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Abstract

Sharing and integrating heterogeneous knowledge from different robots requires finding an
agreement between the underlying abstract, hardware independent ontologies, saved in the
RoboEarth cloud framework in the World Wide Web. A variety of methods from the literature
may be used for this task, by means of similarity computation of two ontologies. While
most of them come from other fields such as sequence alignment methods from the field of
bioinformatics, they can be extended for ontology alignment purposes. While such methods
basically perform a pair wise comparison of ontology entities, another approach called the OWL-
Lite Alignment method uses a variety of different ontology alignment methods to integrate
many ontology comparison techniques in one common framework. Both the sequence alignment
based and OWL-Lite based solutions are presented and their suitability to conduct a similarity
check for robot task descriptions upon an upload into the RoboEarth platform discussed.
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1 Introduction

This work represents a fragment of the RoboEarth project. Hence a rough introduction over
the project shall be given in this introduction to cover the basic idea of RoboEarth, followed
by an outline of the motivation and an overview of this work.

1.1 Cloud Computing in General

The Cloud Computing technology emerged approximately around 2008 out of existing tech-
nologies like Grid Computing, Utility Computing and Web Services. It has since been heavily
discussed and according to Gartner’s 2011 Hype Cycle Special Report [Gar11] Clouds were
still on the peak of expectations and most probably still are. With a widespread use followed
by the introduction or norms and patterns [FLR+13], "clouds" have moved from a mere trend
towards a commonly accepted technology.
Cloud Computing revolves around information infrastructures, platforms or applications
provided dynamically on demand and usually via the Internet. Users only use whatever
resources they want upon requirement and do not need to deal with the effort to set up and
maintain their own computer centres, while often not even using them at full capacity. This
saves them a lot of effort, hence also time as well as monetary costs. This is especially the
case for users not well versed in hardware and software issues. The provided resources are
also scalable. When more resources are needed, the users can simply upgrade their service
plan and the cloud provider will supply them with the requested additional resources. So
called Service Level Agreements (SLA) regulate the prices for resources, along with other
service guarantees, such as High Availability or High Performance. The provider can be an IT
company, who specializes in providing such systems, more likely to provide far better resources
than when the user would have to maintain them themselves. To allow scalability of the
resources virtualization and cluster technologies are employed to maximize the utilization of
hardware resources in their computer centres. Since providers usually have more than just
one customer, they can bundle all requested resources and make better use of less hardware.
This lessens the working expenses and can be handed down to the customers. Another major
advantage of clouds is the global availability. Since most of the cloud services are distributed
via the internet, they are globally accessible, usually hardware independent and need no prior
local installation.
Works such as "Cloud Computing: The Next Revolution in IT" [Ley], "Above the Clouds:
A Berkeley View of Cloud Computing" [FGJ+09] and the "Open Cloud Manifesto" [Man10]
among many others [MH10] [Com09] [Vos12] [MRV11] discuss the topic in general and more in
depth. Here RoboEarth is used a a model implementation illustrating the usage and advantages
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1.2 RoboEarth: A Cloud for Robots

of "clouds".

1.2 RoboEarth: A Cloud for Robots

In robotics one major challenge is to create a robotic system capable of recognizing and
interacting with human environments. When execution planning enables this, robots will be
capable of safely coexisting with humans in complex indoor environments such as common
domestic homes. They will be capable of carrying out tasks beneficial to society, such as
simple household tasks help, supporting, for instance, the elderly or handicapped as a sort of
care assistant. Additional merit can be gained in integrating such technology into other future
products. Further knowledge such as manipulative, perceptive and communicative skills is
essential for this purpose as robots need to act and react independently on situations and
environments in a flexible way, while not merely relying on a narrow set of pre-programmed
environment and object models. Programming a robust plan for a robot is often a tedious
business and usually such plans cannot be reused for different situations and thus create a lot
of avoidable workload.
One strategy to cope with these issues of uncertainty and dynamics is to have robots learn
and afterwards share their memory of re-usable knowledge among robot peers in a sort of
web-community. This is put into practice through a Web-style database for and by robots
in the World-Wide-Web, realized by the RoboEarth Project. The project’s interdisciplinary
team researches new approaches on equipping robots with advanced perception and action
capabilities as means to autonomously carrying out tasks within not previously planned
surroundings. Learning Algorithms are reinforced and optimized. Other new approaches
include automatic conversions from instructions in natural language into logic-based, formal
representations in stead of the traditional approach of plans composed from atomic actions.
Such knowledge is then collected abstractly within one core component of the project, the
RoboEarth platform. Any data is saved in the cloud computing database, which is based on
Adobe Hadoop and globally accessible. It serves as a collective, worldwide memory which
robots can access to gain necessary knowledge on how to deal with new environments. Upon
performing a task a robot can download adequate high-level information on both the task
itself and the environment in which the task is to be carried out. The robot will proceed to
translate this abstract knowledge into local hardware specifications and configurations and the
local system’s functionality will ultimately improve by learning during the task. The newly
gained knowledge is in turn shared with its robot peers again via an upload to the RoboEarth
platform. Such reusable data is to be saved in a generic and open format to ascertain the
global accessibility.
The project’s goal is to prove that such a "global memory", realized through the World-
Wide-Web, accelerates learning new tasks as well as adapting to new scenarios. [WBC+11]
[DMTH+13] [AAV+08] [Bro10] [TNB10] [Sch10] [Sch10] [TKPB11]

7



1.3 Similarity Recognition

1.3 Similarity Recognition

Underlying any action or recognition of a robot is a plan and therein task descriptions. A
problem is given with the fact that the same issue can be described in subtly to slightly
different manners. This includes the description’s level of detail, little differences in task orders
and usage of different nouns and verbs to accomplish the same result. For example "fetch
a bowl and fork, smash first the egg yolk and beat the eggs" and "stir eggs with a spoon"
essentially mean the same thing in probably the same context of, for instance, baking a cake.
There is a difference in the level of detail in the instructions (smashing the egg yolk first is not
essential for the action of beating the egg itself), the used tools (as both fork and spoon or
even chopsticks can be used to beat eggs) and semantic similarity in the verbs used (beat, stir
or whip the egg). There are many cases which contain similar parts, namely one or several
subactions, while the context or overall action differs thoroughly. For instance both baking a
cake and cooking an omelet need a bowl fetched to have the eggs stirred in it, but the results
are two totally different dishes. This can go even further that the fetched bowl has an entirely
different use, like being filled with fresh water to be delivered somewhere. While not all actions
with similar parts may yield the same result, there may still be lot of indifferences to the
results itself if the performance is not strictly linear, when no explicit order constraint is given.
For example, in making a cake batter it does not matter, if first sugar or the baking powder
is added to the flour before adding wet ingredients, while in case of baking a cake it would
matter to first mix the batter and then bake.
Thereby robots would naturally accumulate semantically similar tasks description and increas-
ingly be confronted with the problem of having to choose among multiple such descriptions.
This is especially so, as one of the innovative approaches of the RoboEarth project consists of
conversion of natural language instructions into logic-based, formal representations. [MHZF12]
With natural language having many ways of formulating the same thing it is not unsurprising
that such duplicates with only minor differences will occur. Another possible cause may for
instance, come from the work on having robots observe humans demonstrating a task to them
and the analysis thereof not yielding completely the same results.
The current situation creates a redundant information processing overhead, as the robots
would eventually have to find out they describe the same task. It also creates ab information
storage overhead in the database of the "global memory". As data space usage and traffic are
main points in cloud services’ SLA (Service Level Agreements) [MH10], i.e. scalation of how
expensive a cloud service is, it is also of interest to reduce the overhead under economical aspects.

Tenorth, Ziegltrum and Beetz [TZB12] introduced the idea, to have the platform, in whose
database the task instructions are assembled, match such descriptions. In this precise case,
the RoboEarth platform should be able to detect and, if necessary, delete a redundant entry
amongst the action descriptions. Furthermore, if several tasks share heavy commonalities,
they are probably more used and thus more important. It would probably be expedient to
make a reusable alternative version of the descriptions for such action sequences.
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1.4 Structure of this Work

Figure 1.1: A use case diagram illustrating the use of the similarity check within the platform

Figure 1.1 shows the working field of the similarity check with some usage context. If the user
wants to upload an action description the uploaded file will be checked against the database
contents. If one or more similar descriptions exist, the user is given a similarity value and
asked to check if the new upload may be redundant. The user is then free to refrain from the
upload or to ignore the warning after which the file will be inserted into the database.
Currently human-assigned tags are used to narrow fields of topics down, but this solution is
quite imperfect and can only serve as a temporary workaround. In this work some approaches
for the similarity comparison will thus be presented.

1.4 Structure of this Work

Chapter 2 gives a general scheme on the background of this work, the RoboEath platform,
ontologies in general and OWL in particular. Chapter 3 gives a quick overview of other related
work dealing with ontology alignment and mapping. Based on Tenorth, Ziegltrum and Beetz’
[TZB12] motivation to extend bioinformatical sequence alignment methods for action recipe
alignment and inspiring this work, chapter 4 presents their ideas along with some further
extensions. Chapter 5 presents the method OLA [EDLV04] in detail, a system using various
methods to accomplish an optimal alignment. Finally chapter 6 gives a quick summary along
with a conclusion on to what extend the two methods are adequate to solving the recipe
alignment issue in the RoboEarth platform.
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2 Background

2.1 Object and Action Recipes used in RoboEarth

For a "global memory" to play out its usefulness its knowledge needs to be shared on an
abstract meta-level, independent of the robots original hardware platform and its configurations
and specifics (i.e. impossibility to make assumptions about available capabilities of the
heterogeneous robots for instance). It also has to be a description in well-defined, machine-
understandable logical axioms. Ontologies serve this purpose quite well. This section will give
a quick introduction to ontologies in general, action recipes written in OWL in particular and
illustrate their composition on a simple action recipe example.

