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Abstract

Most systems in natural language processing experience a substantial loss in performance
when the data that the system is tested with di�ers signi�cantly from the data that the
system has been trained on. Systems for part-of-speech (POS) tagging, for example, are
typically trained on newspaper texts but are often applied to texts of other domains such
as medical texts. Domain adaptation (DA) techniques seek to improve such systems so
that they are able to achieve consistently good performance � independent of the domains
at hand.

We investigate the robustness of domain adaptation representations and methods
across target domains using part-of-speech tagging as a case study. We �nd that there is
no single representation and method that works equally well for all target domains. In
particular, there are large di�erences between target domains that are more similar to
the source domain and those that are less similar.
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Chapter 1

Introduction

Domain adaptation (DA) is the problem of adapting a statistical classi�er that was trained
on a source domain to a target domain (TD) for which no or little training data is
available. Many applications are in need of domain adaptation since annotating training
data usually is an expensive task. Also, being able to analyze large data sets gets more
and more important in various �elds. In natural language processing (NLP), for example,
researchers aim at extracting information from the huge amounts of data available on the
web. In these scenarios, robust techniques are needed due to the variability in such data.

We present a case study that investigates the robustness of domain adaptation across
six di�erent target domains for part-of-speech (POS) tagging, an important preprocessing
task in many NLP applications. In part-of-speech tagging, we need to assign each word
of a sentence its corresponding grammatical category, called POS tag. The two main
information sources in POS tagging are context � which parts-of-speech are possible in
a particular syntactic context � and lexical bias � the prior probability distribution of
parts-of-speech for each word. We address domain adaptation for lexical bias in this work,
focusing on unknown words; they are most di�cult to handle in domain adaptation be-
cause no direct information about their possible parts-of-speech is available in the source
domain training set. Since typical target domains contain a high percentage of unknown
words, a substantial gain in the overall performance can be achieved by improving tagging
for these words.

We address a problem setting where � in addition to labeled source domain data � a
large amount of unlabeled target domain data is available, but no labeled target domain
data. This setting is often called unsupervised domain adaptation (cf. Daumé III, 2007).

Most prior work on domain adaptation has either been on a single target domain, on
two or more tasks � which results in an experimental setup in which two variables change
at the same time, task and target domain � or has not systematically investigated how
robust di�erent features and di�erent domain-adaptation approaches are.

We make three contributions in this work. First, we systematically investigate the
cross-target-domain robustness of di�erent representations and methods. We show that
there are some elements of domain-adaptation setups used in the literature that are robust
across target domains � e.g., the use of distributional information � but that many others
are not, including dimensionality reduction and shape information.

Second, we present an analysis that shows that there are two important factors that
in�uence cross-target-domain variation: (i) the magnitude of the di�erence in distribu-
tional properties between source domain and target domain � more similar target domains
require other methods than less similar target domains and (ii) the evaluation measures
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used for performance. Since in unsupervised domain adaptation we optimize learning
criteria on a source domain that can be quite di�erent from the target domains, di�er-
ent target domain evaluation measures can diverge more in domain adaptation than in
standard supervised learning settings when comparing learning methods.

Our third contribution is that we show that if we succeed in selecting an appropriate
domain-adaptation method for a target domain, then performance improves signi�cantly.
We establish baselines for unknown words for the �ve target domains of the SANCL
2012 shared task and present the best domain-adaptation results for unknown words
on the Penn BioTreebank. Our improvements on this data set (by 10% compared to
published results) are largely due to a new domain-adaptation technique we call training
set �ltering. We restrict the training set to long words whose distribution is more similar
to unknown words than that of words in general.

The next chapter introduces all basic methodologies used in this work. Chapter 3
presents a case study on part-of-speech tagging for one �xed target domain. We test
several sources of information for their robustness in Chapter 4 and Chapter 5, again,
only for one domain. We use the most promising sources of information for a comparison
across six di�erent target domains in Chapter 6. Chapter 7 discusses related work.
Chapter 8 concludes and presents possible future research directions.

1.1 Data

In this work, we study data from one source domain and six target domains. While the
preliminary experiments in Chapter 3 to 5 are conducted using data from just one target
domain, we evaluate our methods on six di�erent target domains in Chapter 6.

In the source domain, we have access to a labeled training set and an additional
training set containing unlabeled data. We use the su�xes -train and -ul to discriminate
among the latter. In any target domain, we use two distinct data sets, called development
set and test set. We tune any parameters that an algorithm may have on the development
set and make changes to the algorithm as necessary. For the �nal results, we run the �nal
version of each algorithm without further changes on the test set. We use the su�xes
-dev and -test in addition to the domain name to refer to a speci�c dataset.

1.1.1 Source Domain

Our source domain is the Penn Treebank (Marcus et al., 1993) of Wall Street Journal
(WSJ) text. Following Blitzer et al. (2006), we use sections 2-21 for training our part-
of-speech models. We also use 100,000 WSJ sentences from 1988 as unlabeled data in
training.

1.1.2 Target Domains

We evaluate on six di�erent target domains. The �rst target domain is the Penn BioTree-
bank data set distributed by Blitzer. It consists of development and test sets of 500
sentences each and an unlabeled set of 100,000 sentences of BIO text on cancer.

The remaining �ve target domains (newsgroups, weblogs, reviews, answers, emails)
are from the SANCL shared task (Petrov and McDonald, 2012). We will use WEB to
refer to these �ve target domains collectively. Each WEB target domain has an unlabeled
training set of 100,000 sentences and development and test sets of about 1000 labeled
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dataset domain oov rate

WEB answers 8.53
emails 10.55
newsgroups 10.34
reviews 6.84
weblogs 8.44

BIO bio 19.86

Table 1.1: Percentages of out-of-vocabulary words in the development set of each target
domain.

sentences each. WEB and BIO tag sets di�er slightly; we use them as published without
modi�cations to make our results directly comparable to the benchmarks.

We de�ne the target domain repository (denoted by D
u,l
T ) for a target domain as the

union of development set and unlabeled data available for that target domain. D
u,l
S,T is

the union of the source data (labeled and unlabeled WSJ) and D
u,l
T .

By looking at Table 1.1, we can see that all target domains contain relatively high
percentages of unknown words. While domains from the WEB data set contain roughly
7-11% out-of-vocabulary (OOV) words, almost 20% of all words in BIO are unknown. We
can make two observations here. First, as all target domains have a considerably amount
of unknown words, any tagger striving for high accuracies should be able to tag them
correctly. This also supports our claim in the introduction above; focusing on unknown
words is indeed a promising approach for improving tagging across domains. Second,
these numbers suggest that target domains from WEB behave relatively similar to each
other with respect to their OOV rates, but there are rather large di�erences between
texts from WEB and BIO. One explanation might be that texts from WEB are user-
generated content whereas BIO contains peer-reviewed MEDLINE abstracts. We discuss
these discrepancies in Section 6.3 more thoroughly.
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Chapter 2

Fundamentals

This chapter brie�y covers the most important concepts used throughout this work.
Section 2.1 introduces the main task of this work, part-of-speech tagging. Most state-of-
the-art taggers incorporate statistical information from the data when building a model.
We discuss these so-called stochastic taggers in Section 2.2. For our experiments, we frame
part-of-speech tagging also as classi�cation by omitting sequence information. Section 2.3
describes this approach in greater detail.

The remaining sections cover two general methods that we apply to POS-tagging:
domain adaptation and singular value decomposition. Section 2.4 gives a de�nition of the
task of domain adaptation and reviews previous work on it. Singular value decomposition,
a technique that can project data from a high-dimensional vector space into a lower
dimensional one, is addressed in Section 2.5. We will later apply this technique to our
feature vectors in order to obtain more compact representations of them.

2.1 Part-of-Speech Tagging

In part-of-speech (POS) tagging, we are given a set of part-of-speech tags (or tagset)
and a sentence split into separate tokens. The task is to assign the single tokens of
a sentence their correct part-of-speech tags. Although there is no exact de�nition for
parts-of-speech, they are often motivated by grouping words with similar syntactic or
morphological behaviors into classes. Depending on whether one can add new words to a
class, classes are called open or closed. Determiners, for example, make up a closed class
as there are only three of them in English (�a�, �an� and �the�), whereas one can always
add new names to the open class of proper nouns.

Although many di�erent tagsets exist for English, the Penn Treebank tagset (Marcus
et al., 1993) has become a de facto standard in tagging as most results get published for
it. It comprises 45 di�erent part-of-speech tags which are shown in Table 2.1. However,
in some scenarios, a �ner tag set is needed. The Treebank tagset is often augmented by
new tags in such cases in order to be able to make �ner-grained distinctions.

POS tagging is often part of the preprocessing pipeline of larger frameworks. A promi-
nent example is the use of POS tags to recover the syntactical structure of a sentence in
parsing. POS tags can also help with speech synthesis to disambiguate between di�erent
pronunciations, like adult as a noun or adult as an adjective. Knowing a word's POS
tag can also be useful in stemming as it can tell us which su�xes a word can take. In
addition, POS tags are often included as features in classi�cation tasks such as word
sense disambiguation (WSD) or coreference resolution. Yet another use of POS tags is
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in information retrieval, where, words in the query might be �ltered based on their tags.
What makes tagging a non-trivial task is tag ambiguity. Jurafsky and Martin (2008)

report that about 18.5% of all words in the vocabulary of the Brown corpus are ambiguous.
Moreover, over 40% of the tokens have more than one possible tag. Most of the ambiguous
tokens, however, are easy to tag because not all tags are equally likely for a word. A
common approach is to use a word's context, i.e. the tags of its neighboring words, in
such ambiguous cases. Context provides an algorithm with essential information because
POS tags also re�ect a word's syntactic properties. A typical example for meaningful
context information is whether a word's left neighbor is a determiner. Given the word
�bank�, we can then disambiguate between �bank� as a noun and �bank� as a verb.

Most tagging algorithms can be broadly put into two categories: linguistic taggers and
stochastic taggers. Linguistic taggers, like the EngCG tagger (Voutilainen, 1995) usually
involve a large set of hand-crafted rules and a lexicon. After looking up all possible
parts-of-speech for a word, constraints from the ruleset are used to �lter out all invalid
assignments. Coming up with a good set of rules is not only a tedious task; once �nished,
it needs to be redone when moving on to other languages or application domains. These
are just two reasons why linguistic taggers have become less popular in recent years.
Indeed, all current state-of-the-art taggers are stochastic taggers (ACL Wiki, 2013).

Stochastic taggers are able to handle the issues of linguistic taggers more gracefully;
they are able to generalize from training examples themselves. Also, as long as the
underlying modeling assumptions are not violated, stochastic taggers can be applied to
new languages at no or only little extra cost. Stochastic taggers are sometimes also
called data-driven, as they extract their knowledge solely from a set of labeled training
examples. Given a sentence, stochastic taggers are then able to estimate the probability
for each possible assignment of tags to the sentence. Finally, the tagger chooses the
assignment that was most likely for this sentence. We introduce three popular stochastic
tagging algorithms in Section 2.2: Hidden Markov Models, Maximum Entropy Markov
Models and Conditional Random Fields.

2.1.1 Practical Issues

When developing new methods and testing new approaches, it is common practice to
have a rather simple method to compare results with. In POS-tagging, one frequently
used baseline is assigning the most frequent tag to each known word and the overall
most frequent tag to all unknown ones. This baseline usually does fairly well; it achieves
accuracies in the range of 90-92% as reported by Charniak (1997). Although DeRose
(1988) found that roughly 40% of the tokens in the Brown corpus were ambiguous, many
ambiguous words have only one prevailing tag which makes the most frequent tag baseline
become so competitive.

A problem that all taggers have to face in practice is unknown words. Even large
corpora won't contain all proper nouns or acronyms possible. A simple approach is
to assume that each tag is equally likely for an unknown word, forcing the tagger to
rely solely on the contextual information it has. However, it appears unfair to assume
that each tag occurs with equal probability for an unknown word, for example because
unknown words are very unlikely to have tags from a closed class like determiners. Thus,
Dermatas and Kokkinakis (1995) and Baayen and Sproat (1996) both suggest to use
the tag distribution of words occurring only once in the corpus, also known as hapax
legomena, as an approximation for the tag distribution of unknown words.
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tag description example tag description example

CC coordin. conj. and, but SYM symbol +,%, &
CD cardinal number one, three TO �to� to
DT determiner a, the UH interjection ah, oops
EX existential 'there' there VB verb, base form eat
FW foreign word mea culpa VBD verb, past tense ate
IN prep./sub-conj of, in, by VBG verb, gerund eating
JJ adjective yellow VBN verb, past part. eaten

JJR adj., comparative bigger VBP verb, non-3sg pres eat
JJS adj., superlative wildest VBZ verb, 3sg pres eats
LS list item marker I, 2, One WDT wh-determiner which, that
MD modal should WP wh-pronoun what, who
NN noun, sing. or mass llama WP$ possessive wh- whose

NNS noun, plural llamas WRB wh-adverb how, where
NNP proper noun, sing. IBM $ dollar sign $

NNPS proper noun, pl. Carolinas # pound sign #
PDT predeterminer alt, both � left quote ` or �
POS possessive ending 's � right quote ' or �
PRP personal pron. I, you, he ( left parenthesis [, (, {, <
PRP$ possessive pron. one's ) right parenthesis ], ), }, >

RB adverb quickly , comma ,
RBR adverb, comp. faster . sent.-�nal punc . ! ?
RBS adverb, super. fastest ; mid-sent. punc : ; - � ...
RP particle up, o�

Table 2.1: The Penn Treebank tagset. Examples were borrowed from Jurafsky and Martin
(2008).
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More sophisticated methods for unknown-word handling try to harness a word's mor-
phological or orthographic features. Morphological features, such as su�xes can be a good
indicator for certain tags like adverbs. Orthographic features also often provide useful
information. For example, an uppercase word is more likely to be a proper noun due to
spelling conventions. Other common orthographic features look for special characters in
a word, such as hyphens or digits (Toutanova et al., 2003).

2.2 Stochastic Taggers

Stochastic taggers interpret POS-tagging as a special case in the general framework of
sequence prediction. In sequence prediction, we are given a sequence of observations
x = (x̃1, . . . , x̃T ) belonging to a sequence of unknown states y = (y1, . . . , yT ). Our goal
is to �nd the sequence of states y that is most likely for a given sequence of observations
x. In other words, we wish to �nd

h (x) = argmaxy P (y | x) (2.1)

= argmaxy P (x,y) (2.2)

= argmaxy P (x | y)P (y). (2.3)

In the context of POS-tagging, the sequence of observations corresponds to the tokens
of a sentence and the sequence of states to the tags. Finding the argmax will thus return
the most likely sequence of tags for a sentence. Note that the last equation gives us
three equivalent ways of expressing a model for POS-tagging. For example, we could
try to model the joint distribution P (X, Y ) directly. However, this is rather ine�cient
as we would have to model all dependencies in the joint distribution. This is why most
stochastic taggers either build a model for the conditional probability P (Y | X) or just
�nd separate models for both the prior probability P (Y ) and class conditional probability
P (X | Y ).

When working with stochastic taggers, one usually keeps three distinct data sets
around. Each data set contains a number of manually tagged sentences. The �rst data
set, called training set, is used to train the tagger, e.g. is used to �nd estimates for
the probability distributions. In the next step, the development set is used to perhaps
tune some parameters. Finally, the tagger is evaluated on the test set with no further
parameter changes. Typically, most of the available data is used for training (about 70%
to 80%); the remaining data is withheld for the development and test set.

2.2.1 Hidden Markov Models

Hidden Markov Models are one of the best known stochastic algorithms in part-of-speech
tagging. They became popular in the mid 1980s as researchers started building systems
using HMMs for tag disambiguation (i.e. Garside, 1987; DeRose, 1988). Although HMMs
are rarely used in their basic form nowadays, it is important to understand the principles
of HMMs as background for more sophisticated tagging algorithms. In this section, we
introduce HMMs with focus on part-of-speech tagging. For a more general introduction
to HMMs, see Russell and Norvig (2010).

Hidden Markov Models belong to the group of generative models as they assume the
data to be generated according to a joint distribution P (X, Y ). HMMs model P (X, Y )
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Figure 2.1: Graphical representation of a simple �rst-order Hidden Markov Model. The
states correspond to single POS tags. The numbers on the arcs indicate the probabilities
for transitioning from one state to another. Each state can emit a number of words;
the probability of emitting a word in a speci�c state is represented by the area in the
pie chart. The process of generating data is equivalent to a random walk on this graph.
Beginning in the start state, we would repeatedly choose a transition to a new state and
then a word to emit in this new state.

as two separate distributions following Equation 2.3: a prior probability P (Y ) and a con-
ditional probability P (X | Y ). Additionally, HMMs make some simplifying assumptions
in order to compute the probability distributions e�ciently. More speci�cally, they use
the following assumptions:

1. The probability of observing a part-of-speech tag is only dependent on the last
n − 1 tags. In language modeling, this corresponds to having an n-gram model
for the sequence of tags. The probability of transition from one state to another
is also referred to as transition probability. If only the last tag is conditioned on,
the resulting HMM is called �rst-order. The prior probability for a tag sequence in
such a �rst-order HMM is computed as:

P (y) = P (y1)
T∏
t=2

P (yt | yt−1).

2. The probability of observing a token only depends on the current tag and is inde-
pendent of all other tokens:

P (x | y) =
T∏
t=1

P (x̃t | yt).

Plugging in the two assumptions into equation 2.3 yields the �nal equation for �nding
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the most likely tag sequence with a �rst-order HMM:

h (x) = argmaxy P (x | y) · P (y) (2.4)

= argmaxy P (y1)P (x̃1 | y1)
T∏
t=2

P (yt | yt−1)P (x̃t | yt). (2.5)

Given a sentence x, how can we then �nd the most likely sequence of tags for it? A
rather naive approach would try out every single combination of tags y and then return
the one that yielded the maximum probability. However, if a sentence is of length T and
we have N di�erent POS-tags, then there are NT possible sequences of tags we need to
consider. In other words, the run-time of this naive algorithm increases exponentially
with the sentence length, making tagging unfeasible for practical purposes. As it turns
out, there is a faster algorithm for �nding the most likely sequence of tags. The Viterbi
algorithm, proposed by Viterbi (1967), has become one of the standard algorithms in
tagging. It decomposes equation 2.5 into a set of recurrence equations and then applies
dynamic programming to them in order to compute them e�ciently. Its �nal run-time is
O(TN2), i.e. it grows only linearly in the length of a sentence.

