
Institute of Software Technology

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diploma Thesis Nr. 3467

Tool Support for Software
Architecture Documentation

Dimitrij Pankratz

Course of Study: Software Engineering

Examiner: Prof. Dr. rer. nat. Stefan Wagner

Supervisor: Dipl.-Inf. Ivan Bogicevic

Commenced: 2013-03-01

Completed: 2013-08-31

CR-Classification: D.2.1, D.2.2, D.2.7, D.2.9

Abstract

Large and complex software systems cannot be created in one piece. They need to be separated
into manageable units, i.e., modules, which can be developed independently from each other.
Precise definition and documentation of the modules and other software artifacts is essential
for a successful software project. The module documentation is part of the overall software
architecture documentation.
However, nowadays most of the utilized tools for documenting software architectures (e.g.,
word processors) are not fully sufficient for this task. This thesis provides a concept for
an extensible tool, which is specialized for documenting software architectures and modules.
The concept supports management and visualization of explicitly definable relations, e.g.,
dependencies among modules or references to external implementation artifacts. Moreover,
this thesis suggests a template for module documentation based on its concept. Finally, a
proof of concept prototype is implemented and evaluated with promising results.

3

Contents

List of Abbreviations 7

List of Figures 8

List of Tables 9

List of Listings 9

1 Introduction 11
1.1 Motivation . 11
1.2 Problem Statement . 12
1.3 Research Design . 12
1.4 Outline . 13

2 State of the Art 15
2.1 Software Module . 15

2.1.1 Modules in Java . 16
2.1.2 Software Modules Conclusion . 22

2.2 Software Architecture Documentation . 24
2.3 Templates and Tools for Software Architectures 25
2.4 J-PaD . 27

3 Requirements and Design 29
3.1 Requirements . 29

3.1.1 Functional Requirements . 29
3.1.2 Non-functional Requirements . 31
3.1.3 Stakeholders . 31

3.2 Design . 32
3.2.1 Concepts . 32
3.2.2 Data Model . 41
3.2.3 Module Metadata . 43

4 Implementation and Results 47
4.1 Implementation . 47

4.1.1 Data Format . 47
4.1.2 Application Flow . 52
4.1.3 Id Generation and Modification . 54

5

4.2 Results . 55
4.2.1 Overview . 56
4.2.2 Module Template . 61

5 Evaluation 65
5.1 Initial Goals . 65
5.2 Experiment Type . 66
5.3 Parameters . 66
5.4 Adjusted Goals . 67
5.5 Experiment Design . 68

5.5.1 Introduction . 68
5.5.2 First Assignment Part . 68
5.5.3 First Feedback . 70
5.5.4 Second Assignment Part . 70
5.5.5 Second Feedback . 71

5.6 Experiment Overview . 71
5.7 Validity of the Experiment . 72

5.7.1 Internal Validity . 72
5.7.2 External Validity . 74

5.8 Pilot Experiment and Execution . 74
5.9 Results . 75
5.10 Interpretation of the Results and Conclusion 78

6 Conclusion and Future Work 81
6.1 Conclusion . 81
6.2 Future Work . 82

A Appendix 85

Bibliography 89

6

List of Abbreviations

ADL Architecture Description Language . 25
API Application Programming Interface . 19
CaC Component-and-Connector . 25
CLI Common Language Infrastructure . 22
CSV Comma-separated values . 47
DOM Document Object Model. .48
DSM Dependency Structure Matrix . 24
ER Entity-Relationship .11
GUI Graphical User Interface . 29
HTML Hypertext Markup Language . 37
IDE Integrated Development Environment. .27
JAR Java Archive . 17
Java EE Java Platform, Enterprise Edition . 17
JAXB Java Architecture for XML Binding. .48
JCP Java Community Process . 20
JRE Java Runtime Environment . 22
JSR Java Specification Request .20
JSON JavaScript Object Notation . 47
JVM Java Virtual Machine . 17
J-PaD Java Package Documentation . 12
MVC Model–View–Controller .52
OOP Object Oriented Programming . 22
OSF Open Software Foundation . 54
PDF Portable Document Format . 33
SEI Software Engineering Institute . 24
SQL Structured Query Language . 23
SVN Apache Subversion . 12
UML Unified Modeling Language . 11
UniMoDoc Universal Module Documenter. .29
URL Uniform Resource Locator . 38
USB Universal Serial Bus . 70
UUID Universally Unique Identifier . 54
XML Extensible Markup Language . 17

7

List of Figures

2.1 OSGi architecture . 19
2.2 Publish-Find-Bind interaction pattern . 20
2.3 Bathtub Curve from [Kircher, 2012] . 27
2.4 Bathtub Curve from [Ludewig and Lichter, 2007] 28

3.1 Document and Chapters in UniMoDoc . 33
3.2 Sections and Widgets in UniMoDoc . 35
3.3 Relation and Relation Types in UniMoDoc . 36
3.4 External References in UniMoDoc . 38
3.5 Editing Document Structure in UniMoDoc . 40
3.6 Simplified Data Model in UniMoDoc . 42

4.1 UML Sequence Diagram of Adding New Chapters 53
4.2 UniMoDoc GUI Overview . 55
4.3 Editing Document Structure in UniMoDoc . 57
4.4 Section Configuration . 58
4.5 RelationList Widget Settings . 58
4.6 RelationList Widget . 59
4.7 Creating Templates . 60
4.8 Using Templates . 60
4.9 Module Template - Design . 62
4.10 Module Template - Implementation . 63
4.11 Module Template - Misc . 64

8

List of Tables

2.1 Module interpretations in different programming languages 23

A.1 Stakeholders of software architecture documentation from [Garlan et al., 2010] 87

List of Listings

2.1 Example OSGi manifest definition . 18
2.2 Example Project Jigsaw module definition in a module-info.java file. 22

4.1 Example JAXB Usage . 49
4.2 XML Output from Listing 4.1 . 50
4.3 Embedded XML Structure . 51

9

1 Introduction

Nowadays, a great number of people work together on the development of large and sophisti-
cated software systems. These systems cannot be built in one piece due to the high complexity
and enormous communication effort. In contrast, they need to be divided in discrete and
manageable parts. These parts are often referred to as modules. Modules hide the complexity
and implementation idiosyncrasies internally, while exposing only an interface to the outside
world. The interfaces act as contracts between the modules. Thus with respect to the interfaces,
modules can be developed fully independent from each other.

However, modules are not a new invention but known in software engineering since the
early 1970s [Parnas, 1972]. As well as all the other software artifacts, they need to be precisely
defined and documented. For these reasons, it is more astonishing that only little attention
is paid to the tool support for documenting modules as of this writing. The module docu-
mentation can be considered as a part of the software architecture documentation. Typically
software architecture is documented with word processors, formal notation (e.g., Unified
Modeling Language (UML), Entity-Relationship (ER), etc.) tools, or a combination of both
but specialized tools are hard to find.

1.1 Motivation

Using only UML or other formal notation tools for documenting software architectures is
not sufficient. These notations support mainly the documentation of the solution. However,
architecture documentation needs to provide a detailed description of the issue, its solution,
argumentation about the validity of the solution, rejected alternatives, etc. Although, it needs
to structure and link this information.

Compared to formal notation tools, word processors make it possible to describe all of
the required information and structure it in a document. However, architecture documentation
contains various relations among the single parts. These relations are necessary for, e.g.,
revealing the dependencies among the modules, finding an implementation unit for a specific
requirement, or detecting the test cases for a module. Word processors provide very limited
functionality for defining these relations. They do not support any central management or
visualization for the relations. Since the architecture documentation is not a single artifact
in a software project, it is necessary to describe the relations to external resources. Word
processors support external references only rudimentarily.

11

1 Introduction

Furthermore, the architecture documentation needs to be put together with the other software
artifacts under revision control. However, word processors are poorly compatible with common
revision control tools like Apache Subversion (SVN) due to their typically binary data formats
and rudimentary referencing of external resources.
Additionally, the free text input in word processors requires further structuring and is less
comfortable compared to form-based input.

A previous diploma thesis [Kircher, 2012] at the University of Stuttgart examined the lack
of tool support for module documentation. As a result it suggests a form-based tool for
module documentation on the source code level named Java Package Documentation (J-PaD)
[J-PaD, 2013]. Still, J-PaD solves not all of the previously described issues. Especially, it does
not provide any explicit definition, management, and visualization for relations. Moreover,
J-PaD is limited to the documentation of Java packages. Though Java packages can be
interpreted as modules, there are far more possible module constructs in Java only.

1.2 Problem Statement

The goal of this thesis is examining the current state of the art and creating a concept
for software architecture documentation tool support. In contrast to [Kircher, 2012], the
resulting concept needs to be programming language independent and applicable for various
module constructs. Moreover, it should support templates, explicit relation definitions, relation
management, and their visualization. Furthermore, it is necessary to build a prototype as a
proof of concept and evaluate it.

1.3 Research Design

This thesis is created in a close co-operation with another diploma thesis [Casciato, 2013]
on purpose. Both theses work on the same concept and prototype with partially different
goals. In the concept and implementation phases, this thesis focuses primarily on the module
documentation. It keeps an eye on the big picture, i.e., it provides the interfaces, pays attention
to the extensibility, etc. This thesis defines a design for the overall application with a common
data model and implements it. Additionally, it provides a module documentation template
based of the resulting prototype.
[Casciato, 2013] plugs in into the overall design and implementation, focusing on the test
aspects of module documentation and the relations, their semantics, management, and visual-
ization.

However, it is not possible to simply draw a clear line between both theses. Many con-
cepts were created in teamwork. Furthermore, the complete evaluation was planned and
executed together with [Casciato, 2013].

12

1.4 Outline

1.4 Outline

This thesis is structured as follows:

Chapter 1 – Introduction: High-level overview and motivation of this thesis.

Chapter 2 – State of the Art: Definitions, technologies, and programs which are state of
the art and related to this thesis.

Chapter 3 – Requirements and Design: Firstly, this chapter defines the requirements
resulted from Chapter 2. Then it presents the ideas, concepts, and the resulting design
with consideration of the defined requirements.

Chapter 4 – Implementation and Results: Constructing on top of the general design,
this chapter describes the implementation details of this research. The second part of
the chapter shows the results of the implementation.

Chapter 5 – Evaluation: Evaluation of the results of this thesis.

Chapter 6 – Conclusion and Future Work Summary, conclusion and an outlook of this
research.

13

2 State of the Art

This chapter describes the foundations, provides an overview of the related work, and introduces
relevant technologies.

2.1 Software Module

Building large software systems requires dividing them into smaller parts. These parts are
usually called modules. Parnas provides the foundation for software modularization in his
research [Parnas, 1972] in the early 1970s. Instead of separating the software in single blocks of
the processing order (like single blocks of a flowchart), he proposes to decompose the software
in modules with the consideration of difficult design decisions and possible changes in the
future. One of the key aspects of this approach is information hiding. Hiding a difficult to
understand design inside a module and exposing well defined external interfaces results in
several benefits:

• It is not necessary to understand the implementation details in order to use the module.

• It is easier and faster to get the big picture of the whole system by understanding the
interfaces of the modules and skipping the implementation details.

• Potential changes in the implementation of a module do not affect the implementation
of other modules and cause changes inherently.

• The communication effort among the developers of different modules is reduced to the
interfaces.

While the benefits of modularization in software engineering are well known and accepted,
there is room for interpretation what is actually a module. This thesis focuses on a tool for
structured documentation and specification of modules. Therefore, it is essential to clarify this
term and its main aspects. There are many different definitions around on this topic.

module - (1) A program unit that is discrete and identifiable with respect to
compiling, combining with other units, and loading; for example, the input to, or
output from, an assembler, compiler, linkage editor, or executive routine.
(2) A logically separable part of a program.

[IEEE-610.12, 1990]

15

2 State of the Art

The definition of the IEEE standard glossary of software engineering terminology
[IEEE-610.12, 1990] is very vague. It makes use of the term “unit” which is vaguely de-
fined, too. In fact, there is a note beneath the module definition with the following contents:

Note: The terms “module”, “component”, and “unit” are often used interchangeably
or defined to be sub-elements of one another in different ways depending upon the
context. The relationship of these terms is not yet standardized.

[IEEE-610.12, 1990]

In addition there is a newer joint definition of ISO, IEC, and IEEE from 2010
[ISO/IEC/IEEE, 2010]. Still, instead of being more precise, it only adds additional vari-
ants to the existing definition. The relationship of the terms “module”, “component”, and
“unit” are not yet standardized.

module - 1. a program unit that is discrete and identifiable with respect to
compiling, combining with other units, and loading.
2. a logically separable part of a program.
3. a set of source code files under version control that can be manipulated together
as one.
4. a collection of both data and the routines that act on it

[ISO/IEC/IEEE, 2010]

These definitions provide almost no criteria for clear identification or specification of soft-
ware parts as modules. Other definitions mention some criteria, e.g., information hiding in
[Ludewig and Lichter, 2007]. With these definitions in practice it is a question of interpretation
what is a module and what is not. In order to illustrate this dilemma, the following chapters
will describe the possible interpretations for a concrete programming language, namely Java.

A module is a set of operations and data which are only externally visible to the
extent defined by a programmer explicitly.

[Ludewig and Lichter, 2007]

2.1.1 Modules in Java

At first glance, it seems to be simpler to find a definition of a module for a specific programming
language. This chapter will show that this is not true, using the example of Java. There are
different constructs in Java, which can be seen as modules. Some constructs are built-in parts
of the language and some are not. The next sections will present those constructs in detail,
provide the current state of the art for modularity in Java today, and show an outlook about
future development.

16

2.1 Software Module

Classes

There are good reasons to assume Java classes as modules themselves. In fact, modularity and
object orientation have similar objectives and benefits, e.g., you can easily ensure information
hiding with Java classes. While it is reasonable to argue due to the upper definitions that Java
classes are modules, there are some limitations. The granularity of Java classes is relatively
fine. Java projects tend to have thousands of classes and this usually requires additional
structuring with coarse granularity on top, e.g., packages, OSGi bundles, etc. Referring to
the module definition from [Ludewig and Lichter, 2007] and according to [Garlan et al., 2010]
information models, e.g., configuration files, Extensible Markup Language (XML) files, etc.
can be seen as modules, too. Java classes provide no functionality to group such information
models to single modules. This again requires additional constructs on top of Java classes.
Finally, Java classes are not deployable units.

Packages

Compared to Java classes, packages provide a coarse granularity and allow to group source
code and information models. Still, Java packages have some limitations. Their initial purposes
are namespaces in order to prevent naming clashes and simple structuring. Still, they provide
almost no information hiding. Used and exposed interfaces can be only found on the class level.
Thus, packages provide no explicit interfaces at all. Like classes they can not be deployed on
their own.

OSGi

OSGi [OSGi, 2013] is a module platform on the top of the Java Virtual Machine (JVM).
Formerly OSGi stood for “Open Services Gateway initiative” but since 2003 the acronym
meaning is officially dropped. The specification is managed by the OSGi Alliance, which is
a consortium of different companies, e.g., IBM, Oracle, Adobe, etc. OSGi provides a set of
specifications for dynamic modularity in Java. Comparable to other Java technologies like Java
Platform, Enterprise Edition (Java EE) OSGi follows the approach of a central specification
with different implementations. Thus, there are different commercial and open source OSGi
Framework implementations, e.g., Eclipse Equinox [Eclipse Foundation, 2013b], Apache Felix
[Apache Felix, 2013], Knoplerfish [Knopflerfish, 2013], etc.

One of the key elements of OSGi’s modularity is the bundle. Simply put, from OSGi’s
perspective a bundle is a module and can be defined as followed:

Bundle A physical unit of modularity in the form of a Java Archive (JAR) file
containing code, resources, and metadata, where the boundary of the JAR file also
serves as the encapsulation boundary for logical modularity at execution time.

[Hall et al., 2011]

17

2 State of the Art

Listing 2.1 Example OSGi manifest definition (Manifest.mf)
Bundle-Name: UniMoDoc HTML Exporter
Bundle-Description: A bundle for HTML export of documentation
Bundle-Copyright: (c) 2013, University of Stuttgart
Bundle-SymbolicName: de.unimodoc.export.html
Bundle-Version: 1.0.0
Export-Package: de.unimodoc.export.html; version="1.0.0"
Import-Package: de.unimodoc.core; de.unimodoc.export; version="1.3.0"
Bundle-Activator: de.unimodoc.export.html.Activator

Consequentially, a bundle is actually a simple JAR file enriched with additional metadata.
These metadata are contained in the Manifest.mf file and can be structured in three types:

• Human-readable information

• Bundle identification

• Code visibility

Human-readable information is intended for humans only. It is not required and is ignored by
the OSGi framework. This information contains besides others data like:

• Bundle-Name: Well readable name for humans, which has not to be unique.

• Bundle-Description: Describes what functionality the bundle provides.

• Bundle-Copyright: Copyright information of the bundle.

Bundle identification information is required for distinct bundle identification. Since
Bundle-Name is not unique, not required and for humans only, there is another field for
bundle identification. So the bundle identification information contains a unique name with
an optional version field as follows:

• Bundle-SymbolicName: Required unique bundle name.

• Bundle-Version: Version of the bundle in a common OSGi version number format.

Code visibility metadata describe formally and explicitly, which functions from the bundle
are visible to the outside world. It provides also information about the dependencies to other
bundles, so to speak, inbound visibility. A set of possible data in this metadata type is:

• Export-Package: Defines explicitly, which packages will be visible to others.

• Import-Package: Lists the required dependencies of this bundle.

• Bundle-Activator: The specified class in this field will be invoked after the start of the
bundle.

18

2.1 Software Module

Figure 2.1: OSGi architecture

Listing 2.1 shows an example bundle manifest definition with the described metadata.

