and the PAC Repository holding the corresponding XML-based
assemblies of the cached PACs

In order to enable the use of PACs, the PAC Framework creates, accesses and
updates the PAC Lookup Table including entries for the green and yellow PACs,
and the PAC Repository which represents the storage location for the XML repre-
sentations of the green PACs within the cache. The layout of the Lookup Table and
the additional PAC Repository are shown in Figure 6.5.

The Lookup Table is arranged as a heap, with complexity of O(log|C|) for update
operations. The elements within C are re-sorted after each configuration process
using heap sort (with worst case complexity O(|C| · log|C|) for sorting the complete
heap). By using the utility function f(x) introduced in Section 5.4, the utility value
of PAC p decreases monotonically between two consecutive references to p. This
induces that two PACs which are not referenced do not change the order defined
by their utility values. Therefore, one only needs to compare the utility of a yellow
PAC py to the utility of the least-green PAC plg when py is referenced, but not on
each reference to other PACs between two consecutive references to py. This ensures
an efficient implementation of the replacements.

As mentioned before, a Partial Application Configuration is represented by an
XML file in the PAC Repository, including information about the involved compo-
nents and the devices which host these components, as well as the interdependencies
between the components (i.e., the service provisions to parent components and the
service demands to child components), which are relevant to establish the com-
ponent bindings for the application execution. Figure 6.6 shows an excerpt of an
exemplary green PAC in complete XML format, which covers information about
the component itself (CoID [0,1][0,1]), its parent component (CoID [0,1]), and its
child components (CoIDs [0,1][0,1][0,0] and [0,1][0,1][1,0]). The XML file lists the
INSTANCE PROVISION of the component to its parent component, as well as the
INSTANCE DEMANDs which represent the component instances that provide the im-
plementation of the component-specific functionality. A component instance may
additionally require an arbitrary, but fixed number of resources, which is encoded
by a RESOURCE DEMAND within the XML file.



6.3. PCOM Component System 179

Figure 6.6.: Excerpt from XML representation for exemplary PAC component with
CoID [0,1][0,1]



180 6. Prototype

6.4. PCOM Simulator

With the extensions provided by this work, the PCOM component system represents
a prototype that enables the automatic configuration of distributed applications in
heterogeneous environments via different configuration algorithms. This prototype
is well suited for evaluating small or mid-size applications in rather static scenarios.
However, for the evaluation of large-scale applications and scenarios with dynam-
ically changing device availabilites, we rather rely on a simulator which provides
support for faster and much more flexible evaluations than with the prototype.
Here, we briefly present the basic functionality of this simulator, and the extensions
that were necessary to perform the mentioned measurements.

6.4.1. Basic Functionality

To simplify the comparative evaluation of centralized configuration algorithms in a
larger scale, we rely on an event-discrete simulator of the PCOM component system
which was initially presented by Handte et al. [HBR05]. The PCOM simulator
abstracts from the underlying computer hardware and networking technology. It
is event-discrete in a way that it delivers and processes all messages generated in
one discrete time step within the next step. To do so, the simulator relies on a
module which provides a light-weight implementation of the fundamental concepts
of the component system, such as containers, components, or resources. Moreover,
the simulator provides a scenario generator for the creation of different applications
and scenarios. This enables a simple and quick abstract evaluation of different
configuration algorithms in various environments, but still relies on the systems
BASE and PCOM to guarantee realistic evaluation results. Further details about
this simulator as well as its system architecture are given by Handte [Han09].

6.4.2. Extensions

We rely on the core functionality provided by the initial version of the simulator. To
compare our newly developed Direct Backtracking algorithm [SHR08a] to its closest
relative, the Synchronous Backtracking algorithm [YDIK98], we implemented both
algorithms as additional assemblers to the simulator.

Moreover, for the evaluation of the PAC concept in dynamic environments, we
extended the simulator by the user mobility model which we have discussed in
Section 5.7.2 to simulate dynamic changes in the availability of mobile and stationary
devices, and we implemented several standard replacement strategies such as FIFO
or LFU to update the content of the PAC cache whenever the cache size is exceeded.

6.5. System Software Footprint

The extensions provided to the middleware systems BASE and PCOM produce
additional code and communication overhead, which are briefly discussed now.



6.5. System Software Footprint 181

Message Type System Size [byte]
Event EventService Message BASE 335

Subscribe EventService Message BASE 399
Unsubscribe EventService Message BASE 401
AcquireHead Clustering (DMAC) PCOM 292

Join Clustering (DMAC) PCOM 285
RequestInfo Clustering (DMAC) PCOM 335

ComponentConfig Configuration Class PCOM 8.767
ResourceConfig Configuration Class PCOM 5.123

Table 6.1.: Message sizes

6.5.1. Message Sizes

A significant requirement to a comprehensive solution for homogeneous as well as
heterogeneous systems was the gentle use of the limited system resources on mobile
devices.

Regarding communication overhead, the message sizes of the distinct clustering
and event service messages and the configuration classes that have to be transmitted
to create the Virtual Containers are specified in Table 6.5.1. Usually, the cluster
head loads the configuration classes of all of its cluster members and registers at
the BASE Event Service of the cluster members for two events that notify about
changed total and free resources on this device, respectively. While the subscription
to remote events takes 399 bytes in average, the unsubscription requires 401 bytes
to be transmitted. A single actual event message (e.g., a device wants to become
cluster head) of the BASE Event Service takes 335 bytes in average. As we used
IEEE 802.11b radio technology in our evaluations, the maximum effective data rate
is about 50 % of 11 Mbit/s. Since the required configuration classes (Component-
Config and ResourceConfig) have a size of around 14 kB in sum, the actual process
of transmitting this amount of data requires only few milliseconds and represents a
small fraction compared to the hardware and software latencies arising during the
class loading process, as you can see in our evaluations. Moreover, these classes
only need to be transmitted when the cluster structure changes, which is rather
seldom the case in real-world scenarios, as we have stated in Section 5.7.2. This re-
tains applicability of the Mobile Code concept. Furthermore, regarding the message
and class sizes of the AcquireHead1, Join2 and RequestInfo3 messages and the small
number of messages that need to be transmitted when the DMAC clustering scheme
is used, the transmitting medium has enough capacity for the required communica-
tion between cluster head and cluster members. Correspondingly, the cluster head’s
CPU is the restrictive factor for application configuration.

1Request of a device to become a cluster head
2Device wants to join another cluster head as simple cluster member
3Request of a new device to obtain the resource information of cluster members



182 6. Prototype

Framework component System Size [kb]
Event Service BASE 12.9

Mobile Code Service BASE 11.7
Clustering Framework (incl. Selector abstraction) PCOM 151.1

Direct Backtracking Assembler PCOM 96.9
Hybrid Assembler PCOM 99.3

Mobile Code Accessor PCOM 92.5
PAC Framework (incl. 400 kB cache repository) PCOM 597.0

Virtual Container instance PCOM 8.8

Table 6.2.: Sizes of new framework components’ binaries

6.5.2. Class Sizes

Concerning the sizes of BASE’s and PCOM’s new components’ classes, Table 6.5.2
gives an overview of the consumed disk space of the binary files. The new Event
Service and Mobile Code Service of BASE produce only minor space overhead of less
than 25 kB. Regarding PCOM’s new components, the PAC Framework represent
the component that consumes most disk space, due to the provided cache repository
of 400 kB. Furthermore, the Clustering Framework also requires a larger amount
of space than most of the other new components, as it provides the benchmarking
process and the clustering logic to automatically generate clusters based on the
provided strategies. The total space overhead of the Clustering Framework (which
is required by all devices) is 151.1 kB. We consider this overhead to be acceptable,
compared to the available space on common up-to-date mobile devices.

The new centralized and hybrid assemblers as well as the Mobile Code Accessor
to get access to remote configuration classes require less than 100 kB disk space,
respectively. In a Virtual Container instance, only the relevant resource information
of the respective remote device is stored, thus each Virtual Container requires only
8.8 kB of disk space in average. In summary, the complete framework extensions
consume around one Megabyte of disk space, ensuring the framework’s applicability
on nowadays’ standard mobile and stationary devices.

6.6. Summary and Discussion

In this chapter, we have discussed the middleware systems we used for a prototypical
implementation of our concepts and mechanisms, consisting of the communication
middleware BASE [BSGR03] and the component system PCOM [BHSR04]. More-
over, we have discussed the changes in the system architecture of PCOM/BASE
that realize the concepts which were developed within this thesis.

BASE was extended by a service to automatically retrieve the configuration classes
of remote devices, which is required to realize the pre-configuration process discussed
in Section 4.1.3. Moreover, another service was integrated into BASE to allow



6.6. Summary and Discussion 183

the automatic update of these remote configuration classes by registering at the
respective remote devices for update messages.

The adaptations of PCOM are more extensive. First of all, we implemented the
clustering framework discussed in Section 4.3.2 into PCOM to allow the arrange-
ment of the devices into different groups, which is needed to uniquely distribute
the configuration load among the present devices. To consider the heterogeneity of
the devices, we implemented the resource-aware clustering strategy introduced in
Section 4.3.3. For the automatic retrieval of remote configuration classes via Mobile
Code as discussed in Section 4.3.5, PCOM was extended by an additional framework
that provides several access methods which guarantee the efficiency of the proactive
class loading in various scenarios. To combine the resource-aware centralized con-
figuration approach with the distributed configuration that exploits the parallelism
available through multiple devices, an implementation of the hybrid assembler that
was presented in Section 4.4.3 was implemented. This advanced assembler relies
on the clustering framework and the local emulation of remote devices via Virtual
Containers and increases the configuration efficiency especially in highly heteroge-
neous environments. Last but not least, the PAC Framework enables the use of the
Partial Application Configurations introduced in Chapter 5. The implemented PAC
Framework is general in the way that it is independent from specific configuration
approaches, but may optionally be used by any configuration algorithm. Additional
disk space was reserved for the provision of a PAC Repository, maintaining cached
PACs which have been used in previous configuration processes.

For highly-dynamic large scale scenarios that involve a huge number of mobile as
well as stationary devices, the discussed prototype could not be used for evaluation
measurements due to device restrictions at our institute. Therefore, we revert to
an event-discrete simulator of the component middleware that enables the simple
comparison of different configuration approaches concerning the number of discrete
steps an algorithm has to take to configure a specific application. This simulator,
which has initially been developed in a previous work [HBR05], was extended by ad-
ditional configuration algorithms and the possibility to simulate the (dis-)availability
of devices according to specific probability distributions.

At the beginning of the work for this thesis, the discussed system software mainly
focused on peer-based homogeneous Ad Hoc scenarios, consisting only of resource-
poor mobile devices. With the far-reaching adaptations taken on the system soft-
ware, the prototype’s functionality has been significantly extended to additionally
provide efficient support of heterogeneous scenarios with present resource-rich as
well as resource-poor devices. We relied on this prototypical implementation as
well as the simulator for the evaluations presented in the Chapters 4 and 5 to show
the efficiency of our approach in realistic homogeneous as well as heterogeneous
environments with various degrees of decentralization.





