Institut fiir Parallele und Verteilte Systeme
Abteilung Verteilte Systeme

Universitat Stuttgart
Universitatsstrale 38
D-70569 Stuttgart

Diplomarbeit Nr. 3418

Methods to coordinate the
execution of workflow replicas
in a distributed environment

Thomas Bach

Course of Study: Software Engineering

Examiner: Prof. Dr. Dr. h. c. Kurt Rothermel
Supervisor: MSc. Muhammad Adnan Tariq
Commenced: October 4, 2012

Completed: April 5, 2013

CR-Classification: C24,D.45






Abstract

In many distributed systems robustness is a major concern since network nodes might fail
spontaneously. Such failures can be a major problem when a workflow needs to be run on a
set of unreliable and distributed nodes. Replication is a widely used architecture paradigm to
increase system reliability. This thesis addresses robustness of workflow execution in distributed
systems using replication.

A workflow is a plan that describes how a number of tasks needs to be executed and is defined
using a workflow definition language. A task is the description of a single operation contained
within such a workflow. The first part of this thesis gives an overview over available workflow
definition languages focusing mainly on declarative ones. Task types present in this languages
are identified and their impact on replication is evaluated.

A basic problem of workflow replication is that not all tasks within a workflow can be executed
arbitrarily often. To solve this issue the execution of such tasks must be coordinated. The goal
of this thesis is to propose and evaluate methods to coordinate the execution of such workflow
replicas in a distributed environment.

The proposed replica coordination algorithms are implemented as a peer to peer protocol and
simulated using the peer to peer simulator PeerSim. A synthetic workflow generator is used
to provide a large number of workflows for evaluation to test the performance, scalability and
robustness under different conditions. The evaluation is concluded with the replication of a real
workflow to judge the significance of the synthetic tests to the real world.
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Chapter 1

Introduction

1.1 Motivation

In the last decade the field of mobile computing has been steadily becoming more important and
complex. Pervasive computing applications have made good progress evolving from laboratory
scale prototypes to daily used market fit products. The diversity of available computing platforms
increases rapidly and the task of running applications and services in such an heterogeneous,
highly dynamic and unreliable environment remains challenging.

Workflows can provide a flexible and high level way to model the functionality and temporal
order of complex tasks in many areas of information technology. Evolving from petri nets
imperative workflow definition languages have become the tool of choice to model complex
processes and applications. Acting on a high abstraction layer and allowing the user to focus on
modeling functionality enabled their huge success.

Being petri net-based imperative languages need to precisely define the order and relation of
all tasks. Especially the required definition of the task order might not always be needed and
can make imperative workflows rigid and inflexible. Execution flexibility has to be explicitly
modeled into a workflow which can easily lead to over specified and complex arrangements.
Consider an example where three tasks can be executed in an arbitrary order. When using an
imperative language every possible order would have to be explicitly defined.

In declarative languages however only necessary constraints have to be defined. If for example
no order is defined the tasks can be executed any time. By not forcing the user to define possibly
irrelevant details declarative languages can be much more flexible. Before however a workflow
defined in a declarative language can be executed a concrete execution order has to be chosen.

While the user only needs to define execution order and other details when required by the
process the execution system has more freedom to decide when or how the tasks are executed.
This additional flexibility makes declarative languages a promising programing paradigm for
distributed systems and pervasive computing applications. It allows workflow languages to bridge
the gap between high level application definition and possibly heterogenous infrastructure.

The tasks in a workflow can have a limited number of executions. For example the booking
of one airline ticket can only be done once. When replicating a workflow such tasks can thus
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only be executed on one replica and need to be coordinated. While one of the replicas executes
such a task the others would be idle. Using the flexibility of declarative languages multiple
execution orders can be generated and the number of idle replicas can be reduced. This could
also speedup the execution of the workflow since multiple tasks can be executed in parallel.

1.2 Contribution to the field

As discussed in the related work section some efforts have been made to increase robustness
of workflows using replication. While most of the work considers internet scale web service
replication [SPJ11] [MSBOS§] et al. There is also some work regarding workflow replication in
ad-hoc networks [DJ07].

This thesis considers the benefits of using declarative languages to define workflows intended for
replication and how this translates into coordination methods.

In the first part of this thesis available declarative languages are researched. In need for a
language capable of defining complex coherences and temporal constraints the Declare language
is chosen. Since the original Declare language doesn’t support temporal constraints an extension
proposed by [LUW10] is used. Based on that language different task types are identified and
their impact on replication is analyzed.

Regarding the identified task types the coordination algorithms are developed. While the
execution of tasks that cannot be executed arbitrarily often needs to be coordinated globally
the execution of others can be decided locally on every replica. This global coordination process
must somehow be organized to ensure the correct execution of all tasks.

The previously described flexibility of declarative languages is used to further increase the
efficiency of the workflow execution. By replicating a workflow in different orders it is possible
to run several tasks in parallel and decrease the execution time of the workflow. The evaluation
shows that this also decreases the message overhead and idle time of the replicas.

In the last part of the thesis the proposed algorithms are evaluated on a large number of
synthetically generated workflows. The algorithms are implemented as a peer to peer protocol
and simulated using the peer to peer simulator PeerSim. A workflow generator was added to
provide a large number of test workflows.

The simulations showed that replicating a workflow in different orders can increase robustness
while execution and idle time decrease. As declarative languages can provide this kind of
flexibility they seem to be a good choice to model workflows which need to run in distributed
environments.




1.3 Organization of the thesis

1.3 Organization of the thesis

The rest of this thesis is organized as follows.

Chapter two will present the work related to this thesis.

Chapter three introduces the used terminology, the characteristics of the addressed
distributed environment, and the system model.

Chapter four will briefly introduce some workflow languages. The presented languages
are evaluated regarding their fitness for use in this thesis. The Declare language with
its extension regarding temporal constrains is presented and the graphical notation for
temporal constraints is introduced. Focusing on the Declare language task types are
identified.

Chapter five develops workflow replication and coordination methods. An introductive
example explains the issues that have to be considered. Replication is discussed regarding
data handling, messaging, coordination, identified task types, execution order, failure
detection, and error handling. Examples illustrate the proposed strategies and conclude
the chapter.

Chapter six evaluates and discusses the proposed coordination algorithms.

A conclusion chapter wraps up the thesis and summarizes the results of this work.







Chapter 2

Related Work

This section presents work related to the topic of this thesis. Different approaches to reliability
are being presented. Most of the approaches try to make distributed workflow execution robust
by switching to backups or for critical tasks (Sections 2.1, 2.2), or even running critical tasks
multiple times (Section 2.3).

If a workflow is using an external service it might be beneficial to not only rely on one service but
maintain several interchangeable web services. Methods to measure their level of independence
are proposed in the work presented in Section 2.4.

A completely different approach is described in Sections 2.5 and 2.6 where transactions are used
to increase robustness of a distributed workflow.

The work presented in Section 2.9 proposes methods to deal with failure on a workflow level.

The detection of failed components is a major issue in fully distributed systems and addressed
by the work presented in Section 2.10.

2.1 Dynamic Web Service Replication in Ad-Hoc Networks

In [DJO7] Dustdar and Juszczyk describe a system for flexible replication and synchronization
of web services in ad-hoc networks. In contrast to the work presented in this thesis their system
deals with the dynamic placement, provisioning, and coordination of multiple web services. One
web service is only run by one replica at a time (possibly the strongest) and the states of all
replicas replicating this service are synchronized.

Basing on wireless ad-hoc networks the proposed system has to deal with a series of difficulties.
Due to their mobility, unreliability, and possibly poor wireless connection the nodes can
spontaneously disappear or relocate in the network. This makes the network topology highly
dynamic and the behavior of single nodes unpredictable. To deal with this difficult environment
the following strategies are used:
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e Dynamic Replica Placement: Replica placement refers to assignment of services to
nodes. When the network state changes this placement is reevaluated. It is checked if the
deployed services run on a sufficient number of nodes. In addition the load between the
different nodes is balanced. If a node is under constant heavy load services are moved
away. If the failure of a node seems to be imminent (i.e. a depleted battery) the running
services are reallocated.

e Completely decentralized: In ad-hoc networks the chance of failure is equally high
thus it is important to avoid a single point of failure.

e Monitor availability: Due to the continuos change and high dynamic of the network
infrastructure it is critical to continuously monitor the state of the network and act
appropriately.

e little traffic: The devices participating in an ad-hoc network are usually battery relay
ant. Since wireless communication is quite expensive regarding battery power the system
tries to minimize network traffic.

e network partitioning: An interface is provided to specify algorithms for resynchroniza-
tion after rejoining of partitioned networks. This might not always be possible.

2.2 Using Communities to Sustain High-Availability of Web Services

In [MSBO08] Maamar, Sheng and Benslimane propose how the availability of web services can
be increased by grouping them together in communities. Such a community combines several
web services providing the same functionality. This web services can however have different
non-functional properties and are combined independently of their origins.

A designer specifies the function of a new community i.e. "book a flight" and deploys a master
web service. This master web service will lead the group. It is his responsibility to manage
the community, attraction of new slave web services with rewards, and retaining existing web
services in the community. He also identifies web services that will participate in composite web
services.

When a service is needed by a client the master web service acts as an abstraction layer that
provides the requested service by utilizing one of the slave replicas. If one of the slave replicas
fails another one can be used as a backup. If the functionality provided by the master is not
requested anymore the community is dismantled.

2.3 Flexible Provisioning of Service Workflows

Stein, Payne, and Jennings are researching methods to flexible provision services [SPJ11]. In
service oriented computing different service provider offer the same kind of service to their
customers at different levels of quality and price.
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(a) Small workflows (10 tasks). (b) Large workflows (50 tasks).

Figure 2.1: Advantage of flexible Service Provisioning. Source [SPJ07]

These services are dynamically procured by customers which use them in their complex business
processes. Since these workflows consist of several interdependent tasks the failure of a single
dependency can have a highly detrimental knock off effect on other related services.

Unfortunately the behavior of such services is beyond the control of the consumer. They may fail
or take a long time to execute. This makes them a critical issue. When the consumer is bound
to time constrains possibly involving penalties and fees this becomes even more important.

Some approaches deal with this issues by applying quality-of-service measures or use utility
theory to provision the single best qualified service provider [SPJ07]. In [SPJ07] Stein, Payne,
and Jennings state that provisioning only one provider would lead to brittle workflows that
are highly vulnerable to single failures. To solve this they propose to provision several service
providers for particularly failure prone tasks.

Building on previous work [SJP06] they propose an improved strategy for flexible provisioning
of multiple services [SPJ07| that shows an 8.4 % improvement compared to their old approach.
Compared to the naive approach this is an improvement of 385 %. See Figure 2.1.

2.4 Deploying Reliable Web Services using Independent Replicas

A web service typically consists of one or more different components. If one of the components
fails the web service would fail, too. To increase robustness several of those web services
providing the same "service" could be used as backup. Obviously it would be unless to chose
two different web services that rely on the same components because if one of those components
is not available both web services would fail.

For example if a consumer wants to book a flight he can use several different websites to do
that. When those websites however rely on the same booking system their availability is bound
to the availability of the same booking service. When selecting backup websites to chose from it
would be nice to know witch of them are totally independent to maximize fault tolerance.

This thesis proposes choosing different orders of a workflow for replication which have to be
generated prior to execution from a workflow model. Depending on the workflow model in this
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process different workflows orders containing even different components are possible. If some of
this components rely on external web services it would maximize fault tolerance if it would be
possible to chose those workflow orders that have the least components in common.

In [TLHLO9] Tang, Li, Hua, and Liu propose how to judge the independence of such web
services, especially when the service provider is not willing to share implementation details
about the web service.

2.5 Pervasive Workflow Execution Utilizing Transactions

In [MMTGO08] Montagut, Molva and Golega propose an adaptive transactional protocol for a
pervasive workflow model developed in previous work to support pervasive workflow execution.

The tasks of a workflow are distributed on different pervasive nodes. Critical tasks are only
issued to reliable nodes. Another core idea is to introduce critical zones within workflows. In
this zones transactions are used to either ensure the correct execution of a workflow or be able
to roll back. Prior to the execution transaction rules are negotiated. It is defined what is to be
done when a task of the critical zone fails and the already executed tasks need to be rolled back.
To minimize such rollbacks the tasks contained in a critical zone are dispatched to nodes that
have been proven to be reliable.

Another paper advocating the use of transactional models to increase robustness of workflows
is presented by Alonso et al. [AAEAT96]. They however state that traditional transactions
are to rigid for flexible workflows. They suggest the usage of flexible transactions utilizing
subtransactions. In case of a failure a different sub transaction could be submitted to finish the
transaction successfully.

