

Institut für Rechnergestützte Ingenieursysteme

Fakultät Informatik, Elektrotechnik und Informationstechnik

Universität Stuttgart

Universitätsstraße 38

D - 70569 Stuttgart

Master Thesis Nr. 3507

Conceptualization and implementation of a

prototype for realistic simulation of vehicles

John Alexander Velandia Vega

Studiengang:

Prüfer:

Betreuer:

begonnen am:

 beendet am:

CR-Klassifikation:

INFOTECH

Univ-Prof. Hon-Prof. Dr. Dieter Roller

M.Sc. Leila Zehtaban

24.04.2013

24.10.2013

C.4, D.2.4, D.2.5, D.2.8, D.2.9, D.4.8, H.2.8,

J6, K.6.3

III

Abstract

Daimler FleetBoard offers telematic services by means of a special hardware installed in

customers’ vehicles to collect and send data to the FleetBoard’s Service Centre (FBSC)

platform. FBSC is in charge of receiving, processing and storing data generated by vehicles. The

quality assurance and testing department guarantees that the telematic services meet their

purpose, and no failures exist in the system. In that way, software to simulate vehicles’

behaviour is required to test the functionalities of FBSC. However, the problem rises since this

software uses simulated data instead of real data. In addition, the process of creating routes for

simulations is manual. Based on the mentioned problems, the objective of this thesis is to

design, implement and evaluate a prototype as mechanism of importing routes generated by real

vehicles to the simulator’s database, to emphasise on using real data for simulations.

Additionally, the process of creating routes is optimized using Web Map Services to automate

this process. Consequently, an evaluation of the prototypical implementation is considered to

guarantee the proper operation of the prototype’s layers: WEB GUI (supported by Java Server

Faces), business logic and the persistence layer (fostered by Java Persistence API).

V

Table of contents

TABLE OF CONTENTS ..V

LIST OF FIGURES ... IX

LIST OF TABLES ... XI

LIST OF LISTINGS .. XIII

ABBREVIATIONS .. XV

1 INTRODUCTION .. 1

1.1 DAIMLER FLEETBOARD .. 1
 Profile ... 1 1.1.1

 Organisational structure .. 1 1.1.2

 The FleetBoard’s system architecture .. 1 1.1.3

 Services ... 2 1.1.4

1.2 PROBLEM STATEMENT .. 3
1.3 GOALS OF THE MASTER THESIS ... 3
1.4 RESTRICTIONS .. 4

 Financial aspect ... 4 1.4.1

1.5 THE THESIS STRUCTURE .. 4

2 BACKGROUND ... 6

2.1 TERMINOLOGIES ... 6
2.2 MAPPING .. 8

 Geographical coordinates .. 8 2.2.1

 Waypoints ... 8 2.2.2

 Global Positioning System (GPS) ... 8 2.2.3

 GPS Exchange Format (GPX) .. 9 2.2.4

 Web Map Service (WMS) .. 9 2.2.5

 Geographic Information Systems databases (GIS) ... 9 2.2.6

 Tiles .. 9 2.2.7

 Map Application Programming Interface (API) ... 10 2.2.8

 Open Geospatial Consortium (OGC) Architecture .. 10 2.2.9

 GPX Visualizer ... 11 2.2.10

2.3 QUALITY MODEL ISO 25000 AND 9126 .. 11

3 SYSTEMS AND COMMUNICATION ARCHITECTURE ... 13

3.1 ARCHITECTURAL OVERVIEW ... 13
3.2 FBSC AND COMMUNICATION PLATFORM .. 14
3.3 INTEGRATION TEST SYSTEM (ITS) .. 16
3.4 LIVEVEHICLESIM (LVS) .. 16

 Features .. 16 3.4.1

 Dataflow ... 17 3.4.2

 The Model View and Controller pattern (MVC) ... 19 3.4.3

4 CONCEPT AND DESIGN ... 21

4.1 CONCEPT TO INCORPORATE REAL ROUTES IN TOUR SIMULATIONS .. 21
 Analysis .. 21 4.1.1

 Approaches ... 21 4.1.2

 Specification of the selected approach ... 23 4.1.3

VI

4.2 CONCEPT TO INTEGRATE A WMS PROVIDER INTO LVS .. 28
 Analysis .. 28 4.2.1

 Approaches ... 30 4.2.2

 The selected approach .. 33 4.2.3

 Specification of the selected approach ... 33 4.2.4

4.3 CONCLUSION .. 34

5 IMPLEMENTATION .. 35

5.1 IMPLEMENTATION OVERVIEW ... 35
5.2 WEB GRAPHICAL USER INTERFACE (GUI).. 35

 Description of the current Web GUI .. 35 5.2.1

 New CRUD operations using real routes ... 36 5.2.2

 Integration of Nokia Maps into LVS ... 37 5.2.3

5.3 THE BUSINESS LOGIC .. 40
 Creation of routes ... 41 5.3.1

 Retrieving routes .. 47 5.3.2

 Updating routes .. 47 5.3.3

 Delete routes ... 47 5.3.4

5.4 THE DATA MODEL ... 48
5.5 CLASS DIAGRAM ... 50

6 TEST AND VALIDATION ... 51

6.1 CONFIGURATION OF TESTS USING JMETER ... 51
6.2 TEST AND VALIDATION OF FUNCTIONAL REQUIREMENTS .. 51

 Test scripts .. 51 6.2.1

 Tests results .. 52 6.2.2

6.3 TEST AND VALIDATION OF NON-FUNCTIONAL TESTS ... 56
 Methodology ... 56 6.3.1

 Response time analysis ... 56 6.3.2

 Throughput analysis ... 59 6.3.3

6.4 DATA QUALITY ANALYSIS AND EVALUATION ... 59

7 ASSESSMENT .. 62

7.1 EVALUATION OF REQUIREMENTS .. 62
 Functional and non-functional requirements ... 62 7.1.1

 Evaluation of data quality .. 64 7.1.2

7.2 CONCLUSION .. 65

8 SUMMARY AND FUTURE WORK .. 66

APPENDIX A .. 68

DATAFLOW DIAGRAM (DFD) ... 68

APPENDIX B ... 69

INDIVIDUAL EVALUATION OF WMS PROVIDERS ... 69
Google .. 69
Microsoft ... 70
OpenStreetMap ... 70
Nokia .. 71

APPENDIX C .. 72

DESCRIPTION OF TOOLS USED IN THIS THESIS ... 72

APPENDIX D .. 73

DESCRIPTION OF THE GRAPHICAL CONFIGURATION OF JMETER ... 73

APPENDIX E ... 77

VII

CRUD OPERATIONS RESULTS AND DESCRIPTIONS .. 77

BIBLIOGRAPHY ... 81

IX

List of figures

Figure 1.1 Overview of the communication platform, based on [DAI13]. 2

Figure 2.1: Company’s perspective: tour definition .. 7

Figure 2.2 Elements of geographical coordinates .. 8

Figure 2.3 Global schema of the GPX elements .. 9

Figure 2.4 Maps: system architecture .. 10

Figure 3.1 General system architecture overview .. 14

Figure 3.2 Communication and systems architecture .. 14

Figure 3.3 Systems and communication architecture for testing ... 16

Figure 3.4: Site map ... 17

Figure 3.5: LVS Dataflow Diagram ... 18

Figure 3.6 LVS and the MVC design pattern .. 20

Figure 4.1. The new model for importing routes ... 23

Figure 4.2 Use cases considered in this thesis ... 24

Figure 4.3: Current process to import routes ... 29

Figure 4.4 Approach 1: Import routes process removing sub-process 1. 30

Figure 4.5 Approach2: Import routes process, removing sub-process 1& 2 31

Figure 5.1 Current Web GUI ... 36

Figure 5.2 The implementation for importing routes from FBSC database 37

Figure 5.3 Interaction of Nokia WMS and the routes administration Web GUI 38

Figure 5.4 Example of the splitting operation .. 44

Figure 5.5 Class diagram .. 50

Figure 6.1 HTTP responses after running a pre-configured test case .. 52

XI

List of tables

Table 2.1 Criteria according to the Quality model ISO 9126 .. 12

Table 4.1 Description of use case Create route ... 25

Table 4.2 Description of use case Update route ... 25

Table 4.3 Description of use case Delete routes .. 26

Table 4.4 Description of use case Display routes .. 26

Table 4.5 Description of use case Import routes .. 27

Table 4.6 Description of use case Store routes transaction ... 27

Table 4.7 Description of use case Update routes transaction ... 28

Table 4.8 Description of use case Retrieve routes ... 28

Table 4.9 Evaluation and selection of the WMS Provider ... 32

Table 4.10 Use case to configure Nokia API ... 33

Table 4.11 Use case to create routes using Nokia API .. 33

Table 6.1 Results of the CRUD operations, using HTTP request .. 53

Table 6.2 Template to evaluate behaviour of the Web application using decision tables

technique .. 54

Table 6.3 Description of test cases using decision table technique ... 55

Table 6.4 Real and misleading average response times ... 57

Table 6.5 Z confidence level intervals ... 58

Table 6.6 The well-known thresholds for response times using Web applications 58

Table 6.7 JMeter Summary report after running tests for CRUD operations over routes 58

Table 6.8 Data quality evaluation between FBSC and the new prototype 59

Table 7.1 Data quality evaluation between FBSC and the new prototype 65

XIII

List of listings

Listing 5.1 Main part of the algorithm to retrieve waypoints from Nokia’s servers.................... 40

Listing 5.2 Save FBSC routes algorithm .. 42

Listing 5.3 Algorithm to import FBSC routes ... 43

Listing 5.4 Algorithm to obtain the right waypoints .. 45

Listing 5.5 Interface to access FBSC gpstracedata table. .. 46

Listing 5.6 Interface to access FBSC gpsdata table ... 47

Listing 5.7 Algorithm to delete routes ... 48

Listing 5.8 Interface to access data that belong to routes. ... 48

Listing 5.9 Implementation of methods to access data that belong to routes 49

XV

Abbreviations

API Application Programming Interface

DAO Data Access Object

DP Datapackets

DFD Data Flow Diagram

FBSC FleetBoard Service Centre

GPS Global Positioning System

GSM Global System for Mobile

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization

ITS Integration Test System

JMS Java Message Service

JPA Java Persistence API

JPQL Java Persistence Query Language

JSF Java Server Faces

LVS Live Vehicle Simulator

MVC Model View and Controller

OGC Open Geospatial Consortium

ORM Object Relation Mapping

OSM OpenStreetMap

RDBMS Relational Data Base Management System

SOAP Simple Object Access Protocol

SQuaRE Software product Quality Requirements and Evaluation

WAS Web Application Server

WMS Web Map Service

1

1 Introduction

The objective of this chapter is to introduce sufficient information to obtain a general idea about

the topic of this thesis, in this regard: the company’s profile, products, services and the telematic

architecture are described. This chapter also considers the definition of the problem and the

goals of this thesis.

1.1 Daimler FleetBoard

 Profile 1.1.1

Daimler FleetBoard GmbH was established in 2003 and is a 100% subsidiary of Daimler AG.

The company operates globally, and its headquarter is located in Stuttgart (Germany). Currently

more than 140 employees are working for the company (as of December 2010) to develop

sustainable solutions for more than 2,000 customers.

FleetBoard is offering telematics expertise, advisory services and support for the everyday

business activities of transport companies and logistics firms. It is a DEKRA (German Vehicle

Inspection Agency) certified company and has equipped in excess of 85,000 vehicles with the

FleetBoard hardware solution.

The vehicles operate in Germany, UK, Austria, Switzerland, Belgium, Luxemburg, the

Netherlands, Italy, Spain, France, Poland, the Czech Republic, Romania, the Middle East, South

Africa and Brazil. FleetBoard has its own sales and distribution company in the UK - Daimler

FleetBoard UK Ltd. In addition to its own dedicated sales representatives in the other countries

[DAI13].

 Organisational structure 1.1.2

The company uses a common vertical structure which consists of a Chief Executive Officer

(CEO), who is the head of the organisation, vice-presidencies that develop the strategic plan of

the company, and departments that perform specific processes to reach the FleetBoard’s

objectives. Additionally, SCRUM methodology is used to develop or enhance features in the

FleetBoard’s products periodically.

The quality assurance department, also part of the black team in SCRUM, has the tasks of

testing and monitoring current and new features of products by means of tools to guarantee a

high quality of products, other SCRUM teams are responsible for other issues.

 The FleetBoard’s system architecture 1.1.3

FleetBoard’s products and services are offered to customers through a communication platform

supported by telematic hardware installed in vehicles. This platform is composed of three

fundamental parts for collecting, processing and sending data, where the first part constitutes all

vehicles from customers, the second one is the FleetBoard Service Centre (FBSC) and the last

1 Introduction

2

one is the customer software interface. Additionally, these three points contain a well-defined

workflow that allows them to interchange data one to another. Figure 1.1 illustrates the

communication platform.

Every vehicle has installed the TiiRec which is a hardware configured in the vehicle to establish

the communication and send data to FleetBoard Service Centre. The TiiRec contains a

GSM/GPRS modem for communication over mobile networks, and the Global Positioning

System (GPS) receiver for the vehicle position tracking.

The FleetBoard Service Centre is responsible for receiving data from vehicles and providing

data to customers. Communication is performed using a private protocol (see section 2.1). The

data are stored in a distributed database which increases its availability and enhances the

performance of responses to customers.

Customers access their services (see section 1.1.4) throughout internet using a Web GUI or Web

services interfaces, e.g., customers see in real time where their vehicles are.

Figure 1.1 Overview of the communication platform, based on [DAI13].

 Services 1.1.4

Daily messages that are sent from vehicles to FBSC are stored for further analysis and shown to

customers throughout Daimler FleetBoard’s services. The three main services offered are

classified in Vehicle Management to obtain information regarding vehicles’ behaviour, Logistics

management to gather information related to goods (place of delivery, destination and some

other data) and Time Management to acquire working hours, rest time and some additional

1 Introduction

3

information that drivers could generate with their identification card. The communication

platform is the means of giving these services (see Figure 1.1).

1.2 Problem statement

The department for quality assurance needs to test the functionality of the entire platform based

on software using existing or generated data. In the past, data for testing were generated or real

customers data were copied from the production before the tests started. One problem with the

existing approach is that the generated data are not close to customer behaviour and the second

problem is that the real customers data are static, thus tests do not represent a running system

with up to date data coming in continuously.

The first approach to solve these problems is the LiveVehicleSim (LVS). This is a software

simulator that generates predefined tours for vehicles and so provides the live data needed for

more realistic tests. The actual process of simulating a journey, also known as tour simulation,

comprises a vehicle with its driver, thus, a virtual vehicle drives from one place to another,

following a route and sending messages to central servers. In this way, data are processed and

stored as it came from real vehicles, e.g., data such as speed of vehicle, fuel consumption, etc.

A truck driving all time just for testing purposes is not beneficial for the company; this

represents additional costs and time. Thus, tours simulations are performed daily to test

functionalities of the FleetBoard central servers. These simulations also help to minimize the

impact of unexpected errors and ensure the correct running of the new and old functionalities

offered to customers.

However, current simulations use routes that are not close to customer behaviour, because they

are created using Google Maps. Furthermore, the creation of routes is a manual process. In

detail, creation of routes comprises the setting of a route on Google Maps. The result from

Google is transformed into GPS Exchange Format (GPX) to acquire a representable route with

coordinates in between. Finally, coordinates are copied in the Web Graphic User Interface

(GUI) and stored in the database of LVS.

As second approach, this thesis should provide new functionalities over LVS that incorporate

real routes in tour simulations, and an automatic process to create routes using Web Maps, e.g.,

Nokia Maps, Google Maps, etc. In this way, simulations will be close to reality, and manual

processes are eliminated.

1.3 Goals of the master thesis

Considering the problem statement, section 1.2, the main purpose of this thesis is to incorporate

a new process of importing and creating routes into LVS to obtain a simulation with more

realism and mass data generation. In addition, the integration of Web Map Services (WMS) to

make automatic the current process. To achieve the mentioned purpose the following objectives

are defined:

1 Introduction

4

 Develop a refined concept and design based on the analysis of the data source for the

simulation and the simulation itself in detail and suggest possible ways of

implementation.

 Implement a prototype for the concept. The prototype has to enable the simulation of all

fleets at the same time using the previously developed concepts and algorithms.

 Evaluate the quality of the data generated by the prototype between the actual customer

data and previously generated data.

1.4 Restrictions

This section includes the conditions and restrictions given by Daimler FleetBoard to consider

during the development of this thesis.

 Financial aspect 1.4.1

The actual process of importing routes lets simulate vehicles driving where current customers

have not been yet, which represents an advantage, because the behaviour of FBSC is tested with

possible future customer data. Therefore, the concept should contemplate the alternative of

optimizing the current process using WMS with minimal cost of money as well as low

investment in maintenance, licensing and any other aspect that could cause additional costs

1.5 The thesis structure

The following paragraphs show a general overview of the chapters included in this thesis,

including a brief explanation of them.

Chapter 1 Introduction: This chapter introduces the company with its services. Also, the main

purpose and objectives of this thesis are defined based on the presentation of the problem.

Finally, financial restrictions are stated according to the company’s requirement.

