
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Student Research Project Nr. 2428

Mobilelogging: Assessing
Smartphone Sensors for

Monitoring Sleep Behaviour

Sven Andre Mayer

Course of Study: Computer Science

Examiner: Prof. Dr. Albecht Schmidt

Supervisor: M.Sc. Alireza Sahami, Dr. Niels Henze

Commenced: 2013-01-01

Completed: 2013-09-30

CR-Classification: I.5.2

Abstract
This work deals with mobile devices, more specifically with Android smartphones. Smart-
phones have more and more accurate sensor data. This we can use to make us a more
accurate picture of our trade. Here, the techniques are demonstrated on the present state
of the art show. Using an example is shown how this works in detail data recording. It
is a user study carried out over 7 days. The goal is to determine whether the data can
be analysed sleep behaviour by the smartphone. To control a commercial objective sleep
measurement device is used.

3

Contents

1 Introduction 7

2 Context Data on Android Devices 9
2.1 Sensor-Class . 9

2.1.1 Register a Sensor . 9
2.2 BroadcastReceiver-Class . 11

2.2.1 Register a BroadcastReceiver . 15

3 Sleep Tracking with Commercial Devices 17
3.1 Sleep Laboratory . 17
3.2 FitBit . 17
3.3 Withings Pulse . 17
3.4 Jawbone . 18
3.5 User Inclusion . 18
3.6 The decision . 18

4 Implementation of an Android App 19
4.1 App Server Communication . 20
4.2 Problems . 21

5 User Study 23
5.1 Questionnaire . 23
5.2 Progress . 23
5.3 Problems . 23

5.3.1 Gap Problem . 23
5.3.2 Recording Time of Fitbit . 25

6 Data Analysis 27
6.1 Download Fitbit Data . 27

6.1.1 Register Fitbit App . 27
6.1.2 Retrieving Collection Data . 27

6.2 Download Phone Data . 33
6.3 Preparing the Data . 33
6.4 Data Analysis . 36

6.4.1 More Data . 37

7 Conclusion 41

5

1 Introduction

Smart phones turn more and more into personal computing devices with a wide variety of
applications that support users during everyday life. The ubiquity of the mobile phones
allows people to use them in any context. The proliferation of mobile devices in everyday
life leads to an increasing amount of information about users’ personal contexts that can
be obtained automatically and made available to third-party applications. In this project
we aim to develop an application for Android devices, which logs all possible context
information, can be retrieved. To achieve the goal, the potential context information
is recognized in the first step. Then an application is developed to log the information
and store it in a central database. To fill this central database it is necessary to collect
data from different people with different age, gender and jobs to have a wide range of
different moving behavior. This will happen in a user study. Every user will be record
his context over one week. All data in our central database will give us an idea of the
user’s behavior and about his day cycle. The aspect we want to look at the data is the
night sleep. Night sleep will here define as a sleep longer than 5 hours between 10 p.m.
and 10 a.m. We are all people and people need to sleep, so in every day cycle there has
to be a sleep time. The next aim it will be to extract the sleep time out of the user’s
data. But the question is: are there data the truth? To answer this question we need
have something like a “truth recorder”. This has to be a device we can give to all study
members to record their precise sleep time, start and end while they are recording their
data with the mobile device. With the precise sleep data and the mobile device context
data we can analyze differences, anomalies and similarities in the night sleep. This will
be the main goal for this work, to make clear if there is a signified similarity between
humans sleep and their mobile device contexts. Another interesting information we want
to get is with context information increases the accuracy of the difference in the data.

7

2 Context Data on Android Devices

Now we want to give an overview out data logging on an Android device. Android
provides two options ready to pick off phone context. One is the Sensor-Class and the
other is the BroadcastReceiver-Class. The difference between these classes is very simple.
Sensor-Class check for changed values in a defined time interval and send if it is changed.
BroadcastReceiver-Class only sends values if the value has changed.

2.1 Sensor-Class

The Sensor-Class is available since API level 3. Before API level 3, the Sensors-Class was
stored in "android.hardware.SensorManager". Here we will describe to setup a Sensor
since API Level 3. Table 2.1 shows all possible sensors Android provide in the Sensor-
Class.
To use the Sensor-Class you class need to implements "android.hardware.SensorEvent-

Listener". This implementation requires two methods "void onAccuracyChanged(Sensor
sensor, int accuracy)" and "void onSensorChanged(SensorEvent event)". Both methods
will be called by the AndroidOS. onAccuracyChanged will be called when the accuracy of
a sensor has changed. onSensorChanged will be called when sensor values have changed.

2.1.1 Register a Sensor

If we have implements the "SensorEventListener" we can register one or more Sensors.
Listing 2.1 shows the code to register a "Sensor.TYPE_ACCELEROMETER" sensor.
Table 2.1 shows us all sensors we can register here. With the third parameter of the
method "registerListener" its possible we set an update rate of the sensor. The are four
delay time settings shown in table 2.2. Through the Java source files we have found that
each delay times are assigned to a specific value. The table 2.3 shows the theoretical
times. In the Java source file the delay time is given in µs. For "SENSOR_DELAY_
FASTEST" i need to say that a 0 delay time is not possible, so what it mean that you
got the lowest delay time your hardware sensor in your phone supports. With low delay
times appears a problem. The problem is that the sequence of events is not necessarily
sorted chronologically. This means that must be specially checked whether the sequence
is correct.

1 SensorManager sensorManager = (SensorManager) this.getApplicationContext().
getSystemService(Context.SENSOR_SERVICE);

2 Sensor sensor = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER
);

9

2 Context Data on Android Devices

3 sensorManager.registerListener(this, sensor, SensorManager.
SENSOR_DELAY_NORMAL);

Listing 2.1: Registration of a sensor

If we register two or more sensors in one class its necessary to check which one called
"onSensorChanged" like we did in listing 2.2.