7
Conclusion

7.1. Summary

As the size and complexity of Pervasive Computing environments increases, config-
uration and adaptation of distributed applications gains importance. These tasks
require automated system support, since users must not be distracted by the (re-)
composition of applications. While many projects exist which provide system sup-
port for a specific kind of environment, comprehensive solutions that automatically
adapt to changing conditions in dynamic environments are lacking.

Therefore in this dissertation thesis, we have presented a novel approach which
efficiently supports heterogeneous Pervasive Computing scenarios. Our solution is
based on various configuration schemes, reaching from centralized via hybrid up
to completely decentralized approaches. Our approach is capable of adapting the
degree of decentralization according to the currently available devices and services
in dynamic environments. Furthermore, we have suggested to utilize the results
from previous configuration results by integrating Partial Application Configurations
(PACs) that were cached after successful configurations for their future re-use.

For weakly heterogeneous environments with an additional resource-rich infras-
tructure device, we have presented Direct Backtracking (DBT), a new centralized
algorithm for the efficient configuration and adaptation of tree-based distributed
applications. DBT avoids thrashing effects completely due to an intelligent back-
tracking mechanism, while memory and code overhead are of acceptable size. Fur-
thermore, DBT prevents unnecessary adaptations in many situations as it employs
a proactive backtracking avoidance mechanism. We have shown that DBT signif-
icantly outperforms Synchronous Backtracking (SBT), its closest predecessor, in
configuring applications with various sizes, particularly when the applications are
larger and include many contracts where multiple alternative components provide
the required functionality.

Further in this thesis, we have presented a mechanism that enables the efficient
support of automatic application configuration both in heterogeneous infrastructure-
based and in homogeneous Ad Hoc pervasive environments. This approach is based



186 7. Conclusion

on the introduction of a framework that enables the formation of clusters and the
election of a cluster head according to the resource-awareness of the devices. Fur-
thermore, we have developed the new concept of Virtual Containers that supports
the use of mobile code to proactively load configuration-specific classes to the cluster
head and, hence, enables efficient centralized application configuration on resource-
rich devices. Class loading in advance and handovers between changing cluster heads
for further decrease of the configuration latency are provided by accessors. The ac-
tual configuration is performed by a new centralized assembler which relies on Direct
Backtracking as configuration algorithm and integrates the obtained Virtual Con-
tainers to avoid any communication latencies during configuration processes. By
evaluation measurements, we proved that this framework can reduce configuration
latencies significantly, particularly in heterogeneous environments and when eager
class loading is used. This enables the desired support of various environments.

Furthermore, we have presented a hybrid approach for configuring distributed
pervasive applications. This approach efficiently exploits the available computation
resources in heterogeneous environments. Since this hybrid scheme is a generaliza-
tion of the pure centralized and decentralized approaches, it covers the complete
spectrum of pervasive scenarios, which has not been achieved by related projects
yet. The hybrid approach is based on the formation of clusters with balanced con-
figuration load for the resource-rich devices. These devices represent the active
devices during configuration calculation processes, while the resource-weak devices
remain passive to avoid bottlenecks in the configuration process. Single points of
failure are avoided due to the parallel execution of the configuration calculations
on multiple active devices. The hybrid approach automatically adjusts its degree
of decentralization to the available resources in the network. In the evaluations of
the hybrid scheme, we proved that in strongly heterogeneous environments, this ap-
proach reduces the configuration latencies by more than 30 % on average compared
to decentralized and centralized approaches. Moreover, the evaluations on a network
emulation cluster showed that these results also hold in larger scenarios.

Moreover, we have introduced the concept of Partial Application Configurations
(PACs) in automatic composition of distributed applications. PACs exploit the
results of previous configuration processes by re-using cached parts of a valid config-
uration in current configuration processes. As none of the related projects features
a similar mechanism, the PAC approach is completely novel in this research area.
We presented concepts for the efficient caching of PACs that are highly valuable
for future configurations. Through this, the use of PACs reduces the number of
components that actually need to be configured. In our evaluations, we showed
that, compared to our approaches that do not rely on PACs, configuration which
uses PACs significantly decreases configuration latencies in homogeneous as well as
heterogeneous environments. The achievable configuration latencies are very low
with only around 1.5 seconds in average for typical Pervasive Computing environ-
ments. This leads to less user distraction and, in consequence, to more seamless
configurations and adaptations.

In summary, the provision of several configuration schemes suited for different
environments, an automatic adaptation of the degree of decentralization, and the



7.2. Outlook 187

integration of the results from previous configuration processes represent large steps
towards realizing the vision of true pervasiveness in the domain of automatic com-
position of distributed applications.

7.2. Outlook

Despite the hybrid configuration approach in combination with the use of partial
application configuration provides automated efficient application composition in
heterogeneous pervasive scenarios, we identified additional research directions which
go beyond the ideas presented in this thesis and represent possible future work.
These research topics address two different goals:

• The user shall not even be aware of ongoing configuration processes. There-
fore, configuration latencies have to be dropped to values significantly below
one second in various thinkable scenarios. One approach to reduce config-
uration latencies is to provide a more sophisticated cluster creation scheme
(Section 7.2.1) that considers various influence factors for the mapping of the
weak to the powerful devices. Furthermore, proactive approaches which con-
figure parts of the application prior to the actual application start by the
user (Section 7.2.2) and automatically create PACs independent from ongoing
configuration processes (Section 7.2.4) may be useful to achieve this goal.

• Valid configurations have to be found with a high probability even in strictly
resource-constrained scenarios. Thus, the aspired goal is to achieve a perma-
nently high application availability. Application-comprehensive conflict han-
dling (Section 7.2.3) and a more flexible component model (Section 7.2.5) aim
at maximizing this application availability to the user.

7.2.1. Application-specific Cluster Creation

The configuration schemes discussed in Chapter 4 perform configuration calculations
according to a depth-first search in the application tree. To fulfill a contract which
is closed between components that are resident on different devices, the established
Partial Configurations have to be communicated among the corresponding devices.
In case of the hybrid configuration approach introduced in Section 4.4, this commu-
nication overhead only arises in case a contract is closed among weak devices which
are mapped to different powerful devices.

To minimize this communication overhead and, thus, maximize the configuration
efficiency, the distribution of the application components among the present devices
as well as the application structure have to be analyzed before the clusters are
established. Then, an improved clustering scheme has to be developed which exploits
the local dependencies within the application structure and reduces the number of
communications within configuration processes. For instance, if two powerful devices
P0 and P1 are calculating configurations using the hybrid configuration scheme, then
a simple algorithm could determine all possible cluster structures with P0 and P1



188 7. Conclusion

as cluster heads and select the one which minimizes the number of communications
between P0 and P1 within the configuration. An advanced scheme could use a more
fine-grained clustering selection scheme that judges the possible cluster structures
according to additional influence factors such as the achieved load balance among the
cluster heads, which has significant impact on the achievable degree of parallelism
in the calculations.

7.2.2. Speculative Calculations in Hybrid Configurations

Even in the efficient hybrid configuration scheme discussed in Section 4.4, there still
exist periods where a cluster head has to wait for receiving partial results from re-
mote cluster heads. Within these waiting periods, the cluster head’s CPU is idle
and could be used for speculative calculation of so far unconfigured application parts
that are also not covered by available PACs to further drop configuration latencies.
Therefore, the configuration algorithm has to be extended to determine waiting peri-
ods and identify probable results of the configurations that are expected from remote
cluster heads. Based on these assumptions about the currently missing configura-
tion parts, the cluster head then starts to proactively calculate further application
parts. In order to determine which of the remotely calculated configuration parts
are likely, the extended algorithm has to consider gained information about the ap-
plication structure, the functionality of the components, and the mobility patterns
of the devices to estimate the probability of specific compositions.

When the configuration results from the remote devices are finally communicated,
the cluster head has to analyse if his speculatively calculated configuration results
match the results from the communicated compositions and are valid concerning
the functional and resource constraints of the environment. If this is the case,
the speculative configuration results are adopted to the current composition and
the configuration continues with the first unconfigured contract. Otherwise, the
speculative calculations are refused and the respective contracts are configured in
the standard way.

Another challenge that has to be considered is the simultaneous speculative calcu-
lation of unconfigured application parts on several cluster heads. Particular atten-
tion has to be paid if multiple speculative configuration results revert to the same
resource, as they may exceed the current availability of this resource. In such cases,
the hybrid algorithm has to determine which of those partial configurations provide
the highest contribution concerning the reduction of the latencies. This requires an
extended cost model to evaluate the use of specific partial configurations.

7.2.3. Application-comprehensive Conflict Handling

Until now, we only consider the configuration and adaptation of single applications.
However, in many typical environments, multiple applications may run concurrently.
If these applications share the same resources, conflicts among these applications are
inevitable. The respective resources thus become conflicting for the applications.



7.2. Outlook 189

These conflicts may lead to a reduced quality of the running applications, but also
to the unavailability of complete applications.

As the present devices and services are known prior to the application execution,
possible conflicts in future application executions are proactively recognizable if an
application-comprehensive conflict handling is performed. Therefore, strategies and
mechanisms to analyse application execution situations in dynamic scenarios are
required. The goal of this conflict analysis is to determine several conflict classes.
One possibility to classify the conflicts is to distinguish between those conflicts
that are avoidable if cautious allocation of conflicting resources is performed, and
those conflicts which cannot be avoided without stopping the execution of specific
applications.

To solve the first class of conflicts, the configuration algorithms have to be adapted
to integrate information about other applications into the decomposiition decisions.
For the second class of conflicts, the conflicts have to be handled by adapting the
conflicting applications to deallocate the corresponding conflicting resources. If the
conflict cannot be solved at all, e.g., because of insufficient resources, this has to be
detected by the system, and the user needs to be notified of this problem.

The main goal of such an application-comprehensive conflict handling is to in-
crease the availability of the applications to the users. A recent work of Tuttlies et
al. [MSS+10] also considers application-comprehensive conflict handling, but does
not explicitly focus on heterogeneous scenarios.

7.2.4. Proactive PAC Creation

So far, the Partial Application Configurations are created immediately after they
were used in a configuration for the first time. This induces that it takes some
amount of time to establish a considerable PAC basis which we can rely on in the
cache. An approach to fill the PAC cache in a faster way is to proactively create
the PACs, i.e., before they were used for the first time. This decreases the cache
miss rate and, thus, reduces the expected configuration latency, especially in early
configuration runs.

Schemes for proactive PAC creation should consider information about past con-
figuration processes in terms of application histories as well as group mobility in-
formation [Sch07]. Furthermore, information about conflicts among different ap-
plications, as described in the previous section, may be helpful to decide which
combinations of PACs yield a low application-comprehensive conflict risk. Based
on this information, the goal is to proactively create only those PACs which have a
high practical relevance and low conflict probability due to their specific component
composition.