The OSGi framework builds its layered architecture on top of the JVM. The architecture is
displayed in Figure 2.1. As already mentioned, in terms of OSGi, a module is equivalent to a
bundle. The definition of bundles as single units of modularization forms the Module Layer of
OSGi. It ensures and resolves fine-grained dependencies for bundles, adds explicit information
hiding and provides a more sophisticated class loading concept than standard Java.
The Life Cycle Layer defines the execution-time management of the modules and provides
an Application Programming Interface (API) for this purpose. With the defined life cycle of
bundles, it is possible to dynamically install, start, update, stop, and uninstall bundles during
the runtime of the application, i.e., without a restart. On the one hand, the Life Cycle Layer
allows the application and the administrator to manage the bundles. On the other hand, it
provides an API for the bundles to register and hook into the framework in a well-defined way.
The Service Layer extends the modularization with concepts of service-oriented computing. It
has a central service registry, so bundles can register the services, which they provide. The
application can dynamically request these services from the registry. Basically, this is an
implementation of the Publish-Find-Bind interaction pattern in Figure 2.2. Internally, the
OSGi services are Java interfaces. At first glance, this is nothing new to the Java world. This
approach with Java interfaces is very familiar to the developers and it fits into the language
structure. The real benefit of the service registry comes from the combination with the Life
Cycle Layer and Module Layer. Service providers are managed dynamically as bundles. They
can be added and removed while the application is running. This provides more flexibility and
modularity for Java-based applications.

19

2 State of the Art

Figure 2.2: Publish-Find-Bind interaction pattern

The Security Layer is based on Java 2 security and extends it with additional functionality
for bundles. It provides two main functionalities. The first one defines how bundles can be
securely packaged and digitally signed. The second functionality defines the security options
during the runtime, i.e., the permissions of a specific bundle. The Security Layer in OSGi is
optional and will only run on Java platforms, which provide the necessary Security APIs.

OSGi solves many of Java’s limitations in modularity. It provides a precise module def-
inition with explicit information hiding, dependency control, life cycle management, and
much more. The main downside of OSGi is that it is not a part of the Java standard and it
requires an additional custom framework on top of Java. Additionally the configuration and
management effort will usually increase firstly with an OSGi framework before you can profit
from a better modularity.

Project Jigsaw

Besides OSGi, efforts have been made as well in order to introduce modules as a part of a
Java standard. Java Community Process (JCP) defines a formalized process for extending of
Java and its standard libraries. Single propositions are managed in so called Java Specification
Request (JSR)s. Before a proposition is finally accepted and applied to Java, a team of experts
is formed around a JSR. This team is responsible for the specification and the creation of
drafts.
In 2005 JSR 277 [Buckley et al., 2006] was announced. Its purpose was to bring a module
framework with a defined packaging format and a central module repository into Java. In
2006 JSR 294 [Buckley et al., 2007] was announced with the objective to extend Java with

20

2.1 Software Module

a superpackage notion, which could group normal packages into modules with specified
information hiding. This approach was then changed in favor of JSR 277. So JSR 294 attempts
now to define a module-level access modifier, which is compatible with JSR 277. Unfortunately
JSR 277 is on hold since 2008 and JSR 294 made only little progress since then.

Meanwhile, Sun Microsystems introduced Project Jigsaw [OpenJDK, 2013] for a standard
module system in Java. Originally Project Jigsaw was planned to be officially included in Java
7. However, this didn’t happen and lastly it was announced for Java 9 in 2015 [Reinhold, 2012].
Project Jigsaw targets on extending Java with modules so that they are part of the language
construct. In terms of Project Jigsaw a module is defined as followed:

A module is a collection of Java types (i.e., classes and interfaces) with a name,
an optional version number, and a formal description of its relationships to other
modules. In addition to Java types a module can include resource files, configuration
files, native libraries, and native commands. A module can be cryptographically
signed so that its authenticity can be validated.

[Reinhold, 2011]

Project Jigsaw will add the keyword module to Java and allow by convention to store the
definition of modules in a module-info.java file for a compilation unit. The only required
information is the module name, which is a qualified Java identifier (comparable to Java
packages). Dependencies are managed with the keywords exports and requires within the
module definition. So a module can explicitly define with the exports keyword which parts are
externally exposed in order to ensure information hiding. The requires keyword defines on
which functionalities a module depends. Executable modules may define an entry point with a
class keyword and an explicit path to a class with a public static void main method. In
addition, Project Jigsaw allows defining service providers and service consumers. A service
within Project Jigsaw is a Java interface or abstract class. A module can define which service
implementation it provides by provides service, following service name, and then the with
keyword followed by the path of the service implementation. The requires service keywords
followed by the service name designate a module as a service consumer. Listing 2.2 shows an
example module definition with the concepts previously discussed.

Project Jigsaw will solve many modularity issues in Java comparably to OSGi. In fact, there are
many parallels to OSGi. The module definition of Project Jigsaw is comparably powerful as the
Module Layer of OSGi and provides quite similar features, e.g., module versions, dependencies,
entry points, etc. In Project Jigsaw modules can be cryptographically signed like in the
Security Layer of OSGi. Even the services from Project Jigsaw can be found in OSGi on the
Service Layer with the same terminology.
Still, there are many differences in detail and some major differences between Project Jigsaw
and OSGi. On the one hand, the major benefit of Project Jigsaw is that it extends the Java
language construct itself. So there is no need for a custom framework on top of Java. On the
other hand, there are some drawbacks about Project Jigsaw. It is still a draft, so it is will be
released at the earliest with Java 9. The Life Cycle Layer of OSGi is more powerful because it

21

2 State of the Art

Listing 2.2 Example Project Jigsaw module definition in a module-info.java file.
/**
* UniMoDoc HTML Exporter
* A bundle for HTML export of documentation
* (c) 2013, University of Stuttgart
*/

module de.unimodoc.export.html @ 1.0.0 {
requires de.unimodoc.core @ >= 1.3.0;
exports de.unimodoc.export.html;
class de.unimodoc.export.html.Activator
provides service de.unimodoc.export.Exporter with de.unimodoc.export.html.HTMLExporter;
requires service de.unimodoc.export.ExportSettings;

}

allows adding and removing modules during the runtime of applications, what is explicitly not
planned by Project Jigsaw. Another fundamental difference between these two approaches is
that Project Jigsaw aims also to modularize the Java Runtime Environment (JRE) itself.
When Project Jigsaw will be released, many applications will still use OSGi. Also, due to
the different features it might be beneficial in some cases to use both approaches from OSGi
and Project Jigsaw. This will require interoperability or at least tolerance between these
approaches. Project Penrose [Ellison, 2013] aims to solve these issues.

2.1.2 Software Modules Conclusion

The previous sections show that in practice even for a specific language there can be different
interpretations of a module. This is especially the case if the language itself provides no distinct
construct for module support like Java. At the same time efforts like OSGi and Project Jigsaw
demonstrate that there is a need for modularization beyond the default capabilities of Object
Oriented Programming (OOP) in Java. These different approaches illustrate also that there
are various degrees of modularization. They provide dissimilar capabilities and features of
modularization and therefore can be useful in various use cases depending on requirements.

This confusion in terms of modules appears not only in Java. In C# OOP constructs
like class or namespace (comparable to package in Java) and assemblies from the Common
Language Infrastructure (CLI) can also be assumed as modules. The CLI assemblies are
compiled code libraries with a manifest, versioning and security settings. They are deployable
units comparable to OSGi bundles in Java.
There are also programming languages which support no modularization with a specific lan-
guage construct at all, e.g., JavaScript. Instead, in order to achieve modularity in JavaScript
often variations of a Module Pattern [Stefanov, 2010] are used to encapsulate functions and
data with an interface in a closure. Table 2.1 shows a set of languages paired with an incomplete
list of possible module interpretations.

22

2.1 Software Module

Programming Language Possible Module Interpretations
C# class, namespace, assembly
Java class, package, OSGi bundle, Jigsaw module

JavaScript Module Pattern
PHP class, namespace

Table 2.1: Module interpretations in different programming languages

In conclusion, there are different approaches and degrees of modularity in practice. Therefore,
it is hard to find a general and precise definition of a module to cover and identify all the
possible variations. These variations are on their own rights and useful in different use cases
depending on particular requirements. Due to these findings this thesis will stick to a very
general IEEE definition of a module:

module A logically separable part of a program.

[IEEE-610.12, 1990]

As a result, a tool for documenting software modules should be able to handle different kinds
of modules. Even a tool for documenting modules of only one programming language like
Java will inevitably come across various kinds of modules. It is also usually not possible to
define a finite set of those module types. This is especially the case because software projects
in practice are not limited to a single programming language, but are multilingual, i.e., they
contain a mixture of programming languages. For example, a single web-based software project
can contain a mixture of Java for application back end, Structured Query Language (SQL) for
database operations, JavaScript for front end, and ActionScript for complex visual effects in
the front end. This leads this thesis to a requirement for a module documentation tool, being
generic enough to handle various types of modules in different programming languages.

23

2 State of the Art

2.2 Software Architecture Documentation

Software architecture describes the high-level structure of software, its components, interfaces,
relations, etc. This information is required by different stakeholders, e.g., customers in order to
ensure the requested requirements and quality is delivered, implementers in order to understand
and build the system, testers in order to create and run tests, etc. There is no unified definition
for software architecture similar to modules. In fact, the Software Engineering Institute (SEI)
has a collection of over 150 definitions for the term software architecture on its website
[SEI, 2013]. This thesis will stick to the IEEE definition:

Software architecture - The fundamental organization of a system embodied in
its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution.

[IEEE-1471, 2000]

Comparable to the definition of software architecture there is no unified way for documenting
software architectures and no standard structure for it. Still, there are some generally accepted
approaches for documenting software architectures. One of these approaches is the view concept.
Usually it is not possible to describe the complete software architecture in one dimension only.
Therefore, different views are used in order to describe the software architecture from different
perspectives. IEEE defines the view as follows:

View - A representation of a whole system from the perspective of a related set of
concerns.

[IEEE-1471, 2000]

For a specific software architecture there are various possible views and it is in the responsibility
of the software architect to choose the relevant ones. In the past, some view categories have
proved to be successful for many software architectures. Sometimes these view categories
have different naming in the literature, but the meaning is almost the same. This thesis uses
the naming from [Garlan et al., 2010]. In [Garlan et al., 2010] the three view categories are
called Module Views, Component-and-Connector Views, and Allocation Views. These view
categories are described in the following way.

Module views divide the whole system into single modules in terms of Chapter 2.1 and define
their relationships to each other. Such relations between the modules are Is part of, Depends
on, and Is a. There are various possible notations to describe the Module views. Informal
graphical and textual notations face a variety of formal notations, e.g., UML, Dependency
Structure Matrix (DSM), ER diagram, etc.
The Module views answer several purposes. They provide a plan for building the source code
and the modules can usually be mapped to a set of source code artifacts. The single modules
always implement a functionality which is part of the system requirements. As a consequence,
all modules of a Module view implement all the functional requirements. Therefore, one can
analyze whether the architecture meets the requirements. In addition, the Module views are

24

2.3 Templates and Tools for Software Architectures

some kind of communication vehicle. Depending on their granularity, they can serve as a
starting point for understanding and learning the complete system.

Component-and-Connector (CaC) views represent the system during the runtime. In
[Garlan et al., 2010] the single elements of such views are called components, e.g., objects,
processes, etc. The relations between them are called connectors, which represent communica-
tion, protocols, interaction, data flow, etc. Sometimes components can be mapped to modules
but not necessarily. Comparably to the Module views, CaC views can be represented as well
with various informal graphical and textual notations, as with formal notions, e.g., UML,
Architecture Description Language (ADL)s, etc.
CaC views show which parts of the system exist during the runtime and how they interact
together. This information is essential to address issues of parallelism, timing, communication,
performance, availability, reliability, and others. CaC views are meant for modelling and
solving of those issues in order to meet the functional and non-functional requirements.

Allocation views show how modules from the Module views or components from the
CaC views can be mapped on single parts of a particular environment. Possible environment
can be the hardware on which the software will run or the organization structure of the people,
who will implement the software. Depending on the actual view, the relations between modules
or components and environmental parts have the semantics of Allocated-to. Besides the
informal notions, Allocation views can be represented with UML. In case of a work assignment
view, a tabular notation is conceivable.
The Allocations views are useful for estimating and analyzing whether the requirements of
software can be met in the corresponding environment. That way issues from the analysis (e.g.,
performance bottlenecks) can be discovered and resolved. In case of mapping the software
on hardware for deploying or installing, Allocation views can be used for creating build and
deployment plans.

This thesis focuses on the software architecture documentation especially form the Mod-
ule views perspective. It assumes that the modules are primarily defined and documented by
the architect in the software architecture documentation. The modules from the Module views
contain a mapping to the actual source code artifacts. This way the overview information
of a module can be found in the software architecture documentation and the fine-grained
implementation details of the source code artifacts are linked from the overview. The result is
a complete documentation of modules. Since the module documentation is part of the software
architecture documentation, their stakeholders are the same. The complete list of software
architecture documentation stakeholders is listed in Table A.1.

2.3 Templates and Tools for Software Architectures

The lack of standard structure for software architectures is an issue. Each time new software
architecture is created a suitable and commonly accepted structure needs to be found. This
cause additional time expenditure. Finding and understanding relevant information for readers

25

2 State of the Art

is more time consuming. Learning and especially copying from approved software architectures
is more complicated.
Therefore various templates for software architectures exist, which try to solve these issues
[arc42, 2013], [Garlan et al., 2010], [IEEE-1471, 2000], [Knöpfel et al., 2005], [FMC, 2013],
[FEA, 2013], [MODAF, 2013], [TOGAF, 2013], [RM/ODP, 2013]. They prevent from rein-
venting the wheel and usually provide a tried and tested basis. Software architecture
templates are typically simple documents created with a word processor. As an example,
[Starke and Hruschka, 2011] proposes a template which is delivered as a Microsoft Word file.
However, word processors are not sufficient for creating software architecture documentation
and templates for those because they do not provide support for structured input and relations
between the single parts of the document. Such templates contain headings for the single
document parts and provide free text support only. Forms are better applicable for this kind
of documents and templates because they benefit the structure, simplify the input procedure,
and are less time consuming during the input. Clear relations between the document parts are
essential, e.g., to track down which requirements are implemented and by which software parts,
to identify the dependencies between modules, or to find out where are the corresponding
source code artifacts for a particular module. Unlike free text, forms are well suitable for input
of such relations. Moreover, the software architecture documentation should be in the revision
control like the source code artifacts and other software documents. Files generated by word
processors, e.g., Microsoft Word or Apache OpenOffice are binary. Thus they are not suitable
for revision control tools like SVN or Git. The differences in versions cannot be compared
automatically and therefore not efficiently merged.

Beside the word processors there is only little tool support for documenting software ar-
chitectures. Tools for UML and other formal notations are not sufficient for documenting
complete software architectures because they support only the illustration of a solution but
not the reason. A software architecture documentation needs to list the requirements (or at
least to reference them), present the solution, and to argue the reasons, why this is a suitable
solution. For a single issue numerous solutions might exist. Each of which is a trade-off against
the requirements. Therefore the architect needs to depict an argumentation for a solution.
Software architectures are usually structured as normal text documents. Formal notation tools
are used in addition for diagram creating. Single software architecture documentation can
contain diagrams in different formal notations, e.g., UML for Java classes and ER diagrams
for database tables.

Another category are Web-based documentation tools. Hyper-linking between single pages
eases the navigation in the documentation and solves the issue of missing relations between
document parts of word processor files. [Garlan et al., 2010] suggests especially wikis for
Web-based software architecture documentation. Wikis allow parallel editing and a central
repository of documentation for different users. Various stakeholders can work on different
parts of the documentation in parallel and create it together. The drawbacks of wikis are that
they need to be accessible from the Web or Intranet and they provide no structured form-based
input like word processor files. Moreover, [Starke and Hruschka, 2011] notes that wikis tend
to grow into information graves. If various stakeholders can contribute in an uncontrolled
amount to the documentation, it can easily lose its clarity and relevance.

26

2.4 J-PaD

2.4 J-PaD

This thesis is partially based on results and findings of [Kircher, 2012]. In his diploma Kircher
points out the relevance of module specification and documentation in software development and
created J-PaD [J-PaD, 2013], an Eclipse based tool for module documentation. The following
section describes the above mentioned research in more detail and shows the relevant differences.

Figure 2.3: Bathtub Curve from [Kircher, 2012]

Kircher refers to his interpretation of the Bathtub Curve in Figure 2.3. It shows the different
abstraction layers during the software development. According to him, the left-side of the chart
describes the top-down approach (usually used during the development) and the right-side
describes the bottom-up approach (usually used during the testing). Activities of the same
abstraction layer are horizontally interconnected. Further, he argues that the objectives from
the overall software specification and design are used for system testing and integration testing.
Still, there is need for module specification and documentation in order to test on a lower level,
e.g., single modules, unit testing, etc. Kircher concludes this type of documentation as part of
the source code. His examination of the available tools for source code documentation shows
their lack of module support. As a consequence of the missing tool support, Kircher develops
within the scope of his research J-PaD. In the scope of his research and this tool he assumes
Java packages as modules but provides no further explanation for this decision. J-PaD is
integrated in the Eclipse Integrated Development Environment (IDE) and provides a simple
way to create module documentation with predefined data fields. The input is stored in the
package-info.java file. This is a standard description file for packages in Java. Data which
is not part of Javadoc is stored in an additional comment field below the header comment.
The structure of the module documentation is configurable by a schema file.

This thesis only partially agrees on Kircher’s interpretation of the Bathtub Curve and his
conclusion. The original statement of the chart in Figure 2.4 notes: The sooner a fault is made

27

2 State of the Art

Figure 2.4: Bathtub Curve from [Ludewig and Lichter, 2007]

during the software development, the later it will be usually discovered, typically on the same
abstraction layer. The fact that a fault made in source code typically can be discovered with
unit testing, does not imply that unit tests themselves are only derived from the information
out of the source code. This also does not mean that the module documentation is necessarily
located on the code level. And it does not imply that the module documentation is only
relevant for module testing. On the contrary, information from the module documentation like
dependencies or interfaces of modules is required first of all for integration testing.
This thesis assumes software architects as the initial authors of module documentation and in
this point it is even consistent with the research of Kircher. Different from his conclusion, this
thesis considers module documentation as part of the software architecture.
Another important difference to Kircher’s research is the definition of a module. As already
discussed in Chapter 2.1, this thesis does not limit modules to Java packages.