Let's take an example to get an intuition for the probability distribution that a HMM
models. Figure 2.1 shows a simplistic HMM with only four POS-tags and a small vocab-
ulary. To compute the probability of an annotated sentence, we begin in the start state
and then move from one state to the other in the same order that the tags appear in
the sentence. In each state except the start state, we have to multiply the probability
of observing the current word in this state and the probability of transitioning from the
previous state to the current state with the running total probability.

Say we want to compute the probability for observing the annotated sentence

�The/DET dog/NN sleeps/VBZ ./.�

Thus, we want to calculate P (x,y) for x =�The dog sleeps.� and y =�DET NN VBZ .�.
Following the instructions from the previous paragraph yields:

P (x,y) =P (DET | START)P (the | DET)P (NN | DET)P (dog | NN)

P (VBZ | NN)P (sleeps | VBZ)P (. | VBZ)P (. | .)

One could now plug in numbers for the probabilities using Figure 2.1. We leave it
to the reader to choose concrete numbers for the emission probabilities as they are only
given graphically.

2.2.2 Maximum Entropy Markov Models

Traditional HMMs have two shortcomings. Recall that our goal was to �nd the sequence
of tags that is most likely for a given sequence of words. Instead of maximizing P (Y | X)
directly, HMMs decompose this probability and make an e�ort to estimate the prior
probability P (Y ) and conditional probability P (X | Y ) separately. The problem here is
that the P (Y ) needs to be modeled although it isn't actually needed. Moreover, HMMs
assume features X to be independent of each other when modeling P (X | Y ). Also, if
one has additional features that one would like to integrate with the tagger, there is no
natural way to do so with HMMs. Maximum Entropy Models or MEMMs introduced by
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McCallum et al. (2000) are designed to overcome these drawbacks. First, they directly
model the conditional probability P (Y | X) in

h (x) = argmaxy P (y | x) (2.6)

= argmaxy P (y1 | x̃1)
T∏
t=2

P (yt | yt−1, x̃t), (2.7)

making no further independence assumptions on the features X.
Second, MEMMs are able to include knowledge into the tagging process by training a

local classi�er for each state transition. Note that x̃t is a vector here, indicating that we
are free to include information from any timestep t in the current observation vector x̃t.
We could for example include the �rst word x̃1 of a sentence in x̃t, or information about
the next word x̃t+1. For each tag yprev in Y , we build a so-called Maximum Entropy
model that estimates the probability of a transition from yprev to a tag y as follows:

P (y | yprev, x̃) =
1

Z(x̃, yprev)
exp

(∑
i

wifi(x̃, y)

)
. (2.8)

That is, given a previous tag yprev and observation x̃, the local classi�er gives us a
probability distribution over the successor tags y. Z(x̃, yprev) is used as a normalization
function, ensuring that the single probabilities sum up to 1. The features are modeled
as fi(x̃, y) here and can include information from the current tag y and current input
observation x̃. Note that each feature function fi(x̃, y) is implicitly conditioned on yprev
because we construct separate features for each yprev ∈ Y . MEMMs allow us to de�ne a
large range of features, encompassing the ones we used for HMMs. For example, we can
model the transition probabilities of a HMM as:

fk (x̃, y) =

{
1 if y = k
0 otherwise

(2.9)

for each state k. Similarly, we can de�ne functions that model the emission probabilities
for each state-observation pair (k, s) as follows:

fks (x̃, y) =

{
1 if y = k AND x̃ = s
0 otherwise

(2.10)

All features are multiplied by a corresponding weight wi. The weights for each classi�er
can be found in a supervised training step so as to maximize the likelihood of the training
data.

Per-state normalization of the probabilities with Z(x̃, yprev) leads to a problematic
side-e�ect called label bias (La�erty et al., 2001). In a nutshell, tags that have only few
outgoing transitions will tend to ignore their inputs. In the extreme case, a tag with only
one successor tag will always return a probability value of 1, completely independent of
its input observations. La�erty et al. (2001) showed that due to this e�ect, MEMMs can
perform signi�cantly worse on synthetic POS-datasets than HMMs which do not su�er
from this problem.

2.2.3 Conditional Random Fields

Conditional Random Fields (CRFs) are another popular approach to sequence classi�ca-
tion. CRFs form a special case of undirected graphical models. Dependencies between
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Figure 2.2: Graphical structure of a linear-chain Conditional Random Field (CRF). Ran-
dom variables are represented by nodes. An edge between two random variables indicates
conditional dependency.

random variables in such models are often represented by graphs. Although the struc-
ture might almost be arbitrary with CRFs, most common in POS-tagging are linear-chain
CRFs as shown in Figure 2.2. The general structure resembles the one of a HMM; indeed,
it can be shown that any HMM can be expressed as a CRF (Sutton and McCallum, 2006).
CRFs are also similar to MEMMs, however, they avoid the label bias problem since they
employ global normalization. Instead of training separate local models like MEMMs for
each state, CRFs train a single model for the entire sequence. The conditional probability
of a sequence y given the observations x is:

P (y | x) =
1

Z(x)

T∏
t=1

exp

(∑
i

wifi(x̃t, yt, yt−1)

)
. (2.11)

Again, Z(x) is a normalization function making sure that the distribution sums to 1. The
feature functions fi(x̃t, yt, yt−1) can encode information from three sources: Information
from the current observation x̃t and information from the current state yt and previous
state yt−1. Linear-chain CRFs allow us to de�ne similar features as MEMMs. For example,
we can de�ne features to model the transition probabilities of a HMM as:

fkl (x̃t, yt, yt−1) =

{
1 if yt = k AND yt−1 = l
0 otherwise

(2.12)

for each transition pair (k, l). Likewise, we can model the emission probabilities for each
state-observation pair (k, s) as follows:

fks (x̃t, yt, yt−1) =

{
1 if yt = k AND x̃t = s
0 otherwise

(2.13)

Although CRFs o�er many advantages, they also su�er from a couple of drawbacks.
For example, having more powerful features increases the risk of over�tting the training
data. While many regularization methods exist, all of them introduce new parameters
that need to be tuned. Another weakness is that CRFs are computationally expensive
to train. When training CRFs, probabilities need to be optimized for whole sequences
using some form of the backward-forward algorithm. With MEMMs, however, one can
estimate each of the local distributions in isolation.
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2.3 Tagging as Classi�cation

Classi�cation refers to the task of determining to which class y ∈ Y an object x ∈ X
belongs. If objects can only belong to two classes, e.g. Y = {−1,+1}, the classi�cation
task is called binary. If Y contains more than 2 classes, the resulting problem is called
multiclass classi�cation. Classi�cation in the standard setting is a supervised task, e.g.
the classi�er is given a set of M labeled training examples D l = {(x1, y1), . . . , (xM , yM)}
to learn from. During training, the classi�er �nds a model for the data using the training
instances provided as input. Once the training is �nished, we can classify unknown
objects with the help of this model.

Remember that stochastic taggers look for a likely sequence of tags which, at the
same time, is also likely for the sequence of observations. One idea that we use in this
work is to tag words using classi�cation rather than sequence classi�cation. We can
frame tagging as multiclass classi�cation if we do not incorporate sequence information.
This means that we train a classi�er only on local information about a word that does
not include the POS tags of neighboring words, thereby completely neglecting transition
probabilities. Vice versa, most local classi�ers can be extended with Viterbi decoding
to obtain a global model, like support vector machines (Giménez and Màrquez, 2004) or
MaxEnt classi�ers for MEMMs (McCallum et al., 2000).

2.3.1 k-Nearest-Neighbors

The k-nearest-neighbor (k-NN) method is one of the simplest classi�cation algorithms.
An unknown object is simply classi�ed by assigning it the majority class label among its
k nearest neighbors. More formally, let countk(x, y) be the function that retrieves the
number training instances with class label y among the k nearest neighbors of x using
some similarity measure sim. We then determine the most frequent label of the neighbors:

hk (x) = argmaxy∈Y countk(x, y). (2.14)

There are two important hyperparameters to tune. The choice of the metric sim can have
a huge impact on performance. Depending on sim, di�erent instances are included in the
set of nearest neighbors. Common choices of the similarity metric involve the Euclidean
metric or cosine similarity. Cosine similarity is often used in text mining application
as feature representations are sparse. It measures the cosine of the angle between two
vectors x and y as

simcos(x,y) =
x · y
‖x‖ ‖y‖

.

Additionally, we need to select an appropriate value for k, the number of neighbors
to consider. The larger the value of k, the greater the smoothing e�ect on the data
gets. While this can help to eliminate noise in the data, having a large value for k will
also cause boundaries between classes to be less distinct. As the optimal value of k is
problem-speci�c, it is often determined on a held-out development set.

Compared to other classi�cation methods, k-NN has a couple of favorable properties.
As mentioned before, k-NN is easy to implement. This is also due to the fact that k-NN
is a lazy method, meaning that it doesn't require training; it merely has to store all
training instances. Another amenable property of k-NN is that it extends naturally to
multiclass classi�cation. The algorithm simply returns the majority class label oblivious
of the number of classes.
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One obvious weakness of k-NN is the computational e�ort when classifying an ob-
ject. In order to �nd an object's nearest neighbors, k-NN needs to compute the distance
between the input object and all other data points. However, many approaches exist to
ease the computational e�orts of k-NN. Some approaches try to store the training exam-
ples more intelligently to speed-up classi�cation, for example using tree-like structures
(Bentley, 1980). Other approaches aim at reducing the total number of data points to
be stored, like condensed k-NN (Hart, 1968).

Despite its conceptual simplicity, k-NN still gets used in practice today. Søgaard
(2011) used a variant of the condensed k-NN algorithm on top of the output of two
taggers, one unsupervised tagger and one supervised tagger. His results are currently
ranked �rst among all state-of-the-art taggers, yielding an accuracy of 97.50% on the
Wall Street Journal.

2.3.2 Support Vector Machines

Another widely used classi�cation method is the support vector machine (SVM). In its
basic form, an SVM is a linear binary classi�er, meaning that it determines a hyperplane
with normal vector w and o�set b separating all positive training instances from the
negative ones. After determining that hyperplane, we can classify a new object x as
follows:

hw,b (x) =

{
+1 if x ·w + b > 0
−1 otherwise

(2.15)

Sometimes, there is more than one hyperplane that would separate the training data.
SVMs thus employ a second criterion for choosing an optimal hyperplane. They try to
�nd the hyperplane yielding the largest possible margin between the two classes. This
is thought to make the SVM less susceptible to noise as small deviations in the input
can be tolerated. Since not all data in practice can be separated by a linear hyperplane,
soft-margin SVMs relax the classi�cation problem by introducing slack variables ξ. These
slack variables allow for misclassi�ed instances during training. More speci�cally, soft-
margin SVMs solve the following optimization problem:

min
w,b,ξ

1

2
w ·w + C

M∑
i=1

ξi (2.16)

subject to y1(w · x1 + b) ≥ 1− ξ1 , ξ1 ≥ 0

· · · (2.17)

yM(w · xM + b) ≥ 1− ξM , ξM ≥ 0

Equation 2.16 basically says that we are striving for a large margin (which is equivalent
to minimizing 1

2
w · w), while, at the same time, violating the constraints as little as

possible. The constraints express the objective to have each training instance (xi, yi)
classi�ed correctly. Note that we have to choose C, a hyperparameter controlling how
strongly we penalize incorrectly classi�ed instances during training. If C is large, we will
usually make fewer mistakes during training; however, we get this at the cost of having
smaller margins. Vice versa, a small value for C will increase training error rates but
will give us larger margins. In practice, one often determines an optimal value for C on
a held-out development set.

Up to now, we have only presented SVMs in the context of binary classi�cation.
However, there are also numerous solutions for multiclass problems. One approach is
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to restate the optimization objective so that it directly allows for multiple classes as
proposed by Crammer and Singer (2002). However, more frequent in practice is the
reduction of multiclass classi�cation to multiple binary classi�cation tasks. Again, there
are multiple ways of performing this reduction. One way is the one-against-all paradigm
where we train one classi�er for each class y ∈ Y . Input to each classi�er is instances of
a particular class labeled as positive examples, and all remaining instances being labeled
as negative examples. We then assign an unknown object the class whose classi�er had
the greatest con�dence. Another option is the one-vs-one paradigm where we train

(|Y |
2

)
classi�er, one for each pair of class labels. Each classi�er then votes for one of its two
classes; the �nal label is determined by taking the class with the most votes. Although
both approaches yield comparable classi�cation results in practice, Hsu and Lin (2002)
found the one-vs-one paradigm to be favorable due to shorter training times.

2.4 Domain Adaptation

Domain adaptation (DA) refers to the situation in which we have large amounts of labeled
data from the domain we train our model in, the source domain, but only little or no
labeled data from the domain where we want to apply our model, the target domain
(Blitzer et al., 2006). This scenario often occurs in practice as building and annotating
large corpora is usually a tedious and expensive task. In domain adaptation, we aim at
developing techniques which are able to perform well in the target domain despite the
lack of labeled training data.

Although many �elds are in need of domain adaptation, we focus on applications of
domain adaptation in natural language processing (NLP). One application of domain
adaptation in NLP is spelling correction. There, we train a model on data collected from
many users but may use domain adaptation to personalize the corrector for an individual
user. Another example is in part-of-speech tagging where we may have newspaper articles
as the source domain and biomedical texts as the target domain. As the tagger only has
reliable information about words of the source domain, tagging performance is often
signi�cantly worse in the target new domain. We will observe similar tendencies in our
case study in Chapter 3.

Note that the term �domain� refers to a somewhat loose concept; it does not necessarily
have to depict a speci�c genre like movie reviews or recipes (Bandyopadhyay, 2012).
Instead, we should understand the concept of a domain as the setting where we have
data stemming from di�erent distributions. Using this de�nition, we can see that the
concept of a domain is a more continuous one as almost all real-word data exhibits some
inconsistencies; even texts of the same author may vary from day to day. Whether we
attribute inconsistencies in the data to noise or to di�erent underlying distributions is
somewhat arbitrary, although implications are di�erent. Despite these problems, we try
to give a more formal de�nition of the domain adaptation task in the next section.

2.4.1 Notation and Setting

We follow the notation introduced by Jiang (2008) and Chen et al. (2011) to describe the
domain adaptation setting. Similar to classi�cation, we use X to denote the random vari-
able of an observation and Y for the random variable associated with the output labels.
We assume that the data from the source domain is generated by an underlying joint
distribution PS(X, Y ). Likewise, we assume an unknown joint distribution generating
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data in the target domain PT (X, Y ). Finally, let D l
T and Du

T denote the labeled training
data and unlabeled training data from the source domain respectively. The data sets D l

S

and Du
S are de�ned similarly for the source domain.

The problem in which we have both labeled data (and possibly unlabeled data) in
the source and target domain, e.g. D l

S and D l
T , is called supervised domain adaptation.

If we only have access to labeled data in the source domain D l
S and to unlabeled data

Du
S and Du

T , the problem is referred to as unsupervised domain adaptation. Usually,
unsupervised adaptation is considered to be the harder task of the two, as links between
the two domains can only be learned from unlabeled data (Daumé III et al., 2010).

Although creating an annotated data set D l
T can be accelerated using active learning

(Ringger et al., 2007), we cannot ensure that we will always have access to such data.
Unlabeled data, in contrast, can be obtained easily in most cases. Most texts are available
in an electronic version nowadays; in addition, we can extract large text collections from
the web. Thus, we chose to focus on unsupervised domain adaptation in this work since
we believe that the unsupervised domain-adaptation setting is more realistic than the
supervised one. Consequently, we include only previous work in the survey below which
can be applied in an unsupervised setting.

2.4.2 Unsupervised Approaches

Existing methods for unsupervised domain adaptation can be broadly put into three
categories. Methods using representational learning, approaches which perform instance
weighting, and classical bootstrapping methods. While methods in the �rst group are
often speci�cally tailored to a task, approaches from the last two groups are usually
applicable to a wider range of problems.

Representation learning. The basic idea of these approaches is to �nd robust rep-
resentations which behave similarly across domains. Once a good feature representation
is found, any supervised model using these features should be able to generalize well from
the target domain. Since many approaches are application-speci�c, we focus on the ones
that have been applied to the task of part-of-speech tagging.

Schütze (1995) showed that context is an important source of information for part-of-
speech tagging. As part-of-speech tags are also motivated by syntactic behavior, knowing
how a word is used in running text can provide valuable information. For example, when
trying to tag a word, we could enumerate all contexts in which it occurs. Now, if we scan
through this list and �nd that �the� occurred as a left neighbor in the corpus, we could
infer that chances are high that it is a noun. We call a word's neighbors indicator words,
so if we refer to a word's left indicator tokens, we mean the set of words that occurred to
the left of a word in the corpus.

A well-known approach in representation learning is structural correspondence learn-
ing (SCL). Blitzer et al. (2006) applied SCL to the task of part-of-speech tagging. SCL
exploits correlated features by de�ning a mapping from the full feature space to a space
called the pivot feature space. Each dimension in the pivot feature space corresponds
to the result of a binary classi�cation problem. Input to each classi�er is all unlabeled
training samples. Each classi�er gets assigned a separate problem which can be solved
in an unsupervised manner. Blitzer, for example, uses pivot features of the form �this
word's left neighbor is w�, where w is some word in the vocabulary. There, pivot features
rely on distributional information as well, however, they only use them indirectly when
constructing the classi�cation problems. Pivot features are supposed to bridge the gap
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between the source and target domain. If two words u and v have similar values for a pivot
feature, they are assumed to also behave similarly with respect to their part-of-speech
tags.

Although Blitzer et al. (2006) reported improved results for a POS-tagger using struc-
tural correspondence learning, there are some limitations to his approach. First, we need
to de�ne an appropriate set of pivot features. If we choose pivot features irrelevant to
the task, these features could introduce additional noise to the data. Also, pivot features
need to be frequent enough to have su�cient training data for the corresponding classi-
�cation tasks. However, if pivot features are too frequent, they won't allow a supervised
tagger to make �ne-grained distinctions. Lastly, there are a couple of hyperparameters
to set which may increase the risk of over�tting the training data.

Huang and Yates (2009) directly incorporate distributional information in their POS-
tagging framework. They construct two feature vectors for each word; one encompassing
all left neighbors of a word, and one encompassing all right neighbors. These feature
vectors serve as input to a CRF tagger, either in their raw form or after applying dimen-
sion reduction to them. Like Schütze (1995), they examine the e�ects of using SVD as a
dimensionality reduction technique. Besides SVD, they propose a HMM-based method
for constructing a lower dimensional representation. They �nd better accuracies for their
HMM method than Blitzer et al. (2006), however, they do not compare them against a
CRF baseline using SVD feature vectors or raw feature vectors.