7.2.5. Flexibilization of Component Model

For the research presented within this thesis, we rely on a rather stiff component
model where a component either matches the requirements of a contract completely,



190 7. Conclusion

or not at all. However, in practice, in may happen that a component fulfills a
contract’s requirements, but with a reduced quality of service. For example, a display
that provides a specific size or resolution may not fit the required size or resolution
of a contract, as its specifications are below the predetermined specifications. This
may lead to the undesirable situation that an application cannot be started.

However, in situations where the provided quality of service is only marginally
below the one given by the contract specifications, the application availability may
significantly be improved if the corresponding components are also taken into ac-
count by the configuration algorithm when no perfectly matching component is
found.

Therefore, a more flexible component model is required which classifies suitable
components according to their fulfillment of the contract’s specifications. Moreover,
the configuration algorithms need to be adapted in a way that they also regard com-
ponents that are not perfectly matching the requirements. Advanced approaches in
the field of semantic matching [GYS07], machine learning [DC97, DDG+08], pattern
recognition [JDM00], or ontology-based matching [WB99] can be used to automati-
cally search, create and evaluate alternative configurations in a specific environment.
Obviously, it has to be ensured that the found compositions still provide an adequate
service to the users. For instance, choosing a medium-sized LCD monitor instead
of a large flat TV may be appropriate to users to show a video file. However, us-
ing the small screen of their mobile phone is probably not sufficient. Through this
flexibilization of the component model, the situations where a composition cannot
be found in a specific scenario may drastically be reduced, leading to an increased
application availability, with the cost of a marginally reduced quality of service.



Bibliography

[ACKM03] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machi-
raju. Web Services: Concepts, Architecture and Applications. Book.
Springer Verlag, October 2003.

[AK06] Motilal Agrawal and Kurt Konolige. Real-time localization in outdoor
environments using stereo vision and inexpensive gps. In Proceedings
of the 18th International Conference on Pattern Recognition (ICPR
’06), pages 1063–1068, Hongkong, China, August 2006. IEEE Com-
puter Society Press.

[Amo01] Daniel Amor. Pervasive Computing: The Next Chapter on the Inter-
net. Pearson Information Technology (InformIT) Journal. Electronic
version: http://www.informit.com/articles/article.aspx?p=165227,
pages 1–5, October 2001.

[AP00] Alan D. Amis and Ravi Prakash. Load-Balancing Clusters in Wire-
less Ad Hoc Networks. In Proceedings of the 3rd IEEE Symposium
on Application-Specific Systems and Software Engineering Technol-
ogy (ASSET’00), pages 25–32, Richardson, Texas, USA, March 2000.
IEEE Computer Society Press.

[ASW+99] Ken Arnold, Robert Scheifler, Jim Waldo, Bryan O’Sullivan, and Ann
Wollrath. Jini Specification. Book. Addison-Wesley Longman Pub-
lishing, June 1999.

[BAG01] Rajkumar Buyya, David Abramson, and Jonathan Giddy. A Case
for Economy Grid Architecture for Service Oriented Grid Comput-
ing. In Proceedings of the 10th Heterogeneous Computing Workshop
(HCW 2001) at the 15th IEEE International Parallel and Distributed
Processing Symposium (IPDPS ’01), pages 1–15, San Francisco, CA,
USA, April 2001. IEEE Computer Society Press.

[Bak05] Andrew B. Baker. Intelligent Backtracking on Constraint Satisfac-



192 Bibliography

tion Problems: Experimental and Theoretical Results. PhD Thesis,
University of Oregon, March 2005.

[Bas99] Stefano Basagni. Distributed Clustering for Ad Hoc Networks. In
Proceedings of the 4th International Symposium on Parallel Architec-
tures, Algorithms, and Networks (ISPAN’99), pages 310–315, Freman-
tle, Australia, June 1999. IEEE Computer Society Press.

[BB02] Guruduth Banavar and Abraham Bernstein. Software infrastructure
and design challenges for ubiquitous computing applications. Com-
munications of the ACM, 45(12):92–96, December 2002.

[BBG+00] Guruduth Banavar, James Beck, Eugene Gluzberg, Jonathan Munson,
Jeremy Sussman, and Deborra Zukowski. Challenges: an application
model for pervasive computing. In Proceedings of the 6th annual inter-
national conference on Mobile computing and networking (MobiCom
’00), pages 266–274, Boston, MA, USA, August 2000. ACM Press.

[BBM+97] Michael Baentsch, Lothar Baum, Georg Molter, Steffen Rothkugel,
and Peter Sturm. Enhancing the Web’s infrastructure: from caching
to replication. IEEE Internet Computing, 1(2):18–27, March 1997.

[BC03] Magdalena Balazinska and Paul Castro. Characterizing Mobility and
Network Usage in a Corporate Wireless Local-Area Network. In Pro-
ceedings of the 1st International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys ’03), pages 303–316, San Francisco,
CA, USA, May 2003. ACM Press.

[BCFJ97] Stefano Basagni, Imrich Chlamtac, Andras Farago, and Erik Jonsson.
A Generalized Clustering Algorithm for Peer-to-Peer Networks. In
Proceedings of the 24th International Conference on Automata, Lan-
guages and Programming (ICALP 1997), Satellite Workshop on Algo-
rithmic Aspects of Communication (AC), pages 1–15, Bologna, Italy,
July 1997. Springer Verlag.

[BCLM99] Azer Bestavros, Mark Crovella, Jun Liu, and David Martin. Dis-
tributed Packet Rewriting and its Application to Scalable Server Ar-
chitectures. Technical Report BUCS-TR-1999-001, Boston University,
Computer Science Department, Boston, MA, USA, January 1999.

[Bec04] Christian Becker. System Support for Context-Aware Computing.
Habilitation Thesis, Universität Stuttgart, Institut für Parallele und
Verteilte Systeme (IPVS), November 2004.

[Bes94] Christian Bessière. Arc-Consistency and Arc-Consistency Again. El-
sevier Journal on Artificial Intelligence (AI), 65(1):179–190, January
1994.

[BFM+06] Jeff Burke, Jonathan Friedman, Eitan Mendelowitz, Heemin Park,
and Mani B. Srivastava. Embedding expression: Pervasive computing
architecture for art and entertainment. Elsevier Journal on Pervasive
and Mobile Computing, 2(1):1–36, February 2006.



Bibliography 193

[BHSR04] Christian Becker, Marcus Handte, Gregor Schiele, and Kurt Rother-
mel. PCOM - A Component System for Pervasive Computing. In Pro-
ceedings of the 2nd IEEE International Conference on Pervasive Com-
puting and Communications (PerCom ’04), pages 67–76, Orlando, FL,
USA, March 2004. IEEE Computer Society Press.

[BK87] Amnon Barak and Yoram Kornatzky. Design principles of operat-
ing systems for large scale multicomputers. In Experiences with Dis-
tributed Systems, pages 104–123, Kaiserslautern, Germany, September
1987. Springer Berlin / Heidelberg.

[BKL01] Prithwish Basu, Naved Khan, and Thomas D. C. Little. A Mobility
Based Metric for Clustering in Mobile Ad Hoc Networks. In Pro-
ceedings of the 21st International Conference on Distributed Comput-
ing Systems (ICDCS’01), Workshop on Wireless Networks and Mobile
Computing (WNMC 2001), pages 413–418, Phoenix, AZ, USA, April
2001. IEEE Computer Society Press.

[BKMN02] Hyokyung Bahn, Kern Koh, Sang Lyul Min, and Sam H. Noh. Efficient
Replacement of Nonuniform Objects in Web Caches. IEEE Computer
Journal, 35(6):65–73, June 2002.

[BL98] Amnon Barak and Oren La’adan. The MOSIX multicomputer operat-
ing system for high performance cluster computing. Elsevier Journal
on Future Generation Computer Systems - Special Issue on HPCN
’97, 13(4-5):361–372, March 1998.

[BM04] Ismel Brito and Pedro Meseguer. Synchronous, asynchronous and
hybrid algorithms for DisCSP. In Proceedings of the 5th Interna-
tional Workshop on Distributed Constraints Reasoning (DCR-04),
pages 791–805, Toronto, Canada, September 2004. Springer Berlin
/ Heidelberg.

[BN84] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote pro-
cedure calls. ACM Transactions on Computer Systems, 2(1):39–59,
February 1984.

[BPT96] Pravin Bhagwat, Charles Perkins, and Satish Tripathi. Network Layer
Mobility: an Architecture and Survey. IEEE Personal Communica-
tions Magazine, 3(3):54–64, June 1996.

[BSGR03] Christian Becker, Gregor Schiele, Holger Gubbels, and Kurt Rother-
mel. BASE - A Micro-broker-based Middleware For Pervasive Com-
puting. In Proceedings of the 1st IEEE International Conference on
Pervasive Computing and Communications (PerCom ’03), pages 443–
451, Fort Worth, TX, USA, March 2003. IEEE Computer Society
Press.

[BVBR02] Anand Balachandran, Geoffrey M. Voelker, Paramvir Bahl, and
P. Venkat Rangan. Characterizing User Behavior and Network Per-
formance in a Public Wireless LAN. In Proceedings of the ACM In-
ternational Conference on Measurements and Modeling of Computer



194 Bibliography

Systems (ACM SIGMETRICS 2002), pages 195–205, Marina del Rey,
CA, USA, June 2002. ACM Press.

[CAMCM05] Shiva Chetan, Jalal Al-Muhtadi, Roy Campbell, and M. Dennis Mick-
unas. Mobile Gaia: A Middleware for Ad-hoc Pervasive Computing.
In Proceedings of the 2nd IEEE Consumer Communications & Net-
working Conference (CCNC 2005), pages 223–228, Las Vegas, NV,
USA, January 2005. IEEE Computer Society Press.

[CBW03] Tracy Camp, Jeff Boleng, and Lucas Wilcox. Location Information
Services in Mobile Ad Hoc Networks. In Proceedings of the 38th IEEE
International Conference on Communications (ICC ’03), pages 3318–
3324, Anchorage, AK, USA, May 2003. IEEE Computer Society.

[CCG+07] Paolo Costa, Geoff Coulson, Richard Gold, Manish Lad, Cecilia Mas-
colo, Luca Mottola, Gian Pietro Picco, Thirunavukkarasu Sivaharan,
Nirmal Weerasinghe, and Stefanos Zachariadis. The RUNES Mid-
dleware for Networked Embedded Systems and its Application in a
Disaster Management Scenario. In Proceedings of the 5th IEEE Inter-
national Conference on Pervasive Computing and Communications
(PerCom ’07), pages 69–78, White Plains, NY, USA, March 2007.
IEEE Computer Society Press.

