
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis Nr. 3545

Enabling Horizontal Scalability in an
open source Enterprise Service Bus

Arun Kumar Hanumantharayappa

 Course of Study: Infotech

 Examiner: Prof. Dr. Frank Leymann
Supervisor: Santiago Gómez Sáez

Begin date: August 1, 2013
End date: January 31, 2013

 CR-Classification: C.2.4, D.2.11, H.3.3, H.3.4

Abstract

Abstract

Cloud computing is a recent paradigm which describes a new way of consuming and
delivering IT Services. In the Platform as a Service (PaaS) model, an underlying
infrastructure such as network, operative system or server is provided to the Cloud
consumers for either deploying their own applications, or applications supplied by the
Cloud provider. In effect, Cloud computing modifies how applications should be built,
provided, and consumed, as they may provide or be totally exposed as services, or
consume existing third party applications services. The main advantages in Cloud
computing are related to dynamic scaling of resources which are able to adapt to
changes based on demand of resources and the use of multi-tenancy techniques in
order based on sharing of resources between different users towards achieving the
economy of scale.

Enterprise Service Bus (ESB) is essential as an integration middleware between
application and services within and between multiple Cloud infrastructures. Different
communication protocols might be used by application services and it is therefore
necessary to have a mediator between them. Several challenges might arise when using
an ESB as communication mediator between applications in cloud when to scale in and
scale out to optimize resource consumption. The number of ESB instances should vary
depending on the load in the Cloud infrastructure. This can be achieved by dynamically
scaling in and out multiple ESB instances which constitute the horizontal ESB cluster.

In this Master Thesis we focus on enabling horizontal scalability support for an open
source multi-tenant aware Enterprise Service Bus (ESB). The investigation is based on
two possible scenarios for enabling horizontal scalability: interconnected vs. non
interconnected ESB instances. Therefore, in this work we investigate their advantages,
disadvantages, and possible challenges and solutions. Based on previous investigations,
a realization approach for enabling multi-instance management of a multi-tenant aware
ESB is provided.

Contents

1. Introduction ... 1

1.1. Scope of Work ... 1

1.2. Outline .. 2

1.3. List of Abbreviations ... 2

2. Fundamentals ... 4

2.1. Cloud Computing .. 4

2.2. Service-oriented architecture ... 4

2.2.1. Enterprise Service Bus ... 6

2.3. Technologies .. 7

2.3.1. Java Business Integration .. 7

2.3.2. OSGi Framework... 9

2.3.3. Apache ServiceMix ... 10

2.4. Horizontal Scalability ... 11

2.4.1. Measuring Scalability ... 11

2.4.2. Scalability Patterns ... 12

2.5. Load Balancing .. 13

2.5.1. Common Load Balancing Algorithms .. 14

2.6. Multi-tenancy .. 15

2.7. Nginx Proxy Server .. 15

2.7.1. Nginx Architecture ... 16

2.8. Apache Camel .. 17

2.9. ActiveMQ .. 18

3. Related Works .. 19

3.1. Load Balancing Architectures in the Cloud .. 19

3.2. Multi-instance Management Approaches ... 21

3.3. Evaluating Clustering Scenarios .. 22

4. Concept and Specification ... 24

4.1. System Overview .. 24

4.1.1. Components ... 24

4.2. Multi-tenancy and Multi-instance .. 25

4.2.1. Role-based Access Control ... 25

4.2.2. Communication Requirements .. 26

4.3. Use Cases .. 27

4.4. Non-functional Requirements .. 43

5. Design .. 44

5.1. Horizontal Scalability Support Architecture .. 44

5.1.1. Non Interconnected ESB Instances ... 44

5.1.2. Interconnected ESB Instances .. 46

5.2. Database Schemas ... 48

5.2.1. Tenant Registry ... 48

5.2.2. Configuration Registry .. 48

5.2.3. Service Registry ... 49

5.3. ServiceMix Extensions ... 50

5.3.1. Management Interface over Messaging ... 51

5.3.3. Multi-tenant aware JBI Binding Components .. 52

6. Implementation and Validation ... 53

6.1. Nginx Server Configuration ... 53

6.2. JBIMulti2 extension .. 55

6.3. ESB ServiceMix Cluster ... 55

6.3.1. Multi-tenant Binding Component and Service Engine .. 55

6.3.2. JMSManagementService for Apache ServiceMix .. 55

6.3.3. ActiveMQ Broker of Networks .. 55

6.3.4. JBI Clustering ... 56

6.4. Validation .. 58

7. Outcome and Future Work ... 60

Bibliography ... 61

List of Figures

List of Figures

Figure 2.1: SOA Triangle [WSPA] ... 5

Figure 2.2: Top level view of JBI Architecture [JBI05] .. 8

Figure 2.3 : Service Assemblies deployed on top of Service Engine inside JBI container [Cha04]. . 9

Figure 2.4 : Measuring Scalability [ScalDP] .. 11

Figure 2.5 : Comparing Scalability [ScalDP] ... 12

Figure 2.6 : Load Balancing with two Instances of LB [IBMSc] .. 14

Figure 2.7: Nginx Architecture [Nginx] ... 16

Figure 2.8 : Point-to-point messaging using one to one messaging paradigm. [AMQinA] 18

Figure 3.1 : Generalized Framework for scalable architecture [KK12] ... 20

Figure 3.2 ; The two clustering scenarios being evaluated [Muh11] ... 22

Figure 4.1 : Overview of JBIMulti2 component extended from [Muh11] ... 24

Figure 4.2 : System Administrator Use Case diagram extended from [Muh11] 27

Figure 4.3 : Tenant Operator Use Case diagram extended from [Muh11] ... 28

Figure 5.1: Architectural overview of the design approach to enable horizontal scalability with
non Interconnected ESB instances. ... 45

Figure 5.2 : Architectural overview of the design approach to enable horizontal scalability with
Interconnected ESB instances. .. 47

Figure 5.3: Entity-relationship diagram of the Configuration Registry extended from [Muh11] .. 49

Figure 5.4 : Entity-relationship diagram of Service Registry extended from [Muh11] 50

Figure 6.1 : Registering a load balancer with JBIMulti2 web application using SoapUI. On the left
side we can see soap request and on right side the response message. .. 59

Figure 6.2: Deploying consumer SA on one instance and provider SA on another instance. With
Clustering the provider SA end point configuration will be available on the consumer instance. 59

List of Listings

List of Listings

Listing 5.1: Location URI (top) and service endpoint (bottom) replacing patterns for the multi-
tenant HTTP BC servicemix-http-mt in Extended Backus–Naur Form(EBNF) extended from
[Muh11]……52

Listing 6.1: Nginx Http Configuration……………………………………………………………………………….54

Listing 6.2: Network Connector configuration…………………………………………………………………...56

Listing 6.3: Cluster engine Configuration extended from…………………………………………………….57

Listing 6.4: JBI packaged endpoint configuration………………………………………………………………..58

List of Tables

List of Tables

Table 4.1 Description of Use Case Register new ESB instance………………………………………….……29

Table 4.2 Description of Use case for registering the Load balancer…………………………….…………30

Table 4.3 Description of Use Case Install JBI BC…………………………….…………………………….………31

Table 4.4 Description of Use Case Deploy Service Assembly without specifying the Instance
ID……………….…………………………………………………………………………………………….………………….…..32

Table 4.5 Description of Use Case Deploy Service Assembly with specifying the Instance ID.….33

Table 4.6 Description of Use Case listing all the registered ESB instances………………………….…...34

Table 4.7 Description of Use Case List available ports per instnace…………………………………..……35

Table 4.8 Description of Use Case List available Binding Components per instance…………..…….36

Table 4.9 Description of Use Case List all SAs for all instances in the specified JBI cluster……….37

Table 4.10 Description of Use Case List all SAs for for the specified instance ID……………………..38

Table 4.11 Description of Use Case for un registering the ESB instance………………………………….39

Table 4.12 Description of Use Case for uninstalling the JBI BC from the specified instance ID….40

Table 4.13 Description of Use Case for un deploying the ServiceAssembly……………………………..41

Table 4.14 Description of Use Case for un registering the Loadbalancer…………………………………42

 Introduction

1. Introduction

Nowadays markets are changing faster and businesses are constantly required to adapt
their processes in order to decrease their response to such changes. Cloud computing
has been in the last years an emergent paradigm which delivers computation, storage,
and application hosting services on a Service Level Agreement (SLA) based model for
ensuring performance, uptime, etc. Such services also follow the “utility” pricing model
where customers are charged based on their utilization of computational resources,
storage, and transfer of data [BBG11].

Enterprise Service Bus (ESB) is used as an integration middleware to integrate
applications benefiting from the principles of Service-oriented Architecture (SOA).
Multi-tenancy is sharing of whole technological stack by different consumers at same
time [ESBMt], to fulfill the characteristics of cloud computing the ESB must be multi-
tenant aware and scalable. Depending on the load on application the number of ESB
instances should be varied. Let’s consider an online web shop hosting the services on
Cloud infrastructure with ESB as an integration middleware. The website traffic can
fluctuate a lot and during day times there will be a spike in traffic several times and less
traffic during nights. The system should be able to grow and shrink number of
resources depending on the load. Elastic load balancers can be used to distribute the
traffic across the resources.

Furthermore, the utilization of virtualization and multi-tenancy techniques in the
Cloud infrastructures has maximized the resource utilization and has increased even
more the necessity of not only being able to handle the load at a given time, but also to
optimize the scaling techniques towards maximizing the resource consumption. This
can be achieved by enabling horizontal scalability support of the ESB which is the main
goal of this thesis.

1.1. Scope of Work

This master’s thesis has the goal to specify, design and implement to enable support
for horizontal scalability of an open source ESB [ESBMt]. The system must
simultaneously support multiple instances of ESB retaining clustering to ensure
elasticity. Research includes analysis of existing approaches for enabling scalability
from the previous works [Muh11].

Possible scenarios are clusters of equal Apache ServiceMix instances or clusters of
different interconnected Apache ServiceMix instances and evaluating different service
endpoint deployment configurations. Based on evaluation results a prototypical
implementation for one of the scalable architecture is developed.

1

 Introduction

1.2. Outline

The remainder of this document is structured as follows:

Chapter 2 – Fundamentals: Provides the fundamental background knowledge
necessary to understand the concepts and principles related to this thesis.

Chapter 3 – Related Works: Presents previous and current research approaches and
available technologies in different computing domains to enable horizontal scalability.

Chapter 4 – Concept and Specification: We formalize the functional and non-functional
requirements from the lessons learned in the previous chapters for scalability of the
multi-tenant ESB.

Chapter 5 – Design: Gives a detailed overview of the architecture as well as specifics of the
components which satisfy the requirements.