2.1.1 Ontologies

In the eighties of the last century ontologies had been used in bigger research projects as Cyg
and Wordnet for the first time. These two projects remain model examples for large scale
ontologies to this day. Ever since then ontologies have gradually become more popular. Much
attention is attributed to them within the Semantic Web, which is somewhat associated to the
"Cloud Revolution". Both of them provided the necessary technologies to employ the already
existing basic concepts which originated from philosophical and linguistic fields. Figure 1.1
illustrates the model: The world’s real object, called "Referent", is associated with linguistic
sign called "Symbol" and logics based on what one would expect the referent’s attributes,
called "Thought or Reference". For instance a rabbit with the linguistic sign "English Lop"
has "two hanging ears and 4 legs" as its logic. Ontologies as one way of data processing
formalize the "Thought or Reference", generally also better known as concepts (or classes).
Ontologies formally and explicitly specify concepts, which can be commonly used. They
organize information by providing a structural framework and find usage in various fields, such
as the already mentioned Semantic Web, Artificial Intelligence or Information Architecture.
[Stu09] [Bat08]

The ontology used in the RoboEarth platform is the Web Ontology Language (OWL). Like
many other ontology languages it is based on first-order logic and therefore benefits from
reusing or integrating already existing technologies and paradigms from the field of logic
programming (for instance PROLOG being the most known example) to formalize ontologies
in a practical and efficient manner. More precisely OWL is a description logic, which is a
distinct subset of the first order logic. This offers the advantage of relatively efficient inference
methods while maintaining the unambiguous characteristics of first-order logic. In recent
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2.1 Object and Action Recipes used in RoboEarth

Figure 2.1: The triangle of reference [OPR23]

years OWL has gained more importance, as it has been standardized (the latest standard
being OWL 2 from 2009 [W3C]) and become a W3C recommendation in 2004 [MVH+04].
It provides the foundation of the Semantic Web and has therefore become the most used
ontology language. Among description logics OWL also stresses the importance of the element
of relations within the ontology, which enables complex connections between relations, such
as subsumption, equivalence and mathematical relations. [Stu09] OWL is built with RDF
(Resource Description Framework) as a base. RDF allows description of resources through
specification of properties and property values. OWL semantically extends RDF and adds
other desirable capabilities. Among others these include cardinality constraints, specifications
of transitivity, inversion, negation or the ability to describe new classes through combining
existing classes. [OWLa]
OWL components consists of classes, properties and individuals. Classes are distinguished
from instances of them. Properties can be attributed to only an instance or the whole class.
The classes built up a hierarchical structure and represent the ontology as such.
OWL comes with three flavours: OWL-Full, its subset OWL-DL and OWL-Lite, again subset
of OWL-DL. OWL-Lite was built to express the same semantics of OWL-DL, supporting
users who primarily need a classification hierarchy with simple constraints. In consequence
OWL-Lite is a less complex language than OWL-DL through further syntactic restrictions.
Any OWL-Lite ontology is automatically an OWL-DL ontology and can be migrated quickly
to the more expressive derivatives of the OWL mother language. [MVH+04]
For a more detailed elaboration on ontologies, numerous works have are available, such as
[Stu09] or [HKR+04].
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2.1 Object and Action Recipes used in RoboEarth

2.1.2 Action Recipes in the RoboEath System

Action recipes are hardware-agnostic task descriptions for the robots and as this work centers
upon them, an overview of RoboEath’s architecture in general and action recipes in particular
shall be given.

As illustrated in figure 2.2 RoboEarth implements a three-layer architecture. The server layer
(figure 2.2 (a)) is the foundation and holds the RoboEath database, storing global world models,
environments and actions, while providing basic reasoning Web services. The database services
are available through interfaces of the architecture, accessible via common Web interfaces.
Figure 2.2 (b) illustrates the generic middle layer, whose main purpose is to allow a robot to
interpret RoboEarth’ action recipes. The layer is hardware-independent and also provides
several functionalities and communicates with robot-specific skills, which the third layer (figure
2.2 (c)) implements. The third layer also provides a generic interface to the robot’s specific,
hardware-dependent functionalities though an abstraction layer. [WBC+11]

The RoboEarth platform uses the RoboEarth language, which is based on description logic
and uses OWL for implementation in form of an extension to the KnowRob [TB09] knowledge
base. KnowRob itself is written in OWL and derived from the OpenCy Ontology [MCWD06].
The RoboEarth Language includes object models, environments maps and action recipes.
Reasoning methods are used to make sure that execution of an action recipe is possible on a
robot, find adequate information within the RoboEarth database and provide basic abstract
descriptions on the robot. Descriptions of information are done in shareable, abstract manner.
Any data is annotated with an ontology description to allow semantic and taxonomic queries.
[DMTH+13]
The ontology for actions is a part of the KNOWRob ontology and more than a hundred
everyday activity actions’ class descriptions are currently available. Action recipes have a
specialized hierarchy and tasks composition. These currently over 130 class descriptions serve
as a foundation block for building up more complex task descriptions in the future. There are
declarative and procedural descriptions and involved objects and locations are included, as
well as dependencies both from inherited OWL classes or specially defined restrictions, e.g.
ordering of actions or pre- and post-conditions. Figure 2.3 illustrates the structure of such an
OWL file on a simple daily life chore, while figure 2.1 gives a short excerpt of the OWL file.

The action recipes store information such as a list of included subaction recipes (e.g. the
GraspBottle class in figure 2.3), skills and ordering constraints as well as further properties
in form of action parameters (e.g. grasp types in figure 2.3) necessary for execution. The
subactions are partially ordered, which allows both sequential and parallel task execution
order. [DMTH+13]

Action recipes are being linked to object models. Reasoning methods search for actions
that can be performed with or on the object. Objects are in turn included in the semantic
map. As presenting all components would go beyond the scope of this world, please refer
to [WBC+11], [DMTH+13], [PT11], [SJ12], [Sch10], [TPLB12], [TNB10], [TB09], [TPLB12],
[TB13], [ZMdH09], [SHZ10], [TZB12], [Sch10] and [PT11] for further reading.
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2.1 Object and Action Recipes used in RoboEarth

Figure 2.2: Three-layer architecture of RoboEarth [WBC+11]
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2.1 Object and Action Recipes used in RoboEarth

Figure 2.3: Class diagram for a sample action recipe [WBC+11]
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2.1 Object and Action Recipes used in RoboEarth

Listing 2.1 Action recipe excerpt: Subaction and partial ordering specification [DMTH+13]
Class: MoveBaseToHandoverPose

EquivalentTo:
knowrob:toLocation some

robotPose-handover1)
SubClassOf:

roboearth:Translation-LocationChange

...

Individual: ServeADrinkOrder10
Types:

knowrob:PartialOrdering-Strict
Facts:

knowrob:occursBeforeInOrdering
MoveBaseToGraspPose,

knowrob:occursAfterInOrdering
GraspBottle
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3 Quick Overview of Related Work

Ontologies have become very common, often even considered to be the backbone of the
Semantic Web. Integrating heterogeneous knowledge has consequently been an issue as well.
There are many other approaches than the two presented within this work. This chapter shall
give a quick general overview of other related work to the topic.

[ont] collects papers from the yearly OAEI (Ontology Alignment Evaluation Initiative) cam-
paign since 2004. Ontology matching consists of not just similarity computation, but outputs
correspondences of semantically related entities of ontologies, which may serve for other
purposes as well, such as ontology merging or data translation. The OAEI workshop of
2007 [þES07] [OAE07] received 26 submission dealing with the topic along with experimental
results, including OLA. Within those implementations many of them are frameworks, basically
accumulations of other methods included. WordNet, which is presented in this work as well, is
also often used. Aside terminological, structural and/or extensional methods, methods from
the Semantic Web like Semantic Matching through trees or schema matching are also often
introduced as an alternative. Examples include [GYM07] or with atop of it the use of Semantic
Search Engines [GLd+07]. [GYS07] also gives an overview of semantic matching algorithms.
In [AP07] a set of semantic ontology similarity measures are presented as well. In [WIVDMS07]
multi-concept alignment are focused on, i.e. a set of concepts aligned to another set.
In [Ehr07] Ehrig also presents a general formal overview of the common ontology alignment
problem and gives a quick summery over methods addressing them. Its focus is also more on
the usage within the Semantic Web including ontology merging and mapping. Among others,
OLA is also mentioned there.
In [AKTKVH06] a case study on selected ontology alignment tools is done, such as FOAM
[ES05] (also part of the OAEI 2007 campaign), Falcon-AO [JHCQ05] [HQ08] [HCZ+06] (part
of the OAEI 2007th predecessor 2006 campaign) and S-Match [GSY04].
In [MS02] a set of similarity measures and empirical evaluation is presented. Its focus is more
on finding similar ontologies for adequate data querying and retrieval.
Maedche and Staab [MS01] propose a methodology to measure the extent to which two on-
tologies overlap and fit with each other at various semiotic levels. The method also contains a
syntactic, as well as a semantic comparison level through taxonomy and template comparison.
In [SM01] proposes a method called FCA–MERGE for merging ontologies through a bottom-up
approach which offers a structural description of the merging process.
In [GS03] a complete prover is used for deciding subsumption or equivalence between classes
given initial equivalence of some classes and analysis of the relationships in the taxonomy.
In [SE05] Shvaiko and Euzenat did a survey on recent ontology and schema matching techniques
within the context of proposing their own new classification system.
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3 Quick Overview of Related Work