[CCS08] Javier Cámara, Carlos Canal, and Gwen Salaün. Multiple Concern
Adaptation for Run-time Composition in Context-Aware Systems. El-
sevier Electronical Notes on Theoretical Computer Science, 215:111–
130, June 2008.

[CCY99] Valeria Cardellini, Michele Colajanni, and Philip S. Yu. DNS Dis-
patching Algorithms with State Estimators for Scalable Web-Server
Clusters. Baltzer Science World Wide Web Journal, 2(3):101–113,
August 1999.

[CDT02] Mainak Chatterjee, Sajal K. Das, and Damla Turgut. WCA: A
Weighted Clustering Algorithm for Mobile Ad Hoc Networks. Springer
Cluster Computing, 5(2):193–204, April 2002.

[CHC+05] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot,
Richard Gass, and James Scott. Pocket-Switched Networks: Real-
world mobility and its consequences for opportunistic forwarding.
Technical Report 617, University of Cambridge, Computer Labora-
tory, Cambridge, UK, February 2005.

[CICY99] Valeria Cardellini, Roma I, Michele Colajanni, and Philip S. Yu. Dy-
namic Load Balancing on Web-server Systems. IEEE Internet Com-
puting, 3(3):28–39, May-June 1999.

[CJBM02] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris.
Span: an energy-efficient coordination algorithm for topology mainte-
nance in ad hoc wireless networks. ACM Wireless Networks Journal,
8(5):481–494, September 2002.



Bibliography 195

[CLM+08] Tiziana Catarci, Massimiliano de Leoni, Andrea Marrella, Mas-
simo Mecella, Berardino Salvatore, Guido Vetere, Schahram Dustdar,
Lukasz Juszczyk, Atif Manzoor, and Hong-Linh Truong. Pervasive
Software Environments for Supporting Disaster Responses. IEEE In-
ternet Computing, 12(1):26–37, January-February 2008.

[CP09] Antonio Coronato and Giuseppe De Pietro. Formal specification of
dependable pervasive applications. In Proceedings of the 4th IEEE
Asia-Pacific Services Computing Conference (IEEE APSCC 2009),
pages 358–365, Singapore, Singapore, December 2009. IEEE Com-
puter Society Press.

[CPFJ04] Harry Chen, Filip Perich, Timothy W. Finin, and Anupam Joshi.
SOUPA: Standard Ontology for Ubiquitous and Pervasive Applica-
tions. In Proceedings of the 1st Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services (MobiQui-
tous 2004), pages 258–267, Boston, MA, USA, August 2004. IEEE
Computer Society Press.

[CPV97] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. Designing
Distributed Applications with Mobile Code Paradigms. In Proceedings
of the 19th International Conference on Software Engineering (ICSE
’97), pages 22–32, Boston, MA, USA, May 1997. ACM Press.

[CWLG97] Ching-chuan Chiang, Hsiao-Kuang Wu, Winston Liu, and Mario
Gerla. Routing in Clustered Multihop Mobile Wireless Networks with
Fading Channel. In Proceedings of the IEEE Singapore International
Conference in Networks (SICON ’97), pages 197–211, Singapore, Sin-
gapore, April 1997. IEEE Computer Society Press.

[DBGW10] Christophe Dumez, Mohamed Bakhouya, Jaafar Gaber, and Maxime
Wack. Formal Specification and Verification of Service Composition
using LOTOS. In Proceedings of the 7th International Conference on
Pervasive Services (ICPS 2010), pages 1–8, Berlin, Germany, July
2010. ACM Press.

[DC97] David M. Dutton and Gerard V. Conroy. A Review of Machine Learn-
ing. The Knowledge Engineering Review Journal. Cambridge Univer-
sity Press, 12(4):341–367, December 1997.

[DDG+08] Thomas G. Dietterich, Pedro Domingos, Lise Getoor, Stephen Mug-
gleton, and Prasad Tadepalli. Structured machine learning: the next
ten years. Springer Machine Learning, 73(1):3–23, October 2008.

[Dec90] Rina Dechter. Enhancement Schemes for Constraint Processing:
Backjumping, Learning, and Cutset Decomposition. Elsevier Jour-
nal on Artificial Intelligence (AI), 41(3):273–312, January 1990.

[DGIR11] Oleg Davidyuk, Nikolaos Georgantas, Valérie Issarny, and Jukka
Riekki. MEDUSA: Middleware for End-User Composition of Ubiqui-
tous Applications. Handbook of Research on Ambient Intelligence and
Smart Environments: Trends and Perspectives. Edited by IGI Global,
pages 197–219, May 2011.



196 Bibliography

[DGMS85] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consis-
tency in a partitioned network: a survey. ACM Computing Surveys,
17(3):341–370, September 1985.

[DHB02] Sajal K. Das, Daniel J. Harvey, and Rupak Biswas. MinEX: a latency-
tolerant dynamic partitioner for grid computing applications. Else-
vier Journal on Future Generation Computer Systems, 18(4):477–489,
March 2002.

[Dow97] Troy B. Downing. Java RMI: Remote Method Invocation. Book. IDG
Books Worldwide, Inc., Foster City, CA, USA, December 1997.

[DR07] Krista M. Dombroviak and Rajiv Ramnath. A Taxonomy of Mobile
and Pervasive Applications. In Proceedings of the 2007 ACM Sym-
posium on Applied Computing (SAC ’07), pages 1609–1615, Seoul,
Korea, March 2007. ACM Press.

[DR08] Frank Dürr and Kurt Rothermel. An Adaptive Overlay Network for
World-wide Geographic Messaging. In Proceedings of the 22nd IEEE
International Conference on Advanced Information Networking and
Applications (AINA ’08), pages 875–882, GinoWan, Okinawa, Japan,
March 2008. IEEE Computer Society Press.

[DSSK06] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama.
iCAP: Interactive prototyping of context-aware applications. In Pro-
ceedings of the 4th International Conference on Pervasive Computing
(Pervasive 2006), pages 254–271, Dublin, Ireland, May 2006. Springer
Berlin / Heidelberg.

[ENS+02] W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy, Trevor F.
Smith, Dirk Balfanz, D. K. Smetters, H. Chi Wong, and Shahram
Izadi. Using Speakeasy for Ad Hoc Peer-to-Peer Collaboration. In
Proceedings of the 2002 ACM Conference on Computer supported co-
operative work (CSCW ’02), pages 256–265, New Orleans, LA, USA,
November 2002. ACM Press.

[EP06] Nathan Eagle and Alex Pentland. Reality Mining: Sensing Com-
plex Social Systems. Springer Personal and Ubiquitous Computing,
10(4):255–268, 2006.

[Fai05] Jamal Faik. A Model for Resource-Aware Load Balancing on Heteroge-
neous and Non-Dedicated Clusters. PhD thesis, Rensselaer Polytechnic
Institute, Troy, NY, USA, 2005.

[FHMO04] Alois Ferscha, Manfred Hechinger, Rene Mayrhofer, and Roy Ober-
hauser. A Light-Weight Component Model for Peer-to-Peer Appli-
cations. In Proceedings of the 24th International Conference on Dis-
tributed Computing Systems (ICDCS) Workshops - Workshop 4: Mo-
bile Distributed Computing (MDC), pages 520–527, Tokyo, Japan,
March 2004. IEEE Computer Society Press.

[Fre78] Eugene C. Freuder. Synthesizing Constraint Expressions. Communi-
cations of the ACM (CACM), 21(11):956–966, November 1978.



Bibliography 197

[FS99] Jason Flinn and Mahadev Satyanarayanan. Energy-aware adaptation
for mobile applications. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP ’99), pages 48–63, Charleston,
SC, USA, December 1999. ACM Press.

[Gas77] John G. Gaschnig. A General Backtrack Algorithm That Eliminates
Most Redundant Checks. In Proceedings of the 5th International Joint
Conference on Artificial Intelligence (IJCAI), page 457, Cambridge,
MA, USA, August 1977. William Kaufmann.

[GBK99] Hans W. Gellersen, Michael Beigl, and Holger Krull. The MediaCup:
Awareness Technology embedded in an Everyday Object. In Proceed-
ings of the 1st International Symposium on Handheld and Ubiquitous
Computing (HUC99, pages 308–310, Karlsruhe, Germany, 1997 1999.
Springer-Verlag.

[GHR09] Andreas Grau, Klaus Herrmann, and Kurt Rothermel. Efficient and
Scalable Network Emulation using Adaptive Virtual Time. In Pro-
ceedings of the 18th International Conference on Computer Commu-
nications and Networks (ICCCN 2009), pages 1–6, San Francisco, CA,
USA, August 2009. IEEE Computer Society Press.

[Gin93] Matthew L. Ginsberg. Dynamic Backtracking. Journal of Artificial
Intelligence Research, 1:25–46, August 1993.

[Gon01] Li Gong. JXTA: a network programming environment. IEEE Internet
Computing Journal, 5(3):88–95, May 2001.

[GPR+98] Douglas Ghormley, David Petrou, Steven H. Rodrigues, Amin M. Vah-
dat, and Thomas E. Anderson. GLUnix: a Global Layer Unix for a
Network of Workstations. Journal on Software – Practices and Expe-
rience. Special Issue on Multiprocessor Operating Systems, 28(9):929–
961, July 1998.

[GR92] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Book. Morgan Kaufmann, September 1992.

[Gri04] Robert Grimm. One.world: Experiences with a Pervasive Computing
Architecture. IEEE Pervasive Computing Journal, 3(3):22–30, 2004.

[GTCT95] Mario Gerla and Jack Tzu-Chieh Tsai. Multicluster, mobile, mul-
timedia radio network. Journal of Wireless Networks, 1(3):255–265,
1995.

[GYS07] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko. Semantic
Matching: Algorithms and Implementation. Journal on Data Seman-
tics IX, 9:1–38, September 2007.

[Ham02] Youssef Hamadi. Optimal Distributed Arc-Consistency. Springer
Journal on Constraints, 7(3-4):367–385, July-October 2002.

[Han09] Marcus Handte. System Support for Adaptive Pervasive Applications.
PhD thesis, University of Stuttgart, Institute of Parallel and Dis-
tributed Systems (IPVS), 2009.



198 Bibliography

[HBR05] Marcus Handte, Christian Becker, and Kurt Rothermel. Peer-based
Automatic Configuration of Pervasive Applications. Journal on Per-
vasive Computing and Communications, 1(4):251–264, 2005.

[HCS+05] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon
Crowcroft, and Christophe Diot. Pocket Switched Networks and
Human Mobility in Conference Environments. In Proceedings of
the ACM SIGCOMM 2005 Workshop on Delay-Tolerant Networking
(WDTN ’05), pages 244–251, Philadelphia, PA, USA, August 2005.
ACM Press.

[Hen05] Urs Hengartner. Access Control to Information in Pervasive Com-
puting Environments. PhD thesis, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, USA, August 2005.