Chapter 6 – Implementation and Validation: Describes the implementation details as well as
challenges encountered during coding and configuration.

Chapter 7 – Conclusion and Future Work: The last chapter summarizes the work done in this
thesis and suggests further possible extensions as well as research topics related to horizontal
scalability.

1.3. List of Abbreviations

The following list contains abbreviations used in this document.

API Application Programming Interface

BC Binding Component

BPEL Web Services Business Process Execution Language 2.0

DSL Domain Specific Language

EBS Elastic Block Storage

EC2 Elastic Compute Cloud

ESB Enterprise Service Bus

JBI Java Business Integration

LB Load Balancer

MOM Message Oriented Middleware

NMR Normalized Message Router

2

 Introduction

OSGi Open Services Gateway initiative

PaaS Platform-as-a-Service

POJO Plain Old Java Object

RDS Relational Database Service

SaaS Software-as-a-Service

SE Service Engine

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SQS Simple Queue Service

SU Service Unit

UUID Universally Unique Identifier

URI Uniform Resource Identifier

VIP Virtual Internet Protocol

XSLT Extensible Stylesheet Language Transformation

3

 Fundamentals

2. Fundamentals

This chapter provides the fundamentals this thesis is based upon. In particular the
focus is on the Cloud computing and Service Oriented Architecture (SOA) and ESB.
Later on some concepts related to Nginx proxy server and some technologies related
to ESB and multi-instance management are introduced.

2.1. Cloud Computing

Cloud computing refers to the delivery of computing resources over the Internet.
Instead of keeping data on your own hard drive or updating applications for your
needs, you use a service over the Internet, at another location, to store your
information or use its applications. The services themselves have been referred to as
Software-as-a-Service (SaaS) [Gcca].

Cloud computing is the delivery of computing services over the Internet. Cloud
services allow individuals and businesses to use software and hardware that are
managed by third parties at remote locations [Gcca]. Examples of Cloud services
include online file storage, social networking sites, webmail, and online business
applications. The Cloud computing model allows access to information and computer
resources from anywhere that a network connection is available. Cloud computing
provides a shared pool of resources, including data storage space, networks, computer
processing power, and specialized corporate and user applications.

The data center hardware and software is what we will call a Cloud. When a Cloud is
made available in a pay-as-you-go manner to the general public, we call it a public
Cloud. The service being delivered as metered service is utility computing. We use the
term private Cloud to refer to internal data centers of a business or other organization,
not made available to the general public, when they are large enough to benefit from
the advantages of Cloud computing that we discuss here. Thus, Cloud computing is the
sum of SaaS and utility computing [GCC], but does not include small or medium sized
data centers, even if these rely on virtualization for management. People can be users
or providers of SaaS, or users or providers of utility computing. We focus on SaaS
providers (Cloud users) and Cloud providers, which have received less attention than
SaaS users. In some cases, the same actor can play multiple roles. For instance, a Cloud
provider might also host its own customer-facing services on Cloud infrastructure.

2.2. Service-oriented architecture

A Service-oriented architecture (SOA) is the underlying structure supporting
communications between services. SOA defines how two computing entities, such as
programs, interact in such a way as to enable one entity to perform a unit of
work on behalf of another entity. Service interactions are defined using a description
language. Each interaction is self-contained and loosely coupled, so that each
interaction is independent of any other interaction.

4

 Fundamentals

Simple Object Access Protocol (SOAP)-based Web services are becoming the most
common implementation of SOA. However, there are non-Web services
implementations of SOA that provide similar benefits. The protocol independence of
SOA means that different consumers can communicate with the service in different
ways. Flexibility and interoperability communicational aspects must be ensured by
incorporating an intermediate layer capable of supporting multiple communication
protocols and message formats.

Nowadays multiple enterprises rely on SOA-based realizations. For example, an online
shop. Let's use Land's End as an example [SSOA]. We look at their catalog and choose a
number of items. You specify your order through one service, which communicates
with an inventory service to find out if the requested items are available in the sizes
and colors wanted. Your order and shipping details are submitted to another service
which calculates your total, tells you when your order should arrive and furnishes
a tracking number that, through another service, will allow you to keep track of
your order's status and location en route to your door. The entire process, from the
initial order to its delivery is supported by the interactions among multiple Web
services, each one performing a specific task of the order process, all made possible by
the underlying framework that SOA provides.

SOAs are often visually described as a three-legged triangle in which there are three
participants: the Service Producer, the Service Consumer, and the Service Registry.

Figure 2.1: SOA Triangle [WSPA]

A Service is meant to be an independent entity that users can compose into business
processes as they desire. In an SOA, it’s the Service consumer, rather than the Service
producer, that defines how an application behaves. Yet, loose coupling mandates that
Service consumers and Service producers be independently created and controlled. In
addition, we mentioned above that any given Service might have multiple contracts
that define how a consumer can bind to it to gain required functionality. Finally,
policies are increasingly controlling Services, where those policies define specific

5

 Fundamentals

security, process, semantic, and governance constraints by which consumers can bind
to specific Service producers [HTLC].

Given the highly variable nature of the Services being exposed, Service consumers
search the registries in order to find and bind to the appropriate policy-controlled
Service, and to insure that the composed application continues to operate in the face
of continuous Service change. Dynamic discovery and the associated routing enable
the association of Service requests with the appropriate Services at runtime regardless
of any API-specific characteristics of the underlying components. As a result, it is
clear to see that in a truly loosely-coupled SOA world, it is as impossible to operate
without a registry as it is to operate in a global Internet without a DNS.

2.2.1. Enterprise Service Bus

Today there are many complex applications built on different platforms interacting
with each other using point to point integration solutions. If we want to introduce a
new application which wants to communicate with existing applications then we will
have to develop new integration solutions. The complexity and maintenance also
increases as we add new applications to the existing landscape of applications.

Businesses initially turned to manual integration and then enterprise application
integration (EAI) but subsequently have focused on Service-oriented architectures. In
a bus-like EAI architecture, disparate source applications send messages via a central
"pipe" to receiving applications. The system contains software adapters and
integration engines at all nodes, thereby distributing the intelligence. EAI enables
automatic, machine-to-machine communications. However, as explained by Fulton, it
works via point-to-point interfaces, which organizations must define and build one at
a time, between applications [OJ07]. As companies use more applications to provide
additional services, the amount of integration work required and managing the system
becomes increasingly difficult.

To leverage SOAs' benefits effectively, companies are beginning to use an approach
known as the enterprise service bus (ESB). ESB is the middleware glue that holds an
SOA together and enables communication between Web-based enterprise
applications. "Fundamentally," said Larry Fulton, senior analyst with Forrester
Research, "ESB provides the connectivity between service requestors and service
providers, physically conveying the requests and the responses." [OJ07].

Some of the Core functionalities provided by ESB are [TJ09]:

1) Location transparency The ESB decouples the service consumer from the service

provider location. The ESB provides a central platform to communicate with
any application necessary without coupling the message sender to the
message receiver.

2) Transport protocol conversion An ESB should be able to seamlessly integrate

applications with different transport protocols like HTTP(S) to JMS, FTP to a file
batch, and SMTP to TCP.

6

 Fundamentals

3) Message transformation The ESB provides functionality to transform messages
from one format to the other based on open standards like XSLT and Xpath.

4) Message routing Determining the ultimate destination of an incoming message is

an important functionality of an ESB that is categorized as message routing.

5) Message enhancement An ESB should provide functionality to add missing
information based on the data in the incoming message by using message
enhancement.

6) Security Authentication, authorization, and encryption functionality should be

provided by an ESB for securing incoming messages to prevent malicious use of
the ESB as well as securing outgoing messages to satisfy the security
requirements of the service provider.

7) Monitoring and management A monitoring and management environment is
necessary to configure the ESB to be high-performing and reliable and also to
monitor the runtime execution of the message flows in the ESB.

2.3. Technologies

In this section we present and introduce several technologies this thesis builds upon
with respect to SOA and ESB.

2.3.1. Java Business Integration

The Java Business Integration (JBI) specification defines a standardized means for
Assembled integration components are defined to create integration solutions [JBI01].
These components are plugged into a JBI environment and can provide or consume
services through it in a loosely coupled way. The JBI environment then routes the
exchanges between those components and offers a set of technical services.

JBI is built on top of state-of-the-art SOA standards. Service definitions are described in
WSDL and components exchange XML messages in a document-oriented-model way.
A JBI container provides facilities to plug in JBI-compliant components that
interoperate through a central Normalized Message Router (NMR). A JBI component
installed to a JBI container either as Binding Component (BC) or as Service Engine (SE).
The former providing connectivity to external services, the latter implementing
composition and transformation services. The NMR is a message-oriented mediator
that ensures loose coupling between JBI components.

7

 Fundamentals

Figure 2.2: Top level view of JBI Architecture [JBI05]

The JBI specification defines four asynchronous message exchange patterns for
communication between JBI components. They differ in being unidirectional or
bidirectional and in being more or less reliable. Developers of JBI components use an
API provided by the component framework to create and send message exchanges or to
query service endpoints. Furthermore, the components life cycle is managed by the
framework by providing management interfaces which must be implemented within
the JBI component.

The Service Units (SUs) provide information about the services and endpoints to the
binding components. The Service Assembly (SA) consist of a set of Service units
packed in a zip file and the SA is deployed on top of BC. The SA contains a jbi.xml file
that provides information about SUs and the target BCs. As we can see in Figure 2.3
there are 3 sets of SUs: XSLT style sheet, BPEL process and XML schema. The
Extensible Stylesheet language Transformation (XSLT) style sheets are deployed on top
of XSLT engine which provides transformation, the Business Process Execution
Language (BPEL) is deployed on top of BPEL SE which provides orchestration for BPEL
processes and the XML schema is deployed for validation of XML documents on top of
XML SE.

8

 Fundamentals

Figure 2.3 : Service Assemblies deployed on top of Service Engine inside JBI container

[Cha04].

2.3.2. OSGi Framework

The Open Services Gateway Initiative (OSGi) defines an architecture for developing
and deploying modular applications and libraries. The OSGi architecture allows
applications to share a single Java VM. The OSGi platform is divided into following
layers. Execution Environment provides a defined context for applications. The Services
layer provides a collaboration model. The Module layer provides class loading and
packaging specifications. The extensive Security layer is embedded in all layers
[OSG09].

