
Master Project Nr. 3395






Karim Eissa













Informatin Technology (INFOTECH)

Prof. Dr. Martin Radetzki

Dipl.-Ing Bastian Haetzer

September 21, 2012

March 23, 2013

B.5.1, B.7.1, B.8.2, C.1.1, C.1.3, C.5.3

Institut für Techniche Informatik

Universität Stuttgart
Pfaffenwaldring 5B
D - 70569 Stuttgart

Embedded Systems Department

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.



Stuttgart, den 21. März 2013

Abstract

Transaction Level Modeling (TLM) has recently become a popular approach for

modeling contemporary Systems-on-Chip (SoCs) on a higher abstraction level than

Register Transfer Level (RTL). In this thesis a multi-core system based on the

Xilinx MicroBlaze micro-processor is modeled at RTL and TLM abstraction levels

in SystemC. Both implemented models have cycle accurate timing, and are veri-

fied against the reference VHDL model using a VHDL / SystemC mixed-language

simulation with ModelSim. Finally, performance measurements are carried out to

evaluate simulation speedup at the transaction level. Modeling of the MicroBlaze

processor is based on a MicroBlaze Instruction Set Simulator (ISS) from SoCLib.

A wrapper is therefore implemented to provide communication interfaces between

the processor and the rest of the system, as well as control the timing of the ISS op-

eration to reach cycle accurate models. Furthermore, a local memory module based

on Block Random Access Memories (BRAMs) is modeled to simulate a complete

system consisting of a processor and a local memory.

iii

Contents

Abstract iii

List of Figures vi

List of Abbreviations vii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 1

1.3 Thesis Organization . 2

2 Background 3

2.1 Register Transfer Level (RTL) . 3

2.2 Transaction Level Modeling (TLM) 3

2.2.1 Cycle Accurate TLM . 3

2.3 SystemC . 4

2.3.1 Channels, Ports and Processes 4

2.3.2 Data Types . 5

2.3.3 Performance Measurements 6

2.4 Software Tools . 6

2.4.1 Modelsim . 6

2.4.2 Xilinx Platform Studio (XPS) 7

2.4.3 Xilinx Software Development Kit (SDK) 7

2.5 Xilinx MicroBlaze Micro-Processor 7

2.5.1 MicroBlaze Processor . 8

2.5.2 Local Memory Bus (LMB) 11

2.5.3 Dual Port Block RAM (BRAM) 12

2.6 SoCLib Instruction Set Simulator . 12

2.6.1 Available Methods . 12

2.6.2 Instruction Set Simulator Basic Untimed Usage 13

3 Literature Review 15

3.1 ISS Usage . 15

3.2 RTL to TLM Transformation Techniques 17

3.3 Testing . 18

3.3.1 General Processor Testing . 18

3.3.2 TLM Verification . 19

iv

Contents v

4 Design 21

4.1 MicroBlaze System . 21

4.2 Data Types . 22

4.3 RTL Modeling . 23

4.3.1 RTL ISS Wrapper Module . 23

4.3.2 RTL Memory Module . 26

4.3.3 Multiple BRAMs . 27

4.4 TLM Modeling . 28

4.4.1 TLM Memory Module . 30

4.4.2 Local Memory Bus Interface (LMB if) 32

5 Implementation 33

5.1 RTL ISS Wrapper . 33

5.1.1 Register Modeling . 33

5.1.2 ISS Basic Timed Implementation 34

5.1.3 Adding Complexities . 37

5.2 RTL Memory Module . 48

5.2.1 BRAM Initialization . 49

5.3 TLM Memory Module . 50

5.4 TLM ISS Wrapper . 51

5.4.1 Instruction Fetch . 51

5.4.2 Memory Access . 52

5.4.3 Write Back . 53

5.5 Interface Adapters . 53

5.5.1 RTL-TLM Adapter . 53

5.5.2 TLM-RTL Adapter . 54

5.5.3 TLM-TLM Adapter . 55

6 Results 57

6.1 Testing . 57

6.1.1 RTL Vs. VHDL Testing . 58

6.1.2 RTL Vs. TLM Testing . 59

6.2 Performance Measurements . 59

7 Conclusion 61

7.1 Summary . 61

7.2 Outlook . 61

A Testing Applications 62

Bibliography 67

List of Figures

1.1 The simplified MicroBlaze micro-processor 2

2.1 Comparison between RTL , Untimed, CX and CA TLM timings . . 4

2.2 The MicroBlaze processor [10] . 7

2.3 The MicroBlaze micro-processor system [11] 8

2.4 Type A and Type B instructions [10] 9

2.5 Basic structure of the pipeline . 9

3.1 Triggered co-simulation approach [18] 16

3.2 I/O transformation rules [25] . 18

3.3 Testbench approach using transactors [26] 19

3.4 TLM-based testbench [28] . 20

4.1 A block diagram of the MicroBlaze system containing the processor,

LMB, BRAM and the BRAM interface controllers 21

4.2 MicroBlaze system model containing the one processor and two BRAMs

with the DLMB and BRAM interface controllers with RTL intercon-

nects. For simplicity the figure only shows only the data memory

(PORTB) signals . 22

4.3 Simplified MicroBlaze system containing only the processor and the

BRAM . 22

4.4 RTL model of the MicroBlaze system containing only the processor

and the BRAM . 24

4.5 RTL ISS wrapper class diagram . 24

4.6 RTL local memory class diagram . 27

4.7 Simplified RTL Model including only the processor and the local

memories . 28

4.8 TLM system . 29

4.9 TLM ISS wrapper class model . 29

4.10 TLM memory class diagram . 30

4.11 LMB if class diagram . 32

5.1 VHDL waveform of the double stall case 43

5.2 Pipeline scheduling for a double stall case showing the forwarding

procedure . 44

5.3 Pipeline scheduling for a double stall case showing a different for-

warding handling technique . 45

vi

List of Abbreviations

ALU Arithmetic and Logic Unit

BE Byte Enable

BRAM Block Random Access Memory

CA Cycle Accurate

CPU Central Processing Unit

CX Cycle Approximate

DDD Digital Data Display

DDR2 Double Data Rate Memory

DLMB Data Local Memory Bus

DMA Direct Memory Access

DUT Device Under Test

DUV Device Under Verification

EFSM Extended Finite State Machine

EX Instruction Execute

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

FSM Finite State Machine

GDB GNU Project Debugger

GPR General Purpose Registers

GUI Graphical User Interface

HW Hardware

ID Instruction Decode

IF Instruction Fetch

ILMB Instruction Local Memory Bus

IP Intellectual Property

vii

List of Figures viii

IPC Inter Process Communication

ISS Instruction Set Simulator

LMB Local Memory Bus

MEM Memory Access

MP-SoC Multi-Processor System on a Chip

MUX Multiplexer

PC Program Counter

PLB Processor Local Bus

RAM Random Access Memory

RAMB Random Access Memory Block

RTL Register Transfer Level

SDK Software Development Kit

SoC System on a Chip

SW Software

TLM Transaction Level Modeling

VHDL Very High Speed Integrated Circuit Hardware Description Language

WB Write Back

XPS Xilinx Platform Studio

List of Abbreviations

Chapter 1

Introduction

1.1 Motivation

Most of the electronic equipment that are currently used by millions of users around

the world are run by embedded systems. This means that the development process

of such systems is critical and in continuous need for improvement. System simu-

lations are crucial for pre-silicon (early stage) development. One of the bottlenecks

that face current developers is the massive simulation times that arise with such

embedded systems, especially that the sizes and complexities of such circuits are in

continuous increase.

A possible way to decrease simulation times is to change the abstraction level

in which the system is defined, such that the system still performs the same func-

tion but with less simulation complexity. Simulating a complex system defined by

Register Transfer Level (RTL) would mean that the simulator will have to moni-

tor each internal register in the system at each clock cycle and compute how the

register value should change. An abstraction level like Transaction Level Modeling

(TLM) would offer some communication abstraction to the system such that the

intermediate signals that connect different modules of the system can be removed.

Those communication channels would then be replaced with method calls to carry

out the required functionality. It is hypothesized [1, 2], that by applying such ab-

straction to an RTL system, simulation times of a System-on-a-Chip (SoC) with

high communication rates between its modules would be reduced.

1.2 Objectives

The goal of this Master thesis is to model the Xilinx MicroBlaze system shown in

Figure 1.1 at both RTL and TLM abstraction levels using SystemC. The system

includes modules such as: MicroBlaze processor, LMB, BRAM and a LMB-BRAM

interface controller. The target is therefore to model each of those components in

both abstraction levels and reach a final system model for each level that is verified

against the reference VHDL model of the system. At the end, the system will be

used to run performance measuring tests to calculate the speedup achieved through

the abstraction of the system from RTL to TLM. Modeling of the processor is to be

done using the available MicroBlaze Instruction Set Simulator functionality. This

means that a wrapper has to be implemented that guarantees the correct timing

of the ISS operation, and the correct communication interfaces and protocols with

external modules such as the LMB or the BRAM.

1

Chapter 1. Introduction 2

MICROBLAZE

ILMB LMB-BRAM-
Ctrl

DLMB

BRAM
LMB-BRAM-

Ctrl

Figure 1.1: The simplified MicroBlaze micro-processor

1.3 Thesis Organization

This thesis is divided into seven chapters. After the current chapter, chapter two

provides the background information which is needed as a basis for the work carried

out. Chapter three contains reviews for some of the literature to show the current

state-of-the-art of the targeted topics. Chapter four consists of the design phase of

the task, which reviews the modules that will be created, their interfaces, properties,

some brief details about the internal structures and different solutions to reach the

targeted functionality. Chapter five contains the main implementation process with

all the important details that show how the derived solution from the design chapter

has actually been implemented. Chapter six provides the experimental results which

includes testing and performance measurements. Finally, chapter 7 summarizes the

work done, and provides an outlook for possible system improvements to be done

in the future.

Chapter 2

Background

In this chapter, the background information needed throughout this work is re-

viewed. This includes concepts and definitions, as well as an overview about the

target system and tools that are used during the implementation process.

2.1 Register Transfer Level (RTL)

RTL is an abstraction level that defines how the system behaves at every clock

cycle (edge). It is used mainly to describe synchronous circuits whose functionality

is defined in reference with a clock. RTL representation is achieved by describing a

system in terms of registers and the data path components in between them, such

that the transferring function between each register is defined [3].

2.2 Transaction Level Modeling (TLM)

TLM is a system-level abstraction level which describes the system in terms of ini-

tiators, targets and intermediate channels. It abstracts communication and models

the system function in terms of interface methods such as Write(addr0, data0) called

from a master to a slave [2].

2.2.1 Cycle Accurate TLM

Fixed definitions for TLM timing profiles varied in the literature reviewed for this

work, and different levels of abstraction were further defined inside TLM. The work

presented in [2] separated the computation and the communication such that their

timings can be independent from each other. Three timing schemes were common

in most of the literature: Un-timed TLM, Cycle Approximately Timed (CX) TLM

and Cycle Accurate (CA) TLM [1, 2]. In some literature, the names were different,

but the concept was essentially still the same; which is that untimed TLM takes no

timings into consideration, and all methods are accomplished in a timeless manner.

CX takes time into consideration but accuracy is not of importance, and finally CA

TLM must abide to the strict timing constraints like an RTL model[1]. Figure 2.1

demonstrates the basic idea of the difference between these levels. In this work, we

are interested to model a CA TLM model of the MicroBlaze system; CA TLM is a

TLM model that shows similar timing profiles as an RTL model, such that at every

clock edge, the internal register values of the TLM model are identical to those of

the RTL model[1].

3

Chapter 2. Background 4

Figure 2.1: Comparison between RTL , Untimed, CX and CA TLM timings

2.3 SystemC

SystemC is a system level design language [4]. It is conceptually a C++ library

containing classes and macros that enable the programmer to model concurrent

processes, as well as communication means (such as channels and ports) that makes

it possible to model a hardware system with C++ syntax. SystemC offers an

environment that can conjoin Hardware (HW) and Software (SW) models.

2.3.1 Channels, Ports and Processes

SystemC offers a class definition SC MODULE that resembles the building block of

any SystemC design[5]. An SC MODULE can communicate with other modules in

the system with communication ports (sc port) which are initialized using a variety

of interface options. As an example, ports can be sc in, sc out or sc inout that

represent input, output or input/output signals respectively. A process is then

used to define the actual functionality of the module where the variables can be

modified and conditions can be checked. A process can either be an SC METHOD

or an SC THREAD.

2.3.1.1 SC METHOD

An SC METHOD is like a function; it gets triggered by the occurrence of an event

to carry out a specific function. SC METHODs use a concept of sensitivity similar

to VHDL processes sensitivity lists, in which whenever a member of that list is

changed, the process is invoked. An example for an SC METHOD is a sequential

method that gets invoked at every positive clock edge.

Chapter 2. Background 5

2.3.1.2 SC THREAD

An SC THREAD is different from the SC METHOD in a way that it only gets

invoked once upon initialization of the module. Threads have the advantage of

providing the capability to halt the execution using a wait() call, in which case

the execution will only be resumed when an event occurs; this event can either

be a member of the static sensitivity events which are those events defined in the

sensitivity list of the thread, or the event can be a dynamic sensitivity event which

is applicable when the thread calls wait(some event).

2.3.2 Data Types

Two data types can be used to store the internal state of a module. Either a channel

like sc signal can be used or the traditional C++ variables. An sc signal acts like

a wire; it is used for internal communications inside the module or from a parent

module to an inherited child module[5]. An sc signal can be of any legal data type

such as boolean, unsigned, sc uint, etc.. To write to a signal the write() method has

to be called and to read, the read() method has to be called to access the internal

value of that “wire”.

On the other hand, a member variable like a pure boolean or unsigned type

can be hazardous to use for inter-process communication. This is due to the fact

that member variables get updated right at the time of assignment, which means

that if it is used in two concurrent processes, it would be impossible to know which

process updates the variable first which can cause conflicts to arise. For this reason,

variables are usually confined inside a single process, or in several processes that

are guaranteed not to run concurrently or else conflicts would occur[5].

Another difference between using sc signal and member variables is that inside

a process, an sc signal updates its value only at the end of the process run, unlike

the variables whose values change immediately at the time of assignment as shown

in listing 2.1.

Throughout our design, a standard is established to avoid confusion, in which all

input ports will have the prefix pi , output ports will have po , local sc signals will

have si , local variables will have m and finally connecting signals used in binding

output and input ports of different modules in the system level modules will have

co prefix before the signal names.

Listing 2.1: Comparison between using sc signal and normal variables

sc_signal <bool > si_reg1

bool m_reg1

int i = 0;

void seq_proc () // SC_METHOD sensitive <<clk.posedge ()

{

cout << si_reg1.read() << m_reg1 <<endl;

if(i == 1){

si_reg1.write(true);

m_reg1=true;}

Chapter 2. Background 6

cout << si_reg1.read() << m_reg1 <<endl;

i++;

}

The output for such a code run for the first three clock cycles would be:

false false

false false

false false

false true

true true

true true

2.3.3 Performance Measurements

SystemC (C/C++ in general) includes some libraries that provide several ways to

measure time inside the code in order to offer performance measurement options

[6].

− time t time(): returns the current calendar time.

− clock t clock(): returns the process Central Processing Unit (CPU) time,

which is the time passed on the CPU since the program has started.

− gettimeofday(): Native Linux Time Measurement method that returns the

actual current time from the operating system.

− getrusage(): Also a Native Linux Time Measurement method, but it returns

the time from the CPU clock instead of the operating system, which makes it

more accurate in terms of calculating the resource (time) spent by a processor

on a specific process, as is shown from its name: get resource usage.

All these time generation techniques can be used to measure how long the sim-

ulation takes by measuring the time before the simulation starts, and after it ends

and then calculating the difference. In the performance measurement section of

this work, the resource usage method will be used to get the real time spent by the

processor to run the simulation.

2.4 Software Tools

2.4.1 Modelsim

Modelsim is a tool designed by Mentor Graphics [7] that can be used to simulate

HW electronic systems and is considered to be a debugging environment that allows

monitoring internal signals during simulations. Modelsim does not only simulate

VHDL and Verilog defined systems, but also offers the possibility to simulate sys-

tems written in SystemC along with other languages. It is even possible to combine

Chapter 2. Background 7

modules from different languages in a single simulation in what is called Mixed-

Level simulation [7]. This technique can be used in this thesis to facilitate the

verification of our SystemC design with the reference VHDL system from Xilinx.