In their later work, Huang and Yates (2010) explore two modi�cations to their former
approaches. First, they examine the bene�ts of using HMMs with multiple layers that are
thought to increase the expressiveness of the feature space. The second extension they test
is training by contrastive estimation which is able to handle unannotated data (Smith and
Eisner, 2005). Using their augmented HMM, they were able to beat all previous results
on the same POS-tagging task. In yet another work, Huang and Yates (2012) argue that
�nding an optimal feature representation is computationally intractable. Based on that
argument, they propose a new framework which allows prior knowledge to be integrated
into representation learning. They do this by introducing additional optimization criteria
on the latent states of their HMMs. By doing so, one can incorporate various biases in
the representation learning task helping to improve prediction.

Umansky-Pesin et al. (2010) use distributional information in a web-based framework.
When encountering an unknown word, the algorithm runs a couple of web-queries to
collect contexts in which this unknown word occurs. Contexts are then used to build
feature vectors similar to Huang and Yates (2009). Finally, a MEMM tagger uses this
information to predict the tag of this unknown word. Unlike other methods, this approach
does not require a corpus from the new domain. However, using the whole web as corpus
might add irrelevant contexts for the target domain at hand.

Bootstrapping. In bootstrapping (Yarowsky, 1995), we are given a small set of
labeled data and a rather large set of unlabeled data. To improve performance, the
learning algorithm augments its own training set with instances from the unlabeled data
set. Note that the two bootstrapping methods we present here, self-training and co-
training, can also be applied to scenarios other than domain adaptation.

Self-training (McClosky et al., 2006) can be used in conjunction with most learning
algorithms. In order to make use of unlabeled data, an initial model is trained on the
labeled training set. This model is then applied to the unlabeled data set. All newly
labeled instances where the algorithm was most con�dent on get added to the training
set and the model gets retrained. This process is iterated until some user-de�ned stop-
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ping criterion is reached. Huang et al. (2009) found that self-training might increase
performance of HMM in POS tagging, but there are also cases in which a tagger didn't
bene�t from it. Huang and Yates (2010), however, reported small gains in accuracy when
combining self-training and a CRF tagging model.

Co-training (Blum and Mitchell, 1998) is in the same spirit, but uses at least two
di�erent set of features, called views. During training, a model for each view is constructed
and applied to the unlabeled data set. The unlabeled data set is then annotated and the
most con�dent predictions from each view get added to the training set. Co-training works
best when the views de�ne conditionally independent sets of features and the learning
algorithm can make accurate predictions using each view alone. Chen et al. (2011) present
a variant of co-training for domain adaptation. In each round of their algorithm, both new
training instances from the unlabeled data and new features get added to the existing
sets. Kübler and Baucom (2011) use another variant of co-training for POS-tagging.
They train three di�erent taggers in the source domain and add all sentences from the
target domain to the training set on which all three taggers agree. They report slight but
statistically signi�cant increases in accuracy for POS-tagging dialogue data.

Instance weighting. The general idea of instance weighting is to account for the
di�erences between the distributions PS(X, Y ) and PT (X, Y ) by using instance-speci�c
weights during training. Instance weighting techniques factor the joint distribution of
X and Y either into P (X, Y ) = P (X | Y )P (Y ) or P (X, Y ) = P (Y | X)P (X). They
also assume the conditional probabilities to be the same in both domains, PS(X | Y ) =
PT (X | Y ) and PS(Y | X) = PT (Y | X). This gives us two possibilities for explaining the
di�erences between PS(X, Y ) and PT (X, Y ). Previous work on instance weighting takes
two main perspectives: either P (X) or P (Y ) is assumed to vary across domains.

Covariate shift assumes that problems are governed by di�ering observation distribu-
tions, e.g. PS(X) and PT (X). Jiang and Zhai (2007) propose a framework that integrates
prior knowledge from di�erent data sets into the learning objective by weights. By in-
cluding knowledge from Du

T , they were able to increase accuracy on their POS data set by
1.2%. Bickel et al. (2007) state a new learning objective function that is able to determine
weights for each training example directly. Unfortunately, there are no results available
for POS tagging with this approach.

The second scenario is the one in which class labels have di�erent prior probabilities,
e.g. PS(Y ) deviates from PT (Y ). This problem can, for example, arise in POS-tagging
when certain tags hardly occur in the source domain, such as proper nouns. Chan and Ng
(2005) examine two approaches to this problem for the task of word sense disambiguation.
Similar to the concept of bootstrapping, they use the posterior probability PS(Y | X)
in an intermediate step to �nd better estimates of the prior probabilities PT (Y ). One
limitation of their approach is, though, that their method is strongly coupled with the
underlying learning algorithm.

2.5 Singular Value Decomposition

When working with feature representations, one often has to deal with data of high di-
mensionality. Besides computational issues arising from holding data in memory and in-
creased algorithm runtimes, high dimensional data is very likely to contain redundancies.
It is thus desirable to have a procedure which is able to automatically �nd an appropriate
representation in a lower-dimensional space. There is a whole zoo of dimension reduction
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techniques; each of which makes di�erent assumptions about the true nature of the data.
One prominent technique is singular value decomposition (SVD). Before we discuss

the mathematical details of it, we give a short overview of the algorithm and introduce
some technical terms. Given a real matrix m× n M, SVD factors M into three di�erent
matrices U , Σ and V T :

M = UΣV T (2.18)

where U is an m ×m orthonormal matrix, S an n × n diagonal matrix with only non-
negative entries and V T an n× n orthonormal matrix. The columns of U are the eigen-
vectors of MMT , while the columns of V T are the eigenvectors of MTM . Respectively,
they represent left and right singular vectors of M . It should also be noted that by
convention, the diagonal entries si of Σ are sorted such that s1 ≥ s2 ≥ . . . ≥ sn. So far,
the matrix M has just been decomposed into three other matrices. There has been no
approximation involved, as their product is equal to the original matrix. However, we
can now �nd an approximation of M by taking the �rst d singular values of Σ, where
d << r, and discard the rest, which gives us the equivalent of only keeping the d largest
singular values. This means Σ will be replaced by Σd with si = 0 for i > d. The matrix
M will thus be approximated by

M ≈Md = UΣdV
T . (2.19)

The low-rank approximation Md to M is in fact the best solution when minimizing

∥∥∥M − M̃∥∥∥
F

=

√√√√ m∑
i=1

T∑
j=1

|Mij − M̃ij|2

under the constraint that rank(M̃) = d. This fact is also known as the Eckart-Young
theorem, proven in 1936.

A typical application of SVD is in machine learning where it is often used to per-
form Principal Component Analysis, a related dimensionality reduction technique that
we discuss in the next section. Another popular application of SVD is in the �eld of
information retrieval where it is used to �ght the problems of synonymy and semantic
relatedness. After creating a so-called term-document matrix, a low-rank approximation
of this matrix is computed via SVD. This method is also known as Latent Semantic
Analysis (Deerwester et al., 1990). The working hypothesis there is that if words often
occur together in a document, they will also be likely to be semantically related to each
other. When reducing the number of dimensions, information is preserved best if related
words are consolidated rather than unrelated words get merged. One hopes that the
resulting dimension-reduced matrix will contain the most relevant information possible
in its compact state, but will eliminate noise.

When using SVD as a dimensionality reduction technique, one should keep in mind
the limitations it has. First, SVD is an unsupervised algorithm and relies on appropriate
scaling of the feature values. If a feature has a lot of variance in the original feature space,
SVD will try to best approximate its variance in the reduced space as well. Moreover,
some of the variance in the data could also stem from noise. When the singular values
capturing the noise are large enough, noise will also be present in the reduced space
(Shlens, 2005). Hence, we cannot rely on SVD as a proper method for noise elimination.
Lastly, SVD is only able to model linear dependencies within the data and su�ers when
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Figure 2.3: PCA applied to a set of 2D points. When reducing the number of dimensions
to one, points get projected onto the �rst principal component w1. The vector w1 points
in the direction of largest variance or equivalently, lies in the direction that minimizes
the mean squared projection error indicated by the dotted lines.

there are non-linear structures. However, various generalizations exist that are able to
overcome the shortcomings of SVD (Gorban et al., 2008).

An issue which we haven't addressed yet is choosing a good value for d. If d is too
large, we still capture a lot of the subtleties in the data. However, we are striving for a
representation of the data with less redundancy and therefore wish to be able to generalize
from the data. If d is too small, we risk missing important concepts of the data. It can
be shown that the size of a singular value is proportional to the amount of variance in
direction of the left singular vector. The approximation error we make is also proportional
to the sum of the omitted singular values si for i > d (Everitt and Hothorn, 2011).

This gives us one of several heuristics for determining an appropriate value for d.
We can simply specify the amount of variance to be preserved in the data. We then
choose the set of singular values whose elements sum up to the desired variance. A
second guideline involves plotting the singular values and looking for a knee in the plot
as proposed by Cattell (1966). One can then keep all singular values before the knee.
The rationale behind this is that one expects that the d largest singular values represent
the most important concepts in the data; smaller values are supposed to be noise. As
argued above, knowing how much variance of the original data is retained in the subspace
may help determine the number of dimensions which should be kept. However, variance
does not necessarily have to be the kind of information needed for a speci�c task. Thus,
the number of dimensions is also often set to a �xed number or is determined d on a
validation set.
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2.5.1 Principal Component Analysis

Another dimensionality reduction technique is principal component analysis (PCA). It is
closely related to SVD as we will show below. Indeed, because of the intimate relation-
ship between the two techniques, we can use PCA to provide some intuition for what
SVD does when being applied to set of data points. PCA can be motivated using two
equivalent objectives (Hastie et al., 2008). First, PCA tries to �nd orthogonal directions
in the feature space with largest variance, called principal components. Second, PCA will
compute the linear subspace which yields the minimum squared projection error if the
number of dimensions is reduced. If one keeps the full number of dimensions, PCA will
just correspond to a rotation of the original vector basis so as to ful�ll the �rst objective.
The example in Figure 2.3 shows how PCA performs a reduction from two dimensions to
one.

PCA takes a data matrix X as input, where each of the n columns corresponds to
the feature vector of a sample. X is assumed to have zero empirical mean. This can
be ensured by subtracting the mean from all data points in a preprocessing step. It
then determines a new basis for the data by computing the eigenvector matrix W of the
covariance matrix 1

n
XXT . This allows us to factor the covariance matrix as:

1

n
XXT = WDW T . (2.20)

Let's de�ne Y = 1√
n
X for convenience. As any real matrix, Y also has a singular value

decomposition. Thus, we can express the left-hand side of the last equation as follows:

1

n
XXT =

1√
n
X

1√
n
XT (2.21)

= Y Y T (2.22)

= UΣV T
(
UΣV T

)T
(2.23)

= UΣV TV ΣUT (2.24)

= UΣ2UT (2.25)

The last line uses the fact that V is orthonormal. Now it's easy to see the intimate re-
lationship between PCA and SVD. D corresponds to Σ2 andW corresponds to U . Hence,
we could just perform an SVD on Y = 1√

n
X instead of computing and decomposing the

whole covariance matrix. Indeed, SVD is often used in practice to perform PCA. Apart
from being easier, there are also numerical reasons for why SVD is preferable to directly
computing PCA.

Sometimes, the terms SVD and PCA are used interchangeably. Part of this confusion
comes from the di�erent uses of the term SVD. E�ectively, SVD is just a matrix factoriza-
tion method, but sometimes it is also used to denote the low-rank matrix approximation
induced by SVD. If we talk about SVD as a dimensionality reduction technique applied
to a data matrix, then the only real di�erence is that PCA works on the centered data
matrix, e.g. a matrix with zero mean.
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Chapter 3

Case Study: Bio

The goal of this chapter is to motivate a couple of the problems that can occur in domain
adaptation with part-of-speech tagging. Although we examine just one target domain in
this case study, namely BIO, many of the problems we �nd here are typical for domain
adaptation and also occur in other scenarios.

3.1 Experiment

To see how well a conventional approach performs, we trained a discriminative HMM-
based part-of-speech tagger (Schmid and Laws, 2008) on the WSJ data set D l

S. Table 3.1
shows the tagging performance on BIO-dev. The overall accuracy on BIO-dev with 89.1%
is fairly low compared to the results for single-domain tasks, where most state-of-the-art
taggers achieve around 96-97% on WSJ data.

However, one can also see from the table that there is a huge di�erence between
known words and unknown words. The accuracy on known words is near state-of-the-
art. Tagging unknown words seems to be a more challenging task; accuracies on them
are about 28% lower than on known words. Also, most of the errors that the tagger made
are due to unknown words, namely 62.3%. This suggests that unknown word handling
is a crucial component in building robust taggers. If we improve tagging on unknown
words, we should be able to improve overall accuracies as well.

3.1.1 Common Errors

As our basic tagger wasn't too successful, we wanted to see where most of the errors
occur in the target domain. Table 3.1.1 lists the most frequent errors. Note that there
are some unseen tags we will never be able to get right, for instance HYPH, # and AFX.
They have been added to the Penn Treebank tagset in order to account for the special
needs of the bio domain.

unknown words known words all
Errors 870 527 1397

(62.3%) (37.7%) (100%)
Accuracy 66.5% 94.7% 89.1%

Table 3.1: Performance of a basic POS tagger on BIO-dev
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tags errors

correct predicted absolute relative

NN NNP 334 2.59%

NN JJ 249 1.93%

HYPH : 102 0.79%

NN NNS 83 0.64%

# : 68 0.53%

VBN JJ 40 0.31%

JJ NN 46 0.36%

SYM various 78 0.60%

various SYM 1 0.01%

Table 3.2: Commonly made errors on BIO-dev using a basic HMM-based tagger. The
percentages shown in the right-most column are relative to the total number of tokens.

We can also see that most errors are due to nouns being falsely tagged as proper
nouns. The opposite rarely happened (although not listed here). One reason for that
might be that WSJ contains a lot of proper nouns, so the transition probabilities might
be biased towards the recognition of proper nouns. We further analyze this issue in
Section 3.2.3. Next are nouns that get misclassi�ed as adjectives. This might be due
to their relative similar contexts in the BIO domain. Distinguishing normal nouns from
plural nouns seems hard as well. Again, a reason for that might be that they occur in
very similar contexts. If context doesn't su�ce to make a correct prediction for certain
words, we might want to incorporate other sources of information. We discuss several
possible feature sets in Chapter 5.

3.2 Inter-Domain Di�erences

As mentioned in Section 2.4, we can view domain adaptation as the problem of having
data from two di�erent distributions PS(X, Y ) and PT (X, Y ). We present three phe-
nomena in this section that can contribute to such di�erences. First are symbols as an
example for tags which have di�erent uses in both domains. From a more formal perspec-
tive, this can cause PS(Y | X) and PT (Y | X) to deviate. We then look at how di�erent
tag distributions are in both domains, meaning that we compare PS(Y ) and PT (Y ). Fi-
nally, we look at the transition probabilities of tags in both corpora and discuss a couple
of critical cases.

3.2.1 Symbols

Symbols are normally easy to classify, as they often consist of non-alphanumeric charac-
ters. Yet, they seem to be notoriously hard to get right as only 23% (22 out of 96) of
them are assigned the right label in BIO-dev. The main problem seems to be the di�erent
uses of the SYM tag in both domains. In BIO-dev, 96 words (0.74%) have a SYM tag,
whereas in the WSJ training corpus, SYM occurred only 55 times (0.01%). Examining
the contexts in which SYM occurs in both domains provides further insight. Most often
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Figure 3.1: Tag distribution in the source and target domain. Only the top �ve frequencies
with the greatest discrepancies are shown.

(33 out of 55 times), SYM is used in WSJ-train to denote an enumeration symbol at the
beginning of a sentence. Next with 14 occurrences are symbols that indicate footnotes.

In BIO-dev, the most frequent symbol is �/�, occurring 36 times. It is only used be-
tween two nouns, mostly between two technical terms or between two numbers. Examples
for the two di�erent uses are �SH3/SH2 activator� and �5/6�. The second most frequent
symbols are �<� and �=� which are used when specifying a p-value. The equals sign also
occurs in WSJ, but in a completely di�erent context. It is used to add the translation to
a foreign word, for instance in �Homerun=jonron�.

To summarize, symbols have greatly varying contexts in both domains as they often
serve special purposes. The key to a good performance in the target domain is to �nd
features that are able to make a connection between the two domains. For symbols,
however, it seems almost impossible because they hardly occur in the source domain.

3.2.2 Tag Distribution

Remember that one of the two scenarios of instance weighting in Section 2.4 addressed
the problem of having di�erent class priors in the source and target domain. In part-
of-speech tagging, this corresponds to having di�erent prior probabilities for the POS
tags in both domains. Di�ering prior probabilities for a tag can be problematic because
a tagger is biased for the distribution observed during training. Hence, we need strong
features during testing to overcome these biases.

Figure 3.1 shows how di�erently some tags occur in WSJ and BIO. One striking
di�erence is the one between nouns and proper nouns. Normal nouns are roughly twice
as frequent in BIO-dev as in WSJ-train. Moreover, proper nouns seem to play almost no
role in BIO, whereas they are quite common in the WSJ domain. These di�erences can
shed some light on why nouns were mostly confused with proper nouns in Table 3.1.1. As
there are almost no proper nouns in BIO and nouns and proper nouns occur in relatively
similar contexts, chances are high nouns get tagged as proper nouns.
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There seem to be multiple reasons for the large discrepancies between nouns and
proper nouns in both domains. One simple reason is that in the WSJ texts, proper nouns
are often linked to company names or people's names. BIO texts mostly cover results
from medical studies and contain fewer proper names. Another explanation are di�erent
annotation guidelines. In WSJ, for example, �DNA� is mostly annotated as NNP, whereas
in BIO, is labeled as NN. If annotation guidelines di�er, domain adaptation becomes an
almost intractable task. However, we show later that we can still improve results on
BIO by incorporating other information. Hence, we believe that di�erent annotation
guidelines, though present, do not dominate here.

There are other di�erences in tag frequencies for IN and VB. However, they don't
seem to cause to many errors as they don't show up in Table 3.1.1. Adjectives and
prepositions seem more frequent in BIO due to their use in technical descriptions, for
example in �endometrial carcinoma�, �patients with� or �inactivation of�.

3.2.3 Transition Probabilities

Traditional stochastic taggers usually rely on two major sources of information: context
information in the form of transition probabilities and lexical information in the form
of emission probabilities. While information pertaining to tag transitions often helps in
cases where source and target domain do not di�er, one can doubt whether the same
information is also useful in an unsupervised domain adaptation setting.

In domain adaptation, transition probabilities in the target domain may di�er signif-
icantly from the source domain. In some scenarios, this could degrade tagging perfor-
mance. For example, certain transitions that are unlikely in the source domain are also
assumed to be unlikely in the target domain. This could confuse the tagger while trying
to �nd a matching sequence of tags for the sentence.