2.6 Speres of Isolation for Transaction based workflows

Guabtni, Charoy, and Godart study the needs of Workflow systems for isolation properties
[GCGO5]. They propose the creation of isolation spheres in workflows for customized isolation
constraints in transactional workflows. The goal is to allow the designer to decide the degree of
isolation for a group of tasks. Such a group forms a so called atomic sphere to apply transactional
constraints to.

Isolation spheres can be created by identifying several tasks using the same data. Within a
sphere all tasks operate on the same data and can be sure that it is not changed from outside of
the sphere. If the execution of the sphere fails no critical data (outside of the sphere) has been
changed.

The use of spheres could be useful for executing several related tasks in a distributed workflow.
Suppose a workflow is used to organize the booking of a flight, a hotel room and a conference
ticket. All the booking procedures are executed on a different node in parallel. Before the
execution is started a isolation sphere is created in cooperation with the service provider. When
one of the booking tasks fails (for example there is no flight available) the other tasks can be




2.7 Broadcast Protocols for Distributed Systems

aborted. When all tasks are executed successfully the whole sphere commits and the flight, the
conference ticket and the hotel room are definitively booked.

2.7 Broadcast Protocols for Distributed Systems

In a distributed system the processes running on the different nodes have to exchange status
information and execution results. While some status information or messages need only to
be transmitted to a few number of receivers global status updates need to be transmitted to
all nodes. Especially when using a shared media broadcasting one single message for all to
read could reduce message overhead. Since communication is expensive in terms of power
consumption this can be particularly important when the nodes are running on battery power.
How can be ensured that every node successfully receives one broadcast message without
implementing a complicated and messaging intense acknowledging protocol?

Melliar-Smith, Moser, and Agrawala propose a broadcast based [MSMA90| protocol (which they
intent to use for distributed decisions) that allows reliant transmitting of messages to several
recipients. They point out that broadcast medias such as wireless are often only used for point
to point messaging. They propose a protocol that makes use of the broadcast based nature of
those medias to reduce message overhead.

The proposed replica coordination strategy proposed in this thesis also needs to transmit some
execution information to all nodes in the system. This means sending an status update message
to every node and making sure the message has been delivered successfully. Relying on a
broadcast based messaging approach when sending execution information updates to all replicas
could greatly reduce the message overhead. To guarantee successful transmission to every node
the presented paper proposes to piggy back reception acknowledgement on existing message
flow between the nodes. That way messaging overhead could be greatly reduced.

2.8 Consensus Services

As explained in Section 5.2 the execution non idempotent tasks has to be coordinated globally.
In this thesis a replicated coordinator decides about the execution of such tasks. Once the system
has agreed on a central coordinator no further agreements are needed until a new coordinator
needs to be elected for whatever reasons. Another approach to decisions in distributed systems
could be the use of a distributed consensus service [GS96].

As consensus can be hard to solve in distributed asynchronous systems [GS96] Guerraoui et al.
propose the use of a consensus server processes executed on several nodes of the distributed
system.
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2.9 Fault Tolerance in Dataflow-based Scientific Workflow Management

In contrast to business processes that rely on transactions that can be rolled back in case
of a failure recovery strategies in scientific workflows are based on re executing the failed
work [YMV'10]. In their paper Yildiz, Mouallem, Vouk, Crawl, and Altinats see two possible
strategies for designing a fault tolerant workflow.

The designer could specify a fault tolerant workflow by including workflow fragments that will
be re executed in case of failures or the workflow engine provides these fragments without the
intervention of the designer deriving them from the workflow model.

The goal of their work is to achieve the latter by trying to automate the structuring of recovery
fragments within a workflow model. A recovery strategy is proposed that allows generation
of such fragments by the workflow management system at design time. This approach deals
with failures on a workflow level and proposes strategies for handling different kinds of failures
like tolerating a number of failed items, discarding a complete activity, immediate reelection or
recovery of dependent instances.

2.10 Failure Detection

To detect failing replicas this thesis utilizes a lazy timeout based failure detection strategy. (See
Section 5.3.4.) This was inspired by [HCKO02]. Hayashibara, Cherif, and Katayama discuss the
problem of implementing scalable failure detection systems. Having identified typical issues
raised in the context of Grid systems they evaluate existing approaches accordingly. Despite
focusing on Grid systems this paper gives a good overview over failure detection strategies in
distributed systems in general.

10



Chapter 3

Workflow Languages

This chapter gives a short overview over workflow languages and highlights the difference
between imperative and declarative languages. Focusing on extended Declare task types present
in declarative languages are identified.

A workflow language is a formal language that can be processed by a computer. It can be used
to model business processes or complex applications on a high level. Workflow languages usually
consist of tasks and relations [WV97].

A task is a functional unit describing an operation. This can be a human assignment like "Take
the dog for a walk." or an instruction for a computer like "Write input A to database D.". It can
even represent the call of an complex external service like "Book an airline ticket to Dublin".
This of course implies that the necessary information to execute this task has been previously
acquired by the system. This would require a task like "Ask the user for Contact and payment
information."

To make sure the booking information is available before executing the booking task the workflow
needs to specify the execution order of both tasks. This introduces task relations. To add
steering information to a workflow relations are used. The simplest relations would be ordering
relations like before and after.

Additional constraints could specify the way tasks are executed. For example how often a task
can be executed or if two tasks need to be executed in parallel.

3.1 Imperative languages

Humans tend to describe what they can "see" thus the most common method to model a
workflow is to "just state" what has to be done in which order. This type of workflow definition
is called "imperative" less common "procedural". In such a language the tasks are arranged
in a graph like structure that reminds a little bit of a flowchart. An imperative language
can be roughly compared with an ordinary programming language. The instructions of the
programming language resemble the tasks of a workflow language. Like in a programming
language the tasks of a workflow need to be executed in the order they are specified in the
graph.

11
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_,C<\ I <<\
a) b)

—

B—C* B-A/-{C)

Figure 3.1: a) An imperative workflow modeling different execution orders of two tasks. b)
The restructured workflow after adding a new task (C) after task A.

If it needs to be possible to execute some tasks in different orders those orders have to be
explicitly defined. See Figure 3.3.a. As all alternatives have to be added to the model during
build time this could lead to an over specification of the workflow [PWZ*12].

Introducing new tasks to an imperative workflow could cause a restructuring of the whole
workflow. This is shown in Figure 3.3. To the workflow on the left side an additional task C
needs to be added after task A. This could be a major effort if the workflow would be more
complex than this small example. Another good example for this problem is given in [HM11].

In conclusion imperative languages are rather rigid and all flexibility must explicitly be modeled
into an imperative workflow. Generally speaking the more tasks and rules a workflow consists
of the more function and flexibility is provided.

3.2 Declarative languages

Declarative languages are a family of workflow languages that define a workflow using constraints.
Constraints are statements (rules) restricting the way a task is executed. For example restricting
the number of executions for a tasks or defining an absolute order between two tasks.

Figure 3.2 depicts such a workflow that consist of three tasks, (A, B, and C) and two constraints.

The arrow between task A and B is a constraint that limits the possible numbers of execution
orders. It means that before any execution of task B, task A has to be executed. This is a really
relaxed example for an ordering constraint since it only constrains the way task B is executed.
While task A can still be executed at any time task B requires that task A has at least been
executed once before. After that task B can be executed arbitrarily often.

The constraint attached to task C defines its minimal and maximal number of execution. In
this case task C has to be executed at least once. Constraints are discussed in detail in Section
3.4.5.

To pick up the example presented in Section 3.1 Figure 3.3.a depicts a workflow with two
tasks that can be executed in an arbitrary order modeled in a declarative language. Note
that in a declarative language the tasks are not in an explicit order by default like this is the
case for imperative languages. Thus modeling the possibility to execute tasks in an arbitrary
order means just not constraining the order. Figure 3.3.b depicts how the declarative workflow
depicted in 3.3.a has to be changed when a task C is added that has to be executed after task
A.

12
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Figure 3.2: A declarative process model.

Figure 3.3: a) A declarative workflow is implicitly modeling arbitrary execution orders of two
tasks. b) The restructured workflow after adding a new task (C) that has to be
executed directly after task A.

Basically a declarative language does not specify the tasks in an explicit order. The language
just defines constrains on tasks and orders between them when necessary. By not being forced
to specify each and every small, possibly unimportant detail declarative workflows do not tend
to over specify [PWZ112]. When adding constraints to a declarative workflow flexibility and
functionality decrease because the possibilities to interpret such a flow are further limited.

3.3 Declarative vs. Imperative Workflow Modeling Languages

The previous Section introduced declarative and imperative workflow modeling languages.
Imperative languages are widely spread and the traditional choice for workflow modeling
however declarative languages seem to have certain advantages. There is some work comparing
maintainability [FMRT09] and understandability [FLM*09] of both approaches.

Based on that work Pichler et al. have conducted experiments to evaluate which approach is
superior in respect to process modeling and understandability [PWZ"12]. They conclude that
in general imperative languages seem to be more comprehensible especially regarding sequential
information. Circumstantial information is however better understandable using declarative
languages.

As previously mentioned the same functionality can be modeled quite different in an imper-
ative and declarative languages. While imperative languages depict workflows in a flow like
characteristic and predefine an execution order declarative flows rely on constraints. This quite
different characteristic is shown in Figure 3.4. While both flows model the same functionality
the declarative model appears to be more light weight.

The problem with this slim kind of depiction however could be that it is not as easy to interpret
as the declarative model. The fixed execution order of the imperative workflow provides a
guideline for execution and interpretation for a human user. Before however a user can interpret
all the different execution possibilities of a declarative workflow he first has to fully analyze it.
There also might be some hidden characteristics that can be easily overlooked because they do
not need to be explicitly specified. In essence the freedom in execution of a declarative flow is

13



3 Workflow Languages

Figure 3.4: A workflow modeled in an imperative (BPML) and declarative language (conDec).
Figure copied from [PWZT12]

modeled in the absence of constraints. It is literally modeled by nothing. In an imperative flow
however this freedom needs to be explicitly modeled as previously discussed.

This conflicting approach is commonly depicted [PA06] [DAPS09] like in Figure 3.5. While both
languages can model the core functionality of a workflow imperative languages need to specify
additional dynamic and flexibility additionally. The arrows in spreading in different directions
illustrate the extra modeling effort that has to be done to cover the complete actual process.

Declarative languages on the other hand leave this problem to the interpretation abilities of the
user and just constrain a workflow so that it does not cover something that is not part of the
actual process. This however can make modeling difficult since not all ways of interpretation
are obvious all the time.

In reality the boundaries between the actual process and the declarative workflow might not
be so sharp and clear. Since the modeling process can be difficult the declarative workflow
could be modeled more constrained than actually necessary and not cover the actual workflow
completly.

The additional flexibility of declarative languages regarding execution order could be beneficial
when a declarative workflow needs to be executed in distributed systems. Before a declarative
workflow can be executed an execution order of the tasks needs to be generated from the
declarative flow since the declarative workflow doesn’t necessarily provide a order for all tasks.
This makes it possible to generate several different execution orders of a workflow.

In an distributed environment not all nodes might be able to execute a particular task. A flexible
workflow execution order could enable these nodes to execute another task. This could be
achieved by replicating a workflow in different orders. This thesis will show that this approach
has several advantages regarding replication such as reduced execution time and increased
robustness.
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Defines (imperative Language)
- Constraints (declarative Language)

|:| Actual Process

Figure 3.5: The contrary approach of declarative and imperative languages to model a process.

3.4 Declarative Languages

3.4.1 ADEPT

ADEPT [DRO09] is not a declarative workflow language. It is the approach to design a flexible
process management technology for the clinical environment using an imperative workflow. The
ADEPT project marks an early approach to provide a flexible business process management
environment.

The motivation for the ADAPT project was to provide a tool to support clinical processes. The
situation in the clinics was that a lot of legacy software existed that was used by the staff but
did not provide any process support. The processes only existed in the mind of the users and
notes on paper or in a calendar were the only help for physicians not to forget things.

Modeling the clinical workflow using an imperative workflow language approach similar to
petri-nets proved too complex and inflexible. The results have been large and too complex
process models. As previously described this can be a common problem when using imperative
workflow languages since flexibility needs to be modeled into an imperative workflow at design
time.

The approach to solve this was to provide the user with predefined process templates that can
be combined by the user in a flexible manner. Despite this is not an example for a declarative
language it describes the desperate need for flexible workflow languages and an attempt to bring
more flexibility to declarative languages.