This thesis will address the relevance of module specification and documentation in soft-
ware development pointed out by [Kircher, 2012]. It will also apply some of the identified
metadata from [Kircher, 2012] for describing modules in a new tool and extend these meta-
data. In contrast to [Kircher, 2012] this thesis provides a more general definition of modules
described in Chapter 2.1 and support various programming languages, not Java only. Unlike
[Kircher, 2012] this thesis will also move the focus from software developers and documenta-
tion on the code level to software architects and software architecture level as described in
Chapter 2.2. This way the module definition and description is placed within a central and
accepted document, fits in its structures, links the source code artifacts, and builds a complete
documentation of modules. Compared to [Kircher, 2012], the documentation on the software
architecture level extends the interested audience in module documentation to the stakeholders
of software architecture documentation in Table A.1.

28

3 Requirements and Design

This chapter defines the requirements for a module documentation tool called Universal Module
Documenter (UniMoDoc) that is based on the results of Chapter 2. Further this chapter
describes a general design for such a tool, which will take into account and solve the previously
defined requirements.

3.1 Requirements

This chapter contains the requirements for a software architecture documentation tool. The
requirements are split into functional and non-functional requirements. They are based on the
initial problem statement of this thesis and the research results of Chapter 2.

3.1.1 Functional Requirements

This part describes the required functions of the software.

Tool for creating module documentation
The resulting tool supports documentation for modules. This is an initial requirement
for this thesis.

Tool for creating and editing software architecture documentation
According to the argumentation in Chapter 2.2, the documentation of modules is part of
the software architecture. Furthermore, the research shows a lack in tool support for
software architectures. Module documentation in terms of Module views is related to
other views. Therefore, it is reasonable to create a general tool for software architecture
documentation in order to document the modules.
Still, the focus of this thesis lies on the module documentation. Due to the limited time
frame for a diploma thesis of six months, this focus results in a rudimentary support for
other software architecture parts.

Form-based Graphical User Interface (GUI)
The GUI of the tool is form-based in order to ease and structure the input of the user.

Definition of module metadata
In order to document modules, common metadata for the description of modules is
required. These metadata are defined and supported by the resulting tool.

29

3 Requirements and Design

Template support
The resulting tool supports templates. New templates can be created, saved and loaded
within a tool. The templates provide a structure and example data for a complete
software architecture document or single parts of it.

Module documentation template
The defined metadata for module documentation are provided as a template in the
resulting tool.

Support of different programming languages
Unlike [J-PaD, 2013], the resulting tool is not limited to a specific programming language
or module construct.

Documentation structure support
The documentation created by the resulting tool has a structure. The structure of
documentation is required to divide it in logically related parts and to prescribe a specific
structure in a template.

Relations between document parts
It is possible to crosslink the different parts of the document. This is required for a better
navigation within the document and for the support of relations required by software
architecture documentation as described in Chapter 2.2.

Documentation exportability
The design of the resulting tool supports interfaces for export functionalities. Thus
export format for the documentation can be easily added.

Function for including graphics
It is possible to embed graphics like UML diagrams in the documentation.

References to external data
The resulting tool supports references to external data like source code files, test cases,
images, etc.

Multilingual support
The resulting tool is designed and implemented in a way that allows to extend it for
other languages, e.g., by externalizing the strings in property files.

Line-based format
All created data and templates of the tool are saved in a textual line-based format in
order to ensure best possible compatibility with revision control tools like SVN.

Java tool
The resulting tool is implemented in Java and Swing and is a standalone application.

30

3.1 Requirements

3.1.2 Non-functional Requirements

This part denotes the quality requirements of the software.

Extensible GUI
The GUI is as well and easy extensible as possible.

Extensibility for other software architecture documentation parts
The focus of this thesis lies on the module documentation and other software architecture
parts are only rudimentary supported. Therefore, it is important that the resulting tool
can be easily extended in order to better support the other parts of software architecture.
This is achieved by foresighted design, defined extension points and good documentation.

Good maintainability
The tool is as well maintainable as possible by providing a good documentation and
simple extensibility.

Good usability
The resulting tool provides good usability by intuitive user guidance and clear messages.

3.1.3 Stakeholders

The stakeholders of UniMoDoc consist of two groups, which correspond to following use
cases.

Documenting and using software architectures

In the first place the stakeholders of UniMoDoc are equal to the stakeholders of the software
architecture documentation. Thus software architects may use UniMoDoc for documenting
software architectures. Furthermore, they can create and share templates. Implementers can
use UniMoDoc in order to understand and learn the entire software system or its parts from
the documentation. Architects may communicate with implementers via the documentation
by noting implementation advices and constraints. In addition, UniMoDoc supports explicitly
testers with extensive test documentation for modules covered in [Casciato, 2013]. The
complete overview of software architecture documentation stakeholders is denoted in Table A.1.
The use of UniMoDoc for documenting software architectures does not require specialized
knowledge.

Extending UniMoDoc

Every person who may extend UniMoDoc is regarded as a stakeholder. Therefore, UniMoDoc
provides numerous extension points. Extending the tool requires knowledge in Java software
development.

31

3 Requirements and Design

3.2 Design

This chapter takes into account the current state of the art from Chapter 2 and describes the
concepts for solving the requirements from Chapter 3.1. Some of the requirements prescribe a
technological frame. Still, the design is kept intentionally abstract. Therefore, it can be easily
ported to other technologies or context.
Firstly, this chapter describes the general concepts of this thesis in 3.2.1 Concepts. It provides
a high level overview of the concepts mainly from the perspective of the potential user, keeping
the most technical details in background. Secondly, this chapter suggests a data model on
a technical level in 3.2.2 Data Model, which was taken as a basis for the implementation.
Finally, this chapter defines the relevant metadata for modules in 3.2.3 Module Metadata. This
collection of metadata can be aggregated to a module documentation template. An example
module documentation template using these metadata are suggested in the implementation
part in Chapter 4.

3.2.1 Concepts

Chapter 3.1 describes the requirements and defines that the resulting tool should support
creating and editing software architecture and module documentation in particular. Chapter 2.3
shows the lack of specialized tool support for software architecture. Instead of specialized
tools, word processors are often used to create software architecture. However, word processors
provide only poor functionality to crosslink the single parts of the document among each other
and with external resources, e.g., source code, test data, and other documents. They are not
well suitable for common revision control tools due to the binary formats. Furthermore, they
do not support complex and structured data input but free text only. The basic idea behind
the concept of this thesis is to build on the established and well-known approaches of the word
processors and to overcome their disadvantages at the same time. In this manner, users can
apply their accustomed procedures to the new tool and get started faster.

Document

The document is a metaphor for the complete file containing the software architecture docu-
mentation. The name of the document results implicitly from the file name. The document is
the top level element in the structure and bundles all other sub elements, which are discussed
in the next paragraphs.

Chapters

One basic element of the document structure is the chapter. The chapter is also adopted as a
metaphor of a document part from the word processors. It bundles related information below
a caption. Chapters are hierarchical. They always have exactly one parent, which is either the
document or another chapter. Furthermore, chapters can have zero or more children chapters.

32

3.2 Design

UniMoDoc

File Edit View Help

Document
1 Requirements

1.1 Functional Requirements
1.2 Non-functional Requirements

2 Modules
2.1 Controller
2.2 Events
2.3 Model

2.1 Controller

1

2

3

5

4

Figure 3.1: Document and Chapters in UniMoDoc
Item 1 : Document Structure, Item 2 : Root Element, Item 3 : Selected Chapter,
Item 4 : Content Area, Item 5 : Name of the Selected Chapter

Since chapters are generic elements and they can be nested freely, this approach can realize
various structures.
In addition to it, chapters have a number identifying the position of the chapter in the document
structure. It is recursively compound of the order numbers of parent chapters. The described
information is represented in Figure 3.1.

Figure 3.1, Item 1 on the left-hand side shows the hierarchical structure of the document in a
tree pane. That way the user can oversee the complete structure of the document, navigate
through it, and keep track of the current location in the structure. Figure 3.1, Item 2 points
to the root of the structure, which is the document itself. Figure 3.1, Item 3 illustrates a
selected chapter in the document structure. In this case, the currently selected chapter is
2.1 Controller. Its content is displayed in the content area (cf. Figure 3.1, Item 4) on the
right-hand side. The content area is meant to display the contents of selected chapters and
make them editable to the user. In the top of the content area the caption of the selected
chapter is placed (cf. Figure 3.1, Item 5).

This concept allows the user to navigate, view, and edit the document simultaneously. Similar
navigation concepts are well-known from file managers (e.g., Microsoft Windows File Explorer
[Microsoft, 2013a], Apple OS X Finder [Apple, 2013], etc.), Portable Document Format (PDF)

33

3 Requirements and Design

readers (e.g., Adobe Reader [Adobe, 2013], Foxit Reader [Foxit Corporation, 2013], etc.), IDEs
(e.g., Eclipse [Eclipse Foundation, 2013a], Microsoft Visual Studio [Microsoft, 2013b], etc.),
and therefore are familiar to many users.

Sections

Chapters partition the document into logical parts and provide a coarse-grained structure.
Thus chapters are groups of related information and they are not atomic. Therefore, sections
provide a finer granularity level of structure. Sections partition the chapters into atomic
information chunks. Consequently, unlike the chapters, these chunks are not hierarchical. Still,
there are many similarities between chapters and sections. Sections are also logical parts of the
document but on a lower level. Comparably to the chapters, they have a caption and an order.
The order of the sections in the document is implicit because the number is not displayed
to the user but regarded internally. Both, chapters and sections have contents. While the
contents of the chapters are the sections, the contents of the sections are discussed in the next
paragraph.

Widgets

The content of a single section has a specific data type. It can be a simple text, markup
language, programming language, date, image, reference to another file, and many others.
Therefore, a section needs to render the content and make it editable to the user somehow. At
this point the widgets come into play. Widgets are visual components, which do exactly this
job. They are bound to sections, render their data types, and make the data types editable to
the user. Since the content of a section cannot be displayed to a user without an applicable
widget, each section needs exactly one widget. Therefore, a single widget needs to support at
least one data type.

Figure 3.2 shows how chapters, sections, and widgets are combined together. Purpose and
Responsibility, Version, Dependencies, and Persons in Charge are names of the sections (cf.
Figure 3.2, Item 1). The sectionPurpose and Responsibility uses a TextArea widget to display
the content (cf. Figure 3.2, Item 2). TextArea widgets are meant to display long textual
contents. The Version section uses instead a TextField widget (cf. Figure 3.2, Item 3).
TextField widgets are similar to TextArea widgets, but display the text in one line. In the case
of the Dependecies section, the used widget is RelationList (cf. Figure 3.2, Item 4). It is able
to display links to other document parts and more. RelationLists will be explained later in
detail.

Technical Details of Widgets

This part of the thesis will describe the technical details of the widgets using the example of
TextArea and TextField. The internal data type consumed by these widgets is the same. It is
the text data type. The only difference between these widgets is how they display it. In cases

34

3.2 Design

UniMoDoc

File Edit View Help

Document
1 Requirements

1.1 Functional Requirements
1.2 Non-functional Requirements

2 Modules
2.1 Controller
2.2 Events
2.3 Model

2.1 Controller

Purpose and Responsibility

Version

Persons in Charge

The Controller module is responsible for all manipulations on
the models. This module contains two main controllers: App-
Manager and DocManager. AppManager is responsible for
controlling the application flow, functions, e.g., opening files,
saving files, exporting, etc. The DocManager operates on Do-
cument level. All changes of the Document, e.g., adding Chap-

1.0

Dimitrij Pankratz
Davide Casciato

Dependencies

Source Relation Type Target

2.1 Controller depends on 2.3 Model

1

2

4

3

Figure 3.2: Sections and Widgets in UniMoDoc
Item 1 : Names of the Sections, Item 2 : TextArea Widget, Item 3 : TextField
Widget, Item 4 : RelationList Widget

where more than one widget is applicable to a specific data type, it is possible to change the
widget of a section dynamically during the runtime without affecting the content.
The widgets and data types are meant to be easily extensible. In order to achieve this
extensibility common interfaces will be provided. Due to this extensibility, it is necessary to
consider that a file may use unknown widgets and data types. There are various possibilities
how to handle this issue. This thesis suggests defining a default fall back widget, i.e., a TextArea
widget. Due to the requirement that all generated files of the application are text-based, it is
consequently possible to represent the content of all data types as text. In case no applicable
widget is found for the data type, the content can be still represented as raw text in a TextArea
widget.
In consequence of the requirement for various export formats widgets will need to render the
content of a section not only in the GUI of the application but also for all export formats. If a
widget does not support a specific export format, it can still return the content as text. This
behavior is guaranteed by the common interface for widgets.
In addition, it is convenient to provide a configuration for widgets, which is unique for each
widget instance. That way the user can configure each widget instance in a desired way, e.g.,
the maximum length of the text in a TextField widget or validation rules for the input. These
configurations need to be considered in the common interface of the widgets.

35

3 Requirements and Design

UniMoDoc

File Edit View Help

Document
1 Requirements

1.1 Functional Requirements
1.2 Non-functional Requirements

2 Modules
2.1 Controller
2.2 Events
2.3 Model

2.1 Controller

Purpose and Responsibility

Version

Dependencies

Persons in Charge

The Controller module is responsible for all manipulations on
the models. This module contains two main controllers: App-
Manager and DocManager. AppManager is responsible for
controlling the application flow, functions, e.g., opening files,
saving files, exporting, etc. The DocManager operates on Do-
cument level. All changes of the Document, e.g., adding Chap-

1.0

Dimitrij Pankratz
Davide Casciato

Source Relation Type Target

2.1 Controller depends on 2.3 Model

Relations Relation Types

Name Description Style

depends on The depends...

2

3

1

4

2.1 Controller 2.3 Model

depends on

Figure 3.3: Relation and Relation Types in UniMoDoc
Item 1 : Central Relation Management Area, Item 2 : Visualization of Relations,
Item 3 : Relation Tables, Item 4 : Relations in the RelationList Widget

Relations and Relation Types

In the software architecture documentation relations can reveal, which modules realize a
requirement, they define how the different views are connected, show the dependencies between
modules, etc. In word processors these relations are often only implicit. There are textual
references but the user cannot navigate along these relations.
Even if the user can navigate along these relations, the navigation is often only unidirectional,
e.g., a module A depends on module B, this information is denoted in the description of module
A but not in the description of module B. In this case, it is cumbersome to find out, which
modules depend on module B from the perspective of module B.
In addition, the relations have always a specific semantics. In the example of module A, which
depends on module B, the dependency can carry an additional semantic. It can be required,
optional, or module A might realize the abstract module B, etc. If the relation is not explicit
and formal, the semantic might be ambiguous and not obvious.
Word processors provide no central management or overview about these relations. The
relations are spread across the document. It is not possible to find or filter the relations by
their semantics.

36

3.2 Design

These issues can be solved with an explicit relation definition, relation types encapsulating
the semantics, and a central management for the relations. Figure 3.3 puts it all together.
It demonstrates how relations can be managed using the example of a depends on relation
between the modules 2.1 Controller and 2.3 Model. The content area makes room for the
central relation management (cf. Figure 3.3, Item 1). This central relation management is
separated vertically into the Relation Visualization (cf. Figure 3.3, Item 2) and Relation
Tables (cf. Figure 3.3, Item 3). The Relation Visualization shows all inbound and outbound
relations of the currently selected chapter to the user. The currently selected chapter in the
visualization is highlighted with a dashed border around it. In Figure 3.3 it is 2.1 Controller.
The visualization shows here the outbound relation to module 2.3 Model with the relation
type depends on. If the user selects 2.3 Model as current chapter, the visualization will show
the same relation as inbound for the selected chapter 2.3 Model.
The Relation Tables are displayed in tabs. There are two tabs in Figure 3.3, Item 3 : Relations
and Relation Types. The Relations tab contains a tabular listing of all relations in the document.
In addition, this and other tables can be filtered to show only the relations of the currently
selected chapter or they can be filtered various other ways. The Relation Types tab contains a
table of all relation types in the document. Thus it lists the semantics of relations and how
they are displayed in Relation Visualization. Relations, relation types, and the visualization of
them are discussed in [Casciato, 2013] in detail.

Linking Relations

A central relation management is useful in order to overview and manage the relations of the
complete document or parts of it. Still, in some cases it is convenient to view and manage
relations directly from the content area of a chapter. If the document is exported in other
formats like PDF or Hypertext Markup Language (HTML), e.g., all relations can be printed at
the end of the document or all relations of a chapter at the end of the corresponding chapter.
The user might want to place the relations or a selected group of relations in a specific section.
In that case a RelationList widget can be used to do this. The RelationList widget links
existing relations and lists them in a tabular view. Figure 3.3, Item 4 illustrates how the
RelationList widget is displayed. This approach allows defining views on existing relations
comparable to the views concept in databases. In addition, it provides a quick access to
context-sensitive relations directly from the widget. This means that the user can add, edit,
delete, link, and unlink relations from the RelationList widget.

External References

In order to satisfy the requirement for external references, it is not sufficient to reference
only across the document parts. Modules may depend on external libraries. UML diagrams,
source code artifacts, test cases, protocols, and other external resources need to be referenced
somehow from the document. It is essential to provide relations between document parts and
external references. Yet discussed relation endpoints are chapters and sections. They need
to be extended by external references. In order to achieve this, it is necessary to represent

37

3 Requirements and Design

UniMoDoc

File Edit View Help

Document
1 Requirements

1.1 Functional Requirements
1.2 Non-functional Requirements

2 Modules
2.1 Controller
2.2 Events
2.3 Model

2.1 Controller

Purpose and Responsibility

Version

Dependencies

Persons in Charge

The Controller module is responsible for all manipulations on
the models. This module contains two main controllers: App-
Manager and DocManager. AppManager is responsible for
controlling the application flow, functions, e.g., opening files,
saving files, exporting, etc. The DocManager operates on Do-
cument level. All changes of the Document, e.g., adding Chap-

1.0

Dimitrij Pankratz
Davide Casciato

Source Relation Type Target

2.1 Controller depends on 2.3 Model

2.1 Controller depends on Apache log4j

Relations Relation Types

Name Type Path

Apache log4j LOCAL file:///C:/Users...