1 @Override
2 public void onSensorChanged(SensorEvent event)
3 {
4 switch (event.sensor.getType ()){
5 case Sensor.TYPE_ACCELEROMETER:
6 doAccelerometer(event.timestamp, event.values);
7 break;
8 case Sensor.TYPE_MAGNETIC_FIELD:
9 doMagneticField(event.timestamp, event.values);

10 break;
11 }
12 }

Listing 2.2: How the onSensorChanged function is build

There are two other things to pay attention to the use of onSensorChanged. The
parameter "event" of type "SensorEvent" has two fields that are important: "timestamp"
and "values".
First we have the "values" variable, its a float array. Different sensors have different

lengths of the array and various units, see table 2.4.
Second event offers the value "timestamp". But be care full its not a timestamp we

would expect. The value is not given in ms an not since 01.01.1970. The value is the
time in nanosecond at which the event happened and counts from the start up time
of the phone. This means that 0ns is the start time of the phone. Listing ?? shows
how we have a calculation to come from timestamp start up time to milliseconds till
1970. It is not perfect because "new Date()" and "SystemClock.uptimeMillis()" is called
after the event happens but it is the best of what you can do. Through my recherche
can say, "timestamp" is counted in nanoseconds since the system was booted. This
clock stops when the system enters deep sleep (CPU off, display dark, device waiting
for external input), but is not affected by clock scaling, idle, or other power saving
mechanisms. So you need a similar clock if you wand to calculate something with the
event.timestamp, we can use System.nanoTime() for nanosecond calculation and for
milisecoind calulation SystemClock.uptimeMillis(). For my calculation in listing 2.3 i
also could use System.nanoTime() but the the Android specification said NanoTime()
"cannot be used as a very exact system time expression." [1] So we decided to use
uptimeMillis() because our result value is also milliseconds. This method calculates
always a time for approximately two ms before nanoTime result is.

10

2.2 BroadcastReceiver-Class

Value Title Description
int TYPE_ACCELEROMETER A constant describing an accelerometer sensor

type.
int TYPE_ALL A constant describing all sensor types.
int TYPE_AMBIENT_

TEMPERATURE
A constant describing an ambient temperature
sensor type

int TYPE_GRAVITY A constant describing a gravity sensor type.
int TYPE_GYROSCOPE A constant describing a gyroscope sensor type
int TYPE_LIGHT A constant describing a light sensor type.
int TYPE_LINEAR_

ACCELERATION
A constant describing a linear acceleration sen-
sor type.

int TYPE_MAGNETIC_
FIELD

A constant describing a magnetic field sensor
type.

int TYPE_ORIENTATION This constant was deprecated in API level 8. use
SensorManager.getOrientation() instead.

int TYPE_PRESSURE A constant describing a pressure sensor type.
int TYPE_PROXIMITY A constant describing a proximity sensor type.
int TYPE_RELATIVE_

HUMIDITY
A constant describing a relative humidity sensor
type.

int TYPE_ROTATION_
VECTOR

A constant describing a rotation vector sensor
type.

int TYPE_TEMPERATURE This constant was deprecated in API
level 14. use Sensor.TYPE_AMBIENT_
TEMPERATURE instead.

Table 2.1: Constants at the Sensor Class [2]

1 long timeInMillis = (new Date()).getTime() + (event.timestamp − System.nanoTime
()) / 1000000L;

Listing 2.3: Sensor start up nano time to milisec since 1970

Generally also SystemClock.uptimeMillis() has the same properties as System.nanoTime().
There is only a tiny difference, but we will never be noticed. Nano-time and milli-time
is both stored in a long value. Because nano-time is much more accurate the value will
reach his maximum faster. After reaching the maximum Long will flip around and runs
again to the maximum. This phenomenon is reached after about 292.5 million years, so
we must be no thoughts.

2.2 BroadcastReceiver-Class
BroadcastReceiver works since API level 1. There are a wide range of events that you
can retrieve via a broadcast receiver. The Table 2.5 shows all possible values you can
get with the BroadcastReceiver-Class. In fact, not all are really useful. There was

11

2 Context Data on Android Devices

Value Title Description
int SENSOR_DELAY_FASTEST get sensor data as fast as possible
int SENSOR_DELAY_GAME rate suitable for games
int SENSOR_DELAY_NORMAL rate (default) suitable for screen orientation

changes
int SENSOR_DELAY_UI rate suitable for the user interface

Table 2.2: Constants for delay time at the SensorManager Class [2]

Title µs ms Hz
SENSOR_DELAY_FASTEST 0 0 0
SENSOR_DELAY_GAME 20000 20 50
SENSOR_DELAY_NORMAL 66667 66 15
SENSOR_DELAY_UI 200000 200 5

Table 2.3: Sensor delay times with real values [2]

Value Length Si units Description
TYPE_ACCELEROMETER 3 m/s2 0,1,2 = x, y, z-axis
TYPE_AMBIENT_TEMPERATURE 1 ◦C
TYPE_GRAVITY 3 m/s2 0,1,2 = x, y, z-axis
TYPE_GYROSCOPE 3 radians/s 0,1,2 = x, y, z-axis
TYPE_LIGHT 1 lux
TYPE_LINEAR_ACCELERATION 3 m/s2 0,1,2 = x, y, z-axis
TYPE_MAGNETIC_FIELD 3 µT 0,1,2 = x, y, z-axis
TYPE_ORIENTATION 3 Degree deprecated in API level 8
TYPE_PRESSURE 1 hPa
TYPE_PROXIMITY 1 cm
TYPE_RELATIVE_HUMIDITY 1 %
TYPE_ROTATION_VECTOR 3 or 4
TYPE_TEMPERATURE 1 ◦C deprecated in API level 14

Table 2.4: Constants at the Sensor Class [2]

12

2.2 BroadcastReceiver-Class

even canceled an event from the list, with the Introduction of API level 14 ACTION_
PACKAGE_INSTALL was removed.

Table 2.5: Constants at the Intent Class for BroadcastReceiver [3]
Length Description
ACTION_AIRPLANE_
MODE_CHANGED

The user has switched the phone into or out of Air-
plane Mode.

ACTION_BATTERY_
CHANGED

This is a sticky broadcast containing the charging
state, level, and other information about the bat-
tery.

ACTION_BATTERY_LOW Indicates low battery condition on the device.
ACTION_BATTERY_OKAY Indicates the battery is now okay after being low.
ACTION_BOOT_
COMPLETED

This is broadcast once, after the system has finished
booting.

ACTION_CAMERA_
BUTTON

The "Camera Button" was pressed.

ACTION_CONFIGURATION
_CHANGED

The current device Configuration (orientation, lo-
cale, etc) has changed.

ACTION_DEVICE_
STORAGE_LOW

A sticky broadcast that indicates low memory con-
dition on the device This is a protected intent that
can only be sent by the system.

ACTION_DEVICE_
STORAGE_OK

Indicates low memory condition on the device no
longer exists This is a protected intent that can
only be sent by the system.