[RB01] and [MBR01] deal with schema matching from the database area, whose methods can
and are often translated to the ontology alignment problem.
[MLQ09] propose a method with translation into RDF triples, dynamic adjustment of the
semantic weight of OWL constructors to calculate the similarity.
[DMDH04] presents a system called GLUE, which employs learning techniques to semi-
automatically create semantic mappings between ontologies.
In [Sun08] Sunna also gives an introduction to the general problem of heterogeneous ontologies
and the presentation of a multi-layered approach to ontology alignment, which has also been
part of the OAEI 2007 campaign.
[LDK07] presents method for mapping entities of ontologies written in OWL DL/Lite. The
so called ASCO3 algorithm searches through the two ontologies’ maximal common subgraph,
while searching the maximal clique of their association graph. [MGMR02] proposes another
graph-based method and is addressed to not just OWL, but a variety of data structures. Their
method relies on the similarity of adjacent concepts on the graphs, which are similar, when
the two given ontologies are similar.
[KC08] uses description logic and a vector model-based weight between concepts.
[DH98] uses a conceptual graph formalism for ontology comparison.
[Bun97] discusses graph edit distances in a more general scope.
[GANJ06] propose a similarity measure specialized on OWL-S annotated web services. [GQ08]
proposes one as well.
[DK10] presents a Protege plug-in to including various methods to align ontologies.
[Ghi12] deals with OWL-Lite ontology alignment, including a survey on existing methods an
presenting a new algorithm, which is specially compared to OLA. Another OWL-Lite centered
method is presented in [ZNK+07] using graphs.
RiMOM (Risk Minimization based Ontology Mapping) [TLL+06] is a system intending to
combine various strategies, including both linguistic and structural comparison.
OWLDiff [KSK11] is a system using syntactic, explanation-based and semantic comparison
and offers merge functionalities.
AnchorPROMPT [NM01] is another graph implementation, using anchors, which are either
user defined related terms or automatically identified by lexical matching.
[LSM06] focuses on less traditional requirements, such as multiple ontology matching instead of
pairwise, mapping of ontologies not close to each other and efficiency instead of only matching
quality.
Chapter 4 of [SG12] also discusses the ontology alignment problem and a brief overview of
several selected methods in the context of discussing applied Semantic Web technologies.
[DMDH04] presents a method using machine learning techniques to make emerge good align-
ments and finding class similarity from instances.
[Euz94] gives an overview of a tropes taxonomy building tool using T-trees to infer dependencies
between classes (bridges) of different ontologies sharing the same set of instances based only
on the “extension” of classes
Other work include proposals to extend OWL itself for improvement of the representation of
OWL entities. [LJP10]
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4 Similarity Recognition via Extensions to Sequence
Alignment Methods

Tenorth, Ziegltrum and Beetz [TZB12] motivated the use and extension of bioinformatical
sequence alignment methods for comparison of action recipes in RoboEarth. Similarity
Recognition of sequences is a very important field in the field of bioinformatics. Nuclear
acids need to be matched for comparison purposes of DNA strings or amino acid sequences of
proteins.
Figure 4.1 shows a sample alignment quite common in the bioinformatics. Note however that
this sample is only a minimal fraction of how long such a sequence usually is.

There are several differences for the OWL Alignment purposes to consider: DNA and protein
sequences are usually considered atomic. For example, DNA sequences only have the four
bases Adenine, Cytosine, Guanine and Thymine (A, C, G, T) and a DNA sequence would
be represented by combination of only these letters and can take on extreme lengths. Robot
action sequences usually are rather short, but contain complex structures with the related
action classes, objects handled with or upon and locations among others. Most importantly,
they are hierarchically structured, as an robot action and in consequence also its action recipe
is a composition of subactions. These additional attributes require an extension of the existing
algorithms from the bioinformatic field, before they can be applied to action recipes. [TZB12]

This chapter will therefore introduce several sequence alignment methods from the bioinformatic
field followed up with a presentation of extensions to deal with the more complex action recipe
structure adequate for employment in the robot knowledge base RoboEarth.

Listing 4.1 Sample multiple alignment of a portion of the cytochrome b protein from various
organisms. [KYB03]

PGNPFATPLEILPEWYLYPVFQILRVLPNKLLGIACQGAIPLGLMMVPFIE
PANPFATPLEILPEWYFYPVFQILRTVPNKLLGVLAMAAVPVGLLTVPFIE
PANPMSTPAHIVPEWYFLPVYAILRSIPNKLGGVAAIGLVFVSLLALPFIN
PANPLVTPPHIKPEWYFLFAYAILRSIPNKLGGVLALLFSILMLLLVPFLH
PANPLSTPAHIKPEWYFLFAYAILRSIPNKLGGVLALLLSILVLIFIPMLQ
PANPLSTPPHIKPEWYFLFAYAILRSIPNKLGGVLALLLSILILIFIPMLQ
IANPMNTPTHIKPEWYFLFAYSILRAIPNKLGGVIGLVMSILIL..YIMIF
ESDPMMSPVHIVPEWYFLFAYAILRAIPNKVLGVVSLFASILVL..VVFVL
IVDTLKTSDKILPEWFFLYLFGFLKAIPDKFMGLFLMVILLFSL..FLFIL
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4.1 Bioinformatical Sequence Alignment Methods Overview

4.1 Bioinformatical Sequence Alignment Methods Overview

In bioinformatical sequence comparison the order, type and properties of the atomic sequence
elements are of importance. When comparing two sequence elements, the possible outcome is
either a match (the elements are equal up to the current position), a mismatch (they are not
equal) or an insertion or gap (one sequence contains an element the other does not).
For example [AE86], three possible alignments for the Sequences CGGA and CGA are:

A1 =

CGGACG−A
A2 =

CGGAC −GA
A3 =

CGG−A−CG−A

A common cost specification would be 0 for a match, 1 for a mismatch and alignment of an
element with a null (shown as "-" in the alignment example) through a point insertion or
deletion is charged with an arbitrary null cost, for instance 2. In this case, alignment A1 and
A2 would cost 2 while A3 costs 7 in total with three deletions and one mismatch.

Sequence comparison methods assign a certain cost to each alignment with the goal to minimize
the overall cost by means of finding a solution that makes minimal use of necessary atomic
transformations to transform one sequence into another. Atomic transformations include
inserting, deleting an element or replacing an element. The latter case, which results from a
mismatch is usually allocated a greater cost than inserting or deleting an element in occurrence
of a gap.
In bioinformatics, where alignment problems occur very commonly, efficient algorithms and
tools have been developed for the last few decades. There are multiple algorithms for compari-
son of just two sequences as well as alignment of multiple sequences for computing alignment of
two sequences at minimal cost. 2-alignment algorithms are mainly based on dynamic program-
ming, while multiple alignment algorithms mostly base upon and include such 2-alignment
algorithms. As diving into the field of multiple alignment methods would go far beyond the
scope of this work and no real further merit in contributing to the problem solution, the
presentation of possible algorithms shall be restricted to a few more common 2-alignment
algorithms. For further read on multiple alignment methods, please refer to [CWC92] and
[CL88] for a quick overview.

4.1.1 Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm, published in 1970 [NW70], was the first algorithm to
propose a method for sequence alignment of amino acid sequences found in proteins. It remains
one of the main algorithms to this day with numerous derivations to optimize the performance
for more specialized problems.
The Needleman-Wunsch algorithm performs a global alignment of the two complete sequences.
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4.1 Bioinformatical Sequence Alignment Methods Overview

It uses a dynamic programming approach to find the optimal global alignment of two sequences
progressively through first computing the alignments of sub-sequences.
Given two sequences x and y, let m and n be their respective length, with xi being the ith
symbol in x and yj the jth symbol in y. The Needleman-Wunsch algorithm will sequentially
compute the optimal alignment for all prefixes of both sequences in a matrix F . The cell
F (i, j) will always contain the optimal solution for the alignment of the prefix subsequences
x0...xi and y0...yj . The algorithm exits, when both prefixes of the iteration consist of the full
sequence and leaves the optimal alignment score in the cell F (m,n) of the score matrix.
The method consists of three main steps: Initializing the matrix, recursive computation of
alignment scores and a traceback step:

4.1.1.1 Matrix Initialization

The matrix is initialized with a first row and column. They correspond to the alignment of
sequence x to y with gaps in the latter and vice versa. (Basically aligning one sequence of the
prefix of the other consisting of an empty string). The first element F (0, 0) (align "nothing" to
"nothing") is initialized with zero and the other fields of the first row and column follow with
the cost of deleting/inserting every element of the prefix of the sequence. In short:

F (0, 0) = 0(4.1)
F (i, 0) = i · d(4.2)
F (0, j) = j · d(4.3)

with d being the cost associated to gaps (deleting an element).

4.1.1.2 Recursive computation of alignment scores

Upon computing the following alignment scores, the prior scores in the neighbouring cells are
looked upon and the optimal alignment is computed by adding the alignments of the preceding
sequences, adding the costs of the necessary next steps to align the one element longer current
prefix and choosing the least expensive global alignment of the current prefix. There are three
possibilities to choose the best from, which are based on three prior neighbouring elements
F (i1, j1) (diagonally left), F (i− 1, j) (on top) and F (i, j − 1) (left). (See also figure 4.1.) In
short:

F (i, j) = max


F (i− 1, j − 1) + S(xi, yi)
F (i− 1, j)− d
F (i, j − 1)− d

(4.4)

with S(xi, yi) being the cost to match xi to yi.
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4.1 Bioinformatical Sequence Alignment Methods Overview

Figure 4.1: Computation of an alignment score using its neighbouring matrix elements
[TZB12]

4.1.1.3 Traceback

There is either a second matrix or the alignment score matrix’ cells also contain an additional
pointer to the cell, from which it has been reached. Once the alignment scores are completed,
the optimal alignment is reconstructed by tracing the path back with F (m,n) being the
starting cell and F (0, 0) being the destination cell.