1

References

4

2

3

2.1 Controller

2.3 Model
depends on

depends on

Apache log4j

Figure 3.4: External References in UniMoDoc
Item 1 : External Reference Entry in a RelationList Widget, Item 2 : Tab for
External References, Item 3 : External Reference Entry in the Central Reference
Management, Item 4 : External Reference in the Relation Visualization

and manage the external references within a document. Figure 3.4 illustrates how this can be
done.

In Figure 3.4, Item 1 a new dependency from the 2.1 Controller module is added to an
external logging library Apache log4j. In order to manage the external references, a new tab
References is added to the Relation Tables (cf. Figure 3.4, Item 2). Figure 3.4, Item 3 shows
the external library listed in the tabular view of the external references. The table contains a
Type column, which displays what type an external reference has. There are three possible
types: TEXT, Uniform Resource Locator (URL), and LOCAL. References of type TEXT
are useful if no explicit location of the reference is available, e.g., an external module that
is not build yet. References of URL type point at an absolute path in URL form. Finally,
the references of LOCAL type are meant to point at files, which are located at the same
machine as the document file. LOCAL references are handled in a special manner. They
can be absolute or relative. Relative references are essential because the document should be
under revision control with other files (external references). Thus absolute references cannot
be used, since revision control is usually used by different people and machines. Still, relative
references are sometimes very impractical. If the user moves the document to another location,
all relative references become invalid. Therefore, the location of external references is stored

38

3.2 Design

relative internally and in addition the last known absolute path of the document. This allows
moving the document to another location on the same machine and the relative references can
be found from the previous absolute location of the document.
Still, an issue can occur if the LOCAL references themselves are moved to another location.
In this case, the application will check the validity of LOCAL references while opening a
document. If a LOCAL reference cannot be found the user will be notified and asked to point
at the new location of the reference.
Relations to external references are also displayed in the Relation Visualization (cf. Figure 3.4,
Item 4). External references are displayed differently from the internal parts of the document.
The user is able to open the external references with the default application for the specific
format on the current machine. External references are discussed in [Casciato, 2013] in detail.

Editing the Document and its Structure

There are different general approaches how UniMoDoc can be utilized. One use case is read-
only. Thus the user is interested in the information within the documentation but does not
edit it. Another use case is to edit the information without changing the structure of the
document. The user fills in the forms, i.e., the information in the widgets. However, no
additional chapters or sections are added. This is the case if someone defines the structure of
the document in advance. At first glance this approach may appear uncommon but in fact it
is convenient. The structure of a document is crucial for its comprehensibility and acceptance.
People need time to define and agree on it. Once the structure is accepted, users need only to
fill in the information in the given structure. Common structure for coherent document parts,
e.g., requirements, modules, or tests improves the comprehensibility and completeness of the
information.
Therefore, UniMoDoc differentiates between defining the structure of the document and editing
the information. This difference is achieved by two edit modes for the user. The first and
default mode is where the user can consume and fill in information. Thus users can edit data
in the widgets and manage the relations. Adding, removing, or rearranging the sections is not
allowed in this mode. The visual appearance of UniMoDoc corresponds to Figure 3.4.
In the second mode the user is able to add, remove and rearrange the sections. Editing the
contents of widgets is deactivated in this mode. Instead of the central relation management the
application displays the Widget Library on the right-hand side (cf. Figure 3.5, Item 1). The
Widget Library contains all known widgets in the application. The user can create new sections
with drag and drop from the Widget Library to the content area. Above each section additional
controls are shown to the user in order to configure or remove the section (cf. Figure 3.5, Item
3).

Templates

The explicit separation between editing the content and the structure of the document is meant
to promote a common structure across coherent document parts and even across different
documents. Once a successful structure is found, it is wise to apply it to other documents.

39

3 Requirements and Design

UniMoDoc

File Edit View Help

Document
1 Requirements

1.1 Functional Requirements
1.2 Non-functional Requirements

2 Modules
2.1 Controller
2.2 Events
2.3 Model

2.1 Controller

Purpose and Responsibility

Version

Persons in Charge

The Controller module is responsible for all manipulations on
the models. This module contains two main controllers: App-
Manager and DocManager. AppManager is responsible for
controlling the application flow, functions, e.g., opening files,
saving files, exporting, etc. The DocManager operates on Do-
cument level. All changes of the Document, e.g., adding Chap-

1.0

Dimitrij Pankratz
Davide Casciato

Widget Library

TextField

TextArea

Image

HTML Editor

...

Dependencies

Source Relation Type Target

2.1 Controller depends on 2.3 Model

2.1 Controller depends on Apache log4j

RelationList

1

2

Figure 3.5: Editing Document Structure in UniMoDoc
Item 1 : Widget Library, Item 2 : Controls for Editing Sections

This prevents the reinvention of the wheel and benefits the comprehensibility across documents.
In addition, UniMoDoc supports templates. There are two fundamental template categories.
The first one is a document template. In that case a complete document is saved as a template
and can be used for creating new documents. The second one is a chapter template. Thus a
chapter is saved to a template and can be included into documents. During the creation of
a new chapter, the user can choose whether to create an empty chapter or a chapter from a
template. That way it is possible to create templates of complete documents or single parts of
it. Furthermore, UniMoDoc can save templates with contents. Thus the templates are not
necessarily empty but they are filled with example content in order to give the user a better
understanding of how to use them.

40

3.2 Design

3.2.2 Data Model

This part of the document outlines an abstract data model for the described concept. The
UML diagram in Figure 3.6 illustrates the general idea. Although the implementation of
UniMoDoc is realized in Java, this data model can be easily applied to other object oriented
programming languages. The data model is simplified and many details are faded out in order
to provide a better overview.

A central entity in Figure 3.6 is the Document. It contains Chapters, RelationTypes,
Relations, and References. The complete Document and all its sub parts have to be serial-
izable into a text form in order to be saved. The Template entity extends the Document and
adds additional information, e.g., a name and description.

In order to realize the Relations, their targets and sources need some kind of identifi-
cation. Therefore, the Identifiable interface provides a unique id within a document. All
entities, which need to participate in a relation or just to be uniquely identifiable, have to
implement this interface. The Identifiable interface is implemented by Chapters, Sections,
and References.
A Relation has exactly one source and one target of type Identifiable. In addition,
Relations have a RelationType. The RelationType entity provides a specific semantic for
Relations. It has a name and one can think of an additional description or style, which
defines how Relations of this type are displayed.

Some elements of the Document need an order in the structure like Chapters and Sections.
Therefore, they can implement the Sortable interface. It provides an explicit order within
the structure of the Document. This order is not absolute. It is relative, i.e., the order is only
valid within the parent of the corresponding element but not within a complete Document.

The Chapters are hierarchical. Thus a Chapter might have one parent Chapter. In case
a Chapter has no parent the method getParent will return a null pointer. Consequently,
in that case the parent is de facto the Document. In addition, a Chapter has zero or more
children Chapters. The method getChildren() returns the children Chapters or an empty
list. Furthermore, a Chapter contains a list of zero or more Sections.

The Sections have exactly one parent Chapter, which is accessible from the Section by
the method getParent(). The content of a Section is of type SectionData. Basically, it
is a wrapper for the raw data. The data itself is serialized to text and can be returned by
the getData() method of the SectionData entity. At this point the data is generic and
can be anything. The second information accessible from the SectionData by the method
getBeanId() returns an identifier for the type of the raw data. That way the Section knows
to which type the raw data can be deserialized from text. Still, the Section itself cannot
deserialize the raw data. Instead, it needs an IWidget in order to handle the data.

41

3
Requirem

ents
and

D
esign

«interface»
Identifiable

+ getId() : String

«interface»
Sortable

+ getOrder() : int

Chapter

+ getChildren() : List<Chapter>
+ getName() : String
+ getParent() : Chapter
+ getSections() : List<Section>
+ setChildren(List<Chapter>) : void
+ setName(String) : void
+ setParent(Chapter) : void
+ setSections(List<Section>) : void

«interface»
IWidget

+ getName() : String
+ getSectionData() : SectionData
+ getSupportedBeanIds() : List<String>
+ getWidgetConfig() : WidgetConfig
+ getWidgetId() : String
+ setSectionData(SectionData) : void
+ setWidgetConfig(WidgetConfig) : void

Section

+ getParent() : Chapter
+ getSectionData() : SectionData
+ getWidget() : IWidget
+ getWidgetId() : String
+ setParent(Chapter) : void
+ setSectionData(SectionData) : void
+ setWidget(IWidget) : void
+ setWidgetId(String) : void

Relation

Document

+ getChapters() : List<Chapter>

+ getRelations() : List<IRelation>
+ getRelationTypes() : List<RelationType>
+ setChapters(List<Chapter>) : void

+ setRelations(List<IRelation>) : void
+ setRelationTypes(List<RelationType>) : void

Template

+ getDescription() : String
+ getName() : String
+ setDescription(String) : void
+ setName(String) : void

RelationType

+ getName() : String
+ setName(String) : void

0..* 2

1 0..*

1 0..*

1

0..*

 0..1 0..* child of /
parent of

1

0..1

1

1

10..*

+ getSource() : Identifiable
+ getTarget() : Identifiable

+ getRelationType() : RelationType

Reference

+ getName : String
+ getLocation : Location
+ getType() : LocationType

0..*

1

+ setReferences(List<Reference>) : void

+ getReferences() : List<Reference>

+ setSource(Identifiable) : void
+ setTarget(Identifiable) : void

+ setRelationType(RelationType) : void

+ setName(String) : void
+ setLocation(Location) : void
+ setType(LocationType) : void

SectionData

+ getBeanId() : String
+ getData() : String

+ setData(String) : void
+ setBeanId(String) : void

10..1

1

0..1

Figure 3.6: Simplified Data Model in UniMoDoc

42

3.2 Design

An IWidget supports one or more different Beans, i.e., deserialized data types of Sections.
Furthermore, IWidgets know how to deserialize the raw data from text to actual Beans. The
method getSupportedBeanIds() from the IWidgets returns a list of Bean identifiers, which
are supported by the corresponding IWidget. This method can be used by a Section in
order to find an applicable IWidget. This situation can occur if the assigned IWidget of a
Section cannot be resolved, i.e., not found in the internal registry of the application. In
addition, the user can change the IWidget of a Section during the run-time. In that case
the getSupportedBeanIds() method is also used for showing the user a list of applicable
IWidgets.
By default, when a new Section is created an IWidget is assigned to it. The Section passes
then the SectionData to the assigned IWidget. The IWidget deserializes its data into a
Bean, displays it to the user and makes it editable. Before the Document is saved the IWidget
serializes the Bean as text, packs it back into SectionData, and returns the SectionData
back to the Section.

3.2.3 Module Metadata

In order to satisfy the requirement for a module documentation template, this chapter describes
possible metadata for it. For each metadata entry there is description why it is important,
what information to fill in, and which templates use these metadata already. The metadata
are sorted alphabetically. In order to use it in a concrete template, it is necessary to order and
group it in a favorable way. An example grouping is suggested in Chapter 4.

Change History
The module description should be up to date. Thus the changes from the past and the
evolution of the documentation are not obvious. The software architecture documentation
should be in a revision control. Still, relevant changes for a specific module might be
hard to track down from the revision control. In such cases a change history in the
module description is useful.
[Starke and Hruschka, 2011] proposes to include change history in module description if
it is not part of another document.

Dependencies
This information is a list of dependencies to other modules. These modules might not be
part of the system, i.e., external modules. Dependencies are usually required in order to
compile or execute the module. Still, there can be optional dependencies, which are not
essential for a module. As an example, OSGi supports both dependency types.
Dependencies are included in the module description of [J-PaD, 2013] and
[Starke and Hruschka, 2011].

Design
These metadata describe the design of a module. This is similar to the Module view
of software architecture documentation from Chapter 2.2. The possible notations are
textual, graphical, or a combination of both.

43

3 Requirements and Design

The design description is a fundamental part of software architecture documentation and
can be found in Resources, [Starke and Hruschka, 2011], and [Garlan et al., 2010].

Design Decisions
This part describes the reasons for the chosen design approach. Since there are myriads
of possible solutions for a single issue, it is necessary not only to provide the solution
but to argue why this is the solution.
The argumentation for a specific design decision is required in [Starke and Hruschka, 2011],
and [Garlan et al., 2010].

Interfaces
These metadata describe the interfaces of a module, their purpose and visibility. Single
interfaces might be referenced to the corresponding source code artifacts. They can be
divided into inbound and outbound interfaces.
The interfaces are an essential part of modules according to [Parnas, 1972] and
their description can be also found in [J-PaD, 2013], [Starke and Hruschka, 2011], and
[Garlan et al., 2010].

Implementation Constraints
This part describes information that should be taken into account during implementation.
Architects will usually intend a specific implementation strategy during the design of a
module, which may be not obvious from the design itself. Therefore, they can advise the
implementers to follow specific implementation constraints.
The implementation constraints are part of the module documentation in
[Garlan et al., 2010].

Name
This information denotes the name of the module. This property is probably most typical
to all module constructs, but the sense can slightly vary. Ideally the name is meaningful
and implies the functionality or role in the whole system. Moreover, the name can
indicate the position of a module in a hierarchy, e.g., Java packages java.awt.event,
where event is a sub package of awt. This thesis does not require unique names of
modules because different module constructs in practice may have different properties to
ensure uniqueness, e.g., name and symbolic-name in OSGi.

Management Information
In some cases, it might be useful to have information for the project management on the
module level. These metadata can contain the schedule plan, budget information, or a
risk estimate for the module.
[Garlan et al., 2010] proposes these metadata as part of the module description.

Other Artifacts
The source code artifacts contain the implementation artifacts. Still, there can be other
files, which are not part of implementation or test. These files can be images, sounds,
videos, documents, etc.
In [J-PaD, 2013] similar information is called Resources.

44

3.2 Design

Persons in Charge
This is a list of persons who are responsible for this module. In a team of architects this
list can reference the contact persons for a particular module.
[J-PaD, 2013] supports a list of authors in the module documentation. This thesis changes
the meaning slightly to the responsible persons. For the architecture documentation it is
more important to know who is responsible for the complete module than the authors
of the source code artifacts. Furthermore, the authors are usually already noted in the
documentation or comments of the single implementation files.

Purpose and Responsibility
The name can provide a first impression of the function and role in the whole system.
Still, it is necessary to provide this information in detail. These data describe why this
module is part of the system, what is its functionality and what role does it have from
the perspective of other modules.
This information is part of the module description in [J-PaD, 2013], [Garlan et al., 2010],
and [Starke and Hruschka, 2011].

Rejected Design Alternatives
This data describes considered and rejected designs as well as the reasons for their rejection.
Such information is useful to understand the design and its reasons. Furthermore it
shows the wrong directions of thought for future design changes and improvements.
This module description information is proposed by [Starke and Hruschka, 2011].

Requirements
This part lists the references to the covered requirements of a module. This information
is required in order to track down why a module has a specific functionality (traceability)
or to ensure that all requirements are covered by the modules.
Covered requirements are part of the module description in [J-PaD, 2013] and
[Starke and Hruschka, 2011].

Source Code Artifacts
These metadata reference the implementation artifacts of a module. The module
documentation in the software architecture documentation provides a high-level overview.
This information is mainly publicly visible, provides a big picture and serves as a starting
point. Implementation details can be found on the source code level. These references
link both document types and make the documentation complete.
Source code artifacts are suggested and used in the module description of [J-PaD, 2013],
[Garlan et al., 2010], and [Starke and Hruschka, 2011].

Test Information
This documentation part contains test plans, test cases, test data, and other relevant
information for testing of a module. It can help the test manager to plan and build the
tests or provide an overview of quality assurance on the module level to other stakeholders.
[Casciato, 2013] researches this topic in depth and splits module’s test documentation in
further metadata.
The test information metadata on module level can be found in [J-PaD, 2013],
[Garlan et al., 2010], and [Starke and Hruschka, 2011].

45

3 Requirements and Design

Variability
Variability describes which possible changes are planned for a module and how it can be
configured or adjusted. This is an explicit support of the quality attribute flexibility.
These metadata are suggested for module description in [J-PaD, 2013] and
[Starke and Hruschka, 2011].

Version
The current version number of the module. It is useful to indicate possible changes in
the past and to reference a version in the change history.
The version of a module is part of module documentation in [J-PaD, 2013].

46

4 Implementation and Results

The first part of this chapter provides background information on design decisions that were
made and describes the details about the implementation. The second part of this chapter
deals with the outcome of the implementation. It presents the results and compares them with
the design.

4.1 Implementation

The overall presented design in this thesis is divided into two parts. The first part from
Chapter 3.2 is almost technology independent. It describes the suggested solution in a very
abstract manner. That way the concept can be easily transferred to other technologies or
areas of application. The second part of the design is a matter of this chapter. It puts the
abstract concept in a technological context and argues about the design decisions made of this
level. Furthermore, it serves as a proof of concept for the abstract concept and describes the
idiosyncrasies of the used technologies.

4.1.1 Data Format

The requirements in Chapter 3.1 define a text-based and line-based data format for all data
created by the application. Thus especially the data model needs to be serialized as text. The
data model has a hierarchical structure, e.g., the document contains chapters, chapters contains
sections, etc. Therefore, it is convenient to use a data format that supports this kind of struc-
ture. Furthermore, the used programming language and technology is Java. For this reason, it
is practical to use a data format supported by Java in order to save time and keep the effort low.
Both is true for XML. It supports hierarchically structured data and Java can handle it natively.

One possible alternative to XML is the Comma-separated values (CSV) data format. In
CSV the data is divided into columns separated by a special delimiter character (typically
the semicolon). In other words, the data is saved in one big table. Therefore, CSV does not
directly support a hierarchical structure like the data model of UniMoDoc. Additionally, CSV
is not standardized like XML and not explicitly supported by Java.
Another possible alternative is JavaScript Object Notation (JSON). Comparably to XML, it is
well applicable to hierarchically structured data and it is standardized. One big disadvantage
is a lack of support in the default libraries of Java.

47

4 Implementation and Results

XML Approaches in Java

There are different approaches how to handle XML in Java. They can be categorized in three
following parts.

• Document Object Model (DOM) oriented APIs represent the complete XML structure
as a DOM tree in the memory.