ACTION_DOCK_EVENT A sticky broadcast for changes in the physical dock-
ing state of the device.

ACTION_DREAMING_
STARTED

Sent after the system starts dreaming.

ACTION_DREAMING_
STOPPED

Sent after the system stops dreaming.

ACTION_EXTERNAL_
APPLICATIONS_AVAILABLE

Resources for a set of packages (which were previ-
ously unavailable) are currently available since the
media on which they exist is available.

ACTION_EXTERNAL_
APPLICATIONS_
UNAVAILABLE

Resources for a set of packages are currently un-
available since the media on which they exist is
unavailable.

ACTION_GTALK_SERVICE_
CONNECTED

A GTalk connection has been established.

ACTION_GTALK_SERVICE_
DISCONNECTED

A GTalk connection has been disconnected.

ACTION_HEADSET_PLUG Wired Headset plugged in or unplugged.
Continued on next page

13

2 Context Data on Android Devices

Table 2.5 – continued from previous page
Length Description
ACTION_INPUT_METHOD_
CHANGED

An input method has been changed.

ACTION_LOCALE_
CHANGED

The current device’s locale has changed.

ACTION_MANAGE_
PACKAGE_STORAGE

Indicates low memory condition notification ac-
knowledged by user and package management
should be started.

ACTION_MEDIA_BAD_
REMOVAL

External media was removed from SD card slot, but
mount point was not unmounted.

ACTION_MEDIA_BUTTON The "Media Button" was pressed.
ACTION_MEDIA_
CHECKING

External media is present, and being disk-checked
The path to the mount point for the checking media
is contained in the Intent. mData field.

ACTION_MEDIA_EJECT User has expressed the desire to remove the exter-
nal storage media.

ACTION_MEDIA_
MOUNTED

External media is present and mounted at its
mount point.

ACTION_MEDIA_
REMOVED

External media has been removed.

ACTION_MEDIA_
SCANNER_FINISHED

The media scanner has finished scanning a direc-
tory.

ACTION_MEDIA_
SCANNER_SCAN_FILE

Request the media scanner to scan a file and add
it to the media database.

ACTION_MEDIA_
SCANNER_STARTED

The media scanner has started scanning a direc-
tory.

ACTION_MEDIA_SHARED External media is unmounted because it is being
shared via USB mass storage.

ACTION_MEDIA_
UNMOUNTABLE

External media is present but cannot be mounted.

ACTION_MEDIA_
UNMOUNTED

External media is present, but not mounted at its
mount point.

ACTION_MY_PACKAGE_
REPLACED

A new version of your application has been installed
over an existing one.

ACTION_NEW_
OUTGOING_CALL

An outgoing call is about to be placed.

ACTION_PACKAGE_ADDED A new application package has been installed on
the device.

ACTION_PACKAGE_
CHANGED

An existing application package has been changed
(e.g.

Continued on next page

14

2.2 BroadcastReceiver-Class

Table 2.5 – continued from previous page
Length Description
ACTION_PACKAGE_DATA_
CLEARED

The user has cleared the data of a package.

ACTION_PACKAGE_
FIRST_LAUNCH

Sent to the installer package of an application when
that application is first launched (that is the first
time it is moved out of the stopped state).

ACTION_PACKAGE_
FULLY_REMOVED

An existing application package has been com-
pletely removed from the device.

ACTION_PACKAGE_
NEEDS_VERIFICATION

Sent to the system package verifier when a package
needs to be verified.

ACTION_PACKAGE_
REMOVED

An existing application package has been removed
from the device.

ACTION_PACKAGE_
REPLACED

A new version of an application package has been
installed, replacing an existing version that was
previously installed.

ACTION_PACKAGE_
RESTARTED

The user has restarted a package, and all of its
processes have been killed.

ACTION_PACKAGE_
VERIFIED

Sent to the system package verifier when a package
is verified.

ACTION_PROVIDER_
CHANGED

Some content providers have parts of their names-
pace where they publish new events or items that
the user may be especially interested in.

ACTION_REBOOT Have the device reboot.
ACTION_SCREEN_OFF Sent after the screen turns off.
ACTION_SCREEN_ON Sent after the screen turns on.
ACTION_SHUTDOWN Device is shutting down.
ACTION_TIMEZONE_
CHANGED

The timezone has changed.

ACTION_TIME_CHANGED The time was set.
ACTION_TIME_TICK The current time has changed.
ACTION_UID_REMOVED A user ID has been removed from the system.
ACTION_USER_PRESENT Sent when the user is present after device wakes up

(e.g when the keyguard is gone).

2.2.1 Register a BroadcastReceiver
To produce a particular broadcast receiver, we have to create a new class that is derived
from the "BroadcastReceiver" types. Listing 2.4 shows the basic skeleton of a class that
is derived from "broadcast receiver". The onReceive function is called by the system
when the result previously defined occurs. In this function, the code must be placed to
be executed when the event occurs. To really take advantage of a "Broadcast Receiver"

15

2 Context Data on Android Devices

derived class, it must be registered with the system. The listing 2.5 shows a simple way
a "Broadcast Receiver" to log on to system. In this example, "ACTION_SCREEN_ON"
and "ACTION_SCREEN_OFF" are used as a filter. In this case, all the filters listed in
table 2.5 can be used. If one of the events which have been specified as the filter occurs,
the associated respective class is activated, and called onReceive. There is one more thing
that needs to be done to get an event from the system, an entry into the "manifest.xml"
file. "<Receiver android:name="PAKETNAME.MyBroadcastReceiver"></ receiver>
"must be inserted into the the manifest. The Listing 2.6 shows the exact place where
the tag has to be inserted

1 public class MyBroadcastReceiver extends BroadcastReceiver {
2
3 public MyBroadcastReceiver(){
4 super();
5 }
6
7 @Override
8 public void onReceive(Context context, Intent intent) {
9 //some stuff we want to do at receiving

10 }
11 }

Listing 2.4: basic skeleton of a class that is derived from "broadcast receiver"

1 private void addReceiver (Context context){
2 IntentFilter filter = new IntentFilter(Intent.ACTION_SCREEN_ON);
3 filter.addAction(Intent.ACTION_SCREEN_OFF);
4 //here you can add more Intents for BroadcastReceiver
5 MyBroadcastReceiver receiver = new MyBroadcastReceiver();
6 context.registerReceiver(receiver, filter);
7 }

Listing 2.5: Add a BroadcastReceiver to the System

Listing 2.6: Add MyBroadcastReceiver-Class to the Android-Manifest
1 <manifest ...>
2 ...
3 <application ...>
4 ...
5 <receiver android:name="PAKETNAME.MyBroadcastReceiver">
6 </receiver>
7 ...
8 </application>
9 ...