4.1.2 Smith-Waterman Algorithm

The Smith-Waterman algorithm was published in 1981 [SW81], for "Identification of common
molecular subsequences". In contrast to the Needleman-Wunsch algorithm, which aligns
globally, this algorithm performs a local alignment. The major difference is that in local
alignment only subsequences are searched for the optimal alignment. Findings of non-matching
parts before or after the subsequence are of no importance and ignored. The method was
meant to find subalignments of interest, as an alignment with length 20 and 2 mismatches is
often considered more interesting than a subalignment of length 5 with no mismatches.
Essentially the Smith-Waterman algorithm can be transformed into the Needleman-Wunsch
algorithm and vice versa [AE86]. Chosen the appropriate parameters both of them are
even directly equal. The difference of the computation is within the additional condition of
F (i, j) = 0 if all three alignment scores to choose from happen to be negative values:

F (i, j) = max


0
F (i− 1, j − 1) + S(xi, yi)
F (i− 1, j)− d
F (i, j − 1)− d

(4.5)
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4.2 Further Sequence Alignment Comparison Methods

again, with S(xi, yi) being the cost to match xi to yi. Reasonably S(xi, yi) is defined to have
a match increase the similarity, while adding a mismatch will decrease it.

The Needleman-Wunsch and Smith-Waterman methods among others define S(xi, yi) as a
linear function, due to algorithmic considerations on finding the local optimal subalignments
fast. There are approaches to use other measures as well. [AE86] for instance proposes a
method with a nonlinear, logarithmic measure for subalignment similarity for a definition of
"good subalignments" that does not focus on speed, but on the probability which alignment is
less likely to occur.

4.2 Further Sequence Alignment Comparison Methods

While there exist plenty more specialized algorithms, they consider more particular character-
istics and are usually calculated in a more complex manner. The profits of employing these
appears rather questionable given the current size of the RoboEarth platform’s database [rob]
and the general problem specification of the similarity recognition of action recipes, as there
are more characteristics to consider than just string similarity comparisons done on labels
and descriptions. The Needleman-Wunsch or Smith-Waterman should be sufficient while
having the advantage of simplicity. A very short introduction of some further methods shall be
given nonetheless, along with an overview of further literature in the bioinformatical sequence
alignment field.

4.2.1 Molecular Sequence Comparison with Levenshtein Distances

Levenshtein [Lev66][THK91] already gave early definitions of distances by a function of
insertions and deletions. One way to define it is as a minimum effort to change a sequence
a to a sequence b. I.e. it may be the number of insertions, deletions and substitutions to
transform the sequence. Another definition is the number of insertions and deletions (with
no substitution allowed) to transform sequence a to sequence b. (See figure 4.2 for a visual
example.) The minimum distance D(a, b) is defined as the smallest possible weighted sum of
insertions, deletions and substitutions to change sequence a to sequence b. D(a, b) doesn’t
necessarily be the minimum number of changes in the sequence. So D(a, b) can either just
be a listing distance or an alignment distance, depending what type of analysis is chosen. A
listing gives the steps of the transformation, an alignment gives a visual matching of the two
sequences.

The listings method, simply takes the number of necessary steps to change the sequence. The
steps can be weighted and if the steps of figure 4.2 (left) are each assigned weight 1, the
distance is simply two, regardless from the order of steps. The alignment distance is the sum
of weighted distances associated to the alignment. Taking the examples from figure 4.2 (right)
with matchings getting a weight of 0, substitutions a weight of 2 and insertions/deletion a
weight of 1, the first example would get the value of 2, the second a 4 and the third would be 6.
Through the distances, alterations to the Needlemann-Wunsch algorithms can be done, which
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4.2 Further Sequence Alignment Comparison Methods

Figure 4.2: Left: example of listing, right: example of alignments [THK91]

happens in numerous occasions. [THK91] explores some methods with formal definitions and
some variations employing these distances.

4.2.2 FASTA/LFAST/FASTP

These algorithms from Pearson and Lipman have been developed for rapid database searching.
FASTA and LFASTA are used to search nucleic acid databases, whereas FASTP is used to
search for proteins. They are similar to another quite famous sequence alignment algorithm
called Wilbur-Lipman algorithm, which has a focus on rapid database searches. [THK91]
The algorithms locate matches and rank the database sequences. They only perform alignments
which are highly ranked sequences instead of using the alignment to rank the sequences. At
first each sequence is converted to a numeric sequence based on a k-tuple value. For exact
matches a lookup table is used. Based on the number of consecutive matches and the distance
between, each diagonal is scored. The process happens in O(M), but depends on the value
of k. With k rising, the number of k-tuples and thus the time required to locate all matches
decreases. The ten highest scoring diagonals are found and restored in the next step of FASTP
and FASTA using a scoring matrix.
Protein sequences restoration is often done using an amino acid substitution matrix. (Like
the PAM250 matrix that organizes amino acids by biochemical similarity.) A subregion with
maximal score is located and called an initial region within each diagonal.
In a third step FASTP ranks the sequences using the single best scoring initial region in each
database sequence. FASTA checks whether various initial regions can be joined for producing
an optimized alignment of the initial regions. Similar to a gap penalty, a joining penalty is
assessed. This optimized alignment’s score is the penalties subtracted from the sum of the
initial region scores. The sequences are then ranked using this optimized score. Alignments are
hence not done before the sequences are ranked, which reduces the time required for comparing
each sequence enormously.
In the final step of FASTP and FASTA use a modification of the Needleman-Wunsch and Smith-
Waterman algorithm to align the highest scoring sequences. They consider only alignments
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4.3 Extensions to Account for Ontology Features

within a window about the diagonal of the highest scoring initial region. LFASTA is similar
that it uses the same first two steps but saves all diagonal regions with a score above a threshold.
From the end of each initial region onwards an alignment optimization is performed in the
reverse direction until all scores have become zero. Thereafter an optimization is performed in
the forward direction starting at the maximal optimized score. Working backwards from the
forward optimal maximum the alignment is traced.
There is also a fourth algorithm, TFASTA, which can be used to compare a protein sequence
to a DNA library through translating the DNA sequences in six reading frames while the
comparison is done.

4.2.3 Further Related Work

In the past several reviews and surveys [THK91], [CWC92], [FJD85], [Gus93], [Wat84] on
sequence alignment, sequence comparison and similarity scoring algorithms have been done.
Among others, there are for example methods using Finite State Machines [Smi88] or lattice
graphs in [RH83]. Numerous further proposals of algorithms, mostly specifications (focusing
on quick database searches) or expansions for particularly special amino acid or proteins have
been done. Usually they are based on Needleman-Wunsch, but there are also regex or finite
automats based methods. A very short selection of such further methods contains: [OU92],
[S+79], [BY91], [MM89], [SSA+09], [WP84] [Ukk85] and [OB84]. Another very famous tool
in bioinformatics is the Basic Local Alignment Tool (Blast), which also has several variants.
[AGM+90] [KYB03] [MZMN07] [Spo89] [KR08] [AMS+97]
There has also been a good deal of literature dealing with metrics for defining distances to
assign scores, such as [WSB76], [Alt93], [Sel74a] [Hen96], [Lev66], [Hir97] and [Sel74b].

Since spelling checkers and corrections (as found in any somewhat more elaborate text editor
or office program or browser or email plugin) or other word auto completion tools (as found
for instance in any mobile phone or tablet keyboard) originate from bioinformatical sequences
comparison, this field may provide even more possible methods. For instance n-gram (usually
trigram) similarity measures [AFW83] [Sal89] [ZPZ81] or a token matcher [Por80] can be
employed.

4.3 Extensions to Account for Ontology Features

As already elaborated in the beginning of this chapter, action recipes written in OWL have
considerable differences to bioinformatical string sequences containing atomic elements which
use methods whose focus are mainly on processing huge amounts of DNA information quickly
and efficiently.
Furthermore, as discussed in chapter 1 action sequences with similar portions of subactions
can but do not necessarily perform semantically the same result action. A local alignment
can align the similar subactions, ignoring the global context. Naturally an adaptation would
also be needed to deal with this issue, as to avoid yielding similarity values, when a simple
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4.3 Extensions to Account for Ontology Features

match or mismatch could be decided when looking at it globally. A modification to deal with
these more complex non-atomic structures of the actions descriptions is discussed in this section.

4.3.1 Weighting Complex Sequence Elements

Two actions may only differ in the descriptive name assigned to a location or an object acted
upon or with. (e.g. "tea" instead of "drink" or "water"). Some of these objects or locations may
also be more important than others (e.g. "fetch a glass of Tea" and "fetch a glass of water" will
have the "glass" more importantly than its liquid content). A weighted computation of the
individual matches will address this problem.
Assume ai is a type that describes an action acti along with a set of n role-value pairs:

acti = 〈ai, 〈p1
i , o

1
i 〉, ...〈pn

i , o
n
i 〉〉(4.6)

The similarity of two actions is computed through the weighted similarity of the action types
plus the weighted sum of the similarities between the respective roles pk

i and values ok
i (which

are for instance objects and locations):

sim(acti, actj) = α · sim(ai, aj) +
n∑

k=1
·βksim(pk

i , p
k
j ) + γk · sim(ok

i , o
k
j )(4.7)

α, βk and γk serve as weighting parameters to determine the influence of the individual
components. For example, the role pk

i are each often correlated with the type of the action ak
i

(e.g. "take" and "from"). They should hence have less influence. The similarity results are then
normalized to the range [-1, 1], as to be compatible with the costs for match (1) and mismatch
(-1) case. [TZB12]

4.3.2 Semantic Similarity Between Two Concepts

Semantic similarities take the depth of classes into account. So if one action happens to have
the same classes, or even be a subset of the action to be compared to, this will affect the
ultimate similarity score. Also if two classes derive from the same super class, for instance
a general "Translation-LocationChange" class, they will share more similarities than with
another class derived from for example a "GraspingSomething" super class.
Ngan, Hang and Goh proposed in [NHG06] a method to account for class matches, as did
Tenorth, Ziegltrum and Beetz in [TZB12]. They shall be presented both.
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Figure 4.3: Possible relations of concepts (classes) [NHG06]

4.3.2.1 Six Degrees of Matching for Semantic Similarity

Ngan, Hang and Goh [NHG06] define a class in an ontology as a "concept". Such a class
usually has a name, perhaps a short description and zero or more properties. These properties
describe relationships. An object or individual may have a relationship with another object
or individual, but can also have a relationship to a data value by having it as a property.
Such properties may have sub or super properties. Properties have a name and description
and they limit and restrict the values of an individual or object. OWL also has a vocabulary
for describing properties and classes, relations between classes (e.g. disjointness), cardinality
(e.g. "exactly one"), equality, richer typing of properties and characteristics of properties (e.g.
symmetry), as well as enumerated classes.