OSGi applications consist of executable and non-executable modules denoted as
bundles. A bundle is packaged as JAR files and contains, in addition to Java class files,
meta-data describing capabilities it provides and requirements it demands. An OSGi
bundle is started by the container by executing the Bundle Activator interface. This
interface must be realized by the OSGi bundle developer within the bundle package.
The Bundle Activator gets a Bundle Context that provides access to the OSGi
Framework functions The Framework provides the Start Level service to control the
start/stop of groups of applications. The System bundle represents the OSGi framework
and it provides an Application Program Interface (API) for managing the bundles. Once
the OSGi bundle external dependencies are resolved, a bundle can be started by the
framework. Therefore, executable bundles implement OSGi specific interfaces that
allow the framework to start and stop the individual bundle. Furthermore, bundles can
provide services to other bundles by dynamically registering service objects to the
framework. Other bundles can then use an API to query the internal service registry for
available service objects and finally bind to them [OSG11].

The Blueprint Container specification defines a dependency injection framework for
OSGi. It is designed to deal with the dynamic nature of OSGi, where services can
become available and unavailable at any time. The specification is also designed to
work with plain old Java objects (POJOs) so that the same objects can be used within
and outside the OSGi framework. The Blueprint XML files that define and describe the
various components of an application are key to the Blueprint programming model.

9

 Fundamentals

The specification describes how the components get instantiated and wired together to
form a running application.

The Blueprint Container specification uses an extender pattern, whereby an extender
bundle monitors the state of bundles in the framework and performs actions on behalf
of those bundles based on their state. The Blueprint extender bundle waits for the
bundles to be activated and checks whether they are Blueprint bundles. A bundle is
considered to be a Blueprint bundle when it contains one or more Blueprint XML files.
These XML files are at a fixed location under the OSGI-INF/blueprint/ directory or are
specified explicitly in the Bundle-BluePrint manifest header.

2.3.3. Apache ServiceMix

Apache ServiceMix is a flexible, open-source integration container that unifies the
features and functionality of Apache ActiveMQ, Camel, CXF, ODE, Karaf into a
powerful runtime platform that can be used to build your own integrations solutions. It
provides a complete, enterprise ready ESB exclusively powered by OSGi [SMXa]. It is
based on the OSGi Framework implementation Apache Karaf [APA11b] that builds the
ServiceMix. Using OSGI framework brings a new important feature for SOA
development i,e. modularity. That means that we can handle class loading and
application lifecycle differently between the components.

The open source ESB we intend to enable horizontal scalability support is based on the
multi-tenant aware ServiceMix ESB based on previous works[Muh11]. Apache
ServiceMix 4.3.0 from the Apache Software Foundation, hereafter referred to as
ServiceMix [SMXa]. On top of the kernel layer, OSGi bundles realize the technology
layer of ServiceMix. The technology layer brings in the ESB functionality complying
the JBI specification. Additionally, ServiceMix ships with various JBI components. BCs
support diverse protocols, such as SOAP over HTTP, JMS, FTP, or SMTP. Each
ServiceMix instance comes integrated with a message broker Apache Active MQ
[AMQ] which is the foundation for NMR.

The admin console command allows the creation and management of instances of
ServiceMix. However, the console does not only allow the management of OSGi
bundles and services, but also allows the management of already installed JBI
components and deployed service assemblies. Artifacts, such as OSGi bundles, JBI
components, or service assemblies, can be installed by dropping them into a hot
deployment directory. Although the JBI specification does not define a distributed
deployment of JBI containers, ServiceMix implements a clustering engine. As a result,
within a cluster each instance is aware of the service endpoints created on other
instances. Furthermore, developers are provided with plug-ins for the software building
tool Apache Maven [AMV], which simplifies the process of developing JBI components
and service assemblies [FUS11].

10

http://activemq.apache.org/
http://camel.apache.org/
http://cxf.apache.org/
http://ode.apache.org/
http://karaf.apache.org/

 Fundamentals

2.4. Horizontal Scalability

For any network, system or process scalability is a desirable attribute. Poor scalability
can result in degraded system performance with utilizing more resources than it is
needed. They might be utilizing the resources repeatedly with poor scheduling
algorithms either they cannot take complete advantage of parallelism or shared
memory resources. In the below paragraphs we discuss about scalability approaches in
multiple domains.

When there is an increasing and growing demand for a system scalability is crucial to
achieve long term success. The ability to scale a system depends on the type of data
structures used in the system also the underlying algorithms used to communicate with
the components. The functions of the system are supported by the data structures and
algorithms used to search these structures, co-ordinate and monitor the process
between these data structures. Such kind of structures results in space or space-time
scalability. Yet another kind of scalability we need to consider is the Load Scalability
i.e., “ability to function gracefully, i.e., without undue delay and without unproductive
resource consumption or resource contention at light, moderate, or heavy loads while
making good use of available resources” [Scal].

2.4.1. Measuring Scalability

There are different perceptions in how the scalability of a system can be measured. If
we consider a transaction oriented system such as online banking one can measure
scalability in terms of simultaneous number of users supported or maximum number of
transactions supported per unit time.

In the Figure 2.4 load is plotted against X-axis and Throughput against Y-axis. The
throughput initially increases as the load will be less. As we keep on increasing the
load the throughput will remain constant for a certain amount of time and after that it
starts to decrease gradually. This point is called as Threshold or knee point. If we
further keep on increasing the load the throughput starts decreasing and we say at this
point the system performance is degrading. This might be the result of unavailability or
scarcity of resources.

 Figure 2.4 : Measuring Scalability [ScalDP]

11

 Fundamentals

Let us add some more hardware resources to the above system and in the below figure
we can see that the new scalability has increased and so is the throughput. Also the
threshold or knee point is drifted further away.

Figure 2.5 : Comparing Scalability [ScalDP]

However we cannot keep on adding the hardware indefinitely as there is a bottle neck
for the system as well to handle maximum load. This is proved by Amdahl’s law:

“If α is fraction of calculation essential and 1 - α is the fraction that cannot be
parallelized then the maximum speedup that can be achieved by using P processors is
given by [ScalDP] : ”
 1

 α + (1 - α)/P

2.4.2. Scalability Patterns

There are many ways in which we can introduce scalability into a system and below
we discuss some of the patterns used generally [ScalDP].

• Add Hardware – Here when the system reaches the Knee or Threshold point we
identify additional and scarce resources and introduce them into the system.

• Introduce Parallelism – Here we identify the tasks which can be done parallel

and split the task and assign it to different processes.

• Optimize Algorithm – Here we don’t add hardware or introduce parallelism into
the system. The key solution here is to identify areas for optimized performance
with increased load. There are many algorithms available to do this which is
described in section 2.5.1.

• Optimize Decentralization – Here we have introduced the parallelism but there

may be resources in turn required by parallel processing paths which results in
bottle neck. So we follow a decentralized approach where we don’t concentrate

12

 Fundamentals

on single resource but provide multiple resources to make the parallel paths
independent.

• Control shared resources – Here we have introduced parallelism and shared

resources but there might be some resources to be shared across parallel paths.
So to overcome this problem we further categorize the shared resources into
“Access only” and “Modifiable” resources.

• Intro-Process parallelism – Here a single process exploits parallelism and

optimized usage of hardware resources to handle the increased load.

• Inter-Process parallelism – Here the system replicates its process across multiple
instances. All these instances co-ordinate with each other to handle increased
load in a distributed manner.

• Hybrid parallelism – Here the system has the capacity to replicate threads as

well as processes.

2.5. Load Balancing

The distribution of the incoming traffic among different servers hosting the same
application content then Load Balancing is a core networking solution. By balancing
application requests across multiple servers, a load balancer prevents any application
server from becoming a single point of failure, thus improving overall application
availability and responsiveness. For example, when one application server becomes
unavailable, the load balancer simply routes all new application requests to other
available servers in the pool.

Load balancers also improve server utilization and maximize availability. Load
balancing is the most straightforward method of scaling out an application server
infrastructure. As application demand increases, new servers can be easily added to the
resource pool and the load balancer will immediately begin sending traffic to the new
server [LB]. There are several existing load balancing techniques to achieve scalability
in an owned infrastructure. In the next section we will discuss how these techniques
can be used for scalability in a Cloud infrastructure.

Figure 2.6 depicts two instances of Load Balancer LB1 and LB2. These share a virtual IP
and divide the traffic between 1 to N Web servers. The purpose of this example is to
create a high availability using load balancing.

13

 Fundamentals

Figure 2.6 : Load Balancing with two Instances of LB [IBMSc]

2.5.1. Common Load Balancing Algorithms

Load balancing approaches can be realized at two different levels:

• Hardware load balancer
• Software load balancer

A regular way to scale web applications is by using hardware load balancer. The
fundamental working rule is that network traffic is sent to a common IP in many cases
called a virtual IP (VIP). This VIP is an address attached to the load balancer. Once the
load balancer receives a request on this VIP it will need to make a decision on where to
send it. This decision is usually made by a load balancing algorithm. The client request
is then sent to the right server and the server will generate a response. Depending on
the type of device, the response will be sent either back to the load balancer, in the case
of a Layer 7 device, or more naturally with a layer 4 device straight back to the
customer. The hardware load balancer is intended to handle high level of load, so it can
simply scale. However, a hardware-based load balancer uses application specific
hardware-based components, thus it is naturally expensive. Because of Cloud’s
commodity business model, a hardware load balancer is rarely offered by Cloud
providers as a service. As an alternative, one has to use a software load balancer
running on a generic server.

A software load balancer is not scalable solution. Since it is run on a generic server, the
scalability is generally restricted by the CPU and network bandwidth capacity of the
generic server. The generic server’s capability is much smaller than that of hardware
load balancer.

Some of the common load balancing algorithms are [ALB]:

• Round Robin - As the name suggests the servers are selected in a round robin
fashion. This is a well-known and classic policy, which spreads the load evenly.

14

 Fundamentals

• Random - A random server is selected for each serving the request.

• Sticky - Sticky load balancing uses an expression to calculate a correlation key to

perform the sticky load balancing.

• Weighted Round - The weighted Round-Robin load balancing policy allows us to
specify a processing load distribution ratio for each server with respect to the
others. In addition to the weight, endpoint selection is then further refined using
round-robin distribution based on weight.

• Least Connections - The load balancer keeps count on each active connection and

always routes to the server with the least.

• Hashing - Take a part of the incoming connection to create a Hash. This can be
the target or source destination or the URL or parts of it.

2.6. Multi-tenancy

One of the main factors for utilizing the resources of a Cloud infrastructure for any organization
is related to reducing operational costs. On the other side, Cloud providers aim to virtualize and
share the same resources for many customers concurrently on their infrastructure towards
maximizing the resource utilization and reducing their infrastructure expenses, as software
vendors can utilize the resources by sharing a common code base and data.

Four maturity levels are defined by Chong and Carraro [CC06] for SaaS architecture. In the first
level, each tenant is provided with specific application for exclusive use. In the second level, each
tenant uses his own specific application but configuration tools are provided for application
code. In the third level, all the tenants use the same instance of the application. In the fourth
level, the tenants share a set of application instances.