10 </manifest>

16

3 Sleep Tracking with Commercial Devices

Out there are a huge number of devices we could use. But the range of expenditure is
also huge. The minimum of expenditure is to let the user write down his sleep time and
the maximum of expenditure is to use a sleep laboratory. Therefore, we must analyze
various techniques on the effort, the accuracy and quality of the output data.
For me a very important requirement is that the participants will not be disturbed

in their daily routine. The interaction with the sleep detection must be very low. The
reason: every interaction changes the behavior. To determine the relationship between
sleep and smart phone use, a non-altered behavior are based.

3.1 Sleep Laboratory

This is a medical facility to be examined carefully the sagging hold. This goes far beyond
the needs of my lap recording sleep. In addition, the daily behavior of the subjects is
changed because they no longer allowed to sleep at home.
The price for this is unprofitable high. For this reason, and the reason of changed

behavior, ruled out this possibility from the outset.

3.2 FitBit

A great advantage to Fitbit is the Fitbit API. They can be accessed with .Net, Java
and PHP. This API works with OAuth authentication. Thus, it is imperative that the
server used dominates this. The output format can be selected here, either JSON or
XML. Furthermore, we will describe how to read certain data with PHP.[4] To record
the sleeping behavior, this device must be attached to the arm and be put in sleep mode.
The price of a Fitbit is with 99 € at the bottom of the possible devices.

3.3 Withings Pulse

Withings Pulse has a slightly less large API. It works very similar to the Fitbit API,
they also used a OAuth authentication. But it works only with PHP and it gives only
the JSON output format. Thus we have the same requirements as for a FitBit here the
use of PHP. [7] To record the sleeping behavior, this device must be attached to the arm
and be put in sleep mode.
The price for one of these devices is € 99. And so it is with fitbit on the same.

17

3 Sleep Tracking with Commercial Devices

3.4 Jawbone
Jawbone works like Withings Pulses with JSON. It does not work on OAuth, but with
HTTP request. This method is not as safe for the end user. But you can use any
programming language to understand the HTTP request. [6] Since I always wear this
device on the arm where we do not have to entrench it at night. In addition, no sleep
mode must be activated here.
Unfortunately, the price is more expensive than the competition, there are € 129 for

a device.

3.5 User Inclusion
Here the idea is that each participant independently monitors its sleep phase. With this
method two problems go hand in hand. One is the act of disturbing the sleep, because
the test person must make sure to write down the correct time. And second, that the
record is inaccurate.
The cost of this method are of course at 0 €.

3.6 The decision
First, we want to exclude the method can not find a park your app tables, sleep labo-
ratory. If the goal is to monitor sleep habits, then we can not change this in advance.
This issue we have with the self-monitoring method. The user must determine when
it actually goes to sleep, but sleep normal occurs after a few minutes. Thus, the exact
sleep time is not recorded. Instead, we only have a rough idea when the person wants
to sleep.
Thus, the presented above devices remain. For this project, the safety of non-significant,

but applies to other projects to consider this: While jawbone has a great possibility to
use, but is very insecure in the transmission. This mean that the major negative point
of jaw bone are the cost. FitBit and Withings pulses are equal in price and user-on.
Both need to be fix on your arm at night and must also be put in the sleep mode. But
both are € 30 cheaper than the Jawbone device.
The remaining decision is based on my personal feeling. Since my stay calculations to

sleep recognition of the individual devices hidden, we have to believe this blind. Since we
want to use the values for a larger purpose, it is in my opinion an advantage if we do not
give the calculations completely out of hand. We achieve this so that we with the type
of device. By activating the sleep mode, the calculation will start. So we have created a
small control over the correctness of calculation. So we have the choice narrowed down
to two, FitBit and Withings Pulses.
This final decision is based on the functionality and the functionality. Simply put,

FitBit can be used more versatile. That is now in the course of a study, each participant
will receive a Fitbit.

18

4 Implementation of an Android App

The app we are created for Andorid devices with minimum version number is 2.2.3.
Since 2.0 there is a wide range of sensors to obtain data. Here is a list of the context we
recorded:

• Accelerometer

• Air plain mode on/off

• App use

• Magnetic field

• Screen on/off

• Charger plugged

• Battery state changed

• Ambient volume

• Ambient light

• Proximity over Display

• Wireless service

For the server communication we need to have a unique id on each device. It will
be calculated on each device by there one out of unique device information. This is
necessary to map the data to the appropriate member.
We record all this sensor data by a service, so its hidden from the user and running all

the time. One sensor is stored in one folder, for each record minute one file. Each file is
a comma-separated values file, each line is one data set. In a line it comes a time stamp
first and then separated the values. This is necessary to keep the volume to outline at
the huge data.
For each sensor, we have the same life cycle, this is shown in figure 4.1. The cycle

starts with the create a new file in which the data should be stored. At the beginning
of an additional 60-second timer is initialized and started. Then waits for sensor data,
and the expiration of the timer. If sensor data arrive, they are stored sequentially in the
file. If the timer sends an interrupt, jumps back to the beginning, creates a new file and
the timer is restarted.

19

4 Implementation of an Android App

Create File to store Data

store Data into File

start record

timer interruptstop record

new data interrupt

Figure 4.1: The cycle of one sensor

4.1 App Server Communication

Every 60 sec the app is trying to send the files to the server. With each file it send the
unique id to now witch user sends the file. The file is sent via HTTP. If the smartphone
is not online or the connection interrupts the app tries to send the files 60 sec later again.
On the server, the data will only be accepted and stored in a similar folder structure.
On the server is just one php script, see listing 4.1.