2.4.2 Xilinx Platform Studio (XPS)

XPS[8] is a software tool developed by Xilinx that provides a Graphical User Inter-

face (GUI) that enables the user to design different kinds of digital systems starting

from simple Finite State Machines (FSMs) to complex micro-processor designs such

as the MicroBlaze system. XPS is used throughout this work to design the MicroB-

laze system in VHDL which acts as the reference to the designed RTL and TLM

models.

2.4.3 Xilinx Software Development Kit (SDK)

SDK is another software tool developed by Xilinx that can be used for editing, com-

piling and debugging C/C++ based on the GNU compiler. One of the important

properties of SDK is the availability of the Data2MEM [9] tool which is used to

transform executable and linkable files (.elf) into different kinds of files that can be

used to initialize the micro-processor memory blocks.

2.5 Xilinx MicroBlaze Micro-Processor

Figure 2.2: The MicroBlaze processor [10]

Chapter 2. Background 8

The MicroBlaze is a micro controller system originally designed to work with

the Xilinx Field Programmable Gate Array (FPGA) to run different kinds of appli-

cations [11]. Figure 2.2 demonstrates the core of the micro-processor system, which

is the MicroBlaze processor, and shows the internal structure of the processor, as

well as communication options with external modules. Figure 2.3 on the other

hand demonstrate a typical example of the MicroBlaze micro-processor structure.

It consists of four main blocks, aside from the debugging module which is usually

an optional block which is unnecessary for the core operation.

2.5.1 MicroBlaze Processor

Figure 2.3: The MicroBlaze micro-processor system [11]

The MicroBlaze processor, demonstrated in Figure 2.2 is an embedded soft core

processor based on the reduced instruction set computer (RISC) architecture[10].

It includes several features, most of which can be configured by the user during the

design phase of the system. The full list of features and configuration options are

demonstrated in [10]. Below, an overview of the most interesting points, and points

relevant to the work presented in this work is presented:

− 32-bit width for the General Purpose Registers (GPR) and address bus.

− Instruction word is 32 bits with three operands and two addressing modes

(Type-A and Type-B) as shown in Figure 2.4.

− An instruction prefetch buffer in the instruction fetch pipeline stage.

− Pipeline depth can be chosen to be either three or five stages.

− Option to include Instruction and Data Caches for faster fetching.

− HW ALU extensions such as barrel shifter, multiplier, divider (32 or 64 bit)

or a floating point unit.

Chapter 2. Background 9

− Fast Simplex Link (FSL) bus for communication with external modules.

Figure 2.4: Type A and Type B instructions [10]

2.5.1.1 5-Stage Pipeline Structure

PC

ADD

INSTR
BRAM

4

INSTR

PC

GPR ALU DATA
BRAM

PC

PC

Ra

Rb

Imm

OPcode

Branch PC

IF/ID ID/EX EX/MEM MEM/WB

Figure 2.5: Basic structure of the pipeline

The work presented in this thesis is only concerned with the MicoBlaze 5-stage

pipeline. The MicroBlaze internal 5-stage pipeline is similar to the structure pre-

sented in [12]. Figure 2.5 shows the basic diagram for a typical 5-stage pipeline

structure. It is simply defined in terms of register blocks and combinational logic

in between them which define the pipeline stage functionality. The pipeline is di-

vided into five stages: Instruction Fetch (IF), Instruction Decode (ID), Instruction

Execution (EX), Memory Access (MEM) and Write Back (WB).

− Instruction Fetch Unit:

IF unit is the first stage of the pipeline which is responsible for providing

the current Program Counter (PC) to the instruction memory to fetch a new

instruction and feed it into the ID unit. IF is also responsible for incrementing

Chapter 2. Background 10

the PC by four after each fetch in order to have the correct PC for the next

clock cycle.

− Instruction Decode Unit:

ID unit is responsible for dividing the instruction coming from the IF unit

into: Opcode, Destination Register (Rd), source registers (Ra and Rb) and

an immediate operand (IMM) . Moreover, the ID unit accesses the GPR to get

the values of the source registers Ra and Rb. ID then provides this information

to the Instruction Execution (EX) unit.

− Instruction Execution Unit:

EX is the stage responsible for the actual execution of the instruction, it

mainly consists of an Arithmetic Logical Unit (ALU) that performs the re-

quired function. Each of the two inputs of the ALU is selected by a multiplexer

(MUX); the first MUX selects between Ra and PC, whereas the second one

selects between Rb and IMM. The ALU then performs an arithmetic opera-

tion on those two values and produces an output to be forwarded to the MEM

unit. The select signals for the MUXs and the ALU are generated from the

Opcodes; for example if the instruction is ADD R3, R1, R2 then the selects

will be such that the first MUX passes the value of Ra (R1) to the ALU,

the second MUX will pass the value of Rb (R2), and the ALU will be set to

perform an add operation on both values. However, if the instruction is for

example BRAI 24, MUX1 will pass the PC, MUX2 will pass the immediate

value of 24 and the ALU will also perform an addition to calculate the new

PC and provide it back to the IF. In any case, the output of the ALU gets

forwarded to the MEM unit.

− Memory Access Unit:

MEM stage is responsible for writing to and reading from the data memory. It

receives the required information (like memory address and data to be written)

from the EX stage, and upon finalizing the memory access it provides the data

read from the memory to the WB stage.

− Write Back Unit:

WB is responsible for updating the GPR with the new register value resulting

from the instruction execution, whether it is a local instruction like ADD R2,

R1, R0 or a memory access instruction like LW R2, R1, R0.

2.5.1.2 Basic Implementation Hazards

This basic implementation of the instruction pipeline would face two types of haz-

ards while running an assembly program; the hazards can either be control hazards

or data hazards.

A control hazard occurs whenever a branch is taken. By taking a look at the

basic implementation idea of the pipeline, it is obvious that when a branch is taken,

Chapter 2. Background 11

two extra unwanted instructions will have been already in the pipeline in IF and

ID stages. To overcome this hazard, NOPs have to be inserted in the pipeline to

replace the unwanted instructions such that the erroneous instructions would not be

executed. However, it has to be taken into consideration that some branch instruc-

tions make use of what is called as a “delay slot” where the instruction following

the branch instruction should be normally executed. This delay slot reduces the

overhead caused when a branch is taken.

A data hazard occurs when two or more consecutive instructions are dependent

on each other. For example:

ADD R2, R1, R0

ADD R4, R3, R2

In this example R2 is updated by the first instruction, and used by the second one.

In the basic implementation, R2 would only be updated during the WB stage of

the first instruction, this means that the second instruction cannot perform the

EX stage unless the WB for R2 has been completed. Therefore, the EX has to

be ”stalled” for two clock cycles until the WB has been finished. Another way to

overcome this stalling is to apply the forwarding technique. This means that the

ALU output from the EX stage would be stored in a temporary forwarding register

to be used also in the EX stage during the next cycle. The output of the the

forwarding register is then fed into the two MUXs responsible for the ALU inputs.

A hazard detection unit would then be used to detect such a dependency and set

the select signals for both MUXs such that the value from the forwarding register

would be used instead of the value read from the GPR.

Another data hazard might occur in such a case:

ADD R2, R1, R0

ADD R10, R9, R8

ADD R4, R3, R2

This case is different from the previous one, since the required R2 value will not be

coming from the EX unit, but it will be from the WB, therefore there needs to be

another path from the WB output to the ALU input MUXs. The hazard detection

unit should then be able to differentiate between these two cases of forwarding and

provide the correct MUX signals accordingly.

2.5.2 Local Memory Bus (LMB)

LMB is a fast single Master - multiple Slave local bus that is used to connect the

instruction and data ports of the MicroBlaze processor to high speed peripherals

such as the BRAM block[13]. It is also a 32-bit module and can allow up to 16

memory slaves. The main function of the LMB is forwarding the signals from the

processor to the memory and vice versa.

Chapter 2. Background 12

2.5.3 Dual Port Block RAM (BRAM)

The BRAM is an on chip Random Access Memory (RAM) block that internally

instantiates a number of smaller memory blocks (RAMB) primitives in order to

reach the required configurable memory size [14]. It can be divided into separate

ports in order to distribute the memory accessing capabilities. For example, in the

MicroBlaze micro-processor typical setup demonstrated in Figure 2.3, the BRAM

is divided into two separate ports (PORTA and PORTB) such that one port is for

instruction communication, and the other is for data. The size of the BRAM can be

configured by setting the value of C MEMSIZE to some value between 4094 (4kB)

and 524288 (512kB) depending on the internal primitive memory blocks used [14].

The BRAM and the LMB cannot be directly connected. For this reason the

LMB-BRAM interface controller [15] is required, as shown in Figure 2.3. It trans-

lates the signals coming from the LMB into signals for the BRAM. The LMB-BRAM

interface controller is also responsible for address decoding; meaning that it is re-

sponsible for selecting whether to forward the LMB signals to the BRAM or not,

based upon the address mapping.

2.6 SoCLib Instruction Set Simulator

System On a Chip Library (SoCLib) is an open platform for virtual prototyping of

multi-processors SoC (MP-SoC) [16]. From their many offered designs, they offer a

MicroBlaze based Instruction Set Simulator (ISS) that is used to provide the core

processor functionality for this work.

The ISS is a C++ class containing the basic functionality of the MicroBlaze

processor. It contains some basic internal registers such as the GPR (an array of

32-bit unsigned variables) and different method declarations, each of which carry

out a separate pipeline stage functionality. Timings however are not taken into

consideration in the ISS, it simply provides the interface methods for the pipeline

stages. The ISS uses mainly two data types: unsigned int which is “type defined”

into the name uint32 t which resembles a 32-bit unsigned template, and the other

type is boolean to model the single bits and flags of the system.

2.6.1 Available Methods

− getInstrucionRequest(bool &req, uint32 t &addr): It is responsible for re-

turning the current PC from the ISS. The method takes two references as

arguments; a boolean to notify the caller that there is a valid request, and an

unsigned value containing the required PC. This method always returns true

to the req reference, along with the current PC from the r pc register to the

addr reference.

− setInstruction(bool error, uint32 t insn): It is responsible for feeding the new

instruction into the processor. The method takes as arguments a boolean that

shows whether there had been an error with the IF, and an unsigned value

Chapter 2. Background 13

with the fetched instruction. The method then sets the local variable m ir to

the instruction insn, and sets the m ibe to the error flag in order to declare

an exception if an error had occurred.

− step(): This is the longest and the most complex method of the ISS, and is re-

sponsible for actually executing the instruction that has been fed into the pro-

cessor. First, the 32-bit instruction has to be decoded (separated) into opcode,

destination register address (rd), operand A address (ra), operand B address

(rb), and the immediate operand (imm). This is done using the local method

call IDecode(m ir, &ins opcode, &ins rd, &ins ra, &ins rb, &ins imm). IDe-

code method first determines whether the instruction is Type A or Type B

from the Opcode using a predefined lookup table matching each known Mi-

croBlaze instruction to its respective type, and then it performs some shifting

to the instruction to extract each field on its own.

After decoding the instruction, step() method then has a switch statement

over the Opcode for every instruction possibility. A LOAD statement is defined

at the top of the class that assigns the memory access signals whenever a load

instruction is being executed for example. A similar definition is available for

the STORE. At the end of the step(), the current and next PCs are updated.

− getDataRequest(bool &valid, enum DataAccessType &type, uint32 t &ad-

dress, uint32 t &wdata): It is a simple method that takes four references as

arguments, and assigns to them the memory access signals such as the address,

the data to be written (in case of store instruction), the type of access (read

half word, write byte, etc..), and a boolean that states whether a memory

access is actually needed or not.

− setDataResponse(bool error, uint32 t data): It returns to the ISS the data

that has been requested from the external memory. This method is similar

to the setInstruction() method; it has an error argument to show if an error

had occurred during memory access, and an unsigned variable containing the

requested data. Internally, the method has a switch statement which decides

what to do with the incoming data according to the memory type that had

been requested.

2.6.2 Instruction Set Simulator Basic Untimed Usage

To use the ISS, a wrapper class needs to be defined that instantiates the ISS and

performs the methods consecutively as shown in listing 2.2. The wrapper should

also contain sources for instructions and data memories, and this can either be from

local arrays like the example in the listing, or from external memory modules. This

would then make the code more complex due to the inclusion of some communica-

tion techniques with external modules.

Chapter 2. Background 14

Listing 2.2: Basic ISS Wrapper Implementation

//class ISSWrapper with an ISS instance iss

while(true)

{

iss.getInstructionRequest (&m_pc); //IF

iss.setInstruction(false , instrMEM[m_pc]); //ID

iss.step(); //EX

iss.getDataRequest (&m_Wdata , &m_addr , &m_DType); //MEM

if(m_DType == WRITE)

dataMEM[m_addr] = m_Wdata;

iss.setDataResponse(false , dataMEM[m_addr]); //WB

}

Chapter 3

Literature Review

The task of this thesis is mainly divided into two parts, the first part is to use an

ISS to reach an RTL model of the MicroBlaze processor, and the other part is to

convert this RTL model into TLM and verify that they are consistent.

3.1 ISS Usage

Over the past few years, it has become extremely popular to use an ISS to model the

functionality of a processor [1, 17, 18, 19, 20]. Using such an approach makes it easier

to model complex hardware and software systems in a co-simulation environment.

Moreover, it saves a lot of time spent on designing the RTL model of the system

for simulation or testing in the initial phases of the design if the RTL is not already

available.

In the literature there are different approaches on how to use an ISS. In the

first example [1] an ISS similar to the one used in this thesis was used. They used

the ISS from SoCLib to model a Multi-Processor System on a Chip MP2-SoC in

three types of TLM abstraction levels: Untimed, Approximately Timed (AT) and

Cycle Accurate Bit Accurate models (CABA). To achieve this, they designed three

separate wrappers; one for each abstraction level. They considered the ISS to be an

FSM with almost infinite states where each state resembles a unique combination of

the internal registers of the processor and the memory. Each time an instruction is

executed the FSM state changes. Their idea of a timed model of the system would

then be achieved if the ISS changed state at every system cycle not necessarily at

every instruction execution[1]. For that paper, all the TLM models were designed

according to the OSCI TLM 2.0 standard [21]. For the untimed model, there was no

synchronization for the processor or for the memories which means that the memory

and cache delays for example are not taken into consideration. For this reason, the

untimed ISS wrapper simply contained an SC THREAD with an infinite loop that

continuously got the instruction and data requests from the ISS, performed the

memory accesses and then performed the execution in a single iteration of the loop.

On the other hand, the AT-TLM wrapper has an approximate time for the memory

access by calculating the difference between the time before and after the memory

access. Then the ISS is informed with that time using iss.executeNCycles(dt) so that

the ISS is delayed for “approximately” the same time as the memory access. Finally,

the CABA was done differently, it was designed in an “RTL” fashion, where the

instruction requests were translated into different sc signals, and instead of having

an infinite loop that keeps getting requests and setting responses, the CABA had

15

Chapter 3. Literature Review 16

two processes; one of them was sensitive to the positive clock edge, and the other

was to the negative one. The negative (clock falling) one set the request signals

to communicate with the cache, and the clock rising read the data from the cache

to the ISS. By this they accomplished a cycle accurate design since the system is

always synchronized with the clock edges[1].

In another example, [18] implemented an ISS wrapper with an interface which

was based upon the standard GDB remote debugging interface[22]. The paper

studied two different approaches to use an ISS to reach a Co-Simulation environment

with an ISS using SystemC in order to simulate a multi-processor system containing

both HW processor models, as well as SystemC ISS cores. The first approach

(Triggered Co-Simulation) proposed implementing a wrapper (gdbAgent) that is

based on the Digital Data Display (DDD) package [23] to control the ISS. Figure

3.1 shows the general structure of the triggered approach, it shows the two pipes by

which the wrapper controls the ISS using the gdb commands. This approach had

the advantage of offering granularity to the system simulation because it used the

gdb instructions such as Next, Run and Quit ; this means that there were distinctive

states between each instruction execution that would facilitate testing or monitoring

of the system.

Figure 3.1: Triggered co-simulation approach [18]

The approach given in 3.1 had a disadvantage that it caused too much Inter-

Process Communication (IPC) due to having a separate module for the wrapper

and for the ISS itself. This meant that multiple commands needed to be called for

each instruction, therefore they proposed another solution which they called Legacy

Chapter 3. Literature Review 17

Co-Simulation. In this approach they embedded the ISS as an sc module inside the

wrapper and thus minimized the IPC. The legacy co-simulation however did not

provide much simulation granularity as the triggered one so both solutions were

presented as a tradeoff between simulation times and simulation granularity [18].