Regarding the multi-tenant data architectures there three degrees of multi-tenancy exist [CC06].
In the first degree each tenant has its own database and hence the recovery of tenant data on
failure can be achieved quite easily. However, this is not multi-tenant efficient as the number of
databases per database server is limited. In the second degree, tenants have their own tables but
all the data resides on the same database. Finally, in the last approach the data of different
tenants are merged into same table and hence this architecture allows more tenants per database.

As part of this thesis for enabling scalability support multiple tenants share the same middleware
resources, e.g. the LoadBalancer or ServiceMix cluster, Active MQ Broker network cluster and
database registries.

2.7. Nginx Proxy Server

Nginx is a free open-source reverse proxy server which provides load balancing,
caching, access and bandwidth control, and the ability to integrate efficiently with a
variety of applications, have helped to make nginx a good choice for modern website
architectures [Nginx]. There are also lot of third party modules, which come integrated
with Nginx. Developers can also develop and integrate their own individual modules.

15

 Fundamentals

Also handling high concurrency along with high performance and efficiency is the
main benefit of deploying the Nginx.

2.7.1. Nginx Architecture

Nginx is a specialized load balancing solution to achieve high performance and
scalability. It follows a different approach than the traditional process or thread based
model of handling concurrent connections. The architecture of Nginx is completely
based on event based mechanisms. The tasks are assigned to processes based on
multiplexing and event notifications. Connections are processed in a highly efficient
run-loop in a limited number of single-threaded processes called workers. Within
each worker Nginx can handle many thousands of concurrent connections and requests
per second.

Nginx runs a single master process and several worker processes, cache loader and
cache manager. All the processes use shared memory mechanism for inter-process
communication. The master process is run as the root user. The cache loader, cache
manager and workers run as an unprivileged user. The main operation of web server is
reflected from the worker process as this is the main process responsible for accept,
handle and process connections from the clients. The cache loader process loads the
disk cache and in memory database. The cache manager is mostly responsible for cache
expiration and invalidation.

Figure 2.7: Nginx Architecture [Nginx]

16

 Fundamentals

The Nginx worker code contains the core and functional modules. The core is
responsible for maintaining a tight run-loop and executing the modules code at each
stage of processing the request. The presentation and application layer functionality is
present in the functional code. Along with event notifications Nginx uses disk I/o
performance enhancements in Linux, Solaris and BSD-based operating systems,
like kqueue, epoll, and event ports [Nginx]. Also in terms of memory Nginx is very
efficient as it does not fork a process or thread per connection. The scalability of Nginx
is very high as it spawns several workers to handle connections. Generally, a separate
worker per core allows full utilization of multicore architectures, and prevents thread
thrashing and lock-ups. There's no resource starvation and the resource controlling
mechanisms are isolated within single-threaded worker processes.

2.8. Apache Camel

Apache Camel is a powerful open source integration framework based on known
Enterprise Integration Patterns with powerful Bean Integration. Apache Camel eases
the realization of Enterprise Integration Patterns by means of specifying routing and
mediation rules in either a Java based Domain Specific Language (or Fluent API), via
Spring based Xml Configuration files or via the Scala DSL[APA11a]. The core feature of
Camel is its routing and mediation engine. A routing engine will selectively move a
message around, based on the route’s configuration. In Camel’s case, routes are
configured with a combination of enterprise integration patterns and a domain-specific
language (DSL).

A high level architecture of camel consists of Routing Engine, Processors and
Components. The Routing Engine routes the messages under the hood. The message
transformation and manipulation is done by the Processors during the message routing.
Components are the extension points in Camel for adding connectivity to external
systems i.e. the camel is exposed to outside environment through an endpoint interface
called as Component. To expose these systems to the rest of Camel, components
provide an endpoint interface [CiA11].

An endpoint is an abstraction that models the end of a message channel through which
a system can send or receive messages. The endpoint representation in Apache Camel
is done using Uniform Resource Identifiers (URIs). Hence Camel can work with any
kind of Transport or messaging architecture such as HTTP, ActiveMQ, JMS, JBI, SCA,
MINA or CXF Bus API. Apache camel has minimal dependencies for embedding Java
applications and also has a small set of libraries. Camel can work with same API
regardless of which kind of Transport used.

The ServiceMix-camel JBI SE provides integration support between camel and JBI
endpoints. Muhler extends this component and allows dynamic internal creation of
tenant-aware endpoints in the ServiceMix-camel-mt JBI SE [Muh11]. The main goal of
this extension is to provide an integrated environment between JBI and camel
supported endpoints. However, multi-tenancy is only supported at the tenant level only
between JBI endpoints. Therefore, Gomes has enabled the dynamic deployment of
multi-tenant aware endpoints at the user level, by means of enabling the deployment of
multiple user endpoints for a single tenant [Gom12].

17

 Related Works

2.9. ActiveMQ

ActiveMQ is an open source, Java Message Service (JMS) 1.1–compliant, message-
oriented middleware (MOM) from the Apache Software Foundation that provides high
availability, performance, scalability, reliability, and security for enterprise messaging
[AMQinA]. The goal of ActiveMQ is to provide message-oriented integration across
different languages and also across different platforms possible. ActiveMQ supports
wide range of connectivity options and various kinds of protocols such as TCP, HTTP
/S, UDP, SSL, STOMP and more. Since ActiveMQ is an implementation of JMS 1.1
Specification it provides synchronous and asynchronous message delivery capabilities.
ActiveMQ also provides persistency and security, in terms of authentication and
authorization depending on our security needs.

JMS is the main building block for the ActiveMQ. The JMS specification defines two
kinds of clients: JMS clients and non-JMS clients. The JMS clients completely use JMS
API’s for communicating with JMS provider. If the JMS client uses any additional
features then this client may not be portable with another JMS provider. The
MessageProducer class is used by the JMS client for sending the JMS messages. When
creating the Producer Session.createProducer() the default destination would be set
however this can be overridden using MessageProducer.send() API. There are also lots
of APIs for setting message headers. The JMS clients use JMS MessageConsumer class
for consuming the produced messages. Messages can be consumed either
Synchronously using receive() or asynchoronously using a MessageListener
implementation. The MessageListener.onMessage() is invoked when the message
arrives on the destination. Non-JMS clients use non JMS API’s such as CORBA IIOP
protocol or some other native protocol beyond Java RMI.

Figure 2.8 : Point-to-point messaging using one to one messaging paradigm. [AMQinA]

ServiceMix comes with an Active MQ instance and we use this ActiveMQ instance for
interconnecting the ServiceMix instances forming a network of brokers which will be
later used for JBI clustering to enable high scalability. These approaches are presented
and described in detail in chapters 5 and 6.

18

 Related Works

3. Related Works

In the previous chapter, the fundamental background knowledge necessary to
understand the concepts and principles discussed in this thesis were introduced. This
chapter describes the existing approaches for enabling horizontal scaling of the ESB,
and presents the work of other authors investigating load balancing and scalability
solutions. Kumar and Kodukula [KK12] focus on proposing a scalable architecture in
the Cloud, considering the Amazon Cloud and its available Web services. This thesis
aims to extend previous works presented in [ESBMt] towards enabling administration
and management of horizontally scaled multi-tenant aware ServiceMix instances.

3.1. Load Balancing Architectures in the Cloud

We introduce Scalability into a System so that the systems performance does not
decrease even with the increased or varying load. There are two kinds of Scalability
[IBMScl]:

• Vertical Scaling: This is increasing the size of the system by adding more

processors and storage to enable symmetric multi-processing to extend
processing capability. Generally this form of scaling employs only one instance
of the operating system.

• Horizontal scaling: Here we will have multiple independent instances to provide

more processing power. Independent instance means each and every instance
will have its own operating system residing on separate server.

Horizontal Scalability is discussed in their work by means of adding more machines to
a multi-instance container.

Kumar and Kodukula suggested a framework for building scalable architecture in the
Cloud. It is complex to design an ideal scalable load balanced infrastructure. There
exists a high dependency between the scalable infrastructure and application
architecture. If the application architecture is not scalable, an enabled horizontal
scalability cannot be guaranteed.

An ideal scalable architecture is defined by the following characteristics [KK12]:

• Increased resources result in proportional growth in performance.

• A scalable service must be able to handle heterogeneity
• A scalable service is operationally efficient
• A scalable service is durable
• A scalable service should become more cost effective when it grows.

The components used by Kumar and Kodukula are Amazon Elastic Compute Cloud
(Amazon EC2), Amazon S3, Amazon Elastic Block Storage (EBS), Amazon Simple
Queue Service (Amazon SQS), Amazon SimpleDB, Amazon Relational Database Service
(RDS), Amazon CloudFront the underlying Cloud components. They have implemented

19

 Related Works

this scalable architecture to achieve the above characteristics following the rules laid
out in [Var11]. The main goal was to achieve automatic recovery on failover,
decoupling of components, introducing elasticity and parallelization. Although Kumar
and Kodukula investigations target load balancing and scalable architecture
approaches, multi-tenancy awareness is not considered at the middleware level.

Figure 3.1 : Generalized Framework for scalable architecture [KK12]

In this thesis we also follow a similar architecture as in Figure 3.1 where we have a
Nginx proxy server which receives the request and distributes the load to different
instances. If we look at Muhler’s thesis [Muh11] he has a set of ESB instances in a
cluster. The JBIMulti2 application developed by Muhler puts the management message
(containing BC or SA) to an external ActiveMQ topic. JMSManagementService OSGi
bundle is developed and deployed on top of ApacheServiceMix. This service listens for
the JMS topic and when a management message arrives on the JMS topic all the
instances will deploy the same message. This approach can result in bottle neck when
we need to support more number of tenants and users. So instead of replicating
instances we interconnect the different instances and distribute the load across all the
instances. In the next section we see how the clustering approach can be used to
interconnect different ESB instances.

20

 Related Works

3.2. Multi-instance Management Approaches

Clusters constituted by one or more instances require administration and management
operations in order to fulfill performance demands, e.g. discovery of available
instances, dynamic deployment of instances to bear workload peaks, etc. Clustering is a
technique for grouping similar instances or components to ease load to different
components so that an individual request can be routed to a component that holds the
specific data needed to process the request. This approach results in an increased
performance as the load is redirected to specific instances in order to ameliorate the
performance degradation. The probability of generating bottlenecks in the system is
therefore reduced. If one of the instances is experiencing high load or becomes
unavailable then another similar instance in some other cluster can process this
request.

Clustering also provides the following benefits [ClusWSO2]:

• High availability – A server may be down due to many reasons like servicing or
maintenance. Clustering for High availability results in less service
interruptions.

• Simplified administration – It is easy to add or remove resources to meet the
load requirements. Also Administration in cluster is simplified because it allows
us to manage a group of systems as a single system.