Listing 4.1: PHP code on the server
1 <?php
2 $unique id = $_POST[' unique id '] ;
3 $eventname = $_POST[' eventname '] ;
4 i f (! empty ($unique id) && ! empty ($eventname)) {
5 $de s t i n a t i on = " . / uploads / " . $unique id . " / " . $eventname . " / " ;
6 i f (! i s_d i r ($d e s t i n a t i on)) {
7 i f (! mkdir ($de s t ina t i on , 0775 , t rue)) {
8 echo (' Dir wasnt create , p l e a s e t ry again ! ') ;
9 }

10 }
11 $de s t i n a t i on += basename ($_FILES [' data '] ['name ']) ;
12 i f (move_uploaded_file ($_FILES [' data '] ['tmp_name '] , ←↩

$de s t i n a t i on))

20

4.2 Problems

13 {
14 echo "The f i l e " . basename ($_FILES [' data '] ['name ']) . " ←↩

has been uploaded " ;
15 e x i t (200) ;
16 } e l s e {
17 echo " There was an e r r o r uploading the f i l e , p l e a s e t ry←↩

again ! " ;
18 e x i t (400) ;
19 }
20 } e l s e {
21 echo "Not a l l r equ i r ed vars s e t . " ;
22 e x i t (406) ;
23 }
24 ?>

4.2 Problems
Over the time there came a big problem up, its about gaps in the recorded data. A
service has the great advantage that it works all the time in the background. But the
time has turned out that that’s not quite. Some options are stressful for the system in
these cases the service is paused. So we try a lot of different operations and parameters
to use to charge the minimum to System. We were able to minimize the gaps in Recorded
data, but unfortunately not completely prevent. The gap size depends on 2 factors from
the computing power of smartphones and the impact of smartphones by users. Since
we already knew about the problem in the run with the gaps modest, our biggest was
hopeful that there will be sufficient data are useful.

21

5 User Study

To get a confirmation whether it is possible to get acceptable values through our app we
made for the user study. Each user should run the app on his mobile phone and at the
same time use a commercial device to record data. The commercial device used to check
the data recorded by the app. The study focused mainly on the question: we can identify
the sleep time using the mobile phone usage. For this reason, we set the duration of the
study on seven full days, so we can evaluate seven nights of each participant. For a first
analysis we selected six people, three of whom were female and three male. Not one of
them was a computer scientist, we have to assume that these people use their mobile
phones more often than not one of the lancer has to do with this topic. Our hope was
to get a large spectrum of different behaviors despite the small number of participants.

5.1 Questionnaire

To verify that we have a wide range of different people, all people at any one have to
answer some questions. The answers are shown in Table 5.1.

5.2 Progress

During the study, we have noticed that we have problems. Why we sent 3 times an
update to the participating users, more in section 5.3.1. Because we thought we had
solved the problem, which unfortunately was not the case. The last version we had
then record 7 days. During this time the participants were four times Fitbit forget to
Activate. This was clear from the beginning that this error be made.
Otherwise, the study went through without problems until the end. Everyone has to

get a briefing in Fitbit and the app. At the app there is nothing to do, so it certainly
have no problems. And the use of Fitbit has also worked without further between ask.
It was only after the end of the second problem is noticed. What then was not

revisable, more in section 5.3.2.

5.3 Problems

5.3.1 Gap Problem

From the beginning of the study, we knew that there will be gaps in the record. The
two factors for gaps are too little computing capacity and large user loads. These two

23

5 User Study

P1 P2 P3 P4 P5 P6
Age? 24 25 24 21 48 24
gender? f m m f f m
Job? Student Electronics

technician
for au-
tomation
technol-
ogy

Student justice
profes-
sional
em-
ployees

Physical
therapist

Merchant
in whole-
sale and
foreign
trade

Use your cell phone
as an alarm clock?

Yes No Yes Yes Yes Yes

Imagine an alarm
clock on the week-
end?

Yes Yes No No No No

How do you make
your alarm clock?

daily daily daily daily daily daily

How intensively you
use their phone every
day?

Intensive Intensive Normal Intensive Normal Intensive

How many hours do
you sleep on aver-
age?

6,5 7,5 7,8 7 7 7

My sleep was ever
monitored?

No No No No No No

How did you sleep
professionally moni-
tored?

No No No No No No

If you have trouble
sleeping?

Yes Yes No No No No

You only use their
cell phone?

Yes Yes Yes Yes Yes Yes

If your sleep mon-
itored by experts?
You know what ‘Fit-
bit?

No No No No No No

Have you already
used Fitbit?

No No No No No No

Are you in possession
of a Fitbit device?

No No No No No No

Table 5.1: The results of the questionnaire

24

5.3 Problems

factors result, gaps that arise are more likely if the user is using his smart phone. So, if
a gap in the recording has arisen that it is more likely that the user has not slept.

5.3.2 Recording Time of Fitbit
Fitbit has about 14 days of battery life, some have more, some less. But that’s not the
big problem. Fitbit can charge you on any USB port without having to install it on
the PC, Fitbit. It works right out of the box. The big problem is the storage capacity.
Fitbit can hold data about 7 days until it begins to overwrite the old data. And not
only that if you want to synchronize data, you have to have Fitbit installed on the PC.
So that it results in that it is not easily possible to make a study that is longer than 7
days. Unfortunately, I did not at the beginning. Thus I have some data that got lost
from the Fitbit devices my users.

25

6 Data Analysis

6.1 Download Fitbit Data

To download the FitBit data of each participant, we have written me an API interface
in php. The Listing 6.1 shows the PHP source code to an HTML file to enter start and
end date, this period is needed to obtain the correct data. This data is then forwarded
to the fitbit.php file. As you can see in the Listing 6.2 data are processed there. As you
can see in Listing 6.2, the two variables $conskey and $conssec initialize with multiple
X, these are unique to each FitBit communication. How do you get these unique values
is described in Section 6.1.1 "Register Fitbit App". The variable $apiCall specifies what
information the Fitbit server to load. In this example we downloaded the sleep data of
a user. But it can do much more data to be downloaded, more details follow in Section
6.1.2
In order to establish communication with Fitbit, the app must be active performances

there.

6.1.1 Register Fitbit App

In order to establish communication with Fitbit is a registration with Fitbit needed.
This is done via the following URL: https://dev.fitbit.com/apps. 8 values must be
set. Application Name, Description, Application Website, Organization, Organization
Website, Application Type, Callback URL and Default Access Type must be set. Be
careful when enter the "Callback URL", this is very important because if authentication
was successful Fitbit forwards the data out there on. When set of "Default Access Type"
we used "Read-Only" and my "Application Type" is Browser. The rest of the details
that need to be made, have no effect on the interface.

6.1.2 Retrieving Collection Data

The API call is a string, the different variables are separated by a slash, the correct
order play an important role. Each call has this structure: /<api-version>/user/<user-
id>/<moreinformation>.<response-format>. Until now there is only the API version
1 thus <api-version> can be occupied only by 1. <user-id> can be assigned ID or with
a with a specific user "-". In the latter case, the call end user must log in and can bring
its own data into the app. This is what I did.
The data can always be downloaded in two different formats, XML, or JSON. This

can be determined with the use of <response-format>. Here you can use the ending
".json" for JSON and ".xml" for the XML output.