3.4.2 ROsWeL

The Ressource Oriented Workflow Language represents a declarative language approach
to define resource oriented Web Services [BDFT12]. In contrast to existing Web Service
technologies that build on a stack of protocols like SOAP, WSDL, etc. ROsWelL is based on the
Representational State Transfer (REST) architecture paradigm. In the REST approach the
services communicate using bare HTTP protocol utilizing GET, PUT, POST, and DELETE
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D
prescribe
medicine sign
Condition Relation —»e Lr \. ,—
Respone Relation e—» 3
Include Relation —>% glve —a9 don‘t
Exclude Relation —>+ med|cme %¥——  trust

Figure 3.6: Distributed Decission Condition Response Graphs example workflow.
Figure redrawn based on [HM11].

methods. This allows for a complete separation of client and server implementation. The
ROsWeL language is another example that shows that declarative languages are also being
developed targeting theWeb Services sector.

3.4.3 Distributed DCR Graphs

Since LTL (Linear temporal logic) seems difficult to understand for most end users Hildebrandt
and Mukkamala propose Distributed Decission Condition Response Graphs to model declarative
event based workflow processes [HM11]. Essentially the language is based on events and four
different relations between them (condition, response, include, and exclude).

A distributed DCR Graph is defined [HM11] as a tuple G = (E,M,Act,— o, @ — =+, 1) where

E is the set of events

M e M(G) = P(E) x P(E) x P(E) is the marking and M(G) is the set of all markings

i
ii
iii) Act is the set of all actions

e — C E x E is the response relation

)
)
)
iv) — e C E x E is the condition relation
v)
)

vi) £ : E x E — {+,%} defines the dynamic inclusion/exclusion relations by e — +e¢’ if
t(e,e/) =+ande— % € if £(e, ') =%

vii) 1 : E — Act is a labeling function mapping every event to an actions.

Figure 3.6 shows an example workflow defined using the graphical notation of Distributed DCR
Graphs. The graphical notation for the response and condition relation is based on the notation
proposed for these by [DAPS09]. The inclusion and exclusion relation are depicted by arrows
with a + or respectively a % at the end.

While the condition and response relation define the order of two evens the inclusion and
exclusion relations can be used to enable or disable an event dynamically. The workflow is
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executed successfully when all relations are fulfilled. A disabled event however does not need to
be executed to successfully end the execution of a workflow.

The presented example workflow models the prescription and giving of medicine in a hospital
scenario. The doctor needs to prescribe medicine and certifies the correctness. This is modeled
by the events prescribe medicine and sign. The nurse administers the medicine to the patient.
The events are also labeled to define which roll can execute them (D for doctor and N for
nurse).

In the given example the sign and give medicine events are defined as responses to the prescribe
medicine event and thus need to be executed (unless they are excluded) to successfully end the
execution of the workflow. When the doctor has prescribed and signed the medicine the nurse
has two options. When the sign event is executed it includes the give medicine and don’t trust
events to the workflow. One of them can now be executed by the nurse. When one of them is
executed the other event is excluded and the workflow and all relations are fulfilled.

Distributed DCR Graphs provide a flexible way to model event based workflows. Like all
declarative languages the control flow is defined implicitly providing maximum flexibility to the
user. They also provide a clear and easy readable graphical notation. Compared to languages
like Declare they lack the ability to precisely define the order of the tasks when needed. If for
example one task needs to be done directly after an other task without any third task being
executed in between this cannot be defined. It is also not possible to define temporal constraints
like parallel execution or tasks starting simultaneously.

This restrictions might be acceptable for human workflows but is not acceptable when the
language is intended as a programming paradigm. When defining workflows that are executed
by a distributed system it needs to be possible for the designer to precisely specify the absolute
and temporal order of the tasks.

3.4.4 Declare

A lot of work in the field of declarative workflow languages has been done at the University
of Eindhoven, Netherlands by W.M.P. van der Aalst and M. Pesic. In the need for a flexible
declarative workflow language they proposed the Declare workflow management system. The
Declare engine is designed to execute workflows specified in LTL (Linear Temporal Logic). For
error checking the LTL formula is translated to a finite automaton. This automaton can be
used to check if a workflow has been executed successfully.

A workflow can be in three states. If the automaton is in an accepting state the workflow
execution has finished successfully. If the automaton is not in an accepting state but an
accepting state of the automaton can still be reached the workflow is temporarily violated. If
the automaton is not in an accepting state and cannot reach it the workflow execution has
failed.

Since LTL can be hard to understand for the end user van der Aalst et al. propose the use
of LTL templates that have a graphical representation and can be used for easy design and
depiction of the worklfows. [PA06] [VDAPO06] [PSSA07] [PSA07] [Pes08]
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Constraint ¥

Task —»
Label

Figure 3.7: Graphical workflow representation for declare proposed by [VDAPOG].

Figure 3.7 shows a workflow in its graphical representation. A task is denoted by a box with
a describing label. The constraints defining the execution order of the tasks are denoted by
different kinds of arrows between the tasks. If the number of executions of a task is constrained
this is indicated by numbers over the tasks. In Figure 3.7 task B is required to be executed a
minimum of 3 times (hence the 3) but can also be executed more often than that.

The different kids of constraints are presented in Figures 3.8, 3.9, 3.10 with their underlying
LTL definition.

The Declare workflow management system can be used to precisely model workflows in a
declarative fashion. The various constraints defined as LTL templates provide a flexible
graphical notation and can be easily understood by end-user. Since the execution engine is
designed to run the LTL formulas new constraints can be added.
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3.4 Declarative Languages

I) EXISTENCE FORMULAS

1.*
1. EXISTENCE AtV <(activity == A);
formula existence( A: activity ) A
2."
1.a. EXISTENCE_2 N , )
formula existence2( A: activity ) <>((activity == AA_O( existence(A) ) ) ); A NE
Talie
1.b. EXISTENGE_3 — . _
formula existence3( A: activity ) <((activity == A\ _O( existence2(A) ) ) ); A
N
1.c. EXISTENCE_N L . i )
formula existenceN( A: activity ) <((activity == AA_O(existence_N-1(A) ) ) );
0
2. ABSENCE L
= A):
formula absence_A( A: activity ) [(activity 1= A); A
0.1
3.a. ABSENCE_2 )
¥ . ]
formula absence2( A: activity ) I( existence2(A) ); A
0.2 0.N
3.b. ABSENCE_3 .
. . )
formula absence3( A: activity ) [( existence3(A) ); A > A
0..N
3.c. ABSENCE_N .
| | )
formula absenceN( A: activity ) ( existenceN+1(A) ); A
1
4.a. EXACTLY_1 ) o .
formula exactly1( A: activity ) ((existence(A) A[I( (activity == A >_O(absence(A)))) ); A
2 N
4.b. EXACTLY_2 . . -
~ I= == .
formula exactly2( A: activity ) ( existence(A) A ( activity I= A _U( activity == A\ _O( exactly1(A))))); A > A
N
4.c. EXACTLY_N . _— —_— _ .
formula exactlyN( A: activity ) ( existence(A) A ( activity I= A _U( activity == A A _O( exactlyN-1(A) ) ) ) ); A

Figure 3.8: Existance Formulas with graphical representation. Figure from [VDAPO06].
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Il) RELATION BETWEEN EVENTS FORMULAS

1. RESPONDED EXISTENCE
formula existence_A_response_B( A: activity, B: activity )

( existence_A(A) -> existenceA(B) );

2. CO-EXISTENCE
formula co_existence_A_and_B( A: activity, B: activity )

( existence(A) <-> existence(B) );

3. RESPONSE
formula A_response_B( A: activity, B: activity )

[1( ( activity == A -> existence(B) ) );

4. PRECEDENCE
formula A_precedence_B( A: activity, B: activity )

( existence_A(B) -> ( !( activity ==B) _U activity ==A) );

Y

5. SUCCESSION
formula A_succession_B( A: activity, B: activity )

( A_response_B(A,B) A A_precedence_B(A,B) );

v

6. ALTERNATE RESPONSE

formula A_alternate_response_B( A: activity, B: activity ) (A_response_B(A,B) A B_always_between A(AB)" );

7. ALTERNATE PRECEDENCE .

formula A_alternate_precedence_B( A: activity, B: activity ) (A_precedence_B(A.B) A B_always_between A(B.A)" );

8. ALTERNATE SUCCESSION ( A_alternate_precedence_B(A,B) A A_alternate_response_B(A,B) ); —bre

formula A_alternate_succession_B( A: activity, B: activity )

9. CHAIN RESPONSE
formula chain_A_response_B( A: activity, B: activity )

A_response_B(A,B) A[]( ( activity == A -> _O( activity ==B) ) );

10. CHAIN PRECEDENCE
formula chain_A_precedence_B( A: activity, B: activity )

( A_precedence_B(A,B) A[]( ( _O( activity == B ) -> activity == A) ) );

11. CHAIN SUCCESSION
formula chain_A_succession_B( A: activity, B: activity )

( chain_A_response_B(A,B) A chain_A_precedence_B(A,B) );

* subformula B_always_between_A( A: activity, B: activity )

[1( (activity == A -> _O( A_precedence_B(B,A) ) ) );

Figure 3.9: Relation formulas with graphical representation. Figure from [VDAPO06].
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Il1) NEGATION RELATION BETWEEN EVENTS FORMULAS

12.a. RESPONDED ABSENCE . . o
formula existence_A_response_notB( A: activity, B: activity ) (existence_A(A) -> absence(B) ); A B
12.b. NOT CO_EXISTENCE ( existence_A_response_notB(A,B) A A B
formula existence_A_response_notB( A: activity, B: activity ) existence_A_response_notB(B,A) );
13.a. NEGATION RESPONSE i .

activity == A -> absence(B) ) ); +>
formula A_response_notB( A: activity, B: activity ) o Y i ®)) A B
13.b. NEGATION PRECEDENCE . - .
formula notA_precedence_B( A: activity, B: activity ) [I( (existence(B) -> activity 1= A ) ); A B
13.c. NEGATION SUCCESSION ( A_response_notB(A,B) A A B
formula notA_succession_notB( A: activity, B: activity ) notA_precedence_B(A,B) );
14. NEGATION ALTERNATE REPONSE B_never_between_A(A,B)**; A .:H:> B
formula A_not_alternate_response_B( A: activity, B: activity )
15. NEGATION ALTERNATE PRECEDENCE
formula B_never_between_A(B,A)**; A :H:“ B
A_not_alternate_precedence_B( A: activity, B: activity )
16. NEGATION ALTERNATE SUCCESSION ( A_not_alternate_precedence_B(A,B) A A —pe B
A_not_alternate_succession_B( A: activity, B: activity ) A_not_alternate_response_B(A,B) );
17.a.. NEGATION CHAIN RESPONSE Ny y A B
formula chain_A_response_notB( A: activity, B: activity ) [I( (activity == A ->_O(activity =B ) ); =
17.b. NEGATION CHAIN PRECEDENCE - -

——B)- 1= . EHE' <

formula chain_notA_precedence_B( A: activity, B: activity ) [((_O(activity == B) ->activity 1= A ) ); A B
17.c. NEGATION CHAIN SUCCESSION ( chain_A_response_notB(A,B) A A B
formula chain_A_notsuccession_B( A: activity, B: activity ) chain_notA_precedence_B(A,B) ); )
** subformula B_never_between_A( A: activity, B: activity ) [1( ( activity == A -> _O( ( <>( activity == A ) -> (activity =B _U activity==A)))));

Figure 3.10: Negation relation formulas with graphical representation. Figure from [VDAPOG].
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3.4.5 extended Declare

To create the Workflow examples presented in this thesis a modified version of the Declare
workflow modeling system is used. Leymann, Unger and Wagner [LUW10] [Wagl0] extended
the Declare system to support temporal constraints. This makes it possible to model properties
like the parallel execution or the same start time for two tasks. Since no graphical notation for
the temporal constraints is clearly defined in either references the graphical workflow notation
described in [VDAPO6] (3.8, 3.9, 3.10) was extended to support temporal constrains inspired
by [Wagl0]. Some concepts introduced in [Wagl0] like branching which is not necessary in
declarative flows was not included.

Figure 3.11 condenses the extended Declare language and can be used as a quick reference
to interpret the workflows presented in this thesis. The figure displays all different types of
constraints and a short explanation in prose.