• Ease of monitoring – It’s easier to add and monitor new instances to a cluster.

• Increased Scalability – Since the load is distributed among the clusters this will

certainly result in increased scalability able to handle more load.

• Low cost – Clustering increases the scalability and fault tolerance.

The above set of requirements can be reused for our approach. The above
characteristics are essential especially if we are dealing with increased or varying load
where performance and reliability is critical. Below we see how we can use these
clustering techniques for grouping the ESB instances and how they relate to ActiveMQ.

Generally for enabling horizontal scalability there are 3 approaches:

• Load Balancing – Here all the ESB instances will be the same replicas hosting
same binding components and service assemblies. So whenever a request arrives
at LB we can route the request to any one of the instance which is not loaded
with much traffic using one of the algorithms specified in section 2.5.1.

• Clustering – Here we establish a connection bridge between the ESB instances

and distribute the load across all the instances so that there is no bottle neck to
support more tenants or users.

21

 Related Works

• Hybrid – Here we use a combination of both of the above approaches by forming
a network of brokers using ActiveMQ. We will see how this clustering of JBI
endpoints is achieved in the coming chapters in 5 and 6.

3.3. Evaluating Clustering Scenarios

In this section two possible scenarios described by Muhler for enabling horizontal
scalability in a multi-tenant aware ESB are analyzed.

Figure 3.2 ; The two clustering scenarios being evaluated [Muh11]

In first scenario instance replication technique takes place, as all instances host same
BC and service deployment endpoint configurations. Hence in this approach resources
are not optimally utilized. Also each ESB can reach saturation due to the number of
service endpoint configurations deployed. We might not be able to fulfill the request of
tenant organization when the threshold limit is exceeded.

In second scenario the interconnected instances share BCs. The service endpoints are
distributed across all the instances. Due to the endpoint distribution across multiple
instances, e.g. based on assigning a concrete instance a task, the probability for a
bottleneck to occur decreases when the number of tenants, users, and load increases.
The second scenario can be implemented using JBI clustering technique and ActiveMQ
network of brokers which offer lot of advantages as discussed below.

22

 Related Works

There are multiple advantages when forming a network of brokers [AMQMid]:

• Scalability – we can support increased load.

• High availability – Clients can attempt to connect to multiple brokers in a
failover mode.

• Network Isolation and traffic limiting.

• Security – destination filtering can prevent certain users from sending requests

to certain instances.

ServiceMix is shipped with a JBI cluster engine which can be used for clustering
endpoints. Its main features are [SmxCl]:

• Transparent remoting.

• Rollback and redelivery when a JBI exchange fails.

• Load balancing among JBI containers able to handle a given exchange.

• Pause new exchanges processing when the number of concurrently processed
messages reach a given threshold.

The second scenario offers more flexibility as there is no bottleneck to support more number of
tenants or users so we will go-ahead with the implementation of this approach.

23

 Concept and Specification

4. Concept and Specification

This chapter describes the System Overview of the components used for the administration and
management of multi-tenant ESB. An overview of the key components used for managing the
ESB cluster is also described. The functional and non-functional requirements including the
detailed use cases are also given in the following sections.

4.1. System Overview

Muhler has developed a multi-tenant aware administration and management application for JBI
environments [Muh11]. The specification described in below sections focus on the requirements
for the load balancer, extensions done to the existing JBI Multi2 components including the JMS
component.

4.1.1. Components

An highlevel overview of the system is given in the figure below.

Figure 4.1 : Overview of JBIMulti2 component extended from [Muh11]

24

 Concept and Specification

Muhler has designed and realized a multi-tenant aware administration and management
application for JBI Environments [JBI05]. In his approach, ServiceMix has been used as the
proof-of-concept in order to enable multi-tenancy in an ESB solution. This system is called JBI
Multi-tenancy Multi-container support (JBIMulti2) as it distinguishes each tenant organization
from the other by ensuring multi-tenancy. For enabling horizontal scalability on this system we
extend some of the components which he has designed and introduce new components such as
Load balancers and ActiveMQ clusters as shown in Figure 5.1.

JBIMulti2 resources layer is constituted by three main registries:: Tenant Registry, Service Registry
and Configuration Registry. The tenant’s information is obtained from the Tenant Registry and it
also describes the roles and allowed operations. The Service Registry stores the deployed Service
Assembly information for each tenant. This component is modified to store the endpoint
information as well as for a single tenant we support distributing the endpoints across multiple
instances. All the information not related to tenants is stored in Configuration Registry.

Load balancer cluster on the resource layer is shared by all the tenants. Each Load Balancer can
manage many JBI clusters. The JBI clusters have to be registered with LB before it can control
the cluster. The LB receives the request and queries the registries to find out the location of the
endpoint and redirects the request to the specic instance.

The Broker cluster is formed by interconnecting all ESB instances with in one JBI cluster and this
enables massive scalability. We also form a network of broker clusters to enable massive
scalability. Broker cluster is formed by interconnecting all ESB instances with in one JBI cluster
using internal ActiveMQ of each of the ESB instance.

4.2. Multi-tenancy and Multi-instance

The JBI Multi2 System designed by Dominik ensures isolation of the data not only between
tenants but also between the users. The authentication and access control is done on two
hierarchial levels of tenants and the tenant users. All the operations are done by System admin
role and the tenant admin role as described below.

4.2.1. Role-based Access Control

The System Admin role has the maximum permissions and he is the one responsible for
registering the Load Balancer, JBI Cluster and the ESB instances. The tenant role is further
classified into Tenant administrator and Tenant operator. The System Admin creates the Tenant
Admin and he can also assign the Tenant admin roles and the quotas of resources. The Tenant
Admin has rights to create the Tenant operators who can deploy the Service Assemblies and
consume the quotas of resources assigned to them by the Tenant Admin.

The Tenant user can have multiple tenant administrator roles or tenant operator roles [Muh11].
The System Admin when registering the new instance or the JBI Container has the option for
specifying the type of protocols like Http, JMS or Email supported and also the kind of endpoints
such as producer or consumer that can be hosted on the instance. Another main requirement
while installing the Binding Component on the ESB instance is that it should use an unique port
than all other instances running on the same server else we have a clash on the ports. For this
reason the System Admin has the rights to assign the ports for each of the BC when installing

25

 Concept and Specification

that particular JBI BC. Also each of the BC installed can be either multi-tenant or non-multi-
tenant. So the System Admin also has the rights to specify the kind of tenancy supported while
deploying the BC.

The tenant operator is the one responsible for deploying the Service Assemblies on top of these
BCs. One of the optional requirement for the tenant operator is he could specify the instance ID
where a particular SA has to be deployed. If the tenant operator does not specify the instance ID
then the system in turn finds the list of ESB instances with in a particular JBI cluster which are
compatible to deploy this SA on top of the BC. Then we narrow it down to the number of the
endpoints deployed on each instance. The instance deployed with least number of endpoints is
selected and this instance ID is associated with the SA. Also there are lot of web service api’s
available for the tenant operator in case if he wants to decide upon the instance where a
particular SA should be deployed on.

4.2.2. Communication Requirements

Multi-tenant aware communication requirements have been previously identified [Gom12].
However, they are related to a single instance, rather than the administration and management
of multiple instances within a cluster. Therefore, we provide the following communication
requirements:

1. Clustering: We use JBI clustering for communication between the ESB instances
supported by ActiveMQ. Clustering is done only for the provider endpoint.

2. Tenant-aware messaging: The messages exchanged between the tenant aware

endpoints are enriched with tenant and user information.

3. Tenant-aware endpoints: Tenant aware endpoints are packed in their corresponding
SUs and SUs in turn must be packed in individual Service Assemblies, as the system must
support the endpoint deployment on a specific instance.

4. Tenant-aware routing and context: The deployment of multi-tenant aware endpoints

must be followed by creation of tenant-aware context. The routing operations between
the provider and consumer endpoints must identify the tenant and the user initiating the
operation.

5. Tenant Configuration isolation : The tenant data between the two users belonging to

different tenants should be isolated as it may contain sensitive information.

6. Tenant-aware correlation : The data exchange between the data sources and the
tenants must not interfere with other tenants and hence the tenant requests must be
correlated with its corresponding response.

.

26

 Concept and Specification

4.3. Use Cases

Three main actors have been identified in previous works: System Administrator, Tenant
Administrator and finally the Tenant operator [Muh11].

The System Administrator has access to all the resources in the system including the operations
of Tenant Administrator and Tenant Operator. We identify in this thesis the necessary
operations for administrating and managing multiple instances across multiple clusters.
Therefore, the initial set of use cases defined in [Muh11] is extended in this work. The set of
operations for the System Administrator and Tenant Operator are increased, as these incorporate
the potential functionalities to enable multi-instance management. However there are no
changes made on Tenant Administrator operations. The use case diagrams for both the System
Administrator and Tenant Operator are shown in Figure 5.2 and 5.3 respectively.

Figure 4.2 : System Administrator Use Case diagram extended from [Muh11]

27

 Concept and Specification

Figure 4.3 : Tenant Operator Use Case diagram extended from [Muh11]

In the remainder of this section the detailed list of use cases are described.

28

 Concept and Specification

Name Register new ESB instance
Goal The system administrator wants to register a new ESB Instance.
Actor System Administrator
Pre-Condition The JBI Cluster is already registered.
Post-Condition The ESB instance is registered and added to the specified JBI cluster.
Post-Condition in The ESB instance is not registered.
Special Case

Normal Case 1. The System Administrator commands to register the new ESB

 instance specifying optional properties like protocol supported and
 end-point types.

 2. The System starts a distributed atomic transaction.

 3. The System registers the new ESB instance into the JBI Cluster.

 4. The System finishes the distributed transaction.

Special Cases 2a. If invalid protocol is entered then proper error message is displayed
 and the system aborts the registration of the new ESB instance.

 2b. If invalid endpoint type is entered then proper error message is
 displayed and the system aborts the registration of the new ESB
 instance.

 2c. The specified cluster to register the new ESB instance does not exist or
 has been previously deleted, so the registration of the instance fails
 with proper error message.

 3a. The system cannot commit the transaction to register a new instance in
 JBI Cluster.
 a) The system rolls back the distributed atomic transaction and shows
 an error message.

Table 4.1 Description of Use Case Register new ESB instance.

29

 Concept and Specification

Name Registering the Load Balancer
Goal The system administrator wants to register the Load balancer instance for

the specified JBI clusters.
Actor System Administrator
Pre-Condition The JBI Cluster already exists and it contains registered JBI containers.
Post-Condition The Load balancer is registered.
Post-Condition The Load balancer is not registered.
in special case

Normal case 1. The System Administrator commands to register the Load balancer by
 specifying the associated JBI clusters.