[HGKM98] Guerney D. H. Hunt, Germán S. Goldszmidt, Richard P. King, and
Rajat Mukherjee. Network Dispatcher: a connection router for scal-
able Internet services. Journal on Computer Networks and ISDN Sys-
tems, 30(1-7):347–357, April 1998.

[HHS+07] Marcus Handte, Klaus Herrmann, Gregor Schiele, Christian Becker,
and Kurt Rothermel. Automatic Reactive Adaptation of Pervasive
Applications. In Proceedings of the IEEE International Conference
on Pervasive Services (ICPS’07), pages 214–222, Istanbul, Turkey,
July 2007. IEEE Computer Society Press.

[HHSB07] Marcus Handte, Klaus Herrmann, Gregor Schiele, and Christian
Becker. Supporting Pluggable Configuration Algorithms in PCOM.
In Proceedings of the 5th IEEE International Conference on Pervasive
Computing and Communications Workshops (PerComW ’07), pages
472–476, White Plains, NY, USA, March 2007. IEEE Computer So-
ciety Press.

[HKA04] Tristan Henderson, David Kotz, and Ilya Abyzov. The Changing Us-
age of a Mature Campus-wide Wireless Network. In Proceedings of the
10th International Conference on Mobile Computing and Networking
(MobiCom ’04), pages 187–201, Philadelphia, PA, USA, September
2004. ACM Press.

[HMEZ+05] Sumi Helal, William Mann, Hicham El-Zabadani, Jeffrey King,
Youssef Kaddoura, and Erwin Jansen. The Gator Tech Smart House:
A Programmable Pervasive Space. IEEE Computer, 38(3):50–60,
March 2005.

[HR02] Daniel Herrscher and Kurt Rothermel. A Dynamic Network Scenario
Emulation Tool. In Proceedings of the 11th International Conference
on Computer Communications and Networks (ICCCN 2002), pages
262–267, Miami, FL, USA, October 2002. IEEE Computer Society
Press.

[HRKD08] Klaus Herrmann, Kurt Rothermel, Gerd Kortuem, and Naranker Du-
lay. Adaptable Pervasive Flows – An Emerging Technology for Perva-



Bibliography 199

sive Adaptation. In Proceedings of the Workshop on Pervasive Adap-
tation at the Second IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO 2008), pages 108–113, Venice,
Italy, October 2008. IEEE Computer Society Press.

[HSM+12] Marcus Handte, Gregor Schiele, Verena Majuntke, Christian Becker,
and Pedro J. Marrón. 3PC: System support for adaptive peer-to-
peer pervasive computing. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 7(1):10:1–10:19, April 2012.

[HUB+06] Marcus Handte, Stephan Urbanski, Christian Becker, Patrick Rein-
hardt, Michael Engel, and Matthew Smith. 3PC/MarNET Pervasive
Presenter. In Demonstrations Session at the IEEE International Con-
ference on Pervasive Computing and Communications (PerCom ’06),
Pisa, Italy, March 2006.

[HW03] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns:
designing, building and deploying messaging solutions. Book. Pearson
Education, October 2003.

[HWS+10] Marcus Handte, Stephan Wagner, Gregor Schiele, Christian Becker,
and Pedro José Marrón. The BASE Plug-in Architecture – Com-
posable Communication Support for Pervasive Systems. In Proceed-
ings of the 7th ACM International Conference on Pervasive Services
(ICPS ’10), pages 1–8, Berlin, Germany, July 2010.

[HY02] Katsutoshi Hirayama and Makoto Yokoo. Local Search for Distributed
SAT with Complex Local Problems. In Proceedings of the 1st In-
ternational Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS ’02), pages 1199–1206, New York, NY, USA, July
2002. ACM Press.

[HY04] Peter Henderson and Jingtao Yang. Reusable Web Services. In
Proceedings of the 8th International Conference on Software Reuse:
Methods, Techniques and Tools (ICSR 2004), pages 185–194, Madrid,
Spain, July 2004. Springer Berlin / Heidelberg.

[HY05] Katsutoshi Hirayama and Makoto Yokoo. The Distributed Breakout
Algorithms. Journal on Artificial Intelligence, 161(1-2):89–115, Jan-
uary 2005.

[IIS+03] Masaki Ito, Akiko Iwaya, Masato Saito, Kenichi Nakanishi, Kenta
Matsumiya, Jin Nakazawa, Nobuhiko Nishio, Kazunori Takashio, and
Hideyuki Tokuda. Smart Furniture: Improvising Ubiquitous Hot-Spot
Environment. In International Conference on Distributed Computing
Systems Workshops (ICDCSW 2003), pages 248–253, Providence, RI,
USA, May 2003. IEEE Computer Society.

[JDM00] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statistical Pat-
tern Recognition: A Review. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 22(1):4–37, January 2000.



200 Bibliography

[JFW02] Brad Johanson, Armando Fox, and Terry Winograd. The Interactive
Workspaces Project: Experiences with Ubiquitous Computing Rooms.
IEEE Pervasive Computing, 1(2), 2002.

[JS03] Glenn Judd and Peter Steenkiste. Providing Contextual Information
to Pervasive Computing Applications. In Proceedings of the 1st IEEE
International Conference on Pervasive Computing and Communica-
tions (PerCom ’03), pages 133–142, Pittsburgh, PA, USA, March
2003. IEEE Computer Society Press.

[KBM+96] Yousef A. Khalidi, Jose M. Bernabeu, Vlada Matena, Ken Shirriff, and
Moti Thadani. Solaris MC: a multi computer OS. In Proceedings of the
1996 Annual Technical Conference on USENIX (ATEC ’96), page 16,
Berkeley, CA, USA, January 1996. USENIX Association Berkeley, CA,
USA.

[KBM+00] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie
Caswell, Philippe Debaty, Gita Gopal, Marcos Frid, Venky Krishnan,
Howard Morris, John Schettino, Bill Serra, and Mirjana Spasojevic.
People, Places, Things: Web Presence for the Real World. In Pro-
ceedings of the 3rd IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA ’00), pages 19–28, Monterey, CA, USA,
December 2000. IEEE Computer Society Press.

[KDLS08] Priyantha Kumarawadu, Dan J. Dechene, Marco Luccini, and Allan
Sauer. Algorithms for Node Clustering in Wireless Sensor Networks:
A Survey. In Proceedings of the 4th International Conference on In-
formation and Automation for Sustainability (ICIAFS 2008), pages
295–300, Sri Lanka, December 2008. IEEE Computer Society Press.

[KLBV07] Thomas Karagiannis, Jean-Yves Le Boudec, and Milan Vojnović.
Power Law and Exponential Decay of Inter Contact Times between
Mobile Devices. In Proceedings of the 13th International Conference
on Mobile Computing and Networking (MobiCom ’07), pages 183–194,
Montréal, Canada, September 2007. ACM Press.

[KNK05] Sachin Kogekar, Sandeep Neema, and Xenofon Koutsoukos. Dy-
namic Software Reconfiguration in Sensor Networks. In Proceedings of
the International Systems Communications Conferences on Wireless
Technologies/High Speed Networks/Multimedia Communications Sys-
tems/Sensor Networks (ICW’05, ICHSN’05, ICMCS’05, SENET’05),
pages 413–420, Montreal, Canada, August 2005. IEEE Computer So-
ciety Press.

[KWSW07] Mirko Knoll, Arno Wacker, Gregor Schiele, and Torben Weis. Decen-
tralized Bootstrapping in Pervasive Applications. In Proceedings of the
5th Annual IEEE International Conference on Pervasive Computing
and Communications Workshops (PerComW 2007), pages 589–592,
White Plains, NY, USA, March 2007. IEEE Computer Society Press.

[LAS07] Steffen Lamparter, Anupriya Ankolekar, and Rudi Studer. Preference-
based Selection of Highly Configurable Web Services. In Proceedings



Bibliography 201

of the 16th International World Wide Web Conference (WWW ’07),
pages 1013–1022, Banff, Canada, May 2007. ACM Press.

[LCK+01] Donghee Lee, Jongmoo Choi, J. Kim, S. Noh, Sang Min, Yookun
Cho, and Chong Kim. LRFU: A Spectrum of Policies that Subsumes
the Least Recently Used and Least Frequently Used Policies. IEEE
Transactions on Computers, 50(12):1352–1361, December 2001.

[LG06] Chunhung R. Lin and Mario Gerla. Adaptive Clustering for Mobile
Wireless Networks. IEEE Journal on Selected Areas in Communica-
tions, 15(7):1265–1275, September 2006.

[LL05] Yawei Li and Zhiling Lan. A Survey of Load Balancing in Grid Com-
puting. In Proceedings of the 1st International Symposium on Compu-
tational and Information Science (CIS ’04), pages 280–285, Shanghai,
China, December 2005. Springer Berlin / Heidelberg.

[LNH03] Choonhwa Lee, David Nordstedt, and Sumi Helal. Enabling Smart
Spaces with OSGi. IEEE Pervasive Computing, 2(3):89–94, July-
September 2003.

[Log13] Logitech R©. Harmony R© Remotes Website:
http://www.logitech.com/en-us/harmony-remotes. online, 2013.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifica-
tion - Second Edition. Book. Addison Wesley Professional, February
1999.

[Mac77] Alan K. Mackworth. Consistency in Networks of Relations. Elsevier
Artificial Intelligence, 8(1):99–118, February 1977.

[Maj10] Verena Majuntke. Context-based Coordination for Pervasive Comput-
ing Applications. In Proceedings of the 8th International Conference
on Pervasive Computing and Communications Workshops (PerComW
’10), pages 853–854, Mannheim, Germany, March 2010. IEEE Com-
puter Society Press.

[Mat03] Friedemann Mattern. From Smart Devices to Smart Everyday Ob-
jects. In Proceedings of the 2nd International Smart Objects Con-
ference (sOc ’2003), pages 15–16, Grenoble, France, May 2003.
CNRS/France Telecom.

[MF04] Laurence Melloul and Armando Fox. Reusable Functional Composi-
tion Patterns for Web Services. Proceedings of the 2004 IEEE Interna-
tional Conference on Web Services (ICWS ’04), pages 498–505, July
2004.

[MH86] Roger Mohr and Thomas C. Henderson. Arc and Path Consistency
Revisited. Elsevier Journal on Artificial Intelligence, 28(2):225–233,
1986.

[MK01] Dave Marples and Peter Kriens. The Open Services Gateway Ini-
tiative: an introductory overview. IEEE Communications Magazine,
39(12):110–114, December 2001.



202 Bibliography

[Mon74] Ugo Montanari. Networks of Constraints: Fundamental Properties
and Applications to Picture Processing. Elsevier Journal on Informa-
tion Sciences, 7:95–132, 1974.