• Pull and Push APIs do not load the complete XML structure into memory. During the
reading the Pull API parses the document in order to find specific elements. That way
it pulls the required information from the document. The Push API calls appropriate
methods during the reading each time an element occurs. In other words, it pushes the
data from the document compared to events.

• Mapping APIs map the XML structure directly to the internal data model and vice
versa.

Each approach has its benefits and drawbacks. The DOM-oriented APIs are well applicable
for modification of the complete document. Since the complete document is loaded into the
memory, these APIs are memory consuming. The DOM structure is abstract, so it can be still
necessary to map the information into an internal data model.
The Pull and Push APIs are especially useful for searching specific elements in the XML
structure. They are potentially faster than the other APIs because they do not load the
complete document into memory. Still, it is cumbersome to transform the complete XML
structure into the internal data model.
The Mapping APIs save the effort of transforming the XML structure into the internal data
model. They are useful in cases where the internal data model can be adjusted to fit the XML
structure or vice versa. If the internal data model is different from the XML structure, the
main benefit is lost.

There are no special requirements for the XML structure and it can be adjusted in or-
der to fit the internal data model. Additionally, taking into account the enormous time saving
of out of the box mapping, the winner was the Mapping API approach.
For the purpose of avoiding unnecessary dependencies to custom libraries a default Mapping
API in Java was chosen, namely Java Architecture for XML Binding (JAXB).

JAXB

JAXB makes it possible to bind Java objects to an XML structure. This Java object can be
marshaled to an XML file or an XML file unmarshaled back to a Java object. The binding is
controlled by Java annotations. Listing 4.1 shows an extract from the data model of UniMoDoc
and how it can be marshaled using JAXB. The listing contains a simplified definition of two
classes Document and Chapter. In the data model of UniMoDoc (see also Chapter 3.2.2) the
Document class contains all the other elements, e.g., Chapters, Sections, Relations, etc.
Consequentially, it is a root element in the XML structure. This fact is expressed by the

48

4.1 Implementation

Listing 4.1 Example JAXB Usage
1 @XmlRootElement
2 public class Document {
3 private List<Chapter> chapters;
4

5 public List<Chapter> getChapters() {
6 return chapters;
7 }
8

9 @XmlElementWrapper
10 @XmlElement(name = "chapter")
11 public void setChapters(List<Chapter> chapters) {
12 this.chapters = chapters;
13 }
14 }
15

16 public class Chapter {
17 private String name;
18

19 public String getName() {
20 return name;
21 }
22

23 @XmlElement
24 public void setName(String name) {
25 this.name = name;
26 }
27 }
28

29

30 Chapter chapter = new Chapter();
31 chapter.setName("Functional Requirements");
32 List<Chapter> chapters = new ArrayList<Chapter>();
33 chapters.add(chapter);
34 Document document = new Document();
35 document.setChapters(chapters);
36

37 JAXBContext context = JAXBContext.newInstance(Document.class);
38 Marshaller m = context.createMarshaller();
39 m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE);
40 m.marshal(document, System.out);

49

4 Implementation and Results

Listing 4.2 XML Output from Listing 4.1
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <document>
3 <chapters>
4 <chapter>
5 <name>Functional Requirements</name>
6 </chapter>
7 </chapters>
8 </document>

@XmlRootElement annotation.
Furthermore, in Listing 4.1 the Document has a list of Chapters. In order to include this
list in the XML structure the setter method of the list is annotated with @XmlElement. The
additional setting @XmlElement(name = “chapter”) for the annotation changes the name of
the XML element from default attribute name chapters to chapter. Collections are typically
marshaled by JAXB, so that the single, repeated entries have no wrapper element. This
behavior can be changed by the @XmlElementWrapper annotation. In Listing 4.1 it will add a
chapters element around all chapter element entries.
The Chapter class has a name attribute that needs to be saved in an XML file. Therefore, its
setter method is annotated with @XmlElement.

Beginning from line 30 to 35 in Listing 4.1, an object structure is created from the de-
scribed classes in order to serialize it to an XML file. Thus a new Chapter is constructed with
a name Functional Requirements and added to a new list. Then a new Document is created
and the previously constructed list is added to it.
Lines 37 to 40 in Listing 4.1 demonstrate how the objects from above can be marshaled
with JAXB. First of all, a JAXBContext is created that knows, which classes to use for
marshaling or unmarshaling. Then a new Marshaller object is constructed from the context.
The JAXB_FORMATTED_OUTPUT option instructs JAXB to add indentation and linefeeds to the
outputted XML file, if it is set to true. Finally, the last line in Listing 4.1 passes the previously
created data model to the Marshaller and instructs it to return the result on the default
output stream of the System. The created XML document is shown in Listing 4.2.

JAXB Issues

JAXB is an enormous time savior when it comes to mapping of information between the data
model and the XML structure. Still, it has some significant drawbacks. During the reading
of an XML structure all elements have to be known to the data model. If an XML element
occurs that cannot be mapped on a corresponding class or attribute, the complete mapping
fails. UniMoDoc has to be extensible so that new widgets and section data types can be easily
added like plugins. Using one section data type in a document would make it unreadable to
other applications without that section data type.

50

4.1 Implementation

Listing 4.3 Embedded XML Structure
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <document>
3 <chapters>
4 <chapter>
5 <name>Functional Requirements</name>
6 <sections>
7 <section>
8 <name>Description</name>
9 <widgetId>de.unimodoc.widgets.TextAreaWidget</widgetId>

10 <sectionData>
11 <beanId>de.unimodoc.model.section.StringBean</beanId>
12 <XMLData><?xml version="1.0"

encoding="UTF-8"
standalone="yes"?>

13 <stringBean>
14 <value>This part describes the required functions of the

software.</value>
15 </stringBean>
16 </XMLData>
17 </sectionData>
18 </section>
19 </sections>
20 </chapter>
21 </chapters>
22 </document>

In order to solve this issue, UniMoDoc uses a two level mapping approach. The first level
consists of the core document structure that should not be extended by plugins. The second
level of mapping is dynamic and provides extension points for plugins. In other words, the
first level is the main XML document and the second level consists of other XML documents,
which are embedded in the first one.

Listing 4.3 shows a simplified extract from an XML file generated by UniMoDoc. It demon-
strates both levels. In order to read this document, firstly UniMoDoc will map the complete
document with JAXB to the internal first level data model. In that case it will create among
others an object of type SectionData. This object will have two String attributes: beanId
and XMLData. As shown in Listing 4.3 XMLData contains another encoded XML document.
This is a second level document. At this point it is only interpreted as a text. The beanId
contains a fully qualified name of a class to which the content of XMLData can be mapped.
UniMoDoc will check if the class from beanId is known within the current application. If this
class is known, it will be instantiated and the content from XMLData will be mapped to it using
JAXB.
In case the class from beanId is not available, the raw data from XMLData can be displayed

51

4 Implementation and Results

in a default widget as a String to the user. Still, the most important aspect in this case is
the fact that JAXB does not fail to read the complete document because of single unknown
elements.

4.1.2 Application Flow

Most parts of the application stick to a variant of the Model–View–Controller (MVC) pattern.
The MVC pattern differentiates between three types of components:

• The model encapsulates the data of the application.

• The view observes the changes in the model and displays the data to the user.

• The controller manipulates the data.

Model

The design of the model in UniMoDoc is described in detail in Chapter 3.2.2. The implemen-
tation of the data model does not essentially differ from the design. Still, the model has some
differences to the default MVC pattern. In UniMoDoc the model is completely passive. In
the default MVC pattern the view observes the model directly. Thus if the model changes,
it notifies the view about the changes. In UniMoDoc the controller manipulates the model
exclusively and notifies also the view about changes in the model.

View

All view components used in UniMoDoc come from Java Swing or are based on it. Swing is
a default GUI API in Java. The use of Swing components results in another slight variance
from the default MVC pattern. Some Swing components like JTable or JTree come with an
own model implementation out of the box. Therefore, in some cases it is reasonable to use
these out of the box models in addition instead of changing the own data model in order to fit
the Swing components. So UniMoDoc uses these models as mediators between the main data
model and Swing components.

Controller

There are two main controller classes inUniMoDoc. The first one is called AppManager and
operates on the application level. It is responsible for functions, e.g., opening, saving, closing,
exporting the documents or templates. The second one is called DocManager and it is respon-
sible for one document only. The DocManager is a central point for modifying a document,
e.g., adding, editing, deleting chapters, sections, relations, etc.

52

4.1 Implementation

User

DocumentTree DocManager Document DocumentTreeModel

add new chapter

addChapter(chapter:Chapter,
order:int, parent:Chapter)

addChapter(chapter:Chapter)

onChapterAdded(event:ChapterAddedEvent)

show added chapter

treeNodesInserted(event:TreeModelEvent)

Figure 4.1: UML Sequence Diagram of Adding New Chapters

Figure 4.1 shows a UML sequence diagram demonstrating how a new chapter is added to the
document. First, the user adds a new chapter using the graphical component DocumentTree.
DocumentTree will invoke an action that calls the appropriate controller for modifying the corre-
sponding Document. In other words, it calls the addChapter(chapter:Chapter, order:int,
parent:Chapter) method on the DocManager. The DocManager is responsible to check if this
modification on the Document is permitted and valid. Then, the DocManager adds the given
chapter to the Document entity. Since the data model is completely passive, the DocManager
has to notify all observers about the modification. In case of the DocumentTree a Swing
specific model is implemented called DocumentTreeModel. The DocumentTreeModel is regis-
tered in the DocManager as an observer for the Document. For that reason the DocManager
notifies the DocumentTreeModel about a new chapter with a suitable event. That way the
DocumentTreeModel can adjust its internal structure to the change. The DocumentTree
in turn observes the DocumentTreeModel. Therefore, after adjusting the internal structure
DocumentTreeModel calls the treeNodesInserted(event:TreeModelEvent) method on the
DocumentTree. Finally, the DocumentTree updates its view and shows the added chapter to
the user.

Events

The controllers notify the observers about modifications on the data model with corresponding
events. Therefore, UniMoDoc provides various events and an appropriate interface for the
event listeners. There are basically three types of events. These event types are for added,
updated, and deleted objects. Java provides out of the box functionality for handling such
events, e.g., java.beans.PropertyChangeSupport. UniMoDoc uses an own implementation
instead, which improves some shortcomings of the default implementations. Especially the
update events are cumbersome to handle in the default implementations. It is necessary to
provide the name of each changed attribute, its old value and its new value. This approach

53

4 Implementation and Results

results in an error-prone boilerplate code. In UniMoDoc update events accept the old and new
objects. Possible changes on the attribute level are detected via the Java Reflection API. This
approach avoids the boilerplate code and makes the application easier extensible.

4.1.3 Id Generation and Modification

Chapter 3.2.2 describes the data model and the Identifiable interface. It is necessary
to uniquely identify some elements in the document. Furthermore, unique identification of
elements is essential for the relations. Such elements need to implement the Identifiable
interface, which guarantee a unique id within a document. Various approaches are possible to
provide this id.
A naive approach is to use a simple counter as an id. The drawback of this approach is that
it needs a central id generation. Additionally, the id generation is dependent on the current
counter in the document.
Another approach consists of using a Universally Unique Identifier (UUID). The UUID is a
128-bit number standardized by Open Software Foundation (OSF). It is specially designed for
distributed systems in order to provide a non-centric id generation. The concrete implementa-
tion of the UUID generation may vary on different JVMs. The drawback of this approach is
the possibility of collisions. Although, the possibility of a collision for a UUID is very small, it
needs to be considered.
Due to the benefits of a non-centric id generation UniMoDoc uses Java’s UUIDs for identifying
and referencing the elements in a document.

Normally an id should not change for an element after its assignment. However, in some cases
it is unavoidable. When saving a template, two different cases can appear. In the first case, a
complete document is saved as a template. This case will not need any further id modification.
In the second case, only a part of the document is saved as a template. Thus it is necessary to
cut out all the elements hanging on this part, e.g., chapters, sections, relations between the cut
out chapters and/or references, attached references and relation types. When these elements
are saved as a template and then are imported in an existing document, new ids should be
generated. Since the document where the template is imported, may be the one from where it
is generated.
It is not trivial to change all identifiers because they may be referenced by other elements like
relations or sections (in case of sections with relation widgets). For that reason an algorithm
is implemented, which firstly changes the identifiers of the relation types, references, and
relations. The old and new identifiers of the relations are saved in a table. Then, the identifiers
of the chapters and sections are changed. Their identifiers are also saved in a table. In the
next step this table is processed by the relations in order to change the old references ids to
the new ones. Finally, in the last step the sections with relation widgets get the tables with
old and new identifiers of the relations, chapters and sections. That way before a template is
imported in an existing document, all identifiers are changed in this template remaining its
internal consistency.

54

4.2 Results

4.2 Results

This chapter describes the outcomes of the implementation and shows screenshots of the
resulting application. First, a short overview outlines the basic structure of the implemented
application. Additionally, the overview compares the design with the actual results. Second,
the implemented module template is presented.

1

2

3

9

5

7

8

4

6

Figure 4.2: UniMoDoc GUI Overview
Item 1 : Document Structure, Item 2 : Root Element, Item 3 : Selected Chapter,
Item 4 : Content Area, Item 5 : Selected Tab, Item 6 : Additional Controls, Item
7 : Central Relation Management, Item 8 : Visualization of Relations, Item 9 :
Relation Tables

55

4 Implementation and Results

4.2.1 Overview

An overview of the implemented application is shown in Figure 4.2. Figure 4.2, Item 1

highlights the structure of the opened document. It provides the primary way for navigating
through the document. Figure 4.2, Item 2 points on the root of the tree structure, which is
the document itself. Figure 4.2, Item 3 points on the currently selected and opened part of
the document, i.e., Chapter 2.4 Model.

The content of this chapter is displayed in the content area of the application, which is
outlined in Figure 4.2, Item 4 . Additionally, the content area is organized by tabs. Figure 4.2,
Item 5 shows the currently selected tab of the Chapter 2.4 Model. Previously selected tabs, are
shown on the right hand-side next to the currently selected tab. The content of the selected
chapter contains its name and a list of sections. Each section displays a name and a widget.
All in all the content area is very similarly structured compared to the design in Chapter 3.2.1.
However, some details differ from the design. Figure 4.2, Item 6 shows to additional con-
trols. The pencil button allows the user to edit the structure of the chapter, i.e., to add,
modify, or delete the sections. The information button above every section shows a hint to the
corresponding section. This should provide the user a general idea of what information to fill in.

Figure 4.2, Item 7 illustrates the central relation management of the application. It is
vertically divided into two parts. The top part visualizes the relations of the currently selected
chapter in a graph, which is outlined in Figure 4.2, Item 8 . It provides an alternate navigation
through the document. The user is able to see, which other document parts or external
references are related with the currently selected chapter and directly navigate to them by
a double click. The relations are directed and displayed with an arrow in order to show the
direction. The semantics of the relations are defined by the used relation types. Different
relation types can be differently visualized, e.g., by using colors, line or arrow styles.
The visualization of the relations in a graph is useful for displaying a small number of relations.
However, large numbers of relations result in a vast and confusing graph. Therefore, the
relations, relation types, and external references are additionally displayed in a tabular view
(cf. Figure 4.2, Item 9). The tabular view does not necessarily display only the relations of
the currently selected chapter. In Figure 4.2 it displays all relations of the document. The
user can even configure the displayed information of all three tables by filters. The filters
provide logical functions and are extensible. Additional information about the visualization
and management of the relations in UniMoDoc is described in [Casciato, 2013].

Editing Document Structure

When the user clicks on the pencil button from Figure 4.2, Item 6 , another view is presented.
This view is illustrated in Figure 4.3. The obvious difference is that the central relation
management is hidden. Instead, the Widget Library is shown (cf. Figure 4.3, Item 1). The
Widget Library consists of two vertically separated parts. The top part shows all available
widgets of the application (cf. Figure 4.3, Item 2). The user can select a widget from the
Widget Library and create a new section with it via drag and drop in the currently opened

56

4.2 Results

chapter. The bottom part of the Widget Library in Figure 4.3, Item 3 shows the description
for the selected widget.

3

1

2

4 65

Figure 4.3: Editing Document Structure in UniMoDoc
Item 1 : Widget Library, Item 2 : Available Widgets, Item 3 : Widget Description,
Item 4 : Apply Button, Item 5 : Delete Section Button, Item 6 : Configure Section
Button

The widgets in the content area are not editable. This behavior is a result of a strict separation
between the editing of the content and the editing of the structure of a chapter. The user can
return to the editing of the content with the button in Figure 4.3, Item 4 . Figure 4.3, Item 5

points on a button for deleting of sections. The configuration of sections is accessible via the
button in Figure 4.3, Item 6 .

57

4 Implementation and Results

Section Configuration

The button shown in Figure 4.3, Item 6 opens a dialog for section configuration. This dialog
is shown in Figure 4.4. Its content is structured in three tabs Figure 4.4, Item 1 . The first
tab shows the general settings and information about the section. The second tab shows the
selected widget of the section and provides a selectable list of alternate applicable widgets. The
content of the last tab is dependent on the selected widget. It displays the settings provided
by selected widget.
In the general settings the user can define the name of the section (cf. Figure 4.4, Item 2).
The info text from Figure 4.4, Item 3 is a hint of what information to fill in, which is accessible
from the info button displayed in Figure 4.2, Item 6 . When exporting the document to another
format, single sections can be omitted. This is controlled by the checkbox in from Figure 4.4,
Item 4 . Figure 4.4, Item 5 shows the Section Bean, i.e., the internal data type of a section.
Once the section is created, the Section Bean cannot be changed.

1

2

3

4

5

Figure 4.4: Section Configuration
Item 1 : Tabs, Item 2 : Section
Name, Item 3 : User Hint, Item
4 : Export Option, Item 5 : In-
ternal Data Type

1

2

Figure 4.5: RelationList Widget Settings
Item 1 : List of Accepted Re-
lation Sources, Item 2 : List
of Accepted Relation Types

RelationList Widget

Available relations of the document can be linked in sections. In order to achieve this, special
Section Beans and widgets are provided. This concept will be demonstrated on the example of

58

4.2 Results

the de.unimodoc.model.section.RelationListBean and RelationList widget. Figure 4.4,
Item 5 indicates that the section uses a de.unimodoc.model.section.RelationListBean as
internal data type. Additionally, a RelationList widget is assigned to it.