Diverging transition probabilities are especially critical with unknown words or un-
known tags. When the tagger encounters an unknown word, it has only little or no lexical
information for this word. Thus, the tagger is forced to rely on the transition probabili-
ties estimated in the source domain. If this information is erroneous, it is very likely the
tagger will make a wrong prediction as well. A somewhat related problem pose unknown
tags. With unknown tags in the target domain, the tagger is forced to choose between
existing tags. There might not be a tag corresponding to the new tag. Most likely, tag
probabilities will be di�erent for the tag chosen and the unknown tag. Moreover, if the
tagger gets a tag wrong, any incorrect tag might in�uence other tags in the sentence as
well. The hypothesis here is that performance will be degraded by incorrect information
from neighboring tags just as it bene�ts from correct tags of neighboring words.

In order to investigate these issues further, we computed transition probabilities for
all tags in WSJ-train as well as in BIO-dev. We found in Section 3.1.1 that the tagger
mostly confused nouns with proper nouns. This is why we chose transition probabilities
of the latter for a closer look. Table 3.3 shows the transition probabilities for nouns and
proper nouns which di�er signi�cantly in both domains.

There are two critical scenarios for transition probabilities we can infer from the Table.
The �rst scenario is when tag transitions are typical in one domain but not in the other,
like NN after a SYM tag or NN subsequent to #. Note that the # tag is a special tag
only used in the bio domain. We can see that nouns are roughly twice as likely to occur
after gerunds or superlative adjectives in BIO-dev as they are in WSJ-train. The problem
is that the lower the transition probability is, the higher the emission probability must
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tags P (ti|ti−1)
ti ti−1 in WSJ-train in BIO-dev

NN JJS 0.34 0.18

NN WP$ 0.38 0.00

NN SYM 0.07 0.39

NN # 0.00 0.35

NN VBG 0.13 0.30

NN FW 0.08 0.29

NN IN 0.11 0.32

NN ( 0.06 0.62

NN CC 0.12 0.40

NNP NNPS 0.29 0.00

NNP . 0.18 0.00

NNP NNP 0.38 0.19

NNP FW 0.21 0.00

NNP IN 0.15 0.00

NNP ( 0.33 0.01

NNP CC 0.16 0.01

Table 3.3: Transition probabilities for selected tags in WSJ-train and BIO-dev. Only
tags whose probabilities di�er by more than 0.1 in both corpora are shown. The tran-
sition probability for a pair of tags was estimated by the count of bigram(ti−1, ti) in the
respective corpus divided by the frequency of ti−1.
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be in order to still be able to make a correct prediction.
The second problematic scenario appears when transition probabilities are inversely

correlated to each other in both domains. This can be particularly well seen with the
FW, IN, ( and CC tags. A noun is more likely in the bio domain after these tags than
a proper noun, whereas in WSJ everything is �ipped. In other words, a model based on
the transition probabilities of WSJ would be biased towards predicting a proper noun
although one would expect a noun in the bio domain. One striking instance of a tag with
reversed transition probabilities is (. It seems to be a reliable indicator for a noun in
BIO-dev with a probability of 0.62 whereas it rarely occurs in the context of a noun in
WSJ.

3.3 Summary

We saw in this case study that unknown words are responsible for the majority of errors
in the target domain. Accuracies on unknown words are low accordingly. Also, as was
mentioned before in Section 1.1.2, target domains contain relatively high percentages of
unknown words. Hence, focusing on unknown words seems a very promising approach in
domain adaptation for POS-tagging. We also saw that some errors are due to di�erent
annotation guidelines or di�erent uses of tags. Unfortunately, there is nothing we can do
about this in an unsupervised setting.

Moreover, we found that transition probabilities are also di�erent for the two domains
at hand. We reasoned that transition probabilities might even hurt performance in some
cases. This was part of the reason why we will use a word-based approach as our standard
set-up for all experiments in this work. Instead of tagging whole sentences, we tag each
word separately, independent from its context. Apart from being easier, this approach
will allow us to observe which information helps most in isolation.

Another challenge in domain adaptation is di�erent prior probabilities for tags. The
�ndings of this chapter give rise to the idea of using some form of instance weighting
during training. In the extreme case, instance weighting could set weights for some
training examples to zero, meaning that we leave out certain examples during training.
We examine a step we call (training set) �ltering based on this idea in Chapter 6. Another
idea might be to restrict the set of possible tags for unknown words, since unknown words
are mostly from open classes like proper nouns, adjectives or adverbs.
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Chapter 4

Exploring Distributional Features

In this chapter, we investigate whether distributional features are e�ective representa-
tions for domain adaptation in POS tagging. Our goal is to �nd features that represent
properties which are meaningful across multiple domains. These feature are then used
as input to a supervised tagging algorithm. We hope that eventually, these features will
help remedy problems that are common to domain adaptation, such as unknown words.
Recall that for the methodologies in this work, we assume that we have labeled data in
the source domain and are able to gather large amounts of unlabeled data in both the
source and target domain, a setting that is sometimes referred to as unsupervised domain
adaptation (Daumé III, 2007).

One of the key ideas in the design of distributional features is to characterize words by
the contexts they appear in. In doing so, we need nothing but frequency information to
build our features. This information can be extracted from a corpus in an unsupervised
fashion, e.g. we do not need to provide any annotated data to the algorithm. We
hypothesize that words which occur in similar contexts will also exhibit commonalities
on a higher level, i.e. on a grammatical level. This should enable a tagger to relate words
from both domains to each other, even though vocabularies or word usages might di�er.

Our experimental setup is motivated by two observations: (i) texts from other domains
usually contain high percentages of unknown words and (ii) transition probabilities might
not be a reliable source of information. Thus, we adopt a word-based approach that
classi�es each word independent of the sentence it is part of. Also, we report results
mainly on unknown words as they can bene�t the most from external information. As
for the experiments in Chapter 5, we only examine the combination of WSJ as the
target and BIO as the source domain here. This is because a lot of previous work has
addressed this particular setting; moreover, we only want to be able to quickly evaluate
our experiments.

After describing the construction process, we introduce an experiment in order to
evaluate the usefulness of our design decisions in a simple setting. We study several
extensions and alternatives to this basic experiment in Sections 4.5 and 4.6. We look
at possible ways of leveraging information about the di�erences between domains in
Section 4.7. Furthermore, we attempt to answer the following series of questions in this
chapter:

1. Are the feature representations presented here useful for domain adaptation?

2. What is the e�ect of applying dimensionality reduction techniques such as SVD to
our features?
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3. Where are the limitations of the approaches taken?

4. What are interesting parameters to be included in future experiments?

4.1 Constructing Feature Vectors

There are many kinds of contextual properties one could leverage for building feature
vectors. The �rst set of features described here, distribution features, looks at the tokens
directly to the left and right of a word. The second set of features, cluster features, is
more complex as its construction is divided into two steps. First, a cluster is constructed
for each token. The �nal cluster feature for a word then describes how many of the
member words of a cluster occur next to the word.

We have already talked about di�erent types of context information, but not about
which speci�c contexts we would like to consider. If we would take every word appearing
in the context of a word w into account, our feature vectors would be highly dimensioned.
Moreover, it is questionable whether this information would help or if it would only add
more noise to our feature vectors. Thus, we decided to use a restricted set of words to
characterize w, which we call indicator words. The co-occurrence of these indicator words
alongside a word w is used to represent w. For now, we shall assume that we are given
a set T = {t1, t2, . . . , tn} of indicator words. We leave the full details on how to choose
those words for Section 4.2. If not speci�ed di�erently, we use n = 250 indicator words.

A feature vector for a word w is the concatenation of a left and a right vector, f left(w)
and f right(w) respectively. More formally, if f(w) denotes the function that maps a word
w to its feature vector, then

f(w) =

[
f left(w)
f right(w)

]
Both, the right and the left vector of a word, contains n entries, one for each indicator
word:

f left(w) = [x1(w) x2(w) . . . xn(w)]T

f right(w) = [x′1(w) x′2(w) . . . x′n(w)]
T
.

4.1.1 Distribution Features

This idea has been adopted from Schütze (1995). There, a word is characterized by the
tokens that occur in its vicinity. Entry i in the left (right) distribution vector of word w
is the number of times that the indicator word ti occurred immediately to the left (right)
of w:

xi(w) = 1 + log (freq (bigram(ti, w)))

The right vectors are constructed analogously. The log-scaling of the frequencies will
give lower weight to frequent terms. Similar to term weighting in information retrieval,
this step is supposed to prevent frequent terms from dominating the feature vectors. As
a �nal step, both the left and right vectors are length-normalized in order to have them
weighted equally in the �nal feature vector.
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left cluster right cluster

the NN 0.16 VBN 0.10 VB 0.15 VBZ 0.08
VBG 0.16 VBD 0.08 NNS 0.08

JJ 0.21 NN 0.33 NNS 0.14 NNP 0.17

says NN 0.18 NNP 0.72 JJ 0.06 NN 0.11 NNS 0.06 NNP 0.65

billion CD 0.99 JJ 0.16 NN 0.38 IN 0.07 NNS 0.08
NNP 0.07

cells JJ 0.26 NN 0.27 VBN 0.09 VBG 0.06
CD 0.10

JJ 0.08 RB 0.12 NN 0.08 VB 0.09
VBN 0.18 VBZ 0.08 IN 0.06 VBG 0.08
VBD 0.10

Table 4.1: Tag distribution for words within the left or right cluster of a word. The num-
ber behind each tag is the relative frequency of words with this tag in the corresponding
cluster. All tags with frequencies below 0.05 were omitted.

4.1.2 Cluster Features

Another idea for designing features that are suited for domain adaptation is characterizing
words by cluster memberships. Given an indicator word ti, we de�ne two clusters for ti
which encompass all words that occur to the right (left) of it. More precisely,

Cright,i =
{
v | bigram(ti, v) ∈ D

u,l
S,T

}
.

The features for a word w are then the scaled sum of the frequencies of words in the
corresponding cluster occurring to the left (right) of w:

xi(w) = log

 ∑
c∈Cright,i

freq(bigram(c, w))

+ 1.

The same idea can be used to construct the left feature vectors. Again, the left and right
vectors are normalized to unit length. To get a better idea why these features might be
useful, we looked at the tag distribution of all known words in the clusters. We used the
macro-average over tags from both WSJ-train and BIO-dev to compute the distributions.
Table 4.1.2 shows the distributions of some sample clusters.

Let's take an example that further motivates our cluster features. Suppose we would
like to have a feature that says �my left neighbors are only adjectives and nouns�. Unfor-
tunately, this information isn't available to us in an unsupervised task. However, we can
�nd clusters that will most likely carry this information. Looking at the tags of words in
the right cluster of �the�, one can see that �the� is mostly followed by adjectives or nouns.
Hence, if those words occur frequently to the left of a word w, we can tell that its left
neighbors are mostly adjectives or nouns.

Table 4.1.2 contains more illustrative examples. Left neighbors of �says� are typically
nouns or proper nouns. �Billion� is almost only preceded by numbers. Although clusters
often represent syntactical properties, there are some cases where their membersets are
very diverse and may carry less useful information. One example for this is the right
cluster of �cells� where tags are more or less distributed equally.
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4.1.3 Singular Value Decomposition

We utilize singular value decomposition to reduce feature space dimensionality and to
eliminate possibly irrelevant information. The number of dimensions balances the amount
of information to be retained versus the exactness of the approximation. We set the
number of dimensions d to be equal to 100 for the following experiments, although the
value of d may change results. However, choosing a good value for d appears to be less
critical for the �nal supervised task in Chapter 6 as the algorithm can adjust the weights
for each dimension as needed.

We apply SVD to our token-feature matrix M which is constructed by concatenating
all non-zero feature vectors of all words in the combined corpus vertically:

M =


f(w1)

T

f(w2)
T

. . .
f(wm)T


We perform an SVD on M and keep the 100 largest singular values. The matrix M

will thus be approximated by

M ≈M100 = UΣ100V
T .

The SVD de�nes a mapping from the original feature space onto a reduced space Rd. We
can map new words using a step called fold-in to this lower dimensional space:

freduced(w) = f(w)TV Σ−1100.

The reduced vector is also length-normalized. Since it would be costly to do this mapping
at run time, we precompute the reduced feature vectors for all tokens and store them in
a �le.

4.2 Indicator Words

As already mentioned in Section 4.1, the main purpose of indicator words is to restrict the
set of contexts we take into account. Selecting a di�erent set of indicator words will au-
tomatically yield a di�erent feature representation for a word. We present an experiment
later in this chapter that tests di�erent selection methods for their e�ectiveness.

There are two basic considerations to make when choosing a set of indicator words.
First, we want an indicator word to occur frequently in the corpus to allow for reliable
estimation. However, if an indicator word is too frequent it might not provide enough
discriminative information. The methods presented here neglect this issue, as they assume
that the �nal features will be weighted appropriately. The second consideration is speci�c
to the task of domain adaptation. We aim to learn a tagging model on the source
domain that is also useful for tagging in the target domain. On the one hand, we would
like indicator words to be frequent in the source domain, as we can only learn weights
for features we have seen. On the other hand, we want indicator words to also occur
frequently in the target domain. Otherwise, we won't be able to relate words from the
target domain to words from the source domain.

The three following methods address this issue in di�erent ways. Naive selection
simply draws the most frequent terms from a combined corpus. Intersection selection
tries to �nd tokens that occur both frequently in the source and target domain. Lastly,
source selection picks those tokens that are most frequent in the source domain.
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4.2.1 Naive Selection
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Figure 4.1: Fraction of words in the vocabulary of BIO-dev that have distribution feature
vectors with ≤ n non-zero components. Each feature vector had 500 dimensions. We
compare three di�erent methods for selecting indicator words (naive selection, intersection
selection and source selection) and show the e�ects of ignoring capitalization.

This methods computes the n most frequent terms in D
u,l
S,T which is the union of all

labeled and unlabeled data from the source and target domain. Indicator word ti is then
the token with frequency rank i in this corpus. One advantage to this method is that on
average, our distribution feature vectors using these indicator words will be denser in the
target domain than with other methods as Figure 4.1 shows. The reason for this is rather
simple. The indicator words chosen here are the most frequent terms in the corpus and we
are very likely to encounter them when constructing the �nal feature vectors. However,
it could be more signi�cant to have dense vectors for words in a speci�c domain and not
to optimize for a global criterion. This motivates the following two selection methods.

4.2.2 Intersection Selection

If we naively choose the n most frequent terms from D
u,l
S,T , we can run into some problems.

First, sizes of the single corpora can be di�erent. This could cause terms of one domain to
dominate the set of indicator terms even if their relative frequency in the domain is low.
Another issue is that we want to represent words by indicator words that are common
in both domains. In the extreme case, indicator words would only occur in one domain.
As we try to learn a common set of weights, words from one domain can't be related to
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words from another domain. Even SVD would not help with independently occurring
features as it wouldn't be able to make a connection between them.

To get a better idea of how our set of indicator terms with naive selection looks like,
we looked at the frequencies of terms selected in both domains. We hypothesized that
good features are features which occur frequently in both domains. We used the following
measure to assess how unevenly an indicator word t occurs in both domains:

bal(t) =
freqWSJ−train(t)− freqBIO−dev(t)

freqWSJ−train(t) + freqBIO−dev(t)

with freq(t) being the frequencies of t in the respective corpora. If w only occurs in one
corpus, bal(t) will be 1 or −1 respectively. If it has the same frequency in both corpora,
bal(t) will be zero. We'll refer to a feature as being unbalanced, if |bal(t)| ≥ 0.85. For the
naive selection method, we found 98 out of the 250 indicator words to be unbalanced. 48
of them had bal(w) ≥ 0.85. This means that they were hardly present in the bio domain.
Similarly, 50 of them hardly occurred in the WSJ domain.

The observations above motivate our new selection method. Rather than selecting
the most frequent words from D

u,l
S,T , we use a separate corpus for each domain. We then

retrieve a list of the respective vocabularies sorted by term frequency in descending order.
We simultaneously move down these lists and add terms to our feature set if they are in
the intersection of both lists up to the current position. This process ends as soon as we
have selected n indicator words.

We used the same measure as in the second paragraph to evaluate the new feature
set. Instead of having 98 unbalanced indicator words, now only three of the 250 words
are unbalanced. We hope that this will help in achieving a better tagging performance.
Figure 4.1 shows one potential drawback of this method: Distribution feature vectors now
got sparser, e.g. contain less entries. However, the number of entries doesn't necessarily
have to correlate with the amount of meaningful information that a vector carries.

4.2.3 Source Selection

Given a word from the target domain, we try to �nd words in the source domain which
behave similarly in respect to their part-of-speech labels. One could argue that only
tokens from the source domain are important, since our supervised learning method will
estimate the weights for each feature based on them. This leads to our third feature
selection method where we just select the n most frequent tokens of D l

S as indicator
words. However, this yields sparser distribution feature vectors for words in the target
domain since the selected features will be less frequent. Indeed, among the three methods,
source selection creates the sparsest feature vectors. It is shown as the upper blue line in
Figure 4.1.

4.3 Design Choices

So far, we haven't discussed three important issues that come up during feature design.
The �rst one is inconsistent capitalization in the corpus. We found that words in BIO are
often capitalized since they are part of abstracts containing a lot of short sentences. Of
course, we could lower-case all words in the corpus but this approach would bring other
implications along. Section 4.3.1 examines this issue more thoroughly and looks at two
possible solutions.
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Another problem is words which do not occur in the unlabeled data set. Section 4.3.2
presents two approaches to handling such cases. Lastly, we have to decide which data
to use when constructing feature vectors. Section 4.3.3 discusses two options with their
advantages and disadvantages.

4.3.1 Capitalization

A problem occurs when one is not able to get enough information for the capitalized
version of a word, even though its uncapitalized version with the same part-of-speech tag
appears frequently. Capitalized and uncapitalized versions of the same word can appear
for various reasons. They occur naturally at the beginning of sentences when every word is
capitalized. There might also be other instances due to typing errors or di�erent spelling
preferences. The last group consists of words which are part of a named entity and are
therefore capitalized. If capitalization is ignored, we will not be able to account for the
di�erences between capitalized words and their uncapitalized counterparts (compare �to
excel� vs. �Microsoft Excel� or �united� vs. �The United States of America�).

In order to investigate this issue further, we took a look at the corpus. From the
147,607 words in the vocabulary of our corpus, 13,429 occur both capitalized and uncap-
italized. We found 12,793 (∼ 8.4%) words which have distribution feature vectors with
length zero. When we lower-cased all words in the corpus, our vocabulary size dropped
to 129,739. We also had a lower percentage of zero vectors, namely 6.6%.