27

6 Data Analysis

Then there’s the wild card <moreinformation>, this can be combined for a variety
of other keywords. For the most important GET-functions see Table 6.1. The full
specification is available at [5].

Listing 6.1: index.php: The interface to determine the period
1 <?php
2 $date = date ("Y−m−d" , time ()) ;
3 $content = '
4 <!DOCTYPE html>
5 <html lang="de">
6 <header>
7 <t i t l e >Get F i tB i t Data</ t i t l e >
8 <s c r i p t s r c ="./ i n c l ud e s / date t imep i cke r . j s "></s c r i p t >
9 </header>

10 <body>
11 <tab l e width="100%">
12 <form act i on=" f i t b i t . php " method="post " >
13 <tr>
14 <td>
15 <p>Star t Date:
16 <input type=" text " name="date1 " id="date1 " s i z e←↩

="20" maxlength="32" va lue=" ' . $date . ' ">
17 <img s r c ="./ i n c l ud e s / c a l . g i f " on c l i c k=" j a v a s c r i p t←↩

: NewCssCal (\ ' date1 \ ' , \ 'yyyyMMdd\ ') " s t y l e ="←↩
cur so r : po in t e r "/></p>

18 </td>
19 </tr>
20 <tr>
21 <td>
22 <p>End Date:
23 <input type=" text " name="date2 " id="date2 " s i z e←↩

="20" maxlength="32" va lue=" ' . $date . ' ">
24 <img s r c ="./ i n c l ud e s / c a l . g i f " on c l i c k=" j a v a s c r i p t←↩

: NewCssCal (\ ' date2 \ ' , \ 'yyyyMMdd\ ') " s t y l e ="←↩
cur so r : po in t e r "/></p>

25 </td>
26 </tr>
27 <tr>
28 <td>
29 <input type="submit " name="web" value="Get Data">
30 </td>
31 </tr>
32 </form>

28

6.1 Download Fitbit Data

Info <moreinformation>
Profile
Get-User-Info user/<user-id>/profile
Body
Get-Body-Measurements body/date/<date>
Get Body Weight body/log/weight/date/<date>

body/log/weight/date/<base-
date>/<period>
body/log/weight/date/<base-date>

Get-Body-Fat body/log/fat/date/<date>
body/log/fat/date/<base-date>/<period>
body/log/fat/date/<base-date>/<end-date>

Get-Body-Weight-Goal body/log/weight/goal
Get-Body-Fat-Goal body/log/fat/goal
Activities
Get-Activities activities/date/<date>
Get-Activity-Daily-Goals activities/goals/daily
Get-Activity-Weekly-Goals activities/goals/weekly
Foods
Get-Foods foods/log/date/<date>
Get-Water foods/log/water/date/<date>
Get-Food-Goals foods/log/goal
Sleep
Get-Sleep sleep/date/<date>
Heart
Get-Heart-Rate heart/date/<date>
BP
Get-Blood-Pressure bp/date/<date>
Glucose
API-Get-Glucose glucose/date/<date>

Table 6.1: The most important GET-functions for the wildcard <moreinformation>

29

6 Data Analysis

33 </table>
34 </body>
35 </html> ' ;
36 echo $content ;
37 ?>

Listing 6.2: fitbit.php: Communication to the Fitbit API
1 <?php
2
3
4 $content = " " ;
5 // pec l i n s t a l l oauth −0.99.9
6
7 // Base URL
8 // API c a l l path to get temporary c r e d e n t i a l s (r eque s t ←↩

token and s e c r e t) :
9 $baseUrl = ' http :// api . f i t b i t . com ' ;

10
11 // Request token path
12 // Base path o f URL where the user w i l l au tho r i z e t h i s ←↩

app l i c a t i o n :
13 $req_url = $baseUrl . ' /oauth/ request_token ' ;
14 // Author i zat ion path
15 // API c a l l path to get token c r e d e n t i a l s (a c c e s s token ←↩

and s e c r e t) :
16 $authur l = $baseUrl . ' /oauth/ author i z e ' ;
17 // Access token path
18 $acc_url = $baseUrl . ' /oauth/ access_token ' ;
19 // Consumer key
20 $conskey = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' ;
21 // Consumer s e c r e t
22 $conssec = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' ;
23 // F i t b i t API c a l l (get a c t i v i t i e s f o r s p e c i f i e d date)
24
25 // Star t s e s s i o n to s t o r e the in fo rmat ion between c a l l s
26 s e s s i on_s t a r t () ;
27 // In s t a t e=1 the next r eques t should inc lude an ←↩

oauth_token .
28 // I f i t doesn ' t go back to 0
29
30
31 i f (i s s e t ($_POST[' date1 ']) and i s s e t ($_POST[' date2 ']))

30

6.1 Download Fitbit Data

32 {
33 $_SESSION [' date_from '] = $_POST[" date1 "] ;
34 $_SESSION [' date_to '] = $_POST[" date2 "] ;
35 }
36
37 i f (i s s e t ($_SESSION [' date_from ']) && i s s e t ($_SESSION ['←↩

date_to '])) {
38 i f (! i s s e t ($_GET[' oauth_token ']) && $_SESSION [' s t a t e '←↩

]==1)
39 {
40 $_SESSION [' s t a t e '] = 0 ;
41 }
42 try
43 {
44 // Create OAuth ob j e c t
45 $oauth = new OAuth($conskey , $conssec , ←↩

OAUTH_SIG_METHOD_HMACSHA1, ←↩
OAUTH_AUTH_TYPE_AUTHORIZATION) ;

46 // Enable ouath debug (should be d i s ab l ed in ←↩
product ion)

47 $oauth−>enableDebug () ;
48 i f ($_SESSION [' s t a t e '] == 0)
49 {
50 // Gett ing reque s t token . Cal lback URL i s the ←↩

Absolute URL to which the s e r v e r provder w i l l ←↩
r e d i r e c t the User back when the obta in ing user←↩
au tho r i z a t i on step i s completed .