 2. The System starts a distributed atomic transaction.

 3. The System registers the Load balancer.

 4. The System finishes the distributed transaction.

Special Cases 2a. If the given JBI cluster does not exist in the system proper error

message is Displayed and transaction aborts.

 2b. Concurrently if the JBI containers are unassigned from the system then
 system shows a suitable message and aborts.

 3a. The system cannot finish the transaction with the specified JBI clusters.

a) The system rolls back the distributed atomic transaction and shows
an error message.

Table 4.2 Description of Use Case for Register Load balancer.

30

 Concept and Specification

Name Install JBI BC
Goal Install a JBI BC on the ESB instance.
Actor System Administrator
Pre-Condition ESB instance is already registered with an instance ID.
Post-Condition The JBI BC is installed successfully.
Post-Condition in The JBI BC installation failed.
Special case

Normal Case 1. The System Administrator commands to install the JBI BC
 on specified Instance ID along with the port for this BC.

 2. The System starts a distributed atomic transaction.

3. The System installs the new JBI BC on the specified instance ID.

 4. The System finishes the distributed transaction.

Special Cases 2a. The instance ID does not exist or the specified port is already occupied.
 Corresponding error message is displayed and the installation of JBI
 BC fails. If the port is already occupied then the available list of ports
 is displayed.

2b. Concurrently the registered instance might be unavailable or deleted.
 The system shows a suitable message and aborts.

3a. The system cannot finish the transaction with the installation of JBI
 BC.
 a) The system rolls back the distributed atomic transaction and shows
 an error message.

Table 4.3 Description of Use Case Install JBI BC.

31

 Concept and Specification

Name Deploy Service Assembly without specifying the Instance ID
Goal Deploy two Service Assemblies in one request with one ServiceUnit each
 without specifying the instance ID.
Actor Tenant Operator
Pre-Condition The Tenant Operator has the permissions to install the SA.
Post-Condition The SAs are deployed successfully.
Post-Condition The deployment of the SAs failed.
in Special cases

Normal Case 1. The tenant Operator commands to deploy the SAs specifying the

 endpoint types.

 2. The System starts a distributed atomic transaction.

 3. The System takes a look at the BC and gets the instanceId registered for
 These BCs.

 4. The System figures out the instanceID with least number of endpoints

already deployed. (If there are more than one instance matching for
same BC with same number of endpoints then one of them will be
selected randomly).

 5. The System finishes the distributed transaction.

Special Cases 1a. If the endpoint types are invalid the transaction aborts and the
 deployment of the SAs fails with proper error message.

 2a. Concurrently if the registered instances with the compatilbe BCs are
 deleted, the System shows a suitable message and aborts.

3a. If the System cannot find any instance ID compatible for installing the
SAs (meaning no suitable BC found on the instances), then the
transaction aborts with suitable message.

4a. If the SAs names already exist in the system then proper error message

is displayed and the transaction is rolled back.

 5a. The system cannot finish the transaction with the instance ID and the
 Configuration and Service Registry.

 a) The system rolls back the distributed atomic transaction and shows
 an error message.

Table 4.4 Description of Use Case Deploy Service Assembly without specifying the
Instance ID.

32

 Concept and Specification

Name Deploy Service Assembly with specifying the Instance ID
Goal Deploy two Service Assemblies with one ServiceUnit each specifying the
 instanceID.
Actor Tenant Operator
Pre-Condition The Tenant Operator has the permissions to install the SA.
Post-Condition The SAs are deployed successfully.
Post-Condition The deployment of the SAs failed.
in Special cases

Normal Case 1. The tenant Operator commands to deploy the SAs specifying the

 endpoint types and the instance ID for each of the SA to be deployed on.

 2. The System starts a distributed atomic transaction.

3. The System takes a look at the BCs and gets the instance Id registered
 for these BCs.

 4. The System deploys the SA on top of BCs on the specified instance Ids.

 5. The System finishes the distributed transaction.

Special Cases 1a. If the endpoint types are invalid the transaction aborts and the

 deployment of the SAs fails with displaying proper error message.

2a. If there is no compatible BC installed on the specified instance ID then
 the deployment of the SAs fails with displaying proper error message.

2b. Concurrently if the registered instances are deleted, the System shows
 a suitable message and aborts.

3a. If the System cannot find any compatible BCs on the specified
 instances then the transaction aborts with suitable message.

4a. If the SAs names already exist in the system then proper error message
 is displayed and the transaction is rolled back.

 5a. The system cannot finish the transaction with the instance ID and the

 Configuration and Service Registry.
 a) The system rolls back the distributed atomic transaction and shows
 an error message.

Table 4.5 Description of Use Case Deploy Service Assembly with specifying the Instance

ID.

33

 Concept and Specification

Name Listing all the registered ESB instances
Goal The System Administrator wants to list all the registered ESB instances.
Actor System Administrator
Pre-Condition There are already ESB instances registered in a particular JBI cluster.
Post-Condition The registred ESB instances are listed.
Post-Condition The ESB instances are not registered
In Special Case
Normal Case 1. The System Administrator commands to list all the instances specifying

 the JBI cluster.

2. The System starts a distributed atomic transaction.

3. The System lists all the registered ESB instances in the specified JBI
 cluster.

 4. The System finishes the distributed transaction.

Special Cases 2a. If the JBI cluster itself does not exist then proper error message is

 displayed and transaction aborts.

 2b. Concurrently if the JBI cluster is deleted the system shows a suitable
 message and aborts

 3a. The system cannot finish the transaction with the JBI Cluster and the
 Configuration Registry.
 a) The system rolls back the distributed atomic transaction and shows

 an error message.

Table 4.6 Description of Use Case Listing all the registered ESB instances.

34

 Concept and Specification

Name List available ports per instnace
Goal The tenant operator wants to list all the available ports (for deploying the

BCs) per instance.
Actor Tenant Operator
Pre-Condition The ESB instance is already registered in a particular JBI cluster.
Post-condition All the available ports for the specific instance are displayed.
Post-Condition The ports are not displayed.
in special case

Normal case 1. The Tenant Operator commands to list all the available ports specifying

 the instance ID.

 2. The System starts a distributed atomic transaction.

 3. The System lists all the available ports for the specified instance ID.

 4. The System finishes the distributed transaction.

Special Cases 2a. If the instance ID itself is not registered in the system then proper error
 message is displayed and transaction aborts.

 2b. Concurrently if the instanceID is deleted the system shows a suitable
 message and aborts.

 3a. The system cannot finish the transaction with the instance ID and the
 Configuration Registry.
 a) The system rolls back the distributed atomic transaction and shows
 an error message.

Table 4.7 Description of Use Case List available ports per instnace.

35

 Concept and Specification

Name List available Binding Components per instance
Goal The tenant operator wants to list all the Binding Components per

instance.
Actor Tenant Operator
Pre-Condition The ESB instance is already registered in a particular JBI cluster and there

are Binding Components already installed on the instance.
Post-Condition All the BCs for the specified instance ID are displayed.
Post-Condition The Binding Components are not displayed.
in special case

Normal case 1. The Tenant Operator commands to list all the Binding Components
 specifying the instance ID.

 2. The System starts a distributed atomic transaction.

 3. The System lists all the available BCs for the specified instance ID.

 4. The System finishes the distributed transaction.

Special Cases 2a. If the instance ID itself is not registered in the system then proper error
 message is displayed and transaction aborts.

 2b. Concurrently if the instance ID is deleted the system shows a suitable
 message and aborts.

 3a. The system cannot finish the transaction with the Instance ID and the
 Configuration Registry.
 a) The system rolls back the distributed atomic transaction and shows
 an error message.

4a. If the instance ID exists but there are no BCs at all installed on the
 instance then proper message is displayed.

Table 4.8 Description of Use Case List available Binding Components per instance.

36

 Concept and Specification

Name List all SAs for all instances in the specified JBI cluster
Goal The tenant operator wants to list all the deployed Service assemblies for all

the instances in a particular JBI cluster.
Actor Tenant operator
Pre-Condition There are ESB instances already registered in a particular JBI cluster and

there are Binding Components already installed and service assemblies
deployed on these BCs.

Post-Condition All the deployed SAs for all the instances with in the specified JBI cluster

are displayed.

Post-Condition The Service assemblies are not displayed.
in special case

Normal case 1. The Tenant Operator commands to list all the Service Assemblies for all

 the instances in a particular JBI cluster specifying the JBI cluster name.

 2. The System starts a distributed atomic transaction.

3. The System lists all the deployed SAs for all the instances within a
 particular JBI cluster.

 4. The System finishes the distributed transaction.

Special Cases 2a. If the JBI cluster itself is not registered in the system then proper error
 message is displayed and transaction aborts.

2b. Concurrently if all the instances are deleted from the cluster then
 system shows a suitable message and aborts.

 2c. Concurrently if all the hosted BCs are deleted from all the instances
 then the system shows a suitable message and aborts.

 2d. Concurrently if all the deployed SAs are deleted from all the instances
 in the cluster then the system shows a suitable message and
 aborts.

3a. The system cannot finish the transaction with the specified cluster
 name and the Configuration Registry.

 a) The system rolls back the distributed atomic transaction and shows
 an error message.

4a. The cluster, containers and the JBI BCs exist but there are no SAs
 deployed on these instances. Then proper message is displayed.

Table 4.9 Description of Use Case List all SAs for all instances in the specified JBI cluster.

37

 Concept and Specification

Name List all SAs for for the specified instance ID
Goal The tenant operator wants to list all the deployed Service assemblies for

the specified instance ID.
Actor Tenant operator
Pre-Condition There are ESB instances already registered in a particular JBI cluster and
 there are BCs already installed and SAs deployed on these BCs.
Post-Condition All the deployed SAs for the specified instance ID are displayed.
Post-Condition The SAs are not displayed.
in special case

Normal case 1. The Tenant Operator commands to list all the Service Assemblies for the
 specified instance ID.

 2. The System starts a distributed atomic transaction.

 3. The System lists all the deployed SAs for the specified instance ID.

 4. The System finishes the distributed transaction.

Special Cases 2a. If the instance ID is not registered in the system then proper error
 message is displayed and transaction aborts.

2b. Concurrently if the specified instance ID is deleted from the cluster
 then system shows a suitable message and aborts.

2c. Concurrently if all the hosted BCs are deleted from the specified
 instance ID then the system shows a suitable message and aborts.

2d. Concurrently if all the deployed SAs are deleted from the specified
 instance ID in the cluster then the system shows a suitable message
 and aborts.

3a. The system cannot finish the transaction with the specified instance ID
 and the Configuration Registry.
 a) The system rolls back the distributed atomic transaction and shows
 an error message.

4a. The cluster, containers and the JBI BCs exist but there are no SAs
 deployed on these instances. Then proper message is displayed.