By studying the reviewed approaches, it is possible to match some of this work’s

requirements with the ideas implemented in the literature for the ISS usage. For

example, the CABA TLM approach [1] is similar to the CA TLM concept used in

this work. However, the ISS used in that case was not based on the MicroBlaze

system. Moreover, SC THREADs were used to develop their wrappers, while in our

case it would be possible to use the faster SC METHODs since blocking operations

can be avoided. Another disadvantage (from the point of view of the requirements)

is that part of their system is triggered by the negative clock edge, which cannot be

used to model the MicroBlaze processor. Another interesting concept for the topic

of this work is the Legacy Co-Simulation concept provided in [18], the idea now is

to try to combine both to design the models required for this work.

3.2 RTL to TLM Transformation Techniques

A lot of researchers are now interested in taking the pre-silicon testing and verifi-

cation phases of SoCs to a higher abstraction level such as TLM. This would save

simulation time that become massive when complex systems are simulated using a

low abstraction level such as RTL [24]. For this reason, different researchers pro-

posed different techniques to transform RTL Intellectual Properties (IPs) into TLM

models[25, 26, 24, 27, 28, 29]. Some of the approaches proposed an algorithm for au-

tomatic transformation from RTL to TLM models like [25]; the proposed technique

was divided into three steps:

1. Identification of the computational phases of the RTL model.

2. Generation of TLM functions through merging the states

3. Generation of the TLM communication protocol.

They started by defining the RTL system in terms of an Extended Finite State Ma-

chine (EFSM) sequence, with the EFSM divided into three computational phases:

i. The input phase, where the IP gets the inputs.

ii. The elaboration phase, where the actual computation of the inputs and internal

registers is carried out.

iii. The output phase where the output ports are assigned. After defining the

computational phases.

They merged all the elaboration phases together to generate the actual TLM func-

tionality of the system. They used this merging concept to transform the RTL

elaboration phases into a single TLM method call. Finally they implemented the

Chapter 3. Literature Review 18

TLM communication protocol from the input and output computation phases in ac-

cordance with the OSCI TLM 2.0[21] standard to give the system a global interface

to enable reuse as shown in Figure 3.2.

Figure 3.2: I/O transformation rules [25]

3.3 Testing

In the RTL-TLM mixed level research field, testing can be divided into two main

parts. The first part is to test and verify the functionality of the RTL model (for

example a processor model like the aim of this thesis), and the second part is to

perform TLM-RTL verification, where the TLM is tested to prove that it carries out

the exact same functionality as the RTL model (which had already been verified).

3.3.1 General Processor Testing

The traditional way of testing any digital electronic system, is to simply derive

test cases that would iterate over all the inputs and internal line values to provide

all the possible combinations for them, and assign these test cases to the system

while monitoring the outputs and comparing them to the expected values that

should occur if the system is correct. While such a technique would work well

for a small digital system such as a collection of gates and registers such as a

simple Finite State Machine (FSM), computing all the possible combinations and

simulating them would be almost impossible to apply on a complex structure such

as a processor. Therefore new approaches were researched to enable testing complex

electronic structures.

According to the literature, different approaches for testing the functionality of

a processor are available. One way to do this is to use the processor to run an

operating system on an emulator which is the approach used in [19, 20], where they

Chapter 3. Literature Review 19

used a cycle accurate ISS as a core for a SoC in accordance with the Quick Emulator

(QEMU) tool to run a full Linux kernel. However, as much reliable as this testing

technique might be, it would be too complex to be adopted in this work. It would

be more convenient to follow the conventional techniques of providing the processor

with test instructions and monitoring the response, especially because the models

designed for this work need to be verified against VHDL RTL models, which is a

concept that was not addressed in the reviewed literature.

3.3.2 TLM Verification

The second stage of testing is to verify the functionality of the TLM model. In

[26] they were interested in designing a reusable testbench that can be used on

models with different abstraction levels including RTL and TLM. The main point

addressed in that paper, is the use of transactors. Transactors are adapters that

can be connected to the Device Under Test (DUT) to transform the communication

technique (abstraction level) into a unified level that can communicate with the rest

of the testbench as shown in Figure 3.3. The testbench then simulates some inputs

to the DUT through the transactor, and compares the outputs of the system with

predefined test results to verify the system functionality.

Figure 3.3: Testbench approach using transactors [26]

Another testing approach is given in [28], where they defined a TLM-based

testbench that verifies an RTL or a TLM model against a “golden” RTL model as

demonstrated in Figure 3.4. Since the testbench itself is defined in TLM, transactors

were needed to connect RTL models to the rest of the system for both the reference

RTL model, as well as the Device Under Verification (DUV). The verification starts

by the generation of TLM input stimuli by the automatic test generator. These

Chapter 3. Literature Review 20

stimuli are then forwarded to the golden model, as well the DUV. If the target

model is in RTL, then a transactor would be needed to transform the TLM function

calls to RTL sequence of statements. Outputs of both models are then forwarded

to a checker tool that performs the actual verification of the DUV.

Figure 3.4: TLM-based testbench [28]

As shown in the demonstrated approaches, transactors (or adapters) are usually

used when different level models need to be verified. This concept can be used during

the testing process for the designed moels presented in this work.

Chapter 4

Design

In this chapter, different approaches will be reviewed, about how to transform the

MicroBlaze system into the RTL and TLM SystemC models.

4.1 MicroBlaze System

MICROBLAZE

ILMB LMB-BRAM-
Ctrl

DLMB

BRAM
LMB-BRAM-

Ctrl

Figure 4.1: A block diagram of the MicroBlaze system containing the processor,

LMB, BRAM and the BRAM interface controllers

The simplest MicroBlaze system should contain at least one processor, and

one local memory block as shown in Figure 4.1. An LMB is needed to act as

the interface between the processor and the BRAM, and it makes it possible for

one processor to be connected to more than one BRAM. Each BRAM requires an

LMB-BRAM interface controller to be connected to the LMB. The first approach

to model such a system, would be modeling each component in a separate module,

and form a system that looks exactly like Figure 4.1. Figure 4.2 shows an example

of a system containing two BRAMs with the RTL intermediate signals, the figure

shows how complex and crowded in terms of intermediate signals it becomes due

to the intermediate modules. It would be much simpler if the LMB and BRAM

interface controllers could be somehow embedded into the other main modules to

save the unnecessary connection complexities.

The LMB is a rather simple module, and is responsible for connecting the Mi-

croBlaze processor to the BRAM. Since it is such a simple module, it would be

pretty easy to simplify the system and embed the address decoding functionality

inside the processor and save an extra module declaration. Another simple module

is the LMB-BRAM interface controller. This module is an interface that enables a

BRAM to be connected to an LMB. It performs basic forwarding of memory access

21

Chapter 4. Design 22

ISS Wrapper
DataAddr

DWrite
D_En

D_WEn
DRead

DREADY
.
.
.

DLMB

WEn(0)
WEn(1)

BRAM
1

Addr
Din
En
WEn

Dout
DREADY

PORTB

BRAM
2

Addr
Din
En
WEn
Dout
DREADY

PORTB

BRAM-Ctrl
1

BRAM-Ctrl
2

Figure 4.2: MicroBlaze system model containing the one processor and two BRAMs

with the DLMB and BRAM interface controllers with RTL interconnects. For

simplicity the figure only shows only the data memory (PORTB) signals

signals, and it is also responsible for address decoding and forwarding the memory

requests to the correct BRAM in case more than one BRAM is connected to the

processor. Therefore it can also be abstracted inside the BRAM itself. This way the

whole local system could be modeled using only two modules as shown in Figure

4.3.

MICROBLAZE BRAM

Figure 4.3: Simplified MicroBlaze system containing only the processor and the

BRAM

4.2 Data Types

The MicroBlaze is a purely digital system and most of the registers and communi-

cation signals are 32-bit wide. Therefore there are mainly two data types needed

throughout the whole system; the first type is the one used to define the single bit

Chapter 4. Design 23

registers such as intermediate flags. Such a data type can either be defined using

the sc logic type which is used in the real MicroBlaze system, or it can be defined

using the simpler and less memory consuming boolean or sc bit types. The differ-

ence between the resolved logic and the bit is that the bit only has two options for

each variable which are either ’0’ or ’1’. On the other hand, the resolved logic type

is used to resolve signals that are driven by different sources and resolve the signal

to a known value in case there is a conflict in the driving signals, the possibilities

are: ’0’, ’1’, ’Z’ or ’X’.

In our system it would not be necessary to use the more complex resolved logic

types since conflicts should not be expected so we can simplify the system in terms

of variable complexity. Therefore, the sc bit or the boolean type would be used for

our single bit variables in our system. Furthermore, [30] suggests a 20% performance

speedup when using boolean over sc bit data type, therefore the boolean data type

is used for our single bit variables throughout our system. The other data type

which is mostly used throughout the system, is the 32-bit variable that is used for

most of the system registers like the instructions, operands and addresses registers.

For this type, the same concept of single bit data type applies, either the sc lv (logic

vector) can be used, or the simpler unsigned or the sc bv (bit vector), again for the

sake of simplicity and boosting the performance, the unsigned data type is used

during the system modeling.

The other important concern with data types is that they need to be compatible

with the VHDL data types that present the same function because our models shall

later be combined with the VHDL system for mixed level simulation. Fortunately,

according to [7] unsigned data types are compatible with VHDL’s std logic vector

and bool is compatible with std logic which are the data types used in the MicroB-

laze VHDL system.

4.3 RTL Modeling

The RTL model consists mainly of two classes of type sc modules; one representing

the MicroBlaze processor called ISS wrapper RTL and another one for the memory

block called local mem RTL as shown in Figure 4.4. The names and properties for

the ports used for communication between both modules are all inherited from the

real system shown in the reference guides [31] and [14].

4.3.1 RTL ISS Wrapper Module

There are several ways to model the MicroBlaze processor; the most straight forward

approach would be to model all the internal components starting from registers

and logic gates until complex structures like memories and ALUs. Then all those

components would be used to create a structural model that looks exactly like the

internal structure of the MicroBlaze processor. However, the task of this work is to

reach the same MicroBlaze processor functionality using the available ISS, therefore

Chapter 4. Design 24

ISS Wrapper
Instr_addr

IFETCH
I_addrStrobe
WriteStrobe
ByteEnable
WriteData

INSTR
IREADY

DataAddr
DWrite

D_AddrStrobe
D_ReadStrobe
D_WriteStrobe
D_ByteEnable

DRead
DREADY

LocalMemory

Addr
ReadStrobe
AddrStrobe
WriteStrobe
ByteEnable
Din
Dout
DREADY

Addr
ReadStrobe
AddrStrobe
WriteStrobe
ByteEnable
Din
Dout
DREADY

PORTA

PORTB

Figure 4.4: RTL model of the MicroBlaze system containing only the processor and

the BRAM

ISS_Wrapper
+ sc_in <bool> clk
+ sc_in <bool> rst
-sc_signal <bool> si_IF, si_ID, si_EX, si_MEM
-bool m_stall
+unsigned ident

+sc_in <unsigned <32> > INSTR
+sc_in <bool> IREADY
+sc_out <unsigned <32> > INSTR_ADDR
+sc_out<bool> IFETCH
+sc_out<bool> I_AS

+sc_in <unsigned <32> > DATA_READ
+sc_in <bool> DREADY
+sc_out <unsigned <32> > DATA_ADDR
+sc_out <unsigned <32> > DATA_WRITE
+sc_out<bool> D_AS
+sc_out<bool> READ_STROBE
+sc_out<bool> WRITE_STROBE
+sc_out <unsigned <4> > BYTE_ENABLE
-enum r_mem_type

-MicroBlazeIss ISS
- void seq_proc()
-void end_of_elaboration()

Figure 4.5: RTL ISS wrapper class diagram

Chapter 4. Design 25

another approach to model the micro-processor has to be found. The idea is to find

a way to achieve the same functionality using the methods offered by the ISS.

Since an ISS will be used for the core functionality of the processor, another

module has to be defined to act as a wrapper for the ISS. The ISS wrapper module

would control all the timings of the processor, as well as the communication with

other modules such as the BRAM. So the ISS wrapper is a module class that has

an internal ISS instance, and some input and output ports to communicate with

external modules as shown in the class diagram in Figure 4.5. For initialization,

the ISS wrapper RTL class constructor needs some important details to facilitate

the communication with the rest of the system such as:

− ident: provides an identity for the processor that is used for determining the

processor priority in multi-processor systems.

− num slaves: provides the number of memory blocks connected to the proces-

sor.

− high addresses[]: an array with size number of slaves, it provides the high

addresses of each of the slaves.

− low addresses[]: an array with size number of slaves, it provides the low

addresses of each of the slaves.

The MicroBlaze processor mainly consists of the 5-stage pipeline. Modeling of

such a system, can be achieved by dividing the code into a separate section for

each pipeline stage. One idea to achieve this, is to have a separate process for

each pipeline stage, each of those processes would be sensitive to the positive clock

edge, this would guarantee the concurrency of all the pipeline stages as is the case

in the real HW model. However, having five sequential processes in a single class

would have unnecessary overhead on the memory usage as well as simulation times.

For this reason, it would be more efficient to define the whole functionality in one

sequential process. A way to achieve this would be to have a code segment for each

of the pipeline stages, with sc signals to function as the interconnecting registers

between each stage.

An example for such a design is shown in the following code segment, where in

the first clock cycle, IF will be done for an arbitrary instruction x and si IF valid

will be set to true at the end of the process run, therefore ID for x can only be

initiated one clock cycle after x has undergone IF, and so on for the rest of the

stages, this way the correct timing of the pipeline can be accomplished.

void seq_proc () // sensitive << clock positive edge

{

// perform IF

si_IF_valid.write(true);

if(si_IF_valid.read())

{

// perform ID

Chapter 4. Design 26

si_ID_valid.write(true);

}

else

si_ID_valid.write(false);

if(si_ID_valid.read())

{

// perform EX

si_EX_valid.write(true);

}

else

si_EX_valid.write(false);

if(si_EX_valid.read())

{

// perform MEM

si_MEM_valid.write(true);

}

else

si_MEM_valid.write(false);

if(si_MEM_valid.read())

// perform WB

}

4.3.2 RTL Memory Module

As for the memory, the main idea is to have a sequential module that checks for the

memory access strobes (address, read and write) at each positive clock edge, and

perform the action accordingly. If there is a high read strobe and address strobe,

then the BRAM replies with the memory content inside the specified address along

with a high data ready signal that would stay high for 1 clock cycle. On the other

hand if there is a high write strobe and address strobe, then the BRAM should

write the input data in the specified address, and return the content of that address

back in the data read signal also along with a high data ready signal that would

stay high for one clock cycle.

Figure 4.6 shows the class diagram of the RTL memory module. The design

is done for the Write-First write mode shown in the BRAM reference guide [14]

which means that the reply from the BRAM after a write request will have the

up-to-date memory content (the data that had just been written) and not the old

data like the Read-First mode [14]. Apart from the sequential process, the BRAM

contains another method load BRAM() that is called during the initialization of

the BRAM; it is responsible for filling the instruction program into the BRAM, for

this it needs a path to a memory file that is generated by the data2MEM command.

The information needed to initialize an RTL memory instance is:

− HighAddr: defines the highest address mapped to the BRAM.

Chapter 4. Design 27

− LowAddr: defines the lowest address mapped to the BRAM.

− mem size: that defines the size of the memory given in number of words inside

the memory array.

− mem path: a string that points to the (.mem) file with the program to be

loaded into the BRAM.

Local_Memory_RTL
+ sc_in <bool> CLK
+ sc_in <bool> RST

+sc_in <unsigned<32> > PORTA_Abus
+sc_in <unsigned<32> > PORTA_WDBus
+sc_in<bool> PORTA_ReadStrobe
+sc_in<bool> PORTA_WriteStrobe
+sc_in<bool> PORTA_AddrStrobe
+sc_in <unsigned<4> > PORTA_BE
+sc_out <unsigned<32> > PORTA_Dout
+sc_out<bool> PORTA_DREADY

+sc_in <unsigned<32> > PORTB_Abus
+sc_in <unsigned<32> > PORTB_WDBus
+sc_in<bool> PORTB_ReadStrobe
+sc_in<bool> PORTB_WriteStrobe
+sc_in<bool> PORTB_AddrStrobe
+sc_in <unsigned<4> > PORTB_BE
+sc_out <unsigned<32> > PORTB_Dout
+sc_out<bool> PORTB_DREADY

-unsigned m_MEM_Size
-unsigned m_registers[m_MEM_Size]
- Void seq_proc()
- Void load_BRAM()
- Void end_of_elaboration()
- local_mem_RTL(unsigned lowAddr,unsigned highAddr,

unsigned mem_size, char *mem_path);

Figure 4.6: RTL local memory class diagram

4.3.3 Multiple BRAMs

One way to make it possible for multiple BRAMs to be connected to the processor,

is to simply share all the communication signals with all the slaves. However, this

would mean that there would be some signals with multiple drivers, and that the

wrapper will not be able to select a specific BRAM to communicate with. At the

same time, since the BRAM only acts when an address strobe is detected, then

it would be possible to share all the other channels going into the BRAM and

have exclusive address strobes. The required address strobe would then be chosen

according to some sort of address decoding to address only the correct BRAM.