51 $request_token_info = $oauth−>getRequestToken (←↩
$req_url , $ ca l l backUr l) ;

52 // Stor ing key and s t a t e in a s e s s i o n .
53 $_SESSION [' s e c r e t '] = $request_token_info ['←↩

oauth_token_secret '] ;
54 $_SESSION [' s t a t e '] = 1 ;
55 // Red i rec t to the au tho r i z a t i on .
56 header (' Locat ion : ' . $authur l . ' ?oauth_token= ' .←↩

$request_token_info [' oauth_token ']) ;
57 e x i t ;
58 }
59 e l s e i f ($_SESSION [' s t a t e ']==1)
60 {
61 // Authorized . Gett ing a c c e s s token and s e c r e t
62 $oauth−>setToken ($_GET[' oauth_token '] , $_SESSION [←↩

' s e c r e t ']) ;
63 $access_token_info = $oauth−>getAccessToken (←↩

31

6 Data Analysis

$acc_url) ;
64 // Stor ing key and s t a t e in a s e s s i o n .
65 $_SESSION [' token '] = $access_token_info ['←↩

oauth_token '] ;
66 $_SESSION [' s e c r e t '] = $access_token_info ['←↩

oauth_token_secret '] ;
67 }
68
69 $oauth−>setToken ($_SESSION [' token '] , $_SESSION ['←↩

s e c r e t ']) ;
70 $a l lData = array () ;
71
72 whi l e (s t r t o t ime ($_SESSION [' date_from ']) <= ←↩

s t r t o t ime ($_SESSION [' date_to '])) {
73 $ap iCa l l = " http :// api . f i t b i t . com/1/ user/−/ s l e e p /←↩

date / " . $_SESSION [' date_from '] . " . j s on " ;
74 $oauth−>fe t ch ($ap iCa l l) ;
75 $response = $oauth−>getLastResponse () ;
76 $jsonData = json_decode ($response , t rue) ;
77 $Data = array (' date ' => $_SESSION [' date_from '] ,
78 ' data ' => $jsonData) ;
79 array_push ($al lData , $Data) ;
80 $_SESSION [' date_from '] = date ("Y−m−d" , s t r t o t ime←↩

("+1 day " , s t r t o t ime ($_SESSION [' date_from '])))←↩
;

81 }
82 $content = json_encode ($a l lData) ;
83 }
84 catch (OAuthException $E)
85 {
86 pr int_r ($E) ;
87 }
88
89 header ('Content−Type : x−type / octtype ') ;
90 header ('Content−Length : ' . s t r l e n ($content)) ;
91 header ('Content−Di spo s i t i on : attachment ; f i l ename=" t e s t←↩

. tx t " ') ;
92
93 p r in t $content ;
94 }
95
96 e l s e
97 {
98 d i e (" Error ") ;

32

6.2 Download Phone Data

99 }
100
101
102 ?>

6.2 Download Phone Data
The download of this data was no problem, we were able to download all data via FTP.
Here was working up the data from the far greater part of the work.

6.3 Preparing the Data
For the analysis it is necessary to divide the data into sections of 24 hours. Since each
sensor individually available in a file and includes just a minute, it was necessary to wrote
an extra analysis tool. We wanted to create output as csv files include each 24 hours.
To be included telephone and data Fitbit data. The whole should run automatically,
for any number of users and any number of sensors. Since the app has to be already
developed in JAVA, I would not take the new language and thus the analystool is written
in JAVA.
We will now explain how a record of all user is analyzed. It starts with the function

call analysisToFile, see listing 6.3. We must specify the parameter f. Here, a file must be
specified, this must be the folder where the data is located. Thus, it is of type ’File’ but
linked to a folder. In the loop in this function, each user is then individually processed
sequentially. Read, revise and then save. For each record, the function analysis, listing
6.4, is triggered. The parameter to this function is the folder which contains the data of
individual users. This function determines how the data are processed. The data from
a sensor are transmitted to the extractOneSensor function.
The extractOneSensor function is the only function with exciting content so we will

describe this in more detail. See listing 6.5 for this function. First of all, this function
calculates the correct times to the result values. This is the code of the bigger part
but unspectacular. Much more interesting is the line 16, analysisOneMin(). Here it is
decided what happens to the value. What information we have rated as Important. This
is then shown in listing 6.6 on.

1 public void analysisToFile(File f) {
2 File[] list = f.listFiles();
3 for (int i = 0; i < list.length; i++) {
4 if (list[i].isDirectory())
5 {
6 Log.d(TAG, list[i].getAbsolutePath());
7 AnalysisOneUser a = new AnalysisOneUser(Log);
8 AllDaysOfOneUser d = a.analysis(list[i]);
9 writeCSV writer = new writeCSV(Log, list[i].getAbsolutePath());

33

6 Data Analysis

10 writer.writeData(d);
11 }
12 }
13 }

Listing 6.3: This function opens the files

1 public AllDaysOfOneUser analysis(File pohneDir)
2 {
3 AllDaysOfOneUser allData = new AllDaysOfOneUser(pohneDir.getName());
4 File[] phoneSensor = pohneDir.listFiles();
5 if (phoneSensor.length > 0)
6 {
7 for (int j = 0; j < phoneSensor.length; j++) {
8 if (phoneSensor[j].isDirectory())
9 {

10 try
11 {
12 STATE state = STATE.valueOf(phoneSensor[j].getName());
13 if (STATE.accelerometer.equals(state) ||
14 STATE.light.equals(state) ||
15 STATE.magneticField.equals(state) ||
16 STATE.noise.equals(state) ||
17 STATE.proximity.equals(state))
18 {
19 allData.addData(state, extractOneSensor(state, phoneSensor[j]));
20 }
21 else if (STATE.batteryChanged.equals(state))
22 {
23 allData.addData(state, extractOneBlooeanSensor(phoneSensor[j])

);
24 }
25 else if (STATE.app.equals(state))
26 {
27 allData.addData(state, extractApp(phoneSensor[j]));
28 }
29 else
30 {
31 allData.addData(state, extractOneBlooeanSensor(phoneSensor[j])

);
32 }
33 } catch (IllegalArgumentException e){
34 Log.d(TAG, "Fail to parse dir:" + phoneSensor[j].getAbsolutePath()

);

34

6.3 Preparing the Data

35 }
36 }
37 else if (phoneSensor[j].getName().equals("fitbit.txt") ||
38 phoneSensor[j].getName().equals("fitbit.json"))
39 {
40 FitbitParser p = new FitbitParser(Log);
41 allData.addData(STATE.fitbit, p.parse(phoneSensor[j]));
42 }
43 else
44 {
45 Log.d(TAG, "Fail to parse file:" + phoneSensor[j].getAbsolutePath());
46 }
47 }
48 }
49 return allData;
50 }