Chapter 2 Background: This chapter contains all the basics regarding the telematic business,

and also the technical fundamentals. Additionally, this comprises the technical architecture of

LVS and the telematic architecture with its components.

Chapter 3 Systems and communication architecture: During this chapter all systems that are

involved in this thesis are explained in details, including their interrelationships, technologies

and patterns behind them.

Chapter 4 Concept and design: The development of the concept is contained in this chapter.

The first part comes up with a solution and its description to import real routes. The second part

is composed of a solution to create routes using WMS. Also, the specification to develop the

prototype is defined.

Chapter 5 Implementation: The implemented prototype is detailed in this chapter. The tools

used for building the prototype are described. The new features included in the prototype are

described and the algorithms are explained.

1 Introduction

5

Chapter 6 Test and validation: The functional requirements defined in Chapter 4 are

evaluated using testing tools, and the performance of the prototype is assessed using quality of

service metrics. Additionally the quality of data is analysed.

Chapter 7 Prototype assessment: This chapter evaluates the functional and non-functional

requirements analysed and tested in Chapter 6, considering the purpose of this thesis and the

concepts defined in Chapter 4.

Chapter 8 Conclusion and future work: This chapter resumes the content of every chapter

and provides conclusions of this thesis considering the objectives and the results achieved after

implementing and assessing the prototype.

6

2 Background

In order to understand the problem stated in section 1.2 this chapter is composed of a

Terminology section that defines the telematic business terms, and how they are related one to

another. Consequently section 2.2 comprises the basis for Web maps. In addition, section 2.3

considers factors to evaluate software based on the ISO 25000: Software product Quality

Requirements and Evaluation as reference (SQuaRE).

2.1 Terminologies

There are some crucial definitions and concepts that are normally used in the telematic business

and at FleetBoard. Thus, they are described in this section to clarify further concepts.

Simulation: It is defined as the imitation of real vehicles that use the communication platform

(see Figure 1.1) for exchanging data. It encompasses vehicles behaviour with their variables

such as GPS positions, number of stops, driving time, speed and some others, and the delivery

of messages. The benefit of executing such simulations is to test the quality and performance of

new features deployed on the telematic platform.

Fleet: A set of vehicles constitutes a fleet. At FleetBoard this term is used for commercial

purpose to offer packages of products and services, but also for technical purposes. During the

testing process an entire fleet is used for measuring the performance and the quality of the

telematic platform.

Vehicle: While for customers a vehicle is just the actual truck, van or bus, at FleetBoard this

comprises specialized hardware devices that collect and send messages to FleetBoard’s central

message queue servers. The communication is established using a private protocol in order to

begin an effective interaction among vehicles and the central message queue servers. The term

vehicle is also a generalized term for truck, van and bus.

Route: During a journey a real vehicle collects geographical positions (latitude and longitude).

The ordered set of these positions from the beginning to the end of a real journey are considered

a route, from which LVS uses them to follow a path. Hence, a route is a set of already generated

geographical positions.

Trip: A trip contains several components: routes, vehicles that follow routes, and drivers.

Concerning the simulation, the trip stands for the complete set of generated data that belongs to

a particular simulated journey.

Messages: Data conveyed from the vehicle to FBSC comprise messages with special function

one to another. Every message is equivalent to a datapacket (DP) identified with a number

according to its functionality, e.g., DP 255 contains information regarding geographical

positioning.

Tour: A Tour is defined from three different perspectives; customer, company and simulation

perspective. Although only the last two perspectives are subject of this thesis, all three are

2 Background

7

explained because they contain several similarities and offer a wider perspective of how this

term is used in different scenarios.

a) FleetBoard’s customers define a tour as the plan of the day for a vehicle on a specific

day to bring specific goods from particular customer A to customer B.

b) From the FleetBoard’s perspective, a tour is a broader context because it contains not

just a route, but also components such as a vehicle that generates coordinates at the

instant that this starts driving, a constant period to send encapsulated messages in form

of DP to FBSC, and the driver. The Figure 2.1 depicts this definition.

Figure 2.1: Company’s perspective: tour definition

c) From the simulation’s perspective a tour is defined as a template for a set of trips; this

contains the same information stated in the FleetBoard’s perspective, however the

purpose is different, because for every simulation a new trip is created based on a tour

which acts as a template. i.e., if a simulation requires driving 100 vehicles, it is necessary

to create 100 trips using just one tour, hence, an entire fleet can be tested with a similar

behaviour. Additionally, during the trip creation DPs are generated and stored into LVS

to send them during the simulation to FBSC.

Trace: A geographical position is collected and calculated by a GPS receiver (see section 2.2.3),

and at the same time every position is stored in the vehicle’s hardware in the form of latitude

and longitude, thereafter, vehicles send this data every constant interval with the current date

and time. Hence, what it is received by FBSC platform is a trace that contains a set of

coordinates with certain date and time. In the literature the term trace is also known as track,

which is an element of the GPX file format (see section 2.2.4) [Tu06].

Protocol: The communication between vehicles and FBSC is performed by using the private

FleetBoard Protocol to increase the security level throughout an encryption mechanism, and

minimize traffic by reducing the overhead of the messages to a minimum. The DPs’

specification is also found in this protocol.

Event types: There are some event types that are considered during the transmission of DP from

vehicles to the message queue server. Those event types represent the state of a vehicle or driver.

They are important for this thesis, because they contribute to the delimitation of a single tour

with regard to the starting and end point, e.g., drive start and drive end are event types.

2 Background

8

2.2 Mapping

 Geographical coordinates 2.2.1

Coordinates represent locations points. They are expressed using latitude and longitude, where

latitude measures from south to north, and longitude measures from west to east. The

representation is by means of the Cartesian plane. This is built based on the equator line, where

the latitude is zero, and used as reference to define the positive and negative points. Likewise,

the Greenwich England line is considered as longitude zero reference [Sven10]. The Figure 2.2

illustrates how the geographical coordinates are built it up.

 Waypoints 2.2.2

They are coordinates that identify a physical space [Tu06], in that way, they represent

intermediate points on a route, including starting and end points. For example, Figure 2.2

depicts one waypoint, which is in the centre of the coordinate system, (0, 0).

Figure 2.2 Elements of geographical coordinates

 Global Positioning System (GPS) 2.2.3

It is a satellite network that provides three dimensional locations, latitude, longitude and

altitude; one of the most important functionalities consists of offering geographical coordinates,

also known as geo-position. GPS is operated by a high altitude satellite that broadcasts position

and time to GPS receivers that determine their position and time based on the information

received from the satellite [Tu06].

FleetBoard’s vehicles contain a GPS receiver that allows vehicle tracking, these tracking

information is stored in the special hardware installed in vehicles (see section 3.2), and send it to

FBSC every constant period.

2 Background

9

 GPS Exchange Format (GPX) 2.2.4

It is a XML file format that contains coordinates. The advantage of this format is that guarantees

an easy way to process and convert geographical data to other formats. Waypoints, tracks and

routes, are essential components of the GPX format, including the metadata that represents the

namespaces. Figure 2.3 shows the structure of the GPX format.

Figure 2.3 Global schema of the GPX elements

 Web Map Service (WMS) 2.2.5

WMS is a geographical application based on the specifications of Open Geospatial Consortium

(OGC) and ISO/TC211 to create and display maps that come from heterogeneous and

distributed systems. These maps provide standard images such JPEG, PNG, SVG, among others

[LZ05].

The communication is supported by a protocol that provides operations to obtain the description,

features and rendering of maps, it lets the WMS provider to expose accurate responses based on

well-defined HTTP requests using standard Web browsers or Web services clients. The

specification of this protocol is defined by OGC to maintain interoperability and integration

among providers (Google, Nokia, OpenStreetMap and some others) as well as internet users.

 Geographic Information Systems databases (GIS) 2.2.6

They are distributed data management systems to increase the performance and quality of the

responses, they are able to support geometry data (points, lines, graphs and some additional

data) and process huge amounts of data. There are some alternatives to store information in local

servers for personal purposes; however it is necessary to provide an optimal infrastructure for

processing it. This option is given by OpenStreetMap. In normal cases the storage is hosted by

the main providers (Google Maps, Nokia, and OpenStreetMap).

 Tiles 2.2.7

A map is made up of many images called tiles; they are displayed in a grid arrangement and

closed each other so they appear as a single image. So every time an end user scrolls up or down

new tiles are loaded, it means that every zoom level retrieve tiles from WMS [Tu06].

Consequently, a Map Tiles Server has the function of retrieving images from distributed

databases (see section 2.2.6) and sending them as response based on requests containing

2 Background

10

coordinates, addresses, and other sort of information associated to Web maps. Requests are

allowed only using a map API (see section 2.2.8).

 Map Application Programming Interface (API) 2.2.8

They are online libraries that gather information from different sources to manipulate and

display information about maps. [SW12]. This map API contains functions that control the

appearance of a map, including size, shape, position and some other features.

The map API offers an Asynchronous JavaScript and XML (AJAX) as engine to interact to Web

map Servers asynchronously. Thus, every zoom in/out on Web maps is requested to the server

since new tiles need to render, thereafter the map API conveys data to browsers to display a map

using HTML and CSS formats. Moreover, API provides a number of utilities and services

throughout the main object called map. This map API is purely object oriented, where any

functionality is reached by instantiating objects [CHO08].

 Open Geospatial Consortium (OGC) Architecture 2.2.9

According to the OGC [ISO 19142], the WMS and maps APIs providers should implement a

common architecture for conveying and storing spatial data to guarantee interoperability and

flexibility among different applications. Figure 2.4 portrays the standard architecture provided

by OGC.

Figure 2.4 Maps: system architecture

This architecture comprises an End User, who uses a browser to make queries, a WMS to deliver

and send responses, and a Web Application to host map API. The interaction among these three

2 Background

11

fundamental components assumes a priori communication between browser and Web

application that allows further asynchronous calls using a map API for sending HTTP requests

to the WMS, upon delivery the request, the Map Tiles Server processes and forwards the request

by means of a proprietary protocol that depends on the WMS provider, consequently distributed

GIS databases retrieve the information and send it back to the Map Tiles Server to process and

serve the response in the appropriate representation format, finally a map is rendered in the Web

browser using HTML, CSS and information data (see Figure 2.4).

 GPX Visualizer 2.2.10

It is a free and online Web application [SCH13] to create maps and profiles based on simple

coordinates, waypoints, driving roots and results from Google WMS. It is suggested as solution

instead of using the optimized responses generated by Google Maps (see section 4.2.2)

[SCH13], e.g., Google only generates initial and end waypoints, while the GPX visualizer

generates additionally waypoints in between.

2.3 Quality model ISO 25000 and 9126

The international standard ISO 25000: Software product Quality Requirements and Evaluation

(SQuaRE) contains some reference models and standards for guiding the application of new

standards into software [ISO25000]. These are used in this thesis to evaluate software offered by

different WMS providers.

SQuaRE is based on the ISO 9126: Quality Model, from which this thesis extracts the criteria to

evaluate functionalities of software. The Quality Model is composed of a frame of reference to

describe the quality factors of any software; this comprises four parts:

1) ISO/IEC 9126-1: Quality model

2) ISO/IEC TR 9126-2: External metrics

3) ISO/IEC TR 9126-3: Internal metrics

4) ISO/IEC TR 9126-4: Quality in use metrics

The first part describes the framework and the relationships between the different approaches,

the second describes the external quality to evaluate the execution quality. The third covers the

internal quality to assess the quality of the code, and the last one describes the metrics used for

combining the three previous parts considering the user point of view [ACK05]. This thesis

considers only the following criteria: functionality, reliability, usability and efficiency, which

are part of the quality model ISO/IEC 9126-1.

The quality criteria according to the ISO 9126 Quality Model [ISO9126] are defined in the

following table:

2 Background

12

Functionality It focuses whether the required functionalities are available in the

software or not.

Reliability It focalises on the capability of software to maintain the performance

under certain circumstances, even if failures occur.

Usability It concentrates whether the functionalities are easy to use or not.

Efficiency It focuses on how the performance is between the software and the

resources.

Table 2.1 Criteria according to the Quality model ISO 9126

These criteria and their descriptions are considered in this thesis to evaluate WMS providers and

select one of them based on the concept and design (see section 4). The implementation, section

5, takes the result of this evaluation to develop the prototype.

13

3 Systems and communication architecture

This chapter provides a basis for FBSC, Integration Test System (ITS), LVS, and the

communication architecture that are used in daily operations at FleetBoard. A deep analysis is

considered over LVS, because the prototype is based on it. Thus, features, dataflow and pattern

of design are analysed to comprehend the complexity of this system and its interactions.

3.1 Architectural overview

The architecture comprises FBSC to receive messages from real vehicles and provide services to

customers (see section 1.1.4), and Telematic Platform (TP) to collect data in vehicles and send it

to FBSC. In addition, a parallel architecture exists with the purpose of testing and simulating the

current and new features in FBSC. The benefits of having this parallel system encompasses

reduction of unexpected behaviours or errors in the production environment, more quality in the

services provided to customers, and real trucks’ hardware are not used for testing purposes, that

also minimize costs.

The parallel architecture contains Integration Test System (ITS) that substitutes FBSC, and LVS

that replaces real vehicles. ITS is used for testing FBSC and LVS to simulate vehicles. Running

both systems allows measuring of FBSC’s performance and guarantees that FBSC’s

functionalities work properly with high quality. Figure 3.1 depicts the architectural overview.

The process of adding new features on FBSC considers first a deployment of these features in

ITS, then old and new features are tested using several testing tools, from which LVS is also

included. Thus, if results are successful the new functionalities are deployed in real environment

and customers are willing to use them. In case of having errors or weird behaviours new

functionalities are corrected and a new test process starts.

3 Systems and communication architecture

14

Figure 3.1 General system architecture overview

In this thesis, the development and implementation of the prototype consider the testing and

simulation environment. In that way, LVS is used to reach more realism in the simulations, and

ITS will be utilised to receive messages and to import historical data from real vehicles to LVS.

3.2 FBSC and communication platform

It is essential to describe the main components of the communication architecture to understand

how the entire system works. The main components are illustrated in the Figure 3.2, and

described in the following paragraphs.

Figure 3.2 Communication and systems architecture

3 Systems and communication architecture

15

The communication platform refers to vehicles’ main components (1), FBSC (2), and the

customer interfaces (3), these three prominent parts define a peculiar interaction using FBSC as

central repository of information, Figure 3.2 . The interaction is performed using the GSM

network and the FleetBoard’s protocol to establish communication between vehicles and FBSC.

SOAP protocol is used between the customer interface and FBSC mostly to manage fleets

through the services offered by Daimler FleetBoard, see section 1.1.4.

Vehicles comprise two main hardware sub-components (see Figure 3.2); one is the TiiRec, also

called TP, and its main function is to collect data related to vehicles and time management

services, see section 1.1.4 . The second component is the DispoPilot, its main task is to provide

logistics management services, see section 1.1.4, and help drivers with the map navigation. Both

the TiiRec/TP and the DispoPilot are installed in the driver’s cabin.

Figure 3.2 depicts the interaction among the DispoPilot, the TiiRec and FBSC, when

information is generated by the DispoPilot, the TiiRec receives and sends this information to

FBSC. Therefore, exchanging information is only possible between the TP and FBSC.

According to Figure 3.2, the second main component of the architecture is FBSC, in which three

sub-components are important to know. The first element is the WebSphere MQ Server; this has

the function of receiving all messages that are sent by the TP, thereafter those messages are

stored in a queue, and then forwarded to the WebSphere Application Server (WAS) using Java

Message Service (JMS) as messaging standard.

The second component is the WAS, that is responsible for processing and storing the information

into the database. Furthermore, the WAS is in charge of providing services to customers by

means of SOAP interfaces which are requested using RCP application clients and Web services.

The Web GUI is accessed using HTTP.

The third component is the DB2 database, its main function is to store messages and private

information related to customers. Technically this database is distributed in a cluster manner to

optimize processing of data and minimize the response time for requests. LVS accesses this

database throughout a JAVA Application Programming Interface (API), which is called Test

API which is used for importing information related to fleets, vehicles and drivers.

Customers’ interfaces are provided as Web GUI, RCP Clients or custom user interfaces

connected to FleetBoard via SOAP to retrieve information from FBSC. The Web GUI is used to

visualize information related to fleets, drivers and the available services (see section 1.1.4)

offered by Daimler FleetBoard to customers. However, this Web GUI is being replaced to RCP,

which are applications installed at customer side. Web services interfaces support RCP

applications to retrieve information from FBSC, e.g., messages generated by vehicles in a

certain range of dates can be visualized it. These mechanisms are listed in the Customer

interface component in the Figure 3.2.

The relevant parts of the telematic architecture to be considered in this thesis are the vehicle and

FBSC copy in the ITS. However, the vehicle and its main components are replaced by LVS for

testing purposes; the section 3.4 explains this in details.

3 Systems and communication architecture

16

3.3 Integration Test System (ITS)

ITS is a copy of FBSC, which is a replica of the software from real environment, the hardware

has some variations. This replica is used for testing new and current functionalities to avoid

unexpected behaviours or results in the real environment. The performance analysis is also

performed in ITS to measure the capacity of response and stability under a particular workload.