Assume that A, B, C, D, E, and X are concepts (classes) of an ontology. Figure 4.3 describes
the possible relationships between these concepts.

There are six degrees of matching between two concepts within the same ontology:

• Exact match (A, A): is a most accurate match with the highest similarity that is to
happen when the two descriptions are semantically equivalent. The similarity degree for
this match is given a value 1.

• Subsumes match (A, B): The case when B is subsumed by A. A being a direct super
class of B, makes it more general than B. This match is less accurate than exact match,
so the degree for this match is given a value of 0.75.
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• General match (A, D): A is more general than D but A is not a direct super class of D.
Assuming x levels between A and D, the similarity degree for this match is assigned a
0.3 + 0.3 ∗ 2x−2.

• Invert-Subsumes match (B, A): B is more specific than A and B is a direct sub class of
A. The similarity degree for this match is 0.3.

• Specific match (D, A): The inverse case of the general match. A is more general than D
but A is not a direct super class of D. Assuming x levels between A and D, the similarity
degree for this match is assigned a 0.3 + 0.3 ∗ 2x−2.

• Fail match (A, C): A and C are not related in the ontology. The similarity degree for
this match is 0. The pair (B, C) in figure 4.3 also accounts to a fail match.

4.3.2.2 WUP similarity for Semantic Similarity

Tenorth, Ziegltrum and Beetz in [TZB12] originally motivated the use of the "WUP similarity"
proposed by Wu and Palmer [WP94] in 1994. Two actions may act upon the same or very
similar object, but only differ slightly in what level of details or method to employ the action
(e.g. "stir" or "whip" eggs, the eggs being either white or brown). This case should not be
counted as a complete mismatch. The "WUP similarity" yields a similarity score that is
computed based on the closeness of the respective concepts i.e. classes in the action ontology.
The similarity of two concepts in an ontology is defined in the interval [0; 1]. The depth of
the concepts and the depth of their lowest common super concept (LCS) is being taken into
account. Formally the WUP similarity is defined as:

wupSim(C1, C2) = depth(LCS(C1, C2))
1
2(depth(C1) + depth(C2))

(4.8)

and the reflexive case

wupSim(C,C) = 1(4.9)

Figure 4.4 gives a simply example on a snippet of a common action recipe ontology. Concepts
in an ontology can have multiple super-concepts. Typically the minimum of all these distances
are computed by the WUP similarity since it considers the lowest common super-concept
(LCS). With this the ontology’s structure will contribute to the similarity values. In [TZB12]
experiments have been done with the KNOWROB ontology and claimed to have yielded very
reasonable results. They used the wupSim to the power of three to increase the weight of
higher similarities upon computing the alignment costs.

The WUP similarity thus gives another computation method to compute semantic similarity
based class derivation depth and super concept similarity. It basically addresses the same
issues as Ngan, Hang and Goh’s six degrees of concept matching in their CS algorithm, as
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Figure 4.4: Computation of the WUP similarity metric. The similarity of the concepts
wupSim(CoffeeCup and SodaGlass) is computed as 0.5. [TZB12]

presented in 4.3.2.1. While these six degrees account for more explicit cases, the computation
of the wupSim seems still slightly preferable, as it is more simple and does not use as many
exponential calculations and would probably yield results faster. On the other hand, given the
current size of the RoboEarth platform’s database [rob], such speed considerations may yet
be disproportionate. In fact, when speed is of no major issue, both methods could also be
combined and an average used in the final weighting of all similarity components.

4.3.3 WordNet for Syntactic Similarity

A concept in an ontology has a label (concept name) and a short descriptive text (concept
description). A syntactic similarity computation compares the similarity between two concept
names and each their descriptions. Words or a set of words define a concept name in OWL.
String similarity computations as described in the first half of the chapter can be used, but
these are limited to strings of characters in the word and their semantic relationship is ignored.
For English language WordNet [Mil95] [Mil98] can be used to overcome this issue. WordNet is
a large lexical database of English vocabulary. Word types such as nouns, verbs, adjectives
and adverbs are grouped into sets of synonyms (synsets) that express about the same semantic
concept. These synsets are interlinked through conceptual-semantic and lexical relations.
WordNet stores a root word in its database. To use WordNet for comparison, the words need
to be preprocessed by finding their roots. In case both concept names consist of just a single
word, WordNet can be used directly for similarity comparison. In case of multiple words
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the most similar word pair is computed. In case WordNet fails to have the word pair in its
database, common string comparison techniques like those presented previously can be used.
Ngan, Hang and Goh proposed the usage of Jaro. Jaro is a method to compare two strings by
using insertions, deletions and transpositions processes from the field of record linkage (also
referred to as information retrieval) and uses a bigram computation method. [PW+97]
The same process for non-single word comparison is also applied on descriptions of two
concepts. The final syntactic similarity value is a weighted average of concept names and
concept descriptions similarity.

This method also addresses the potential trouble of homonyms. For instance, the word "bow"
can either be a weapon or a ribbon and thus not be in the same synset, while a mere string
comparison of the labels would yield a full score. WordNet also allows adding own vocabulary
to the existing synsets. [NLH12]. This is especially interesting, as the user can define synonyms
usually not used in a common lexicographical language database. For instance, "water" or
"tea" or a list of other drinks, including even copyrighted brands (which would never appear in
a dictionary) can be defined under a synset with "drink" as a root word. This way, the system
could even include some sort of self learning. If e.g. two action recipes "fetch a glass of water"
and "fetch a glass of tea" are almost identical with the drink types being the only difference
and thus yield a very high final similarity score, due to the other similarity score components,
"tea" and "water" could likely be grouped into a synset.

4.3.4 Property Similarity

A concept may have one or more properties. Similar to the concept itself, a property has a
name and description as well. On top of that it contains a range and cardinality. Reasonably
all the information of the two properties in question should be matched for the property
similarity computation. Property name and description similarity are essentially computed
the same way as the syntactic similarity computation. The range of a property is either a
primitive data type or another concept. In case both ranges are primitive data types, the
similarity between two ranges is defined as shown in the table of figure 4.5. A similarity of 0
is assigned for the obviously incompatible case of one range having a primitive type and the
other having a concept as property. If both range properties are concepts the matching will be
carried out recursively with the full algorithm containing the five components.

A property’s cardinality specifies the exact number of elements in a relation. Ngan, Hang and
Goh simply define them as:

• Cardinality similarity = 1: the cardinality of two properties are equal

• Cardinality similarity = 0: the cardinality of two properties are different

Hence the property similarity is a combination of syntactic, range, and cardinality similarity.
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Figure 4.5: Similarity values for ranges with primitive data types [NHG06]

4.3.5 Context Similarity

Also known as a domain of the ontology, context is very important. Take an easy example: An
ontology about pets may contain the concept (class) "rabbit" and another ontology about food
also contains a "rabbit" concept. Both of them would be the same, but obviously a "rabbit" as
a pet and a "rabbit" as an ingredient for food are entirely different and thus should have a low
similarity rate. It would therefore not make sense to have them match with a value 1, which
they would, if the context is ignored.
For context similarity, the similarity of roots of the two ontologies is computed. The root
represents the context (domain) of the ontologies and is a special concept in an ontology, which
does not have super concepts.
This is also implicitly contained in the WUP-Similarity from section 4.3.2.2, since the depth of
the lowest common super concept (LCS) would the the root class at depth 0, thus making the
whole similarity 0.
There are also other approaches to include the ontology’s context structure into the similarity
computation. In the OLA ontology alignment method to be discussed in chapter 5 takes this
even further, a graph is built in accordance to the ontology structure and similarities are
computed upon the edges of the graph, which represent the relationship between different
entities of the ontology, i.e. their context.

4.3.6 Neighbourhood Similarity

Neighbourhood similarity takes, as the name already indicates, the neighbourhood of the two
concepts (classes) in question to account. To be more precise the neighbourhood consists
of their super concepts and sub concepts. Figure 4.6 illustrates a matching of two concepts
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Figure 4.6: Comparison of two NetworkNode concepts (classes) [NHG06]

Network Node and Network Element. Both concepts have as super concepts Equipment; their
sub concepts are Computer, Switch Equipment, and Computer, Central Hub, respectively.

The neighbourhood similarity is calculated through:

neighborSim =
√

supSim * subSim(4.10)

with supSim being super concept similarity and subSim being sub concept similarity.

A concept may also have more than one super concepts. To compute the super concept
similarity the following equation is used:

supSim(CP , CR) = allSupSIM(CP , CR)
n

(4.11)

with n being the number of matches super concepts pairs and CP and CR being concepts from
the two different ontologies. allSupSim is the similarity of the matched super concepts. As
equation 4.12 illustrates, the super concepts are matched one to one, so the average super
concept match is maximized. A recursive formula is used for this purpose:

allSupSim(CP,CR) = Max(allSupSim(CP − SupP,CR− SupR))
+ conceptSimilarity(SupP, SupR))

(4.12)
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4.4 Summary

That way, multiple super concepts are all taken into account. The computation of subSim is
calculated the same way as supSim.