[Mor93] Paul Morris. The Breakout Method for Escaping from Local Minima.
In Proceedings of the 11th National Conference on Artificial Intelli-
gence (AAAI ’93), pages 40–45, Washington, DC, USA, July 1993.
AAAI Press.

[MPJL92] Steven Minton, Andy Philips, Mark D. Johnston, and Philip Laird.
Minimizing Conflicts: A Heuristic Repair Method for Constraint-
Satisfaction and Scheduling Problems. Elsevier Journal on Artificial
Intelligence, 58(1-3):161–205, December 1992.

[MSKC04] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and
Betty H.C. Cheng. Composing Adaptive Software. IEEE Computer,
37(7):56–64, July 2004.

[MSS+10] Verena Majuntke, Gregor Schiele, Kai Spohrer, Marcus Handte, and
Christian Becker. A Coordination Framework for Pervasive Appli-
cations in Multi-User Environments. In Proceedings of the 6th In-
ternational Conference on Intelligent Environments (IE 2010), pages
178–184, Kuala Lumpur, Malaysia, July 2010. IEEE Computer Soci-
ety Press.

[MV03] Marvin McNett and Geoffrey M. Voelker. Access and Mobility of Wire-
less PDA Users. ACM SIGMOBILE Mobile Computing and Commu-
nications Review (MC2R) Journal, 7(4), October 2003.

[ND98] Thang T. Nguyen and Yves Deville. A Distributed Arc-Consistency
Algorithm. Elsevier Journal on Science of Computer Programming,
30(1-2):227–250, January 1998.

[NES08] Mark W. Newman, Ame Elliott, and Trevor F. Smith. Providing an
Integrated User Experience of Networked Media, Devices, and Ser-
vices through End-User Composition. In Proceedings of the 6th Inter-
national Conference on Pervasive Computing (Pervasive 2008), pages
213–227, Sydney, Australia, May 2008. Springer Berlin / Heidelberg.

[NGL+09] Cuong P. Nguyen, Serge Garlatti, Simon Lau, Thomas Vantroys, and
Benjamin Barbry. Pervasive Learning System based on a Scenario
Model integrating Web Service Retrieval and Orchestration. Interna-
tional Journal of Interactive Mobile Technologies (iJIM), 3(2):25–32,
March 2009.

[NIE+02] Mark W. Newman, Shahram Izadi, W. Keith Edwards, Jana Z. Se-
divy, and Trevor F. Smith. User Interfaces when and where they are
needed: An Infrastructure for Recombinant Computing. In Proceed-
ings of the 15th Annual ACM Symposium on User Interface Software
and Technology (UIST ’02), pages 171–180, Paris, France, October
2002. ACM Press.



Bibliography 203

[NS78] Roger M. Needham and Michael D. Schroeder. Using Encryption for
Authentication in Large Networks of Computers. Commununications
of the ACM, 21(12):993–999, 1978.

[OD07] Olufisayo Omojokun and Prasun Dewan. Automatic Generation of
Device User-Interfaces? In Proceedings of the 5th IEEE International
Conference on Pervasive Computing and Communications (PerCom
2007), pages 251–261, White Plains, NY, USA, March 2007. IEEE
Computer Society Press.

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heim-
bigner, Gregory Johnson, Nenad Medvidovic, Alex Quilici, David S.
Rosenblum, and Alexander L. Wolf. An Architecture-Based Approach
to Self-Adaptive Software. IEEE Intelligent Systems, 14(3):54–62,
May 1999.

[OIK03] Tomoyuki Ohta, Shinji Inoue, and Yoshiaki Kakuda. An Adaptive
Multihop Clustering Scheme for Highly Mobile Ad Hoc Networks. In
Proceedings of the The 6th International Symposium on Autonomous
Decentralized Systems (ISADS’03), pages 293–300, Pisa, Italy, April
2003. IEEE Computer Society Press.

[OPID06] Olufisayo Omojokun, S. Pierce, L. Isbell, and Prasun Dewan. Com-
paring End-User and Intelligent Remote Control Interface Genera-
tion. Springer Journal on Personal and Ubiquitous Computing, 10(2-
3):136–143, January 2006.

[O’R05] Tim O’Reilly. What Is Web 2.0? Design Patterns and Bu-
siness Models for the Next Generation of Software. Online
source: http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09
/30/what-is-web-20.html, September 2005.

[PA05] Cesare Pautasso and Gustavo Alonso. Flexible Binding for Reusable
Composition of Web Services. In Proceedings of the 4th Workshop
on Software Composition (SC 2005), pages 151–166, Edinburgh, UK,
April 2005. Springer Berlin / Heidelberg.

[PB03] Stefan Podlipnig and László Böszörményi. A Survey of Web Cache
Replacement Strategies. ACM Computing Surveys, 35(4):374–398, De-
cember 2003.

[Phi10] Philips R©. Prestigo SRT8215 Universal Remote Control Website:
http://www.philips.co.uk/c/remote-control/15881/cat. Online, 2010.

[PLF+01] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and
Terry Winograd. ICrafter: A Service Framework for Ubiquitous Com-
puting Environments. In Proceeding of the 2001 International Confer-
ence on Ubiquitous Computing (Ubicomp 2001), pages 56–75, Atlanta,
GA, USA, September 2001. Springer Berlin / Heidelberg.

[PPS+08] Justin M. Paluska, Hubert Pham, Umar Saif, Grace Chau, Chris Ter-
man, and Steve Ward. Structured Decomposition of Adaptive Applica-



204 Bibliography

tions. Elsevier Journal on Pervasive and Mobile Computing, 4(6):791–
806, December 2008.

[PSGS04] Vahe Poladian, Joao Pedro Sousa, David Garlan, and Mary Shaw.
Dynamic Configuration of Resource-Aware Services. In Proceedings
of the 26th International Conference on Software Engineering (ICSE
’04), pages 604–613, Edinburgh, UK, May 2004. IEEE Computer So-
ciety Press.

[PWR+09] Trevor Pering, Roy Want, Barbara Rosario, Shivani Sud, and Kent
Lyons. Enabling Pervasive Collaboration with Platform Composi-
tion. In Proceedings of the 7th International Conference on Pervasive
Computing (Pervasive ’09), pages 184–201, Nara, Japan, May 2009.
Springer Berlin / Heidelberg.

[QCH08] Zhao Qiu, Mingrui Chen, and Jun Huang. Improvement of High Re-
liable Cluster Load Balancing Algorithm based on Multiple Regres-
sion. In Proceedings of the IEEE International Conference on Service
Operations and Logistics, and Informatics (IEEE SOLI 2008), pages
2979–2982, Beijing, China, October 2008. IEEE Computer Society
Press.

[RCAM+05] Anand Ranganathan, Shiva Chetan, Jalal Al-Muhtadi, Roy H. Camp-
bell, and M. Dennis Mickunas. Olympus: A High-Level Program-
ming Model for Pervasive Computing Environments. In Proceedings of
the 3rd IEEE International Conference on Pervasive Computing and
Communication (PerCom ’05), pages 7–16, Kauai Island, HI, USA,
March 2005. IEEE Computer Society Press.

[RHC+02] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ran-
ganathan, Roy H. Campbell, and Klara Nahrstedt. Gaia: A Middle-
ware Infrastructure to Enable Active Spaces. IEEE Pervasive Com-
puting, 1(4), 2002.

[RSC02] Jung-hee Ryu, Sanghwa Song, and Dong-Ho Cho. New Clustering
Schemes for Energy Conservation in Two-Tiered Mobile Ad Hoc Net-
works. IEEE Transactions on Vehicular Technology, 51(6):1661–1668,
November 2002.

[Rud01] Larry Rudolph. Project Oxygen: Pervasive, Human-Centric Comput-
ing - An Initial Experience. In Proceedings of the 13th International
Conference on Advanced Information Systems Engineering (CAiSE
’01), pages 1–12, Interlaken, Switzerland, June 2001. Springer Berlin
/ Heidelberg.

[Sai03] Umar Saif. A Case for Goal-oriented Programming Semantics. In Pro-
ceedings of the 5th International Conference on Ubiquitous Computing
(UbiComp 2003) Workshops, pages 1–8, Seattle, WA, USA, October
2003. Springer Berlin / Heidelberg.

[Sat90] Mahadev Satyanarayanan. A Survey of Distributed File Systems. In
Annual Review of Computer Science, volume 4, pages 73–104. Annual
Reviews, June 1990.



Bibliography 205

[Sat01] Mahadev Satyanarayanan. Pervasive Computing: Vision and Chal-
lenges. IEEE Personal Communications Journal, 8(4):10–17, 2001.

[SBK06] Ramesh Singh, Preeti Bhargava, and Samta Kain. State of the Art
Smart Spaces: Application Models and Software Infrastructure. ACM
Ubiquity Magazine, pages 2–9, September 2006.

[Sch03] Jochen Schiller. Mobile Communications. Book. Addison Wesley,
2003.

[Sch07] Gregor Schiele. System Support for Spontaneous Pervasive Computing
Environments. PhD thesis, Universität Stuttgart, Institute of Parallel
and Distributed Systems (IPVS), 2007.

[Sch09] Stephan Schuhmann. Pervasive Presenter. Demonstration at the First
Review of the FET7 project ALLOW – Adaptable Pervasive Flows.
Brussels, Belgium, April 2009.

[Sch10] Veit Schwartze. Adaptive User Interfaces for Smart Environments. In
Proceedings of the 7th International Conference on Pervasive Services
(ICPS 2010), Doctoral Colloquium, Berlin, Germany, July 2010. ACM
Press.

[SDFGB10] Hong Sun, Vincenzo De Florio, Ning Gui, and Chris Blondia. The
Missing Ones: Key Ingredients Towards Effective Ambient Assisted
Living Systems. Journal on Ambient Intelligence and Smart Environ-
ments, 2(2):109–120, 2010.

[Ses98] Roger Sessions. COM and DCOM: Microsoft’s vision for distributed
objects. Book. John Wiley & Sons, Inc., New York, NY, USA, 1998.

[SG02] Joao Pedro Sousa and David Garlan. Aura: an Architectural Frame-
work for User Mobility in Ubiquitous Computing Environments. In
Proceedings of the 3rd Working International IEEE/IFIP Conference
on Software Architecture (WICSA’02), pages 29–43, Deventer, The
Netherlands, August 2002. Kluwer, B.V.

[SH87] Ashok Samal and Tom Henderson. Parallel Consistent Labeling Al-
gorithms. International Journal of Parallel Programming, 16(5):341–
364, October 1987.

[SHR08a] Stephan Schuhmann, Klaus Herrmann, and Kurt Rothermel. A
Framework for Adapting the Distribution of Automatic Application
Configuration. In Proceedings of the 2008 ACM International Con-
ference on Pervasive Services (ICPS ’08), pages 163–172, Sorrento,
Italy, July 2008. ACM Press.