The technological architecture is the same as FBSC shown in the section 3.2, but the only

difference is that both have different purposes. FBSC is for providing services to customers and

ITS for testing and performance analysis.

3.4 LiveVehicleSim (LVS)

LVS is a software accessed via a Web GUI that simulates vehicles’ behaviours. This covers the

delivery of messages to FBSC and the generation of data regarding time and vehicle

management (see section 1.1.4). The objective of this simulator is to support the tests on FBSC.

When new features are added to FBSC, the failures that reach the customer may be dramatically

reduced, because the simulator acts as real vehicle and the functionalities of FBSC can be tested

before customers make use of the platform. This is considered a great benefit to the company.

The interaction between LVS and FBSC is performed in the local network instead of the GSM

network, and the private protocol is still used. Every message received by the message queue

server is processed as if it were real vehicle. Currently, more than 600 vehicles are simulated at

the same time using LVS, in that way, functionalities, availability and performance of FBSC can

be tested. In Figure 3.3 this interaction is visualized.

Figure 3.3 Systems and communication architecture for testing

 Features 3.4.1

The functionalities of LVS are found directly on the Web application; therefore they are

described based on the site map, see Figure 3.4. Functionalities are accessible through the login

3 Systems and communication architecture

17

Web page (index.html) using the private network, and a valid user with his corresponding

password. Currently this only supports Mozilla Firefox to navigate along the Web site.

The dashboard interface (dashboard.html) contains the three fundamental application modules,

the tour administration (tourmanagement.html), the trip administration (trips.html) and the

Messages administration (31.html).

The tour administration module is used for creation of tours; this feature lets tours to be created

immediately or scheduled for its execution in the future. This is the most important feature,

because the simulation is configured and planed in this module. Four additional sub-modules are

found for the manipulation of vehicles (vehicles.html), drivers (drivers.html), fleets (fleets.html)

and routes (routes.html). The Web GUI that the prototype uses to meet the objectives of this

thesis is the routes administration, the fields that comprises this Web GUI are name, description,

initial and end destination and GPX that contains a set of waypoints.

The feature of the trips module consists of displaying information in detail regarding trips that

are in state running, finished and pending to run. In any of these states the information shown

comprises the vehicle with his drive and the messages that will be sent throughout internet. This

feature acts as reporter.

Within the messaging module the main feature consists of the manual creation of messages,

which are supported in the user’s selection of a datapacket in the Web GUI, thereafter a message

is built up and sent it to the queue server. The information content of every datapacket in this

module is statically predefined.

Figure 3.4: Site map

 Dataflow 3.4.2

Data Flow Diagram (DFD) representation is applied in this section to describe how data flow

among LVS, FBSC and Google Maps. In that way, inputs, outputs and processes that comprise

LVS are understood.

DFD (see Appendix A) describes graphically a system from general to specific perspective; this

description is based on the inputs, outputs and processes. Decomposition technique is essential

3 Systems and communication architecture

18

to start from a high level of description until a desired level of detail is obtained [AG92];

basically, this consists of defining the main functionality or process of the system as top level,

from which other functionalities are defined in further sub-levels. Figure 3.5 illustrates two

levels of description. Level 0: start tour process and level 1: import tour process with their

corresponding inputs and outputs. The following paragraphs explain the DFD in detail.

Figure 3.5: LVS Dataflow Diagram

The dataflow during a simulation in LVS consists of inserting data that is set when users select a

specific fleet, vehicle, driver and date on the tour administration module. In this way, the tour

simulation is performed with the purpose of letting a vehicle run, and a group of messages are

generated as output of this process. A prerequisite to run the simulation of a tour comprises the

importation of data regarding fleet, vehicles, drivers and coordinates from Google Maps.

The process of importing data considers as first source of information the DB2 database which

provides data related to vehicles, drivers and fleets. The second source of information is Google

Maps that provides waypoints to define routes. The output data of this process are fleets,

vehicles, drivers and routes that are used in the tour simulation (see Figure 3.5).

Figure 3.5 depicts the dependency on the general start tour process and the importation of data

processes as part of it. The tour administration module, see section 3.4.1, is used to operate these

two processes.

For this thesis, the process of importing routes is analysed to create a new method to import

routes close to the reality and optimize the actual process by integrating WMS into LVS. Hence,

data generated by Google Maps are no longer needed, because current routes do not represent

customers’ behaviour.

3 Systems and communication architecture

19

 The Model View and Controller pattern (MVC) 3.4.3

The MVC is an architectural model for software systems. The main objective is to isolate three

different layers: the model layer for the data storage manipulation, the view layer for the data

representation into user interface, and the controller layer in charge of the business logic or user

interaction [LR01]. The benefit of applying this model leads to obtain a software application,

easy to develop, modify and maintain [CL09]. LVS is supported on this model.

The interaction among these three layers starts when users send HTTP request to WAS using a

Web browser, the controller acts as central unit of processing, this receives the request, performs

the needed operations, retrieves data from the model if it is necessary, and finally sends the

pertinent information to the right view for rendering the information in the Web browser

[LR01]. The following sections explain in detail how LVS performs its operations using these

three layers.

3.4.3.1 Model

In this layer LVS employs Object Relation Mapping (ORM), which allows to apply analysis and

design of oriented objects, improving the application performance when limits of memory in a

relational database are reached[LZ10], and uses the Java Persistence API (JPA) as framework,

to persist model objects to a relational database and retrieve them [BKS11].

The relational database management system (RDBMS) is MySQL, and is accessed through JPA

using Java Persistence Query Language (JPQL) to interact with the relational database, access

and manipulate data [Va08]. The controller performs the creation, update, retrieve and delete

(CRUD) operations using Data Access Object (DAO), which are interfaces exposed by the

model layer assuring a transparent access to MySQL [BKM04]. Figure 3.6 portrays the general

overview of this layer used by LVS.

3.4.3.2 View

This layer defines the Web GUI or Web pages; it is basically, what users see. Java Server Faces

(JSF) is the technology used for rendering information into Web browsers; this is well-known as

Web application standard Java Framework technology [LS11].

JSF uses a standard API for rendering Web applications user interfaces (UI), from which the UI

components are defined, including their events and validations. This technology also comprises

the MVC pattern, in which UI components are supported on the model layer to operate and

implement the business logic, the view layer to exchange information among users, and the

controller layer to control the Web applications from users’ requests until a Web page is

rendered using a special servlet named FacesServlet [LS11].

JSF defines a process with 6 phases for displaying the information in Web browsers, (1) Restore

view is triggered when an end user clicks on a link or button, (2) Apply request values takes the

values of every component in the Web application, and are updated in the application server, (3)

Process validation evaluates the properties of every component based on the values of the

attributes, if an error comes up, the process changes to the last phase, (4) Update model values

bring values to the backing beans in the server, , (5) invoke application considers the application

3 Systems and communication architecture

20

events and passes the control to the next page, according to the navigation rules of the

application, and (6) Render the response which displays the pertinent information to users

[Hi05]. Figure 3.6 depicts these six phases.

3.4.3.3 Controller

Reading and validation operations are performed by this layer to determine the business logic

needed by the end user, and retrieve information from the interfaces exposed by the model layer,

if necessary. In addition, this layer selects the next view users should see, including the

response. Figure 3.6 illustrates this intermediate layer and its interrelations.

Figure 3.6 LVS and the MVC design pattern

3.4.3.4 Application and database server

Figure 3.6 shows the application server with LVS application, from which the MVC layers are

clearly separated according to their functions. The database server contains MySQL that is in

charge of storing physically data. Users also represent an important component in the

architecture, because by means of a Web browser they send requests, and receive responses to

and from the application server.

21

4 Concept and design

This chapter provides the anaylsis and two solutions to address the purpose of this thesis defined

in in section 1.3. The first solution encompasses a new process to create routes using data

generated by real vehicles. The second solution provides a mechanism to create routes by setting

a Wep Map. Functional requirements are defined to support these two solutions.

4.1 Concept to incorporate real routes in tour simulations

This section defines a concept that comprises an analysis of the current process of creating

routes. Subsequently, an algorithm describes the new process to create routes with more realism

in tours simulations. Functional requirements are also defined to support the implementation of

the prototype, these are based on the algorithm previously defined.

 Analysis 4.1.1

The process of running a tour simulation consists of generating data close to the reality for

acquiring behaviour similar to real vehicles, with the objective of testing functionalities of

FBSC. Currently during the execution of a tour simulation LVS follows routes manually created

using Google Maps to simulate vehicles’ movement. These routes do not represent any relation

to the reality, i.e., none vehicles have driven over these routes, so that, actual simulations lack of

realism, and the cause lies on using Google Maps as source to create and import routes.

In reality, every vehicle follows unique routes, even if a vehicle follows the same roads daily

with same initial and end point, they differ in details, because a waypoint is not always collected

at the same position and at the same time by the TiiRec, it varies from one to another. In that

way, there must be more routes than vehicles in a simulation, which is not true for LVS. For this

reason, it is essential to find a solution that provides the amount of data necessary to generate

tours automatically with unique routes.

The following approaches encompass the problem statement defined in section 1.2, from which

it is stated the lack of realism of tours simulations, and the non-existence of an automatic

process to create amounts of routes that satisfies the number of available vehicles.

 Approaches 4.1.2

In this section, a solution tackles the problems stated in the analysis section by providing a new

process and technical description to support the specification (see section 4.1.3) and a suitable

implementation (see section 5) of the prototype. A unique approach is considered in this section,

because the solution contemplates the closest datasource to the reality and FleetBoard’s

customers.

4.1.2.1 The new process design

Considering that the messages generated by the real vehicles are send to FBSC to be processed

by the message queue server, and finally stored into FBSC’s database, the appropriate source for

4 Concept and design

22

importing routes is FBSC’s database, because this contains real routes that vehicles generate

continuously. With this solution tours simulations use and generate data close to the reality.

Furthermore, the import of routes from FBSC’s database and loading them into LVS’ database

constitutes a process of bringing large numbers of routes, which solves the manual execution

and lack of generating large amounts of routes. Figure 4.1 represents the new routes flow from

FBSC’s database and LVS’ database, from which exists an intermediate step for transforming

the real routes into routes ready to use by LVS.

The transformation of routes is essential because FBSC’s database stores waypoints

continuously without indicating the initial and the end waypoint of a single route. This

inconvenience is solved by establishing a clear limitation using the event types records (see

section 2.1) generated by real vehicles to distinguish when a vehicle starts driving or stops.

Another inconvenience is that FBSC’s database stores waypoints in different tables depending

on the services that vehicles contract with Daimler FleetBoard, if Track and Trace service is

part of the bundle of services, the table used is gpstracedata , otherwise gpsdata, Although,

these two tables contain waypoints, it is important to differentiate them to retrieve the right

information. The difference between them lies in that every entry of the gpstracedata table

stores several waypoints collected every 30 seconds, meanwhile every entry of the gpsdata table

stores only one waypoint, which is generated every 30 minutes. Figure 4.1 describes the

interface in FBSC to access these tables.

Figure 4.1 depicts the summary of the new process model of importing routes, in which, FBSC

data layer provides an interface to access gpsdata table that belongs to the Basic Service and

gpstracedata table that is part of the Track and Trace Service. The improvement of this

approach includes the following steps: (1) creation of an algorithm in the logic layer capable of

interacting with FBSC’s interface to import the waypoints, (2) transforming them into

representable routes in a tour, and (3) loading them into LVS’ routes table that is linked to the

data layer from LVS. The order of execution of these three functions is shown in Figure 4.1,

from which the three arrows represent the functions.

This new process model is executed by the end user in the view layer from LVS, and the routes

are stored in LVS’s database automatically for further simulations.

4 Concept and design

23

Figure 4.1. The new model for importing routes

 Specification of the selected approach 4.1.3

Considering the MVC from section 3.4.3, the objectives exposed in section 1.3 and this

approach, the functional requirements are described in this section.

The functional requirements are specified using use case diagrams from the Unified Modelling

Language (UML). Figure 4.2 depicts the use cases to be implemented in this thesis. They are

distributed according to the MVC pattern and include the user and FBSC as actors. The

sequence of execution of every functionality is determined by the number assigned to the use

cases. For example, if user creates a route, three use cases are included, create routes (1), import

routes (2), and store routes transaction (3).

4.1.3.1 Use cases

Use cases represented in Figure 4.2 are divided in three layers: view that represents the

functionalities provided to users in the Web GUI, controller that relates to the business logic to

support the view or model layer, and model that encompasses the operations to manipulate data

using the database. Thus, the functional requirements are classified using these three layers and

the UML notation to describe them.

4 Concept and design

24

Figure 4.2 Use cases considered in this thesis

View layer

The following tables (4.3 and 4.4) contain the use cases that represent the new functionalities on

the Web GUI.

4 Concept and design

25

Name Create routes

Goal Users fill out the fields from the Web GUI to create a route object

Actor Users

Pre-Condition 1. The WAS is already running.

2. Users are already logged in LVS

3. Fleets are already created in LVS.

Post-

Condition The controller layer receives the route created in the Web GUI

Post-

Condition

in special case

LVS displays a message with the exception

Normal Case 1. Users add a new route.

2. Route object is created.

3. Users fill out the name, selects FBSC datasource and chooses the fleet.

4. Save the route created.

Special cases 1. Missing mandatory fields.

 a) LVS displays an error message and further operations are not

performed.

2. No route is created

Table 4.1 Description of use case Create route

Name Update routes

Goal Users fill out the fields from the Web GUI to update a route object

Actor Users

Pre-Condition 1. The WAS is already running

2. Users are already logged in LVS.

3. Fleets are already created in LVS.

4. Route is already created in LVS.

Post-Condition The controller layer receives the route updated in the Web GUI

Post-Condition

in special case
LVS displays a message with the exception

Normal Case 1. Users select a route.

2. Users update any field of the selected route.

3. Save changes.

Special cases 1. Missing mandatory fields.

 a) LVS displays an error message and further operations are not

performed.

2. No route is updated.

Table 4.2 Description of use case Update route

4 Concept and design

26

Name Delete routes

Goal Users select a route to delete

Actor Users

Pre-Condition 1. The WAS is already running

2. Users are already logged in LVS

3. Route is already created in LVS.

Post-Condition The controller layer receives the route selected in the Web GUI

Post-Condition

in special case
LVS displays a message with the exception

Normal Case 1. Users select a route.

2. Users delete a route

3. LVS displays a confirmation message.

Special cases 1. No route is deleted.

Table 4.3 Description of use case Delete routes

Name Display routes

Goal Display the current active routes in the route administration module.

Actor Users

Pre-Condition 1. The WAS is already running.

2. Users is already logged in LVS

3. Route is already created in LVS.

4. Users access the route administration module using the tour

administration module.

Post-Condition Through the controller layer routes are retrieved from the model layer.

Post-Condition

in special case
LVS displays a message with the exception

Normal Case 1. The current active routes are displayed in the route administration

module.

Special cases 1. No routes are displayed

Table 4.4 Description of use case Display routes

Controller layer

This use case represents the new functionality on the business layer to import the routes from

another datasource.

4 Concept and design

27

Name Import routes

Goal
Import waypoints from FBSC's database, considering the parameters given

by the upper layer.

Actor FBSC

Pre-Condition 1. FBSC's database should be running.

2. The Test API should be correctly configured in LVS to access FBSC's

database.

3. Available routes in FBSC's database

Post-Condition The model layer receives the imported routes and uses them for storing in

LVS' database

Post-Condition

in special case
LVS displays the exception message

Normal Case 1. Controller layer is called from the upper layer and receives the

parameter given by the user in the Web GUI.

2. Define the starting date and end date of the route.

3. Retrieve waypoints from FBSC's database that are in the interval

defined in the previous step (2.)

4. Call the model layer and send the route with its waypoints.

Special cases 1. The vehicle has no waypoints associated to.

2. FBSC's database is off-line.

Table 4.5 Description of use case Import routes

Model layer

These use cases represent the new functionalities on the data model layer.

Name Store routes transaction

Goal Store routes into LVS’ database

Pre-Condition 1. LVS database should be running.

Post-Condition Transaction committed

Post-Condition

in special case
LVS displays the exception message

Normal Case 1. Model layer is called from the upper layer and receives a list with routes

to store.

2. Perform a transaction for every route.

 a) Begin transaction.

 b) Save route

 c) Commit transaction.

Special cases 1. Transaction is not committed.

Table 4.6 Description of use case Store routes transaction

4 Concept and design

28

Name Update routes transaction

Goal Store routes into LVS’ database

Pre-Condition 1. LVS database should be running.

Post-

Condition
Transaction committed

Post-

Condition

in special case

LVS displays the exception message

Normal Case 1. Model layer is called from the upper layer and receives a list with the

routes to store.

2. Perform a transaction for every route.

 a) Begin transaction.

 b) Save route

 c) Commit transaction.

Special cases 1. Transaction is not committed.

Table 4.7 Description of use case Update routes transaction

Name Retrieve routes

Goal Retrieve active routes from LVS database to display them into the Web GUI

Pre-

Condition

1. LVS' database should be running.

2. Active routes are available in the database

Post-

Condition

Convey a list of routes to the upper layer, consequently the routes are

displayed in the Web GUI

Post-

Condition

in special

case

LVS displays the exception message

Normal Case 1. A list of active routes is filled from LVS' database.