The reply signals from the BRAMs also cannot be shared because this will mean

Chapter 4. Design 28

ISS Wrapper
DataAddr

DWrite
D_En(0)
D_En(1)

D_WEn(0)
D_WEn(1)
DRead(0)

DREADY(0)
DRead(1)

DREADY(1)
.
.
.

Local Memory
1

Addr
Din
En

WEn

Dout
DREADY

PORTB

Local Memory
2

Addr
Din
En
WEn
Dout
DREADY

PORTB

Figure 4.7: Simplified RTL Model including only the processor and the local mem-

ories

that they would have multiple drivers which would cause conflicts at every memory

access. Therefore the ISS wrapper would have to have separate inputs for each

BRAM. The wrapper then waits for the reply from the input selected from the

address decoding process done in the previous stage as demonstrated in Figure 4.7.

4.4 TLM Modeling

To transfer to TLM, only the communication techniques has to be altered. Instead

of counting on the input and output signals in connection with the BRAM to read

and write data to the memory, the wrapper (Master) needs to call internal methods

in the BRAM (Slave) to carry out the required function. The processor uses sc ports

that implement an sc interface class LMB if to communicate with the BRAM. The

BRAM on the other hand has sc exports that also implement the interface LMB if.

BRAM exports are bound to the processor ports to enable the method calls inside

the BRAM class. The transformation is then completed by replacing all the output

port assignments and input port readings of the RTL system to some method calls.

For example the code for an RTL request to write some data (wData) to a specific

memory address (addr) would be as follows:

po_addrStrobe.write(true);

po_writeStrobe.write(true);

po_dataWrite.write(wData);

po_addr.write(addr);

Chapter 4. Design 29

Figure 4.8: TLM system

ISS_Wrapper_TLM
+ sc_in <bool> clk
+ sc_in <bool> rst
-sc_signal <bool> si_IF, si_ID, si_EX, si_MEM
-bool m_stall
+unsigned ident

+sc_port<ILMB_if> ILMB_port
+sc_port<DLMB_if> DLMB_port

-MicroBlazeIss ISS

- void seq_proc()
-void end_of_elaboration()

Figure 4.9: TLM ISS wrapper class model

Chapter 4. Design 30

The idea is to find a way to replace this whole code segment with a simple method

call that carries out the same function such as:

PORTX ->Write(wData , addr);

The method Write(data, addr) would then be defined inside the BRAM module

in order to carry out the required function. However, this only solves half of the

problem since the write transaction does not only consist of the the actual writing of

the data in an address, but it also has a reply phase. After the BRAM accomplishes

the required data access it assigns the “DReady” and “Data Read” signals as a sign

that the memory access is successful. So the other part for the transformation would

be to find a way to translate such a code segment into TLM:

if(pi_DReady.read())

iss.setDataResponse(pi_DRead.read());

4.4.1 TLM Memory Module

Local_Memory_TLM

+sc_export<ILMB_if> A_PORT

+sc_export<DLMB_if> B_PORT

-unsigned mem_size

-unsigned m_registers[mem_size]

+void writeI(unsigned addr, unsigned wdata,unsigned &data,
unsigned byteEnable)

+void readI(unsigned addr, unsigned &data)

+void writeD(unsigned addr, unsigned wdata,unsigned &data,
unsigned byteEnable)

+void readD(unsigned addr, unsigned &data)

-void load_BRAM()

Figure 4.10: TLM memory class diagram

The TLM memory module mainly consists of the memory array, and some

method definitions to carry out the read and write functions. There are two main

points to take into consideration while designing the TLM communication system.

The first point is to make sure that the same functionality of the RTL system is

achieved, and the second point is to ensure the correct timing of that action.

Chapter 4. Design 31

A simple way to model the correct read and write functionality would be to

provide a reference to a member variable inside the method call such as:

void read(unsigned address , unsigned &reply)

{

reply = MEM[address];

}

void write(unsigned data , unsigned address , unsigned &reply)

{

MEM[address] = data;

reply = MEM[address];

}

The memory would then set the required value to the reply such that the ISS

wrapper can read it. Such a solution would perform the correct function, however

the time that the wrapper receives the reply would be earlier than the case of

RTL modeling. Therefore a different implementation would be needed to achieve

the correct timing, one idea to achieve this is to create a sequential process in

the TLM memory module that checks if the methods have been accessed, and

somehow return the reply to the wrapper by calling other methods such as void

Acknowledge(unsigned &reply) that would be implemented in the wrapper class.

There is a property that can be used to reach a more efficient solution for mod-

eling the correct TLM timing; at any TLM memory access, it is always certain

that the method call has been done at a positive clock edge since it is called from

the wrapper sequential process. This means that it is possible to model a mem-

ory without any sequential processes and have the methods abide with the timing

requirements of the memory access. The idea is to store the reply in a temporary

member variable during the method call for the memory access itself, and during

the next method call, the reply would be provided for the ISS as follows:

void read(unsigned address , unsigned &reply)

{

reply = read_tmp_reply;

read_tmp_reply = MEM[address];

}

void write(unsigned data , unsigned address , unsigned &reply←↩
)

{

MEM[address] = data;

reply = write_tmp_reply;

write_tmp_reply = MEM[address];

}

This however means that the wrapper must guarantee that another method call is

made in the clock cycle following the memory request stage to achieve a complete

memory access.

Chapter 4. Design 32

LMB_if : sc_interface

+ virtual void READ(unsigned addr, unsigned &data)

+ virtual void WRITE(unsigned addr, unsigned WData, unsigned &data,
unsigned ByteEnable)

Figure 4.11: LMB if class diagram

4.4.2 Local Memory Bus Interface (LMB if)

The LMB interface class is responsible for providing the abstract methods that will

be called by the processor and implemented inside the BRAM. It simply defines the

method signatures for the required methods as shown in the class diagram in figure

4.11.

Chapter 5

Implementation

In this chapter, the final look of the designed system is demonstrated. It is divided

into: basic implementation then adding complexities such as optimizing the pipeline

structure, adding prefetch buffer, forwarding, stalling, branching and floating point

operations.

5.1 RTL ISS Wrapper

As shown in the design chapter, the ISS wrapper sequential process is divided into a

separate section for each pipeline stage, and each of those stages calls the respective

ISS method to carry out the pipeline function in the correct timing with the correct

inputs/outputs.

Listing 2.2 shows how to use the ISS in an untimed manner, the goal now is to

somehow transform this basic implementation, such that each instruction undergoes

each of the pipeline stages with a difference of one clock cycle between each of them.

In other words, this means that registers can be placed between each ISS call such

that those registers control the data-flow of the pipeline and provide a clock cycle

difference between each pipeline stage.

5.1.1 Register Modeling

A register is the most important component in an RTL model, there are several

ways to model a register in SystemC. The most straight forward approach would

be to define a module Register that consists of pi enable and pi input input signals

and po output output signal. Internally there would be a process that gets invoked

at every positive clock edge, inside this process an output signal can be assigned to

an input value if the enable is true. This way the value of the output only changes

at the clock positive edges; thus modeling a register.

//class Register : sc_module

void seq_proc () // SC_METHOD sensitive <<clk.posedge ()

{

if(pi_enable)

po_output.write(pi_input);

}

This idea however can be inherited and used inside the other classes of the

system to enable the usage of the concept of a register without having to have a

separate entity for each intermediate register value needed. This is achieved using

33

Chapter 5. Implementation 34

sc signals that are invoked inside a sequential process as shown in the background

chapter.

Another way to model a register is to replace the sc signals with the (simpler

in terms of memory and simulation time) local member variables. Members vari-

ables get updated directly at the time of assignment, this means that modeling of

the register will require a little more complexity in coding to make sure that the

assignment occurs only at the end of the process after all the variable usages have

been performed.

5.1.2 ISS Basic Timed Implementation

This section will show how to transform the untimed ISS operation into a correctly

timed 5-stage pipeline. Each stage will be discussed separately and will later be

interconnected together as blocks for simplicity.

5.1.2.1 Instruction Fetch

During IF, the target is to set the output signals to the instruction BRAM with

the current PC. The PC is already available inside the ISS therefore the wrapper

should first call the getInstructionRequest(m IValid, m InstrAddr) method in the

ISS to find out whether there is a valid instruction request, and the required PC

to be fetched. If the request is valid, the wrapper then sets the output ports

accordingly. Otherwise, the address strobe and the IFetch signals should be set to

false to indicate that no instruction is currently requested as shown in Listing 5.1.

Listing 5.1: Basic instruction fetch code

iss.getInstructionRequest(m_IValid , m_InstrAddr);

po_addrStr.write(m_IValid);

po_IFetch.write(m_IValid);

po_DataAddr.write(m_InstrAddr);

However, to apply this implementation, modifications should be made to the ISS;

because the getInstructionRequest() originally just forwards the internal PC with-

out incrementing it. This means that for the first three cycles of an application run,

it will keep returning the same PC until the first instruction reaches the EX stage to

update the PC. A way to solve this would be to define a new variable fetch pc that

is independent from the normal PC r pc, and modify the getInstructionRequest()

method so that it provides the wrapper with that fetch pc and increment it by four

at each IF call as shown in Listing 5.2 as is the case in any typical pipelined pro-

cessor. In case a branch has been taken, the method detects that and returns the

branch destination r npc calculated inside the step() method. At the same time, it

also synchronizes the fetch pc to the same value and increments it by four again for

the next instruction fetch.

Chapter 5. Implementation 35

Listing 5.2: Modified getInstructionRequest method code

void MicroBlazeIss :: getInstructionRequest(bool &req , ←↩
uint32_t &address)

{

req = true;

if(m_branch)

{

address = r_npc;

fetch_pc = r_npc;

}

else

address = fetch_pc;

fetch_pc = fetch_pc +4;

}

When a stall occurs, the IF should be stopped. Therefore, further conditions

for actually accessing the IF stage are present, and will be discussed with the stall

functionality in the optimizations section.

5.1.2.2 Instruction Decode

In any typical pipelined processor, ID occurs in a unit that is separate from the

EX. However, the ISS performs the real decoding process inside the EX method call

step(). For this reason, an identical modeling of the ID stage will not be possible

using the given ISS, it would not be feasible to store the intermediate operands

and opcodes in actual intermediate registers to be forwarded to the EX like the

HW processor structure. The operands will be read from the GPR directly while

the instruction is being executed, and the ALU result is also directly written into

the GPR while EX, which is also different from the HW structure. Therefore,

another way has to be found to model a one cycle delay between the IF and EX

in the pipeline. Another method is offered by the ISS that can fit in this stage;

setInstruction(bool IFerror, unsigned Instr) is used to provide this intermediate

stage between IF and EX and will be considered to be the ID stage of our system,

where we simply feed a new instruction into the ISS.

ID therefore checks for pi IReady signal, which notifies the processor that there

is a new reply from the instruction memory with a new instruction to be decoded.

In the case where pi IReady is true, ID feeds the instruction in pi Instr to the ISS

by calling iss.setInstruction(false, pi Instr.read()).

Listing 5.3: Instruction Decode code segment

if(pi_IReady.read())

{

iss.setInstruction(false ,pi_Instr.read());

si_ID.write(true);

}

else

si_ID.write(false);

Chapter 5. Implementation 36

5.1.2.3 Instruction Execution

On the ISS wrapper side, EX is quite simple. The whole idea is to check if there

is a valid decoded instruction, and if this is true, iss.step() is called and the flag

m EX is set to true to declare that a valid EX stage has occurred so the MEM can

start. Otherwise both flags are set to false.

Listing 5.4: Basic EX stage code segment

if(si_ID.read())

{

m_EX = true;

iss.step();

}

else

m_EX = false;

5.1.2.4 Memory Access

MEM stage first checks if a valid EX had occurred, if so it calls the getDataRequest()

method to see if a memory access is required and then sets the memory access

signals accordingly. The m DType defines whether the instruction request is a read

or a write, and whether it is for a word, byte or a half word to select the Byte

Enable(BE) signals. BE is a four bit value that selects which parts of the memory

word are accessible, there are three options for the BE setting: 1000 means that

the target is the most significant byte in the destination address, 1100 targets the

most significant half word (two bytes) and 1111 targets the whole word.

iss.getDataRequest(m_DReqValid , m_DType , m_DAddr , m_WData←↩
, m_r_mem_dest);

if(m_DReqValid)

{

po_D_AS.write(true);

po_Data_Addr ->write(m_DAddr);

po_Data_Write ->write(m_WData);

switch (m_DType)

{

case WRITE_BYTE :

po_Byte_Enable ->write(0x8); //0xC for WRITE_HALF , ←↩
and 0xF for WRITE_WORD

po_Read_Strobe ->write(false);

po_Write_Strobe ->write(true);

break;

.

.

case READ_BYTE:

po_Byte_Enable ->write(0x8); //0xC for WRITE_HALF , ←↩
and 0xF for WRITE_WORD

po_Read_Strobe ->write(true);

Chapter 5. Implementation 37

po_Write_Strobe ->write(false);

break;

.

.

}

}

else

{

po_D_AS.write(false);

}

}

5.1.2.5 Write Back

WB continuously checks for a pi DReady signal from the memory. When it is true,

the setDataResponse() method is called using the data from the pi DRead signal

which contains the actual data returned from the BRAM.

if(pi_DReady.read())

{

iss.setDataResponse(pi_DError.read(), pi_Data_Read.read()←↩
, si_DType.read(), si_r_mem_dest.read());

}

5.1.3 Adding Complexities

5.1.3.1 Address Decoding

The address decoding idea is quite simple, the goal is to check the address that

should be accessed, and determine which slave (BRAM) to forward the correct

memory access signals to. To achieve this, the wrapper can get the important details

like the number of slaves connected to it, and the starting and ending addresses of

each of those slaves. Then, whenever a memory access is requested, the wrapper

compares the address with the list of high and low addresses of each slave to see

where it should be forwarded. The chosen slave number has to be somehow be

stored and maintained for at least 1 clock cycle because the slave will be replying

in the following clock cycle, and the wrapper needs to know which slave it should

be reading from. As shown in listing 5.5, the wrapper iterates on all the slaves to

match the current requested address m InstrAddr with one of the slaves, and sets

the required slave to a variable m req slave and a signal si req slave, the variable is

used right away to set the address strobe signal to the respective BRAM, and the

signal will be used in the following clock cycle during ID to select the correct “Data

Ready” to wait for. This means that all the output address strobes and input data

ready’s and data read’s are not single ports but are array of ports (multiports) to

enable simple address decoding.

Chapter 5. Implementation 38

Listing 5.5: Address decoding for instruction memory accesses

for(int i= 0; i< m_Num_Slaves ; i++)

{

if(m_InstrAddr <= m_HighAddr[i] && m_InstrAddr >= ←↩
m_LowAddr[i])

{

m_req_Islave = i;

si_req_Islave.write(i);

}

}

po_IFetch ->write(true);

po_I_AS[m_req_Islave]->write(true);

po_Instr_Addr ->write(m_InstrAddr);

5.1.3.2 Pipeline Optimization

Typically, the wrapper would normally be in the traditional ordering of the pipeline

with the IF at the beginning and the WB at the end. However, if this is done, the

processor will not function correctly. The reason for this is that for example if the

ID is done before the EX, then at each clock cycle, the ISS will get the instruction

decoded and executed in the same clock cycle while the previous instruction might

not be executed at all. Therefore for correct functionality of the pipeline using

the given ISS, the pipeline has to be in a reversed order: WB → MEM → EX →
ID → IF. This way, the instruction decoded in a clock cycle, will be executed in

the following clock cycle, and so on for all the pipeline stages. However, another

modification is needed because by monitoring the waveforms of the VHDL systems,

it turns out that the EX and MEM for each instruction occur in the same clock

cycle, i.e. the memory access signals are activated at the clock edge where the

instruction is actually executed. For this reason, the link between EX and MEM

stages would have to be altered to match the VHDL behavior, in this case the signal

declaring that a valid instruction has been executed can be a member variable m EX

instead of a signal si EX, and the MEM stage would be placed at the end of the

code for simplicity. Therefore, the correct order is actually WB → EX → ID → IF

→ MEM

5.1.3.3 Prefetch Buffer

The MicroBlaze processor contains a prefetch buffer, which simply resembles a 16-

Byte (4-instruction) wide FIFO channel. This FIFO channel can be located in the

ID stage, which means that the ID will be divided into two separate stages: pushing

the fetched instruction into the prefetched bufffer, and the other stage will perform

the actual decoding; this stage will check if the FIFO has any instructions, if so then

the instruction at the beginning of the FIFO is decoded using the iss.setInstruction

method. Both stages need to be completely separable because they will need to be

placed at different parts of the code when the stalling mechanism is introduced.