[SHR08b] Stephan Schuhmann, Klaus Herrmann, and Kurt Rothermel. Direct
Backtracking: An Advanced Adaptation Algorithm for Pervasive Ap-
plications. In Proceedings of the 21st International Conference on Ar-
chitecture of Computing Systems (ARCS 2008), pages 53–67, Dresden,
Germany, February 2008. Springer Berlin / Heidelberg.



206 Bibliography

[SHR+08c] Stephan Schuhmann, Klaus Herrmann, Kurt Rothermel, Jan Blumen-
thal, and Dirk Timmermann. Improved Weighted Centroid Localiza-
tion in Smart Ubiquitous Environments. In Proceedings of the 5th
International Conference on Ubiquitous Intelligence and Computing
(UIC-08), pages 20–34, Oslo, Norway, June 2008. Springer Berlin /
Heidelberg.

[SHR10] Stephan Schuhmann, Klaus Herrmann, and Kurt Rothermel. Effi-
cient Resource-Aware Hybrid Configuration of Distributed Pervasive
Applications. In Proceedings of the 8th International Conference on
Pervasive Computing (Pervasive 2010), pages 373–390, Helsinki, Fin-
land, May 2010. Springer Berlin / Heidelberg.

[SHRB13] Stephan Schuhmann, Klaus Herrmann, Kurt Rothermel, and Yazan
Boshmaf. Adaptive Composition of Distributed Pervasive Applica-
tions in Heterogeneous Environments. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS) – to appear, 2013.

[SKC94] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise Strategies
for Improving Local Search. In Proceedings of the 12th National Con-
ference on Artificial Intelligence (AAAI’94), pages 337–343, Seattle,
WA, USA, August 1994. AAAI press.

[SM03] Debashis Saha and Amitava Mukherjee. Pervasive Computing: A
Paradigm for the 21st Century. IEEE Computer, 36(3):25–31, March
2003.

[SMA08] Haidar Safa, Omar Mirza, and Hassan Artail. A Dynamic Energy
Efficient Clustering Algorithm for MANETs. In Proceedings of the
2008 IEEE International Conference on Wireless & Mobile Comput-
ing, Networking & Communication (WiMob ’08), pages 51–56, Avi-
gnon, France, October 2008. IEEE Computer Society Press.

[SPG+06] Joao P. Sousa, Vahe Poladian, David Garlan, Bradley Schmerl, and
Mary Shaw. Task-based Adaptation for Ubiquitous Computing. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, 36(3):328–340, May 2006.

[SR07] Xiang Song and Umakishore Ramachandran. MobiGo: A Middle-
ware for Seamless Mobility. In Proceedings of the 13th IEEE Inter-
national Conference on Real-Time Computing Systems and Applica-
tions (RCTSA ’07), pages 249–256, Daegu, Korea, August 2007. IEEE
Computer Society.

[SS77] R. M. Stallman and G. J. Sussman. Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-Aided
Circuit Analysis. Journal on Artificial Intelligence, 9:135–196, Octo-
ber 1977.

[SSJ02] Inderjeet Singh, Beth Stearns, and Mark Johnson. Designing Enter-
prise Applications with the J2EE Platform. Book. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, April 2002.



Bibliography 207

[Sun03] Sun Microsystems. Connected Limited Device Configuration (CLDC)
Specification - Version 1.1, 2003.

[SV08] Stephan Schuhmann and Lars Völker. Combining Passive Autoconfig-
uration and Anomaly-based Intrusion Detection in Ad-hoc Networks.
In Proceedings of the 8th International Workshop on Applications and
Services in Wireless Networks (ASWN ’08), pages 87–95, Kassel, Ger-
many, October 2008. IEEE Computer Society Press.

[SW98] Yi Shang and Benjamin W. Wah. A Discrete Lagrangian-Based
Global-SearchMethod for Solving Satisfiability Problems. Springer
Journal of Global Optimization, 12(1):61–99, January 1998.

[Tan01] Peter Tandler. Software Infrastructure for Ubiquitous Computing En-
vironments: Supporting Synchronous Collaboration with Heteroge-
neous Devices. In Proceedings of the 3rd International Conference on
Pervasive and Ubiquitous Computing (UbiComp ’01), pages 96–115,
Atlanta, GA, USA, October 2001. Springer Berlin / Heidelberg.

[THA04] Khai N. Truong, Elaine M. Huang, and Gregory D. Abowd. CAMP:
A Magnetic Poetry Interface for End-User Programming of Capture
Applications for the Home. In Proceedings of the 6th International
Conference on Pervasive and Ubiquitous Computing (Ubicomp 2004),
pages 143–160, Nottingham, UK, September 2004. Springer Berlin /
Heidelberg.

[TS06] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems:
Principles and Paradigms (2nd Edition). Book. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, October 2006.

[TSB07] Verena Tuttlies, Gregor Schiele, and Christian Becker. COMITY -
Conflict Avoidance in Pervasive Computing Environments. In Pro-
ceedings of the OTM Confederated International Workshops (OTM
2007 Workshops): On the Move to Meaningful Internet Systems 2007,
pages 763–772, Vilamoura, Portugal, November 2007. Springer Berlin
/ Heidelberg.

[TSB09] Verena Tuttlies, Gregor Schiele, and Christian Becker. End-User Con-
figuration for Pervasive Computing Environments. In Proceedings of
the International Conference on Complex, Intelligent and Software In-
tensive Systems (CISIS ’09), pages 487–493, Fukuoka, Japan, March
2009.

[TYZ+11] Lei Tang, Zhiwen Yu, Xingshe Zhou, Hanbo Wang, and Christian
Becker. Supporting Rapid Design and Evaluation of Pervasive Appli-
cations: Challenges and Solutions. Journal on Personal and Ubiqui-
tous Computing, 15(13):253–269, March 2011.

[Var07] Upkar Varshney. Pervasive Healthcare and Wireless Health Monitor-
ing. ACM/Springer Journal on Mobile Networks and Applications
(MONET), 12(2-3):113–127, June 2007.



208 Bibliography

[Vin97] Steve Vinoski. CORBA: Integrating Diverse Applications Within Dis-
tributed Heterogeneous Environments. IEEE Communications Mag-
azine, 35(2):46–55, February 1997.

[WB97] Mark Weiser and John Seely Brown. The Coming Age of Calm Tech-
nology. Book Article. Beyond calculation: the next fifty years, pages
75–85, 1997.

[WB99] Peter C. Weinstein and William P. Birmingham. Comparing Concepts
in Differentiated Ontologies. In Proceedings of the 12th Workshop on
Knowledge Acquisition, Modeling and Management (KAW’99), pages
1–22, Banff, Canada, October 1999. Springer Berlin / Heidelberg.

[Wei91] Mark Weiser. The Computer for the 21st Century. Scientific American
- Special Issue on Communications, Computers, and Networks, pages
94–104, February 1991.

[Wei99] Mark Weiser. The Computer for the 21st Century. ACM SIGMOBILE
Mobile Computing and Communications Review, 3(3):3–11, Septem-
ber 1999.

[WFG92] Roy Want, Veronica Falcao, and Jon Gibbons. The Active Badge
Location System. ACM Transactions on Information Systems (TOIS),
10(1):91–102, January 1992.

[WHKB06] Torben Weis, Marcus Handte, Mirko Knoll, and Christian Becker.
Customizable Pervasive Applications. In Proceedings of the 4th IEEE
International Conference on Pervasive Computing and Communica-
tions (PerCom 2006), pages 239–244, Pisa, Italy, March 2006. IEEE
Computer Society Press.

[WL99] Jie Wu and Hailan Li. On Calculating Connected Dominating Set for
Efficient Routing in Ad Hoc Wireless Networks. In Proceedings of the
3rd International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications (DIALM ’99), pages 7–14,
Seattle, WA, USA, August 1999. ACM Press.

[WP05] Roy Want and Trevor Pering. System Challenges for Ubiquitous &
Pervasive Computing. In Proceedings of the 27th International Con-
ference on Software Engineering (ICSE 2005), pages 9–14, St. Louis,
MO, USA, May 2005. ACM Press.

[WRvK+08] Christine T. Whitman, Charles Reid, James von Klemperer, Josh
Radoff, and Anthony Roy. New Songdo City – The Making of a New
Green City. In Proceedings of the CTBUH 8th World Congress, Dubai,
March 2008.

[XHE01] Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed
energy conservation for Ad Hoc routing. In Proceedings of the 7th An-
nual International Conference on Mobile Computing and Networking
(MobiCom ’01), pages 70–84, Rome, Italy, July 2001. ACM Press.



Bibliography 209

[YC05] Jane Y. Yu and Peter H. J. Chong. A Survey on Clustering in Schemes
for Mobile Ad Hoc Networks. IEEE Communications Surveys and
Tutorials, 7(1):32–48, March 2005.

[YDIK92] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro
Kuwabara. Distributed Constraint Satisfaction for Formalizing Dis-
tributed Problem Solving. In Proceedings of the 12th International
Conference on Distributed Computing Systems (ICDCS ’92), pages
614–621, Yokohama, Japan, June 1992. IEEE Computer Society Press.

[YDIK98] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro
Kuwabara. The Distributed Constraint Satisfaction Problem: For-
malization and Algorithms. IEEE Transactions on Knowledge and
Data Engineering, 10(5):673–685, September-October 1998.

[YH96] Makoto Yokoo and Katsutoshi Hirayama. Distributed Breakout Al-
gorithm for Solving Distributed Constraint Satisfaction Problems. In
Proceedings of the 2nd International Conference on Multiagent Sys-
tems (ICMAS 1996), pages 401–408, Kyoto, Japan, December 1996.
AAAI Press.

[Yok94] Makoto Yokoo. Weak-commitment Search for Solving Constraint Sat-
isfaction Problems. In Proceedings of the 12th National Conference
on Artificial Intelligence (AAAI ’94, vol. 1), pages 313–318, Seattle,
WA, USA, August 1994. AAAI Press.

[YP02] Jian Yang and Mike. Papazoglou. Web Component: A Substrate
for Web Service Reuse and Composition. In Proceedings of the 14th
International Conference on Advanced Information Systems Engineer-
ing (CAiSE 2002), pages 21–36, Toronto, Canada, May 2002. Springer
Berlin / Heidelberg.

[ZLH03] Yongguang Zhang, Wenke Lee, and Yi-An Huang. Intrusion Detec-
tion Techniques for Mobile Wireless Networks. Springer Journal on
Wireless Networks, 9(5):545–556, September 2003.

[ZM91] Ying Zhang and Alan K. Mackworth. Parallel and distributed algo-
rithms for finite constraint satisfaction problems. In Proceedings of the
3rd IEEE Symposium on Parallel and Distributed Processing (IPDPS
’91), pages 394–397, Dallas, TX, USA, December 1991. IEEE Com-
puter Society Press.