Special cases 1. Routes are not retrieved.

Table 4.8 Description of use case Retrieve routes

4.2 Concept to integrate a WMS provider into LVS

The main objective of this section is to find an optimized solution for the import of coordinates

into LVS using a WMS. This solution contains an analysis section to be familiar with the current

situation, the approaches section to evaluate the possible optimizations, and the decision section

to decide on the best approach for the further implementation. Furthermore, the approaches

section comprises an evaluation of the current WMS providers using the quality model ISO

25000 and 9126.

 Analysis 4.2.1

According to the purpose of this thesis (see section 1.3), an optimization of the actual process of

importing coordinates should be performed. The execution of this optimization requires the

4 Concept and design

29

manual operation of simple activities by means of different systems, which is a time-consuming

process. In addition, routes generated from Google Maps are not close to real routes due to the

optimization on routes performed by Google. Figure 4.3 illustrates this process with its sub-

processes, activities and systems.

Figure 4.3 describes the current importation and creation of routes process, from which three

sub-processes are divided according to the number of systems with activities associated to.

Thus, the function of sub-process 1 is to calculate the routes, this process is executed when the

end user gives as input of information an initial and final place on Google Maps Web GUI.

Thereafter, a request is sent it and processed it by Google. Finally a response is displayed and

used for sub-process 2. The response from Google is a URL that contains the initial and final

coordinates; this means that waypoints in between are not provided.

Since a real tour comprises not only of two coordinates, but several coordinates in between, sub-

process 2 converts the two waypoints given by Google Maps into waypoints in between,

including the initial and end waypoints. The conversion is performed by using a bookmarklet,

which is normally used to extend functionalities in Web browsers; in this case, bookmarklet

stores a JavaScript command to include an external JavaScript library that allows transform the

response from Google Maps into a set of waypoints. This set includes initial, end and

intermediate waypoints.

The GPX Visualizer when users take the response from Google Maps and execute it on the GPX

GUI; afterwards the result of this request is copied and used as input of sub-process 3 (see

Figure 4.3).

Sub-process 3 operates the storing of waypoints into LVS database. This process starts when the

end user pastes the waypoints given by the GPX visualizer, and executes the storing query.

Thereafter it finishes with a confirmation response that is displayed on LVS GUI (see Figure

4.3).

Figure 4.3: Current process to import routes

4 Concept and design

30

In general, this process consists of giving a name, description, starting point, end point and a set

of coordinates that are used for tour simulations. After providing this information in the route

administration module, the route is saved and ready for use on any tour.

 Approaches 4.2.2

The following two approaches focus on the design of possible optimizations of this process. A

subsequent evaluation is applied based on the following criteria: functionality, reliability,

usability and maintainability (see section 2.3). Finally a decision is made to select one of the

approaches.

4.2.2.1 Approach 1: merging calculation and conversion of routes

Based on the Sandbox feature for drawing a line on a Web map with the alternative to export it

as waypoints offered by GPX Visualizer, this approach focuses on the optimization with

removing sub-process 1, including the activities and systems that belong to it (see Figure 4.3).

Since the calculation and conversion of routes are already integrated in Sandbox.

Figure 4.4 shows the optimization for importing routes. The input is the drawing of a route on a

Web map, from which the calculation and conversion of routes is performed automatically by

GPX Visualizer on its Web GUI. The output is a set of waypoints, which are obtained by calling

the export function by sending http requests.

Storing coordinates on LVS database remains the same; hence, input, output, activities and LVS

are not modified in this approach.

Figure 4.4 Approach 1: Import routes process removing sub-process 1.

Merging calculation and conversion of routes in one system is an advantage because a

minimization of time is obtained by operating two systems instead of three. However, there is

4 Concept and design

31

still a drawback because manual tasks are needed to paste waypoints from one system to

another. For this reason a second approach is presented to achieve a refined optimization, 4.2.2.2

Approach 2.

4.2.2.2 Approach 2: merging calculation, conversion and storing

This approach focuses on integrating the calculation, conversion and generation of waypoints

only into LVS using a Map API from WMS provider to make and manipulate data regarding

routes; this means that Google Maps and GPX Visualizer are removed from the importing routes

sub-process, as well as the activities associated with these two systems; in this way, all activities

are executed in one single system.

Figure 4.5 describes the optimization of importing routes based on drawing a line as input of

information using Web maps as first activity to define a route, this activity is performed in LVS.

The final operation consists of sending a request to save the coordinates that were set in the

previous activity, and then, an output is displayed as confirmation message on Web GUI to

corroborate whether the operation was successful or not.

Figure 4.5 Approach2: Import routes process, removing sub-process 1& 2

The advantage of this approach is that manual activities are removed and a considerable

minimization of time is achieved when the execution of importing routes is performed; since

only one system operates all the activities without the intervention of manual tasks. However, a

further analysis and evaluation is needed to define the provider of the map API before this is

integrated into LVS.

4 Concept and design

32

Evaluation of different WMS providers

According to Schmidt and Weiser in Online Maps with APIs and Web Services [SW12] and

Błażej [CJM+10], companies such Google, Microsoft, OpenStreetMap and Nokia are the most

relevant in the market of WMS. This is due to the success of their services and the capacity to

handle their services and support. Thus, these four main providers are part of the evaluation for

integrating a map API with its WMS into LVS.

The evaluation of the WMS provider is based on the following criteria: zero cost of investment

from the current business constraints defined in section 1.4, and functionality, reliability

usability from the ISO 9126 (see section 2.3). These criteria are assessed considering the

documentation from every provider, from which Appendix B contains the details regarding

whether every criterion is satisfied or not.

Considering Table 4.9, those providers that hold the criteria are ticked, and those that do not, a

blank space is left. After the evaluation OpenStreetMap obtained the lowest score, 16, because

this is not reliable and implies costs of licences. Followed by Google and Bing (Microsoft)

providers with a score of 24, they fulfil all criteria except cost of investment, since costs of

licences are also associated to the integration of their map services. Finally, Nokia Maps, has a

score of 34, this provider holds all criteria, including a zero cost of investment as FleetBoard’s

services include Nokia maps licences, which means that licensing is already paid. Therefore,

Nokia maps service is used in this thesis. In addition, Appendix B contains justifications

regarding this evaluation.

The selection is based on the provider with the largest total (see Table 4.9). This total contains

the sum of all criteria that are ticked. The importance of every criterion is defined according to

the FleetBoard’s importance, from which 10 is the most important and 7 the least one.

 Company’s Map service

Criteria Weight Google Bing OpenStreetMap Nokia

Zero cost of investment 10

Functionality 9

Reliability 8

Usability 7

 Total 24 24 16 34

 Selection

Table 4.9 Evaluation and selection of the WMS Provider

Due to the results of Table 4.9, Nokia is the most suitable provider for a WMS and map API.

This decision is based on the results from Table 4.9, from which Nokia reached 34 points out of

34 along different providers, despite all of them are supported by the same principle, which

consists of using a central server called Map Tiles Server, a distributed database system and

Web browser to make request using a map API (see section 2.2).

4 Concept and design

33

 The selected approach 4.2.3

Considering the advantages exposed in the second approach, the implementation will be based

on it. This approach includes integration of the calculation, the conversion and the storing of

waypoints by means of LVS, Nokia WMS and Nokia’s map API. As consequence manual tasks

are eliminated and only one system controls the importing of routes process.

 Specification of the selected approach 4.2.4

Supported by the decision of integrating Nokia Maps into LVS, functional requirements

comprise: first, the configuration of the Nokia API to integrate the WMS into LVS. Second,

modify the Web GUI to support the creation of routes using Nokia API. UML is used to

describe these functional requirements through use cases notation. Considering the Figure 4.2,

only the View is affected, because the business logic placed in the controller and the persistence

operations in the model layer are the same. From Table 4.10 to Table 4.11 the description of the

functional requirements is specified.

4.2.4.1 Use cases for the approach 2

Name Configure Nokia API

Goal Integrate Nokia WMS into LVS

Pre-Condition 1. User and token provided by Nokia to access its map services must be

active.

Post-Condition 1. Nokia's API available to receive request by LVS

Post-condition

in special case
LVS displays the exception message

Normal Case 1. Nokia’s API should behave as it is stipulated in the documentation.

Special cases 1. None function from Nokia's API is available.

Table 4.10 Use case to configure Nokia API

Name Creation of routes

Goal
Using a map in the Web GUI, users select a route, and the waypoints from

that route are imported, loaded and created in LVS.

Pre-Condition 1. User and token provided by Nokia are active

2. LVS' database is running.

3. WMS from Nokia is available

Post-Condition 1. A route is stored in LVS' database

Post-Condition

in special case
LVS displays the exception message

Normal Case 1. A list of waypoints are retrieved using the Nokia API.

Special cases 1. No route is created in LVS

Table 4.11 Use case to create routes using Nokia API

4 Concept and design

34

4.3 Conclusion

Two concepts are defined in this chapter, these follow the same methodology, analysis of the

current problem, and the suggested solution including technical description and specification to

support a suitable implementation of the prototype. The first concept defines a new process to

import and create routes using FBSC’s database, from which, the real routes are stored. The

second concept includes an optimization of the process of importing routes from WMS provider.

In addition, an evaluation is provided to select the best WMS provider based on criteria defined

in the ISO 25000 and FleetBoard’s restrictions (see section 1.4). As result of this evaluation

Nokia WMS provider was selected.

35

5 Implementation

This chapter encompasses the development of the prototype considering the concept and design

defined in Chapter 4. A glance over the current configuration environment and tools is defined

in section 5.1, MVC design pattern (see section 3.4.3) is applied to develop the new

functionalities. Section 5.2 contains the implementation performed in the Web GUI, and section

5.3 describes the business logic that support the prototype, followed by section 5.4 which

comprises details about the persistence layer. Additionally, a class diagram in section 5.5

summarises the classes modified during the implementation.

5.1 Implementation overview

The new functionalities are developed in Java using Integrated Development Environment (IDE)

Eclipse [Ec13]. For the Application Server and Servlet Container is Apache Tomcat [To13]. The

RDBMS is MySQL [My13]. Maven is used as tool for Project Build Manager [Ma13] and SVN

is used for version control on the file level [Su13]. Appendix C contains the detailed information

regarding versions and libraries used during the implementation.

Considering the MVC pattern, the view is built it up using Java Server Faces(JSF), including a

HTML tag library, for the user interface (UI) components, JSF core tag library to customize

actions and RichFaces tag library for easily integrating Asynchronous JavaScript and XML

(AJAX) features into the application. The model layer uses Apache Open JPA implementation

for the Java Persistence API specification [Op13].

5.2 Web Graphical User Interface (GUI)

The implementation is performed over the route management and tour management views (see

section 3.4) to satisfy the functional requirements defined in sections 4.1.3 and 4.2.4. Thus, this

section comprises a description of the actual Web GUI, a new functionality using FBSC as

source of real routes, and the integration of WMS into LVS.

 Description of the current Web GUI 5.2.1

The route management view is used by users for manipulating routes, thus CRUD (create, read,

update and delete) operations that belong to routes are performed in this Web GUI. Every

CRUD operation is composed of the following attributes: name to identify the route, description

to detail a particular characteristic about the route, origin to specify where a route starts,

destination defines the final place of a route, and the GPX data for the GPS coordinates which

are used for setting waypoints of a route. After populating these fields in the Web GUI, a route

is created and is ready to be used by tours (see section 3.4). The Figure 5.1 depicts this view.

5 Implementation

36

Figure 5.1 Current Web GUI

 New CRUD operations using real routes 5.2.2

This section describes the new behaviour of CRUD operations in the routes management Web

GUI using routes from FBSC. The description of every operation considers their objectives, data

needed to execute them, results after executing them and their relationships to functional

requirements defined in section 4.1.3. Additionally a screenshot (see Figure 5.2) illustrates how

these operations look like in the Web GUI.

5.2.2.1 Creation of routes

The objective of this operation is to create real routes using the Web GUI. For every execution

of this operation a set of routes is created in LVS, the size of the set depends on the number of

vehicles that belongs to a fleet’s selection in the Web GUI. For every execution users only see a

confirmation message whether operation was successful or not, which is similar to the previous

mechanism to create routes. However, they differ from input data and the algorithms.

Due to the automatic operation to create real routes the Web GUI only requires a name which

identifies the set of routes, a checked checkbox to indicate FBSC as source of information, and a

fleet from which vehicles are used to create routes, so that, for every vehicle a real route is

created. This implementation covers the use case creation of routes (see Table 4.1).

After users send a request to create the real routes, only one route in the left panel is displayed,

which is called parent route, because this represents the set of routes already created. Figure 5.2

5 Implementation

37

illustrates the routes administration Web GUI with the new input data, and the results after

create operation is executed.

5.2.2.2 Update of routes

Update operation consists of bringing up to date data regarding real routes. Thus, considering a

selection of a parent route and any modification of its name and fleet, this operation removes the

set of routes that belongs to the parent; afterwards, the same process of creating routes is

applied. This operation is based on the definition of the use case Update routes (see Table 4.2).

5.2.2.3 Deletion of routes

The aim of this operation is to remove a set of routes that belongs to a parent route selection on

the Web GUI (see Figure 5.2). After executing this operation a message is displayed on the Web

GUI confirming whether the operation was successful or not. If operation is successful, the

selected parent route from the left panel, is also removed, otherwise parent route remains in the

Web GUI. This functionality is based on the use case delete routes in Table 4.3.

5.2.2.4 Retrieving routes

This operation retrieves routes from LVS’ database every time the Web GUI is requested. The

previous mechanism retrieved routes one by one. The new implementation keeps the previous

mechanism, because this is used for routes that come from WMS provider (Google Maps). In

addition, to retrieve routes that come from FBSC the new implementation displays only parent

routes which represent sets of routes. Thus, the Web GUI displays all routes that are created

using WMS provider, and parent routes (see Figure 5.2). This operation is supported by the use

case Display routes in Table 4.4.

Figure 5.2 The implementation for importing routes from FBSC database

 Integration of Nokia Maps into LVS 5.2.3

This section describes the new functionality that allows creating routes automatically from

WMS provider. This functionality runs on the routes administration Web GUI. Create and

retrieve operations are described, while delete and update operations are not treated, because

they are not modified.

Technically this Web GUI integrates Nokia map API (see section 2.2.8) to interact with the Web

GUI and WMS. Consequently, API’s functions and a tailored algorithm are used to import and

5 Implementation

38

load waypoints automatically. This functionality is based on the use case configure Nokia API

Table 4.10 and create routes using Nokia API (see Table 4.11).

Figure 5.3 Interaction of Nokia WMS and the routes administration Web GUI

5.2.3.1 Description of the create operation

Two different perspectives are considered for describing routes creation. The first perspective is

regarding the interaction between users and the Web GUI, and the second encompasses the

interaction among Nokia’s API, a JavaScript tailored algorithm and Nokia’s WMS. These two

perspectives are presented together, because they are part of the presentation layer, so that, they

are executed in customers’ side, instead of the server side.

Using Nokia JavaScript API users interact with a Web map in the Web GUI by setting the initial

and final points of a route, thereafter an asynchronous request is sent it to Nokia’s servers, and

the response is formatted to a route which is display in the Web GUI (see Figure 5.3). For

further details about mapping communication architecture refer to 2.2.9.

a) Interaction between users and Web GUI. The objective of this Web GUI is to provide a

means of importing and loading waypoints from Nokia Maps automatically. Thus, the

new functionality considers the input fields from the previous Web GUI (see section

5.2.1), and adds one boolean checkbox to indicate Nokia Maps as source of information.

Figure 5.3, illustrates how the Web GUI looks like when the checkbox (Fullen mit

Nokia) is checked, and a route is imported and loaded into Web GUI.

5 Implementation

39

Following Figure 5.3 the creation of routes using Nokia’s WMS consists of four steps.

Step 1: Users fill out the route description, which comprises name, description, initial

and final place of a route. Step 2: Users check the checkbox (Füllen mit Nokia) that

indicates Nokia as source of information; this selection displays in the Web GUI a Web

map with a predefined route, which is modifiable. Step 3: If users set another route, the

GPX text is loaded with waypoints coming from Nokia’s servers, otherwise the

waypoints from the predefined route are kept. Step 4: Users create the route in LVS. The

implementation of this thesis covers steps 2, 3 and 4.

b) Interaction among Nokia’s API, a tailored algorithm and Nokia’s WMS. Since the

tailored algorithm not only contains functions to format and load waypoints, but also

calls to functions of Nokia’s API, a description of the algorithm is provided based on

Listing 5.1.

The algorithm, written in JavaScript lets interact users and the Web map, and also the

Web map with Nokia’s WMS. Listing 5.1 describes the main part of the algorithm, from

which the preconfigured route is created. Thus, if users active the checkbox to fulfil the

input field, then, the local array latLonArrayRoute is loaded of waypoints that are

contained in the shape object from Nokia WMS. This object contains all possible

waypoints that define a route, and its parameters constrain the size of the array to return.

Consequently, coordinates, which is a variable, creates a string of characters based on

the GPX schema (see Figure 2.3) to manipulate geographical data, this operation lasts

depending on the number of waypoints stored in the shape object. Finally, the route is set

to gpxString, which is a text field in the Web GUI, and also the map is displayed.