Chapter 5. Implementation 39

if(pi_IReady[si_req_Islave]->read())

{

fifo.push(pi_Instr[si_req_Islave]->read());

}

if(!fifo.isEmpty ())

{

iss.setInstruction(pi_IError[si_req_Islave]->read(),←↩
m_Instr);

si_ID.write(true);

}

else

si_ID.write(false);

5.1.3.4 Branch Handling

The decision of whether a branch is taken or not is done when the branch instruction

is in the EX stage. This means that in the case where the branch is taken, two

unwanted instructions are already in the pipeline stages ID and IF. The instruction

inside the ID is automatically flushed inside the ISS because the step function is

designed to detect that a branch (with no delay slot) is taken, and sets a flag

m cancel that cancels the EX of the following instruction by not returning from the

step function before the actual execution as shown in Listing 5.6.

Listing 5.6: Part of the step() function responsible for flushing the instruction

following a taken branch

void MicroBlazeIss ::step(void)

{

if (m_cancel) {

m_cancel = false;

r_pc = r_npc;

r_npc = r_pc + 4;

return;

}//rest of the step() method

}

The other instruction that needs special handling is therefore the instruction that

is already in the IF and waiting to be decoded. The goal is to find a way to detect

that this instruction is an unwanted instruction and therefore disable the ID at

that clock cycle; thus flushing the instruction. One way to detect that this is an

unwanted instruction is to use the address of each instruction; typically (with no

branches) the addresses should be consecutive which means that if the instruction

currently in the EX stage has address x, then the instruction in ID should have

address x + 4 and that in the IF will have address x + 8. However, when a branch

occurs, the order of addresses is altered. This means that the ID will for example

contain an instruction with address x and the current PC that needs to be fetched

will show the branch target which is something that is not x + 4. This technique

Chapter 5. Implementation 40

can therefore be used to detect that a branch had occurred, the idea is therefore to

keep track of the PC from the last clock cycle in a variable m old pc for example,

and compare it with the current PC m InstrAddr that is currently used by the IF

and see if m InstrAddr is not equal to m old pc + 4. If this is true, a flag is declared

to notify the ID to not accept the instruction that is currently being forwarded from

the IF stage. The code would then be :

// in ISS_Wrapper class

m_flush_branched = (m_InstrAddr !=(m_old_pc + 4));

This approach however has a flaw that could cause it to fail in some cases;

namely when a branch is taken, but the branch target points to 3 instructions

after the branch instruction itself such as Bri 12. Such an instruction would cause

consecutive instruction fetches to occur, because assuming the Bri instruction is at

address x, instructions x + 4 and x + 8 will be fetched like the case in any other

branch instruction. The difference here is that the next instruction to be fetched

will be the branch target itself which is x + 12. This means that m old pc will

be equual to x + 8 and m InstrAddr will be equal to x + 12 so m flush branched

would remain false. This would lead to the instruction at x + 8 mistakenly being

forwarded to the ID and the rest of the pipeline stages, although it should have

been flushed. A possible solution to work around this single case exception would

be to introduce a new flag to the ISS which is set to true when a branch is taken

with a branch target next pc equal to r pc + 12.

// in ISS class

p_m_branch_anyway = branch && (next_pc == r_pc + 12);

Finally, the ID checks for these two flags (m branch anyway and m flush branched)

and if either of them is true, ID is not accessed and si ID is set to false so that a

bubble inside the pipeline is modeled.

5.1.3.5 Forwarding and Stalling

Normally, forwarding occurs in a processor when the up-to-date value of one of the

operands for an instruction is in one of the pipeline registers instead of the GPR.

In this case the EX has to take this up-to-date value instead of the value provided

by the ID. A typical example that would cause this case to occur is:

ADD R2, R1, R0

ADD R3, R2, R5

Due to the architecture of the ISS, forwarding does not need any extra complex-

ity since the GPR gets updated directly after each instruction execution. Therefore,

a destination operand can be accessed using the following instruction or any other

one afterwards.

The other data dependency that does need special handling is the data depen-

dency of a Load instruction destination for example:

LWi R1, R0, 0

ADD R3, R1, R2

Chapter 5. Implementation 41

In this case, there is no way the ADD instruction can get the correct value

for operand R1 in the cycle following the LW EX cycle. Therefore, a stall has

to occur; a stall is when the initial pipeline stages (IF, ID and EX) are halted

until a data memory access has been completed. The straight forward approach

to implement the stall technique would be to detect the dependency during the ID

phase (of the ADD instruction in this example). At this clock cycle, the LW will

have been executed, and the ADD will have been already decoded. In the next

clock cycle however, the IF, ID and EX stages should be halted. Therefore, an if

statement can combine the three stages and check for the si Dependency signal,

if it is true, then those stages would not be accessed to give a chance for the

memory access to be completed. However, a problem arises when this technique

is implemented in comparison with the VHDL reference system. For some reason,

the stall functionality occurs just as discussed here, but the IF halt is delayed by

one clock cycle. When the dependency is detected, ID and EX are stalled at the

following clock cycle, but the IF is stalled two cycles after that. This needed to

be handled manually, so another sc signal (si was stalled) was defined, which is

a one-cycle delayed version of the si Dependency signal. The IF then uses this

si was stalled to check for stalls.

Listing 5.7: Stalling functionality

if(! si_Dependency.read())

{

// Normal INSTRUCTION EXECUTE as in listing 5.4

// INSTRUCTION DECODE

m_flush_branched = (m_InstrAddr !=(m_old_pc + 4));

si_ID.write(false);

if(!fifo.isEmpty () && !m_flush_branched && !←↩
m_local_branch_anyway)

{

m_Instr = fifo.view();

if(((m_Instr & 0xD0000000) == 0xC0000000) // Load ←↩
Instruction

{

si_Load.write(true);

si_Load_destination.write((m_Instr & 0x03E00000) >>21)←↩
; // put Rd in the least signif.

}

else

si_Load.write(false);

if(si_Load.read())

{

RaDep = (((m_Instr & 0x001F0000) >> 16) == ←↩
si_Load_destination);

RbDep = ((((m_Instr & 0x0000F800) >> 11) == ←↩
si_Load_destination) && !(m_Instr & 0x20000000));

SwDep = ((((m_Instr & 0x03E00000) >> 21) == ←↩
si_Load_destination) && ((m_Instr & 0xD0000000) ←↩

Chapter 5. Implementation 42

== 0xD0000000));

if(RaDep || RbDep || SwDep)

si_Dependency.write(true);

}

}

}

else

si_Dependency.write(false);

// Instruction Fetch

if(! si_was_stalled.read())

{

iss.getInstructionRequest(m_IValid , m_InstrAddr);

if(m_IValid)

{

po_DataAddr.write(m_InstrAddr);

po_addrStr.write(true);

po_IFetch.write(true);

}

else

{

po_addrStr.write(false);

po_IFetch.write(false);

}

}

si_was_stalled.write(si_Dependency.read());

The other exception that needs to be manually handled is the case of double

stalls, where two consecutive Load instructions are dependent on each other fol-

lowed by another dependency such as:

LWi R1, R0, 0

LWi R2, R1, 4

ADD R4, R2, R3

Handling this case gets rather complex because the VHDL system response to

that case is rather strange. As an example, Figure 5.1 demonstrates a waveform

segment of the ILMB and DLMB signals of the VHDL system while executing the

following instructions:

1b4: e82006b4 lwi r1, r0, 1716

1b8: e8410000 lwi r2, r1, 0

1bc: 20620001 addi r3, r2, 1

1c0: 10600000 addk r3, r0, r0

1c4: 10330000 addk r1, r19 , r0

1c8: ea610004 lwi r19 , r1, 4

When applying typical forwarding and stalling concepts such as those discussed

in [12], handling of such a sequence of instructions is expected to be different than

what is shown in Figure 5.1. Figure 5.2 shows a typical scheduling technique for

Chapter 5. Implementation 43

ilm
b

00
00

0.
..

00
00

01
...

00
00

01
C

0
00

00
01

C
4

00
00

01
C

4
00

00
01

C
8

00
00

...

E
82

00
...

E
84

10
00

0
20

62
00

01
10

60
00

00
10

33
00

00
E

A
61

...

00
00

00
00

dl
m

b

00
00

0.
..

00
00

0A
...

00
00

06
B

4
00

00
00

00
B

80
80

05
1

00
00

...

00
00

0.
..

00
00

00
00

B
80

80
05

0

00
00

00
00

00
00

0A
B

C
00

00
05

A
0

F
F

F
F

F
F

F
F

F
8

F
4

8

24
00

00
0

ps
24

40
00

0
ps

ilm
b

sy
s_

cl
k_

pi
n

lm
b_

rs
t

lm
b_

ab
us

00
00

0.
..

00
00

01
...

00
00

01
C

0
00

00
01

C
4

00
00

01
C

4
00

00
01

C
8

00
00

...

lm
b_

re
ad

st
ro

be

lm
b_

w
rit

es
tr

ob
e

lm
b_

ad
dr

st
ro

be

lm
b_

re
ad

db
us

E
82

00
...

E
84

10
00

0
20

62
00

01
10

60
00

00
10

33
00

00
E

A
61

...

lm
b_

w
rit

ed
bu

s
00

00
00

00

lm
b_

re
ad

y

dl
m

b

lm
b_

rs
t

lm
b_

ab
us

00
00

0.
..

00
00

0A
...

00
00

06
B

4
00

00
00

00
B

80
80

05
1

00
00

...

lm
b_

re
ad

st
ro

be

lm
b_

w
rit

es
tr

ob
e

lm
b_

ad
dr

st
ro

be

lm
b_

re
ad

db
us

00
00

0.
..

00
00

00
00

B
80

80
05

0

lm
b_

w
rit

ed
bu

s
00

00
00

00
00

00
0A

B
C

00
00

05
A

0
F

F
F

F
F

F
F

F

lm
b_

re
ad

y

lm
b_

be
F

8
F

4
8

E
nt

ity
:s

m
al

l_
xi

l
A

rc
hi

te
ct

ur
e:

st
ru

ct
ur

e
 D

at
e:

 W
ed

 M
ar

 2
0

02
:0

7:
23

 A
M

 C
E

T
 2

01
3

 R
ow

: 1
 P

ag
e:

 1

Figure 5.1: VHDL waveform of the double stall case

Chapter 5. Implementation 44

1b4 lwi R1, R0, 1716 IF ID EX MEM WB

1b8 lwi R2, R1, 0 IF ID STALL EX MEM WB

1bc Addi R3, R2, 1 IF STALL ID STALL EX MEM WB

1c0 Addk R3, R0, R0 STALL IF STALL ID EX MEM WB

1c4 Addk R3, R19, R0 STALL IF ID EX MEM WB

1c8 lwi R19, R1, 4 IF ID EX MEM WB

Figure 5.2: Pipeline scheduling for a double stall case showing the forwarding pro-

cedure

dealing with the double stall case, where each dependent instruction delays its EX

until the WB of the previous instruction is complete. This scheduling however is

inconsistent with the waveforms shown in Figure 5.1. The inconsistencies are:

1. First, the start of the stall is shown by canceling the lmb addrstrobe of the

ILMB (top section) at around 2410 ns after fetching instruction 1C4, unlike

Figure 5.2 where the stall is declared after fetching instruction 1CO. This case

has been mentioned before in the single stall case, where it was shown that

the IF gets stalled one clock cycle after the ID and EX have been stalled.

2. The second difference is that the stall is continuous; for four clock cycles

there has been no instruction fetched, although it should be expected that

sometime during the stall, the first dependent instruction lwi r2, r1, 0 at 1B0

has been executed so the EX unit becomes free. This means that the pipeline

can proceed for at least one clock cycle meaning that a new instruction can

be fetched as shown in Figure 5.2. However, this is not the case, and the stall

state is continuous.

3. The third difference is that the stall takes four clock cycles. This can be

justified from the waveforms by observing the DLMB (bottom section) signals.

It is shown in the waveforms that the first (independent) memory access

is initiated at around 2390 ns by assigning the address 6B4 to the DLMB

lmb addrbus and setting the read strobe and address strobe to true. In the

following clock cycle, the response arrives (shown by true lmb ready). In the

typical case, forwarding should now occur to provide the EX of instruction

1B8 with the result of WB of instruction 1B4 to be used as an address for the

new memory access as demonstrated in 5.2. Nevertheless, the waveforms show

a cycle difference between the response of instruction 1B4 and the request of

1B8. This can be explained by a different concept of forwarding, where the

WB result of 1B4 is forwarded to the ID of 1B8. Applying this approach

can explain this behavior as demonstrated in Figure 5.3 which performs the

forwarding to ID instead of EX. Even though using this forwarding explains

this cycle difference, inconsistencies 1 and 2 are still available between the

scheduling in Figure 5.3 and the waveforms in Figure 5.1.

Chapter 5. Implementation 45

Therefore, since it is obviously quite complex to reach a scientific solution to

match the VHDL behavior, the behavior of the double stall case is modeled as a

special case with some extra flags to explicitly carry out the same behavior as the

VHDL model. This is achieved in several stages. First, a new signal si was stalled2

1b4 lwi R1, R0, 1716 IF ID EX MEM WB

1b8 lwi R2, R1, 0 IF STALL STALL ID EX MEM WB

1bc Addi R3, R2, 1 STALL STALL IF STALL STALL ID EX MEM WB

1c0 Addk R3, R0, R0 STALL STALL IF ID EX MEM WB

1c4 Addk R3, R19, R0 IF ID EX MEM WB

1c8 lwi R19, R1, 4 IF ID EX MEM WB

Figure 5.3: Pipeline scheduling for a double stall case showing a different forwarding

handling technique

is defined that gets its value from si was stalled. This means that si was stalled2

signal is a 2-cycle delayed version of si Dependency stalling signal. Whenever a new

dependency is detected, si was stalled2 is checked and if it is true, this would mean

that this is a double stall case so a flag m double stall is set to true aside from

the normal stall procedure. This m double stall is then used to extend the stall

with one extra clock cycle, and at the same time disable the intermediate fetching

process discussed above in order to match the same VHDL behavior.

5.1.3.6 Floating Point Unit (FPU)

The main problem faced while modeling a floating point unit is how to handle the

timing properties. Most of the floating point instructions take more than one clock

cycle to be executed. This means that the pipeline structure needs to modified to

accommodate this difference in execution. The other problem, is that the available

ISS does not handle floating point instructions, so they first need to be added to

the ISS before dealing with the wrapper to fix the pipeline operation.

The MicroBlaze FPU is based on the IEEE 754-1985 standard [31]. It uses the

single precision floating point format; which consists of:

1. One sign bit (bit 0).

2. Eight bits for a biased exponent (bits 1 to 8).

3. 23 bits for the fraction (mantissa) part (bits 9 to 31).

The FPU register values can define infinity, Not-a-Number(NaN), zero and normal

floating point values. A register value v can be interpreted as follows:

− If exponent = 255 and fraction <>0, then v= NaN, regardless of the sign bit.

− If exponent = 255 and fraction = 0, then v= (-1)sign * ∞.

Chapter 5. Implementation 46

− If 0 <exponent <255, then v = (-1)sign * 2(exponent-127) * (1.fraction).

− If exponent = 0 and fraction <>0, then v = (-1)sign * 2-126 * (0.fraction).

− If exponent = 0 and fraction = 0, then v = (-1)sign * 0.