4.3.7 Equivalent Concepts Similarity

In OWL, sameConceptAs and equivalentClass relationships indicate that the concepts in
question have the same meaning. Since these relationships already exist, it is expedient to
consider these as well. The "equivalent relationship" named as such by Ngan, Hang and Goh
[NHG06] encompasses these two relationships. Taking figure 4.6 as an example again, the
concepts Network Node and Network Element shall have a similarity comparison done on. The
value of the two concepts which is computed by the combination of four components is 0.89.
But the ontology 1 defines the Network Node concept as having equivalentClass relationship
with Network Element concept. The Network Element concept in ontology 1 and Network
Element concept in ontology 2 are exactly the same; so the similarity of two Network Element
concepts from ontology 1 and 2 gets the value 1. With this explicit equivalent statement, the
similarity of Network Node and Network Element from the two ontologies should be 1 instead
of 0.89.
More formally, assume that similarity between two concepts A and B are to be computed.
A has equivalent relationship with C, and B has equivalent relationship with D. First the
concept similarity between: A-B, A-D, B-C, and C-D are computed. Assume that the similarity
values are SA-B, SA-D, SB-C, and SC-D, respectively. The similarity between A and B is
the maximum value of SA-B, SA-D, SB-C, and SC-D. The method to compute the similarity
between A-B, A-D, B-C, and C-D is based on the four components described above.

4.3.8 Weighting Similarities Between Two Different Ontologies

Going further to a complete comparison of two concepts of different ontologies, Ngan, Hang
and Goh presented the concept similarity (CS) algorithm. The algorithm includes five main
components: syntactic similarity, properties similarity, context similarity, neighbourhood simi-
larity, and equivalent concept similarity. When the two concepts have equivalent relationship,
the equivalent concept similarity is used. For all the other cases the final matching is computed
through the average of the sum of the four components: syntactic, properties, context, and
neighbourhood similarity. Formally:

CS = ws∗synSim+wp∗proSim+wc∗conSim+wn∗neiSim
ws+wp+wc+wn

(4.13)

with ws, wp, wc, wn being user-defined weights.

4.4 Summary

In the first half of this chapter an overview of sequence alignment in the bioinformatical
field was given, along with the presentation of some most common methods in more detail,
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4.4 Summary

followed by an overview of related work in the sequence alignment field. The second half
of the chapter introduced several methods to account for ontology class characteristics not
to be found in bioinformatical sequences. Complex sequence elements can now be weighted
upon their importance, a semantic similarity between two concepts detected through both
semantic similarity of the descriptive labels or common super concepts. Property, context and
neighbourhood similarity is also taken into account as is equivalence of two concepts. Finally
all of these similarity scores are weighted and contribute to a final similarity score of two
concepts.
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5 Ontology Alignment with OWL-Lite Alignment
(OLA)

The previous chapter addressed an alignment method on the basis of [TZB12] as proposed
by Tenorth, Ziegltrum and Beetz as well as [NHG06] by Ngan, Hang and Goh. The focus
of the discussion of the first half was more on the underlying string comparison algorithms
and in the second half on comparisons of concepts i.e. classes of the ontology. The discussion
about the necessary extensions to expand the bioinformatical string alignment methods already
elaborated on why those methods can not be adopted one to one and need to account for
the complex structure of ontologies. This chapter will focus on a whole different approach of
ontology alignment, introduced by Jérôme Euzenat (INRIA Rhône-Alpes) and Petko Valtchev
(Université de Montréal) in 2003-2004. [EV03]
OLA has also participated in the OAEI workshop of 2007 [þES07].

5.1 General Overview

Ontologies were introduced in the Semantic Web to avoid heterogeneous information repre-
sentation of resources that are necessarily distributed and heterogeneous. They serve as a
common approach for homogeneous data description to lessen the work on integrating the
resources. The problem that springs forth from this approach is the heterogeneity of the
underlying ontologies themselves. The first chapter already illustrated with some examples
the problems of separate ontologies with generally the same content with RoboEarth action
recipes as a use case. Ontology conformity generally contributes to semantic interoperability.

The methods the previous chapter discussed are basically string-based with extension to
structural comparison of classes. There are many other approaches, such as some being rooted
in the classical problem of schema matching or being graph based for structural comparison.
(Please refer to chapter 3 for an overview of related work). These methods essentially use partial
entities of the ontology and conduct a pair-wise comparison and pick the most similar pair out.
The OLA method relies on the classical similarity-based paradigm for entity comparison and is
supposed to take advantage of not just some entities, but the ontology as a whole. It serves as
a common framework, into which many ontology comparison methods are integrated. To add
on those, a further technique is added to account for one-to-many relations and circularities in
the similarity definitions.
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5.2 OWL-Lite

Jérôme Euzenat and Petko Valtchev [EV03], [EV04] describe this ’ontology alignment’ problem
as follows: If given two ontologies, which each describe a set of discrete entities such as classes,
properties, rules, predicates, discover the relationships between the entities (e.g. equivalence or
subsumption). Alignment results can serve different purposes such as displaying the similarities,
creating a set of bridge axioms between the ontologies or transforming one source into another.
Generally the ontology alignment method focuses on automatic and autonomous alignment,
but more interactive scenarios can be built over it, such as using the result as a suggestion
to the user (which would fill the use case of the specific problem addressed in this work) or
just completing a partial alignment. The method also addresses overcoming circularities and
existence of external data types.

The general functional specifications of OLA offer these services: [EDLV04]

• parsing and visualization of (pairs of) ontologies,

• automated computation of similarities between entities from different ontologies,

• automated extraction of alignments from a pair of ontologies,

• manual construction of alignments,

• initialization of automated alignment construction by an existing alignment,

• visualization of alignments,

• comparison of alignments.

In particular they focus on these characteristics: Universality, automation, uniform comparison
and comparability of similarity results. Given ontologies, all knowledge about their entities
should be used and the alignment should be done automatically. No user interventions are
required in intermediate steps, albeit the alignment process may be done on a semi-automated
basis. The user can set parameters and the tool may ask for better ones at the end and
automation is also used of learning optimal parameters. The ontology’s entities are divided into
categories and only entities in the same category are to be compared using the same similarity
function on the same space. This ensures that the same similarity considerations are used
for each pair of a given category and their contribution to the overall similarity depends only
on their category. The similarity measure’s values are also normalized, so that a comparison
can be done between different alignment tasks. This is done within the iterative computation
process through an appropriate function definition.

5.2 OWL-Lite

One peculiarity of this method is that it limits the comparison of ontologies on those described
and built in the knowledge representation language OWL-Lite. OWL-Lite is one of the three
major sub languages of the OWL description language, while taking advantage of most of the
language’s features. [MVH+04]
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5.3 Background Work Used Within Ontology Alignment

Figure 5.1: Classes of two example ontologies drawn as UML class diagrams [EV04]

OWL-Lite is also based on various features such as classes and subsumption, properties and
type constraints, etc. and primarily supports the need of a classification hierarchy and simple
constraints. For instance and contrast to its relatives it supports cardinality constraints, but
only permits cardinality values of 0 or 1. OWL-Lite can also be migrated quickly to the
more expressive derivatives of the OWL mother language. Some constructs of OWL-DL are
also already supported and full coverage of the OWL-DL language is planned as a long term goal.

5.3 Background Work Used Within Ontology Alignment

Aside from the method elaborated on in the previous chapter, various other methods exists,
some of which are integrated into this ontology method, among which are discrete mathematics
for matching graphs and trees [HK73], databases for reconciling and merging schemas [RB01]
and machine learning for clustering compound objects described in a restricted First Order
Logic [Bis92]. Aligning consists itself here as defining a distance between a pair of entities
and finding the minimal distance (the best match) among them. As the quantity of such
alignment algorithms suggest, there is multiple different ways to compute such a distance.
Jérôme Euzenat and Petko Valtchev [EV03] classify these methods into five groups:

• terminological (T) methods compare the entities’ labels. This presents itself in two
flavours: The string-based (TS) and the terminological with lexicons (TL). The
first computes the string structure (dis)similarity like editing distance. Please refer to
the previously chapter for an introduction of some sample methods. The latter matches
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5.4 Representation as a Graph

terminologically modulo the relationships to be found in a lexicon (i.e. take a synonym
as equivalent or a hyponym as subsumed into consideration)

• internal structure comparison (I) methods contemplates on the internal structure
of entities such as their value range or cardinality of attributes

• external structure comparison (S) methods compare relations between entities.
This also comes in two flavours: taxonomical structure (ST) methods are about
the position of the entities within a taxonomy, while external structure comparison
with cycles (SC) are robust to cycles.