5 Implementation

40

// Create the new route polyline

route = obj.routes[0];

//Evaluates if checkbox is checked

if(document.getElementById("f:importFromNokia").checked){

var coordinates="";

//This method retrieves latitudes and longitudes from strip

elements, starting at the caller-specified index

var latLonArrayRoute=route.shape.getLatLng

(0,route.shape.getLength());

//Setting variable with format <trkpt lat="X" lon="Y"/>

for (var i = 0; i < latLonArrayRoute.length; i++){

coordinates+="<trkpt lat=\""+latLonArrayRoute[i]+"\" lon=

\""+latLonArrayRoute[++i]+"\"/>\n";

}

//Setting input text field in the WEB GUI

var gpxString= "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n"

+ "<gpx version=\"1.1\"\n"+ " xmlns=

"http://www.topografix.com/GPX/1/1\"\n" + " xmlns:xsi=

\"http://www.w3.org/2001/XMLSchema-instance\"\n"

+ " xsi:schemaLocation=\"http://www.topografix.com/GPX/1/1

http://www.topografix.com/GPX/1/1/gpx.xsd\">\n"

+ " <trk>\n" + " <name></name>\n" + " <trkseg>

\n"+coordinates+"</trkseg></trk></gpx>";

document.getElementById("f:gpxString").value=gpxString;

alert("Waypoints imported: "+latLonArrayRoute.length);

}

//Display the route in the map

routePolyline = new nokia.maps.map.Polyline(route.shape, {

pen: {

lineWidth: 3,

lineJoin: 'round'

}

});

Listing 5.1 The main part of the algorithm to retrieve waypoints from Nokia’s servers

5.2.3.2 Description of the retrieve operation

The objective of this operation is to load a route on the Web map that is displayed on the Web

GUI. The retrieve operation is executed when users select a route that contains Nokia Maps as

source of information, subsequently initial and end waypoints are taken out of the route and sent

to Nokia’s API to display a route on a Web map.

5.3 The business logic

This section encompasses a description of algorithms that communicate the routes

administration Web GUI to the database using the data model layer (see section 3.4.3.1), and

also algorithms that are used for calculations and conversions. These algorithms are described

depending on the CRUD operation that they belong to.

5 Implementation

41

 Creation of routes 5.3.1

During the creation of a route the Web GUI triggers the saveFBSCRoute method (see Listing

5.2), subsequently this method invokes the methods importFBSCRoutes(see section Listing 5.3)

and getGPSPositions (see section Listing 5.4). These three methods belong to the class

RouteController which sends routes to the model layer to store these routes in MySQL. In

addition, these methods constitute part of the implementation of this thesis, and they are

described in details.

a) saveFBSCRoute: The objective of the saveFBSCRoute method is to save a route into

the database as long as the model layer offers an active transaction to store routes. The

process store routes consists of (1) validating if an identical routes is already created, if

this condition holds, the previous route is overwritten, in that way, up to date data are

kept in LVS. The next step (2) brings vehicles that belong to the fleet selected in the

Web GUI. Step 3, every vehicle is iterated to import its route from FBSC invoking the

method importFBSCRoutes. Step 4: if a route is found it, this route is set to the GPS

positions for keeping a valid format, and then the route is stored in MySQL. This method

is shown in Listing 5.2.

5 Implementation

42

public void saveFBSCRoute(Route originalRoute, Route currentRoute) {

//-------------------First step (1)------------------------
//Delete current routes with the same name
if ((this.model.getDaoFactory().getRouteDAO().countActiveRoutes
(currentRoute.getName()) > 0)|| (currentRoute.getId() != null)) {

this.delete(originalRoute);
}

//-------------------Second step (2)------------------------
//Bringing vehicles that belong to a specific fleet
List<Vehicle> vehicles = vehicleController.getVehicles
currentRoute.getFleet());

for (Vehicle vehicle : vehicles) {

//-------------------Third step (3)--------------------------
//Bringing GPS positions using the importFbscRoutes method.
Route route = new Route(currentRoute, vehicle);
List<GpsPosition> positions = importFbscRoutes(vehicle,route);

//-------------------Third step (4)--------------------------
//Adding waypoints to the current route and storing

if (positions != null) {

route.setGpsPositions((ArrayList<GpsPosition>)positions);

model.beginTransaction();
model.save(route);
model.commitTransaction();

} else {

//In case that start or event records are invalid
LOGGER.info("Start/Event record not valid for vehicle(FBID):" +

vehicle.getFbId()

+ "LVS ID: " + vehicle.getId());

}
}

}

Listing 5.2 Save FBSC routes algorithm

b) importFBSCRoutes: Considering the use case Import routes, Table 4.5, this method

(see Listing 5.3) returns GPS positions based on the vehicle received as parameter. The

steps to accomplish this process comprise:

1. The creation of vehicle and fleet objects to access FBSC’s database.

2. Definition of a time interval. Thus, considering a vehicle, the latest date of its

stop defines the end of the interval, and 10 hours back, maximum hours allowed

to drive [Ro06], set the initial date of the interval. The algorithm presented in

Listing 5.3 bounds the time interval with the variables driveStartDate and

driveEndDate, thus, waypoints within this interval are imported. In addition, the

conditional statements if validate whether references are not null and the latest

date of stop is greater than the date of starting to drive, if these conditions are not

satisfied, routes are considered invalid.

5 Implementation

43

3. Invocation of getGpsPosition method. The objective is to retrieve a set of

waypoints from FBSC’s database.

private List<GpsPosition> importFbscRoutes(Vehicle vehicle, Route route) {

//------------------Step 1----------------------

//Instantiation of fleet and vehicles objects to import coordinates

com.fleetboard.dto.Fleet fbscFleet =

fbServerdataAccess.getFleetRepository().findOne(vehicle.getFleet

().getFbId());

com.fleetboard.dto.Vehicle fbscVehicle =

fbServerdataAccess.getVehicleRepository().findByChassisAndCurrentFleet

(vehicle.getChassis(), fbscFleet);

//------------------Step 2----------------------

//Setting the initial and final datetime to define a time interval.

Waypoints that are within this interval are retrieved.

//2.1 Bringing the latest stop event timestamp of a vehicle

Timestamp driveEndDate =

fbServerdataAccess.getTourEventRecordDataRepository().

getLastTimeStampEventType (fbscVehicle,TourEventTypes.DriveEnd.getValue

());

int seconds = 36000; //10 hours

if (driveEndDate != null) {

//2.2 Bringing the first start event timestamp considering a vehicle

 and the date of the latest stop

Timestamp driveStartDate=

fbServerdataAccess.getTourEventRecordDataRepository()

.getFirstTimeStampEventTypeGreaterThanUtcvehicle(fbscVehicle,

TourEventTypes.DriveStart.getValue(),

new Timestamp(driveEndDate.getTime() - (seconds * 1000L)));

//------------------Step 3----------------------

//Returning a set of waypoints that belong to a vehicle

if ((driveStartDate != null) && (driveStartDate.getTime() <

driveEndDate.getTime())) {

return (getGpsPositions(fbscVehicle, driveStartDate, driveEndDate,

route));

}

}

return null;

}

Listing 5.3 Algorithm to import FBSC routes

5 Implementation

44

c) getGPSPositions: The task of this method, Listing 5.4, is to return an array of GPS

positions. First, this method retrieve waypoints from gpstracedata table from FBSC’s

database, in case that waypoints are not found, a second request is sent to gpsdata table.

However, if waypoints are not found, the value returned is null which means that a route

is not created.

In details, this algorithm, Listing 5.4, imports waypoints from gpstracedata, and a

splitting operation is performed using nested cycles, because sets of waypoints are stored

in FBSC’s database as traces (2.1) in one entry. Thus, the objective of splitting is to

obtain individual waypoints. In addition, the execution of the splitting operation depends

on the number of entries retrieved from the gpstracedata. Figure 5.4 describes this

method.

Figure 5.4 Example of the splitting operation

Different process applies when gpsdata table is used. As FBSC’s database stores every

waypoint as one entry. Thus, no splitting operation exists. In this case a set of waypoints

is retrieve from FBSC’s database, then this set is store in a list which is returned to

importFBSCRoutes method.

5 Implementation

45

private List<GpsPosition> getGpsPositions(com.fleetboard.dto.Vehicle

fbscVehicle, Timestamp driveStartDate,Timestamp driveEndDate, Route route) {

List<com.fleetboard.dto.Gpstracedata> gpsTraceData = null;

gpsTraceData = getFbServerdataAccess().getGpstracedataRepository

().findByVehicleByStamps(fbscVehicle, driveStartDate,

DriveEndDate);

ArrayList<GpsPosition> positions = new ArrayList<GpsPosition>();

//-------Importing waypoints from GPSTRACE table--------

if ((gpsTraceData != null) && (gpsTraceData.size() > 0)) {

for (com.fleetboard.dto.Gpstracedata traces :gpsTraceData)

{

List<String> positionInformation = Arrays.asList

(traces.getPositioninformation().split(";"));

for (String entries : positionInformation) {

String[] deltaPosition = entries.split(",");

positions.add(new GpsPosition

(Double.parseDouble(deltaPosition[1]), Double

.parseDouble(deltaPosition[2]), route));

}

}

return (positions);

}

//-------Importing waypoints from GPS table-------------

else {

List<com.fleetboard.dto.Gpsdata> gpsData = null;

gpsData = getFbServerdataAccess().getGpsdataRepository

().findByVehicleSinceStamps(fbscVehicle,

driveStartDate, driveEndDate);

if ((gpsData != null) && (gpsData.size() > 0)) {

for (Gpsdata entries : gpsData) {

positions.add(new GpsPosition

(entries.getLongitude().doubleValue(),

entries.getLatitude().doubleValue(), route));

}

return (positions);

} else {

return null;

}

}

}

Listing 5.4 Algorithm to obtain the right waypoints

5 Implementation

46

5.3.1.1 New Interfaces to access FBSC’ database

The objective of this section is to describe new interfaces for accessing FBSC’s database.

Although, interfaces to access this database already exist, they do not fit the purpose of

retrieving waypoints considering a time interval. Thus, the interfaces implemented are

GpstracedataRepository (see Listing 5.5) and GpsdataRepository (see Listing 5.6).

FBSC contains a test API to access its database; every interface of this API supports the access

to every table using JPQL statements. In this case, gpstracedatarepository is associated to

gpstracedata table, and gpsdatarepository to gpsdata table. Listing 5.4 contains invocations to

these interfaces.

The process of implementing these statements consists of building it up locally, then they are

placed in the Maven repository (see section 5.1), which evaluates whether statements are valid

or not. In case they are valid, the new interfaces are updated to the test API that is in the

production environment.

Listing 5.5 represents GpstracedataRepository to obtain waypoints from Gpstracedata. The set

of the waypoints are bounded to a vehicle and the time interval defined in method

getGpsPositions. This interface returns a list of Gpstracedata objects

package com.fleetboard.repository;

public interface GpstracedataRepository extends JpaRepository

<Gpstracedata, Long> {

@Query("select g from Gpstracedata g where g.vehicle= :vehicle and

g.mingpstime >= :startdate and g.maxgpstime<=:enddate order by

g.vehicletimestamp")

List<Gpstracedata> findByVehicleByStamps(@Param("vehicle") Vehicle

vehicle, @Param("startdate") Timestamp startdate, @Param("enddate")

Timestamp enddate);

}

Listing 5.5 Interface to access FBSC gpstracedata table.

Similarly, Listing 5.6 represents GpsdataRepository to access the gpsdata table. This interface

returns a list of gpsdata objects. The statement is limited to : vehicle, start and end dates, which

are sent by getGpsPositions method.

5 Implementation

47

package com.fleetboard.repository;

public interface GpsdataRepository extends JpaRepository<Gpsdata, Long>

{

@Query("select g from Gpsdata g where g.vehicle= :vehicle and

g.packetid=254 and g.utcvehicle between :startdate and :enddate order

by g.utcvehicle")

List<Gpsdata> findByVehicleSinceStamps(@Param("vehicle") Vehicle

vehicle, @Param("startdate") Timestamp startdate, @Param("enddate")

Timestamp enddate);

}

Listing 5.6 Interface to access FBSC gpsdata table

 Retrieving routes 5.3.2

This operation gathers routes from FBSC and Nokia Maps. Routes administration Web GUI

invokes the method getActiveRoutes to obtain a list of active routes. In case routes were

imported from FBSC, the model layer only returns parent routes, which represent sets of routes

associated to a vehicle. The data model section (5.4) describes in details how the data are

retrieved and grouped from the database.

 Updating routes 5.3.3

Update operation uses the saveFBSCRoute method (see Listing 5.2), from which a set of routes

are overwritten to obtain up to date data, the details of the algorithm are discussed in section

5.3.1.

 Delete routes 5.3.4

Listing 5.7 describes the deletion of a route; this method uses routes as parameter to request

actives routes from LVS’ database. Routes’ names act as filter to retrieve a set of active route.

Consequently, the model layer returns a list of routes, which is iterated to set the delete field to

true. If statement is utilized to avoid null values, if the value is null, a message is displayed to

report that active routes were not found (see specifications 4.1.3).

5 Implementation

48

public void delete(Route route) {

List<Route> activeFbscRoutes = model.getDaoFactory().getRouteDAO

().findActiveRoutes(route.getName());

if (activeFbscRoutes != null) {

for (Route r : activeFbscRoutes) {

model.beginTransaction();

r.setDeleted(true);

model.commitTransaction();

}

}

else {

LOGGER.info("There are not active Routes with the name: " +

route.getName());

}

}

Listing 5.7 Algorithm to delete routes

5.4 The data model

This section describes the interaction between the software application and the database, hosted

by MySQL. The new methods in the interface RouteDao are described according to their

objectives and relationships to the business logic layer (see section 5.3). These methods are

shown in Listing 5.8 and their implementations in Listing 5.9.

The new Methods are:

a) getFbscActiveParentRoutes:The objective of this method is to retrieve sets of parent

routes from the database. Parent routes are built by grouping routes with the same name.

This method returns a list of routes to getActiveRoutes method (see section 5.3.2).

b) getAllActiveExternalRoutes: This method retrieves routes that were created using WMS

provider. This method returns a list of routes to getExternalActiveRoutes method.

c) countActiveRoutes: This method counts the number of parent routes. This method

returns a variable to the getExternalActiveRoutes method.

d) findActiveRoutes: This method finds active routes based on a route name parameter. This

methods returns a list of routes to the delete method.

e) findVehicleRoute returns a route that belongs to a vehicle received as parameter. This

method is invoked by getActiveRoutes method.

public interface RouteDAO extends GenericDAO<Route> {

List<Route> getFbscActiveParentRoutes();

List<Route> getAllActiveExternalRoutes();

long countActiveRoutes(String routeName);

List<Route> findActiveRoutes(String routeName);

List<Route> findVehicleRoute(Vehicle vehicle);

}

Listing 5.8 Interface to access data that belong to routes.

5 Implementation

49

public class RouteDAOImpl extends GenericDAOImpl<Route> implements RouteDAO {

private static final long serialVersionUID = -7083084841378184392L;

protected RouteDAOImpl(EntityManager em) {

super(em);}

@Override

public List<Route> getFbscActiveParentRoutes() {

List<Route> routes = this.em.createQuery(

"SELECT r FROM Route r where r.fbscdatasource=true

and r.deleted=false group by r.name")

.getResultList();

return routes;

}

@Override

public List<Route> getAllActiveExternalRoutes() {

List<Route> route = this.em.createQuery(

"SELECT r FROM Route r where r.fbscdatasource=false

and r.deleted=false").getResultList();

return route;

}

@SuppressWarnings("unchecked")

@Override

public List<Route> findActiveRoutes(String routeName) {

List<Route> routes = this.em.createQuery("SELECT r FROM Route r

where r.name=:routeName and r.deleted=false")

.setParameter("routeName", routeName).getResultList();

return routes;

}

@SuppressWarnings("unchecked")

@Override

public long countActiveRoutes(String routeName) {

long counter = (Long) this.em

.createQuery("SELECT count(r) FROM Route r where

r.name=:routeName and r.deleted=false")

.setParameter("routeName", routeName).getSingleResult();

return counter;

}

@SuppressWarnings("unchecked")

@Override

public List<Route> findVehicleRoute(Vehicle vehicle) {

List<Route> route = this.em.createQuery("select r FROM Route r

where r.vehicle=:vehicle and r.deleted=false")

.setParameter("vehicle", vehicle).setMaxResults

1).getResultList();

return route;

}

}

Listing 5.9 Implementation of methods to access data that belong to routes

5 Implementation

50

5.5 Class diagram

The following class diagram represents the classes that were modified during the development

of the prototype, including their relationships between model, view and controller layers. The

modified attributes and methods are specified in sections 5.2, 5.3 and 5.4. Figure 5.5 depicts the

class diagram.

Figure 5.5 Class diagram

51

6 Test and validation

In this chapter the developed prototype is evaluated using testing methodologies and tools.

Tests’ results are validated based on: (1) functional requirements defined in sections 4.1.3 and

4.2.4 (2) Non-functional requirements according to the prototype’s performance, and (3) Data

quality of the prototype which is compared with the previous implementation. Subsequently,

Chapter 7 evaluates the results obtained in this chapter.