The RelationList widget provides its own settings, which are illustrated in Figure 4.5. Basically,
it has two settings. The first one is a list to filter the accepted relation sources in Figure 4.5,
Item 1 . If the list is empty, all sources are accepted. However, the list in Figure 4.5, Item 1

contains one entry. This means that the user can only link relations with the selected source.
Figure 4.6, Item 1 shows the rendered RelationList widget of the corresponding section. The
Source row contains only the accepted relation source from the settings. This approach has
several reasons. Firstly, the usability is improved because the relation sources are preselected.
Secondly, the possibility to link wrong relations decreases. Finally, if the relation source
changes over time and it is not accepted by the RelationList, the link will be automatically
removed.
The second setting of the RelationList widget is a list that filters the accepted relation types.
Its function and purpose are similar to the accepted sources. In Figure 4.5, Item 2 the only
accepted relation type is realized by. This relation type is used for relations between a module
and its source code artifacts. Since the section lists source code artifacts only, no other relation
types are required for this RelationList.
Furthermore, Figure 4.6 shows additional buttons on the right hand-side. The buttons are
per default invisible. Only if the user hovers the mouse over the RelationList widget, the
buttons become visible. The button in Figure 4.6, Item 2 allows to link relations to the widget.
Figure 4.6, Item 3 points on the button for deleting the link of the selected entry in the list.
Finally, the button in Figure 4.6, Item 4 provides a quick access to the options of the relation,
relation type, and reference of the selected link. More information about the management of
relations can be found in [Casciato, 2013].

1

2

3

4

Figure 4.6: RelationList Widget
Item 1 : RelationList Widget, Item 2 : Link Relation Button, Item 3 : Remove
Relation Button, Item 4 : Quick Access to Options Button

59

4 Implementation and Results

Templates

UniMoDoc supports two types of templates. The first type is for complete documents, i.e., a
document is saved as template. The second type operates on the chapter level. This means
that a chapter and all its subchapters are saved into a template. The procedure for creating
new templates is the same for both types. The user needs to open a context menu for the
document or a chapter in the tree structure and to select the entry Save as Template. In
the next step UniMoDoc will present the dialog displayed in Figure 4.7. The dialog requires
a name for the template (cf. Figure 4.7, Item 1) and a category (cf. Figure 4.7, Item 2).
The category is meant for structuring templates. Finally, a description for a template can
be provided (cf. Figure 4.7, Item 3). The templates are saved in a central directory and
registered in the application.

1

2

3

Figure 4.7: Creating Template
Item 1 : Template Name, Item
2 : Template Category, Item 3 :
Template Description

1

2

3

4

Figure 4.8: Using Templates
Item 1 : Chapter Name, Item 2 :
Used Template, 3 : Template De-
scription, 4 : Template Location

When creating a new document or chapter, it is possible to choose between an empty object or
template. Figure 4.8 demonstrates this approach on the example of creating chapters. The user
has to enter the name for the new chapter (cf. Figure 4.8, Item 1) and to select a template (cf.
Figure 4.8, Item 2). Whereby the Empty Chapter displayed in Figure 4.8, Item 2 is a special
template that cannot be deleted. In addition, the user is informed about the purpose of the
template (cf. Figure 4.8, Item 3) and its location on the machine (cf. Figure 4.8, Item 4).

60

4.2 Results

4.2.2 Module Template

The module metadata defined in Chapter 3.2.3 is meant to be used in a template for module
documentation. However, the metadata can be aggregated to a template in various ways.
This chapter serves several purposes. It suggests a universally applicable template using the
metadata from Chapter 3.2.3 and the implemented concepts of UniMoDoc. In this manner
it satisfies the requirement for a module template from Chapter 3.1 and demonstrates how
UniMoDoc can be utilized.

The overall suggested template uses only three types of widgets:

• TextFields for short, single lined texts

• TextArea for all other types of text

• RelationList for displaying the relations to other modules, requirements, external re-
sources, etc.

It is easily conceivable to utilize more specialized and comfortable widgets. However, this
template provides a ready to use foundation and starting point for future customizations.

The suggested template is structured into five parts. The first part provides a quick overview
of the module. This part is displayed in Figure 4.2. The name of the chapter equals the name
of the module. Furthermore, it contains the following metadata: Purpose and Responsibility,
Version, Change History, Persons in Charge, Dependencies, Requirements, and Comments.
Only the Comments section is not described in Chapter 3.2.3. The template should be
preferably universally applicable. Therefore, the Comments section provides a possibility to
add information, which fits into a particular chapter but not into other sections. Comments
sections are also used in other parts of the template.
The purpose of this part is to provide the most important information about a module at first
glance. If more detailed information is required, the user can directly navigate to one of the
subchapters: Design, Implementaion, Misc, or Tests. This subchapters form the other parts
of the template. However, the Tests subchapter is not part of this thesis. It is described in
[Casciato, 2013].

61

4 Implementation and Results

Figure 4.9: Module Template - Design

The Design subchapter shown in Figure 4.9 contains the information, which is typically
produced during the design phase of a module. It lists the metadata: Design, Design Artifacts,
Design Decisions, Interfaces, Variability, Rejected Design Alternatives, and Comments. The
section Design Artifacts does not appear in the metadata from Chapter 3.2.3. Design resources
like UML or ER diagrams were originally planned to be grouped under the topic Other
Artifacts. However, this topic contains not only design relevant information and is placed
in another chapter. Additionally, it is possible to use the Image widget to display graphical
design notations. It is also conceivable to implement a widget for creating, e.g., UML diagrams
directly in UniMoDoc.

62

4.2 Results

Figure 4.10: Module Template - Implementation

The Implementation subchapter presented in Figure 4.10 lists the information typically
produced during the implementation phase. It has following metadata: Implementation
Constraints, Source Code Artifacts, and Comments. Compared to the Design subchapter only
few information is contained. That’s because UniMoDoc does not support the implementation
phase explicitly. Still, it links all relevant parts together and makes them traceable.

63

4 Implementation and Results

Figure 4.11: Module Template - Misc

The Misc subchapter from Figure 4.11 groups the remaining metadata. It contains the sections:
Misc Information, Other Artifacts, and Management Information. Compared to previous
chapters the Misc subchapter contains no Comments section. Instead, the Misc Information
bundles all the data that does not fit into the other chapters.
The suggested module documentation template tries to be universal. It contains common
metadata for modules discussed in Chapter 3.2.3. Still, no template can be generic enough to
cover all possible needs. For that reason the template is only considered as a starting point for
customization and as proof of concept. UniMoDoc is designed for quick and easy template
creation. Thus the template can be easily tailored to meet custom requirements.

64

5 Evaluation

In order to verify the expected effects of the implemented concepts, an experiment was planned
and executed. The overall evaluation is a cooperative effort of this thesis and [Casciato, 2013].
This chapter describes the evaluation and is structured based on [Prechelt, 2001] and
[Jedlitschka and Pfahl, 2005]. First, the initial goals of the evaluation are described in Chap-
ter 5.1. Then, the selected experiment type and rejected alternatives are presented in Chap-
ter 5.2. The parameters of the experiment are described in Chapter 5.3. Considering the
parameters, the initial goals are adjusted in Chapter 5.4. Chapter 5.5 describes how the single
parts of the experiment are planned in detail. A short overview of the experiment parts, their
timing, and materials is provided in Chapter 5.6. Chapter 5.7 discusses the internal and
external validity of the experiment. Chapter 5.8 describes briefly the experiment pilot and the
experiment execution. The results of the experiment are presented in Chapter 5.9. Finally,
Chapter 5.10 interprets the results and draws a conclusion.

5.1 Initial Goals

One of the main research objectives of this thesis is suggesting concepts for a better tool support
of module documentation. Chapter 3.2 describes these concepts in detail. The implementation
of the suggested design serves as a proof of concept. Details on the implementation and the
resulting application can be found in Chapter 4. The next required step is to find out, whether
the concepts really provide the expected advantages. This intention results in a concrete
question that can be formulated more precisely as follows:

1 Do the implemented concepts in UniMoDoc offer an added value in module documentation
compared to conventional documentation tools (e.g., word processors, documentation
generators)?

The implementation of the concepts, in form of UniMoDoc, serves as a proof of concept and
it provides a more realistic testability of the concepts. However, it introduces additional
complexity for the evaluation of the concepts. Thus the implementation may influence the
evaluation of the concepts negatively. The aspects added to the concepts by the implementation,
which can be responsible for a negative influence, are mainly stability und usability. In other
words, the application fails, crashes, or it is not user-friendly, i.e., the user is not able to
accomplish the tasks efficiently. Furthermore, the usability is part of the requirements of
UniMoDoc. Thus this thesis is generally highly interested in a stable prototype with a good
usability. Consequentially, an additional question arises that can be formulated as follows:

2 Is UniMoDoc operational according to its stability and usability?

65

5 Evaluation

5.2 Experiment Type

This thesis makes use of a controlled experiment in order of evaluation. The specialty of
controlled experiments is the isolation of single attributes of interest, so-called independent
variables. All other attributes remain strictly unchanged. They are called dependent variables.
Results of samples containing the independent variables are compared to results with dependent
variables only. To put it another way, the experimental group is compared to a control group.
Thus the objective is to prove the effects caused by independent variables.
If properly executed, controlled experiments provide a highly reliable and accurate statement
about the impact of the independent variables. Furthermore, it is possible to obtain objective
and subjective results. Another reason for choosing a controlled experiment is its generally
good repeatability. Other considered and rejected experiment types are:

Case Studies
Case studies are typically custom-designed scenarios that examine a selected use case, e.g., of a
tool or a method. Similar to the controlled experiments they can compare different approaches.
However, unlike the controlled experiments they do not attempt to control the other variables,
i.e., the dependent variables. Thus it is not possible to determine the cause of the observed
effects exactly.

Field Experiments
Experiments executed in a real world environment are called field experiments. They benefit
from more realistic results than experiments with an artificial setting. Still, due to their
complexity, field experiments are hard to repeat and even to document. Furthermore, they
face the same problems like case studies. The observed effects cannot be precisely mapped to
the variables in a complex setting.

Surveys
In surveys participants answer selected questions of interest. Their answers are subjective only.
Surveys are typically less effort consuming than other experiment types. The main disadvan-
tages of the surveys are the subjectivity of the answers and their difficult interpretation.

5.3 Parameters

The experiment is designed and executed in a particular context. This context consists of a set
of parameters. The description of the parameters is necessary in order to fully understand the
experiment and to ensure the repeatability. Additionally, the further design of the experiment
has to consider the parameters. The parameters of the experiment are:

• The experiment was conducted during the tutorial of the Software Quality Assurance
and Software Maintenance lecture at the University of Stuttgart with a time limit of 90
minutes.

66

5.4 Adjusted Goals

• The participants were master students of Software Engineering. Therefore, at least a
basic experience in Java programming can be assumed.

• The tutorial of the Software Quality Assurance and Software Maintenance lecture has
maximally 12 attendees. Thus the experiment assumed 12 participants at maximum.

• The computer pool of the computer science building at the University of Stuttgart served
as the infrastructure for the experiment. Thus the participants were able to work with
UniMoDoc or access internet.

5.4 Adjusted Goals

In order to answer the first question defined in Chapter 5.1 it is necessary to specify it more
precisely and to select concrete functions of UniMoDoc for the evaluation. UniMoDoc provides
various functions and supports different use cases. One typical and important use case is to
utilize the documentation created with UniMoDoc, in order to retrieve information about the
documented modules. This thesis expects that especially the explicitly defined relations and
their visualization in UniMoDoc will help the participants to retrieve the required information
more efficiently compared to conventional documentation. As a result two questions can be
formulated:

Q1 Will the participants find more required information using UniMoDoc within a given time
frame compared to using similar module documentation created with a word processor
and Javadoc?

Q2 Will the explicitly defined relations and their visualization help the participants to find
the required information using UniMoDoc?

The second question from the Chapter 5.1 chapter according the stability and usability can be
divided into two different questions in order to observe the attributes separately:

Q3 Will UniMoDoc crash during the evaluation?

Q4 Do the participants feel positive about the usability of UniMoDoc and can they accomplish
typical tasks without additional instructions?

Initially it was planned in addition, to evaluate the benefits of UniMoDoc while documenting
the modules. It was expected that the templates from this thesis and from [Casciato, 2013]
would help to get more detailed and better structured module documentation. This idea
was finally dropped due to the given parameters, especially the small time frame. Ideally
the participants would need to document the modules, which they have created themselves.
However, this was not possible within the 90 minutes. Alternatively it would be necessary
to provide the module documentation to the participants in another form. However, the
documentation in other form would unavoidably prescribe and influence the results. Therefore,
the use case of documenting modules is mainly evaluated according to the usability of the
application.

67

5 Evaluation

5.5 Experiment Design

This chapter describes the single parts of the experiment in detail. The overall experiment
can be divided into 5 parts: Introduction, First Assignment Part, First Feedback, Second
Assignment Part, Second Feedback. In the first Introduction part the participants are instructed
and receive the initial materials. In the First Assignment Part they need to find information
in a module documentation with and without UniMoDoc. The First Feedback collects the
subjective impressions of the participants after the First Assignment Part. In the Second
Assignment Part the participants have to complete a module documentation with UniMoDoc
and to provide their feedback in the final Second Feedback part.

5.5.1 Introduction

This part aims to answer the questions Q1 to Q4. During this part the participants receive
an information note with a short description of the experiment and a leaflet with a unique
number. These materials are distributed absolutely randomly to the participants. The unique
number identifies a particular participant and the corresponding results. It starts with one
and increments by one.
Additionally, the information note contains a link to an archive downloadable from the internet
with additional materials required for the next parts and an executable file of UniMoDoc. The
participants are instructed to unpack the archive on their machines and to check whether they
can execute UniMoDoc.

5.5.2 First Assignment Part

In the first assignment part the participants are separated into 4 groups. The number of the
group of each person is derived from the following function, where x equals the unique number
of the participant:

f(x) =
{

x mod 4 if x mod 4 > 0
4 if x mod 4 = 0

Since the unique numbers of the participants are distributed randomly, this approach ensures
that the participants are randomly assigned to the groups.

There are two similar assignments named A and B with questions. At the beginning each
group receives the first assignment and works with or without UniMoDoc. Then, each group
receives another assignment. If a group previously used UniMoDoc, it works in the second
part without UniMoDoc and vice versa. In the notation of [Prechelt, 2001] the execution can

68

5.5 Experiment Design

be described as follows:

G1 : A/UniMoDoc B/!UniMoDoc
G2 : A/!UniMoDoc B/UniMoDoc
G3 : B/UniMoDoc A/!UniMoDoc
G4 : B/!UniMoDoc B/UniMoDoc

Gn identifies the number of the group. A/UniMoDoc means that the assignment A is processed
with the utilization of UniMoDoc. B/!UniMoDoc means that the assignment B is processed
without the utilization of UniMoDoc. Consequentially, the first line says that the group
number 1 will firstly process the assignment A with UniMoDoc and secondly it will process
the assignment B without UniMoDoc.
This approach provides several benefits. It is possible to objectively compare the results between
the utilization of UniMoDoc and without it. The participants are able to compare UniMoDoc
with conventional documentation and to provide subjective impressions. Furthermore, the
permutation of the sequence helps to detect possible sequence specific effects.

Artifacts

The participants receive an archive during the introduction, which contains the source code
artifacts of UniMoDoc. The source code is organized into modules, which are structured as
Java packages. Additionally, the archive contains a conventional module documentation and
a documentation created with UniMoDoc. The conventional documentation of modules is
contained in the package-info.java files of the corresponding packages. It is also displayed
in the Javadoc documentation. Additionally to the usually expected Javadoc information, the
documentation contains references to the realized requirements and dependencies to other
modules. An explicit note provided with the assignment informs the participants about this
information in the Javadoc documentation.
The module documentation created with UniMoDoc uses an adjusted module template of this
thesis. The adjusted template does not contain a design and misc part because there is no
equivalent for this in Javadoc. The content of the module documentation is identical in Javadoc
and UniMoDoc. In order to ensure the identical documentation, the Javadoc comments in the
source code were generated by UniMoDoc.
Furthermore, the tests for each module are organized in an additional test module (package).
The archive contains also automatically generated JUnit reports as HTML files. The require-
ments are provided as a PDF file. The participants are informed about these files and their
location in the archive.

Assignments

Both assignments, A and B, contain five questions of identical type for different modules. The
types of questions are:

69

5 Evaluation

• Which modules realize the requirement ...?

• List all JUnit test cases, which test the requirement . . . and list the number of methods
per class.

• Complete the description of the requirement ..., which is realized by exactly one module.

• The class ... of module ... was tested and protocolled several times. List the date, time
and number of failures for each protocol.

• List all ingoing and outgoing dependencies of module ... separately.

The results of the assignments are collected at the end of this part.

5.5.3 First Feedback

After the first assignment part a feedback is collected from the participants. The main
goal of this part is to capture the fresh and subjective impressions of the participants. The
participants are asked, whether it was easier to process the assignments with UniMoDoc
or without. Furthermore, they are asked, whether they used the relation visualization in
UniMoDoc and if they were able to process the assignments faster with it. Additionally, there
are questions about the usability, helpful functions, missing functions, etc.

5.5.4 Second Assignment Part

In the second assignment part all participants are assigned to one single group. The goal of
this part is to answer the questions Q3 and Q4. Therefore, the participants are instructed to
process the assignment C, which requires to create a documentation with UniMoDoc. The
contents and appearance of the documentation are prescribed. The participants receive only a
short getting started document. At the end, they have to save the created documentation on
a Universal Serial Bus (USB) flash drive. This way, it is possible to objectively control the
results. In addition, the participants will provide a subjective feedback in the next part of the
experiment.