For the task of domain adaptation, it seems reasonable to strive for dense feature
vectors in the target domain. We hypothesize that a dense vector will also contain more
useful information. This is why we looked at the sparseness of feature vectors in the
target domain at hand. Figure 4.1 shows the cumulative distribution function for all
words in BIO-dev. When we ignored capitalization, feature vectors had more non-zero
entries. The average number of entries per feature vector increased from 59.3 to 64.1.

To conclude, we found that ignoring capitalization may remedy the problem of sparse-
ness. However, we will lose the ability to discriminate words from named entities or
abbreviations. Another possibility for handling capitalization could be to use the feature
vector of the uncapitalized version of a word whenever it occurs more often than the
original word. We will reexamine this issue in Section 4.5.

4.3.2 Unknown Word Handling

We refer to an unknown word here as a word which occurs during testing and which
we haven't built a feature vector for. One approach is to also include the testing set
in the corpus which is used to construct the feature vectors. In doing so, we'll have a
feature vector for every word in the testing data. Another possible approach for handling
unknown words is to compute the feature vector on the testing set that the unknown
word is in. Although this solution is a bit cleaner as it doesn't make use of the testing
data in the source domain, we chose the �rst approach since we wanted to keep things
simple at this stage.

4.3.3 Representation Data

Another question that comes up during feature design is which data a word's representa-
tion should be based on: on a combination of source and target domain D

u,l
S,T or only on
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the target domain D
u,l
T . We call this data the representation data. Note that represen-

tation data is only used to create distribution vectors for each word in a preprocessing
step. After this step, the tagging algorithm doesn't need to know about the underlying
structure of these feature vectors; distributional features are then treated like any other
input features.

The �rst option is to use data from both the target and source domain D
u,l
S,T for

building distribution vectors. One obvious advantage is that we make use of all data we
have and we can collect su�cient information for words in the source domain. However,
our unlabeled data sets Du

S and Du
T might have varying sizes. This raises the question

about how to weight distributional information from both data sets as one data set might
dominate. Even if both data sets have the same size we might want to weight training
instances from both domains di�erently.

Building feature vectors based on distributional information only from the target
domain D

u,l
T does not su�er from this problem. Moreover, leaving out data from the

source domain has another possibly bene�cial e�ect. Words in the source domain that
do not occur in the target domain will not have feature representation under Du,l

T and are
thus excluded from the labeled training set. Again, this is some subtle form of �ltering or
instance weighting where we skip all examples which do not occur in the target domain.
As a consequence, however, we will have fewer training examples which is usually observed
to degrade accuracies with supervised methods.

4.4 A Sandbox Task

Our experiments' goal is to gauge the usefulness of distributional information for part-
of-speech tagging. Instead of running a traditional sequence tagger, we decided to look
at the performance on a simpler task. This helps us better understand how our features
work and how sensitive results are to di�erent feature sets.

We focus on tagging unknown words as our case study on BIO in Chapter 3 showed
that most errors were made on them. The task is to correctly predict a word's majority
tag in BIO given the majority tags of all labeled training instances in D l

S. Our tagging
algorithm is a simple k-NN classi�er which proceeds in three steps:

1. Find the k most similar words in WSJ-train to the input token using cosine simi-
larity.

2. Assign the tag that occurred most often for a word in WSJ-train to each of the k
words.

3. Return the most frequent tag among the k words.

4.4.1 Results

For this experiment, all unknown words from BIO-dev are retrieved. Multiple occurrences
of the same word are treated as individual instances. We create distribution feature
vectors as described in Section 4.1.1 for all words in D

u,l
S,T using D

u,l
S,T as representation

data. Similarities are computed between feature vectors in the original feature space
as well in the 100-dimensional feature space resulting from the SVD. Table 4.4.1 shows
the results for the k-NN tagging task. Except for k = 1 with intersection indicator
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naive intersection source

original svd original svd original svd

k=1 59.67 51.62 51.96 52.81 59.94 54.43

k=5 58.55 54.35 58.82 53.35 62.10 55.78

k=10 61.36 56.32 54.97 50.96 61.75 55.70

k=25 63.71 56.16 56.47 49.54 60.82 55.12

k=50 64.33 59.44 56.90 50.54 60.48 54.89

Table 4.2: Accuracies on unknown words of BIO-dev using a k-NN classi�er with distri-
bution feature vectors and di�erent sets of indicator words. Each feature vector had 500
dimensions in the original feature space and 100 dimensions in the reduced space from
the SVD.

words, we �nd SVD vectors to give lower accuracies than unreduced feature vectors. One
explanation might be that as with latent semantic indexing (LSI), recall increases at the
cost of precision.

We can also observe that as was hypothesized in Section 4.2, there are strong depen-
dencies between the set of indicator words used and the experimental outcome. Despite
their name, naive indicator words work best. This might be due to the e�ect that they
create denser feature vectors in the target domain which helps in �nding similar words
in the WSJ domain. Intersection selection gives the poorest results overall; their best
accuracy value is still worse than almost any value for naive indicator words. Second
best is source selection. Although the maximum accuracy for it is below the model using
naive selection, source selection is more e�ective than the latter when neighborhood sizes
are small.

Our best performing k-NN model employs the tags of the 50 most similar tokens in
the original feature space. It achieves an accuracy of 64.33% on unknown words, which is
fairly close to the performance of our best supervised model with an accuracy of 66.5%.
One thing to keep in mind, though, is that a supervised tagger can adjust the weights
for each dimension of the feature vector separately whereas our k-NN tagger weighted
all features equally when computing similarities. We therefore hope to be able to further
improve results by incorporating some form of feature weighting.

4.4.2 Error Analysis

We investigated the errors of our currently best performing model in order to gain more
insight in possible error patterns. In total, 926 of the 2596 unknown words in BIO-dev
were mistagged by this model. As before, we considered multiple occurrences of the same
word as separate instances. An analysis of the mistagged words of the k-NN model with
k = 50 and naive selection of indicator words suggested �ve major categories for errors:

• Tentative errors: These words were correctly tagged by another well performing
model. We chose the source selection model with k = 10 from above for the
comparison. Roughly 10.6% of all unknown words in BIO-dev fall into this category.
There are only two possible explanations why the latter model outperformed the
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currently best model. First, it uses another set of indicator words which might be
more appropriate for some words. Second, for di�erent values of k, neighborhood
sizes vary and this leads of course to a di�erent classi�cation output. If the errors
are due to the �rst condition, a supervised algorithm could be employed to �ne-tune
the weight for each feature. Having a di�erent set of indicator words would thus be
a special case of weighting: The corresponding weights would be set to zero.

• Unknown tag errors: BIO-dev contains unseen tags due to the special annotation
needs in that domain. We also put all words with SYM tags in this category, because
the SYM tag is almost absent in the WSJ domain and can thus be regarded as
unseen. There are 4.5% of all unknown words that have unseen tags. As we assume
that our set of tags is closed, there is nothing we can do about these errors.

• Rare word errors: 6.0% of all unknown words occur less than 10 times in D
u,l
S,T which

comprises all data that we have. The threshold chosen here is rather �exible than
�xed; it was motivated by looking at the feature vectors of some infrequent words.
If a word is rare, it is hard to estimate its distribution in a reliable manner. It seems
challenging to �nd a remedy for those errors; however, context might help in some
cases if we perform sequence classi�cation instead of word-based classi�cation.

• Sparse feature vector errors: This category comprises all words that occur more
than ten times in D

u,l
S,T , but have less than or equal to nine entries. About 2.2% of

all unknown words belong to this category. Again, the problem with those words
is to gather enough distributional information. One example for a word in this
category is the adjective �single-strand�. It occurs 14 times in the corpus and has
the following feature vector:

Feature Value

by{left} 0.7329

,{left} 0.4756

the{left} 0.2809

-{left} 0.2809

used{left} 0.2809

By looking at the entries, we can tell that its distribution vector contains little in-
formation for �nding a good neighbor. One potential cure for this situation might
be bootstrapping. We could try to �nd features in the target domain which behave
similarly as features in the source domain. This could be done by de�ning a sim-
ilarity measure on the clusters of Section 4.1.2 and combine indicator words that
de�ne similar clusters into new features.

• Similar context errors: These are all errors, that weren't put into one of the pre-
ceding categories. Words in this category make up 12.3% of all unknown words.
Obviously, these errors are due to the confusion with words having the wrong tag.
Instead of retrieving words that would have the right tag, other similar words with
the wrong tag are returned. Thus, either the similarity measure or the features
themselves are not able to separate words with di�erent tags properly. This leads
to two possible approaches: �nding a better similarity measure or more informative
features. An improved similarity measure could be found by tuning the weights of
each dimension by some supervised algorithm. More informative features could be
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constructed by using combinations of the existing features. The new features could
thus express more complex relationships like �both 'the' and 'of' occurred to the
left of a word w�. Two other ways of constructing more informative features are
discussed in Chapter 5.

4.5 Further Variations

Motivated by the �ndings of the previous section, we want to examine the e�ects of our
design decisions more closely. We compare six di�erent sets of features. The �rst one,
naive binary, uses the distribution features from section 4.1.1 with a modi�ed scaling.
Instead of transforming features with a log function, we just use a binary threshold
function that returns one if the feature is greater than zero and zero otherwise.

Second, we are interested in whether more features would help. The naive more
features model uses an enhanced set of indicator words. It constructs distribution feature
vectors using n = 500 indicator words instead of n = 250 tokens. Consequently, the �nal
feature vectors of this model have 1000 dimensions.

The third set of features uses distribution features and cluster features. Both sets of
features have the same set of indicator words which is retrieved via the source selection
method. As both feature vectors contain 500 entries, the �nal feature vectors have 1000
entries.

The fourth and �fth set of features both use cluster features and indicator words which
have been selected by the naive method. The fourth set of features employs distribution
features with the default scaling, whereas the �fth feature set has the same transformation
to its distribution vectors applied as the �rst one.

The last set of features is equal to the �fth except for a special handling of capitalized
words. If a word is more frequent in its uncapitalized form, we use the feature vector of
its uncapitalized counterpart instead.

4.5.1 Results

Table 4.5.1 reports the results for the six feature sets described above. We can see that
the distribution features with source indicator words, as well as the distribution features
with naive indicator words bene�ted from adding cluster features. It is also interesting
to note that they achieved best results in the reduced feature space of the SVD. This is
di�erent to the other feature sets, where the dimension reduction didn't improve accuracy.

Binary distribution features yielded the best performance gain. Our best performing
model used those along with cluster features. Its accuracy of 69.30% on unknown words
is better than anything we were able to get with a supervised tagger. This is remarkable
because our k-NN tagger didn't make use of the context information of the word to
tag. Having more features didn't help which might be because of additional features
introducing noise, rather than meaningful information. The results also prove that our
special treatment of capitalized words paid o�. We were able to increase accuracy even
further by almost 1.7%. Part of this success, though, might be because unknown words
became known ones as soon as they were uncapitalized.

The results also show great e�ects of the feature scaling method on the results. To
further illustrate how feature scaling a�ects results, here are the 10 most similar tokens in
WSJ-train for the noun �jaundice� for distributional features using tf-scaling and binary
scaling:
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naive binary naive more features source + cluster

original svd original svd original svd

k=1 57.32 48.46 57.09 52.04 60.59 59.17

k=5 63.87 55.70 59.09 54.08 63.98 64.52

k=10 66.87 55.32 59.59 58.17 63.79 67.18

k=25 66.72 54.85 63.48 58.98 63.33 65.76

k=50 67.68 58.28 61.56 60.79 64.02 67.10

naive + cluster naive bin. + cluster naive bin. + cl. + mod

original svd original svd original svd

k=1 61.09 62.40 58.55 53.78 59.90 55.70

k=5 59.98 65.10 65.49 56.82 67.06 58.82

k=10 63.14 66.14 67.84 54.89 69.57 56.59

k=25 65.56 68.30 69.30 58.74 70.99 60.52

k=50 66.56 68.49 68.18 60.94 69.80 62.75

Table 4.3: Accuracies on unknown words of BIO-dev using a k-NN classi�er with modi�ed
features sets.

naive.printMostSimilar('jaundice');

Token Similarity Tags in WSJ-train

minivans 0.7716 NNS 1.00

vegetables 0.7614 NNS 1.00

vomiting 0.7467 VBG 0.50 NN 0.50

resins 0.7385 NNS 1.00

printers 0.7380 NNS 1.00

bridges 0.7293 NNS 1.00

composting 0.7261 NN 1.00

insulation 0.7220 NN 1.00

self-destructive 0.7204 JJ 1.00

transmissions 0.7198 NNS 1.00

naiveBinary.printMostSimilar('jaundice');

Token Similarity Tags in WSJ-train

insulation 0.7833 NN 1.00

Newsday 0.7462 NNP 1.00

resins 0.7385 NNS 1.00

cheese 0.7035 NN 1.00

bass 0.6963 NN 1.00

rodents 0.6963 NNS 1.00

trunk 0.6963 NN 1.00

executions 0.6838 NNS 1.00
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D
u,l
S,T Du

T D
u,l
T

k=1 54.28 53.27 54.08

k=5 56.74 57.51 58.20

k=10 53.16 56.12 58.71

k=25 51.77 55.66 55.74

k=50 50.39 53.47 55.39

Table 4.4: Accuracies on unknown words of BIO-dev using a k-NN classi�er with di�erent
representation data sets.

tilts 0.6742 VBZ 1.00

epilepsy 0.6690 NN 1.00

We can make several observations here. Distributional features seem to return words
with tags which are close to the correct tag. What prevents �jaundice� from being labeled
as a noun with the �rst feature set are nouns in plural form. By using binary distribution
features, words with the correct tag get moved up. Some words newly appear in the
ranking, for example �cheese� and �bass�. Also, we can't �nd an adjective among the 10
most similar tokens anymore.

4.5.2 Representation Data

In all of our previous experiments, we have used D
u,l
S,T when computing feature vectors. In

this section, we investigate what the e�ects are of using varying representation datasets
as basis for our feature vectors. For the results presented in Table 4.4, we computed
feature vectors on D

u,l
S,T , D

u,l
T and Du

T . Instead of using only n = 250 indicator words as
before, we opted for using all indicator tokens. This is because we do not want to include
di�erences in our comparison that might be due to a di�erent selection of indicator tokens.
As we know from Section 4.4, results are rather sensitive to the method used for selecting
indicator words.

Except for k = 1, we can see that results get constantly better from the left to the
right. Models that use target-only data usually do better than the model that used all
data. This is most likely caused by the �ltering e�ect that computing vectors on target-
only data has; proper nouns which do not occur in the target domain are �ltered out.
Thus, the k-NN classi�er is biased for nouns which are the most frequent class in BIO.
Compared to the model that used all available data from the source domain D

u,l
T , the

model that did not use labeled data from the target domain D l
T is constantly worse. We

believe that this is due to words in D l
T which do not occur in Du

T . For those words, we
get a feature vector that is zero which, in turn, can lead to problems during classi�cation.

Another interesting observation we can make here is that using all indicator tokens
leads to signi�cantly worse performance. While our naive model using the top 250 indi-
cator words has an accuracy of 64.33%, the same model with all indicator tokens only
reaches 56.74%. Intuitively, a supervised algorithm should not su�er dramatically when
adding more features. One explanation is that features are not weighted optimally and
we would need to scale features appropriately before applying k-NN. We discuss this issue
further in Section 4.8.
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naive naive binary naive bin. + cluster

original svd original svd original svd

k=1 85.69 84.07 85.21 83.43 85.48 84.52

k=5 85.46 84.62 86.53 84.89 86.87 85.13

k=10 86.03 85.01 87.14 84.81 87.35 84.74

k=25 86.50 84.98 87.11 84.72 87.64 85.52

k=50 86.63 85.64 87.30 85.41 87.42 85.96

Table 4.5: Accuracies on the full BIO-dev dataset using a k-NN classi�er with di�erent
feature sets.

4.5.3 Full Dataset

We used three well performing sets of features from above and tested them on the full
BIO-dev dataset. This should serve as a baseline against which we can compare our
discriminative tagger of Chapter 3. We used the same k-NN classi�er as in the previous
experiments, but had it only enabled for unknown words. When we encountered a known
word, we just assigned it its most frequent tag in WSJ-train.

Table 4.5 presents results for this task. As expected, the best performing model
on unknown words is also the best performing one on the full dataset. Its accuracy of
87.64% is relatively close to the 89.1% of our discriminative baseline tagger. Again, the
supervised tagger has access to more information as it is trained on structured input data.
This gives further evidence that a word-based approach can produce competitive results
in some scenarios.

4.6 Tag Vectors

Instead of collecting distributional information in a word-based manner as we have done
in our previous experiments, we investigate another possible approach in this section:
tag vectors. The basic idea is to share distributional information only among training
instances with the same tag. During classi�cation, we do not look for similar words but
rather for tags with a similar distribution. We hope that this can help in cases where
words are ambiguous and usages di�er signi�cantly in both domains.

We present two di�erent approaches for designing tag vectors which we call dense tag
vectors and sparse tag vectors. Dense tag vectors collect information across all words in
the corpus with the same tag and are therefore expected to contain more entries than
word-based distribution vectors. The second approach computes separate tag vectors for
each word, leading to sparser vectors as information gets split among the di�erent tags of
a word. The two approaches make di�erent homogeneity assumptions on contexts. Dense
tag vectors assume that contexts of words with the same tags are homogeneous and can
thus be grouped together, while sparse tag vectors assume that contexts vary with both
the word and the tag of a word.

Both kinds of tag vectors are used as training examples with a k-NN classi�er. The
classi�er retrieves the word-based distribution vector of the word to be labeled and com-
pares it with tag vectors. Finally, it outputs the tags of the closest tag vectors. Note

46



tag tokens classi�ed freq. in WSJ-train

LS 28.5% 0.01%

JJS 14.9% 0.20%

UH 12.6% 0.01%

FW 9.5% 0.02%

) 8.7% 0.14%

Table 4.6: Tags that were assigned most frequently to unknown words of BIO-dev by a
k-NN algorithm using dense tag vectors.

acc.

k=1 33.82

k=5 40.33

k=10 38.14

k=25 46.19

k=50 45.99

Table 4.7: Accuracies on unknown words of BIO-dev using a k-NN classi�er with sparse
tag vectors.

that since tag vectors can only be trained on labeled data, we are restricted to just use
data from the source domain.

4.6.1 Dense Tag Vectors

With dense feature vectors, we simply compute one feature vector for each tag. Each di-
mension in the left (right) tag vector will be the sum of counts of the form bigram(ti, tagi),
where ti is the indicator word with number i. As we only have one vector per tag, the
k-NN algorithm is modi�ed to just return the tag of the closest vector, e.g. k = 1.