Existance

N..*
Exsistance, at least N

Temporal constrains

G
Init Not Init

Responded existence

0
Absence
0.N
Exsistance, zero or up to N
N
Exactly N

Negation Relation

ArB]

not co-existence
No Aif Bor No B if A

negation succession
A not before B,
B not after A

no alternate following,
no B After only one A

no alternate proceeding,
no B After only one A

no alternate succession
A and B can't alternate

no chain succession
Aand B
can't alternate directly

ETETTE?TE
| | )
© @ @ (@ [ @ @ [ (3

EEE
H ||
@ (@ [

co existence

response, B after every A

precedence, before B, A

succession,
B after A & A before B

alternate response,
B after every A &
before another A

alternate precedence,
before B, A; no additonal B
before not another A

alternate succession,
B after A & A before B
A and B must alternate

chain response,
B directly after every A

chain precedence,
directly before B, A;

chain succession,
B directly after A &
A before every B

Last
®A

A
AlB]

A B

>

=
B

H:D

max

g

@
Not Last

[min,max] delay
between executions

During

Overlapping [min/max]

not Overlapping

Ain parallel to B
tolerance [min/max]

A starts B while A
overlapps [min/max]

Afinishes B while A
overlapps [min/max]

Figure 3.11: The extended Declare Language based on [VDAP06] and [Wagl0].
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idempotent

A

Task A can be
executed totally
unconstrained.
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The execution of
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but must be Unidirectional Bidirectional Temotal
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Aand B are
A can be executed ie. A has to be A before B executed at
any time and executed A however still A and B can‘t the same time.
arbitrarily often. exactly 3 times. independetnt. be executed both. (min, max offset)

Figure 3.12: Task types in declarative languages.

3.5 Task types in declarative languages

This section pr
The task types

esents the different task types that can be identified in declarative languages.
are displayed in a hierarchical order in Figure 3.12. Their impact on replication

is discussed in Section 3.5.

e Idempotent tasks are tasks that can be executed at any time arbitrarily often. Such tasks
do not need another tasks to be executed before or after them. They usually represent
mandatory or optional tasks like optional checks or preparations.

For example if you prepare for running you need to check if your shoelaces are tightened.
It doesn’t matter when you do it but you need to do it at least once.

e Non Idempotent tasks have some constraints or properties that do not allow an arbitrary
number of executions. Such tasks in most cases change their environment. Sometimes
this change can be so severe that an execution cannot be undone. Non Idempotent tasks
can be further divided into dependent and independent tasks.

— Dependent tasks are somehow connected to another task regarding their total or
temporal order.

*

Unidirectional dependent tasks have a connection to another tasks but the
other task is not further constrained. For example if task A can only be executed
before B this affects only the way task A is executed. Task B can still be executed
at any time.
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The filesystem on a partition can only be repaired before the partition is mounted.
The partition can however be mounted at any time and is not related to the
repair task.

+ Bidirectional dependent tasks affect the way the other tasks is executed. Non
coexistence of two tasks would be an example.

For example if the color to paint something must be poured into an airbrush
only one of the available colors can be selected. If the tasks pour color A has
been executed the task pour color B cannot be executed too.

* Temporal dependencies define how two or more tasks need to be executed in
temporal relation to each other. Possible examples are parallel execution or same
start time.

An example for this would be to start to measure the time when another process
is started.

— Independent tasks are tasks that are not related to other tasks but are limited in
the number of possible executions.

If a software wants to gather information about the satisfaction of the user with the
software this should only be asked once or twice because the user might get upset
if he is disrupted several times and even has to enter the same information several
times.
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Chapter 4

Problem Formulation

This chapter defines the basic terminology used in this thesis, describes the system model,
elaborates the problem, and gives an overview over the approach.

4.1 Terminology

e A Workflow consists of a set of tasks and specifies how this tasks need to be executed.
Conditions and relations between the tasks define how they are executed. They determine
the order of the tasks as well as the number of times the tasks needs to be executed. To
successfully execute a workflow all conditions and relations must be fulfilled.

e Tasks are atomic components that combined with relations and conditions make up a
workflow. A task provides a specific functionality to the workflow and cannot be split
up any further. A task is either executed successfully or fails. The execution of a task
can however be dependent on an external service or data received from another entities.
This can make the task execution vulnerable to errors and failures of resources or services
outside of the tasks reach. Resulting from its nature and context in the workflow a task
can either be idempotent or non idempotent. See Section 3.5 for more information about
task types.

e The Semantic of a Workflow refers to its meaning. It is defined by the tasks, their
relations, and execution conditions. When they are changed by intent or accident the
semantic of the workflow changes. Another way to think of this could be that every
workflow addresses a specific problem or describes a certain functionality. Changing any
of the workflows properties changes the semantic of the workflow. Just like the meaning
of a sentence is changed when changing the punctuation or words within it.

e The Execution Order of a workflow refers to the order in which the tasks defined in
the workflow are executed. Since a declarative workflow only specifies what needs to be
done and not how, a specific execution order is not predefined. This means that the tasks
can be executed in different orders without violating the semantic of the workflow. For
more information refer to Section 3.2.
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Workflow Replication means that a workflow is run several times in parallel to increase
robustness. As described earlier not all tasks defined in a workflow can be run several
times and so the execution of such tasks need to be coordinated.

A Replica is copy of a workflow.

4.2 System Model

This thesis considers replication to make the execution of workflows in distributed environments
robust against the typical difficulties. Before the system model is presented these difficulties are
highlighted:

Unreliable Nodes Targeting distributed systems with nodes ranging from smart phones,
laptops, and workstations to external web services the failure of one node is not an unlikely
scenario. The methods presented in this thesis thus have to take into account that nodes
or the replicas running on them can fail at any time.

Nodes may be mobile and run on battery power. This can result in a limited lifetime
that is also influenced by their system load and the communication overhead. Since
communication is expensive for wireless devices in in terms of energy consumption it
should be kept to a minimum and the replicas should run as independent as possible.

Due to network characteristics the latency and throughput, and structure of the
network might be subject to immediate change. While some nodes are connected to
a wired network others might be connected via wireless communication services over a
shared medium.

Services might be bound to network nodes and their availability might change depending
on the condition or presents of this nodes.

Some tasks might require access to External Services with variating availability. In this
context an external service is understood as a service provided by a third party and not
by a local node.

4.2.1 Failure Models

This thesis focuses on the following failure scenarios:

Replicas can Fail at any time. Failed replicas need to be detected and handled by the
system. If the replica was running a non idempotent task the task needs to be executed
by another replica.

External Services can be unavailable. To simulate such services tasks with a variating
availability are used.
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declarative workflow W: IE’

simple replication of W:

DIA [ B J[C |
DIJIA | | [C |

replica 1
stack: D,A,B,C

replica 2
stack: D,A,B,C

replica 3
stack: D,A,B,C

Task execution violates workflow

Figure 4.1: Simple replication approach.

4.3 Problem Statement

This Section describes the problems addressed by this thesis.

As described in Section 4.2 distributed and especially pervasive systems can be a very unreliable
environment and present certain difficulties that a software running on such systems needs to
account for. One of the biggest occurring problems is spontaneous failure of nodes. Data stored
only on one node of a distributed system simply vanishes from the system when the node fails.

Existing work (See Section 2) has proposed many approaches addressing this issues such as
transactions, backups, or surrogates for failed services.

Backing up data to other nodes of the system can help to overcome this difficulty. This so called
replication is a well known architectural paradigm not only for computer systems. Replicating
of workflows is thus nothing entirely new. Replication of web services for the use in Ad-hoc
networks has been proposed by Dustdar and Juszczyk in [DJO7].

This thesis approaches replication of workflows from a language point of view. Since the
traditionally used imperative languages [PWZ"12] are thought of to be inflexible and rigid
[FLM™09] declarative languages are researched as a programming paradigm for workflows in
distributed systems.

The first problem that needs to be solved is to find a suitable declarative language that provides
the necessary flexible and formal background to precisely define workflows for distributed
systems. Available workflow languages have been presented in Chapter 3.

Since not all tasks in a workflow are the same possible differences between them had to be
researched (See Section 3.5) and their influence regarding replication had to be analyzed (See
Section 5.2).

Figure 4.1 shows a workflow W and a simple approach to replicate it. The workflow is
defined using the extended Declare language introduced in Chapter 3. It consists of four tasks
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(A, B,C, D). Unfortunately only two tasks (C' and D) are idempotent and can be executed
arbitrarily often. Additionally task B needs to be executed before task C.

Before the workflow can be executed an actual execution order has to be chosen. For this
example the order will be D — A —+ A — B — (. Please note that task A has to be executed
exactly two times.

In the replication approach shown in Figure 4.1 all three replicas start executing the workflow
and execute task D. Since task D is idempotent this is absolutely fine. The next task is task A
which is limited to two executions. When all the replicas execute task A only once the semantic
of the workflow is already violated. A similar problem applies to task B. This displays the
basic coordination problem that needs to be solved when replicating a workflow. The arising
problems that need to be solved are as follows:

e How can the non idempotent tasks be coordinated?

e In distributed systems communication overhead can be a critical issue. How can the
replication be accomplished with minimal communication overhead?

e The example shows that replicas are idle while a non idempotent task is executed. Can
this idle time be used to speed up the overall execution of the workflow? ... And can
declarative languages help to achieve this?

e [f a replica fails how can it be detected and how does the replication system need to react?

e The nodes in a distributed system might execute the workflow at different speed. Will
this be a problem or can this knowledge even be used to increase reliability?

e How can the flexibility of declarative languages benefit replication?
e What what are the key points for an efficient replication strategy?

e How well do replication strategies work in the real world?
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4.4 Approach Overview

To address these issues the workflow is run on several nodes in parallel. If a replica fails the
execution of the workflow needs to be able to continue until even the last replica has failed.
Non idempotent tasks are run on a single replica while other replicas stand ready to take over
in case the replica executing the non idempotent task fails. To coordinate the execution and to
synchronize the state of the replicas messaging is used.

One of the replicas is elected to decide about the execution of non idempotent tasks and becomes
an active coordinator. The state of this coordinator is synchronized to backup coordinators
to avoid a single point of failure. For small systems all the replicas could act as a backup
coordinator.

To detect the failure of replicas a timeout based error detection protocol is used.

The thesis will show that replication can also help to speed up workflow execution. This can
be achieved by replicating the workflow in different orders and executing repetitive tasks in
parallel.
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Chapter 5

Workflow Replica Coordination

Replication is a basic architectural paradigm to improve reliability, fault-tolerance or accessibility
of technical systems. The basic idea of replication is to prevent total system failure by having
backup systems standing by to take over if necessary. The Redundancy Array of independent
Disks (RAID) System is a popular example. In terms of redundancy the RAID system proposes
two different approaches. The first approach is mere mirroring of two disks. The second
approach uses a block level striping strategy with distributed parity to enhance performance
and provide robustness against single disk failures.

Unfortunately simple duplication is not possible for workflows since non idempotent tasks
can only be executed as often as defined. See Section 3.5. This thesis researches methods to
coordinate the execution of workflow replicas to deal with this problem. It will also show that
clever replication can decrease the needed execution time of a workflow and increase the overall
performance.

The basic ideas of workflow replication are introduced by replicating a simple computational
workflow. In this computational workflow the basic task types identified in Section 3.5 (idempo-
tent and non idempotent tasks) are present. This first example is used to identify and explain
the basic replication issues.

After that the impact of idempotent and non idempotent tasks on replication is discussed in
more detail and methods for their replication are proposed. Based on this a replication system
is designed. Issues like messaging, data handling, task execution, and failure detection are
explained.

To further increase the performance the benefits of replicating a workflow in different orders are
discussed. It is demonstrated that this increases the robustness against the failure of external
services while reducing the number of idle replicas and execution time.

The chapter is concluded with an example that describes how a declarative workflow is executed
on three replicas step by step.
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Figure 5.1: A computational workflow

5.1 Introductive Example

The development of cybernetic models is nowadays done with the aid of graphical block
diagramming tools. Such models are the basis of developing and testing ECUs (electronic
control units) which have a large range of applications and can be found in any modern machine.
The desired functionallity is modeled using graphical blocks representing either computational
or I/O tasks.

Using such a high level prototyping tool the developer can focus on functionality and does not
need to fiddle around with the constraints of different hardware platforms. This is a good real
life example how workflows are used as a programming paradigm to reduce complexity. This
section introduces the issues of workflow replication looking at such an rather computational
example workflow like shown in Figure 5.1.