Artifacts

The archive from the introduction contains additionally a UniMoDoc file with incomplete
module documentation. Furthermore, it contains a UML diagram and a source code artifact
of the corresponding module. These files are not linked in UniMoDoc yet.
The participants have no experience in documenting modules with UniMoDoc and they are
not instructed how this can be achieved. Nevertheless, they receive a short getting started
document, which describes the most important functions.
Additionally, the participants get a USB flash drive for saving the results. The USB flash drive
is collected at the end of the assignment.

70

5.6 Experiment Overview

Assignments

The assignment C contains a detailed description of the module documentation, which needs to
be completed with UniMoDoc. The description displays a screenshot of how the documentation
should look like at the end. Furthermore, it describes which sections, widgets, relations, relation
types, and references need to be created and what content has to be filled in. In particular,
the participants need to create three sections, with TextArea, Image, and RelationList widgets.
They have to fill in the information text of the sections and the content of the TextArea. The
participants need to reference the corresponding UML diagram and the source code artifact.
Then, they have to create the appropriate relations and link them in the Image and RelationList
widgets. Finally, the participants save the completed module documentation on the USB flash
drive.

5.5.5 Second Feedback

The second feedback is meant to obtain the subjective impressions of the participants according
the usability of UniMoDoc during the second assignment part. Consequentially, the participants
are directly asked about the usability and indirectly about helpful, missing, and improvable
functions. They are also asked, whether they would like to document modules with UniMoDoc
in future and if they would like to use the documentation created with UniMoDoc. Additionally,
the participants need to answer control questions about their skills in Java and Javadoc.

5.6 Experiment Overview

This chapter provides a short overview of the single experiments parts. The parts are listed
in the execution order with the corresponding execution duration in minutes. The overall
experiment is limited to 90 minutes. The total duration sum of the single parts equals 80
minutes. The remaining 10 minutes are planned as buffer time, e.g., between the single
experiment parts.

Introduction (5 min)
Materials: Information note, leaflet with a unique identification number, archive with all
required digital artifacts
Description: Participants receive the initial materials and get informed about the further
experiment process.

First Assignment Part (40 min)
Materials: Assignment A and B
Description: The participants are separated into 4 groups G1 to G4. They need to find
information in the given module documentation with UniMoDoc and without UniMoDoc.
Depending on the group, this experiment is structured into two parts of 20 minutes as
follows:

71

5 Evaluation

G1 works on assignment A with UniMoDoc, then on assignment B without UniMoDoc

G2 works on assignment A without UniMoDoc, then on assignment B with UniMoDoc

G3 works on assignment B with UniMoDoc, then on assignment A without UniMoDoc

G4 works on assignment B without UniMoDoc, then on assignment A with UniMoDoc

First Feedback (10 min)
Materials: First feedback form
Description: The participants answer questions about the first assignment part.

Second Assignment Part (15 min)
Materials: Assignment C, short getting started sheet, USB flash drive
Description: The participants need to finish incomplete module documentation from the
archive and save the results on the given USB flash drive.

Second Feedback (10 min)
Materials: Second feedback form
Description: The participants answer questions about the second assignment part.

5.7 Validity of the Experiment

This chapter describes how the internal and external validities are regarded in this experiment.

5.7.1 Internal Validity

According to [Prechelt, 2001], the internal validity describes the extent to which the dependent
variables are controlled. In other words, it describes whether only the independent variable
is responsible for the observed effects and thus how accurate the results are. Therefore, it is
necessary to consider the possible threats to the internal validity during the planning and to
argue about the precautions took against them. There are myriads of possible threats but
most of them can be outlined in several classes. The considered classes of threats for this
experiment and their counter-measures are listed below. However, no threats were detected
for the classes History, Instrumentation, and Regression.

72

5.7 Validity of the Experiment

Selection

The selection of the participants and their assignment to groups can significantly affect the
results. It can happen that the characteristics of the participants, e.g., skills, mental abilities,
motivation, etc. are not equally distributed among the groups and therefore influence the
experiment.
In this experiment the participants are randomly assigned to the groups. Therefore, possible
distinctions between them are ideally statistically balanced.

Maturation

Maturation refers to the issue that the participants may evolve during the execution of the
experiment and hereby affect the results. It occurs if participants, e.g., learn to accomplish the
tasks better during the experiment, employ the knowledge from previous tasks to advantage,
fatigue in the course of the experiment, etc.
In the first experiment part a threat exists that the participants will evolve between the
assignments A and B. Therefore, the processing order is permutated for the assignments and
approaches (with UniMoDoc and without it).

Mortality

The mortality defines a threat that participants may withdraw from the experiment before its
ending. This can result in a complete abort of the experiment, e.g., in a case with not random
but systematic reason for the attrition.
This experiment is executed exactly in the time frame of a tutorial and the students are
informed about it in advance. Additionally, they are advised and motivated to stay to the end
of the experiment.

Demand Characteristics

It is possible that the experimenters treat the participant groups differently. They may prefer
the group from which they expect better results by, e.g., motivating, helping, demotivating
the other groups, etc.
In this experiment each participant has to solve assignments with and without UniMoDoc.
Thus no group exists, where only negative or positive results are expected. Additionally, the
assignments are provided to the participants in text form. Except from the instruction to
use UniMoDoc or the conventional documentation, care has been taken to ensure that the
assignments are absolutely equally.

73

5 Evaluation

Processing Errors

Processing errors can occur in the course of the experiment and during the evaluation of the
results. Thus, e.g., the groups can be mixed up, results can be lost, subjective appraisal of the
results can vary, transfer errors of the results can occur, etc.
The participants receive a unique number for identification before the start of the first
assignment part. This number is used for matching all generated results to a specific participant
and group. Moreover, there is a portfolio for all results of a single participant, which ensures
that the results are not mixed up. The accuracy of the evaluation of the results is increased
by a defined evaluation method and double evaluation of the both experimenters.

5.7.2 External Validity

According to [Prechelt, 2001], the external validity describes how well the results of an ex-
periment can be generalized. Thus it describes whether the results are applicable to other,
especially real world use cases. The design of this experiment considers the external validity
and attempts to maximize it. Nevertheless, this experiment has some limits due to the scope
of the both theses and the parameters. The considerations and limits of the external validity
are listed below.

This experiment utilizes the artifacts of UniMoDoc as materials for the assignments. Thus
the utilized software project is not a specially created mock-up but a real software project.
However, UniMoDoc was created in the scope of two diploma theses and cannot be compared
with mature and professional software projects. It is therefore advisable to conduct experiments
with another software projects as assignment material.

The assignments in the first part of the experiment attempt to simulate typical use cases for
finding information in module documentation. They address especially the traceability in
software engineering. Still, they are only an extract of the real world use cases. Therefore, the
design of this experiment can be extended to more use cases in the future executions.

The experiment does not provide special requirements for the different groups. There-
fore, the participants are randomly assigned to them. However, the participants were not
randomly selected for the experiment due to its parameters. They are all master students
in Software Engineering at the University of Stuttgart. Thus it is hard to generalize their
results. Consequentially, it is advisable to execute further experiments with randomly selected
developers in order to increase the external validity.

5.8 Pilot Experiment and Execution

It is beneficial to test the execution of an experiment with a pilot experiment. This way, it
is possible to minimize the risk of a fail during the execution, to examine the assignments,
questions, time slots, etc. and to improve or adjust them. The experiment was tested with

74

5.9 Results

one Software Engineering student at the University of Stuttgart. During the pilot experiment
the student was about to begin his diploma thesis. Thus the educational experience of the
student was comparable to the final participants of the experiment.
The pilot experiment revealed several weaknesses in the experiment. Mainly, some questions
and assignments were not precisely enough formulated. These questions and assignments were
improved.

The final experiment was executed as expected. No issues occurred during the execution. The
number of participants was 8. No participant left the experiment before the end.

5.9 Results

This chapter lists the results according to the adjusted goals from Chapter 5.4. The results
are not interpreted in this chapter. The interpretation and conclusion of the experimental
results is described in Chapter 5.10. The assignments are analysed by the number of correct
answers. Thus either an answer is fully correct or it is regarded as false. The control questions
about Java and Javadoc skills confirmed the minimum requirements of the participants for the
experiment and are not discussed further.

Q1 Will the participants find more required information using UniMoDoc within
a given time frame compared to using similar module documentation created
with a word processor and Javadoc?

The objective analysis of the first assignment part shows that the participants solved correctly
23 of 40 (58.0%) questions with UniMoDoc and 15 of 40 (38.0%) without UniMoDoc. In other
words, the participants solved 53% more questions correctly with UniMoDoc compared to
conventional documentation.

After the first assignment part the participants were asked how well they could solve the
assignments with UniMoDoc compared to conventional documentation on a scale from 1 to 7.
1 means very much better without UniMoDoc and 7 means very much better with UniMoDoc.
The participants answered as follows:

• 25.0% said 7 (very much better with UniMoDoc)

• 37.5% said 6 (much better with UniMoDoc)

• 25.0% said 4 (equally good/bad with and without UniMoDoc)

• 12.5% said 3 (better without UniMoDoc)

In the second assignment part the participants were asked, what type of module documentation
they would like to receive in order to maintain and develop existing software. The participants
answered:

75

5 Evaluation

• 62.5% said that they would like to receive a module documentation created with
UniMoDoc

• 36.5% said that they would like to receive a module documentation in a wiki.

Q2 Will the explicitly defined relations and their visualization help the
participants to find the required information using UniMoDoc?

In the first feedback the participants were asked whether they used the visualization of the
relations in UniMoDoc. The results show that 100% of the participants used it.

The participants were asked to compare the time effort in the visualization of UniMoDoc with
conventional documentation for completing different assignments on a scale from 1 to 5. 1
stands for much slower with the visualization of UniMoDoc and 5 for much faster with the
visualization of UniMoDoc compared to the conventional documentation. The answers for
different assignments are as follows:

Finding modules, which realize a particular requirement

• 75% said 5 (much faster)

• 25% said 4 (faster)

Detecting whether a requirement is tested or not

• 62.5% said 5 (much faster)

• 25.0% said 4 (faster)

• 12.5% said 3 (equally fast)

Finding the test cases for a particular requirement

• 37.5% said 5 (much faster)

• 50.0% said 4 (faster)

• 12.5% said 3 (equally fast)

Finding the test protocols for a particular test case

• 25.0% said 5 (much faster)

• 25.0% said 4 (faster)

• 50.0% said 3 (equally fast)

Finding the dependencies across modules

• 75.0% said 5 (much faster)

• 12.5% said 4 (faster)

• 12.5% said 3 (equally fast)

76

5.9 Results

Additionally, the participants were asked to mention especially helpful functions in UniMoDoc
for solving the assignments as free text. 62.5% of the participants mentioned the visualization
of the relations and 25.0% mentioned the explicit relation definitions.

Q3 Will UniMoDoc crash during the evaluation?

The participants were asked in the first and second feedback about the number of crashes of
UniMoDoc. All participants reported no crashes in both feedback forms.

Q4 Do the participants feel positive about the usability of UniMoDoc and can
they accomplish typical tasks without additional instructions?

The participants were asked to describe the usability of UniMoDoc in the first feedback after
the first assignment part on a scale from 1 (very user-unfriendly) to 7 (very user-friendly).
The participants answered:

• 50.0% said 6

• 12.5% said 5

• 37.5% said 2

The participants were asked to describe the usability of UniMoDoc in the second feedback
only according the second assignment part on a scale from 1 (very user-unfriendly) to 7 (very
user-friendly). The participants answered:

• 62.5% said 6

• 12.5% said 5

• 25.0% said 3

In the second assignment part the participants had to complete a module documentation using
UniMoDoc. The participants received no further instructions besides the assignments and a
short getting started sheet. They solved 23 of 24 (96.0%) assignments correctly.

Additionally, based on the second assignment part, the participants were asked, which
tools they would prefer to use for documenting modules. They answered as follows:

• 50.0% said UniMoDoc

• 25.0% said wiki

• 12.5% said Javadoc

• 12.5% said UML tool

Furthermore, the participants were asked in free text fields about improvable and missing
functions in UniMoDoc. They named several functions in user guidance, e.g., creation of
relations, references, sections, etc.

77

5 Evaluation

5.10 Interpretation of the Results and Conclusion

This chapter interprets the results of the experiment for each question and attempts to find an
answer for the questions based on the results. Subsequently, it draws a conclusion about the
overall results of the experiment.

Q1 Will the participants find more required information using UniMoDoc within
a given time frame compared to using similar module documentation created
with a word processor and Javadoc?

The objective results of the assignments show that the participants were able to find significantly
more (53.0%) asked information with UniMoDoc than with conventional module documentation.
This observation is confirmed by the subjective feedback of the participants. The majority
(62.5%) of them considered that they were able to solve the assignments better with UniMoDoc
compared with conventional module documentation. Finally, 62.5% of the participants would
prefer to receive a module documentation created by UniMoDoc. According to the results,
the above question can be answered with yes.

Q2 Will the explicitly defined relations and their visualization help the
participants to find the required information using UniMoDoc?

The results show that the participants productively utilized the visualization of the relations.
Furthermore, they demonstrate that the visualization of the relations helped the majority of
participants in all types of assignments. 62.5% of the participants named the visualization
of the relations and another 25.0% the explicitly defined relations as an especially helpful
function for solving the assignments in a free text field. These results allow answering the
above question with yes. Additionally, they support the conclusion that especially the concept
of explicit relations and their visualization in module documentation are responsible for the
advantage of UniMoDoc observed in the results of Q1.

Q3 Will UniMoDoc crash during the evaluation?

During the overall experiment no crash of UniMoDoc was reported. Therefore, the question
can be answered with a clear no. Together with the unit tests of UniMoDoc these results
support the conclusion that UniMoDoc can be seen as stable according the typical assignments
processed during the experiment. Furthermore, the stability of UniMoDoc did not influence
the results for Q1 and Q2 negatively.

78

5.10 Interpretation of the Results and Conclusion

Q4 Do the participants feel positive about the usability of UniMoDoc and can
they accomplish typical tasks without additional instructions?

According to the results, the majority of the participants felt positive about the usability of
UniMoDoc. The ability of documenting the modules with UniMoDoc in the second assignment
part was mainly evaluated according the usability. 96.0% of the assignments were completed
correctly. Based on the second assignment part, 50% of the participants would prefer to
document modules with UniMoDoc. According to these results, the above question can be
answered with yes. Thus it can be concluded that the usability did not influence the results
for Q1 and Q2 negatively, at least to a large extent.
However, the results of the free text comments in the experiment discovered some weaknesses
in the usability of UniMoDoc, which can be improved in the future.

Conclusion

The overall results of the evaluation can be interpreted as positive and promising. The
initial goal to prove the advantages of the concepts implemented in UniMoDoc compared to
conventional module documentation is regarded as fulfilled. At the same time the experiment
revealed some minor weaknesses in the usability of UniMoDoc. The next step should be
repeating the experiment with a larger number of participants, in order to verify the current
results and obtain more precisely ones. Furthermore, it is necessary to utilize UniMoDoc in
real projects, e.g., in a field experiment, in order to evaluate its usefulness.

79

6 Conclusion and Future Work

This chapter describes briefly the results of this thesis and draws a conclusion. Subsequently
it provides a short outlook for future work.

6.1 Conclusion

The initial goals of this thesis are: creating a concept for adoptable module documentation
tool based on the research of [Kircher, 2012], implementing an operational prototype and
evaluating it. Furthermore, this thesis, its concepts, the resulting prototype, and the evaluation
are created in a close co-operation with [Casciato, 2013].

The state of the art in Chapter 2 examines the various types of modules and their re-
quirements. Additionally, it argues that the module documentation is ideally placed within the
architecture documentation. Thus the scope of this thesis moves to architecture documentation
tools. Furthermore, the state of the art chapter reveals the lack of tool support for architecture
documentation and shows the issues of the available tools.
Based on the state of the art research, this thesis suggests a technology independent design for
a highly extensible architecture documentation tool in Chapter 3. The main specifics of the
design are the extensibility with widgets, continuous support of templates, linking of resources
inside and outside the documentation, explicitly definable relations and their visualization.
Additionally, this thesis suggests a collection of metadata for a general module documentation
template.
The suggested design is implemented as a proof of concept. The idiosyncrasies of the implemen-
tation, the resulting prototype named UniMoDoc, and the implemented module documentation
template are presented in Chapter 4.
The evaluation of UniMoDoc and the concepts behind it is described in Chapter 5. In order
to prove the expected effects, a controlled experiment was planned and executed with eight
master students of Software Engineering at the University of Stuttgart. The experiment
compared module documentation created with UniMoDoc to module documentation created
with Javadoc and word processors. The results show a significant advantage of UniMoDoc
in finding typical information in module documentation, e.g., dependencies, test cases, and
requirements. It can be assumed that the observed advantages of UniMoDoc result from its
linking capabilities, explicit relation definitions, and their visualization.
Thus the first step of evaluating the concepts has been taken. However, it is necessary to prove
the benefits of UniMoDoc in real world utilization, e.g., a field experiment. Furthermore, there
is potential for improvement of the prototype according its usability and functions.

81

6 Conclusion and Future Work

6.2 Future Work

The future work requires primarily further evaluation of UniMoDoc. Thus it is advisable to
repeat the experiment described in this thesis with a larger number of participants in order
to obtain more precise results. Furthermore, it is necessary to evaluate UniMoDoc in a real
project, e.g., a field experiment.

The implementation part shows an enormous potential for future work. Especially the
free text results of the evaluation show how the usability of UniMoDoc can be improved. Due
to the tough time schedule UniMoDoc misses some common comfort functions, e.g., undo
and redo. Nevertheless, these functions can be added with an acceptable effort. Additionally,
the evaluation results reveal that UniMoDoc would benefit from a search function. At the
moment UniMoDoc provides no search function at all. The experiment participants were
still able to find the required information faster with UniMoDoc than with the conventional
module documentation because of the navigation concept, explicitly defined relations and
their visualization in UniMoDoc. Probably this advantage can be even improved by a search
function with a relatively slight effort.

The widgets provide an explicit extension point in UniMoDoc. Besides the actually shipped
widgets (TextField, TextArea, Image, RelationList, HTML) further widgets can be created.
The HTML widget provides only very basic formatting options, which are improvable. It is
also possible to implement a simple UML widget using the graph library [JGraph, 2013] from
relations visualization.