The results we got with this approach were fairly poor. Accuracies on unknown
words of BIO-dev were close to 2.0%. Table 4.6 provides a possible explanation for
this phenomenon. The algorithm preferred vectors of infrequent tags in WSJ-train. The
problem with rare tags is that their corresponding tag vectors are sparser than the vectors
of frequent tags. This is because rare tags don't occur in as many contexts as frequent
tags. Thus, if an indicator words occurs in the context of a rare tag, higher weight will
be given to it in the �nal tag vector due to normalization. Word-based feature vectors
which have a non-zero value in the same dimension will therefore tend to prefer such
sparse vectors.

4.6.2 Sparse Tag Vectors

Sparse tag vectors are basically word-based distribution vectors, but they are computed
for each word and tag pair separately. As an example, let's consider the word �like� with
tags VB and IN. We construct two separate feature vectors, one for all occurrences of
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same maj. tag di�. maj. tag

Euclid. distance 0.44 ± 0.11 0.48 ± 0.09

Cosine similarity 0.89 ± 0.05 0.87 ± 0.05

Table 4.8: Mean distances/similarities between distributional feature vectors of words
occurring in both domains. The corresponding standard deviations are shown behind the
plus-minus signs. The �rst column only considers words with the same majority tag in
both domains. Similarly, the second column computed the mean only over words with
di�erent majority tags.

�like� as VB and one for all occurrences as IN. We hope that using these tag vectors will
enable the k-NN algorithm to �nd better matches for ambiguous words.

Table 4.7 contains results for sparse tag vectors. We found this approach to work
rather poorly as accuracies were generally below 50%. The main problem with sparse
tag vectors is that � as the name implies � data sparseness increases. The labeled data
that we have gets split among all tags that a word may have. Although having separate
vectors for each word-tag combination seems not appropriate for unknown words, it could
help disambiguate known words. We study more approaches for tagging known words in
the next section.

4.7 Exploiting Inter-Domain Di�erences

In this section, we investigate the idea of exploiting di�erences between the source and
target domain. For each word that occurs in both domains, we can get two separate
feature vectors for it by using either the D

u,l
S or D

u,l
T as representation data. The hy-

pothesis we examine here is that if the majority tags of a word deviate in both domains,
distribution feature vectors should also be di�erent.

Our experimental setup was as follows. We extracted all words from the corpus that
occurred more than 5 times in BIO-dev to have a somewhat reliable estimate for the
majority tag. We then compared feature vectors that were computed on source-only
data D

u,l
S with feature vectors computed on target-only data D

u,l
T . We chose to make

the following simpli�cation. Instead of comparing the full feature vectors, we selected
only those dimensions, whose values were non-zero in both vectors. Our hypothesis was
that if we take the full feature vectors, the di�erences we will �nd could also be due to a
di�erence in vocabularies.

We computed the mean of the cosine similarity as well as the mean of the Euclidean
distance for words with the same majority tags and di�erent tags in both domains. If
our hypothesis holds, feature vectors of words should have a greater similarity (shorter
distance) if they behave similarly in both domains, e.g. have the same majority tag.
As Table 4.8 shows, we found some evidence for this hypothesis. Similarity increases if
only feature vectors of words with the majority tag are considered. However, standard
deviations are quite large. Hence, it is questionable whether we could apply a threshold
to �nd out whether a word is actually used di�erently in both domains.
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token frequency tags in BIO-dev tags in WSJ-train

found 37 VBN 0.86 VBD 0.14 VBD 0.65 VBN 0.35

DNA 27 NN 1.00 NNP 0.67 NN 0.33

detected 24 VBN 0.96 VBD 0.04 VBD 0.56 VBN 0.44

both 17 CC 0.65 DT 0.35 DT 0.91 PDT 0.03 CC 0.06
CD 0.00

observed 12 VBN 0.92 VBD 0.08 VBD 0.69 VBN 0.15 JJ 0.15

examined 10 VBN 0.60 VBD 0.40 VBD 0.67 VBN 0.33

more 10 RBR 0.90 JJR 0.10 JJR 0.58 JJ 0.00 RBR 0.41

reported 10 VBN 1.00 VBD 0.73 VBN 0.25 JJ 0.02

show 9 VBP 0.67 VB 0.33 NN 0.40 VB 0.37 VBP 0.23

RA 8 NN 1.00 NNP 1.00

Table 4.9: Tag distributions in BIO-dev and WSJ-train of known words which have
di�erent majority tags, e.g. they get mistagged by the current approach. They are
sorted by their frequencies in BIO-dev.

D
u,l
S,T Du

T D
u,l
T naive

k=1 92.26 92.24 92.24 92.24

k=5 74.72 73.92 73.84 73.06

k=10 69.48 67.00 67.37 69.65

k=25 66.51 64.87 64.77 66.52

k=50 64.05 58.55 58.25 65.22

Table 4.10: Accuracies on known words of BIO-dev using a k-NN classi�er with distri-
bution feature vectors based on di�erent representation datasets.
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4.7.1 Known Words

So far, we have mainly focused on tagging unknown words. In this section, however,
we want to examine whether distributional information can also help with known words.
Our approach in Section 4.5.3 used a word's majority tag if it encountered a known word;
otherwise the k-NN classi�er was invoked. With this approach, we were able to get an
accuracy of 92.26% (9505 out of 10302) on known words of BIO-dev. Superior to that
would be a word-based tagger that assigns all known words their majority tag in the
target domain. Such a tagger could achieve an accuracy of 96.51% on known words of
BIO-dev. This means that we could theoretically increase accuracy by more than 4% if
we were able to correctly predict every word's majority tag in BIO.

We looked at all known words that had di�erent majority tags in WSJ and BIO
in order to �nd out where we lose accuracy. Table 4.9 lists the frequencies and tag
distributions in both corpora for mistagged words of BIO-dev. We can see that there
are mainly two sources of error. Words that are annotated di�erently due to deviating
conventions make up the �rst group. Examples for these words are �DNA� and �RA�,
both of them are labeled as proper nouns in WSJ-train but are treated as normal nouns
in BIO-dev. As we assume homogenous annotation guidelines, there is nothing we can
do about this problem.

The second and larger group of errors encompasses words with di�erent uses across
the two domains. Verbs like �detect�, �observe� or �examine� are mostly used in their
past tense form in the WSJ domain, for example in �Reuters reported that ...�. In BIO,
they occur mainly as past participles like in �as previously reported�. Similarly, �both� is
most often used as a conjunction in BIO-dev, whereas it mainly serves as a determiner
in WSJ-train.

We re-ran our k-NN tagger on all known words of BIO-dev to see how well our
existing approach works for known words. Feature vectors were constructed using three
di�erent representation data sets, Du,l

S,T , D
u
T and D

u,l
T . We also included the standard

model with naive selection in the comparison. Results are reported in Table 4.10. The
results in the �rst row correspond to majority tag selection. Increasing the neighborhood
sizes decreases accuracies for all models, as more and more incorrect tags are taken into
account. It seems that majority tagging is still the best word-based method for known
word tagging. Moreover, we couldn't replicate the results from the previous section. The
results also suggest that the way in which feature vectors are computed appears to be
less important when tagging known words.

Another approach could involve constructing feature vectors on each domain sepa-
rately. As we have separate feature vectors for known words in both domains, we can
compare them and only deviate from majority tagging if their distribution vectors di�er
too much. Given that the di�erences are not due to di�erent vocabularies, this method
could help spot critical words. However, the results of the section above suggest that we
cannot reliably use the di�erences between the two vectors in order to predict whether
their majority tags also di�er.

4.8 Discussion

We were able to answer all of the questions at the beginning of this chapter with the help
of our experiments.
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Are the feature representations presented here useful for domain

adaptation?

We found that distribution and cluster features can e�ectively help with out-of-domain
POS-tagging, especially with unknown words. We achieved accuracies close to 71% on
unknown words with a simple word-based tagger using distributional features. This
tagger even outperformed our supervised baseline tagger on unknown words. However,
we did not compare it against a supervised tagger which receives the same feature vectors
as input. We include a CRF-based tagger in our �nal evaluation in Chapter 6 to allow a
better comparison.

We tested tag vectors as an alternative to word-based distribution features. Tag vec-
tors were introduced to facilitate treatment of ambiguous words. However, both variants
of tag vectors performed rather poorly, indicating that the default word-based approach
still is the best option. Moreover, tag vectors are conceptually more complex and intro-
duce additional problems due to data sparseness.

What is the e�ect of applying dimensionality reduction techniques

such as SVD to our features?

The e�ect of applying SVD to our feature vectors was less clear. Although SVD did not
help in many cases, models with cluster features bene�ted from it. Maybe the information
that cluster features introduce is better captured by the linear reduction that the SVD
performs. However, we didn't test for multiple values of d, the number of dimensions.
Also, applying a dimensionality reduction technique might not be appropriate in the case
of unknown words where subtle di�erences might be of special relevance.

Where are the limitations of the approaches taken?

There are various limitations to our approaches. One natural problem arises when there
is not enough data to have su�cient context information for a word, an issue that often
occurs for rare words. In these cases, we could try to also consider a word's neighbors
when trying to tag it. Schütze (1995) used distributional information of the left and right
neighbor of a word to incorporate this information into the feature vectors. Another idea
is to include other meaningful information in the set of features. Chapter 5 looks at two
possibly useful feature sets.

Our k-NN approach did not work well on known words. This might be due to the
fact that accuracies on known words were already high. Moreover, there are di�erences
in distribution between unknown words and known words. Most unknown words in BIO
were nouns, proper nouns or adjectives whereas known words had a more diverse tag
distribution. Known words also encompass frequent words with a number of closed-class
tags, for example determiners or prepositions. Treating them the same way as unknown
words doesn't seem to be an appropriate approach here. Another idea was to only classify
known words if their majority tags di�er in the source and target domain. However, we
were not able to �nd a reliable criterion that could reliably predict such cases.

Yet another di�culty is �nding the right weights for each feature. Our k-NN classi�er
was highly sensitive to the set of features we used. Also, �nding a good value for k,
the number of neighbors to be considered, was crucial for good performance. For these
reasons, we use support vector machines (SVMs) for our �nal experiment in Chapter 6.
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SVMs are able to scale features automatically; hence, we expect classi�cation to be more
stable with them.

What are interesting parameters to be included in future experi-

ments?

We found two groups of parameters that had interesting e�ects on performance. Param-
eters in the �rst group, SVD and capitalization, can be thought of as extensions to the
basic approach. Our experiments suggested that capitalization might be an important
factor in some domains. If domain data has highly inconsistent spelling conventions, it
might me better to lowercase all data in a preprocessing step. As mentioned before, the
e�ects of SVD were dependent on the feature sets at hand. Hence, we think that the
e�ects of SVD should be further examined in future experiments.

In the second group are all parameters directly concerning feature vectors, like weight-
ing. Our experiments showed that results were sensitive to the feature transformation
method used; transforming features with a binary function instead of tf-weighting gave
improved results. Another commonly used weighting scheme that should be tested in
future experiments is tf-idf which weights down frequent contexts. We also observed that
representation data plays an important role in the design process. Although we found
better accuracies for feature vectors that were constructed from target-only data, this
result might not transfer to other domains and needs to be studied further. Last is the
set of indicator words used. Our three selection methods yielded quite di�erent results.
Best was the naive selection method which simply chose the top n most frequent tokens
of the corpus. As adding more features also changed results, we need to investigate this
variable further. We compare the naive selection method with full feature vectors using
all indicator words in Chapter 6.
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Chapter 5

Exploring Other Features

We have seen in the previous chapter that distributional features do not help in all cases.
Issues arise when unknown words are relatively rare in the unlabeled data set; which is
reasonable given that unknown words are assumed to be rare in general. Also, words that
have similar contexts but di�erent tags pose a problem. In both cases, we could bene�t
from additional information. Ideally, we would like new features to be complementary to
an existing feature set, so we can bene�t in cases where the old features did not provide
enough information.

Two common sets of features that have been used for part-of-speech tagging in litera-
ture are morphological features (we call them shape features) and orthographical features
(Giménez and Màrquez, 2004). Shape features are supposed to help in situations in which
words are derived using some set of rules. As those rules are often closely coupled with
grammatical behavior, we can use this information to infer a word's part-of-speech tag.
Orthographic features are thought to exploit information about the spelling in a word. In
many languages, we can �nd characters that serve special purposes, like digits. In some
cases, the characters of a word coincide with certain part-of-speech tags, for example a
token consisting just of digits is typically a cardinal number. Using orthographic informa-
tion, we can build additional features that are supposed behave relatively complementary
to shape features.

5.1 Shape Features

Many part-of-speech taggers incorporate morphological information to build robust fea-
tures (Tseng et al., 2005; Miller et al., 2007). Common feature choices include a word's
su�xes or pre�xes. Su�xes are likely to be helpful because regular processes of in�ectional
and derivational morphology do not change in English when going from one domain to
the next. Words ending in -ing are more likely to be gerunds than words that do not etc.
Traditionally, these features are used as input features to a supervised tagging algorithm
which will weight them accordingly.

In this section, we present a new way of leveraging morphological information. First,
we construct morphological feature vectors for each word and then apply our standard
k-NN-classi�er to �nd similar words in the training set. We hope that similarity in this
feature space will extend to similarity on a grammatical (e.g. part-of-speech) level as
well.
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normalized vectors unnormalized vectors

all words |w| ≥ 5 all words |w| ≥ 5

k=1 44.53 43.37 43.95 42.87

k=3 42.64 42.60 40.25 41.22

k=5 46.22 45.69 42.84 44.80

k=10 42.87 48.77 44.38 43.91

k=15 43.91 49.69 44.95 45.38

k=25 43.72 45.34 44.14 44.84

k=50 39.64 42.14 41.56 42.37

Table 5.1: Accuracies on unknown words of BIO-dev using a k-NN classi�er with shape
features. Besides the standard training set WSJ-train, the k-NN algorithm also used a
subset of it corresponding to the �|w| ≥ 5� caption.

5.1.1 Construction

We start by building a list of all su�xes of a given corpus. Each of these su�xes cor-
responds to a dimension in the resulting feature vector. Given a word w, we set each
dimension in its feature vector to one if the corresponding su�x is present in w and to
zero otherwise. Our resulting list of su�xes had 465,046 entries that were created by
adding every possible su�x from the 147,606 words of BIO and WSJ, e.g. Du,l

S,T . Because
the average word length of our vocabulary was about 8.2, a lot of su�xes have to occur
at least two times. These �ndings indicate that we should be able to �nd a su�cient
number of words that share a su�x.

Our experimental setup is similar as in our previous experiments in Chapter 4. Re-
member that for �nding the tag of an input word w, we looked at the tags of the k most
similar words in WSJ-train. We test two modi�cations of the original algorithm that are
designed to account for special properties of the new feature vectors. First, instead of us-
ing the standard cosine similarity, we omit normalizing the vectors. Hence, the resulting
similarity measure is nothing more than the dot product of two vectors. We rationalize
that in order to �nd morphologically similar words, matches with words of greater length
shouldn't be penalized by normalization. The second modi�cation involves restricting the
words in our training set WSJ-train so as to require words to have a minimum length.
We call this step training set �ltering. The motivation for this is that we want to avoid
the su�xes of a word to match stop words.

5.1.2 Results

Table 5.1 presents results for all four possible combinations of our modi�cations. We
can see that using normalized feature vectors usually yielded better results than using
unnormalized ones. Also, leaving out words with less than 5 characters increased accuracy
in the vast majority of cases. We believe that this e�ect is mainly due to the elimination
of words with closed-class tags and rare tags, such as SYM. Best accuracies were found for
values of k around 10 or 15. These values for k are typically lower than the optimal values
of k with distributional feature vectors. This seems reasonable because most su�xes are
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not too frequent in the corpus. Hence, it is a good idea to only consider a relatively
small number of neighbors with morphological feature vectors. Our best model yielded
an accuracy of almost 50%. Keeping in mind the relatively little amount of information
encoded in the feature vectors, we �nd this result to be rather surprising.

The following examples are thought to provide some intuition for tagging with the
help of shape features. Generally, shape features work well when they are characteristic
of certain part-of-speech tags, for example a word ending in -ially will most likely be an
adverb. Here is another example for a word with a relatively indicative su�x:

MorphFeatures.printMostSimilar('Nonepithelial')

Token Similarity Tags in WSJ-train

trial 0.3721 NN 1.00

Trial 0.3721 NNP 0.75 NN 0.25

aerial 0.3397 JJ 1.00

burial 0.3397 NN 1.00

denial 0.3397 NN 1.00

facial 0.3397 JJ 1.00

genial 0.3397 JJ 1.00

jovial 0.3397 JJ 1.00

racial 0.3397 JJ 1.00

Racial 0.3397 JJ 1.00

We can see that the su�x -ial causes the algorithm to retrieve mostly adjectives.
However, there are also cases where a su�x provides less useful information like in the
following example:

MorphFeatures.printMostSimilar('stabilizer')

Token Similarity Tags in WSJ-train

fertilizer 0.6000 NN 1.00

Pfizer 0.5164 NNP 1.00

oxidizer 0.4472 NN 1.00

Nazer 0.4243 NNP 1.00

organizer 0.4216 NN 1.00

Blazer 0.3873 NNP 1.00

buzzer 0.3873 NN 1.00

Frazer 0.3873 NNP 1.00

Glazer 0.3873 NNP 1.00

Sulzer 0.3873 NNP 1.00

Although there are a couple of words with the right tags among the ten most similar
words, the k-NN approach failed to work because WSJ-train contained too many proper
nouns with the same ending. A potential solution could be to exclude capitalized words
from the comparison, if a word isn't capitalized itself.

5.2 Orthographic Features

Information about the characters in a word can be indicative of a number of part-of-
speech classes. For example, capital letters at the beginning of a word often signal proper
nouns. Another simple example is accents that can be typical for foreign words. However,
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feature set BIO-dev WSJ-train

baseline 89.05 98.30

no-svd 89.04 98.29

svd 89.22 98.31

svd-context 89.23 98.36

Table 5.2: Accuracies on the development and training set for varying sets of orthographic
features.

crafting good features that exploit these properties by hand seems daunting because of the
large number of possibilities. We need to come up with a good set of rules that captures
all important concepts, i.e. special characters, symbols and capitalization. Also, most
orthographic features are language speci�c and need to be re-designed when moving on to
a new language. We present an approach here that doesn't su�er from these limitations
as the design of the features is unsupervised.