The workflow consists of several I/O and commutation blocks. The variables x, y, and z are
read from different inputs and used in the different computation blocks. The result of each
computation is passed on to the next block until it reaches an output block. In this basic
workflow example the two major types of tasks identified in Section 3.5 can be found.

e Computational blocks represent idempotent tasks. They only modify data within the
system (local data) having no influence whatsoever outside of the system. This kind of
tasks will only changes local data. Having no influence on the "outside world" such tasks
don’t need to be coordinated and can be executed anytime by any replica.

e I/0 Blocks represent non idempotent tasks. They interact with other processes,
systems, or even the real world. Such tasks modify data or real objects which are not
within the reach of the system and cannot be undone easily. The data they receive on or
without request can be subject to continuous change. Even reading information from a
shared database twice can thus yield different results. Interactions with a human user
bear similar problems. The user might not be delighted to enter login information several
times just because the process in the background is replicated and all the processes are
asking for the needed information on their own. Having such an impact not only on local
data the execution of such tasks must be coordinated.
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Figure 5.2: Execution of a replicated workflow

Figure 5.2 shows the basic idea of coordinating replicas running a copy of the workflow presented
in Figure 5.1. In this example the workflow is replicated three times. The state of the replicas
is synchronized before and after the execution of a non idempotent task. If a replica is not
ready the others have to wait to avoid assynchronism. To avoid communication overhead the
execution of the idempotent tasks is scheduled by each replica separately. To focus on basic
coordination it is assumed that all tasks are executed successfully, all messages are delivered
successfully, and no replicas fail.

Before executing the first non idempotent task (Input X) the replicas synchronize and agree on
replica 1 to execute this task. After the successful execution the replicas synchronize again and
replica 1 sends the result to the other replicas. The execution continues and the next two non
idempotent tasks are executed in the same way (Input Y and 7).

All the replicas now have the necessary information to run the upcoming idempotent tasks
represented by the computations. Since idempotent tasks can be executed arbitrarily often their
execution is scheduled by each replica on its own to reduce communication overhead. Due to
differing computational resources or other external influences the execution speed of the replicas
may differ. In Figure 5.2 this is depicted by the different lengths of the idempotent tasks.
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Before the next non idempotent task can be executed all replicas need to synchronize again.
This means replicas two and three have to wait for replica one to finish. Following this strategy
the rest of the workflow is executed step by step.

Considering this naive setup the main issues of coordination can be summarized as follows.
Each of them will be addressed by a separate section later in this Chapter.

Need for coordination: As pointed out in Section 3.5 for non idempotent tasks parallel
execution on several replicas is in general not possible. lL.e. if a task books a flight that
can only be done by one replica because otherwise one would end up having as many
flights booked as there are replicas. The execution of such tasks must thus be coordinated.
This is addressed in in Section 5.3.3.3.

Different execution speed: As pointed out in the previous example the time needed for
executing certain tasks may differ between the replicas and cause a delay when replicas have
to wait idle for others to finish. This problem is addressed by an adequate coordination
strategy discussed in Section 5.3.3.3.

If a task is dependent on an external service this can also have influence on the workflow
execution. An external service can for example be the booking system of an airline which
is directly accessed by a task and needed for successful completion. If such a service is
unavailable over a longer period of time this could significantly influence the duration of
the workflow execution or even make it impossible. A detailed example is presented in
Section 5.4.0.2.

Idle replicas: In the example above non idempotent tasks are executed on one replicas
while the others are idle. While it is good to have a replica standing clear to take over
in the case of a failure the other replicas could be used to execute another task. This
would also speed up the execution time of a the workflow. Section 5.4 discusses how the
flexibility of declarative languages (See Section 3.2 ) can be used to reduce the number of
idle replicas.

Errors and failures: One of the original reasons for replication was to make the overall
system more reliable and resilient against failures. Especially but not only when running
on a network of loosely connected and unreliable nodes failure of a replica is a very likely
scenario. Implementing a good error detection strategy having backup replicas stand by
and scheduling tasks in a keen order are key elements to make the system robust. This
will be discussed in Section 5.3.4.

Communication: The messages needed to coordinate task execution and distribution of
execution results are introduced in Section 5.3.2.

Data Handling: Section 5.3.1 discusses how the workflow data is stored in a replica and
how the information about task execution is organized. This is needed later in this chapter
when explaining how a single replica processes the workflow and executes the tasks.
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A declarative workflow

go to the prepare eat leave the
bathroom breakfast breakfast house

Possible task orders for execution

go to the prepare eat leave the
bathroom breakfast breakfast house

>
prepare go to the eat leave the
breakfast bathroom breakfast house

>
prepare eat go to the leave the
breakfast breakfast bathroom house

>
go to the prepare go to the leave the
bathroom breakfast bathroom house

Figure 5.3: A workflow and its possible task orders.

5.2 Coordination of Different Task Types

In Section 3.5 different task types defined in declarative languages have been identified. This
Section explains what influence this types have on coordination.

As explained in Chapter 3 in contrast to imperative languages declarative languages do not
define an execution order for all tasks. When however a workflow is executed the tasks are
executed in a particular order. Before a workflow can be executed a definitive order of the tasks
has to be generated. This has to be done with respect to the existing constraints. While an
idempotent task can be executed at any time other tasks need to be executed following an order
precisely defined in the workflow.

Figure 5.3 shows the workflow of a morning schedule and possible orders of execution. Note
that for a successful execution only the last task "leave the house' needs to be executed once.
The other tasks do not need to be executed at all or can be executed more than once. Note
that not all possible execution orders are depicted.

Generating a task order of a workflow can be a hard problem which is out of the scope of this
thesis. When task orders are shown they are "generated" manually.
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Such a predefined order is stored in the task-stack of a replica. See 5.3.1. A workflow usually
translates into more then one task order.

The example above demonstrates how different task types influence the order in which the tasks
of a workflow can be executed. Non idempotent tasks can further be categorized in one or more
of the following subcategories (See also task types identified in Section 3.5):

e Independent tasks are very similar to idempotent except that they have to be executed

a specified number of times. This can be a definitive number, a range, a minimum, or
maximum of executions. Just like idempotent tasks they can be placed anywhere when
generating the execution order and are thus pretty flexible. When executed they have to
be coordinated since their number of executions must be guaranteed.

The execution of Dependent tasks is related to the execution of other tasks. In terms of
execution order this restricts the available positions for such a task in the execution order.
Dependent Task can be either unidirectional or bidirectional dependent.

— Unidirectional dependent tasks are tasks that need to check if another task was
executed before them or make sure that a specific task is executed after them. In
the this case only one of the tasks is affected, the other one remains unconstrained.
The task prepare breakfast and eat breakfast in the scenario presented above are a
good example. While a breakfast needs to be prepared before eating it, it can be
prepared without eating it as shown in the last execution order. The eating task is
thus unidirectional dependent on the preparing task.

— Bidirectional dependent constraints like the "no coexistence" need some additional
coordination. Before executing one of the tasks the replica has to check if the related
task has been scheduled for execution or has already been executed.

Tasks bound to a temporal constraint are a little more difficult to deal with. Some
have influence on the order of the tasks others need some temporal coordination when
executed. The last constraint used in the example described above only influences the
task order while for example parallel execution needs to be handled at run time.
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coordinator information The task-stack

done tasks currerat task next tasks
I—A—\

coordinator | lastContact | fithess ... | taskn-1 task n task n+1
<ID> <time> | <fitness>|[ ... <data> | <data> | <data>,
| done | Noneldempoleml Data | | RTR | Idempotent | Data | | NEW | Idempotent | Data |

Figure 5.4: Data stored by an ordinary replica

5.3 Workflow Coordination System

This Section proposes a coordination system that addresses the issues identified in Section 5.1.
Starting with the data handling within the replicas, the messages interchanged between them,
task execution and coordination algorithms, and failure detection strategies are explained.

A coordinator will be introduced to coordinate the distributed execution of a workflow and
ensure that its semantic (See Section 4.1) is not violated. To avoid a single point of failure every
replica is basically the same but only one replica is chosen to coordinate the execution while
others serve as backup. See Section 5.3.4.

5.3.1 Data Handling

To enable workflow replication every replica needs to store some information.

As described in Section 5.2 an execution order of the tasks in a workflow needs to be generated
before execution. This task order is then stored in the task-stack of a replica. See Figure 5.4.
The replica starts to execute the workflow beginning with the first task on the stack. Every task
in this stack has a data field holding execution information related to that task like Status,
TaskType, and TaskData. See Figure 5.5. When initialized the status of a task is "NEW"
and changes according to the current execution state of the task.

The possible states of a task can be:
e NEW: The NEW status indicates that a task has not been run. This is the initial state.

e RTR: This only applies to non idempotent tasks. The status of a non idempotent task is
Ready To Run when the replica is waiting for clearance from the coordinator to proceed
with the execution.

e CTR: This only applies to non idempotent tasks. When a CTR message (See 5.3.2)
is received by a replica the replica sets the state of a task to Ready To Run enabling
execution.

e done: Indicates that a task has been executed.

e running: Indicates that the task is currently being executed.
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Data | State | TaskType | TaskData|

State | NEW | CTR | RTR | done| running|

type | Idempotent |Non|dempotent |

taskdata | Frequency| NumberOfExecutions |ExecutionResuIts

Figure 5.5: The data field of the task-stack

The TaskType filed (See Figure 5.5) indicates if the task is non idempotent (and has to be
coordinated) or idempotent and can be run without coordination.

The TaskData field contains the following information. (See Figure 5.5):

e Frequency: The frequency field contains the number of times a task needs to be executed.

e NumberOfExecutions: This field stores the number of times this task has already
been executed successfully for tasks that need to be executed more than once. If a Task
FEzxecuted Successfully message is received this number is increased. Before execution of
a task it is compared with the Frequency field. If the required number of executions is
already reached the task status is set toDone and not started by the replica.

¢ ExecutionResults The execution results field contains the actual data resulting from
the execution of a task. This data is also updated by received Task Executed Successfully
messages.

5.3.1.1 Global vs. Local Queue

When coordinating the replicas in a distributed system the question rises how to keep track of
the execution progress of all tasks at all replicas to decide about execution. There are two basic
possibilities. Either all replicas have a global overview over the execution progress (Global task
queue) of every replica or only store their own progress (Local task queue). Both scenarios are
depicted in Figure 5.6.

If progress information is stored globally the coordinator needs to maintain an active copy of the
current global state on ever replica. See Figure 5.6. This might be possible when the replication
system only consists of a small number of replicas but can significantly increase communication
overhead when maintaining a large number of replicas.
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Figure 5.6: Global Queue vs. local Queue
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Figure 5.7: Data stored by the coordinator

Ordinary replicas (replicas being neither coordinator nor backup coordinator) only store the ID
of the coordinator, the time of the last contact to the coordinator, and information of their own
progress. See Figure 5.4.

The coordinator and backup coordinator also store progress information, time of last contact,
and fitness information for every single replica to make task execution decisions. Figure 5.7
depicts the task-stack of the coordinator containing information of all replicas. Every column is
dedicated to a different replica.
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Figure 5.8: The generic structure of a message.

5.3.2 Messaging

To coordinate the distributed task execution status information and execution results need
to be shared between the replicas. This information is transported using different types of
messages. This Section will introduce the different message types used for communication and
the algorithm that updates the task-stack with the received information.

All messages are structured like depicted in Figure 5.8. A message has a type indicating its
purpose. It contains the ID of the sending and receiving replica, the ID of the task concerned,
the time when the message has been sent, and the current fitness of the sending replica. The
Task Ezecuted Successfully message (TES) additionally contains a field with execution results.

The fitness information contained in the messages helps the controller to schedule the execution
of non idempotent tasks (See Section 5.3.3.3). The send time of a message is part of the timeout
based failure detection system. The timestamp helps the controller to determine if a replica
is still alive and connected to the network. If no message was received in a certain timeframe
a heartbeat message is requested. For more information regarding failure detection and error
handling please see Section 5.3.4.