• extensional comparison (E) compares known extensions of entities, i.e. the set of
other entities that are attached to them (in general instances of classes)

• semantic comparison (M) compares the models of the entities

5.4 Representation as a Graph

The method does not compute the similarity on base of the OWL-Lite Syntax, but defines
a dedicates typed graph representation of the language and compute upon the graph based
syntax. This built graph will have classes (C), objects (O), relations (R), properties (P ),
property instances (A), data types (D), data values (V ), property restriction labels (L) as
node categories, concentrating the necessary information for computing the similarity between
OWL entities. Also differences are made for data type relations (Rdt), object relations (Ro)
and property restriction labels (Pdt) Among those nodes, different sorts of relationships are
possible according to [EV03]:

• specialization: rdfs:subClassOf (S) between two classes or two properties,

• instantiation: rdf:type (I) between objects and classes, property instances and
properties, values and data types;

• attribution: (A) between classes and properties, objects and property instances;

• restriction: owl:Restriction (R) expressing the restriction on a property in a class;

• valuation (U) of a property in an individual

The relation symbols are used as set-valued functions (F(x) = x;∃y; 〈x, y〉2 ∈ F). Furthermore
every node can become attached annotations via an URI reference identified by λ : C ∪O ∪
R ∪ P ∪D ∪A→ URIRef . Knowledge encoded in relation types should also be on the object
level as to provide a most complete basis on the comparison. One way to do this is to insert
an additional edge between objects, whose edge or a pair of edges is reverse, symmetric or
transitive. Such relation types can be handled either by saturation of the graph or these simple
methods: for

• owl:TransitiveProperty add transitivity arcs

• owl:SymmetricProperty add symmetric arcs
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5.5 Similarity: Measurement and Computation

Figure 5.2: The OL-graph of the second set of classes from figure 5.1 [EV04]

• owl:inverseOf add the reverse arcs (both in generic and individual descriptions)

• owl:FunctionnalProperty add a cardinality constraint

• owl:InverseFunctionnalProperty will not be accounted for at that stage

Figure 5.1 illustrates such a graph.

[EV04] claims, that the relationships between language elements get more explicit through
the graph structure. For instance, if a class c refers to c’ owl:allValuesFrom restriction,
this will also show in the OL-Graph via a path between the corresponding nodes. Also
can OL-graphs record other information possibly supporting comparison, such as descriptive
knowledge inherited from nodes of the same or related categories. So the similarity of an entity
pair will depend on their neighbour pairs, whose members describe the initial entities.
It should also be noted however, that only descriptive knowledge is taken into account, due to
efficiency considerations. So no inference is done on the ontologies and inheritance in particular
to expand descriptions of entities. [EDLV04]
OLA uses an extension of the JGraph API [jgr] to perform a graph representation of the
ontologies. [olaa]

5.5 Similarity: Measurement and Computation

As alignment boils down to finding the best correspondence between of two ontologies’ entities
a definition of similarity between a pair of entities is required and elaborated on in section 5.5.1.
Processing relationships are thus essential. Accompanying them are also their “surrounding”
entities, which should be taken into account as well. To avoid trouble with circularity an
effective computation mechanism is needed, which will be introduced in section 5.5.3.
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5.5 Similarity: Measurement and Computation

5.5.1 Integrative Similarity Measure

The OWL-Lite file will be represented graphically. The different entity categories of the
ontology are highlighted and linked. In a dedicated similarity measure for each node category
in the OL-Graph, entities from one ontology will be mapped to the most similar ones of
the other one. The measure will rank the pair of entities in a real number in the range of
[0, 1], whereby 0 (1) signifies entirely different (similar) entities. There are two basic key
assumptions:

• any component of an entity category has a priori relevance to the similarity evaluation.
The relative relevance can be adjusted by weighting them among each other. Section
5.5.3 will go deeper on that.

• any entity within each category is processed in the same manner, while computation
methods for different categories may differ

Thus given two nodes from category X, the similarity depends on:

• similarity of designators (labels, Names, URIs, etc.)

• similarity of pairs of neighbour nodes in the respective OL-Graphs liked by edges with
the same relationship (e.g. similarity of a class node depends on similarity of super
classes, property restrictions and member objects)

• similarity of other category specific local descriptive features (e.g. cardinality intervals,
property types)

In short, an entity category such as a class is assigned a specific measure. Related entity
categories like a property, a sub-class, etc. are computed with their respective measures and a
function on all the results make up the specific entity category measure. For simplicity’s sake,
the different components in this function are aggregates through a weighted sum, in which
the importance of each component can be emphasized or even ignored by reducing the weight
down to zero.

For any given category X with N (X) the set of its relationships, the similarity measure
SimX : X2 → [0, 1] is formally defined as follows: [EDLV04]

SimX(x, x′) =
∑

F∈N (X)
πX
FMSimY (F(x)F(x′)(5.1)

and the function is normalized with:

1 =
∑

F∈N (X)
πX
F(5.2)

So for example in case of two classes c, c′ this weighted normalized similarity function would
be computed as follows: [EV04]
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5.5 Similarity: Measurement and Computation

SimC(c, c′) = πC
L simL(λ(c), λ(c′))

+ πC
I SimO(I(c)I ′(c′))

+ πC
S SimC(S(c)S ′(c′))

+ πC
Adt

SimP (Adt(c)A′dt(c′))
+ πC

AO
SimP (AO(c)A′O(c′))

(5.3)

with its similarity scores calculated for the nodes of the graph: classes (C), objects (O) and
properties (P ).

And due normalization:

1 = πC
L + πC

I + πC
S + πC

Adt
+ πC

AO
(5.4)

So for instance, in case of the two ontologies in figure 5.1, the similarity of Flat and Person
(see also figure 5.2) would be: [EV04]

SimC(Flat, Person) = πC
L simL(’flat’, ’person’)

+ πC
Adt

MSimP ({rooms} , {locomotion})
+ πC

AO
MSimP ({address} , {name, salary})

(5.5)

with πC
Adt and πC

AO
being components of πC

A assigned to data type and object property parts
of SimC(Flat, Person) respectively. Any missing πC

F means that F contribution are ignored
in the measure computation.

The Table in figure 5.3 shows the other function decompositions in detail.

5.5.2 Similarity-based Matching of Entity Sets

The generic set similarity function MSim averages the components’ similarities, i.e. two sets
of nodes in the same category are measured for similarity by combining all pair similarities
into one unique value. (MSim thus averages a limited subset of the product S1 × S2 that
represents a matching optimizing the total similarity. [Val99]) The function ensures equity
between the factor of function SimX(n1, n2). MSim is formally defined as:

MSimC(S, S′) =
∑
〈c,c′〉∈P airing(S,S′) SimC(c, c′)

max(|S|, |S′|)(5.6)

with S and S′ being two sets of entities of the same category Y and the respective measure
SimY . Pairing(S, S′) is the mapping of elements S to elements S′, that maximizes the
MSimC similarity. Therefore the average of the matched pair’s values is the similarity between
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5.5 Similarity: Measurement and Computation

Figure 5.3: Decomposition of the different similarity functions (card = cardinality and
all = allValuesFrom)

the two sets.
For illustration of the function [EV04], using the previous example calculation of
SimC(Flat, Person) of equation 5.5 and assuming that SimP (address, name) = 0.64 and
SimP (address, salary) = 0.34. This will have {(address, salary)} be the best matching.
Hence

MSimP (address, {name, salary}) = 0.64/2 = 0.32(5.7)

The eventual similarity values will depend on the similarities between data types, values
and URIRef as well as how these are translated through the relationships in the graphs.
An abstract data type definition should accompany measurements of data types and values.
URIRef comparison can be conducted by a string similarity or by an equality predicate.

5.5.3 Similarity Computation

One problem that is to be avoided are cyclic dependencies in the similarity weight. The above
formula SimC(c, c′) itself depends on the computation of a computation of SimC of other
classes. This could lead to a simple deadlock as SimC(c1, c2) depend on SimC(c3, c4), while
the latter depends on the first again. Therefore, similarities should not be recursive, but only
be expressed as equations. For this, a variable is introduced, that corresponds to the similarity
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5.5 Similarity: Measurement and Computation

of an entity pair. A system of equations is formed by substituting all similarity occurrences
with the corresponding variables:


x1,1 = SimC(c1, c1) y1,1 = SimC(p1, p

′
1)

x1,2 = SimC(c1, c
′
2) y1,2 = SimC(p1, p

′
2)

...

(5.8)

When the program is given some similarity values, some similarity or dissimilarity assertions
as an input, the assertion of the similarity between the objects can replace the corresponding
equation. In case of only one entity being compared to another, each MSim would be
deterministic and the system be directly solvable, as all the variables would be only degree
one. This would be the easiest case, but is not very realistic, since the system is not very
likely to be linear, as multiple candidate pairs for a best match are possible in OWL-Lite.
Such a system can still be computed iteratively by simulating computation of the fixed point
of a vector function (see [Bis92] for details and proof). Essentially, the MSim-measures
are first being approximated. The system is then solved and the approximations replaced
by the newer solutions computed in the iteration and the process is repeated. The initial
values approximating the MSim-measures are the maximal similarity found for a pair, while
ignoring the dependency of the equation. The values following are computed with the complete
similarity formula and the system’s computed solutions as an input. The system always
converges eventually. The function consists of a steady part, which does not change in any
iteration. The dependencies can therefore only propagate their own increase, but the similarity
function is normalized and thus has an upper bound 1, which no value can exceed, because
none of their components can (inductively). The iteration stops, when the values does not
increase by more than an ε value compared to the previous iteration’s value. In theory there
may be a different global solution, which this iteration may miss, as it will get stuck on a local
optimum. To avoid this, some matchings could be randomly changed. The result value will
approximate the similarity between entities from opposite ontologies. These similarity values
will be used as a basis for ranking entity pairs for the final goal of a satisfactory ontology
mapping.

5.5.3.1 Example

[EV04] gives an computation example to illustrate this method:
Using the two ontologies from figure 5.1 and figure 5.2, (Flat, Person) and (rooms,
locomotion) are two pairs of nodes. It may easily happen, that they are each other’s
contributor as is the case which these two nodes, resulting in the recursive dependency of
SimC(Flat, Person) being dependent on SimP (rooms, locomotion) and vice versa. As
[Bis92] shows, an equation system can be built to account for the need of a non standard com-
putation method addressing the cyclic dependency problem. Therein, each pair of “alignable”
nodes, i.e., in C (classes), R (relations) and, possibly, O (objects), is assigned a variable xi, yj ,
and zk, respectively, representing each similarity. Using the similarity as described in section
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5.5 Similarity: Measurement and Computation

5.5.1 and the guidelines listed in the table of figure 5.3, the contributor similarities are replaced
by the corresponding variables. For the sample purposes, take SimC(Flat, Person) using
the following weights for the C (classes) and P (properties) categories:

πC
L πC

I πC
S πC

AO
πC
Ad

πP
L πP

card πP
A πP

R

.4 0. .1 .25 .25 .25 .15 .4 .2

(The categories p and R are merged due to space limitations in the similarity computation.
But the only difference is that property name and domain are directly included in SimP

instead of having an influence via SimR.)