A
List of Abbreviations

ABT . . . . . . . . . . . Asynchronous Backtracking (an asynchronous, decentralized and
complete algorithm which enables the concurrent configuration
of components; presented by Yokoo et al. [YDIK98])

AD . . . . . . . . . . . . Active Device (a device which actively calculates configurations
in the centralized and hybrid configuration schemes presented
here)

CG . . . . . . . . . . . . . Cluster Gateway (cluster nodes which are part of at least two
clusters, so they can access neighboring clusters and forward
information between clusters)

CH . . . . . . . . . . . . . Cluster Head (an exclusive node within a cluster which usually
serves as a local coordinator within its cluster; in this thesis, the
cluster heads are responsible for performing the configuration for
their cluster members’ components)

CM . . . . . . . . . . . . Cluster Member (an ordinary node which represents a
non-cluster head node without any inter-cluster links; in this
thesis, these nodes remain passive during configuration, but only
provide information about their locally available components)

CID . . . . . . . . . . . . Cluster Index (an index used within our hybrid configuration
scheme to enable a unique distinction of the different nodes
within the cluster)

CLDC . . . . . . . . . . Connected Limited Device Configuration Profile (a Java profile
which defines the minimal configuration within a Java 2 ME
runtime environment)

CSP . . . . . . . . . . . Constraint Satisfaction Problem (a well-known NP-complete
problem; configuring a distributed application can be mapped to
this problem, as Handte et al. [HBR05] have shown)

CoID . . . . . . . . . . Component Identifier (an identifier which enables the unique
identification of a component chosen within a configuration



212 A. List of Abbreviations

process within the application tree structure; extended version of
an IID with additional information about the selected
component)

DBT . . . . . . . . . . . Direct Backtracking (an advanced configuration scheme for
centralized application configuration which is presented within
this thesis)

DCSP . . . . . . . . . Distributed Constraint Satisfaction Problem (the completely
distributed version of a Constraint Satisfaction Problem (CSP))

DDB . . . . . . . . . . . Dependency-Directed Backtracking (a centralized algorithm
suitable to solve the configuration problem which avoids the
undesired thrashing effect by storing a set of nogoods)

DyBT . . . . . . . . . . Dynamic Backtracking (an advanced centralized algorithm
presented by Ginsberg [Gin93] which is suitable to solve the
configuration problem and outclasses most other approaches by
removing thrashing completely without excessive waste of
memory; however, requires the re-ordering of the involved
variables)

DMAC . . . . . . . . . Distributed Mobility Aware Clustering (a completely distributed
version of the GCA scheme, as introduced by Basagni et al.
[Bas99])

FIFO . . . . . . . . . . . First In First Out (a standard cache replacement strategy which
replaces the entries that resides for the longest time in the cache
first)

GCA . . . . . . . . . . . Generalized Clustering Algorithm (a general clustering algorithm
introduced by Basagni et al. [BCFJ97] which represents the
foundation of many other clustering schemes, e.g. HCC or LID)

GDA . . . . . . . . . . . Greedy Distributed Assembler (a distributed configuration
assembler introduced by Handte el al. [HBR05] in the PCOM
system which performs in a greedy manner when selecting
application components)

GPD . . . . . . . . . . . General Pareto Distribution (a statistical disribution which
follows a power law)

GPS . . . . . . . . . . . Global Positioning System (a satellite-based global navigation
system that provides location and time information in all
weather and is typically used for outdoor navigation)

GUI . . . . . . . . . . . . Graphical User Interface (a kind of user interface that enables
users to interact with electronic devices with images rather than
text commands.)

HCC . . . . . . . . . . . Highest Connectivity Clustering Scheme (a standard clustering
scheme presented by Gerla et al. [GTCT95] which chooses those
devices as cluster heads which have the highest number of direct
neighbors)



213

ICT . . . . . . . . . . . . Inter-Contact Time (the average time span a user device is
disconnected between two communication sessions, i.e. the time
interval over which devices are not in contact)

IID . . . . . . . . . . . . . Instance Identifier (an identifier which enables the unique
identification of each dependency within the application tree
structure, independent from the acutally chosen concrete
component)

JVM . . . . . . . . . . . Java Virtual Machine (the part of the Java runtime environment
(JRE) which is responsible for executing the bytecode of Java
programs)

LFU . . . . . . . . . . . Least Frequently Used (a standard cache replacement strategy
which replaces the least frequently used entries first)

LID . . . . . . . . . . . . Lowest ID Clustering Scheme (a standard clustering scheme
presented by Lin et al. [LG06] which selects nodes with lowest
IDs within their environment as cluster heads)

LMS . . . . . . . . . . . Least Mean Squares Method (a standard algorithm which relies
on the Steepest Descent Method to approximate a solution for
the Least Mean Squares problem)

LRFU . . . . . . . . . . Least Recently/Frequently Used (a cache replacement strategy
which combines the properties of LFU and LRU)

LRU . . . . . . . . . . . Least Recently Used (a standard cache replacement strategy
which replaces the least recently used entries first)

MANET . . . . . . . Mobile Ad-hoc Network (a self-configuring, infrastructure-less
network of mobile devices connected by wireless links)

OSGi . . . . . . . . . . Open Services Gateway initiative (an initiative which specifies a
hardware-independent dynamic software platform that eases the
modularization and management of aplications and their
services)

P2P . . . . . . . . . . . Peer-to-Peer (a communication paradigm where the
communication partners are considered to have equal rights
regarding sending and receiving messages)

PAC . . . . . . . . . . . Partial Application Configuration (one of the main concepts used
in this thesis, where parts of a complete configuration are stored
in a repository for their future re-use, in order to reduce the
arising configuration latencies)

PD . . . . . . . . . . . . . Passive Device (a device which is not actively participating in a
configuration, but only provides its resource information to the
Active Device (AD) it is mapped to)

PDA . . . . . . . . . . . Personal Digital Assistant (a compact, wearable computer which
is typically used for the personal calendar, address and task
planning)



214 A. List of Abbreviations

RLF . . . . . . . . . . . . Remove Largest First (a cache replacement strategy which
removes the largest entries first from the cache)

RSF . . . . . . . . . . . . Remove Smallest First (a cache replacement strategy which
removes the smallest entries first from the cache)

SBJ . . . . . . . . . . . . Synchronous Backjumping (an advanced synchronous and
complete algorithm suited for centralized application
configuration which keeps track of the reasons that led to an
adaptation and reduces the number of steps that have to be
taken within an adaptation)

SBT . . . . . . . . . . . Synchronous Backtracking (a synchronous, complete algorithm
suited for centralized application configuration which executes a
depth-first search in the application tree and performs
consistency checks to reduce the execution time compared to
exhaustive search)

ST . . . . . . . . . . . . . Session Time (the average time of a user device’s connection
session length, i.e. the interval until the session is terminated)

VC . . . . . . . . . . . . . Virtual Container – a concept presented in this thesis to emulate
the resources of remote devices, in order to reduce the
communication and latency overhead in centralized and hybrid
configuration schemes

WLAN . . . . . . . . . Wireless Local Area Network (a local wireless network, which is
usually refered to as the 802.11 standard that has been
developed by the IEEE)

w.l.o.g. . . . . . . . . without loss of generality

XML . . . . . . . . . . . eXtensible Markup Language (a standard markup language to
illustrate hierarchically structured data)


	Abstract
	Deutsche Zusammenfassung
	1 Introduction
	1.1 Pervasive Computing
	1.2 Pervasive Applications
	1.3 Configuration and Adaptation of Pervasive Applications
	1.4 Motivation
	1.5 Focus and Contribution
	1.6 Overview

	2 Requirements and Assumptions
	2.1 System Model
	2.1.1 Devices and Environments
	2.1.2 Application Model
	2.1.3 System Software

	2.2 Problem Statement
	2.2.1 Dynamic Configuration in Heterogeneous Environments
	2.2.2 Non-functional Requirements


	3 Related Work
	3.1 Algorithms for Solving Constraint Satisfaction Problems
	3.2 Overview of Service Composition Frameworks
	3.2.1 Service Composition in Infrastructure-Based Environments
	3.2.2 Service Composition in Infrastructure-Less Ad Hoc Environments

	3.3 Clustering Frameworks
	3.4 Re-Utilization of Previous Configurations

	4 A Hybrid Approach for Automatic Application Configuration
	4.1 Design Rationale
	4.1.1 Towards Hybrid Application Composition
	4.1.2 Role Determination using Clustering
	4.1.3 Introduction of a Pre-Configuration Process

	4.2 Centralized Application Configuration
	4.2.1 Approach
	4.2.2 Proactive Backtracking Avoidance
	4.2.3 Intelligent Backtracking

	4.3 A Framework for Adapting the Degree of Decentralization
	4.3.1 Requirements
	4.3.2 Clustering Framework
	4.3.3 Resource-Aware Weight Selection
	4.3.4 Cluster Formation and Maintenance in Weakly Heterogeneous Environments
	4.3.5 Virtual Containers
	4.3.6 Efficient Support of Adaptable Configuration Algorithms

	4.4 Hybrid Application Configuration
	4.4.1 Initial Resource-Aware Cluster Formation
	4.4.2 Cluster Maintenance
	4.4.3 Hybrid Configuration Algorithm
	4.4.4 Exemplary Hybrid Configuration Process

	4.5 Evaluation
	4.5.1 Evaluation Setup
	4.5.2 Centralized Configuration in Weakly Heterogeneous Scenarios
	4.5.3 Hybrid Configuration in Strongly Heterogeneous Scenarios

	4.6 Summary and Discussion

	5 Partial Application Configurations
	5.1 Motivation
	5.2 Challenges
	5.3 Structure of Partial Application Configurations
	5.4 PAC Utility Value
	5.5 PAC Cache Maintenance
	5.6 Configuration involving PACs
	5.7 Evaluation
	5.7.1 Evaluation Setup
	5.7.2 Mobility of Users
	5.7.3 Evaluation based on Constant Resource Availability
	5.7.4 Evaluation based on Dynamically Changing Resource Availability

	5.8 Summary and Discussion

	6 Prototype
	6.1 System Architecture
	6.2 BASE Communication Middleware
	6.2.1 Basic Functionality
	6.2.2 Extensions

	6.3 PCOM Component System
	6.3.1 Basic Functionality
	6.3.2 Extensions

	6.4 PCOM Simulator
	6.4.1 Basic Functionality
	6.4.2 Extensions

	6.5 System Software Footprint
	6.5.1 Message Sizes
	6.5.2 Class Sizes

	6.6 Summary and Discussion

	7 Conclusion
	7.1 Summary
	7.2 Outlook
	7.2.1 Application-specific Cluster Creation
	7.2.2 Speculative Calculations in Hybrid Configurations
	7.2.3 Application-comprehensive Conflict Handling
	7.2.4 Proactive PAC Creation
	7.2.5 Flexibilization of Component Model


	Bibliography
	A List of Abbreviations