A message can be of one of the following types (defined by the type field of the message):

e RTR: The Ready To Run message is send by a replica to the controller to indicate that
it is ready to execute a non idempotent task. The ID of the non idempotent task is
contained in the message (taskID). The receiving controller sets the status of the current
task of the corresponding replica (identified by the senderID in the message) to RTR. (See
Section 5.3.1) The controller also updates the last seen information for the sending replica
with the send time of the message. The fitness of the replica is also updated with the
information contained in this message.

e CTR: The Clear To Run message is send from the coordinator to start a specified task
at replicas listed in the targetReplicalDs filed. This message follows the RTR message.
Receiving replicas update their task-stack and execute the corresponding task. The last
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seen and fitness information transmitted in the sendTime and fitness fields is used to
update the information of the sending replica (the controller).

e TES: The Tusk Executed Successfully message is used to distribute the execution results.
A replica sending the TES message has just executed a task successfully and distributes
this information along with the execution results using the TES message. A receiving
replica updates its task-stack and checks if the execution of this task is done. If a task
has to be executed several times before execution is completed the replica decreases the
number of remaining executions by one. The last seen timestamp for the sending replica
along with the fitness value is also updated.

e CRR: The Check Replica Running message requests a heartbeat from the receiving replica.
Receiving replicas update their last seen and fitness information for the sending replica
and response with a HB message.

e HB: The HeartBeat message is used to respond on a CRR message. It contains information
about the currently running task, the send time, the ID of the sender and the fitness
indicator. Receiving replicas update their last seen and fitness information for the sending
replica.

Algorithmus 5.1 Handling incoming messages
procedure UPDATESTACK WITHRECEIVEDMESSAGES
while MessageQueN ot Empty do

M <+ GETNEXTMESSAGEFROMQUEUE();
UPDATELASTSEENINFORMATION(M.senderID, M.lastSeen);
UPDATEFITNESSINFORMATION(M.senderID, M.fitness);

if M.type == CRR then
SENDHEARTBEATMESSAGETOSENDER(M.senderID);
end if
if M.type == CTR then
SETTASKCLEARTORUN(M .taskID);
end if
if M.type == TES then
UPDATETASKDATA (M.taskID, M.TaskData);
end if

if thisReplicalsCoordinator then
if M.type == RTR then
SETREPLICAREADYTORUN(M.ReplicalD, M.taskID);
end if
end if

end while
end procedure
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5.3.3 Task Execution and Workflow Coordination

The previous Sections introduced the communication between replicas and the way the replicas
handle the workflow data and received coordination information. This Section discusses how
the system decides which replica executes non idempotent task. Subsection 5.3.3.2 introduces
the algorithm managing task execution on each replica. The coordination algorithm used on
the coordinating replica is discussed in Subsection 5.3.3.3.

5.3.3.1 Coordination Decissions

As introduced in Section 5.1 the execution of non idempotent tasks has to be coordinated. This
means that somehow it has to be decided which replica executes a specific non idempotent
task. Obviously if there is more than one entity involved in the decision process there is a need
for communication. In a distributed replication system running on a couple of mobile nodes
communication can be quite expensive in terms of energy consumption and should thus be
reduced as much as possible.

The question behind this is how can the number of decisions involving more than one entity be
reduced to reduce the need for communication. The first step was not to coordinate the execution
of all tasks since idempotent tasks could simply be executed on all replicas in parallel. To avoid
a need for communication to decide which replica is allowed to execute a non idempotent tasks
this thesis uses a coordinator.

While the replicas still need to ask the coordinator for permission there is no more need for
a distributed decision algorithm to be invoked to decide about the execution of each non
idempotent task. When a replica is ready to execute such a task it just signals this to the
coordinator and waits to receive either the allowance to execute it or the result of the task
distributed by another replica.

To make them interchangeable all the replicas use the same data structure and algorithms (and
are thus basically the same). Before the workflow execution is started they agree on one replica
to coordinate the execution. To avoid a single point of failure backup coordinators are selected
being ready to take over if the coordinating replica fails.

This does not totally remove the need for distributed decisions but in the best case such a
decision is only needed at the beginning to select a coordinator and a backup. If the coordinator
fails and the backup coordinator takes over a new backup coordinator could simply be chosen
by the "old" backup coordinator to avoid further decisions involving all replicas. It is out
of the scope of this thesis to develop yet another decision algorithm for distributed systems.
An existing distributed decision strategy can be selected when needed. A paper discussing
distributed decision processes has been discussed in the related work. See Chapter 2.
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Figure 5.9: Basic workflow coordination. In the first step the replicas signal RTR to the
coordinator. In the second step the coordinator decides which replica should
execute the task. In the last step the executing replica sends a TES message to
distribute the results.

5.3.3.2 Task Execution

As introduced in Section 5.3.1 every replica maintains a task-stack containing the tasks it has
to execute. The replica starts executing a workflow beginning with the task at the top of the
list.

If the task is non idempotent the replica sends a Ready To Run message (RTR) to the coordinator.
If no other replica has started the task jet and the fitness of the replica is sufficient the coordinator
sends a Clear To Run message (CTR) to the replica. When the replica received the clearance
from the coordinator it immediately starts executing the task. If the task is idempotent it can
be executed without asking the coordinator for permission. When a task has been executed
successfully the replica sends a Task Executed Successfully message (TES) to all other replicas
containing the execution result of the task.

The basic task execution of a non idempotent task is depicted in Figure 5.9 and described in
Algorithm 5.2. Constrained tasks are requested before they are run. If a task has been executed
it is checked if it has been executed the required amount of times. If not its state is set back to
NEW and the number of done executions is increased.
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Algorithmus 5.2 Task execution

procedure TASKEXECUTION
while Replical s Running do

UPDATESTACK WITHRECEIVEDMESSAGES();
T + GETCURRENTASKFROMSTACK();

if T.state == CTR then
RUN(T);
SENDTES(T);

end if

if T.state == NEW then
if T.type == non idempotent then
SENDRTR(T);
else
RUN(T);
SENDTES(T);
end if
end if

if T.numberOfExecutions < T.specifieNumberOfExecutions then
SETSTATENEW(T);
INCREASENUMBEROFEXECUTIONS(T);
else
SETTASKDONE(T);
SETCURRENTTASK (T .next);
end if

end while
end procedure
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5.3.3.3 Task Coordination

As described above the execution decisions for non idempotent tasks are made by a coordinator.
The purpose of the coordinator is to ensure the correct execution of all tasks contained in the
workflow to maintain its semantic (See Section 4.1). The coordinator is just a regular replica
that runs an additional coordination algorithm. (See Algorithm 5.3.)

The coordinator processes the incoming messages just like an ordinary replica (See Algorithm 5.1)
and stores the information as described in Section 5.3.1. In addition to the progress information
about himself he has to store the progress information of all other replicas and maintain a global
view like described in Section 5.3.1.1. This information is stored in an advanced task-stack that
holds the additional information about other replicas. This extended task-stack is depicted in
Figure 5.7.

After the task-stack of the coordinator has been updated he compiles a list of replicas that are
ready to run non idempotent tasks. Based on that list replicas ready to run a task are enabled
to run taking the remaining number of executions for this task into account.

The last step of the coordination algorithm is to check the last contact filed of every replica to
check if a replica seems to be dead. Failure detection is described in detail in Section 5.3.4.

Note that this is just a coordination schema. In a real world system an additional commit
protocol would have to be added to provide for mid transaction failure and message loss. This
has been left out to keep the depiction of the coordination as clear and clean as possible.

Algorithmus 5.3 Replica coordination
procedure COORDINATEREPLICAS
while Replical sRunning do

UPDATESTACK WITHRECEIVED MESSAGES();
runList <~ GENERATELISTOFFTASKSNOTDONE();

for T in runList do
replicaList < GENERATELISTOFREPLICASREADYTORUN(T);
SORTLISTBYREPLICAFITNESS(replicaList);
STARTAPPROPRIATENUMBEROFTASKS(replicaList);

end for

CHECKFORDEADREPLICAS();

end while
end procedure
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5.3.4 Failure Detection and Error Handling

To detect failed replicas a lazy timeout based error detection system is used. Since messages
have to be passed on regular basis from all replicas to the coordinator the timestamp in the
message is used to keep track of the replicas. If a replica remains silent for an unusual long
time the coordinator sends a CRR message (See Section 5.3.2.) to the suspicious replica. If no
heartbeat is received within a certain timeframe it must be assumed that the replica is dead or
not reachable.

The coordinator on the other hand has to send status updates and coordination messages on a
regular basis and can thus be monitored by the other replicas. If the coordinator remains silent
for an unusual long time the replicas take the initiative and check if the coordinator is still alive.
A random back off time could be used to avoid killing the coordinator with a message storm.

To avoid a single point of failure the coordinator is replicated within the system to a backup
coordinator. This backup coordinator can take over when the main coordinator has crashed.

The lazy failure detection strategy proposed in this Section for replica coordination avoids
message explosion since it uses the regular coordination messages and thus avoids flooding. It
even can remain silent if no problems occur.

The related work section discusses a paper comparing different error detection strategies in
distributed systems. (See Chapter 2.)

46



5.4 Execution Order

declarative workflow IE

Same replication order

replica 1 B
stack: A,B,C,.D
A A JA ]

I replica 2
stack: A,B,C,D

replica 3
stack: A,B,C,D

Same replication order, parallel execution

A | [C |ID |

replica 1
stack: A,B,C,D

A B |

II replica 2
stack: A,B,C,.D

A

replica 3
stack: A,B,C,.D

Different replication order, parallel execution

B JIC |

replica 1
stack: B,C,A,D

A A |

II replica 2
stack: A,B,C,D

D [|A |

replica 3
stack: D,A,B,C

Figure 5.10: Benefits of using different task orders when replicating a workflow.

5.4 Execution Order

As mentioned above a declarative workflow does not define a fixed order of its tasks. Before
the workflow can be executed a concrete task order has to be generated and loaded into the
task-stack of the replicas. See Section refsec:taskTypeCoordination. Instead of choosing one of
this orders for replication on all replicas a different order could be used for each replica. This

would have the following advantages:

5.4.0.1 Reducing the Number of Idle Replicas and Speedup the Workflow Execution

Figure 5.10 shows how replicating a workflow in different orders can reduce the execution time
of a workflow. Under each replica its task-stack is depicted to show the replicated task order.
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On the line after the replica name only the tasks actually executed by the specific replica are
shown.

In example I all replicas replicate the workflow in the same order. Without any parallelization
the execution will take as long as it task one replica to execute the whole workflow. Since most
of the tasks are non idempotent they can only be executed on one replica. In effect replica 1
and replica 2 are idle most of the time.

In example IT task A which is supposed to run three times is run on all replicas in parallel
reducing the time required to execute the workflow. Despite this improvement two of the replicas
are still idle most of the time because they have to wait for replica 1 to finish executing tasks C'
and D.

In example III every replica replicates the workflow in a different order. Replica 1 starts
executing task B, replica 2 starts executing task A and replica 3 starts with task D. After
successful execution the results are synchronized. Using this strategy no replica remains idle
and the workflow can be executed in a fraction of the time originally required. If a replica
would fail during execution another replica could take over. This exemplifies that replicating
a workflow in different orders can reduce the amount of idle replicas, speed up the workflow
execution process, and still be fault tolerant.

5.4.0.2 Robustness Against External Service Failure

Another advantage of replicating a workflow in different orders is that it becomes more resistant
against the failure of an external service. This is depicted in Figure 5.11. If replicating a
workflow in the same order on every replica the replicated system could be vulnerable to the
failure of an external service which is required by a task of the workflow. Example I (in Figure
5.11) shows that in the worst case even the execution of the whole workflow could fail if the
external service remains unavailable. In an average case the execution could be slowed down
dramatically if the execution of the whole workflow is forced to wait in that external service.

Replicating the workflow in different orders (as shown in example II Figure 5.11) the workflow
can still be executed successfully if the external service becomes unavailable.
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Figure 5.11: Replicating a workflow in different orders can provide robustness against the
failure of an external service.
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Figure 5.12: A concrete declarative workflow is replicated and executed on two replicas.
The coordinator usually running as a service on one of the replicas is depicted
separately to avoid confusion.

5.5 Example

After describing methods of coordination in Section 5.3.3.2 and defining the algorithm via
pseudocode this Section presents a concrete execution scenario. The replicas use a set of
messages to communicate described in detail in Section 5.3.2. For more information about data
handling please see Section 5.3.1.

The workflow (W) proposed in this example can only be executed in two different orders. Order
O1(w) = B — C — A and order Oy(w) = B — A — C. See Figure 5.12. Both orders are
replicated on different replicas. The benefits of using different execution orders have been
discussed in Section 5.4.

Task B has been defined as initial task and has to be executed first. Task C' is defined as a
response to task B: O((activity == B — existence(C))). Since task C needs to be executed
exactly once: existence(C) A O((activity == A — O(absence(C)))) it just has to be executed
anytime after task B. Task A needs to be executed exactly two times: (existence(A)A(activity #
AU (activity == AN O(exectlyN —1(A))))) and can be executed as second or third task. For
information about the notation see Section 3.4.5.
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Workflow execution:

The replicas start executing task B without coordination since it is an idempotent task and
does not need to be coordinated. Being faster in general replica 2 executes task B faster and
sends a RTR(taskC) message to the coordinator which responds with a CT R(taskC') message.
While replica 2 is executing task C replica 1 finished executing task B and sends a RT R(taskA)
message to the coordinator which responds with a CRT'(taskA) message.