The instructions supported by the MicroBlaze FPU are: addition, subtraction,

multiplication, division, comparison, conversion and square root instructions. A

pseudo code is provided in [31] for each instruction separately and is simply trans-

lated to SystemC and placed in the switch statement inside the ISS::step() function.

The actual operation (addition for example) is easier to be done in the C/C++ float

data type. Therefore, the operands from the GPR are first converted to float data

types, then the operation is performed to produce another float type result which

is finally converted back to the single precision unsigned value to be stored in the

GPR. Transformation between the unsigned data type of the GPR to the floating

point values is done using the type casting reinterpret cast command as follows:

float flt_Rb = *reinterpret_cast <float*> (&r_gpr[ins_rb]);

unsigned uint_Rb = *reinterpret_cast <unsigned*> (& flt_Rb);

As mentioned above, execution times vary from one floating point instruction to

the other. The ISS wrapper needs be notified with the instruction being executed

in order to fix the number of cycles which the pipeline will be halted for. The idea

is to set a public variable unsigned floatIns inside the ISS, which can be checked

by the ISS wrapper after each call for the step() function. The value of floatIns is

normally set to zero, which resembles that a normal single-cycle instruction has been

executed. Otherwise a value other than zero is set. Execution times for floating

point instructions can be divided into four collective groups:

1. 4-cycle instructions: Includes most of the instructions like: FADD, FRSUB,

FMUL and FLT.

2. 5-cycle instructions: Includes FINT instruction.

3. 27-cycle instructions: Includes FSQRT instruction.

4. 28-cycle instructions: Includes FDIV instruction.

5. 1-cycle instructions: Includes FCMP instruction.

Group five needs no special assignment to floatIns since it can be considered as

normal non-floating point instruction, so the floatIns remains zero. For the rest

of the groups, floatIns is set to a different value for each group (one to four for

example) to notify the wrapper which delay time to enforce.

By this the ISS part for handling the FPU is complete, the rest of the func-

tionality is achieved by the wrapper. The idea now is check the iss.floatIns at the

end of each EX stage and act accordingly. Listing 5.8 demonstrates how it is done,

an extra case is added other than the four groups shown above, this case is for the

integer divide (IDIV) instruction that takes 32 cycles for execution and is handled

Chapter 5. Implementation 47

the same way as a floating point instruction. The goal of this code segment is to set

a flag float stall to true that performs a similar function as si Dependency which

is stopping the ID and EX stages. An unsigned variable m float delay is also set

(based on the type of the instruction), which acts as a counter for the stalling pro-

cess. This means that every clock cycle the pipeline is stalled due to the float stall

flag, this counter is decreased by one. When the counter finally reaches zero, the

pipeline is resumed by setting float stall to false as demonstrated in Listing 5.9.

Listing 5.8: Detection of the floating point instructions in the ISS wrapper

// normal EX stage code

iss.step();

if(iss.floatIns >0)

{

float_from_stall = m_was_stalled2.read();

float_dest = iss.m_ins_rd;

float_stall = true;

switch(iss.floatIns)

{

case 1 :

m_float_delay = 4;

break;

case 2 :

m_float_delay = 28;

break;

case 3 :

m_float_delay = 5;

break;

case 4 :

m_float_delay = 27;

break;

case 5 : //IDIV instruction

m_float_delay = 32;

break;

}

Typically, no modifications should be done to the IF stage since the prefetch buffer

should keep fetching until it is full. However, as is the case with the normal stalls

discussed earlier, the IF in the VHDL behaves in a strange way when the stall is

over, and this is handled explicitly using the m neglect fetch float flags that control

when the IF starts fetching again to exactly match the VHDL behavior.

Listing 5.9: Handling the float stall case

if(! si_Dependency.read() && !float_stall)

{

// EX stage

// ID stage

}

else

{

Chapter 5. Implementation 48

if(si_Dependency)

si_Dependency.write(false);

if(float_stall)

{

m_float_delay --;

float_stall = (m_float_delay > 0);

if(m_float_delay == 0)

{

float_stall = false;

m_neglect_fetch_float = true;

if(! float_from_stall)

m_neglect_fetch_float2 = true;

}

}

}

5.2 RTL Memory Module

The memory contains two almost identical ports to separate between instruction

memory access (PORT A) and data memory access (PORT B). At each clock edge,

the memory checks for address strobes. If a high address strobe is detected, it checks

the read and write strobes for that port. If it is a read request, the memory then

returns the value of the memory register given by the address signal. On the other

hand if it is a write request, then the memory writes into the memory address given

by pi addr the value given by pi WData, then it gives as an output the content of

that same memory address.

#define enable_8 0xFF000000

#define enable_16 0xFFFF0000

// sequential process

if(PORTA_AddrStrobe ->read())

{

if(PORTA_WriteStrobe ->read())

{

tmp_reg = m_registers[PORTA_Abus ->read()];

switch(PORTA_BE ->read())

{

case(0x8):

tmp_reg = (tmp_reg & ∼enable_8) | (PORTA_WDbus ->←↩
read() & enable_8);

break;

case(0xC):

tmp_reg = (tmp_reg & ∼enable_16) | (PORTA_WDbus ->←↩
read() & enable_16);

break;

case(0xF):

tmp_reg = PORTA_WDbus ->read();

Chapter 5. Implementation 49

break;

}

m_registers[PORTA_Abus ->read()] = tmp_reg;

}

PORTA_Dout ->write(m_registers[PORTA_Abus ->read()]);

PORTA_DREADY ->write(true);

}

else

PORTA_DREADY ->write(false);

//exact code repeated for PORTB

5.2.1 BRAM Initialization

For BRAM initialization, a systematic way to transform the (.elf) file application

written using the EDK tool into a SystemC array of instructions is to be found.

Upon compilation, EDK automatically produces (.elf) files from the main.c C-

file containing the application. XPS then uses that (.elf) file to develop a VHDL

initiation file that initializes the VHDL BRAMs. A similar approach can be made

to transform the (.elf) file into a simple series of instructions and corresponding

addresses using the Data2MEM command. This command has the capability to

produce a (.mem) file looking like the output shown in Listing 5.10. As shown in

the listing, the (.mem) file is divided into several records. At the beginning of each

record is the symbol ’@’ followed by the first address in that record. In the following

line the instructions are written consecutively in hexadecimal format with a space

between each byte.

Listing 5.10: (.mem) file used for BRAM initialization

// Program header record #0, Size = 0x4 , at 0x00000000 to 0←↩
x00000003.

@00000000

B8 08 00 50

// Program header record #1, Size = 0x4 , at 0x00000008 to 0←↩
x0000000B.

@00000008

B8 08 01 D4

.

.

.

// Program header record #4, Size = 0x54A , at 0x00000050 to←↩
0x00000599.

@00000050

31 A0 06 B8 30 40 05 A0 30 20 0A D0

The goal now is to read this (.mem) file, separate each instruction on its own and

calculate the respective address of that instruction to store in in the BRAM memory

array. What also needs to be taken into consideration is that all the information

Chapter 5. Implementation 50

extracted from such a file are strings, so they need to be converted accordingly to

unsigned data types.

5.3 TLM Memory Module

As mentioned in the Design chapter, the idea is to replace the sequential process

and in/out ports with method calls to carry out the same functionality with the

same timing. It is also mentioned that some kind of register is modeled inside those

methods, such that when a request is made, the correct reply is only available at

the following method call (following clock cycle) in order to model the exact timing

of the RTL model. What also needs to be correctly timed, is when exactly the

data is written in the memory array by the write() function. In the RTL model,

the wrapper sets the write strobe and write data signals, and they are received and

used by the BRAM only in the following cycle. Therefore, to achieve a CA TLM

model, the actual writing to the BRAM content in TLM cannot be done inside the

write() method itself, but in the clock cycle following the write() call. A way to

do this would be to set a flag inside the write() that declares that a write has been

requested, and keep the memory access details (address and write data) in some

shared variables. In the following cycle when read() is called, the actual update of

the memory array is done, and the result is forwarded back as a reply to the ISS

wrapper to have the exact timing behavior as the RTL model.

void local_mem_TLM :: writeD(uint32_t addr , uint32_t ←↩
wdata ,uint32_t &data , uint32_t byteEnable)

{

m_writingD = true;

m_writingDAddr = addr;

data = m_D_data;

switch(byteEnable)

{

case(0x8):

m_writingDData = (m_registers[addr] & ∼enable_8) | (←↩
wdata & enable_8);

break;

case(0xC):

m_writingDData = (m_registers[addr] & ∼enable_16) | (←↩
wdata & enable_16);

break;

case(0xF):

m_writingDData=wdata;

break;

}

m_D_data = m_writingDData;

};

void local_mem_TLM :: readD(uint32_t addr , uint32_t &data←↩
)

Chapter 5. Implementation 51

{

if(m_writingD)

{

m_writingD = false;

m_registers[m_writingDAddr] = m_writingDData;

}

data = m_D_data;

m_D_data = m_registers[addr];

};

5.4 TLM ISS Wrapper

The main difference between TLM and RTL systems is changing how the processor

communicates with the memory. So the goal to accomplish the transformation is to

maintain the same functionality and timing while replacing the output port signal

assignments with read and write method calls.

5.4.1 Instruction Fetch

The RTL IF is needs three clock edges to be completed, in the first clock edge,

the wrapper gets the PC, and forwards it to the memory with the correct strobe

signals. In the second clock edge, the BRAM gets the strobes and address, and sets

the reply signals containing the requested instruction. Finally, in the third clock

edge, the wrapper can read that instruction and use it for ID. To model this in

TLM we will need to explicitly define the three stages. In the first stage the readI()

method is called to notify the BRAM of the requested address. In the second stage,

simulation of the RTL BRAM reply is achieved by calling readI() again with a

dummy address just to get the reply from the request of the previous cycle. This

reply is then stored in an sc signal si tlm instr which would act as an exact model

for RTL’s pi Instr. In the third stage, this instruction will be fed into the prefetch

buffer to be used in that same clock cycle for ID.

// IF stage 3 : pushing the instruction into the prefetch ←↩
buffer

if(m_tlm_instr_requested)

{

fifo.push(si_tlm_instr.read());

m_tlm_instr_requested = false;

}

//IF stage 2 : getting the reply

if(si_IF.read())

{

ILMB_port ->readI(0, m_tlm_instr);

si_tlm_instr.write(m_tlm_instr);

m_tlm_instr_requested = true;

}

Chapter 5. Implementation 52

else

m_tlm_instr_requested = false;

//IF stage

iss.getInstructionRequest(m_IValid , m_InstrAddr);

if(m_IValid)

{

PORTA.readI(m_InstrAddr , m_tlm_Instr);

si_IF.write(true);

}

else

si_IF.write(false);

5.4.2 Memory Access

The idea of MEM stage transformation is similar to the IF, the goal is to divide the

procedure into different stages. Stage one gets the memory request properties from

the ISS and calls readD() or writeD() with the respective memory access details.

The second stage calls readD() again using a dummy address to notify the BRAM

to actually do the required action requested in the previous call, and then get the

reply. The reply is stored in an sc signal to be used in the WB stage.

// MEM stage 2

if(si_MEM.read())

{

DLMB_port[si_req_Dslave]->readD(0, m_tlm_data);

si_tlm_data.write(m_tlm_data);

m_tlm_data_requested = true;

}

else

m_tlm_data_requested = false;

// MEM stage 1

iss.getDataRequest(m_DReqValid , m_DType , m_DAddr , m_WData , ←↩
m_r_mem_dest);

if(m_DReqValid)

{

si_MEM.write(true);

switch (m_DType)

{

case WRITE_BYTE :

DLMB_port[m_req_Dslave]. writeD(m_DAddr , m_WData , ←↩
m_tlm_data , 0x8);

break;

.

.

case READ_BYTE:

DLMB_port[m_req_Dslave].readD(m_DAddr ,m_tlm_data);

Chapter 5. Implementation 53

break;

.

.

}

}

5.4.3 Write Back

WB simply checks m tlm data requested, and if it is true the data in si tlm data

signal is fed to the ISS along with the memory request details.

if(m_tlm_data_requested)

iss.setDataResponse(false , si_tlm_data.read(), si_DType.←↩
read(), si_r_mem_dest.read());

5.5 Interface Adapters

As shown in the literature review section, one way to verify TLM models is to

connect them to Transactors that transform the TLM interface into RTL signals

to facilitate the comparison with a reference RTL system. This concept can be

adopted in our system to enable more accurate testing capabilities as well as offering

more usability for both RTL and TLM systems by making it possible to connect

different modules from different abstraction levels in a single system. To achieve

this, adapters can be designed that are capable of transferring the TLM methods

into RTL signals, and also RTL signals into TLM methods. Therefore the possible

adapter modules that can be created would be:

− RTL-TLM: to connect an RTL wrapper instance to a TLM BRAM.

− TLM-RTL: to connect a TLM wrapper instance to an RTL BRAM.

− TLM-TLM: this adapter is only used for testing purposes as a mean to regen-

erate RTL signals from TLM systems.

5.5.1 RTL-TLM Adapter

The function of this adapter is to translate the memory access requests provided by

the ISS wrapper in the form of signal ports into method calls at the TLM memory

side. The code demonstrated in Listing 5.11 is similar to the RTL memory module

functionality. The difference is that instead of accessing its own memory array, it

calls TLM methods to the TLM memory module.

Listing 5.11: RTL-TLM adapter code

// sequential process

if(PORTB_AddrStrobe ->read())

if(PORTB_WriteStrobe ->read())

{

Chapter 5. Implementation 54

BRAM_B_PORT ->writeD(PORTB_Abus ->read(), PORTB_WDbus ->←↩
read(), tmp_RData , PORTB_BE ->read());

BRAM_B_PORT ->readD(PORTB_Abus ->read(), tmp_RData);

PORTB_Dout ->write(tmp_RData);

PORTB_DREADY ->write(true);

}

else

if(PORTB_ReadStrobe ->read())

{

BRAM_B_PORT ->readD(PORTB_Abus ->read(), tmp_RData);

BRAM_B_PORT ->readD(PORTB_Abus ->read(), tmp_RData);

PORTB_Dout ->write(tmp_RData);

PORTB_DREADY ->write(true);

}

5.5.2 TLM-RTL Adapter

This adapter translates TLM method calls from the ISS wrapper, to RTL signal

assignments for the RTL memory. Listing 5.12 is similar to the TLM memory

module, but instead of accessing local registers, it forwards the requests in the form

of RTL signals to the RTL memory module.

Listing 5.12: TLM-RTL adapter code

void writeD(uint32_t addr , uint32_t wdata ,uint32_t &data ,←↩
uint32_t byteEnable)

{

returningD = true;

po_Data_Addr ->write(addr);

po_Byte_Enable ->write(byteEnable);

po_Data_Write ->write(wdata);

po_D_AS ->write(true);

po_Write_Strobe ->write(true);

po_Read_Strobe ->write(false);

}

void readD(uint32_t addr , uint32_t &data)

{

if(returningD)

{

returningD = false;

po_D_AS ->write(false);

po_Write_Strobe ->write(false);

po_Read_Strobe ->write(false);

data = pi_Data_Read ->read();

}

else

{

returningD = true;

po_Data_Addr ->write(addr);

Chapter 5. Implementation 55

po_D_AS ->write(true);

po_Write_Strobe ->write(false);

po_Read_Strobe ->write(true);

}

}

5.5.3 TLM-TLM Adapter

As mentioned above, the TLM-TLM Adapter is only used for testing purposes to

verify the TLM system against the RTL system by regenerating the RTL signals

between the TLM processor and TLM memory. The code for this adapter is quite

simple; whenever a TLM method is called by the wrapper, it is forwarded exactly

the same way to the memory. Moreover, local dummy RTL registers are assigned

the same way as the TLM-RTL adapter. However, an extra problem needs to be

handled in this adapter that was not available in the previous ones; since there

is no sequential process inside this adapter, the TLM DReady response signals get

assigned to true whenever a memory response is available, and typically they should

remain true for only one clock cycle. However, having only TLM methods means

that there is no way that the adapter can know when to set the TLM DReady

signals back to false. Therefore an extra method cancelReadys() is defined to cancel

both TLM IReady and TLM DReady. This method should then be called at every

clock cycle by the wrapper in the beginning of the code. This way the ready signals

will only be set to true when a response occurs, and will be automatically set back

to false in the following clock cycle.

void writeD(uint32_t addr , uint32_t wdata ,uint32_t &data ,←↩
uint32_t byteEnable)

{

BRAM_B_PORT ->writeD(addr , wdata , data , byteEnable);

tlm_DataAddr = addr;

tlm_ReadStrobe = false;

tlm_WriteStrobe = true;

tlm_BE = byteEnable;

tlm_Data_Write = wdata;

tlm_D_AS = true;

returningD = true;

}

void readD(uint32_t addr , uint32_t &data)

{

BRAM_B_PORT ->readD(addr , data);

if(returningD)

{

tlm_Data_Read = data;

tlm_DReady = true;

tlm_D_AS = false;

tlm_ReadStrobe = false;

tlm_WriteStrobe = false;

returningD = false;

Chapter 5. Implementation 56

}

else

{

tlm_DataAddr = addr;

tlm_ReadStrobe = true;

tlm_WriteStrobe = false;

tlm_D_AS = true;

returningD = true;

}

}

void cancelReadys ()

{

tlm_DReady = false;

tlm_IReady = false;

}

Chapter 6

Results

6.1 Testing

Testing of any module or system can be done using two approaches. The first

one is to test the system on its own by feeding it some inputs and comparing the

internal values and the outputs to the expected responses for such an input. This

is usually a rather complex procedure because the programmer then has to design

test applications, and provide full tracing for the internal and output signals to act

as a validation reference. The second approach that is used for system testing is

comparing the DUT to a reference system that carries out the same function, and

is guaranteed to be working correctly.