Section 6.1 comprises a brief introduction to JMeter testing tool [Ap13] with its configuration

elements. Section 6.2 evaluates functional requirements based on the output data of the

prototype. Non-functional requirements are evaluated applying the performance analysis,

section 6.2 that includes metrics and thresholds to ensure an adequate quality of service of the

prototype. Measurement methodology is applied to assess the quality of data, see section 6.4.

Tests provided in this chapter are configured to interact with LVS’ Web GUI, however the

evaluation of these tests implies participation of the model view and controller layers, since they

are related each other.

6.1 Configuration of tests using JMeter

The implemented prototype (see section 5) is tested using JMeter that tests functional behaviour

and measures the performance [WW10] to corroborate the required functionality exposed in

section 4.1.3. The configuration of this tool consists of a test plan for the test object describing

the individual steps. Additionally, a thread group is created to visualize HTTP requests. The

results after executing the test plan are stored in a result table (see Table 6.1) that contains

several attributes to describe the user’s request. In this case, the most relevant attribute is status,

which determines if an effective request was sent to the server.

In addition, a HTTP proxy server configuration is created, because JMeter acts as intermediary

for requests and responses. The setup includes name and port parameters to guarantee the

availability of JMeter during the testing. To visualize the responses from the server View Results

Tree reporter is added to the proxy server. Details has been explained in Appendix D and JMeter

documentation [Jm13].

6.2 Test and validation of functional requirements

In this section JMeter is configured with scripts to perform CRUD operations in the

administration of routes Web GUI (see section 3.4) while every operation is executed once and

its response is evaluated. Additionally to the scripts, black box testing strategy is applied to

assess the expected functionality of the web pages [DF05].

 Test scripts 6.2.1

Tests scripts are comprised of HTTP requests. Events and data required in the Web GUI are part

of these requests. For example, to insert a route using waypoints from FBSC’s database, the

6 Test and validation

52

required data are name, description and the fleet name, then a request event is executed to

perform the operation in the WAS. The expected response in JMeter is message response:OK,

which confirms that request and response were executed successfully.

After running tests, HTTP responses from the WAS are received by the proxy server to be

analysed and stored in the configured reporters. Figure 6.1 shows in the right panel, the HTTP

responses including the Web GUI that belongs to this, from which a first block of information

states the metadata of the message, the following block contains the response headers, and the

last block refers to HTTP fields. Thus, by reading every block of information the result of the

test concludes that the CRUD operations were performed without inconveniences.

The left panel from Figure 6.1 contains the test plan, reporters and the proxy server

configuration, which are the necessary elements to perform the complete test.

Figure 6.1 HTTP responses after running a pre-configured test case

 Tests results 6.2.2

Results after running the test plan in JMeter are described in Table 6.1. The attributes of this

table are: thread name which involves the request executed during the test plan, operation

describes the operation to perform, and label is the relative path to reach the Web GUI, and

status states whether the test is successful or not. Appendix E contains detailed information

about these tests.

Tests regarding the importation of routes and CRUD operations that involve routes are running

properly thus, they meet the functional requirements defined in section 4.1.3. Table 6.1

6 Test and validation

53

corroborate the success of tests by observing thread groups 1-2 retrieving, 2-2 creation, 3-2

update and 4-1 delete.

Successful tests are obtained after the integration of Nokia WMS into LVS, which is based on

the concept defined in section 4.2 and its implementation described in section 5.2.3. Tests focus

on sending requests to Nokia Maps server by means of the Nokia maps API, and the responses

that contain huge sets of waypoints that define routes. Functional requirements defined in Table

4.10 and Table 4.11 are met according to the success of thread group 1-1, 2-1, and 3-1 from

Table 6.1.

Thread

Name

Operation Label Status

Group 1-1 Retrieve routes using Nokia WMS /LiveVehicleSim/routes.h

tm

Success

Group 1-1 Retrieve routes using Nokia WMS /routing/6.2/calculaterout

e.js

Success

Group 1-2 Retrieve routes using FBSC’ database /LiveVehicleSim/routes.h

tm

Success

Group 2-1 Creation of routes using Nokia's

waypoints

/LiveVehicleSim/routes.h

tm

Success

Group 2-2 Creation of routes using FBSC's

waypoints

/LiveVehicleSim/routes.h

tm

Success

Group 3-1 Update routes using Nokia WMS /LiveVehicleSim/routes.h

tm

Success

Group 3-2 Update routes using FBSC's waypoints /LiveVehicleSim/routes.h

tm

Success

Group 4-1 Delete operations using FBSC's

waypoints

/LiveVehicleSim/routes.h

tm

Success

Table 6.1 Results of the CRUD operations, using HTTP request

Considering the successful results from requests and responses of the performed tests, the

functional requirements from 4.1.3 and 4.2.4 are fulfilled. However, however a black box testing

strategy is applied to these tests to strengthen the results from JMeter and to guarantee that the

new developed functionalities behave as expected.

6.2.2.1 Black box testing strategy

The objective of applying this strategy is to evaluate the expected functionality of a Web page

based on the analysis of its behaviour, which is addressed by decision tables technique [DF05].

This technique consists of conditions that represent the input values with events, and actions that

comprise expected results, output values with events. Table 6.2 describes the template applied

for this technique.

Column conditions from Table 6.2 represents any input value in the Web GUI, this column

comprises four attributes: Operation which is the name of the functionality to test; Action that

refers to the event that fires the test; Variable represents a field in the Web GUI; Input value

which is the value associated to the variable. The second column describes the output after

running the test. It contains four attributes: Expected action describes the expected action

6 Test and validation

54

performed by the server after running the test; Action after testing defines the action performed

by the server after running the test; Expected values refers to the required values from the

theory; Values after testing describes the obtained values after running the test. The last column

refers to the decision which comprises a boolean result after evaluating the conditions and

actions of every test case, e.g., result equals true means that the functionality passed the test,

because expected values and obtained values are equal.

Input section (Conditions) Output section (Actions) Decision

Opera

tion

Action Variable Input

value

Expected

action

Action after

testing

Expected

values

Values after

testing

Result

...

Table 6.2 Template to evaluate behaviour of the Web application using decision tables technique

Considering the functional requirements defined in section 4.1.3 and 4.2.2, tests were run. The

results obtained with data from customers represent the proper running of the prototype based

on the specification. Every test consists of the data needed by the route administration module to

perform any CRUD operation. The considered events are submission of the application and

interactions with the Web map. For example, by clicking on the map, results are resumed in the

decision column, which success if the expected behaviour of every test is met. Delete operation

using Nokia Maps is not evaluated, since the logic uses the old mechanism, which has not

changed.

6 Test and validation

55

Table 6.3 Description of test cases using decision table technique

Decision

Operation Variables Input value Action Expected values Expected action Values after testing Action after testing Result

Fill with nokia Maps (Checkbox) Checked Set of waypoints GPX field updated with waypoints List with 6985 waypoints GPX field with a set of waypoints

Map Initial and end point Route in a map Update map Route in a map Update map tile

Name (text field) n.a Buba (FBSC) Buba (FBSC)

FBSC datasource (Checkbox) n.a True (checked) True (checked)

Fleet (Selection list) n.a Buba Buba

Name (text field) Stuttgart->Munich Stuttgart->Munich Stuttgart->Munich

Description (text field) Route (Nokia) Route (Nokia) Route (Nokia)

Start (text field) Stuttgart Stuttgart Stuttgart

End (text field) Munich Munich Munich

Fill with nokia Maps (Checkbox) Checked Checked Checked

FBSC datasource (Checkbox) Not checked Not checked Not checked

Name (text field) Buba FBSC Buba (FBSC) Buba (FBSC)

FBSC datasource (Checkbox) Checked True (checked) True (checked)

Fleet (Selection list) Buba Buba Buba

Name (text field) Stuttgart->Munich 2 Stuttgart->Munich 2 Stuttgart->Munich 2

Description (text field) Route (Nokia) 2 Route (Nokia) 2 Route (Nokia) 2

Start (text field) Stuttgart 2 Stuttgart 2 Stuttgart 2

End (text field) Munich 2 Munich 2 Munich 2

Fill with nokia Maps (Checkbox) Checked Checked Checked

FBSC datasource (Checkbox) Not checked Not checked Not checked

Name (text field) Buba FBSC 2 Buba (FBSC) 2 Buba (FBSC) 2

FBSC datasource (Checkbox) Checked True (checked) True (checked)

Fleet (Selection list) Buba Buba Buba

Name (text field) Buba FBSC 2 No values No values

FBSC datasource (Checkbox) Checked No values No values

Fleet (Selection list) Buba No values No values

TRUECreation of routes in the DB
Creation of routes using

FBSC's waypoints

Retrieve routes using Nokia

WMS
Click on the map TRUE

Creation of routes using

Nokia's waypoints
Submit form Creation of routes in the DB Retrieved and loaded values TRUE

Retrieve routes using FBSC Load page
Retrieve data from DB and load

values in the WEB GUI

Retrieve data from DB and load

values in the WEB GUI
TRUE

Route removed from database TRUE

Submit form Updated in the DB Retrieved and loaded values TRUE

Submit form Update of routes in the DB Retrieved and loaded values TRUE

Submit form
Delete operations using

FBSC's waypoints
Removal of route

Update routes using

FBSC's waypoints

Input section Output section

Update routes using Nokia

WMS

Submit form Retrieved and loaded values

6 Test and validation

56

6.3 Test and validation of non-functional tests

This section provides the evaluation of non-functional requirements to guarantee an adequate

performance of the prototype in terms of responsiveness and stability. Response time analysis

time (see section 6.3.2) is applied to validate the responsiveness, and the throughput to validate

the stability (see section 6.3.3). A methodology (see section 6.3.1) is defined to evaluate the

performance using JMeter.

 Methodology 6.3.1

JMeter is used in order to evaluate the performance of the implementation. The performance

metrics that are considered comprise throughput to measure requests per second to the server

[FLZ10], and the average response time, which is the mean value of the elapsed time between a

request to the server and the receipt of the response in the browser [FLZ10]. These metrics are

useful, because the acceptability of a test is obtained from them. Consequently, if test is

accepted, responsiveness and stability of the system based on the new functionalities are

guaranteed.

The performance of an application comprises two criterion for acceptance, the response time,

which is user concern, and the throughput as business concern [BBC+07]. In that way, the

response time is evaluated using the confidence interval analysis with thresholds determined by

human behaviour (see Table 6.6), and the throughput is directly compared to business

constraints.

 Response time analysis 6.3.2

This section evaluates the response time of CRUD operations. JMeter provides in its results

average response time and standard deviation. Thus, after running JMeter’s tests, these results

are compared to thresholds that validate whether the prototype meet the minimal standards of

responsiveness.

Because average response time is sometimes a misleading measure, an additional evaluation is

performed using confidence interval analysis method to obtain a measure close to reality. This

case is presented when response time values are far from the average response. An example is

provided in Table 6.4, from which Test 1 and Test 2 show average response time and standard

deviation that result after running every test. Clearly, Test 1 provides a misleading average,

because every sample data are far from the average, e.g., x1=16s is far from 5s, which is called

variability. On the other hand, Test 2 provides an ideal scenario, since sample data is close to the

mean value, e.g., x4= 5s is close to 5s.

6 Test and validation

57

 Test 1 (Seconds) Test2 (Seconds)

 x1= 16s x1= 5s

 x2= 2s x2= 4s

 x3= 1s x3= 6s

 x4= 1s x4= 5s

Average resp. time 5s 5s

Standard deviation 6,36 0,70

Table 6.4 Real and misleading average response times

Confidence interval analysis solves the problem of misleading average response time. This

analysis estimates the variability of the sample data, and provides an average response time

close to reality based on a predefined probability or interval. In addition, the standard deviation

is used for the calculation of the confidence interval, and also for determining whether the

average response is misleading, e.g., if Standard deviation is low than the average response

time, then average is accurate, otherwise misleading [Jo04]. This thesis will adapt the response

time analysis for all evaluations to obtain more accurate results, even if the standard deviation is

lower than the average response.

The response time analysis is divided in three sections: (1) Definition of the confidence interval

that provides details about the mode of estimating the confidence interval and conditions. (2)

The well-known thresholds for response times that Web applications should consider. (3)

Validation of results, from which tests results are validated by comparing them to the thresholds.

These three sections are briefly described in the following paragraphs:

(1) Definition of the confidence interval

The acceptability of the response time metric is determined using the confidence interval

analysis method, which is based on the Central Limit Theorem, that states: if a

representative part from a group has an average distribution (µ) and standard deviation

(σ), and then, for at least 30 samples, the sampling distribution has an approximate

normal distribution [Jo04]. In this case, JMeter provides the average response time that

represents µ, standard deviation that represents σ, and the number of samples considered

is 31. For further details about the central limit theorem refer to the literature [Jo04].

(

√
) (6.1)

Formula 6.1 is used to analyse the confidence interval. From which, X defines the

average of the sample (µ),

 is a fixed value that comes from Table 6.5 that represents

the probability of samples included into the calculated confidence interval (average

response time). In this thesis the defined probability is 95%. defines the standard

deviation, n is the size of the sample, and the confidence interval represents the level of

certainty of the sample.

6 Test and validation

58

Confidence

interval level
Z

0.90 1.645

0.92 1.75

0.95 1.96

0.96 2.05

0.98 2.33

0.99 2.58

Table 6.5 Z confidence level intervals

(2) Thresholds for response time

Table 6.6 The well-known thresholds for response times, these are used for determining

if the response time of operations is optimal. These thresholds are derived from research

regarding human perceptual abilities and brain behaviour [Ni93]. This thesis applies

these thresholds to give a criterion after calculating the confidence interval.

Threshold Response time Description

1 < 0.1 s Users do not notice a delay.

2 0.1 - 1 s Users will notice the delay but this won’t interrupt

their work flows.

3 1 s - 10 s Users actively wait for a response and consciously

consider this an interruption.

4 > 10 s Users lose focus and start doing something else.

Table 6.6 The well-known thresholds for response times using Web applications

(3) Validation of results

Table 6.7 contains results generated by JMeter after running tests for CRUD operations,

and also results after applying confidence intervals. The values for retrieving routes

operation are replaced into the Formula 6.1, from which the confidence obtained is equal

to 0.37s (see Formula 6.2). Thus, according to the threshold 2 from Table 6.6, the

response time is acceptable for the retrieve operation. Similarly, the confidence interval

for the creation is 1.08 s, update is 1.76 s, and delete equals 0.13s, which means, that

these results are acceptable considering threshold 3 from Table 6.6. In general,

Operation Average response

time (sec)

Throughput

(req/time unit)

Confidence

interval (sec)

Standard

deviation (sec)

Retrieve 0.347 4.9 req/sec 0.37 0.12798

Create 0.736 10,6 req/min 1.08 1.00397

Update 1.462 11,3 req/min 1.76 0.86025

Delete 0.604 6.9 req/min 0.13 0.38563

Table 6.7 JMeter Summary report after running tests for CRUD operations over routes

6 Test and validation

59

 (

√
)= 378,85ms = 0.37 sec (6.2)

 Throughput analysis 6.3.3

Throughput metric is obtained dividing number of request by total of time (end time of the last

sample – first sample time) [Jm13]. After running the test, the throughput for the retrieve

operation is 4.9 requests per second (see Table 6.7). This is an acceptable result considering that

in the worst case the maximum number of users performing this operation simultaneously does

not exceed this result. These CRUD operations associated to routes are part of the configuration

of LVS, so that, users do not use this functionality frequently. Similarly, the result for creation

is 10.6 requests per minute, update is 11.3 requests per minute and delete equals 6.9 requests per

minute.

In addition, throughput metric is also used for measuring where WAS reaches its overload point,

however based on the Table 6.7, the behaviour of the WAS does not reach saturation in neither

of CRUD operations.

6.4 Data quality analysis and evaluation

Measurement methodology is applied in this section to assess the quality of data by comparing

data generated before and after the prototype was implemented. This methodology consists of

activities that enhance the precision of the quality evaluation [BS06]. First activity involves the

definition of relevant dimensions, also well-known as quality criteria, with their indicators.

Second activity, concerns the measurement using record matching technique to compare data

between different data sources based on dimension indicators, and the last activity comprises the

analysis of results. Activities details are described as:

1) Definition of relevant dimensions: The dimensions to evaluate quality of data generated

by the prototype comprise: completeness to assess whether required data are present or

not. Accuracy encompasses the correct representation of real data, so that, if v = “John”

and v’ = “john”, then data are not accurate. Consistency is with regard to data values

being the same along the systems. Timeliness defines data freshness. [BS06]. Table 6.8

describes the indicators associated to every dimension.

Dimensions Indicator

Completeness Missing records

Extra records

Accuracy Reflects real routes

Consistency Data values are the

same across different

data sources

Timeliness Data are up to date

Table 6.8 Data quality evaluation between FBSC and the new prototype

6 Test and validation

60

2) Record matching technique: This consists of generating a sample of records from the

origin data source. In this case, FBSC’s database, from which every record is searched

using LVS’ database, and the number of matches is stored and analysed to set the

indicators. The same activity is performed between FBSC’ database and the old

mechanism for handling routes. The following procedure represent the way to obtain the

results:

i. Generate a report from LVS containing a fleet and its vehicles. This report is

considered as constraint to generate the sample data from FBSC’s database.

ii. Create a report from FBSC’s database that contains waypoints for every vehicle

defined in step a.

iii. Generate a report with waypoints for every vehicle from LVS database. The fleet

used is the one from step a.

iv. Matching records from reports obtained in step b and c. Thus, for every set of

waypoints of LVS’ report, a search operation is executed to find the same set in

FBSC’s report.