As replica 2 finishes task C' it sends a TES(taskC') message to the other replicas (including the
here separately depicted coordinator). After that replica 2 requests execution of task A which
is granted by the coordinator sending an CT R(taskA) to replica 2. While replica 2 executes
task A replica 1 has finished one execution of the same task and notifies all other replicas with
a TES(taskA) message.

From replica ones point of view one execution of task A is missing and thus replica 1 sends
a RTR(taskA) message to the coordinator. Since replica 2 is already running task A for the
second time this is just noted by the coordinator. If replica 2 would fail while executing task A
replica 1 can immediately be ordered to take over the execution. After finishing task A replica
2 sends a TES(taskA) message to all replicas. The workflow has been executed successfully.
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Chapter 6

Evaluation

This chapter evaluates the coordination methods proposed in the previous chapter. The
evaluation will determine the fitness of the algorithms regarding failures, communication
overhead, and workflow characteristics. In order to do that the proposed strategies have been
implemented to be simulated using the PeerSim peer to peer simulator. See section 6.1.

The replication algorithms will be evaluated using a large number of synthetically generated
workflows and simulated in the peer to peer simulator PeerSim. To draw conclusions about the
significance of this synthetic tests to the real world a "real" workflow example is replicated.

The implemented replication protocol needed for the simulation has a size of 1700 lines of java
code. Since this is a quite invisible amount of work contained in this thesis a short architectural
overview is given in Section 6.1.2.

6.1 Evaluation Methods and Environment

6.1.1 PeerSim

To evaluate the proposed algorithm the PeerSim simulator is used. See [MJ09]. PeerSim is a
peer to peer simulator written in java. It provides two different simulation engines. A more
scalable, and simplistic cycle-based engine that is ignoring transport layer issues like message
loss and delay. An event based, however less efficient engine that can among other things be
used to take transport layer obstacles into account.

Focusing on the synchronization methods the cycle based engine has been used to implement
and simulate the proposed coordination algorithm. It is assumed that messages are transmitted
reliably between the nodes.
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Figure 6.1: Architectural overview over the replication protocol.

6.1.2 Implemented Simulation Software

This section briefly presents the simulation software that was implemented as a protocol for the
PeerSim simulator to generate the evaluation results. PeerSim is controlled using a config file
that is used to specify the network size (the numbers of peers) and the protocols to run on the
peers. To initialize the simulation environment initializers are used. In contrast to protocols
initializers are only called once in the very beginning of the simulation. The actual simulation
process is controlled by so called controls. They are used to end the execution and execute
maintenance and monitoring tasks which are not part of the protocol that is simulated.

Figure 6.1 shows the simplified architecture of the replication protocol. A replica is represented
in the PeerSim simulator as network node. The coordination algorithms (Replica logic) is
implemented as a PeerSim protocol. Every node runs the "manageMessaging" and "runTask"
algorithms. The coordination algorithm however is only run by one node (the coordinator). To
store task information and coordination data the data handling described in Section 5.3.1 is
implemented in the "Datamodel". Every node maintains a separate data model where its task-
stack and coordination information is stored. A message queue buffers all incoming messages
and works as described in Section 5.3.2.

The data model is initialized using the initializeDataModel initializer which evaluates the
settings from the config file. A workflow is passed to the replicas using the configuration file or
the workflow generator. The input via config file is intended to simulate a specific workflow like
the later presented kitchen workflow. See Section 6.2.5. The workflow generator can be used to
generate a specifically tailored set of different workflows. This is needed when simulating a test
case for hundreds of different workflow configurations.

Using the cycle driven engine all nodes are called every cycle one by one and execute the
defined protocols. As described in Section 5.3.3.2 non idempotent tasks are coordinated before
execution and idempotent tasks can be executed directly without coordination. To simulate
task complexity every task has a duration property. The duration property models of "how
many instructions" a task consists. A replica has a fitness parameter that basically defines how
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many instructions can be processed per cycle. In combination these two parameter model the
duration of the execution of a task on a specific replica.

6.1.3 Simulation Parameters

To configure the workflow generator the config file is used. The following parameters can be
used to influence the workflow generator:

e sameOrder: If true the workflow will be replicated in the same order on every replica.
If not defined the value true is assumed.

e numberOfDifferent Workflows: Defines how many different orders of a workflow are
replicated. This parameter must be specified.

e numberOfTasks: Defines of how many tasks the generated workflow will consist. If not
defined the default value 10 is used.

e {min,max}Duration: The duration of all tasks will be randomly chosen from this range.
Defaults are min 1 and max 5.

e {min,max}executions: Minimum and maximum number of executions of all tasks will
be randomly chosen from this range. Defaults are min 1 max 3.

e percent idempotent: Percentage of idempotent tasks.

e number of failing replicas: Number of replicas that will fail during execution of a
workflow. The system tries to distribute the fails equally over the execution time. By
default no replicas will fail.

e numberOfServices: Defines the number of external services. By default no external
service dependencies are simulated.

e {min,max}serviceAvailability: define the minimum and maximum chance of all the
external services to be available. When the workflow is generated the probability is
randomly chosen individually for each replica from this range. The availability of every
service is separately determined based on its probability at the beginning of every cycle of
the simulation.

The following options can be used to influence the way workflows are executed:
e {min,max}fitness: The fitness of a replica is randomly defined within this range.

e taskList: If the workflow generator is not used the tasklist input can be utilized to feed a
specific workflow into the system for simulation. If not used the system uses a generated
workflow.

e networkSize: This parameter defines the number of nodes in the simulation system. A
node represents a replica. This parameter is not optional and must be defined.
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e experiments: Simulating the execution of a workflow is called an experiment. The
number of experiments conducted can be defined using the experiments parameter. When
the workflow generator is used as an input a new workflow is generated for every experiment
using the parameters set in the config file. If the parameter is not specified only one
experiment is conducted.

e maxParallel: This option enables TES messages for idempotent tasks. When replicating
a workflow in different orders this speeds up the execution since the other replicas do not
need to execute the idempotent tasks when they have been already executed elsewhere.
On the down side this increases the message overhead since additional TES messages
have to be send which would not be necessary to successfully execute the workflow. If not
defined the default value is true.

6.1.4 Synthetic Tests

To find out how the proposed system performs under different conditions the workflow generator
is used to generate specifically tailored workflows. The quality of the generated workflows can
be influenced by the parameters described in Section 6.1.3. This makes it possible to run every
test case on a large number of different workflows.

The evaluation results presented for all the test cases in this section have been generated
simulating 500 specifically generated workflows. Preliminary tests indicated that after such a
large amount of simulations the resulting values have sufficiently converged to stable values.
The statistics have been gathered by the replicaObserver (See 6.1) and written to a text file.
The resulting data has been arithmetically averaged and plotted using gnuplot.

6.1.5 Real World Test

To not only rely on synthetic test cases a real workflow is simulated to test the system on a
real example. Like the synthetic test cases this workflow is executed 500 times to take different
failure situation into account. In contrast to the synthetic test cases the execution orders for
the real world example are deduced by hand. The real world workflow is evaluated regarding
execution speed, idle time, message overhead, and replica failure.
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6.2 Evaluation

This Section presents the results of the different test cases. Most of the synthetic tests combine
more parameters to show their close relation. For example speedup and idle time is combined
to show how the speedup of the execution process is related to the actually working replicas. In
most cases the diagrams on the left side show replication with the same task order on every
replica and on the right side with a different task order for every replica.

At the beginning of each evaluation the key configuration options are pointed out. If values
are modified during the experiment the values are presented in curly brackets. The default
configuration is as follows:

Default configuration:
newtork.size | Tasks | minExecutions ‘ maxExecutions ‘ minDuration ‘ maxDuration

|
10 10 | 1 | 4 | 1 | 5

sameOrder | Different Workflows ‘ failingReplicas ‘ externalServices ‘ Experiments
{true, false} 20 | 0 | 0 | 500

6.2.1 Speedup and Idle Time

This section evaluates the impact of replication on execution time of the workflow and idle time
of the replicas regarding the percentage of non idempotent tasks, the number of tasks, and the
number of replicas. To get a more fine grained impression of the influence of different workflow
orders the workflow has been simulated using only one workflow, five different workflows, and a
different workflow for every replica.

The evaluation of speedup and idle time has been combined in one simulation scenario to show
their close relation. The diagrams show that a decreased execution time also means that the
replicas have been less idle and were taken to better use.

As the configuration table shows Figure 6.2 evaluates speedup and idle time with a fixed number
of tasks and a variable number of replicas. In Figure 6.3 it is the other way round. The number
of tasks is variated while the number of nodes is kept constant.

Configuration:
newtork.size Tasks Different Workflows idempotent
figure 6.2 | {1, 3, 5, 12, 20} 5 {1, 5, max} {0, 33, 66, 100} %
figure 6.3 10 {5, 10, 15, 20, 25} {1, 5, max} {0, 33, 66, 100} %
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Figure 6.2: Speedup and idle time regarding number of replicas, task type, and order.
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Description of Figure 6.2

Figure 6.2 shows how increasing the number of replicas can benefit execution speed and
idle time of the replicas while the number of tasks is constant (5). The diagrams in the left
column are generated replicating the workflow in the same order on every replica. For the
generation of the diagrams in the middle five different workflow orders are used. This means
that when using twenty replicas four replicas replicated the workflow in the same order. In
the right column a different order was used on every replica. The four rows represent different
percentages of idempotent tasks.

Speedup

Replicating a workflow in the same order on every replica benefits the execution time only
as long as the number of replicas is not greater than the number of times a task needs to be
executed. This can be see in the left column. Since the number of times a workflow needs to be
executed is randomly chosen between one and fife the execution speed does not decrease any
further when more than 5 replicas replicate the workflow in the same order. When the workflow
is however replicated in different orders the execution time can decrease further since different
tasks are scheduled at the same point in the task-stack of the replicas.

The percentage of idempotent tasks has almost none effect on the execution speed of a workflow.

Idle time

In contrast to the execution speed the idle time is dependent on the number of the replicas
used and the percentage of idempotent tasks. If 100 per cent of the tasks are idempotent no
replicas are idle no matter of the number of used task orders. This is because idempotent tasks
are executed on every replica and can be executed arbitrarily often. The idle time increases
with a decreasing number of idempotent tasks.

When the workflow is however replicated in an increasing number of different orders the time of
the replicas can be used more efficient and the number of idle replicas decreases. When the
percentage of idempotent tasks however decreases the idle time of the replicas rises.
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Description of Figure 6.3

Figure 6.3 shows how increasing the number of tasks influences the execution time and idle
time of the replicas while the number of replicas is constant (10). Apart from that Figure 6.3 is
organized in the same way as Figure 6.2.

Speedup

When replicating a workflow in the same order a linear increase of the tasks increases the
execution time of a workflow in the same fashion. Replicating the workflow in different orders
can not change this however the execution time does not increase as fast as it does when the
workflow is replicated in the same order on every replica. The percentage of idempotent tasks
has almost no influence.

Idle time

The number of idle replicas is only related to the percentage of idempotent tasks and stays
almost constant when increasing the number of tasks. The only exception to this poses the very
last diagram. The reason for this is that if every task is non idempotent and there are more
replicas then tasks (5 tasks and 10 replicas in the beginning) the idle time is quite high. As the
number of tasks increases more replicas can be employed and the idle time decreases.

6.2.2 Messaging Overhead

This Section evaluates the message overhead of replication regarding the number of tasks, the
number of replicas and the percentage of non idempotent tasks. Quite expectedly the message
overhead increases with the number of replicas or the number of tasks in a workflow.

Configuration:
newtork.size Tasks Different Workflows idempotent
figure 6.4 | {1, 5, 10, 15, 20} 10 {1, max} {0, 33, 66, 100} %
figure 6.5 10 {5, 10, 15, 20, 25} {1, max} {0, 33, 66, 100} %
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Description of Figure 6.4

Figure 6.4 depicts how an increasing number of replicas influences the message overhead
when replicating a workflow in the same or different order (compare left and right column).
The number of tasks for all diagrams is constant (10). From top to bottom the number of non
idempotent tasks is increased.