Table 4.10 Description of Use Case List all SAs for for the specified instance ID.

38

 Concept and Specification

Name Unregister ESB instance
Goal The System Administrator wants to unregister the ESB instance ID from

the ESB Cluster.
Actor System Administrator
Pre-Condition The ESB instance is already registered in a particular JBI cluster.
Post-Condition The ESB instance is unregistered from the system.
Post-Condition The ESB instance is not unregsitered.
in special case

Normal case 1. The System Administrator commands to unregister the ESB instance by
 specifying the instance ID.

 2. The System starts a distributed atomic transaction.

 3. The System unregisters the ESB instance.

 4. The System finishes the distributed transaction.

Special Cases 2a. If the instance ID is not registered in the system then proper error
 message is displayed and transaction aborts.

2b. Concurrently if the specified instance ID is deleted from the cluster
 then system shows a suitable message and aborts.

3a. The system cannot finish the transaction with the specified instance ID

 and the Configuration Registry.
 a) The system rolls back the distributed atomic transaction and shows
 an error message.

Table 4.11 Description of Use Case for Unregister ESB instance.

39

 Concept and Specification

Name Uninstall JBI BC from the specified instance ID
Goal The System Administrator wants to uninstall the JBI BC by specifying the
 component name and the Instance ID.
Actor System Administrator
Pre-Condition The ESB instance is already registered in a particular JBI cluster with the
 specified BC name already installed.
Post-Condition The specified JBI BC is uninstalled from the specified instance ID.
Post-Condition The JBI BC is not uninstalled.
in special case

Normal case 1. The System Administrator commands to uninstall the JBI BC by

 specifying the BC name and the instance ID.

 2. The System starts a distributed atomic transaction.

 3. The System uninstalls the JBI BC from the specified instance ID.

 4. The System finishes the distributed transaction.

Special Cases 2a. If the instance ID is not registered in the system then proper error

 message is displayed and transaction aborts.

2b. Concurrently if the specified instance ID is deleted from the cluster
 then system shows a suitable message and aborts.

2c. If the specified JBI BC is not installed on the system proper error
 message is displayed and transaction aborts.

3a. The system cannot finish the transaction with the specified instance ID,
 JBI BC and the Configuration Registry.

a) The system rolls back the distributed atomic transaction and shows
an error message.

Table 4.12 Description of Use Case for Uninstall JBI BC from the specified instance ID.

40

 Concept and Specification

Name Undeploy Service Assembly
Goal The System Administrator wants to un deploy the Service Assembly for

the specified tenant operator.
Actor System Administrator
Pre-Condition The tenant operator has a Service assembly already deployed.
Post-Condition The Service assembly is un deployed.
Post-Condition The Service assemlby could not be un deployed.
in special case

Normal case 1. The System Administrator commands to un deploy the SA by specifying
 the SA name and tenant operator.

2. The System starts a distributed atomic transaction.

3. The System un deploys the SA.

4. The System finishes the distributed transaction.

Special Cases 2a. If the tenant operator does not exist in the system proper error message
 is displayed and transaction aborts.

2c. Concurrently if the specified tenant operator is deleted from the system
 then system shows a suitable message and aborts.

2d. If the specified SA is not deployed on the system proper error message
 is displayed and transaction aborts.

3a. The system cannot finish the transaction with the specified tenant

 operator, SA name and the Service Registry.
a. The system rolls back the distributed atomic transaction and

shows an error message.

Table 4.13 Description of Use Case for Undeploy Service Assembly.

41

 Concept and Specification

Name Unregister Load balancer
Goal The System Administrator wants to un register the Load balancer instance.
Actor System Administrator
Pre-Condition The LB is already registered and JBI Cluster already exists and it contains
 registered JBI containers.
Post-Condition The load balancer is un registered.
Post-Condition The load balancer is not un registered.
in special case

Normal case 1. The System Administrator commands to un register the Load balancer

 by specifying the Load balancer IP.

2. The system starts a distributed atomic transaction.

3. The system un registers the Load balancer.

4. The system finishes the distributed transaction.

Special Cases 2a. If the load balancer is not registered in the system then proper error
 message is displayed and transaction aborts.

2b. If the load balancer is not associated with any JBI clusters then proper
 error message is displayed and transaction aborts.

 2c. Concurrently if the JBI containers are unassigned from the system then
 system shows a suitable message and aborts.

3a. The system cannot finish the transaction with the specified Load
 balancer IP. The system rolls back the distributed atomic transaction
 and shows an error message.

Table 4.14 Description of Use Case for Unregister Load balancer.

42

 Concept and Specification

4.4. Non-functional Requirements

In addition to the functional aspects laid out in the previous parts of this chapter the following
non-functional requirements have to be fulfilled for the multi-instance management of the ESB
cluster.

• Security – One or more requirements about the protection of our system and its data.
The tenant context contains not only tenant context information but also sensitive data
such as access credentials, backend data source names. So this data should be available
only to the system and should be protected from third party access or malicious attacks
from outside.

• Robustness – Since the Load Balancer manages multiple clusters and acts as a gateway

for all the containers we need to ensure that the system does not break under high loads.

• Backward compatibility – We need to ensure that the system must support both OSGi-
based components and JBI-based components. Backward compatibility with multi-tenant
JBI components developed in [Muh11] [Gom12] must be ensured.

• Performance – Extreme load on system is a possible bottle neck for the system. The

Load Balancer must have a quick response time, high database transaction rates and
throughput.

• Extensibility – The architecture, design and implementation of the system has been

done is such a way to cater for future change. The components of the application are
loosely coupled so that it is easier for further implementations or extensions.

• Ease of Installation and maintainability – The process to install and set up a running

system must be well documented.

43

 Design

5. Design

This chapter describes the architectural design approaches for the concept and specifications
identified in the previous chapter. This chapter is divided according to the two horizontal
scalability approaches that must be taken into consideration in this thesis: non interconnected
ESB instances and interconnected ESB instances. Furthermore, as JBIMulti2 is used as the basis
to be extended in this thesis, the extensions in such application on the different levels are
depicted.

5.1. Horizontal Scalability Support Architecture

Muhler describes in his work two possible scenarios for enabling horizontal scalability support for
the multi-tenant aware ESB [Muh11]. In the first scenario all the ServiceMix instances host the
same binding components and service endpoints deployment specifications. Therefore, when a
request arrives at the load balancer it can be sent to any instance for serving it. In second scenario
the ServiceMix instances are interconnected to each other and unlike first scenario they are not
replicated. Each ServiceMix instance can contain different BCs and different endpoints. Messages
can be routed between endpoints which are not hosted in the same instance.

5.1.1. Non Interconnected ESB Instances

In the first approach, all the instances host the same JBI BCs and the request can be sent to any
one of the instances in the JBI cluster pool. This approach enables the categorization of cluster
pools based on tenant organizations or quality of service levels.

The Load Balancer is responsible for managing the ESB cluster pools. When a request arrives to
the LB it checks in Tenant Registry if tenant exists in system. The Configuration Registry is
modified so that LB can keep track of the states of all the instances. The LB queries the
Configuration Registry to get the instance which is least loaded and redirects the request to it.

With respect to the multi-tenancy support in JBIMutli2, in Muhler’s work multi-tenancy was
supported only at tenant level. However, as part of this thesis we introduce multi-tenancy at the
user level as well. This means that when a request arrives to the LB it has the option to extract
the tenant and user id meta-data information from the request. With this approach, the grouping
of JBI clusters can be achieved depending on the tenant organizations and give preference for the
tenants based on the class of service (for example, gold, silver, bronze etc.). However, this
approach has two main drawbacks. On the one had since within one cluster all the instances host
the same service endpoint deployment configurations there is wastage of resources. Secondly
there may be saturation due to the fact that each of the instances within a cluster must host the
same number of endpoints. By replicating ESB instances, the performance degradation can only
be mitigated by adding replicas to the cluster. Therefore, the cluster might not be able to fulfill
the request of the tenant organization when the number of user exceeds the ESB threshold limit.

With the previously described approach, we need to have a mechanism to monitor all the ESB
instances within a JBI cluster and provide real-time feedback to Nginx server to be able to choose
one of the most unloaded instances to serve the request. Calculating and estimating the load of
replicated instances might increase the monitoring and workload distribution tasks complexity,

44

 Design

as the ESB instances are horizontally replicated, and the number of endpoint does not vary
across instances.

Figure 5.1: Architectural overview of the design approach to enable horizontal
scalability with non Interconnected ESB instances.

45

 Design

5.1.2. Interconnected ESB Instances

ActiveMQ is a full-fledged Messaging Queuing Middleware. Each ServiceMix instance comes
with built in ActiveMQ and we can use this ActiveMQ to connect all the instances to form a
network of brokers. Network of brokers is usually used when we need large scalability and that
is exactly the current need [AMQ]. Endpoints from one instance are reachable by another
instance, as endpoint discovery is managed in conjunction by the JBI Clustering Engine and the
Active MQ network of brokers. These capabilities can be exploited by assigning different roles to
each ESB instance, e.g. one ESB instance is only responsible for message transformation, while
another ESB instance provides support for message routing between HTTP endpoints.

We extend the JBI Multi2 component for supporting this approach so that the LB can figure out
in which instance the service endpoint resides. It is also possible that the producer endpoint
resides on one instance and the consumer endpoint on another instance. When a request arrives
at the LB it extracts the tenantID and userID metadata from the request and by querying to
external tenant and configuration registries it is discovered on which ESB instance this service
endpoint is deployed and hence it can route the request to that specific instance. Unlike in
approach 1 whenever a management message arrives on the JMSTopic it is not deployed on all
the ESB instances instead filtering has been enabled at the JMSManagementService so that the
BC or SA is installed only on the instance which it is targeted to.

The Active MQ network of brokers capabilities support three different configurations: Static,
Dynamic Discovery, Master Slave and Replicated Message Store. In the static discovery support, the
URIs must be explicitly defined. A connection using this discovery mechanism will attempt to
connect to all URIs in the list until it is successful. In dynamic discovery, a discovery agent is
used to locate the list of URIs to connect to. For this approach the brokers need to have the
multicast discovery agent enabled on the broker. In master slave approach, messages are
replicated on to slave machine so that even if the master goes down due to some technical issues
we get immediate failover to slave with no message loss. In the replicated message store
approach, the messages are stored on shared network drive so that if one broker network fails it
can be taken over straight away by another network reducing the risk of message loss [Bnw].

Together with the ActiveMQ each ESB instance can use the JBI clustering engine which helps to
implement the JBI applications in a clustered environment and ensure processing even when
there is a hardware or software failure [ClusO]. A clustered instance belongs only to that
particular cluster and there can be multiple clusters in a system’s domain.

46

 Design

Figure 5.2 : Architectural overview of the design approach to enable horizontal
scalability with Interconnected ESB instances.