It would be hard to fully test a processor functionality, especially when test

applications are generated manually as is the case in this work. For this reason test

applications used are confined to target specific internal details inside the processor

that are known to be relatively complex as those areas would be more likely to

have errors. Therefore the test applications tried on our system would mainly be

addressing:

− Some basic instructions like add, multiply, load and store instructions to test

the general functionality and timings of the system.

− Branching instructions with and without delay slots, including the “branch

anyway” case discussed in the implementation chapter.

− Forwarding on all levels.

− Stalls and double stalls.

− FPU functionality, including providing faulty operands (denormalized for ex-

ample).

− Byte access functionality.

From these requirements, two test applications were developed. The first one

(referred to as full test application) demonstrated in Listing A.1 is a long test

that lists all the possible intructions that are defined in the MicroBlaze processor.

The second test (referred to as the formal test application) is developed using the

requirements discussed above. The formal test aims to tackle the critical design

details such as stalling and branching.

57

Chapter 6. Results 58

6.1.1 RTL Vs. VHDL Testing

Unfortunately, the VHDL models designed by Xilinx are encoded in a way that

they can be simulated, but the internal signals cannot be viewed during simula-

tions. Therefore the only signals that can be viewed and compared to our models

for testing are the communication signals of the entity wrappers like the signals

between the processor and the LMB. Therefore, the RTL model can only depend

on the communication signals. A testbench system is then defined, that initializes

a SystemC RTL system consisting of a single processor and a single BRAM, along

with a VHDL system containing a processor, LMB, BRAM and a BRAM-LMB

interface controller. The testbench includes a sequential process that performs the

actual comparing of the internal signals of both systems. A problem might arise

if the process is sensitive to the positive clock edge like both MicroBlaze models,

because it is not guaranteed which process would run before the other therefore

the test might not work correctly. Therefore it would be better to make the test-

bench process sensitive to the negative clock edge so that it is guaranteed that no

uncertainty shall occur with the signal assignment orderings.

Upon running the full test, some unexpected observations were made. For ex-

ample, some instructions (like Multiply and Barrel shift instructions) when they

are followed by any other instruction that is dependent on the result of those in-

structions, no forwarding occurs. This means that the pipeline gets stalled as if it

is a Load instruction followed by another dependent instruction. As a workaround

for this special case, the wrapper is modified so that it handles Multiply and Barrel

shift registers (with all their different versions) as Load instructions. The new code

is as follows:

if(((m_Instr & 0xD0000000) == 0xC0000000)||((m_Instr & 0←↩
xDC000000) == 0x40000000)||((m_Instr & 0xFC000780) == 0←↩
x58000200)) // Load Instruction OR Multiply instruction ←↩
OR Barrel Shift

{

si_Load.write(true);

si_Load_destination.write((m_Instr & 0x03E00000) >>21); //←↩
put Rd in the least signif.

}

else

si_Load.write(false);

Another problem was discovered in the ISS, where it was detected that the carry

calculation and keeping was wrong, so the Add instruction handlings (Add, Addk,

Addc, Addi, etc..) were modified in the ISS to have correct functionality. Another

observed problem was that there was another forwarding issue, in the case where

a Load instruction, has a dependent instruction that is two instructions away from

it. For example:

LWi R3 , R5 , 0

NOP

Add R7 , R3 , R0

Chapter 6. Results 59

In this case, it was observed that the ID of the Add instruction becomes delayed

by 1 clock cycle, which was unexpected.

Upon implementing some workaround techniques for those errors, both tests

were finally passed for the RTL-VHDL testing.

6.1.2 RTL Vs. TLM Testing

Verifying the TLM system against the RTL one has an advantage over the test

with the VHDL system, since all the internal signals for both abstraction levels are

accessible. This means that at every clock cycle, the testbench can compare registers

located inside the ISS such as PC and GPRs, as well as memory contents inside the

BRAM which gives more coverage to the tests performed. Therefore the testbench

in this case also includes a sequential process that compares communication signals

from the RTL model with the re-generated signals from the TLM-TLM adapter

in the TLM system, and also compares the internal registers including GPRs and

status registers of each ISS, and memory contents of both BRAMs.

The TLM wrapper was also modified with the workarounds discussed above to

have the same performance as the RTL model, and upon this updating process, the

tests were passed.

6.2 Performance Measurements

In this section we are interested to measure how much time it would take both

SystemC abstraction levels (RTL and TLM) to simulate the same application for

the same number of clock cycles. Conceptually, TLM saves time during memory

accesses. In order to prove this point, different applications with different memory

accessing frequencies can be used to show how much TLM really affects the simu-

lation times. To create the performance measurement applications, also the EDK

tool is used, which means that all applications have some mandatory instructions

that the EDK uses to correctly initialize the system and the runtime environment

before running any programs. These initial instructions do not matter to our mea-

surements, especially when the simulations are run for long enough, such that the

initial contribution to the measurement results is negligible.

The idea now is to reach some applications that offer the best case to show the

TLM advantage, and the worst case for that in order to highlight the effect of using

TLM. One way to achieve this would be to have an application with nothing but

continuous memory accesses, and another with the least memory accesses possible.

An example for the high-rate memory accessing application would be an infinite

loop with random load and store instructions inside, while the other application

would also be an infinite loop with the same number of instructions inside, but

those instructions are simple ones like add, subtract or shift instructions. As a

control experiment, a third application is used that is a simple branch instruction

that loops on itself which simply resembles an infinite loop with no instructions

inside. The three applications are referred to as inf mem, inf simple and inf loop,

Chapter 6. Results 60

respectively. Another point that would make it an unfair comparison is system

initialization, which is automatically done at the beginning of the simulation when

sc start() is called. The idea is that the RTL system contains more sc signals and

much more ports than the TLM system. This means that it might need more

time to initialize the modules themselves and establish the communication signals

between them than in the case of TLM. Therefore it would be more fair if the

measurements are taken after both systems have been initialized, which is why

the SC INITIALIZE() command is called before any time measurements are made.

Another command that achieves the same function is sc start(SC ZERO TIME) so

either one can be used.

The measurements are performed consecutively not in parallel so as not to

affect each other. Each application is run on each model ten times, each run is a

5-second simulation that is initiated using sc start(5, SC SEC) command. Time

of the simulation is measured using the Native Linux Resource Usage command

getrusage() [6]. The results of the measurement are summarized in Table 6.1. As

expected, TLM is faster in all the tested applications which proves the hypothesis of

this thesis. The least speedup (24.5%) occurred in the case of the simple instructions

loop, and the maximum speedup (28%) was achieved with the high-rate memory

accesses application which was also expected.

Application
RTL TLM

Speedup
Min Max Avg St. dev Min Max Avg St. dev

inf loop 587.2 607.4 594.5 8.7 431.4 437.9 434 1.9 26.9%

inf mem 859.8 871.6 865.8 4.2 613.5 632.4 624.1 5.4 28.0%

inf simple 608.8 622.6 615.5 4.4 457.6 474.9 464.5 4.4 24.5%

Table 6.1: Performance measurements summary

Chapter 7

Conclusion

7.1 Summary

This work presented the modeling of the muti-core Xilinx MicroBlaze micro-processor

system in RTL and TLM abstraction levels in SystemC. The system included sev-

eral modules such as: MicroBlaze processor, LMB, BRAM and a LMB-BRAM

interface controller. The system was abstracted into a processor and BRAM block

for simplicity, and this abstracted system was modeled twice in RTL and TLM ab-

straction levels. Modeling of the processor was achieved by implementing a wrapper

for the untimed ISS; the wrapper provided both the timing requirements as well

as the communication means for the ISS to communicate with external modules

such as the local memory. The task was divided into two stages, first the RTL

model was implemented, and then it was used as a basis for TLM transformation

simply by modifying the communication protocols. The TLM model was designed

to be cycle-accurate, which means it has the same timing properties as the RTL

model. Adapters were also implemented to transform between RTL and TLM ab-

straction levels to enable the use of different level modules in a single system. After

the implementation was completed, tests were made to verify the modeled systems

against the reference VHDL model of the MicroBlaze micro-processor using Sys-

temC mixed-level simulation. Finally, the speedup of using TLM to simulate the

system instead of RTL was calculated by running some applications on both systems

and measuring the simulation times. Speedup varied from 24.5% to 28% depending

on the rate of memory accesses in the application.

7.2 Outlook

Further properties can still be added to the system in the future. The first field

of modification opportunities is internal improvements to the processor, such as:

adding interrupt handling, implementation of Fast Simplex Links (FSL) or adding

configuration options to allow the user to choose the capabilities of the system

instead of having a single version of the processor. The other field of modification is

the external field, where it is possible to model other new modules that are included

in the MicroBlaze micro-processor system such as: the Processor Local Bus (PLB),

Double Data Rate (DDR2) memory interface module, XPS-BRAM interface or the

XPS Direct Memory Access (DMA) controller.

61

Appendix A

Testing Applications

Listing A.1 demonstrates the exhaustive testing application, while Listing A.2

demonstrates the formally generated test application used in Chapter 6.

Listing A.1: Full test application

000001 a8 <main >:

2 1a8: 3021 fff8 addik r1, r1, -8

1ac: fa610004 swi r19 , r1, 4

1b0: 12610000 addk r19 , r1, r0

1b4: 20200064 addi r1, r0, 100

1b8: 204000 c8 addi r2 , r0, 200

7 1bc: 00611000 add r3, r1, r2

1c0: 04811000 rsub r4, r1, r2

1c4: 08 a11000 addc r5 , r1, r2

1c8: 0cc11000 rsubc r6, r1, r2

1cc: 10 e11000 addk r7 , r1, r2

12 1d0: 15011000 rsubk r8, r1, r2

1d4: 19211000 addkc r9, r1, r2

1d8: 1d420800 rsubkc r10 , r2, r1

1dc: 1d611000 rsubkc r11 , r1, r2

1e0: 15811001 cmp r12 , r1, r2

17 1e4: 15 a11003 cmpu r13 , r1, r2

1e8: 21 c10017 addi r14 , r1, 23

1ec: 25 e10034 rsubi r15 , r1, 52

1f0: 2a010022 addic r16 , r1, 34

1f4: 2e21004b rsubic r17 , r1, 75

22 1f8: 32410041 addik r18 , r1, 65

1fc: 3661 ffec rsubik r19 , r1, -20

200: 3a810063 addikc r20 , r1 , 99

204: 3ea1002b rsubikc r21 , r1 , 43

208: 42 c11000 mul r22 , r1 , r2

27 20c: 42 e11001 mulh r23 , r1 , r2

210: 43011003 mulhu r24 , r1 , r2

214: 43211002 mulhsu r25 , r1 , r2

218: 63410005 muli r26 , r1 , 5

21c: 47611 a00 bsra r27 , r1 , r3

32 220: 03811800 add r28 , r1 , r3

224: 47 a11c00 bsll r29 , r1 , r3

228: 67 c10003 bsrli r30 , r1 , 3

22c: 67 e10205 bsrai r31 , r1 , 5

230: f86007bc swi r3 , r0 , 1980

37 234: f88007bc swi r4 , r0 , 1980

62

Appendix A. Testing Applications 63

238: f8a007bc swi r5 , r0 , 1980

23c: f8c007bc swi r6 , r0 , 1980

240: f8e007bc swi r7 , r0 , 1980

244: f90007bc swi r8 , r0 , 1980

42 248: f92007bc swi r9 , r0 , 1980

24c: f94007bc swi r10 , r0 , 1980

250: f96007bc swi r11 , r0 , 1980

254: f98007bc swi r12 , r0 , 1980

258: f9a007bc swi r13 , r0 , 1980

47 25c: f9c007bc swi r14 , r0 , 1980

260: f9e007bc swi r15 , r0 , 1980

264: fa0007bc swi r16 , r0 , 1980

268: fa2007bc swi r17 , r0 , 1980

26c: fa4007bc swi r18 , r0 , 1980

52 270: fa6007bc swi r19 , r0 , 1980

274: fa8007bc swi r20 , r0 , 1980

278: faa007bc swi r21 , r0 , 1980

27c: fac007bc swi r22 , r0 , 1980

280: fae007bc swi r23 , r0 , 1980

57 284: fb0007bc swi r24 , r0 , 1980

288: fb2007bc swi r25 , r0 , 1980

28c: fb4007bc swi r26 , r0 , 1980

290: fb6007bc swi r27 , r0 , 1980

294: fb8007bc swi r28 , r0 , 1980

62 298: fba007bc swi r29 , r0 , 1980

29c: fbc007bc swi r30 , r0 , 1980

2a0: fbe007bc swi r31 , r0, 1980

2a4: 48811000 idiv r4, r1, r2

2a8: 48 a11002 idivu r5, r1, r2

67 2ac: 80 c11000 or r6 , r1, r2

2b0: 84 e11000 and r7, r1, r2

2b4: 89011000 xor r8, r1, r2

2b8: 8d211000 andn r9, r1, r2

2bc: a141007f ori r10 , r1, 127

72 2c0: a56100ff andi r11 , r1, 255

2c4: a9810000 xori r12 , r1, 0

2c8: ada100ff andni r13 , r1, 255

2cc: 81 c11400 pcmpbf r14 , r1, r2

2d0: 89 e11400 pcmpeq r15 , r1, r2

77 2d4: 8e011400 pcmpne r16 , r1, r2

2d8: 92210001 sra r17 , r1

2dc: 92410021 src r18 , r1

2e0: 92610041 srl r19 , r1

2e4: 92810060 sext8 r20 , r1

82 2e8: 92 a10061 sext16 r21 , r1

2ec: f86007bc swi r3, r0, 1980

2f0: f88007bc swi r4, r0, 1980

2f4: f8a007bc swi r5, r0, 1980

2f8: f8c007bc swi r6, r0, 1980

Appendix A. Testing Applications 64

87 2fc: f8e007bc swi r7, r0, 1980

300: f90007bc swi r8 , r0 , 1980

304: f92007bc swi r9 , r0 , 1980

308: f94007bc swi r10 , r0 , 1980

30c: f96007bc swi r11 , r0 , 1980

92 310: f98007bc swi r12 , r0 , 1980

314: f9a007bc swi r13 , r0 , 1980

318: f9c007bc swi r14 , r0 , 1980

31c: f9e007bc swi r15 , r0 , 1980

320: fa0007bc swi r16 , r0 , 1980

97 324: fa2007bc swi r17 , r0 , 1980

328: fa4007bc swi r18 , r0 , 1980

32c: fa6007bc swi r19 , r0 , 1980

330: fa8007bc swi r20 , r0 , 1980

334: faa007bc swi r21 , r0 , 1980

102 338: 58611000 fadd r3 , r1 , r2

33c: 58811080 frsub r4 , r1 , r2

340: 58 a11100 fmul r5 , r1 , r2

344: 58 c11180 fdiv r6 , r1 , r2

348: 58 e11200 fcmp.un r7 , r1 , r2

107 34c: 59011210 fcmp.lt r8 , r1 , r2

350: 59211220 fcmp.eq r9 , r1 , r2

354: 59411230 fcmp.le r10 , r1 , r2

358: 59611240 fcmp.gt r11 , r1 , r2

35c: 59811250 fcmp.ne r12 , r1 , r2

112 360: 59 a11260 fcmp.ge r13 , r1 , r2

364: 59 c10280 flt r14 , r1

368: 59 e10300 fint r15 , r1

36c: 5a010380 fsqrt r16 , r1

370: f86007bc swi r3 , r0 , 1980

117 374: f88007bc swi r4 , r0 , 1980

378: f8a007bc swi r5 , r0 , 1980

37c: f8c007bc swi r6 , r0 , 1980

380: f8e007bc swi r7 , r0 , 1980

384: f90007bc swi r8 , r0 , 1980

122 388: f92007bc swi r9 , r0 , 1980

38c: f94007bc swi r10 , r0 , 1980

390: f96007bc swi r11 , r0 , 1980

394: f98007bc swi r12 , r0 , 1980

398: f9a007bc swi r13 , r0 , 1980

127 39c: f9c007bc swi r14 , r0 , 1980

3a0: f9e007bc swi r15 , r0, 1980

3a4: fa0007bc swi r16 , r0, 1980

3a8: 10600000 addk r3, r0, r0

3ac: 10330000 addk r1, r19 , r0

132 3b0: ea610004 lwi r19 , r1, 4

3b4: 30210008 addik r1, r1, 8

3b8: b60f0008 rtsd r15 , 8

3bc: 80000000 or r0, r0, r0

Appendix A. Testing Applications 65

Listing A.2: Formal test application

000001 a8 <main >:

1a8: 3021 fff8 addik r1, r1, -8

1ac: fa610004 swi r19 , r1, 4

1b0: 12610000 addk r19 , r1, r0

5 1b4: 20 a00abc addi r5 , r0, 2748

1b8: b8000014 bri 20 // 1cc

1bc: 20 a50001 addi r5 , r5, 1

1c0: 20 a50002 addi r5 , r5, 2

1c4: 80000000 or r0, r0, r0

10 1c8: 80000000 or r0, r0, r0

1cc: f8a006b4 swi r5, r0, 1716 // 6b4 <__dso_handle >

1d0: 80000000 or r0, r0, r0

1d4: 80000000 or r0, r0, r0

1d8: 80000000 or r0, r0, r0

15 1dc: 20 a00abb addi r5 , r0, 2747

1e0: b8100014 brid 20 // 1f4

1e4: 20 a50001 addi r5 , r5, 1

1e8: 20 a50002 addi r5 , r5, 2

1ec: 20 a50003 addi r5 , r5, 3

20 1f0: 80000000 or r0, r0, r0

1f4: f8a006b4 swi r5, r0, 1716 // 6b4 <__dso_handle >

1f8: 80000000 or r0, r0, r0

1fc: 80000000 or r0, r0, r0

200: 80000000 or r0 , r0 , r0

25 204: 20 a00abc addi r5 , r0 , 2748

208: b800000c bri 12 // 214

20c: 20 a50001 addi r5 , r5 , 1

210: 20 a50002 addi r5 , r5 , 2

214: f8a006b4 swi r5 , r0 , 1716 // 6b4 <__dso_handle >

30 218: 80000000 or r0 , r0 , r0

21c: 80000000 or r0 , r0 , r0

220: 80000000 or r0 , r0 , r0

224: 20 a00abb addi r5 , r0 , 2747

228: b800000c bri 12 // 234

35 22c: 20 a50001 addi r5 , r5 , 1

230: 20 a50002 addi r5 , r5 , 2

234: f8a006b4 swi r5 , r0 , 1716 // 6b4 <__dso_handle >

238: 80000000 or r0 , r0 , r0

23c: 80000000 or r0 , r0 , r0

40 240: 80000000 or r0 , r0 , r0

244: 20 a00abb addi r5 , r0 , 2747

248: 20 a50001 addi r5 , r5 , 1

24c: f8a006b4 swi r5 , r0 , 1716 // 6b4 <__dso_handle >

250: 80000000 or r0 , r0 , r0

45 254: 80000000 or r0 , r0 , r0

258: 80000000 or r0 , r0 , r0

25c: 20 a00abb addi r5 , r0 , 2747

260: 80000000 or r0 , r0 , r0

Appendix A. Testing Applications 66

264: 20 a50001 addi r5 , r5 , 1

50 268: 80000000 or r0 , r0 , r0

26c: 80000000 or r0 , r0 , r0

270: f8a006b4 swi r5 , r0 , 1716 // 6b4 <__dso_handle >

274: 20 a00abb addi r5 , r0 , 2747

278: f8a006b4 swi r5 , r0 , 1716 // 6b4 <__dso_handle >

55 27c: 20 a00000 addi r5 , r0 , 0

280: e8a006b4 lwi r5 , r0 , 1716 // 6b4 <__dso_handle >

284: 20 a50001 addi r5 , r5 , 1

288: f8a006b8 swi r5 , r0 , 1720 // 6b8 <p.2214>

28c: 80000000 or r0 , r0 , r0

60 290: 80000000 or r0 , r0 , r0

294: 80000000 or r0 , r0 , r0

298: e8a006b4 lwi r5 , r0 , 1716 // 6b4 <__dso_handle >

29c: 80000000 or r0 , r0 , r0

2a0: 20 a50001 addi r5 , r5, 1

65 2a4: f8a006b8 swi r5, r0, 1720 // 6b8 <p.2214 >

2a8: e8a006b4 lwi r5, r0, 1716 // 6b4 <__dso_handle >

2ac: 20 c00abc addi r6 , r0, 2748

2b0: f8c50000 swi r6, r5, 0

2b4: 20 c00000 addi r6 , r0, 0

70 2b8: 20 a00000 addi r5 , r0, 0

2bc: e8a006b4 lwi r5, r0, 1716 // 6b4 <__dso_handle >

2c0: e8c50000 lwi r6, r5, 0

2c4: 20 c60001 addi r6 , r6, 1

2c8: f8c006b8 swi r6, r0, 1720 // 6b8 <p.2214 >

75 2cc: 10600000 addk r3, r0, r0

2d0: 10330000 addk r1, r19 , r0

2d4: ea610004 lwi r19 , r1, 4

2d8: 30210008 addik r1, r1, 8

2dc: b60f0008 rtsd r15 , 8

80 2e0: 80000000 or r0, r0, r0

Bibliography

[1] N. Pouillon, A. Becoulet, A. V. de Mello, F. Pecheux, and A. Greiner, “A

generic instruction set simulator api for timed and untimed simulation and

debug of mp2-socs,” in Rapid System Prototyping, 2009. RSP’09. IEEE/IFIP

International Symposium on. IEEE, 2009, pp. 116–122. (Cited on pages 1, 3,

15, 16 and 17.)

[2] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in Proceed-

ings of the 1st IEEE/ACM/IFIP international conference on Hardware/soft-

ware codesign and system synthesis. ACM, 2003, pp. 19–24. (Cited on pages 1

and 3.)

[3] F. Vahid, Digital Design with RTL Design, Verilog and VHDL. Wiley, 2010.

(Cited on page 3.)

[4] Accellera Systems Initiative. (2002) About systemc. [Online]. Available: http:

//www.accellera.org/downloads/standards/systemc/about systemc/ (Cited

on page 4.)

[5] D. K. Tala. (2013, Feb) Systemc modules. [Online]. Available: http:

//www.asic-world.com/systemc/modules1.html (Cited on pages 4 and 5.)

[6] K. Iglberger, B. Heubeck, and C. Jandl, “Time Measurement in C/C++,”

DEC 2008. (Cited on pages 6 and 60.)

[7] Mentor Graphics, “Modelsim pe user’s manual,” 2011. (Cited on pages 6, 7

and 23.)

[8] Xilinx Inc. Xilinx platform studio. [Online]. Available: http://www.xilinx.

com/tools/xps.htm (Cited on page 7.)

[9] Xilinx Inc., “Data2mem user guide,” Reference Manual, Jun

2009. [Online]. Available: http://www.xilinx.com/support/documentation/

sw manuals/xilinx11/data2mem.pdf (Cited on page 7.)

[10] Xilinx, “Microblaze processor reference guide,” APR 2012. [Online].

Available: http://www.xilinx.com/support/documentation/sw manuals/mb

ref guide.pdf (Cited on pages vi, 7, 8 and 9.)

[11] Xilinx, “Logicore ip microblaze micro controller system (v1.1),” APR

2012. [Online]. Available: http://www.xilinx.com/support/documentation/

sw manuals/xilinx14 1/ds865 microblaze mcs.pdf (Cited on pages vi and 8.)

[12] D. A. Patterson and J. L. Hennessy, Computer organization and design: the

hardware/software interface. Morgan Kaufmann, 2009. (Cited on pages 9

and 42.)

67

http://www.accellera.org/downloads/standards/systemc/about_systemc/
http://www.accellera.org/downloads/standards/systemc/about_systemc/
http://www.asic-world.com/systemc/modules1.html
http://www.asic-world.com/systemc/modules1.html
http://www.xilinx.com/tools/xps.htm
http://www.xilinx.com/tools/xps.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/data2mem.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/data2mem.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ds865_microblaze_mcs.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ds865_microblaze_mcs.pdf

Bibliography 68

[13] Xilinx, “Local memory bus (lmb) v1.0 (v1.00a),” APR 2005. [Online]. Avail-

able: http://www.xilinx.com/support/documentation/ip documentation/lmb.

pdf (Cited on page 11.)

[14] Xilinx, “Ip processor block ram (bram) block (v1.00a),” MAR

2011. [Online]. Available: http://www.xilinx.com/support/documentation/

ip documentation/bram block.pdf (Cited on pages 12, 23 and 26.)

[15] Xilinx, “Lmb bram interface controller (v2.10b),” DEC 2009. [Online]. Avail-

able: http://www.xilinx.com/support/documentation/ip documentation/

lmb bram if cntlr.pdf (Cited on page 12.)

[16] SoCLib Consortium and others, “The soclib project: An integrated system-

on-chip modelling and simulation platform,” Technical report, CNRS, 2003.

http://www. soclib. fr, Tech. Rep. [Online]. Available: http://www.soclib.fr/

(Cited on page 12.)

[17] C. Mucci, F. Campi, A. Deledda, A. Fazzi, M. Ferri, and M. Bocchi, “A cycle-ac

curate iss for a dynamically reconfigurable processor architecture,” in Parallel

and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE Inter-

national. IEEE, 2005, pp. 8–pp. (Cited on page 15.)

[18] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino,

“Legacy systemc co-simulation of multi-processor systems-on-chip,” in Com-

puter Design: VLSI in Computers and Processors, 2002. Proceedings. 2002

IEEE International Conference on. IEEE, 2002, pp. 494–499. (Cited on

pages vi, 15, 16 and 17.)

[19] T.-C. Yeh, G.-F. Tseng, and M.-C. Chiang, “A fast cycle-accurate instruction

set simulator based on qemu and systemc for soc development,” in MELECON

2010-2010 15th IEEE Mediterranean Electrotechnical Conference. IEEE, 2010,

pp. 1033–1038. (Cited on pages 15 and 18.)

[20] M.-C. Chiang, T.-C. Yeh, and G.-F. Tseng, “A qemu and systemc-based cycle-

accurate iss for performance estimation on soc development,” Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 30,

no. 4, pp. 593–606, 2011. (Cited on pages 15 and 18.)

[21] J. Aynsley, “Osci tlm-2.0 language reference manual,” Open SystemC Initiative

(OSCI), 2009. (Cited on pages 15 and 18.)

[22] R. Stallman and R. H. Pesch, The GDB Manual: The GNU Source-level De-

bugger. Free Software Foundation, 1992. (Cited on page 16.)

[23] A. Zeller and D. Luetkehaus, “Ddd-a free graphical front-end for unix debug-

gers,” ACM Sigplan Notices, vol. 31, no. 1, pp. 22–27, 1996. (Cited on page 16.)

http://www.xilinx.com/support/documentation/ip_documentation/lmb.pdf
http://www.xilinx.com/support/documentation/ip_documentation/lmb.pdf
http://www.xilinx.com/support/documentation/ip_documentation/bram_block.pdf
http://www.xilinx.com/support/documentation/ip_documentation/bram_block.pdf
http://www.xilinx.com/support/documentation/ip_documentation/lmb_bram_if_cntlr.pdf
http://www.xilinx.com/support/documentation/ip_documentation/lmb_bram_if_cntlr.pdf
http://www.soclib.fr/

Bibliography 69

[24] N. Bombieri, F. Fummi, and V. Guarnieri, “Accelerating rtl fault simulation

through rtl-to-tlm abstraction,” in European Test Symposium (ETS), 2011

16th IEEE. IEEE, 2011, pp. 117–122. (Cited on page 17.)

[25] N. Bombieri, F. Fummi, and G. Pravadelli, “Automatic abstraction of rtl ips

into equivalent tlm descriptions,” Computers, IEEE Transactions on, vol. 60,

no. 12, pp. 1730–1743, 2011. (Cited on pages vi, 17 and 18.)

[26] A. Bruce, M. Kamal Hashmi, A. Nightingale, S. Beavis, N. Romdhane, and

C. Lennard, “Maintaining consistency between systemc and rtl system de-

signs,” in Proceedings of the 43rd annual Design Automation Conference.

ACM, 2006, pp. 85–89. (Cited on pages vi, 17 and 19.)

[27] W. Klingauf, “Systematic transaction level modeling of embedded systems with

systemc,” in Proceedings of the conference on Design, Automation and Test in

Europe-Volume 1. IEEE Computer Society, 2005, pp. 566–567. (Cited on

page 17.)

[28] N. Bombieri, F. Fummi, and G. Pravadelli, “RTL-TLM equivalence checking

based on simulation,” in Design & Test Symposium (EWDTS), 2008 East-

West. IEEE, 2008, pp. 214–217. (Cited on pages vi, 17, 19 and 20.)

[29] A. Habibi and S. Tahar, “Design for verification of systemc transaction level

models,” in Proceedings of the conference on Design, Automation and Test in

Europe-Volume 1. IEEE Computer Society, 2005, pp. 560–565. (Cited on

page 17.)

[30] W. Ecker and L. Schönberg, “Impact of SystemC data types on execution

speed,” Infineon Technologies AG, Apr. 2007. (Cited on page 23.)

[31] I. Xilinx, “Microblaze processor reference guide,” reference manual, 2006.

(Cited on pages 23, 45 and 46.)

	Abstract
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Organization

	2 Background
	2.1 Register Transfer Level (RTL)
	2.2 Transaction Level Modeling (TLM)
	2.2.1 Cycle Accurate TLM

	2.3 SystemC
	2.3.1 Channels, Ports and Processes
	2.3.2 Data Types
	2.3.3 Performance Measurements

	2.4 Software Tools
	2.4.1 Modelsim
	2.4.2 Xilinx Platform Studio (XPS)
	2.4.3 Xilinx Software Development Kit (SDK)

	2.5 Xilinx MicroBlaze Micro-Processor
	2.5.1 MicroBlaze Processor
	2.5.2 Local Memory Bus (LMB)
	2.5.3 Dual Port Block RAM (BRAM)

	2.6 SoCLib Instruction Set Simulator
	2.6.1 Available Methods
	2.6.2 Instruction Set Simulator Basic Untimed Usage

	3 Literature Review
	3.1 ISS Usage
	3.2 RTL to TLM Transformation Techniques
	3.3 Testing
	3.3.1 General Processor Testing
	3.3.2 TLM Verification

	4 Design
	4.1 MicroBlaze System
	4.2 Data Types
	4.3 RTL Modeling
	4.3.1 RTL ISS Wrapper Module
	4.3.2 RTL Memory Module
	4.3.3 Multiple BRAMs

	4.4 TLM Modeling
	4.4.1 TLM Memory Module
	4.4.2 Local Memory Bus Interface (LMB_if)

	5 Implementation
	5.1 RTL ISS Wrapper
	5.1.1 Register Modeling
	5.1.2 ISS Basic Timed Implementation
	5.1.3 Adding Complexities

	5.2 RTL Memory Module
	5.2.1 BRAM Initialization

	5.3 TLM Memory Module
	5.4 TLM ISS Wrapper
	5.4.1 Instruction Fetch
	5.4.2 Memory Access
	5.4.3 Write Back

	5.5 Interface Adapters
	5.5.1 RTL-TLM Adapter
	5.5.2 TLM-RTL Adapter
	5.5.3 TLM-TLM Adapter

	6 Results
	6.1 Testing
	6.1.1 RTL Vs. VHDL Testing
	6.1.2 RTL Vs. TLM Testing

	6.2 Performance Measurements

	7 Conclusion
	7.1 Summary
	7.2 Outlook

	A Testing Applications
	Bibliography