The support of templates in UniMoDoc is one of the central features. However, in a scenario
where a requirement template was used n times in a document and the description section
needs to be renamed in all requirements to definition, it is necessary to rename it individually
in each of the n requirements. This behavior results from the high flexibility of the structure,
which is not bound to a template after it is imported in a document.
Nevertheless, this behavior can be improved by labels. Labels can be used to mark chapters,
sections, relations, relation types, and references in a UniMoDoc document. Thus labels can
provide grouping and additional semantics for these elements. The above scenario can be
solved by a specific label for the description section. Consequentially, a user could select and
configure all sections with a specific label simultaneously. Furthermore, a synergy effect can
be achieved with the labels and a search function.

The documentation created in UniMoDoc can be additionally exported to the source code
artifacts with a comparable result to [Kircher, 2012]. This use case can be beneficial if archi-
tecture documentation is created with UniMoDoc before the implementation. Then source
code artifacts can be directly generated from UniMoDoc with initial documentation.
There is a rudimentary implementation of this function in UniMoDoc. This function was used
for the evaluation in order to create Javadoc module documentation with identical content. In
this case, the package-info.java files with the module documentation were generated from
the module documentation in UniMoDoc.

82

6.2 Future Work

The implementation of this function can be improved by providing additional settings, e.g.,
the exported attributes. The current implementation uses the names of the sections to identify
the attributes, which need to be exported. This approach can be significantly improved by
using labels.

A reverse use case to the upper scenario is where UniMoDoc is utilized in order to doc-
ument an already existing project. In this case, the existing information can be extracted
from the source code. UniMoDoc utilizes a parser for Java source code artifacts [Gesser, 2013]
already. This feature can be extended to other programming languages.

The currently used approach for saving and loading data in UniMoDoc is a combination
of XML and JAXB. The reasons for choosing these technologies are described in Chapter 4.
However, negative effects are observed concerning the file size and loading time for large
documentations. It is possible to counteract these effects by reducing the file size and changing
the used approach. The overall file size can be reduced by compressing the XML structure.
There are various compression techniques for XML but it is necessary to consider that the
compressed file needs to stay text-based.
The overall loading speed can be improved by a utilizing a simpler format than XML. The de-
sign of UniMoDoc allows changing the underlying data format with small effort. Alternatively,
the JSON data format can be considered.

83

A Appendix

Name Description Use for Architecture
Documentation

Analyst Responsible for analyzing the ar-
chitecture to make sure it meets
certain critical quality attribute re-
quirements. Analysts are often spe-
cialized; for instance, performance
analysts, safety analysts, and secu-
rity analysts may have well-defined
positions in a project.

Analyzing satisfaction of quality at-
tribute requirements of the system
based on its architecture.

Architect Responsible for the development of
the architecture and its documenta-
tion. Focus and responsibility is on
the system.

Negotiating and making trade-offs
among competing requirements and
design approaches. A vessel for
recording design decisions. Provid-
ing evidence that the architecture
satisfies its requirements.

Business
manager

Responsible for the functioning of
the business/organizational entity
that owns the system. Includes
managerial/executive responsibility,
responsibility for defining business
processes, and more.

Understanding the ability of the ar-
chitecture to meet business goals.

Conformance
checker

Responsible for assuring confor-
mance to standards and processes
to provide confidence in a product’s
suitability.

Basis for conformance checking,
for assurance that implementations
have been faithful to the architec-
tural prescriptions.

Customer Pays for the system and ensures its
delivery. The customer often speaks
for or represents the end user, espe-
cially in a government acquisition
context.

Assuring required functionality and
quality will be delivered, gauging
progress, estimating cost, and set-
ting expectations for what will be
delivered, when, and for how much.

Continued on next page

85

A Appendix

Name Description Use for Architecture
Documentation

Database
administrator

Involved in many aspects of the data
stores, including database design,
data analysis, data modeling and op-
timization, installation of database
software, and monitoring and ad-
ministration of database security.

Understanding how data is created,
used, and updated by other architec-
tural elements, and what properties
the data and database must have
for the overall system to meet its
quality goals.

Deployer Responsible for accepting the com-
pleted system from the development
effort and deploying it, making it op-
erational, and fulfilling its allocated
business function.

Understanding the architectural ele-
ments that are delivered and to be
installed at the customer’s or end
user’s site, and their overall respon-
sibility toward system function.

Designer Responsible for systems and/or soft-
ware design downstream of the ar-
chitecture, applying the architecture
to meet specific requirements of the
parts for which they are responsible.

Resolving resource contention and
establishing performance and other
kinds of runtime resource consump-
tion budgets. Understanding how
their part will communicate and in-
teract with other parts of the sys-
tem.

Evaluator Responsible for conducting a formal
evaluation of the architecture (and
its documentation) against some
clearly defined criteria.

Evaluating the architecture’s abil-
ity to deliver required behavior and
quality attributes.

Implementer Responsible for the development of
specific elements according to de-
signs, requirements, and the archi-
tecture.

Understanding inviolable con-
straints and exploitable freedoms
on development activities.

Integrator Responsible for taking individual
components and integrating them,
according to the architecture and
system designs.

Producing integration plans and
procedures, and locating the source
of integration failures.

Maintainer Responsible for fixing bugs and pro-
viding enhancements to the system
throughout its life (including adap-
tation of the system for uses not
originally envisioned).

Understanding the ramifications of
a change.

Continued on next page

86

Name Description Use for Architecture
Documentation

Network
administrator

Responsible for the maintenance
and oversight of computer hardware
and software in a computer net-
work. This may include the deploy-
ment, configuration, maintenance,
and monitoring of network compo-
nents.

Determining network loads during
various use profiles and understand-
ing uses of the network.

Product
line manager

Responsible for development of an
entire family of products, all built
using the same core assets (includ-
ing the architecture).

Determining whether a potential
new member of a product family
is in or out of scope and, if out, by
how much.

Project
manager

Responsible for planning, sequenc-
ing, scheduling, and allocating re-
sources to develop software compo-
nents and deliver components to in-
tegration and test activities.

Helping to set budget and schedule,
gauging progress against established
budget and schedule, and identify-
ing and resolving development-time
resource contention.

Representative
of external
systems

Responsible for managing a system
with which this one must interoper-
ate, and its interface with our sys-
tem.

Defining the set of agreement be-
tween the systems.

System
engineer

Responsible for design and develop-
ment of systems or system compo-
nents in which software plays a role.

Assuring that the system environ-
ment provided for the software is
sufficient.

Tester Responsible for the (independent)
test and verification of the system
or its elements against the formal
requirements and the architecture.

Creating tests based on the behav-
ior and interaction of the software
elements.

User The actual end users of the system.
There may be distinct kinds of users,
such as administrators, superusers,
and so on.

Users, in the role of reviewers, might
rely on architecture documentation
to check whether desired functional-
ity is being delivered. Users might
also refer to the documentation to
understand what the major system
elements are, which can aid them in
emergency field maintenance.

Table A.1: Stakeholders of software architecture documentation from [Garlan et al., 2010]

87

Bibliography

[Adobe, 2013] Adobe (2013). Adobe Acrobat Family. Available from: http://www.adobe.com/
products/acrobat.html. (Cited on page 34)

[Apache Felix, 2013] Apache Felix (2013). Apache Felix. Available from: http://felix.
apache.org/. (Cited on page 17)

[Apple, 2013] Apple (2013). Mac Basics: The Finder. Available from: http://support.
apple.com/kb/ht2470. (Cited on page 33)

[arc42, 2013] arc42 (2013). Free Portal for Software Architects. Available from: http://www.
arc42.de. (Cited on page 26)

[Buckley et al., 2006] Buckley, A., Bock, D. W., Halloway, S., Hall, R. S., Kriens, P., Lea, D.,
Leuck, D., Pullara, S., and Neward, T. (2006). JSR 277: Java Module System. Available
from: http://jcp.org/en/jsr/detail?id=277. (Cited on page 20)

[Buckley et al., 2007] Buckley, A., Hall, R. S., Kriens, P., Lea, D., Leuck, D., and Pullara,
S. (2007). JSR 294: Improved Modularity Support in the JavaTM Programming Language.
Available from: http://jcp.org/en/jsr/detail?id=294. (Cited on page 20)

[Casciato, 2013] Casciato, D. (2013). Verwaltung von Testinformationen in der Moduldoku-
mentation. Diploma, University of Stuttgart. (Cited on pages 12, 31, 37, 39, 45, 56, 59, 61,
65, 67 and 81)

[Eclipse Foundation, 2013a] Eclipse Foundation (2013a). Eclipse. Available from: http:
//www.eclipse.org/. (Cited on page 34)

[Eclipse Foundation, 2013b] Eclipse Foundation (2013b). Eclipse Equinox. Available from:
http://www.eclipse.org/equinox/. (Cited on page 17)

[Ellison, 2013] Ellison, T. (2013). Project Penrose. Available from: http://openjdk.java.
net/projects/penrose/. (Cited on page 22)

[FEA, 2013] FEA (2013). Federal Enterprise Architecture. Available from: http://www.
whitehouse.gov/omb/e-gov/fea. (Cited on page 26)

[FMC, 2013] FMC (2013). Fundamental Modeling Concepts. Available from: http://www.
fmc-modeling.com/. (Cited on page 26)

[Foxit Corporation, 2013] Foxit Corporation (2013). Foxit Reader. Available from: http:
//www.foxitsoftware.com/Secure_PDF_Reader/. (Cited on page 34)

89

http://www.adobe.com/products/acrobat.html
http://www.adobe.com/products/acrobat.html
http://felix.apache.org/
http://felix.apache.org/
http://support.apple.com/kb/ht2470
http://support.apple.com/kb/ht2470
http://www.arc42.de
http://www.arc42.de
http://jcp.org/en/jsr/detail?id=277
http://jcp.org/en/jsr/detail?id=294
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/equinox/
http://openjdk.java.net/projects/penrose/
http://openjdk.java.net/projects/penrose/
http://www.whitehouse.gov/omb/e-gov/fea
http://www.whitehouse.gov/omb/e-gov/fea
http://www.fmc-modeling.com/
http://www.fmc-modeling.com/
http://www.foxitsoftware.com/Secure_PDF_Reader/
http://www.foxitsoftware.com/Secure_PDF_Reader/

Bibliography

[Garlan et al., 2010] Garlan, D., Bachmann, F., Ivers, J., Stafford, J., Bass, L., Clements, P.,
and Merson, P. (2010). Documenting Software Architectures: Views and Beyond. Addison-
Wesley Professional, 2nd edition. (Cited on pages 9, 17, 24, 25, 26, 44, 45 and 87)

[Gesser, 2013] Gesser, J. (2013). Java 1.5 Parser. Available from: https://code.google.
com/p/javaparser/. (Cited on page 83)

[Hall et al., 2011] Hall, R., Pauls, K., McCulloch, S., and Savage, D. (2011). OSGi in Action:
Creating Modular Applications in Java. Manning Pubs Co Series. Manning Publications
Company. (Cited on page 17)

[IEEE-1471, 2000] IEEE-1471 (2000). IEEE Recommended Practice for Architectural De-
scription of Software-Intensive Systems. IEEE Std 1471-2000, pages i–23. Available from:
http://ieeexplore.ieee.org/servlet/opac?punumber=7040. (Cited on pages 24 and 26)

[IEEE-610.12, 1990] IEEE-610.12 (1990). IEEE Standard Glossary of Software Engineering
Terminology. IEEE Std 610.12-1990, pages 1–84. (Cited on pages 15, 16 and 23)

[ISO/IEC/IEEE, 2010] ISO/IEC/IEEE (2010). Systems and software engineering – Vocabulary.
ISO/IEC/IEEE 24765:2010(E), pages 1–418. (Cited on page 16)

[J-PaD, 2013] J-PaD (2013). Java Package Documentation. Available from: http://www.
j-pad.de/. (Cited on pages 12, 27, 30, 43, 44, 45 and 46)

[Jedlitschka and Pfahl, 2005] Jedlitschka, A. and Pfahl, D. (2005). Reporting guidelines for
controlled experiments in software engineering. In Empirical Software Engineering, 2005.
2005 International Symposium on, pages 10 pp.–. (Cited on page 65)

[JGraph, 2013] JGraph (2013). Java Graph Drawing Component. Available from: http:
//www.jgraph.com/. (Cited on page 82)

[Kircher, 2012] Kircher, M. (2012). Integrated Documentation for Software Modules. Diploma,
University of Stuttgart. (Cited on pages 8, 12, 27, 28, 81 and 82)

[Knöpfel et al., 2005] Knöpfel, A., Gröne, B., and Tabeling, P. (2005). Fundamental modeling
concepts: effective communication of IT systems. J. Wiley & Sons. (Cited on page 26)

[Knopflerfish, 2013] Knopflerfish (2013). Knopflerfish - Open Source OSGi Service Platform.
Available from: http://www.knopflerfish.org/. (Cited on page 17)

[Ludewig and Lichter, 2007] Ludewig, J. and Lichter, H. (2007). Software Engineering -
Grundlagen, Menschen, Prozesse, Techniken. dpunkt.verlag. (Cited on pages 8, 16, 17
and 28)

[Microsoft, 2013a] Microsoft (2013a). How to work with files and folders. Available from: http:
//windows.microsoft.com/en-us/windows-8/files-folders-windows-explorer.
(Cited on page 33)

[Microsoft, 2013b] Microsoft (2013b). Microsoft Visual Studio. Available from: http://www.
microsoft.com/visualstudio. (Cited on page 34)

90

https://code.google.com/p/javaparser/
https://code.google.com/p/javaparser/
http://ieeexplore.ieee.org/servlet/opac?punumber=7040
http://www.j-pad.de/
http://www.j-pad.de/
http://www.jgraph.com/
http://www.jgraph.com/
http://www.knopflerfish.org/
http://windows.microsoft.com/en-us/windows-8/files-folders-windows-explorer
http://windows.microsoft.com/en-us/windows-8/files-folders-windows-explorer
http://www.microsoft.com/visualstudio
http://www.microsoft.com/visualstudio

Bibliography

[MODAF, 2013] MODAF (2013). Ministry of Defense Architecture Framework. Available
from: http://www.modaf.org.uk/. (Cited on page 26)

[OpenJDK, 2013] OpenJDK (2013). Project Jigsaw. Available from: http://openjdk.java.
net/projects/jigsaw/. (Cited on page 21)

[OSGi, 2013] OSGi (2013). OSGi Alliance. Available from: http://www.osgi.org. (Cited
on page 17)

[Parnas, 1972] Parnas, D. L. (1972). On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058. Available from: http://doi.acm.org/10.
1145/361598.361623. (Cited on pages 11, 15 and 44)

[Prechelt, 2001] Prechelt, L. (2001). Kontrollierte Experimente in der Softwaretechnik: Poten-
zial und Methodik. Springer-Verlag GmbH. (Cited on pages 65, 68, 72 and 74)

[Reinhold, 2011] Reinhold, M. (2011). Project Jigsaw: The Big Picture - DRAFT
1. pages 1–418. Available from: http://cr.openjdk.java.net/~mr/jigsaw/notes/
jigsaw-big-picture-01. (Cited on page 21)

[Reinhold, 2012] Reinhold, M. (2012). Project Jigsaw: On the next train. Available from:
http://mreinhold.org/blog/on-the-next-train. (Cited on page 21)

[RM/ODP, 2013] RM/ODP (2013). Reference Model for Open Distributed Processing. Avail-
able from: http://www.rm-odp.net/. (Cited on page 26)

[SEI, 2013] SEI (2013). Software Architecture Overview. Available from: http://www.sei.
cmu.edu/architecture. (Cited on page 24)

[Starke and Hruschka, 2011] Starke, G. and Hruschka, P. (2011). Software-Architektur Kom-
pakt: Angemessen Und Zielorientiert. IT kompakt. Spektrum Akademischer Verlag GmbH.
(Cited on pages 26, 43, 44, 45 and 46)

[Stefanov, 2010] Stefanov, S. (2010). JavaScript Patterns. O’Reilly Media. (Cited on page 22)

[TOGAF, 2013] TOGAF (2013). The OpenGroup Architecture Framework. Available from:
http://www.opengroup.org/. (Cited on page 26)

All links were last followed on August 26, 2013.

91

http://www.modaf.org.uk/
http://openjdk.java.net/projects/jigsaw/
http://openjdk.java.net/projects/jigsaw/
http://www.osgi.org
http://doi.acm.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
http://cr.openjdk.java.net/~mr/jigsaw/notes/jigsaw-big-picture-01
http://cr.openjdk.java.net/~mr/jigsaw/notes/jigsaw-big-picture-01
http://mreinhold.org/blog/on-the-next-train
http://www.rm-odp.net/
http://www.sei.cmu.edu/architecture
http://www.sei.cmu.edu/architecture
http://www.opengroup.org/

Decleration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Design
	1.4 Outline

	2 State of the Art
	2.1 Software Module
	2.1.1 Modules in Java
	2.1.2 Software Modules Conclusion

	2.2 Software Architecture Documentation
	2.3 Templates and Tools for Software Architectures
	2.4 J-PaD

	3 Requirements and Design
	3.1 Requirements
	3.1.1 Functional Requirements
	3.1.2 Non-functional Requirements
	3.1.3 Stakeholders

	3.2 Design
	3.2.1 Concepts
	3.2.2 Data Model
	3.2.3 Module Metadata

	4 Implementation and Results
	4.1 Implementation
	4.1.1 Data Format
	4.1.2 Application Flow
	4.1.3 Id Generation and Modification

	4.2 Results
	4.2.1 Overview
	4.2.2 Module Template

	5 Evaluation
	5.1 Initial Goals
	5.2 Experiment Type
	5.3 Parameters
	5.4 Adjusted Goals
	5.5 Experiment Design
	5.5.1 Introduction
	5.5.2 First Assignment Part
	5.5.3 First Feedback
	5.5.4 Second Assignment Part
	5.5.5 Second Feedback

	5.6 Experiment Overview
	5.7 Validity of the Experiment
	5.7.1 Internal Validity
	5.7.2 External Validity

	5.8 Pilot Experiment and Execution
	5.9 Results
	5.10 Interpretation of the Results and Conclusion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	A Appendix
	Bibliography