5.2.1 Constructing Feature Vectors

Our approach to leverage character-based information was similar to the construction of
distributional features. We construct a vector for each word that holds the distribution
of characters in this word. That is, the number of dimensions of a each feature vector
corresponds to the number of di�erent characters found in the corpus. Entry i in the
feature vector is the number of times character ci occurs in a word. The resulting vector
is then length-normalized.

An extension we test is SVD to reduce the number of dimensions. The motivation
behind this the following. We hope that the SVD will �nd dimensions which represent
important concepts by leveraging correlations in the input data. If characters occur
together in words frequently, we assume that there is some underlying concept connecting
those characters. We hope that the SVD is eventually able to uncover concepts like
�alphanumeric characters� or �digits�. We apply SVD to the feature matrix of all words
in the corpus Du,l

S,T . For the experiment carried out here, we set the number of dimensions
to 50.

We test three di�erent feature sets that were used as additional input features to the
discriminative tagger from Chapter 3. We chose to run the full experiment because we
expect orthographical features to convey less meaningful information than the previous
feature sets. The feature sets are

• no-svd: We just use the raw feature vectors that contained the character distribution
of a word.

• svd: These were exactly the dimension-reduced feature vectors described above.

• svd-context: In addition to the svd feature vector of the current word w, we added
the svd feature vectors of the words to the left and right of w.

5.2.2 Results

The results in Table 5.2.2 show that we are able to achieve an improvement of 0.18% over
the baseline using orthographic features. We get the best results for the models which
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use SVD feature vectors. Adding information from the preceding and following token
does only result in a marginal improvement on the development set, while the accuracy
on the training set further increases, possibly indicating over�tting.

Another interesting observation we can make here is that using just unreduced ortho-
graphic features does not help; they rather cause performance to decrease a bit. A reason
for this might be that noise and sparsity in the feature vectors prevent the tagger from
learning stable concepts.

5.3 Discussion

Our experiments showed that there are two sets of features which can provide valuable
information for unknown word tagging. Our word-based k-NN tagger achieved accuracies
around 50% using just shape features. We combine shape features with distributional
features in our �nal experiments in Chapter 6 and examine their robustness across several
target domains. Another important idea that we reuse there is the one of training set
�ltering. Filtering is thought to remove all misleading training instances. Here, we used
a �xed threshold b for cutting o� words of length less than b which may not be optimal
for all domains. We study the e�ect of this parameter b more closely in Chapter 6 as
well.

Orthographic features can increase accuracy in some cases. However, orthographic
information can be highly dependent on the domain. While capitalized words in WSJ
are mostly proper nouns, BIO texts have rather inconsistent spelling conventions. In
such cases, orthographic information might be misleading. Also, the overall performance
gains were small. Hence, we decided to leave out these features for the �nal comparison
of Chapter 6. It would be interesting for future experiments, though, to compare hand-
crafted orthographic features with the features extracted via SVD.
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Chapter 6

Feature Robustness Across Domains

So far, we have been investigating the e�ectiveness of several feature sets in isolation.
We found that both distributional features and shape features carry information that can
help with unknown word tagging. Moreover, our experiments in the previous two chapters
revealed that there are various parameters which can a�ect performance; some of them
are likely to in�uence each other. We have also seen that removing certain instances from
the training set can improve performance in some cases.

In order to come up with recommendations for designing features for domain adapta-
tion in part-of-speech tagging, we present two experiments in Section 6.2 which investigate
all important parameters systematically. In the �rst experiment, we try to �nd default
values for all parameters that are likely to a�ect each other. In the second experiment,
we use the settings from the �rst experiment to test further extensions that are thought
to behave more independently.

There are three major di�erences to the experiments in the previous chapters. First,
we use two di�erent sets of features, distributional and shape features, in combination.
Second, we evaluate our approaches on multiple target domains instead of only one. This
is supposed to both test the cross-domain robustness of our features as well as to prevent
over�tting to one speci�c target domain. Lastly, we use support vector machines for
classi�cation, thereby dismissing our k-NN classi�er. We opted in favor of SVMs because
the underlying statistical framework is more rigorous; moreover, they are able to scale
features themselves which should lead to more robust results.

6.1 Experimental Data and Setup

Our source domain is the Penn Treebank (Marcus et al., 1993) of Wall Street Journal
(WSJ) text as in our previous experiments. This time, however, we evaluate on six
di�erent target domains (TDs). The �rst target domain is the Penn BioTreebank data
set (BIO). The remaining �ve target domains (newsgroups, weblogs, reviews, answers,
emails) are from the SANCL shared task (Petrov and McDonald, 2012).

Like the experiments in Chapter 4 and 5, we adopt a simple approach of word classi�-
cation. Again, the objects to be classi�ed are words and the classes are the parts-of-speech
of the source domain. The gold label of a word in training is the majority tag in the
source domain. A prediction for an unknown word is then made by computing its feature
representation and applying the learned classi�er.

We adopt word classi�cation instead of the more common sequence labeling setup
because word classi�cation is much more e�cient to train and allows us to run a large
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number of experiments e�ciently. Our experiments demonstrate that word classi�cation
accuracies are comparable with or higher than sequence labeling in part-of-speech tagging
for unknown words.

We use LIBSVM (Chang and Lin, 2011) to train
(
k
2

)
one-vs-one classi�ers on the

training set, where k is the number of part-of-speech tags in the training set. The SVMs
were trained with untuned default parameters; in particular, c = 1. For sequence classi-
�cation, we use CRFSuite (Okazaki, 2007), a Conditional Random Field (CRF) toolkit.
Apart from the word features described below, we use the base feature set of Huang and
Yates (2009) for CRFs, including features for state, emission and transition probabilities.
CRFs are trained until convergence with a limit of 300 training iterations.

6.1.1 Features

Two sources of information have shown to be valuable in our experiments in Chapter 4
and 5 when predicting the part-of-speech of an unknown word in an unsupervised setting:
the word itself (sequence of letters, shape etc) and the context(s) in which it occurs.
Motivated by these results, we create a feature representation for each word that has three
components: left context information, right context information and shape information.
We will refer to left/right context information as distributional information. Let f be the
function that maps a word w to its (full) feature vector. We then de�ne f as follows:

f(w) =

f left(w)
f right(w)
f shape(w)


Based on the intuition that each of the three sources of information is equally important,
each of the three component vectors is normalized to unit length.

For both distributional and shape features, we have a choice of either using all possible
features or a subset consisting of the most frequent features. We directly compare these
two possibilities, using recommended values from the literature for the subset condition:
the 250 most frequent features (indicator words) for distributional vectors (Schütze, 1995)
and the 100 most frequent features (su�xes) for shape vectors (Müller et al., 2012). Each
component vector has an additional binary feature that is set to 1 if the rest of the vector
is zero, and 0 otherwise.

Distributional features

Like in our experiments in Chapter 4, the ith entry xi of f left(w) is the number of times
that the indicator word ti occurs immediately to the left of w:

xi = freq (bigram(ti, w))

where ti is the word with frequency rank i in the corpus. f right(w) is de�ned analogously.
Many di�erent ways of de�ning and transforming distributional features have been

proposed in the literature. We systematically investigate the following variables that our
previous experiments proved to be important:

(i) weighting

(ii) dimensionality reduction

(iii) selection of data that distributional vectors are based on

59



We experiment with three di�erent weighting functions that transform non-zero counts
as follows.

(i) tf: wtf(xi) = 1 + log(xi)

(ii) tf-idf: wtf-idf(xi) = (N/ log dfti)(1 + log(x)) (where N is the total number of words
and dfti the number of words that indicator word ti is a non-zero feature of)

(iii) binary: wbin(xi) = 1

Tf weighting gives lower weight to frequent terms to prevent them from dominating
feature vector comparisons. The motivation for binary weighting is that the counts might
not be relevant at all when computing similarities � the key information is whether an
indicator has been observed or not. The intuition behind idf weighting is that indicators
that occur with a large number of words should be downweighted because they are less
informative than those that occur with few.

Transformation operations like dimensionality reduction (Deerwester et al., 1990) and
autoencoding (Hinton et al., 2006) can be e�ective in improving generalization in machine
learning, in particular in nonstandard settings like domain adaptation where a labeled
random sample of the target domain is not available. We test singular value decom-
position (SVD) here because it has been used in prior work on part-of-speech tagging
(Huang and Yates, 2009). We apply SVD to the matrix of all feature vectors and keep
the dimensions corresponding to the d = 100 largest singular values.

We compute distributional vectors either on target data only (i.e., on D
u,l
T ) or on the

union of source and target data (i.e., Du,l
S,T ). We compare these two alternatives and show

in our experiments that source distributional information does not consistently improve
performance.

Shape features

For a selected su�x s, we simply set the dimension corresponding to s in f shape(w) to 1
if w ends in s and to 0 otherwise. We either select all su�xes or the top 100, depending
on the experiment.

In addition to su�xes, we investigate two other representational variables related
to shape that we found to have an e�ect on performance: case and digits. For case,
we compare keeping case information as is with converting all uppercase characters to
lowercase characters. For digits, we compare keeping digits as is with converting all digits
to the digit 0; e.g., $1,643 is converted to $1,000. We call these two transformations case
normalization and digit normalization.

6.1.2 Training Set Filtering

The key challenge in domain adaptation is that the distributions of source and target
are di�erent. The experiments in Chapter 5 suggested a new approach that could make
the distributions more similar: the elimination of all short words from the training set.
We call this (training set) �ltering. The reason this is promising is that longer words are
more likely to be examples of productive linguistic processes than short words � even if
this is only a statistical tendency with many exceptions. We show below that training on
long words improves accuracy by several percentage points on one target domain.

60



6.2 Experimental Results

We train
(
k
2

)
binary SVM classi�ers on the feature representations we just de�ned. The

training set consists of all words that occur in the WSJ training set (in condition D
u,l
S,T )

or all words that occur in both WSJ and D
u,l
T (in condition D

u,l
T ). An unknown word is

classi�ed by building its feature vector, running the classi�ers on it and then assigning it
to the part-of-speech class returned by the LIBSVM one-vs-one setup.

We divide our experiments into two parts. In the basic experiment, we investigate
four parameters of the model that are likely to interact with each other: dimensionality
of shape vectors (ALL vs. 100 most frequent su�xes), dimensionality of distributional
vectors (ALL vs. 250 most frequent indicator words), use of dimensionality reduction
(SVD: yes or no) and weighting of distributional vectors (bin, tf, tf-idf).

In the extended experiment, we then investigate the e�ect of other parameters on
the best performing model from the basic experiment: distributional vectors based on
D
u,l
S,T vs Du,l

T , case normalization, digit normalization, completely omitting either shape
or distributional information and training set �ltering. For the basic experiment, these
parameters are set to the following values: distributional vectors are computed on D

u,l
T ,

case normalization is used, digit normalization is not used, and the training set is not
�ltered (i.e., all words are included in the training set).

6.2.1 Basic Experiment

Table 6.1 gives the results of the basic experiment: the 24 possible combinations of number
of shape features, number of distributional features, use of dimensionality reduction and
weighting scheme. In each column, the best three accuracies are underlined and the best
accuracy is doubly underlined; the results signi�cantly di�erent from the best result are
marked with a dagger.1

The goal of the basic experiment is to exhaustively investigate combinations of the four
parameters that we suspect to have the strongest interaction with each other and then
�nd a parameter combination that is a good basis for testing the remaining parameters
in the extended experiment. The guiding principle in this investigation is that when in
doubt, we select the simpler or default setting for the extended experiment in order to
make as few assumptions as possible.

For the number of shape features, ALL generally does better than 100. Five target
domains have their best result for ALL: reviews, blog, answers, email (line 14) and BIO
(line 24). The exception is grp (best result on line 3). The reason seems to be that
the newsgroups target domain contains a larger number of unknown words with su�xes
that do not support part-of-speech generalization well. E.g., the su�xes -ding, -eding,
-eeding, -breeding of a newsgroup name like �alt.animals.horses.breeding� (mistagged as
VBG, gold tag: NN) are misleading. Despite these problems, the best 100 result for
newsgroups is not signi�cantly better than the best ALL result (lines 3 vs. 20). This
argues for using the setting ALL for the extended experiment.

For a number of distributional features, there is a similar tendency for the WEB target
domains (grp, reviews, blog, answers, email) to do slightly better for fewer features (250)
than ALL features. However, BIO clearly bene�ts from using the full dimensionality
of the distributional feature space: all 250 results are statistically worse than the best

1p < .05, 2-sample test for equality of proportions with continuity correction. We use the same test

and level for all signi�cance results in this chapter.
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shape dist svd weight grp reviews blog answers email BIO
1 100 250 n bin 56.88 63.92 67.13† 52.14 63.30 65.64†

2 tf 56.50 65.67 70.33 52.47 64.37 63.14†

3 tf-idf 57.14 65.83 70.23 51.86† 64.14 64.94†

4 y bin 52.52† 54.68† 62.74† 47.81† 60.08† 70.29†

5 tf 54.42 58.18† 68.01† 48.14† 61.70† 69.70†

6 tf-idf 54.73 57.44† 68.75† 48.93† 61.38† 70.95†

7 ALL n bin 55.98 63.60 68.70† 52.14 62.87 68.92†

8 tf 56.58 64.67 70.82 51.02† 63.52 65.72†

9 tf-idf 56.15 63.50 68.85† 50.09† 61.87† 68.61†

10 y bin 52.05† 52.82† 60.67† 41.95† 59.82† 68.57†

11 tf 53.65† 57.23† 66.24† 43.02† 61.22† 69.82†

12 tf-idf 54.21† 55.47† 64.17† 42.50† 58.52† 69.11†

13 ALL 250 n bin 56.02 65.04 70.77 54.05 64.37 68.45†

14 tf 55.59 66.05 72.45 55.03 64.43 64.82†

15 tf-idf 55.93 65.99 72.10 54.98 63.98 65.87†

16 y bin 52.48† 56.16† 65.50† 43.48† 59.79† 70.64†

17 tf 53.26† 59.46† 68.95† 48.51† 60.60† 68.68†

18 tf-idf 54.16† 59.56† 68.70† 44.18† 60.66† 69.35†

19 ALL n bin 56.06 63.55 68.85† 54.38 59.85† 66.22†

20 tf 56.62 64.61 71.86 54.28 61.05† 65.64†

21 tf-idf 56.15 63.07 69.74 52.65 59.95† 65.25†

22 y bin 52.35† 55.74† 62.89† 41.95† 58.68† 71.07†

23 tf 53.99† 59.83† 68.16† 43.62† 60.37† 69.93†

24 tf-idf 54.81 58.98† 68.65† 41.95† 58.68† 74.39

Table 6.1: Accuracy of unknown word classi�cation in the basic experiment. The perfor-
mance of the best (three best) parameter combinations per column are doubly (singly)
underlined. A dagger indicates a result signi�cantly worse than the column's best result.

62



ALL result and the gap to the best 250 result is large (line 24 vs line 6, a di�erence of
74.39−70.95 = 3.44). The gap between best 250 result and best ALL result is smaller for
the other �ve target domains (although only slightly smaller for email) and for each of
the �ve target domains there is an ALL result that is statistically indistinguishable from
the best 250 result. For this reason, we choose dist=ALL for the extended experiment.
Simply using ALL indicator words also has the advantage of eliminating the need to
optimize an additional parameter, the number of indicator words selected.

In a way similar to distributional features, the behaviors of WEB and BIO target
domains also diverge for dimensionality reduction. The top three results for the WEB
target domains are always achieved without SVD (lines 1, 3, 13, 14, 15, 19, 20), the top
three results for the BIO target domain are all SVD results (lines 6, 22, 24). We opt
for the simpler option (no SVD) for the extended experiment in the absence of strong
consistent cross-target-domain evidence for the need of dimensionality reduction. We will
also see in the extended experiment that we can recover and surpass the best BIO result
(74.39, line 24) by optimizing other parameters.

The results on weighting argue against using binary weighting: the six best results
in the Table all use tf weighting, either by itself or in conjunction with idf (lines 3, 14,
24). Apparently, the distinction between lower and higher frequencies of indicator word
occurrences is bene�cial for unknown word classi�cation. Whether tf or tf-idf is better, is
less clear. For two target domains, tf-idf yields the best result (grp on line 3, BIO on line
24), for four target domains tf (reviews, blog, answers, email: line 14). The di�erence
between best tf-idf and best tf result is not signi�cant for grp and we will show below
that we can get tf results for BIO that are better than the best tf-idf result of 74.39 in
Table 6.1. For this reason, we choose the setting tf for the extended experiment. Again,
we are selecting the simpler of two options (tf vs tf-idf) when faced with somewhat mixed
evidence.

In summary, based on the results of the base experiment, we choose the following
settings for the extended experiment: shape = ALL, dist = ALL, svd = n, weight = tf.
For shape, dist, and svd this is the simpler of two possible settings. For weighting, we
choose tf (instead of the simpler binary option) because of clear evidence that some form
of frequency weighting is bene�cial across target domains. These settings correspond to
line 20 in Table 6.1. This line is repeated as the baseline on line 1 in Table 6.2.

6.2.2 Extended Experiment

In the extended experiment, we investigate the e�ect of additional parameters. Results
are shown in Table 6.2. Underlining conventions and statistical test setup are identical
to Table 6.1. The CRF baseline used a parameter setting similar to word classi�cation
with two exceptions: we set dist=250 because we were not able to run dist=ALL due to
memory limitations; and we convert all features to binary due to space restrictions.

Using sequence classi�cation instead of word classi�cation for unknown word predic-
tion does not consistently improve results (line 2). For grp and answers, the CRF achieves
the best overall accuracy, but the di�erence to the baseline is not signi�cant. For the
other four target domains, the best result occurs in a di�erent parameter setting. For
BIO, a large drop in performance occurs (from 65.64 to 56.62), perhaps suggesting that
word classi�cation is more robust than sequence classi�cation for unknown words.