Task executed successfully messages

To propagate the execution state of a specific task TES (task executed successfully) messages
are send. See section 5.3.2. To keep all replicas up to date these messages need to be send to
every replica when a task has been executed successfully and thus grow proportionally to the
number of tasks in a workflow and the number of replicas used.

Stability management messages

When a replica remains idle no messages are send to the controller and thus after a while (when
the timeout has passed) the controller asks the idle replica for a heartbeat. As already discussed
in Section 6.2.1 the idle time of the replicas increases when the number of idempotent tasks
decreases. When the idle time increases and a lot of replicas remain idle for a longer time the
amount of stability management messages increases. This effect can be seen in the left column.
As shown in the right column this can be avoided when replicating the workflow in different
orders keeping more replicas occupied.

Workflow coordination messages

As the percentage of non idempotent tasks increases the amount of coordination messages also
grows. When running a workflow in the same order all replicas report ready for the same task
at the same time and thus a lot of RTR and CTR messages are created. When replicating the
workflow in different orders the ratio of send run requests (RTR messages) and acknowledgement
(CTR) messages gets close to one since less replicas have scheduled a specific task at the same
"time" in their stack.
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Figure 6.5: Messaging overhead regarding number of tasks,
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Description of Figure 6.5

Figure 6.5 depicts how an increasing number of tasks influences the message overhead when
replicating a workflow in the same or different order (compare left and right column). The
number of replicas for all diagrams is constant (10). From top to bottom the number of non
idempotent tasks is increased.

Figure 6.5 shows the same phenomena like the ones described regarding 6.4. In general this
scenario shows that increasing the number of replicas while keeping the number of tasks con-
stant or increasing the number of tasks while keeping the number of replicas constant has the
same effect on the message overhead. In both scenarios it grows proportional to the variable
parameter.

6.2.3 Failure of Replicas

This Section evaluates the impact of failing replicas on replication regarding execution speed
and stability management messages. Figure 6.6 evaluates performance for a fixed number of
failures and a variated number of replicas. Figure 6.7 evaluates the performance for a fixed
number of replicas and a variated number of failures.

To model replica failure the system randomly disables a replica. To detect failed replicas the
controller uses the timeout based error detection strategy described in Section 5.3.4. After a
timeout the controller requests the replica to send a heartbeat and restarts the replica if he
does not receive an answer. This random failure models an equal chance of every replica to fail.
If an already failed replica has been "selected" it remains failed. If the failing replicas would
only be chosen from the running replicas this would increase the probability of these replicas to
fail. The systems tries to distribute the replica failures equally over the execution time of the
workflow. This is achieved using execution duration prediction based on the characteristics of
the workflow and duration of already executed experiments.

Configuration:
newtork.size Tasks FailingReplicas idempotent
figure 6.6 | {1, 5, 10, 15, 20} 10 30 {0, 33, 66, 100} %
figure 6.7 10 10 {0, 2, 5, 10,30, 50} | {0, 33, 66, 100} %
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Figure 6.6: Speedup and message overhead regarding number of replicas and constant failures.
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Description of Figure 6.6

Figure 6.6 displays how an increasing number of replicas deals with a constant amount of failures
equally distributed over the execution time of the workflow. In the left column the replicas all
replicate the same order of the workflow while in the right column a different order is used for
every replica. The percentage of idempotent tasks decreases from the top to the bottom.

Messaging overhead

The figure shows that the messaging overhead in an error prone environment is dependent on
the used task orders and the percentage of idempotent tasks. As already pointed out in Section
6.2.2 same order replication and a high percentage of idempotent tasks already cause a great
number of stability management messages. This number is further increased by the messages
which are caused by actually failing replicas.

When replicating the workflow in different orders the overhead of stability management messages
is much lower in general (even without failures) as pointed out in Section 6.2.2. Same order
replication has another key disadvantage in the case of a failure which can help to explain the
tremendous difference in message overhead. As pointed out before when a workflow is replicated
in the same order its progress mostly depends on a few replicas while the others are idle. When
one of the replicas actually processing a task fails this causes an additional hold up. During this
time the other replicas are also idle since they all wait for the successful execution of one task.
Since all the replicas are idle none has a need to communicate with the controller. Because of
the timeout based failure detection strategy this causes the controller to check all replicas for
being still alive which leads to an additional message overhead.

Execution speed

As previously explained replicating a workflow in different orders benefits the overall execution
time of a workflow especially when a lot of the tasks are non idempotent. See Section 6.2.1. This
behavior is amplified when replica failures occur. Workflows mostly consisting of idempotent
tasks are quite robust against failures when replicated since all the tasks have a backup running
in parallel on another replica. When however the number of non idempotent tasks rises failures
have more and more influence on the execution since non idempotent tasks can only be run on
a single replica at once.

When using different workflow orders for replication the time while a failed replica is repaired is
used to execute other parts of the workflow. When the replica is finally repaired the overall
execution has progressed and not much time was lost. This results in a dramatically shorter
execution time for workflows replicated in different orders.
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Figure 6.7: Speedup, message overhead regarding failing replicas, task type.
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Description of Figure 6.7

Figure 6.6 displays how a constant number of replicas deals with an increasing amount of failures
equally distributed over the execution time of the workflow.

The theories presented regarding Figure 6.6 also apply to Figure 6.7. In addition the Figure 6.7
shows that increasing the amount of failures while keeping the number of replicas constant affects
same and different order replication in a similar way. Both message overhead and execution
time increase however different order replication seems to perform better especially when most
of the tasks are idempotent.
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Figure 6.8: Execution speed and error handling regarding external service availability.
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6.2.4 Failure of External Services

This Section evaluates execution speed and message overhead regarding the number of external
services, service availability, and different vs. same order replication. Unlike all the previous
plots the right column depicts the execution speed and the left column the stability messaging
overhead. The plots contain same and different order value plots and their absolute difference
for one, two, three, and four external services.

Configuration:
‘ newtork.size ‘ Tasks ‘ ExternalServices ‘ idempotent ‘ Duration ‘ Executions

figure 6.8 | 10 10 | {1,234 | 0% | 2 | 1

In the simulation an external service is modeled as a non idempotent task. A service is initialized
with a random availability between min and maxServiceAvailability. The simulation system
executes the workflow in cycles. See 6.1. At the beginning of every cycle the availability of
every service is determined. The task linked to a service can only be executed by a replica when
a service is available in the current cycle.

The simulation shows that a linear increase of tasks depending on external services leads to
a proportional increase of stability management messages. One service causes 21 stability
messages to be sent at 50 % availability and same order replication. Two services 40, three
64, and four services 89. For different order replication the numbers are similar: 7, 12, 18, 23
also at 50 %. Unsurprisingly one additional service thus causes a fixed amount of additional
stability management messages. Again different order replication seems to be beneficial in terms
of message overhead.

For execution time a similar effect is present which however is not so easy to detect. To make
the effect visible in the plot the execution time at 100 % service availability has been subtracted
from the measurements (42 for same and 11 for different order replication). If the duration is
compared it is evident that an additional service increases the execution time by a constant
factor (which is approximately 16 at 20% availability in this simulation). This can be seen when
comparing i. e. the values of same order replication for different numbers of external services at
20 % availability. For one service its 16, for two its 33, for three its 47 and finally 64 for four
services. (The expectancy values are 16, 32, 48 and 64).

This shows that the effects of external services do not influence each other and do not make
things worse when several external services are combined.
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Figure 6.9: The kitchen workflow — a real world workflow example.
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Figure 6.10: Four different execution orders of the kitchen workflow. The tasks are labeled
with their short name (See fugure 6.9). Every row represents a different order.

6.2.5 Real World Example

To test the algorithm on a real world example the workflow shown in Figure 6.9 is used. The
depicted workflow is defined in extended Declare (Compare Section 3.4.5) and models the
process of preparing a meal and cleaning up the kitchen afterwards.

Before the workflow can be executed workflow orders need to be generated. Four different
execution orders have been created manually for the kitchen workflow example. See Figure 6.10.
For information about workflow orders compare Section 5.2.

Like in most human flows most of the tasks are non idempotent and can be only executed once.
The reason for this is that most human flows describe how things are made or accomplished.
Most of the tasks are small steps that add up to something concrete. If one for example has a
look at the assembly guide from a famous swedish furniture shop one will recognize that most
of the the tasks have to be done exactly once or a fix number of times. Most of the tasks even
have to be done in a specific order that canont be changed. For this reason most of these flows
have a high percentage of non idempotent tasks. For the presented kitchen workflow this is 70
%. (16 out of 23).

The replication of the kitchen workflow is simulated using the same workflow order for every
replica and different orders for every replica (Which are presented in Figure 6.10). Evaluation
is done regarding execution time, idle time, number of messages and number of replicas. The
proposed execution orders are directly feed into the simulation and thus only the simulation
parameter have to be defined in the config file (No workflow coordinator needs to be configured):

Configuration:
‘ newtork.size ‘ sameOrder ‘ Different Workflows ‘ experiments

figure 6.8 | 4 | {true, false} | {1,4} | 500
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Figure 6.11: Kitchen workflow evaluation

Figure 6.11 shows the simulation results of the presented real world workflow (Figure 6.9).
Simulations regarding message overhead, execution and idle time have been done without failing
replicas. The real world workflow shows a similar behavior like the correspondent synthetic
examples. Using the replicas to run tasks in parallel that need to be executed several times
proves once again to be beneficial regarding execution time. Running the workflow in different
orders increases the execution speed by 30 %. Increasing the number of replicas however has
the disadvantage of increasing the message overhead and idle time of the replicas.

Looking at the idle times it is conspicuous that the idle time for one singe replica is 25 %.
This is due to the used cycle based engine. When an execution request is sent in one cycle the
controller answers in the next cycle. This means that the replica is at least idle for one cycle.
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Since most of the tasks take only about two cycles to be executed this has a big impact on the
measured idle time.

Comparing the plots regarding speedup and idle time for same and different order replication
implies that most of the performance gain comes from parallel execution of tasks that need to
be done several times. The performance gain from using different order replication is visible
but not breathtaking. This example also shows that finding optimal replication orders is a
crucial task. The quality of the generated workflow execution orders has a direct influence on
the execution time and the time a replica remains idle.

As already described in Section 6.2.2 replicating a workflow in different order is beneficial
regarding message overhead. While the number of TES messages remains the same there are
less RTR messages. Replicating a workflow in different orders leaves less replicas to execute
one task at the same time and fewer RTR messages are sent. The absence of error handling
message overhead shows that the timeout based error detection strategy seems to be a good
choice since it can remain silent while no errors occur.

To simulate an unreliable environment random replicas have been failed 30 times. The result is
shown in the last two rows. Regarding replica failure the real world workflow performs similar
to the synthetic workflows described in Section 6.2.3.

In general the results of this real world workflow replication show that a real workflow behaves
very similar to the corresponding synthetic workflow examples. The biggest problem however
remain the non idempotent tasks which cannot be run several times in parallel for backup.
Unfortunately in the presented real world example this tasks make up 70% of all tasks. This
could be addressed by balancing the costs for workflow violation and expected failure as proposed
by [SPJ11]. (Compare related work Chapter 2.3.)
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Chapter 7

Conclusion

This thesis shows that workflow replication can be used to increase the robustness of workflows
executed in a distributed environment. Different declarative workflow languages have been
presented and their modeling capabilities have been analyzed. Task types present in declarative
languages have been identified and their impact on replication was evaluated. Methods to
coordinate the execution these task types have been developed. To evaluate the proposed
coordination methods a replication protocol was implemented and simulated utilizing the
PeerSim peer to peer simulator. The evaluation was done using a large number of synthetically
generated workflows as well as a real workflow example.

It has been shown that in contrast to imperative languages declarative languages provide more
flexibility and freedom for workflow execution. This is possible because a declarative language
only defines what needs to be done and not how. Given that freedom it is possible to execute a
declarative workflow in many different orders which do not need to be explicitly defined by the
workflow.

The presented replication algorithms make use of this additional flexibility. The simulations
show that if the workflow is executed by the replicas in different orders it can be executed faster
and with less message overhead. Replica failures also have less effect on execution time when
the workflow is replicated in different orders.

Among the presented declarative workflow languages Declare was chosen to model the workflows
presented in this thesis. Augmented with additional temporal constraints it can be used to
precisely model the coherences between the different tasks in a workflow. The identified task
types have been divided into two major categories, idempotent and non idempotent. This
classification is important for replication because non idempotent tasks can only be executed
in a limited way and have to be coordinated. To globally coordinate their execution one of
the replicas is selected as a coordinator and governs their execution. To avoid a single point of
failure the state of this coordinator is replicated to a backup.
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