Listing 6.4: This function pare the different data types

1 private List<AnalysisData> extractOneSensor(STATE name, File dir) {
2 List<AnalysisData> data = new ArrayList<AnalysisData>();
3 File[] file = dir.listFiles();
4 Log.d(TAG, name + " has " + file.length + " Files");
5 for (int i = 0; i < file.length; i++) {
6 if (file[i].getName().endsWith(".csv")) {
7
8 Long timeStamp = Long.valueOf(file[i].getName().substring(0, file[i].

getName().indexOf(".csv")));
9 long startTimeStamp = timeStamp − (timeStamp % (60∗1000));
10
11
12 extractFile ext = new extractFile(Log, dir.getPath() + "\\" + file[i].

getName(), Long.valueOf(file[i].getName().substring(0, file[i].getName
().indexOf(".csv"))));

13 List<EventObj> l = ext.getValues();
14 if (l != null && l.size() > 0)
15 {
16 double value = analysisOneMin(name, l);
17 data.add(new AnalysisData(startTimeStamp, value));
18 }
19 }
20 }
21 return data;
22 }

35

6 Data Analysis

Listing 6.5: This function extract one sensor

1 public double analysisOneMin(STATE event, List<EventObj> l){
2 if (STATE.accelerometer.equals(event))
3 {
4 return standartAbweichung (l);
5 }
6 else if (STATE.light.equals(event))
7 {
8 return maximum (l);
9 }

10 else if (STATE.magneticField.equals(event))
11 {
12 return standartAbweichung (l);
13 }
14
15 else if (STATE.proximity.equals(event))
16 {
17 return maximum (l);
18 }
19 else if (STATE.noise.equals(event))
20 {
21 return maximum (l);
22 }
23 return Double.MIN_VALUE;
24 }

Listing 6.6: This function analysis one minute of one sensor

6.4 Data Analysis
As defined by the already problem in this project, we will just represent the feasibility
of the Idea here. Therefore, we will present the data at only one example of example.
In figure 6.1 a record is illustrated. This time exactly 24 quarter hours of a subject.
Starting at 12 am and ends at 12 am the following day. Thus, the graph shows a full
night. All values are normalized based on the clarity to 1. This means that all values in
a sensor is divided by the maximum of the same sensor.
What we can see is that is a lot of activity during the day. Towards evening the

activity are clear. At about 11:30 you see received is also the Fitbit data now, this is
the sleep mode was activated. However, there is still something crucial by the Fitbit
sensor. This even goes down to 1 high which means that the person is still awake. Also,
the light sensor tells us that the light was identified shortly after 12 clock. Then it will

36

6.4 Data Analysis

go through various hours away very quietly in the rashes. Therefore, we would that
event the "light off", identified as beginning of sleep. The sleep lasts for several hours
then without interruption. Up to about 9 clock we can see again a clear movement to
be detected in the morning. The move takes about 10 minutes. From 5 minutes of
exercise we would be identify a security. Minor phases can be scored as a short-term
sleep disruption. Thus would be clearly identified on the growing point. Similarly, we
see that at this time the light sensor to swing back. This theory is confirmed by the
accounts of the Fitbit signal. Then from the first activity decreases again about an
hour. In this cell phone is obviously not worn on the body. Since we do not take our
phone with the shower, we think that this will be quite normal. Then will see the same
activities as strong at the beginning of the diagram.

As we just stated, it is very possible to find out the sleep time using the phone data.
Certainly, we have made a very large division of the data. However, one must keep
in mind that we have served two sensors alone. On the other charts I have analyzed,
has issued the lord for me these two sensors usually are enough for an acceptable to
good result. This finding makes the burden on the battery and CPU can be significantly
reduced. As well as the resulting data flow. With 3 sensors,we decided for the maximum.
During acceleration and magnetic field sensor but we were looking for the standard
deviation. So we could map the three axes to a value. And was able to circumvent the
problem of the acceleration of gravity. Which permanently with about 9.81m/s2 acting
on the sensor. But this does not refer to a axle but distributed on all three axes.

6.4.1 More Data

If one has more available sensors as there is some evidence certain sensors may be used.

The sensor network gives us a little more improvement to make a statement if someone
is sleeping. Since most people have wireless home and sleep mostly home, tantamount
increases the chance that someone is sleeping.

As already described, the signal can be picked up if the phone is charging. As a
Plugged phone is not very mobile this is usually done during sleep. So here increases
the chance that the person sleeps when it is plugged.

This behaves the same way with the airplane mode. To Vedas not disturbed at night
activate a part of the people’s airplane mode. So here increases the chance that sleeps
the person. That can be taken even further. Because this also applies to mobile phones
switched off completely. This is usefully made over several hours if you do not want to
be bothered or just want to sleep in peace.

37

6 Data Analysis

(a)

Figure 6.1: Recording over 24 hours of a mobile phone
38

6.4 Data Analysis

(b) 39

7 Conclusion

Finally we can say that in this area is still much work to make. Through the research
we have done, we have not really found much information. Information is visible in the
maximum result of some products. This, however, give out no information about their
calculations, understandably. So we am assuming that here a lot of potential is far from
exhausted. For we find out when someone is sleeping only scratches the surface of what
these data tell us everything.
We also have the GPS sensor for privacy reasons completely left out. This would

increase the possibilities of the use of the data by a multiple. But here is a caution
to permanently get GPS signal is almost impossible. Through GPS, the battery life to
about 1/5th.
If somebody try’s to make a similar project with more success. It’s necessary to fix

this bit gap problem at the recording time.

41

Bibliography

[1] andorid.com system nanotime. http://developer.android.com/reference/java/
lang/System.html.

[2] Android 4.2 r1. http://grepcode.com/snapshot/repository.grepcode.com/
java/ext/com.google.android/android/4.2.2_r1/.

[3] android.com intent. http://developer.android.com/reference/android/
content/Intent.h.

[4] Fitbit api. https://wiki.fitbit.com/display/API/Fitbit+API;jsessionid=
59FE43DB386815A07B23FC002B7CF45F.

[5] Fitbit resource access api. https://wiki.fitbit.com/display/API/Fitbit+
Resource+Access+API.

[6] Jawbone up api. http://eric-blue.com/projects/up-api/.

[7] Withings api. http://www.withings.com/de/api.

43

Bibliography

Decleration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

45