Calculating distributional vectors on both source and target (as opposed to target
only) has similarly inconsistent e�ects (line 3). Performance compared to the baseline
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grp reviews blog answers email BIO
1 baseline 56.62 64.61 71.86 54.28 61.05† 65.64†

2 CRF 58.18 64.51 70.48 56.52 63.10 56.62†

3 D
u,l
S,T 55.50 64.13 72.50 55.31 62.91 65.17†

4 no case NRM 52.83† 64.45 70.68 52.00† 59.27† 67.51†

5 digit NRM 56.80 64.61 72.01 54.05 63.88 68.61†

6 shape only, ALL 48.77† 45.32† 56.58† 39.90† 49.19† 52.52†

7 shape only, 100 47.69† 39.16† 51.90† 36.17† 47.24† 50.14†

8 dist only, ALL 52.05† 63.34 68.21† 47.07† 53.06† 73.41†

9 dist only, 250 51.49† 64.13 66.34† 45.76† 54.13† 72.86†

10 |w| > 1 56.58 64.67 71.81 54.84 60.83† 65.99†

11 |w| > 2 57.06 64.61 71.56 54.38 63.17 68.61†

12 |w| > 3 55.33 60.89† 69.69 48.79† 62.39 73.84†

13 |w| > 4 52.87† 60.10† 67.67† 47.53† 53.06† 77.66
14 |w| > 5 53.09† 59.35† 66.58† 44.37† 51.69† 77.66
15 |w| > 6 52.27† 58.55† 66.93† 43.25† 49.74† 77.74
16 |w| > 7 51.96† 56.64† 63.18† 40.46† 47.17† 78.41
17 |w| > 8 49.59† 56.16† 58.26† 39.06† 44.31† 79.77
18 |w| > 9 46.87† 52.82† 55.54† 33.94† 42.69† 74.58†

19 |w| > 10 43.42† 51.22† 52.54† 33.33† 39.24† 76.10†

Table 6.2: Extended experiment. The e�ect of various parameter changes on accuracy of
unknown word classi�cation. �NRM� = �normalization.

decreases for four target domains and increases for two. Based on this evidence, source-
data distributional information is not robust cross-target-domain and should probably
not be used.

Omitting case normalization (line 4) consistently hurts for WEB target domains, but
helps for BIO. In other words, for BIO it is better not to case-normalize words. This
result is plausible because case conventions vary considerably in di�erent target domains.
Whether keeping case distinctions is helpful or not depends on how similar source and
target are in this respect and is therefore not stable in its e�ect across target domains.

Digit normalization (line 5) has a minor positive or negative e�ect on the �rst four
target domains, but increases accuracy by more than 2% in the last two, email and
BIO. The makeup of the WSJ tag set makes it unlikely that di�erences between digits
could result in part-of-speech di�erences that are predictable in unsupervised domain
adaptation. This argues for using digit normalization when WSJ is the source domain.

The clearest result of the Table is that distributional information is necessary for good
performance. Performance compared to the baseline drops in all cases and all accuracies
on lines 6&7 are signi�cantly worse than the best result. Moreover, distributional features
seem to encode more meaningful information for POS tagging than shape features; results
on lines 6&7 are consistently lower than results on lines 8&9.

The evaluation is similarly consistent for shape information in the WEB target do-
mains (lines 8 and 9). All accuracies are below the baseline, with some of the drops
being quite large, e.g., about 7% for answers and email. Surprisingly, omitting shape
information results in a large increase of accuracy for the BIO target domain. We will
further investigate this puzzling result below.

Finally, training set �ltering � only training the classi�er on words above a threshold
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length k � is bene�cial for all target domains except for blog; and even for blog, moderate
�ltering has only a negligible negative e�ect on accuracy (lines 10�11). In principle, the
idea of restricting training to longer words because they are most likely to be representa-
tive of unknown words seems to be a good one. However, the e�ect of �ltering is sensitive
to the threshold length k. We leave it to future work to �nd properties of the target
domain that could be used as diagnostics for �nding a good value for k.

The motivation of splitting the experiments into basic experiment and extended ex-
periments was to �nd a stable point in parameter space for the parameters that are most
likely to interact and then look at the e�ect of the remaining parameters using this stable
point as starting point. In Table 6.2, we see that for the WEB target domains, all varia-
tions of experimental conditions either hurt performance or produce only small positive
changes in accuracy in comparison to the baseline. This is evidence that our strategy of
splitting experiments into basic and extended was sound for these target domains.

BIO
1 baseline 73.41†

3 D
u,l
S,T 67.94†

4 no case NRM 72.39†

5 digit NRM 74.15†

10 |w| > 1 73.96†

11 |w| > 2 75.24†

12 |w| > 3 81.30†

13 |w| > 4 81.88†

14 |w| > 5 82.98
15 |w| > 6 82.47
16 |w| > 7 84.46
17 |w| > 8 83.09
18 |w| > 9 79.03†

19 |w| > 10 80.52†

Table 6.3: Extended experiment for BIO without shape information. Dist=ALL.

However, the situation for BIO is di�erent. Two parameter changes result in large
performance gains for BIO: omitting shape information (increase by 8%, lines 1 vs 8) and
�ltering out short training words (increase by 14%, lines 1 vs 17). This indicates that the
base con�guration of the extended experiment is not a good starting point for exploring
parameter variation for BIO.

For this reason, we repeat parts of the extended experiment without any shape in-
formation. As we would expect, we obtain results for WEB target domains that are
consistently worse than those in Table 6.2 (not shown), with one exception: a slight in-
crease for |w| > 8 in email. However, the results for BIO are much improved as shown in
Table 6.3.

We conclude that shape information is not robust across target domains in domain
adaptation. Shape information is helpful for the WEB target domains, but it decreases
performance by about 10% for BIO. We will analyze the reason for this discrepancy in
the next section.

As a last set of experiments, we run the optimal parameter combination (|w| > 7 in
Table 6.3, 84.46) on the BIO test set and obtained an accuracy of 88.13. This is more
than 10% higher than the best number for unknown word prediction on BIO published up
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to this point (76.3 by Huang and Yates (2010)). For the experimental conditions with the
best WEB results in Table 6.2 (double underlining), we get the following test accuracies:
grp=56.66, reviews=67.79, blog=64.80, answers=66.51, email=65.51. These are either
better than dev or slightly worse except for blog; the blog result can be explained by the
fact that the blog base model (line 1) also is a lot worse on test than on dev (66.08 vs
71.86). We interpret these test set results as indicating that we did not over�t to the
development set in our experiments.

6.2.3 Summary

We have investigated the cross-target-domain robustness of a number of con�gurational
choices in domain adaptation for POS tagging. Based on our results, the following choices
are relatively robust across target domains: using ALL indicator words (as opposed
to a subset) for distributional features, no dimensionality reduction, tf weighting, digit
normalization, target-only distributional features, and formalization of the problem of
unknown word prediction as word classi�cation (as opposed to sequence classi�cation).

We found other choices to be dependent on the target domain, in particular the use
of shape features, case normalization and training set �ltering.

The most important lesson from these results is that many aspects of domain adap-
tation are highly dependent on the target domain. Given our results, it is unlikely that
a single domain-adaptation setup will work in general. Instead, criteria need to be de-
veloped that allow us to predict which features and methods work for di�erent target
domains.

6.3 Analysis and Discussion

The biggest target-domain di�erences we found in the experiments are those between
WEB and BIO: they behave di�erently with respect to dimensionality reduction (bad
for WEB, good for BIO), shape information (good for WEB, bad for BIO) and sequence
classi�cation (neutral for WEB, bad for BIO).

One hypothesis that could explain these results is that the di�erence between BIO and
WSJ is larger than the di�erence between WEB and WSJ. For example, dimensionality
reduction creates more generalized representations, which may be appropriate for target
domains with large source-target di�erences like BIO; andWSJ su�xes may not be helpful
for BIO because biomedical terminology has su�xes speci�c to scienti�c vocabulary and
is rare in newspaper text. In contrast, WEB su�xes may not diverge as much from WSJ
since both are �non-technical� genres.

TD tags su�xes transitions
grp .009 .275 .068
reviews .057 .352 .212
blog .009 .295 .074
answers .048 .337 .158
email .036 .273 .139
BIO .096 .496 .385

Table 6.4: Jensen-Shannon divergences between WSJ and target domains
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grp reviews blog answers email BIO
1 baseline 32.77 38.89 43.48 30.52 34.26 40.06
2 CRF 38.74 42.71 46.63 38.08 36.21 39.03

3 D
u,l
S,T 32.87 38.55 44.75 33.19 35.30 41.42

4 no case NRM 27.08 39.82 39.54 25.80 27.33 39.98
5 digit NRM 32.80 39.09 43.68 30.47 34.69 37.72
6 shape only, ALL 18.02 21.25 24.61 16.25 16.37 26.55
8 dist only, ALL 27.70 38.39 34.38 22.11 29.71 37.01
10 |w| > 1 32.73 39.48 43.54 30.60 34.20 35.32
11 |w| > 2 33.33 37.38 43.52 30.02 34.66 35.05
13 |w| > 4 26.37 28.92 37.68 22.33 24.14 37.55

Table 6.5: Selected conditions of the extended experiment (Table 6.2), evaluated using
macroaveraged F1

One way to assess the di�erence between two domains is to compare various charac-
teristic probability distributions. The distance of two domains under a representation R
has been shown to be important for domain adaptation (Ben-David et al., 2007). Simi-
lar to Huang and Yates (2010), we use Jensen-Shannon (JS) divergence as a measure of
divergence. Table 6.4 shows the JS divergences between WSJ and the six target domains
for di�erent distributions.

The results con�rm our hypothesis. BIO is indeed more di�erent from WSJ than
the other target domains. Tag distribution divergence is 0.096 for BIO and ranges from
0.009 to 0.057 for WEB. Su�x distribution divergence of BIO is 0.496, almost 50% more
than reviews, the WEB target domain with highest su�x divergence. The underlying
probability distributions here are P (su�x|t), where t ∈ {NN, NNP, JJ} � most unknown
words are in these three classes and accuracy is therefore mostly a measure of accuracy
on NN, NNP and JJ. Finally, transition probability divergence of BIO for NN, NNP, JJ
is also much larger than for WEB. The distribution investigated here is P (ti−1|ti); we
compute the divergence between, say, BIO and WSJ for the three tags and then average
the three divergences.

We do not have space to show detailed results on all tags, but the divergences are
more similar for closed class POS. E.g., there is virtually no di�erence in transition
probability divergence for modals between BIO and WEB. This observation prompted us
to investigate whether some target-domain di�erences might depend on the evaluation
measure used. Accuracy � a type of microaveraging � is mostly an evaluation of the classes
that are frequent for unknown words: NN, NNP, JJ. If most of the higher divergence of
BIO is caused by these categories, then a macroaveraged evaluation, which gives equal
weight to each part-of-speech tag, should show less divergence.

This is indeed the case as the macroaveraged results in Table 6.3 show. These results
are more consistent across target domains than those evaluated with accuracy. Removing
shape and distributional information now hurts performance for all target domains (lines
6&8). WEB and BIO behave more similarly with respect to training set �ltering: the
large outliers for BIO we obtained in the accuracy evaluation are gone. Source domain
distributional information has a more bene�cial e�ect on F1 than on accuracy, probably
because the classi�cation of parts-of-speech that are more stable across target domains
like verbs and adverbs bene�ts from source domain information. The CRF produces
the best result for all WEB target domains. For less frequent POS classes (those that
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dominate the macroaveraged measure, especially verbal POS), sequence information and
�long-distance� context is probably more stable and can be exploited better than for NN,
NNP and JJ. However, there is still a drop-o� from the baseline for BIO; we attribute
this to the larger di�erences in the transition probabilities for BIO vs WEB (Table 6.4);
the sequence classi�er is at a disadvantage for BIO, even on a macroaveraged measure,
because the transition probabilities change a lot.

It is important to note that even though F1 results are more consistent for domain
adaptation, accuracy is the appropriate measure to use for POS tagging: the usefulness
of a tagger to downstream components in the processing pipeline is better assessed by
accuracy than by F1.
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Chapter 7

Related Work

Most work on part-of-speech tagging takes a standard supervised approach and assumes
that source and target are the same (e.g., Toutanova et al., 2003). At the other end of
the spectrum is a completely unsupervised setting (e.g., Goldwater and Gri�ths, 2007).
Other researchers have addressed the task of adapting a known tagging dictionary to a
target domain (e.g., Merialdo, 1994; Smith and Eisner, 2005), which we view as comple-
mentary to methods for words about whose tags nothing is known. Subramanya et al.
(2010) perform domain adaptation without using any unlabeled target-domain text. All
of these applications scenarios are reasonable; however, it can be argued that the scenario
we address is � apart from standard supervised learning � perhaps more typical of what
occurs in practice: there is labeled source domain text available for training; there is
plenty of unlabeled target-domain text available; and there is a substantial number of
target-domain words that do not occur in the source domain. Frequently, researchers
make the assumption that a small labeled target text has been created (e.g., Daumé III,
2007); in the process, a small number of unknown words may also be labeled, but this is
not an alternative to handling unknown words in general.

Work by Das and Petrov (2011) is also a form of domain adaptation for part-of-
speech tagging, using universal POS tag sets and parallel corpora. It is likely that best
performance for target domains without training data can be achieved by combining our
approach with a multilingual approach if appropriate parallel data is available. Ganchev
et al. (2012) use another source of additional information, search logs. Again, it should
be possible to integrate search-log based features into our framework.

Blitzer et al. (2006) learn correspondences between features in source and target. Our
results suggest that completely ignoring source features (and only using source labels)
may be a more robust approach for unknown words. Also, their tagging results are only
for one target domain, namely BIO. It would be interesting to see how robust his method
behaves across di�erent domains.

Cholakov et al. (2011) point out that improving tagging accuracy does not necessarily
improve the performance of downstream elements of the processing pipeline. However,
improved unknown word classi�cation will have a positive impact on most downstream
components.

Choi and Palmer (2012) present a more practical approach to unsupervised domain
adaptation. They train two separate models on the available data, a generalized one and
a domain-speci�c one. The generalized model omits words that are rare in the input data
and occur only within certain sections or documents whereas the domain-speci�c one
uses almost all words. Since their approach is not conditioned on the underlying tagging
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model, it would be interesting to integrate their approach with ours.
Van Asch and Daelemans (2010) �nd linear correlation between tagging performance

and similarity of domains. They compare several similarity metrics between the unigram
models of various domains. Although most metrics show a linear relation between tagging
accuracy and similarity, they obtain the most consistent results for the Rényi divergence.
We found similar behavior using Jensen Shannon divergence as metric. However, we
computed divergence on probability distributions that made use of labeled data in the
target domain. It would be interesting to see whether unlabeled data would su�ce to
predict tagging performance in our case as well.

Huang and Yates (2009) evaluate CRFs with distributional features. Besides raw
feature vectors, they examine lower dimensional feature representations using SVD or a
special HMM-based method. In our experiments, we did not �nd an advantage to using
SVD.

Huang and Yates (2010) address the problem of predicting part-of-speech of unknown
words using sequence labeling. Huang and Yates (2012) extend this work by inducing
latent states that are shown to improve prediction. As we argued above, a word classi�-
cation approach has several advantages compared to a sequence labeling approach. Since
latent sequence states can be viewed as a form of dimensionality reduction, it would be
interesting to compare them to the non-sequence-based dimensionality reduction (SVD)
we have investigated in our experiments.

Zhang and Kordoni (2006) use a classi�cation approach for predicting part-of-speech
for in-domain unknown words. They achieve an accuracy of 61.3%. Due to di�erences in
the data sets used, these results are not directly comparable with ours.

Nakagawa et al. (2001) also apply support vector machines to unknown word handling
in POS tagging. Their task was to predict an unknown word's tag in context. The set
of features they used comprised a word's neighboring tags and words as well as pre�xes
and su�xes of up to length 4. They found improved accuracies for their SVM approach
compared to a traditional HMM-based tagger. Another interesting result of their work
is that they found sequence information (e.g. the POS tags and lexical identities of
a word's neighbors) to provide the least information for unknown word tagging. The
largest increase in performance they observed was due to orthographic and morphological
information. This further motivates our approach of �nding robust features that do not
make use of sequence information. It should also be noted that our classi�cation task
di�ered in one important aspect from theirs; we tried predict a word's majority tag using
global information, thereby completely neglecting a word's local context.

Miller et al. (2007) and Cucerzan and Yarowsky (2000) have both investigated the use
of su�xes for domain adaptation. Miller et al. characterized words by a list of hand-built
su�x classes that they appear in. They then used a 5-NN classi�er along with a custom
similarity measure to �nd initial lexical probabilities for all words. These probabilities
were adjusted by EM training of a HMM model in a �nal step. We also ran preliminary
experiments with k-NN, but found that one-vs-one SVM performs better.

Cucerzan and Yarowsky (2000) use distribution as a backo� strategy if no helpful su�x
information is available. They address unknown word prediction for new languages. We
have found that for within-language prediction, distributional information is generally
more robust than shape information, including su�xes.

Finally, we introduce a new simple and e�ective domain-adaptation technique � train-
ing set �ltering. For domain adaptation on WSJ→BIO, we report accuracies that are
10% higher for unknown words than previous work, largely due to this new technique.
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Chapter 8

Conclusions and Future Work

In this work, we have investigated the robustness of domain-adaptation representations
and methods for part-of-speech tagging and shown that there are large di�erences in
robustness across target domains that need to be taken into account when performing
domain adaptation for a target domain. We found that the divergence between source and
target is an important predictor of what elements of domain adaptation will work; e.g.,
higher divergence makes it more likely that generalization mechanisms like dimensionality
reduction will be bene�cial.

In future work, we would like to develop statistical measures of source-target diver-
gence that accurately predict whether a feature type or domain-adaptation technique
supports high-performance domain adaptation for a particular target domain. Similar to
Van Asch and Daelemans (2010), we want to solely use unlabeled data for estimating the
performance of certain feature sets. One idea to do so is bootstrapping on features. We
annotate data in the target domain with an initial model and then use this annotated
data to evaluate the e�ectiveness of the features at hand. Finally, we use the features
that proved to be most consistent with both domains. Another approach could apply
an unsupervised tagger to both the source and target domain. Features that correlate
with the classes chosen by the unsupervised tagger are then assumed to be good features
for domain adaptation as well. The advantage to this approach is that it doesn't need
labeled data in the source domain; hence, we can incorporate larger amounts of data into
the training process.

Another interesting question to be examined is how hand-built feature sets compare
to automatically designed features. As hand-built features are usually tailored speci�c
datasets, we believe that �nding features in an unsupervised way might be more e�ective
in domain adaptation. Morphological features, for example, often contain a list of lin-
guistically motivated su�xes and pre�xes. Our shape features, in contrast, simply used
all su�xes occurring in a corpus. Our unsupervised approach to leveraging orthographic
information also showed promising results. Hence, we think it would be interesting to test
the e�ectiveness of unsupervised features vs hand-encoded features in future experiments.

A last possible research direction could try to build on the concept of �ltering. We
found that excluding short words from the training set helps in some cases. Filtering is
based on the observation that word length can also be an important clue for determining
a word's POS tag (Cozens, 1998). For example, short words will have a higher probability
for being a symbol, determiner or preposition. Most previous work used word length as
an additional input feature, but it might well be the case that features change with word
length as well. Non-alphanumeric characters, for instance, are usually more frequent with
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short words. In this case, it would be better to train separate classi�ers for di�erent word
lengths or to have separate features for words of di�erent lengths.
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