3) Analysis of results: Quality dimensions are analysed supported in the reports obtained

from the activity 2, considering a private fleet and the number of vehicles equals 70,

thus:

a. Completeness

(6.3)

This dimension is acceptable, because only 12.8% (see Formula 6.3) of the

required data are missing. Failures in hardware and procedure errors are cause of

these missing records. However, these causes are out of the scope of this thesis.

In addition, extra records were not found after importing the desired data.

b. Accuracy

 (6.4)

This dimension is acceptable. After comparing waypoints no differences were

found between both reports. Coordinates, including their decimals numbers were

evaluated, and both contained the same precision. The conclusion is that 100% of

data are accurate (see Formula 6.4).

c. Consistency

 (6.5)

This dimension is acceptable. 100 % of the waypoints evaluated are the same by

comparing waypoints from LVS to FBSC. Formula 6.5 shows the ratio applied.

d. Timeliness

 This dimension is acceptable, because it applies the algorithm that imports up to

date routes (see Listing 5.3) which is based on importing the last route per

vehicle. In that way, 100% of the imported routes are up to date.

6 Test and validation

61

Chapter 7 evaluates in details results obtained in this chapter, including functional and non-

functional requirements, and the data quality will be discussed.

62

7 Prototype assessment

In this chapter the success of the prototype is determined by evaluating the functional and non-

functional requirements and the data quality based on the results of the tests from Chapter 6. A

conclusion is given to tie the purpose and objectives of this thesis to the evaluation.

7.1 Evaluation of requirements

 Functional and non-functional requirements 7.1.1

Considering requirements defined in section 4.1.3 and 4.2.4, a set of pre-configured tests run on

CRUD operations to validate and evaluate the correct running of the prototype. Tests were based

on sending data by means of the Web GUI, and receiving it using JMeter. Results regarding

functional and non-functional requirements are founded on JMeter’s reports.

Results of functional requirements are analysed and evaluated from two perspectives. The first

perspective encompasses the collecting of headers responses which are received by JMeter after

server processes requests. Success of an operation is determined by these headers responses,

e.g., headers’ content with value equals 200, means that the operation requested was executed

successfully.

The second perspective is focus on comparing expected data to real data which are generated

after performing any CRUD operation. Thus, if expected data equals real data, then the

requested operation is successful, otherwise unsuccessful. This perspective is based on decision

tables technique (see section 6.2.2.1).

The performance of the prototype is based on two criteria: (1) response time, which is the

elapsed time since a request is sent to the server, and subsequently a response is received by the

user. (2) Throughput, which represents the number of requests accepted by servers during a time

unit, thus this criterion determines if servers reach an overload point, i.e., servers do not process

requests after a certain number of requests.

In this thesis, the response time of CRUD operation is acceptable if it is less than 10 s, which is

supported on the well-known thresholds for response time, Table 6.6. In addition, the

throughput is acceptable along as this does not reach an overload point.

Based on the above considerations functional and non-functional requirements are evaluated in

the following section considering CRUD operations. The size of the sample data is equals 62,

which is 31 (minimal sample required for applying the confidence interval analysis) multiply by

2 (number of concurrent threads). This size was applied for all tests.

7.1.1.1 Creation

a) Functional requirements: Test for the creation operation was conducted to validate

whether this operation executes successfully or not. Results according to Table 6.1 and

Table 6.3 reveal that for 62 requests to create routes the prototype created 62 routes. This

7 Prototype assessment

63

operation satisfies the use cases: create routes (Table 4.1), importation of routes (Table

4.5) and store routes (Table 4.6).

b) Non-functional requirements: The objective of this test was to validate whether this

operation is executed in less than 10 s, while the server does not reach an overload point.

According to Table 6.7 the average response time to create a route is equals 0.347

seconds and the standard deviation equals 1.004 s, this means that the average is

misleading, because responses contain a high variability. Thus, despite 0.347 s is below

10 seconds, the response time analysis is applied to obtain an average value closer to

reality, which is equals 1.08 s, also below 10 s, i.e., creation operation is acceptable.

In addition, the throughput obtained is equals 10.6 req/min, which is an acceptable value,

since this number of request does not lead the server to an unexpected behaviour.

7.1.1.2 Update

a) Functional requirements: The configured test to update routes was performed to validate

whether this operation works properly. Thus, according to Table 6.1 and Table 6.3 a set

of 62 updates was requested, and the result was that for every request the update

operation was executed successfully. This test satisfies the use cases: update routes

(Table 4.2), import routes (Table 4.5), and store routes (Table 4.6).

b) Non-functional requirements: The objective is the same as the creation operation (see

section 7.1.1.1). Thus, according Table 6.7 the average response time is equals 1.462 s,

and standard deviation equals 0.860 s, this means that for 62 update requests the average

response time is acceptable, because is below 10 s. In addition, applying confidence

interval analysis the response time is equals 1.76 s, which it is still acceptable.

The throughput for this test is 11.3 req/min, which is an acceptable value, since the

server does not reach its overload point.

7.1.1.3 Delete

a) Functional requirements: The purpose of testing the delete operation is to validate

whether the execution of this operation fits its purpose. Thus, Table 6.1 and Table 6.3

expose that 62 requests to delete parent tours were performed successfully. This test

satisfies the use cases: delete routes (Table 4.3) and update routes transaction (Table

4.7).

b) Non-functional requirements: The objective is the same as the creation operation (see

section 7.1.1.1). Thus, according to Table 6.7 the average response time to the delete

operation is equals 0.604 s for 62 requests, and standard deviation equals 0.385 s, which

means that response time values contain a moderate variability. After applying the

confidence interval analysis the average response time obtained was 0.13 s, which is also

below 10 s. In conclusion, average response time is acceptable, since it is below 10 s.

For the throughput criterion 6.9 req/min is acceptable, because the server does not reach

an overload point during the execution of this test.

7.1.1.4 Retrieve

a) Functional requirements: Test for the retrieve operation was conducted to validate

whether this operation displays the routes in the Web GUI successfully, or not. Table 6.1

7 Prototype assessment

64

and Table 6.3 provide that the retrieve operation was executed successfully in a range of

62 requests to the server. This test satisfies use cases: display routes (Table 4.4) and

retrieve routes (Table 4.8).

b) Non-functional requirements: The objective is the same as the creation operation (see

section 7.1.1.1). According to the Table 6.7 the average response time is 0.347 s, and

standard deviation 0.127 that means a reasonable variability among the response time

values obtained. Likewise, confidence interval is equals 0.37 s, which is also below 10 s.

As conclusion, the response time of the retrieve operation is acceptable. Logically, this

operation is the fastest, because this only implies the retrieve of routes that are already

stored in LVS’ database, i.e., no need to bring routes from external databases.

Throughput is acceptable, since the server does not reach its overload point. The

throughput value is equals 4.9 req/sec.

 Evaluation of data quality 7.1.2

The aim of this section is to evaluate the data quality of the prototype. Measurement

methodology (see section 6.4) was applied to reach this aim. Since this methodology includes

analysis and evaluation, this section only presents the summary of the evaluation conducted in

section 6.4.

Table 7.1 contains the summary after applying the measurement methodology, from which three

attributes are presented: (1) Dimensions that contains the criteria to evaluate the data quality, (2)

Indicators that let to measure the acceptance of criteria, and (3) FBSC V.S Prototype that

provides results after indicators were calculated. Section 6.4 provides details about these results

and their calculations.

Test fleet with 70 vehicles was considered as sample data, which means that 70 routes should be

created in LVS. Thus, a conclusion for every criterion is presented in the following paragraphs

considering this sample data:

a) Completeness: The objective of this criterion is to assess whether data in LVS’ database

is the same as FBSC’s database. Indicators to evaluate this criterion are missing records

and extra records. Thus, from 70 routes created in FBSC only 61 routes are in LVS,

which represents 12.8% of missing records. In addition extra records were not found by

comparing both databases. To conclude, the completeness is acceptable despite missing

records exist due to hardware failures or other possible problems.

b) Accuracy: The aim of this criterion is to test if data in LVS’ database represent the same

data as FBSC’s database. For 6924 waypoints that belong to 61 routes created in LVS,

all of them represent the same precision by comparing them to FBSC. In this way, LVS

handles routes with an accuracy of 100%, subsequently, accuracy indicator is

acceptable.

c) Consistency: This Criterion consists of evaluating if data values are the same across

FBSC and LVS. Comparing 6924 waypoints that belong to 61 routes, both FBSC and

LVS contain the same values. Thus, based on this comparison, LVS handles data with a

consistency of 100 %, which is an acceptable indicator.

7 Prototype assessment

65

d) Timeliness: The objective of this criterion is to determine whether data are up to date

across FBSC and LVS. Thus, considering that consistency indicator is 100%, and the

algorithm to import routes (see Listing 5.3) brings the latest routes. It is concluded that

up to date is handled by LVS, which leads to an acceptable indicator.

Table 7.1 summarizes the conclusions mentioned in the previous paragraphs:

Dimensions Indicators FBSC V.S Prototype Result

Completeness
Missing records 12.8 %

Acceptable
Extra records 0 %

Accuracy Reflects real routes 100 % Acceptable

Consistency

Data values are the

same across different

data sources

100 % Acceptable

Timeliness Data are up to date 100 % Acceptable

Table 7.1 Data quality evaluation between FBSC and the new prototype

7.2 Conclusion

The result of the prototype validation in this chapter demonstrates that all objectives defined for

this thesis are successfully achieved. Functional tests support the proper running of the

prototype considering the specifications from sections 4.1.3 and 4.2.4. Reliable results regarding

performance analysis ensure the correct behaviour of the application on certain conditions, while

trustworthy quality of data are obtained after applying a methodology to evaluate the degree of

data quality used in the prototype. These results guarantee a simulation close to the reality based

on mass data generation.

66

8 Conclusion and future work

Daimler FleetBoard offers telematic services by means of a special hardware installed in

customers’ vehicles to collect and send data to the FleetBoard Service Centre (FBSC), which is

in charge of receiving, processing and storing data generated by vehicles. The quality assurance

and testing department guarantees that the telematic services meet their purpose and no errors

disturb the productive system. LVS is a software tool for testing functionalities of FBSC

platform, this tool behaves like a real vehicle by generating messages and sending them to

FBSC platform, so that, LVS collaborates to meet the objectives of the department.

Tours are configured in LVS to simulate the behaviour of real vehicles, thus, fleet, driver,

vehicle and a specific route are the principal attributes of a tour configuration. Once the

configuration is finished in the Web GUI the simulation starts, LVS establishes the

communication using a private protocol and SOAP messages are sent to FBSC platform which

receives, processes and stores information related to the vehicle, i.e., speed, geographical

position, driver name, and some additional data. Thus, if new functionalities are created, they

are deployed to the test system, while testing tools, including LVS are used for testing these

functionalities before they are deployed into productive environment.

Currently, tours’ simulations are configured using routes that are created manually. These routes

are created using Google Maps and a JavaScript to convert the positions to the GPX format.

The first challenge with the existing procedure is that simulations lack of realism, because no

route in LVS is equal to any route generated by real vehicles. The second challenge relates to

manual process of creating routes. Thus, the objective of this thesis is to optimize the process of

importing and creating routes in LVS by means of a prototype, which is supported on a concept

and design that solves the current problems. Additionally, Nokia Maps is integrated in LVS to

improve the current process visually.

This thesis provides a background concerning the components needed to perform tour

simulations, including the internal protocol to establish communication between FBSC and

LVS. Architecture, components and their interactions regarding mapping are explained, i.e.,

waypoints, tiles and their format representation. Quality criteria according to the quality model

ISO 25000 is described to support the selection of suitable WMS provider to integrate mapping

services into LVS, section 4.2 and Appendix B apply these criteria in details.

The quality assurance department concentrates its daily tasks on two parallel systems. The first

is FBSC that supports the production environment. The second is the Integration Test System

(ITS) that deals with the testing environment. Thus, these systems have the same technical

configuration, but different purposes. This thesis develops the prototype based on the testing

environment, which contains LVS to simulate vehicles’ behaviour, and ITS as a copy of FBSC

to test new and current functionalities by receiving messages from LVS and some other testing

tools.

Two concepts are defined to tackle the two problems defined in this thesis. The first concept

analyses the lack of realism that is caused by using routes from Google Maps. The solution

8 Conclusion and future work

67

defined in this concept consists of replacing Google Maps service by FBSC’s database to obtain

simulation with more realism, since these routes are generated by real vehicles. In addition, this

concept provides an algorithm that performs the creation of routes automatically based on

functional requirements previously defined.

The second concept emphasizes in the optimization of the current process of importing routes

using WMS. The problem defined in this section comprises the manual tasks to define a route

with valid waypoints, and the solution consists of integrating Nokia Maps into LVS. Several

approaches were defined to provide the best optimization, and an analysis and evaluation

regarding the WMS providers were considered to come up with the most suitable provider,

Nokia.

The implementation of the prototype is based on the concepts and the functional requirements.

JMeter tool and black box testing strategy are used to evaluate the prototype with the functional

requirements. The results of this evaluation show that the prototype runs as it was specified.

Non-functional requirements are evaluated using performance analysis considering response

time and throughput metrics, while data quality measurement stratetegy acts over quality

criteria, i.e., completeness, accuracy, consistency and timeliness. The results after evaluate these

non-functional requirements are successful.

Future work involves the verification and evaluation of the data completeness, because routes

imported from production environment sometimes are empty. These sorts of data are come up

from the human errors, e.g, drivers may forget to put the identification card in the TP, this

means that a range of waypoints cannot be imported due to missing initial or final points of real

routes. Another issue is with regard the mode of storing waypoints, establishing a manner to

differenciate which vehicles store waypoints in tables gpsdata and gpstracedata, may improve

the response time and throughput of the prototype.

68

Appendix A

Dataflow diagram (DFD)

Definition

Dataflow diagrams are the presentation among various components in a system, including their

relationships [IY10]. This a technique that helps to model systems from a general perspective

showing how the input data are transformed into output. The benefits of using this technique are

that a high level overview of the systems is obtained, and it is easy to understand by people with

technical and no technical skills.

Syntax and semantics

The principal symbols to represent a DFD are depicted in Table A.0.1. Circles are used for

representing processes that are performed considering some business reasons. Arrows indicate

how the information flows from one component to another, they are known as dataflow which

contains a single piece of data. Double vertical lines are used for indicating that data are stored

on it. The rectangles represent external entities, generally, end users and systems [AWT07].

Table A.0.1 Fundamental components of DFDs

This technique is a hierarchical representation that consists of a top level diagram, starting from

level 0, level 1, until level n diagram. Every level indicates a functionally of the system; the

level 0 represents the main functionality and is known also as context diagram, this represents

the boundaries of the system and the external entities [IY10], the rest of sub-levels correspond to

functionalities integrated within the context diagram.

69

Appendix B

This appendix contains the individual evaluations of WMS providers, considering costs,

functionality, reliability and usability as factors to evaluate software according to the standards

[ISO25000] and [ISO9126]. Google, Microsoft, OpenStreetMap and Nokia are the companies to

evaluate using their Map services as reference.

Individual evaluation of WMS providers

Google

Service: Google Maps

Criteria Justification

Zero cost of
investment

This criterion is not fulfilled, due to the terms of use that Google exposes in its
mapping services: "if your site meets any of the following criteria you must
purchase the appropriate Google Maps API for Business license if: your site is
only available to paying customers or your site is only accessible within your
company or on your intranet or your application relates to enterprise
dispatch, fleet management, business asset tracking, or similar
applications"[GOO13a].
The limitations above restrict the use of any mapping service for free,
because Daimler FleetBoard has as core business management of fleets as
service.

Functionality This criterion is fulfilled because the requirements: WMS and map API are
offered by Google [GOO13a].

Reliability This criterion is fulfilled because the mapping services offered by Google are
highly reliable due to the large, distributed and replicated infrastructure along
multiple datacentres around the world, in that way, fault tolerance and right
performance is guaranteed by Google, which also reflected in 99.9 percent of
uptime.

Usability This criterion is fulfilled due to the Google’s adaptation of the OGC’s
standards for accessing WMS by means of map APIs, from which is
guaranteed a correct interoperability and easy forms to use mapping services
along provider and customers [HPS08].

Table B.1 Google Maps: analysis and evaluation

 Appendix B

70

Microsoft

Service: Bing Maps

Criteria Justification

Zero cost of
investment

This criterion is not fulfilled, because the free usage of WMS and API is
limited to Services for business asset tracking and fleet management, which is
stated in the terms of usage [MIC13]. Hence, because the fleet management
is the core business at FleetBoard, the limitation above restricts the use of
any mapping service for free.

Functionality This criterion is fulfilled because the requirements: WMS and map API are
offered by Microsoft [MIC13].