The variable substitutions are like this:

x1 = SimC(Flat, Person) x2 = SimC(Room, Car)
x3 = SimC(Human, Person) x4 = SimC(Flat, Car)
x5 = SimC(Room, Person) x6 = SimC(Human, Car)
x1 = SimR(rooms, locomotion) y2 = SimR(address, name)
x3 = SimR(address, salary) y4 = SimR(surface, model)

In the following example calculation, identity function is set for data type similarities and
cardinality measure is 1 if both limits correspond, 0.5 if only one does (∗ is ignored), 0.35 if
there is no match, but still inclusion, and 0 otherwise. Also assume the (arbitrary chosen)
label similarity values are assumed:

SimL(flat, person) = .4 SimL(room, car) = .5
SimR(rooms, locomotion) = .25 SimR(address, name) = .7
SimR(address, salary) = .3 SimR(surface, model) = .35

For composing the equations define choice(S) as a simulation of set matchings underlying S
(rdfs:subClassOf two properties). In other words, it assigns 0/1 weights to each variable in
the set:

x1 = .16 + .25 ∗ choice({y1}) + .125 ∗ choice({y2, y3})
y1 = .115 + .4 ∗ choice({x1}) + .2 ∗ choice({x2})
x2 = .2 + .125 ∗ choice({y4})
y2 = .525 + .4 ∗ choice({x1})
y3 = .225 + .4 ∗ choice({x1})
y4 = .238 + .4 ∗ choice({x2})
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The system would be a directly solvable, i.e. a linear system, if each choice could be established
beforehand. OWL-Lite however usually produces non-linear systems, so choices can not be
established beforehand. In such cases, an iterative process that produces the nearest reachable
fixed point of a vector function can be used to produce a sequence of approximations getting
more precise each iteration. The initial similarity values are based exclusively on 0-th level
contributors. Using the similarities of the 1st-level contributors from step n (including matching
re-calculations) the values at step n+ 1 are computed.
Doing so will yield the following solution for the entire system as corresponding to figure 5.1
after six steps:

x1 = .293 x3 = .566 x5 = .156 y1 = .290 y3 = .342
x2 = .288 x4 = .492 x6 = .370 y2 = .642 y4 = .353

5.5.4 Lexical similarity measures

OLA uses WordNet 2.0 [Mil95] to compare identifiers. WordNet is a large lexical database
of English vocabulary. Word types such as nouns, verbs, adjectives and adverbs are grouped
into sets of synonyms (synsets) that express about the same semantic concept. These synsets
are interlinked through conceptual-semantic and lexical relations. It thus gives a measure of
"relatedness" between two terms. This is done by retrieving the synsets for each term and
applying a normalized Hamming distance to them. A default similarity value for identifier
pairs is established by using a variant of substring distance. With default mechanism identifiers
that are not entries in WordNet, e.g., compound identifiers or abbreviations can be processed
in a sensible way.

5.5.5 Implementation of OLA

OLA is implemented in Java and relies in the OWL API for parsing OWL files. A complete
subsystem deals with constructing the OL-Graphs based on the information from parsing
the OWL ontologies. A set of further components offer similarity computation services such
as substring distances, edit distances or Hamming distance. Another component specially
extracts similarity values from the limited WordNet interface provided by the JWNL library
[Did04]. Entity set comparison is done by another component. The similarity and matching
mechanisms are integrated into the subsystem producing the alignment. This supports the
entire iterative computation process.
The implementation in a 2.0.1 Version is available as a complete zipped archive with source
codes, libraries and an executable jar file at [olab].

5.5.6 Strength and Weaknesses of the Comparison Method

According to [EDLV04], based on several initial tests, the method performs well, if the struc-
tures of the compared ontologies are close to identical. In 2007, at the Ontology Workshop
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[ont] where various ontology methods have been tested, among them an improved OLA in
version 2, further results on numerous benchmark tests have been published. [DKEV+07]
For language variations it returned a mean precision of 1, while alteration of names and/or
suppression of comments yield a mean precision of 0.92 and synonyms or foreign languages
a value of 0.9. The algorithm relies heavily on similarity of names or paths of entities. It
scored poorly on those tests with entities playing similar roles within their ontology graph
and shows weaknesses in semantic similarity and due to a lack of language translators and
the fact that in version 2 the WordNet engine was removed. According to [DKEV+07] the
problem of semantic similarity will be addressed in future improvements. Overall the results are
nonetheless satisfying and yielded already considerably better results than its previous version 1.

A major drawback however is the limitation to OWL-Lite by OLA. Action recipes are mostly
written in OWL-DL, of which OWL-Lite is a subset. OWL-Lite was built to express the
same semantics of OWL-DL, supporting users who primarily need a classification hierarchy
with simple constraints. In consequence OWL-Lite is a less complex language than OWL-DL
through further syntactic restrictions. Any OWL-Lite ontology is automatically an OWL-DL
ontology. [MVH+04] The opposite is however reasonably not the case. While there are ways
to convert OWL-DL to OWL-Full or RDF Graphs (as OWL-Full is a RDF Abstract Syntax)
[owlb], there is close to none about OWL-Lite to OWL-DL conversion, let alone a directly
usable package providing such functionality. This also makes sense, as OWL-DL has a many
more constructs added atop OWL-Lite [MVH+04], among which rdfs:subClassOf is used
excessively in action recipes. Therefore writing all future action recipes directly in OWL-Lite
language constructs does not seem feasible either. Not to mention the additional effort it
would take to rewrite all existing recipes manually.
While the target language has changed from OWL-Lite to OWL-DL since Version 2 [DKEV+07]
and is already partially usable on OWL-DL, sample tests have shown the already implemented
packages of OLA to be not yet compatible to the action recipes used in RoboEarth as an
input. Full OWL-DL support is as of yet only planned as a future work. [EDLV04]

5.6 Summary

OLA aligns ontologies written in OWL-Lite and measures their object based similarity. This
solution considers multiple ontology alignment methods, as it deals successfully with external
data types, the inner structure of classes provided by their properties and constraints, as well
as their external structure as given by their relationships to other classes. This solution has
the advantage that is does not make use of just a subpart of the language features, but uses
an integrates similarity definition atop the linear computation of similarity of entities, making
those interact with each other while coping with unavoidable circularities within the ontologies.
A major drawback is however the limitation on OWL-Lite and a few OWL-DL constructs.
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6 Conclusion

In chapter 1 a general overview of Cloud Computing and the RoboEarth platform as a sample
implementation was given and the issues that springs forth from heterogeneous action recipe
ontologies discussed. Chapter 2 proceeded to elaborate in more detail about ontologies the
RoboEarth platform and action recipes written in OWL used therein. Chapter 3 gave a general
overview of related literature and in chapter 4 and chapter 5 two selected methods have been
discussed in more detail.
Upon comparing the methods described in chapter 4 and chapter 5, OLA seems at first clearly
preferable. Tenorth, Ziegltrum and Beetz in [TZB12] mainly consider string similarities of
labels and description with some weighting on the ontology entities’ importance to the overall
action recipe. Semantic similarity is comparably included only in a rudimentary manner, as
only class depths are taken into account. Ngan, Hang and Goh [NHG06] who use five different
similarity scores to compare class similarities between two ontologies address far more of the
problematic issues, but ultimately the method only compares classes. An ontology however
is traditionally seen as a set of entities and a set of relationships between those. This is
especially true for action recipes, when subclasses (i.e. subactions) get used in other classes
within the ontology and explicit ordering constraints are sometimes specified. Action recipes
also contain more entities than just the classes. There are data types, annotation and object
properties, individuals or other designators among others. Such entities are not taken into
proper consideration with these two methods. OLA however includes them as nodes in the
built OL-graph and the relationships among the entities are included into the similarity score
as well. The context similarity of this method is not just limited to comparing the top level
concepts (classes), but also takes the term context in a broader sense by comparing further
possible relationships of the ontology entities.
OLA also has the advantage of having a downloadable alpha version implementation of the
proposed methods. Compared to the methods of chapter 4, which would have yet to be
implemented, OLA could just be integrated, which saves a good deal of time and effort. Since
it is written in Java, integration should also not be a problem, since the OWL API [owlc]
already employed in the RoboEath platform is written in Java as well.
However OLA’s current limitation to OWL-Lite language constructs creates a major disad-
vantage, as action recipes in the RoboEath are usually written in OWL-DL. While there
is already partial support of OWL-DL, it nonetheless does not support action recipes as
an input. Full OWL-DL support is planned, as stated in [DKEV+07], but has yet to be
implemented. Conversion from OWL-DL seems hardly possible, especially since action recipes
excessively utilize the OWL-DL rdfs:subClassOf construct. Writing all future action recipes
in OWL-Lite is therefore also not feasible.
So in conclusion, using OLA for the action recipes alignment purpose will highly depend on
further support of OWL-DL. An estimation of effort on a self-done expansion of OLA to this
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purpose can hardly be given in scope of this work, as it would amount to be a separate work on
its own. Meanwhile, the methods described in chapter 4 will have to do or other alternatives
explored. As action recipes mainly consists of classes, this should also yield reasonable results
nonetheless, despite not taking any external information into account.
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