Reliability The criterion is fulfilled because according to the SLA exists an infrastructure
with a 99.9 percent of high availability, that guarantees continuity in the
performance of the mapping infrastructure [MIC13].

Usability This criterion is fulfilled using the same argument as Google evaluation table.

Table B.2 Bing Maps: analysis and evaluation

OpenStreetMap

Table B.3 OpenStreetMap: analysis and evaluation

Service: OpenStreetMap

Criteria Justification

Zero cost of
investment

This criterion is not fulfilled, because OpenStreetMap states the following in
its Web site [OPE13]:
"OpenStreetMap data are free for everyone to use. Our tile servers are not",
this means WMS are not free to use, they have an associated cost for usage,
despite the data offered by OpenStreetMap is free of charge. Additionally, it
is stated that "The editing API is provided in order to edit the map data, not
for read-only purposes or projects". Hence, this statement is not suitable,
because the purpose of using the map API in this thesis is only with reading
purposes.

Functionality This criterion is fulfilled because the requirements: WMS and map API are
offered by OpenStreetMap [OPE13].

Reliability This criterion is not fulfilled since the limited capacity of resources does not
guarantee the correct performance during failures [OPE13].

Usability This criterion is fulfilled using the same argument as Google evaluation table.

 Appendix B

71

Nokia

Service: Nokia Maps

Criteria Justification

Zero cost of
investment

This criterion is fulfilled because Daimler FleetBoard holds a contract with
Nokia for the usage of mapping services, thus, the cost of investment for
using WMS and the API is zero.

Functionality This criterion is fulfilled because the requirements: WMS and map API are
offered by Google [NOK13].

Reliability This criterion is fulfilled since the SLA offered by Nokia guarantees the right
performance regarding data and hardware, even if failures occur [NOK13].

Usability This criterion is fulfilled using the same argument as Google evaluation
table.

Table B.4 Nokia Maps: analysis and evaluation

72

Appendix C

This section provides a description of the tools used to develop the prototype.

Description of tools used in this thesis

During the implementation several tools were needed to implement the prototype, thus Table

C.1, describes every tool, including name, version, type of licence, type of licence, Web site to

download, the package and the target operating system.

Name Version Type of

Licences

Site to download Package Operating

system

MySQL 5.5.27 GPL http://dev.mysql.com/down

loads/mysql/

MySQL

Server

Windows

Eclipse Juno

Service

Rel. 1

EPL http://www.eclipse.org/do

wnloads/packages/release/j

uno/sr1

Base

distribution

Windows

Maven 3.1.0 GPL http://maven.apache.org/do

wnload.cgi

Base

distribution

Windows

Tomcat 7.0.12 GPL http://tomcat.apache.org/do

wnload-70.cgi

Base

distribution

Windows

OpenJPA 2.2.0 GPL http://openjpa.apache.org/d

ownloads.html

Base

distribution

Windows

JMeter 2.9

r1437961

GPL https://jmeter.apache.org/d

ownload_jmeter.cgi

Base

distribution

Windows

Nokia

JavaScript

API

 2.2.3 Commer

cial

http://api.maps.nlp.nokia.c

om/2.2.3/

jsl.js Independe

nt

Table C.1 Description of software tools needed to implement the prototype. Type of licences: GPL=General Public

License; Eclipse Public License = EPL.

http://maven.apache.org/download.cgi
http://maven.apache.org/download.cgi
http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-70.cgi
http://openjpa.apache.org/downloads.html
http://openjpa.apache.org/downloads.html
https://jmeter.apache.org/download_jmeter.cgi
https://jmeter.apache.org/download_jmeter.cgi
http://api.maps.nlp.nokia.com/2.2.3/
http://api.maps.nlp.nokia.com/2.2.3/

73

Appendix D

This section describes the configuration of JMeter before the validation and test of the prototype

was accomplished. This configuration supports section 6.1.

Description of the graphical configuration of JMeter

A mandatory configuration of JMeter is required before running tests scripts. Thus, this

configuration comprises: a) test plan that contains the steps and components which take part

during the test. b) Workbench that contains the server configuration, e.g., the port from which

requests are received. The following paragraphs describe the configuration used for testing and

validation the prototype.

a) Test Plan

This contains the ordered steps and components to run the test. Three components are

relevant: (1) Thread group which contains the request willing to be sent to the server, (2)

Http Request Defaults is used as reference component when several request contain the

same path, and (3) summary report which is utilised to see the report after running the

test. Workbench element is used to contain the HTTP Proxy server. Figure D.1 provides

the visual result after the configuration has been performed.

Figure D.1 Test plan configuration panel

(1) Thread group: This manages the number of threads of the test. Thus, considering

Figure D.2, name and comments are part of the general description. If continue

option is selected to avoid the test stops. Thread properties comprises number of

concurrent threads, in this case 2, because it is the maximum number of possible

users executing the importing of routes process. Ramp-up is the time to choose all

threads. Loop count is the number of times to execute the test, 31 are chosen, because

it is the minimum sample required for the confidence interval method (see section

7.1.1). The rest of properties are left it as default, because there are characteristics out

of the scope of the current test and validation.

Appendix D

74

Figure D.2 Thread group configuration panel

(2) HTTP requests: These are generated samples using a recording controller feature

provided by JMeter. When the HTTP proxy server is activated, every request to the

server from the WEB GUI is recorded, e.g., if 10 requests are sent to the server,

JMeter generates 10 HTTP request entries, and they are used for the test. Attributes

and data are display after they are recorded by JMeter.

Figure D.3 HTTP request configuration panel

 HTTP request defaults: This is a reference component used by JMeter when several

requests belong to the same path. Figure D.4 provides the default configuration.

Appendix D

75

Figure D.4 HTTP request defaults configuration panel

(3) Summary report: This summary report provides the results after running the test.

This has the option to export result data to an external file setting the name and path.

Although, JMeter provides many sort of reports, this is commonly used because

specifies number of samples (# Samples) that represent requests to the server and

their response, average that is the average response time, the minimum (Min) and

maximum (Max) response time, the standard deviation, and the throughput which

represents the number of request per unit of time. Figure D. 5 describes this

configuration.

Figure D. 5 Description of the user interface for summary report configuration

b) Workbench: HTTP Proxy Server

This component of JMeter is used to observe and record every request to the server. While

observing every request is added to the test plan. The important parameters to configure are:

the name that describes the proxy, port which is used for listening HTTP request from the

browser, target controller which is the test plan where JMeter records and stores requests.

Grouping is applied to organize the request and responses. The rest of parameters are left it

by default. Figure D. 6 shows this configuration.

Appendix D

76

Figure D. 6 User configuration interface for HTTP proxy server

77

Appendix E

This section describes the results of testing the new functionalities in LVS using JMeter. Every

test is built it recording every interaction between the Web GUI and the server. Recording

controller is the feature provided by JMeter to record interactions [Jm13].

CRUD operations results and descriptions

This section presents the results after testing the new functionalities in the prototype. The test

scripts are configured to test CRUD operations using Nokia WMS provider and FBSC. Thus,

after running these tests the variable to validate is response message, which tells whether the

test was successful or not. This variable is provided by JMeter. Although, more variables are

provided by JMeter only response message is considered, because the rest are out of the scope

of this thesis.

Retrieve routes using Nokia WMS: This result is consequence of retrieving data from Nokia’s

server to load a map, and from the local server to load routes’ data. In the sampler result tab is

shown the response header from the server. Thus, the value contained in the variable response

message is equals OK, which means that the request has succeeded, and the data requested are

sent it to the browser correctly. Figure E.1 provides the result in details.

Figure E.1 Sampler result after running script that retrieves routes using Nokia as WMS provider

Creation of routes using Nokia's waypoints: After importing waypoints from Nokia’s server

to define a route, the operation to create routes was successfully performed. Response message:

OK supports this result. Figure E.2 illustrates the results provided by JMeter.

Appendix E

78

Figure E.2 Sampler result after running script that creates routes using Nokia as WMS provider

Creation of routes using FBSC's waypoints: After importing waypoints from FBSC’s

database, routes were created successfully. Response message: OK supports this result. Figure

E.3 provides the description of this result.

Figure E.3 Sampler result after running script that creates routes using FBSC’s database

Update routes using Nokia WMS: The result after updating a sample route was successfully.

The response header supports this success because the variable response message is equals OK,

which means that the requested operation was performed in the Web server correctly. Figure E.4

shows the description provided by JMeter.

Appendix E

79

Figure E.4 Sampler result after running script that updates routes using Nokia as WMS provider

Retrieve routes using FBSC’s routes: Figure E.5 provides the description provided by JMeter

after the retrieve operation is performed. Sampler result tab contains a response message with

OK value; this means that the operation was successfully executed.

Figure E.5 Sampler result after running script that retrieves routes using FBSC’s database

Update routes using FBSC’s routes: After running the test the update operation was

performed satisfactorily, response message equal to OK guarantees this statement. Figure E.6

proves the success of the result.

Appendix E

80

Figure E.6 Sampler result after running script that updates routes using FBSC’s database

Delete routes using FBSC’s routes: Selecting a route in the Web GUI and submitting the

request to delete a sample route, is a success operation, since the response header confirms this

by looking at the variable response message: OK. Figure E.7 proves the success of the result.

Figure E.7 Sampler result after running script that deletes routes using FBSC’s database

81

Bibliography

[ACK05] H. Al-Kilidar, K. Cox, B. Kitchenham: "The use and usefulness of the ISO/IEC 9126

quality standard," Empirical Software Engineering, 2005. International Symposium

on, vol., no., pp.7 pp. 17-18, 11.2005.

[AG92] T. Arndt, A. Guercio: “Decomposition of Data Flow Diagrams”, In: SEKE:

Knowledge Systems Institute, S. 560-566, 1992.

[AWT07] M. Abi-Antoun, D. Wang, and P. Torr: “Checking threat modeling data flow diagrams

for implementation conformance and security”, In Proceedings of the twenty-second

IEEE/ACM international conference on automated software engineering. USA.2007.

[BBC+07] P. Bansode, S. Barber, C. Farre, J. Meier, D. Rea: “Performance Testing Guidance for

Web Applications,”, O’Reilly Media, Inc , 2007.

[BKM04] D. Butorac, H. Kegalj, D. Matic:"Data access architecture in object oriented

applications using design patterns," Electrotechnical Conference, 2004. MELECON

2004. Proceedings of the 12th IEEE Mediterranean, vol.2, no., pp.595,598 Vol.2, 12-

15 May 2004.

[BKS11] V. Bilicki, M. Kasza, V. Szűcs, A. Végh: “Issues of Persistence Service Integration in

Enterprise Systems,” Proceedings of PATTERNS 2011, The Third International

Conferences on Pervasive Patterns and Applications. : 96-101, 2011.

[BS06] C. Batini and M. Scannapieco : “Data Quality: Concepts, Methodologies and

Techniques”. Springer, Berlin, 2006.

[CHO08] E. Chow: “The Potential of Maps APIs for Internet GIS Applications”, Department of

Earth and Resource Science University of Michigan Transactions in GIS, 12(2): 179–

191, 2008.

[CJM+10] B. Ciepłuch, R. Jacob, P. Mooney and A. Winstanley: “Comparison of the accuracy of

OpenStreetMap for Ireland with Google Maps and Bing Maps”. Proceedings of the

Ninth International Symposium on Spatial Accuracy Assessment in Natural Resources

and Environmental Sciences 20-23rd p. 337, 09.2010.

[CL09] P. Chen, S. Liu: “Developing Java EE Applications Based on Utilizing Design

Patterns,” Information Engineering, 2009. ICIE '09. WASE International Conference

on , vol.2, no., pp.398,401, 10-11 July 2009.

[DAI13] Daimler FleetBoard GmbH: “Company Portrait, Daimler FleetBoard GmbH,

http://www.fleetboard.com/info/en/company-portrait.html, 2013.

[DF05] G. Di Lucca, A. Fasolino: "Testing Web-based applications: the state of the art and

future trends," Computer Software and Applications Conference. COMPSAC 2005.

29th Annual International , vol.2, no., pp.65,69 Vol. 1, 26-28 July 2005.

[Ec13] Eclipse, Eclipse. http://www.eclipse.org/.

[FLZ10] J. Fu, Y. Li, K. Zhu: "Research the performance testing and performance improvement

strategy in Web application," Education Technology and Computer (ICETC), 2010

82

2nd International Conference on, vol.2, no., pp.V2-328, V2-332, 22-24. June, 2010.

[GOO13a] Google Inc., “Terms of Use”, https://developers.google.com/maps/terms, 29.04.2013.

[GOO13b] Google Inc., “Google Maps for Business”, http://www.google.com/enterprise/,

29.04.2013.

[Hi05] R. Hightower: “The JSF application lifecycle,” Walk through the 6 phases of JSF's

request processing lifecycle. IBM, 2005. URL

http://www.ibm.com/developerworks/library/j-jsf2/.

[HPS08] M. Haklay, C. Parker and A. Singleton: “Web mapping 2.0: the neogeography of the

GeoWeb”. Geography Compass, 2, 2011-2039, 2008.

[ISO9126] ISO/IEC, ISO/IEC 9126:1: 2005. Software engineering: Product quality. Geneva,

Switzerland: ISO/IEC, 2011.

[ISO

19142]

ISO/TC, ISO/TC 211:2009: “Geographic Information/Geomatics: Standards Guide”.

USA: ISO/TC, 2011.

[ISO25000] ISO/IEC, ISO/IEC 25000:2005. Software product Quality Requirements and

Evaluation (SQuaRE), Geneva, Switzerland: ISO/IEC, 2010.

[IY10] R. Ibrahim,S. Yen: “Formalization of the data flow diagram rules for consistency

check”, International Journal of Software Engineering & Applications (IJSEA), Vol.1,

No.4, 04.2010.

[Jm13] JMeter, Apache JMeter. http://jmeter.apache.org/

[Jo04] O. Johnson: “Information theory and the Central Limit Theorem,” Imperial College

Press, London, 2004.

[LR01] A. Leff, J. Rayfield: “Web-application development using the Model/View/Controller

design pattern”, Enterprise Distributed Object Computing Conference, 2001. EDOC

'01. Proceedings. Fifth IEEE International, vol., no., pp.118,127, 2001.

[LS11] S. Li, L. Sun: "Advantages analysis of JSF technology based on J2EE," Computer

Science and Service System (CSSS), 2011 International Conference on, vol., no.,

pp.2008, 2010, 27-29 June, 2011.

[LZ10] Y. Lai, S. Zhongzhi: “An Efficient Data Mining Framework on Hadoop using Java

Persistence API,” Computer and Information Technology (CIT), 2010 IEEE 10th

International Conference on , vol., no., pp.203,209, June 29 2010-July, 2010.

[LZ05] W. Li, C. Zhang: “The Roles of Web Feature and Web Map Services in Real-time

Geospatial Data Sharing for Time-critical Applications”, Cartography and Geographic

Information Science. Vol. 32, Iss. 4, 2005.

[Ma13] Maven Project, Apache Maven Project. http://maven.apache.org/download.cgi.

[MIC13] Microsoft Inc., “Microsoft® Bing™ Maps Platform APIs’ Terms Of Use”,

http://www.microsoft.com/maps/product/terms.html, 21.05.2013.

[My13] MySQL, Download MySQL Community Server.

http://dev.mysql.com/downloads/mysql/

[Ni93] J. Nielsen: “Usability Engineering,” Academic Press, London, 1993.

83

[NOK13] Nokia, “Nokia Developer”, http://www.developer.nokia.com, 21.05.2013.

[Op13] OpenJPA. Apache OpenJPA project. http://openjpa.apache.org/

[OPE13] OpenStreetMap, “API usage policy and Tile Usage Policy”,

http://wiki.openstreetmap.org/wiki/API_usage_policy, 21.05.2013.

[Or13] Oracle. Java Server Faces Technology

http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

[Ro06] Road safety authority: “Guide to EU rules, on drivers’ hours regulation”. Regulation

EC No. 561, 2006.

[SCH13] A. Schneider: “About GPS Visualizer”, Adam Schneider,

http://www.gpsvisualizer.com/, 7 July 2013.

[Su13] Subversion, Apache Subversion Project, TortoiseSVN. http://tortoisesvn.net/, 7 July

2013

[SW12] M. Schmidt, P. Weiser: “Online Maps with APIs and WebServices”, Springer, Berlin,

2012.

[To13] Tomcat, Apache Tomcat. http://tomcat.apache.org/.

[Tu06] A. J. Turner: “Introduction to Neogeography”, O’Reilly Media, Inc, 2006.

[Va08] Y. Vasiliev: “Beginning Database-Driven Application Development in Java™ EE,”

Apress, Reading, New York, First edition, 2008.

[WW10] Y. Wang, Q. Wu: "Performance Testing and Optimization of J2EE-Based Web

Applications," Education Technology and Computer Science (ETCS), Second

International Workshop on , vol.2, no., pp.681,683, 6-7 March, 2010.

85

Declaration

I hereby declare that the work presented in this thesis is entirely my own.
I did not use any other sources and references that the listed ones. I have marked all direct or
indirect statements from other sources contained therein as quotations.
Neither this work nor significant parts of it were part of another examination procedure. I have not
published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

John Velandia:

Stuttgart, 07.10.2013