Although the existence of a higher management overhead in the second scenario is evident, in
long run the second approach will certainly yield better results. The number of endpoints
supported in this second approach is higher as the endpoints are distributed across instances
within the same cluster, instead of being replicated within a cluster. So we go-ahead with the
implementation of the second approach.

47

 Design

5.2. Database Schemas

The JBIMulti2 resource layer is constituted by three main registries Tenant Registry, Service
Registry and Configuration Registry.

5.2.1. Tenant Registry

The Database schema of the Tenant Registry is designed as a shared database because the same
schema is used by all the ESB instances. The tenant user belongs to only one tenant group and
he is represented by a primary key an UUID string. Tenant users and tenants can have arbitrary
key-value pairs assigned to them, with each key-value pair only usable by subset of applications
[Muh11]. When the LB receives a request it checks in Tenant Registry if the tenant exists in the
system before processing the request. There are no modifications made on this component.

5.2.2. Configuration Registry

The Configuration Registry ensures data isolation between tenants by having a tenantID primary
key on entity types as described in Chong et al [CCW06]. The LoadBalancer entity controls the
JBI Cluster. It contains two attributes: loadBalancerIP and the maximum number of clusters that
can be supported. A JBI Cluster contains many instances and hence for uniquely identifying each
instance the use of an instance UUID is required. Since each instance hosts different BCs and SAs
nodeIP is also associated with the container which is used for routing the request to a specific
instance. The same BC can be deployed on any number of instances with in a cluster so we keep
track of each binding component with each instance by associating the JBI Component entity
with the instance UUID. A JBI Component consumes a specified number of ports which are
unique for each instance. Therefore, a relationship between the JBI component and Port entities is
mandatory, as the system must administer and manage the consumed and available ports in each
node the ESB instance is deployed on. The Port entity also has a tenancy attribute which
specifies whether the installed BC is multi-tenant or non-multi-tenant aware.

48

 Design

Figure 5.3: Entity-relationship diagram of the Configuration Registry extended from
[Muh11]

5.2.3. Service Registry

In this thesis, the Service Registry developed in Muhler’s work [Muh11] was extended to support
the specification of the endpoint type associated with each deployed SA. A SA wraps the SUs
where the end-point configuration is described. SUs contain the routing information
configuration between endpoints. Hence, one service assembly identifies the tenant’s user source
data sources. The Service and ServiceAssembly entity contains tenantID and userID as the
aggregated primary key also known as the tenant context. Service assembly ZIP files are stored
as Binary Large Objects (BLOBs), whereas service WSDL files are stored as Character Large
Objects (CLOBs) [Muh11]. The EndPoint entity has the endPointName as the primary key
aggregated with tenant context information (combination of tenantID and userID). The
endpointType refers to the kind of endpoint deployed on the SA such as either provider or
consumer endpoint. The instanceUUID is a unique identifier which represents the ESB

49

 Design

instanceID where this particular SA has been deployed. The Endpoint entity is introduced for
keeping track of the information such as which instance hosts the endpoint for which user so
that this information can be used by the LB to identify the ESB instance where a particular
request should be sent to.

Figure 5.4 : Entity-relationship diagram of Service Registry extended from [Muh11]

5.3. ServiceMix Extensions

Muhler designed the JMSManagementService OSGi bundle for consuming the management
messages coming from the web application since the original Apache ServiceMix does not come
with a web service interface for managing JBI artifacts. Muhler also developed multi-tenant JBI
components to introduce multi-tenant awareness by enabling message and data isolation. Here
we discuss the extensions made to the JMSManagementService and BCs in this thesis.

50

 Design

5.3.1. Management Interface over Messaging

The JBIMulti2 application sends the management messages to a JMS topic. Management
messages are used to deploy either BCs or SAs in a JBI Container. Muhler had implemented a
JMSManagementService for ServiceMix which can receive and consume the management
messages via a JMS topic. All the ServiceMix instances will listen to this topic. The management
message contains target instance ID on which the message has to be installed or deployed. A
configuration file is included on the ESB instance which contains the registered instanceID.
Every ServiceMix after receiving the message checks with its configuration file if the instance ID
matches then its proceeds with the message else the message is discarded. If the message is
malformed or invalid it is sent to dead letter queue.

Messages sent to the JMSManagementService contain a combination of the following elements,
each representing a management command [Muh11]:

• JBI Component Install Command instructs the ServiceMix instance to install all JBI
components sent together as binary data if the instanceID in the message matches with
the registered instanceID of a concrete ServiceMix instance.

• JBI Component Uninstall Command instructs the ServiceMix instance to uninstall all JBI
components referenced by its name on the specified ServiceMix instanceIDs.

• JBI Service Assembly Deploy Command instructs the ServiceMix instance to deploy all
SAs sent together as binary data if the instance ID in the message matches with the
registered instanceID of a concrete ServiceMix instance. For each service assembly a
tenant context element is mandatory.

• JBI Service Assembly Undeploy Command instructs the ServiceMix instance to undeploy
all SAs referenced by the SA name on the specified instance IDs. For each service
assembly a tenant context element is mandatory.

51

 Design

5.3.3. Multi-tenant aware JBI Binding Components

The original Apache ServiceMix BC [SMXa] for HTTP accepts locationURI where to listen to
requests. This parameter is no longer valid in multi-tenant aware version of the component. A
service endpoint comprises of service name and endpoint name. The two endpoint types
HttpConsumerEndpoint and HttpProviderEndpoint implement the new interface TenantEndpoint
that realizes method (ensureMultiTenancy()). This API is modified for applying the userID along
with the tenantID to the endpoint configuration. The original BaseXBeanDeployer in the
(servicemix-http BC) is extended to ensure multi-tenant awareness by the XBeanDeployerMT.
This class checks the SU if there is a tenant context file available (generated by the
JMSManagementService), and then modifies the endpoint to inject the tenant and user
information into the endpoint dynamically before deployment.

1 /*
2 input: tenantId, tenantUri, userID, serviceLocalPart, endpointName,
3 configuredLocationUriPrefix
4 example:http://localhost:8193/tenantservices/54ed4755-5965-4b47-a121-d25907e29c04/
5 ExampleService/98ed76-8954-321b4-7a121d6784e28b05/ep
6 */
7 locationUri ::= locationUriPrefix (tenantId | tenantUri) serviceEndpoint
8 locationUriPrefix ::= "http://localhost:8193/tenantservices/" | configuredLocationUriPrefix
9 serviceEndpoint ::= "/" serviceLocalPart "/" (userID) "/" endpointName
10
11 /*
12 input: tenantId, userID, serviceLocalPart, endpointName, configuredServiceNamespacePrefix
13 example:{jbimulti2:tenantendpoints/54ed-47555-9654b-47a121d-25907e29c/98ed789-5432-
14 1b146-47a124e28b05}ExampleService:ep
15 */
16 serviceEndpoint ::= serviceName ":" endpointName
17 serviceName ::= "{" serviceNamespacePrefix tenantId “/” userID "}" serviceLocalPart
18 serviceNamespacePrefix ::= "jbimulti2:tenantendpoints/"| configuredServiceNamespacePrefix

Listing 5.1: Location URI (top) and service endpoint (bottom) replacing patterns for the

multi-tenant HTTP BC servicemix-http-mt in Extended Backus–Naur Form
(EBNF) extended from [Muh11].

52

 Implementation and Validation

6. Implementation and Validation

In this chapter we describe the challenges and problems encountered during the implementation
phase to fulfill the requirements specified in Chapter 4 and the design approach presented in
Chapter 5 of the system.

6.1. Nginx Server Configuration

Niginx is a reverse proxy server to load balance HTTP requests among backend servers. The
main reason for choosing this server as Load Balancer is its extensibility features, as it easily
supports development and integration of third party components. Furthermore, its embedded
access support to back-end databases makes this reverse proxy suitable for supporting multi-
tenant aware ESB clusters.

The LB receives the incoming http requests and can access the URI and it can access the HTTP
headers and body and in our scenario it is suitable for accessing the SOAP message sent in HTTP
body. The LB can control many ESB cluster and each of these clusters contain many ESB
instances. For keeping track of each instance we have an unique identifier instance UUID, we
can run many ESB instances on same server. Each of these ESB instances can host many BCs and
to make sure that there are no port conflicts between the same BCs hosted on multiple instances
we keep track of ports used by each instance.

The Nginx configuration file can be described as a list of directives organized in a logical
structure. The directive worker_process defines the number of process. Nginx offers to separate
the treatment of requests into multiple processes. The default value is 1, but it's recommended to
increase this value if the CPU has more than one core. Besides, if a process gets blocked due to
slow I/O operations, incoming requests can be delegated to the other worker processes
[NginxH]. Within the Nginx we need to specify two blocks: one is upstream which defines the
nodes with in the load balanced cluster and the second is http server config. The server directive
we place within the upstream bock accepts several parameters such as weight and max_fails that
influence the backend selection by nginx. The database upstream is used for defining the
database credentials. Inside the Server block we define all the configurations and operations for
the server. There is no clear separation between IP-based or name based (based on “Host”
request header field) virtual server. The listen directive describes all addresses and ports that
should accept connections for the server. We can have multiple servers inside a single
configuration file. The location directive is used to set the configurations and execute the blocks
depending on the URI path.

In the below configuration, the Nginx server accepts HTTP request and extracts the tenantID
and userID from the URI. It then accesses the external backend data base in order to ensure that
the tenant exists. After verifying that tenant is registered in the system, it retrieves the
instanceID and the port to which this request has to be routed to. Finally it rewrites the HTTP
request sending the request to destination.

53

 Implementation and Validation

1 worker_processes 5; ## Default: 1
2 error_log logs/error.log;
3 pid logs/nginx.pid;
4 worker_rlimit_nofile 8192;
6 events {
7 worker_connections 4096; ## Default: 1024
8 }
9
10 http {
11 include mime.types;
12 default_type application/octet-stream;
13 sendfile on;
14 keepalive_timeout 65;
15 ## Data base credentials
16 upstream database {
17 postgres_server 127.0.0.1 dbname=dbName user=postgres password=pass123;
18 }
19
20 server {
21 listen 80;
22 ## load balancer IP should be specified below
23 server_name loadBalancerIP;
24 set $instanceId defaultValue;
25 set $port defaultPort;
26
27 ## Extract tendID and userID from uri and send the request to
28 ## backend database and get the instanceID for this user
29 location ~ ^/tenant-service/(.*)$ {
30 echo "\r";
31 echo The request uri is: $request_uri;
32 ## In the uri $2 represents tenantID and $4 represents userID
33 echo_read_request_body;
34 echo $request_body;
35
36 postgres_pass database;
37 rds_json on;
38 postgres_query HEAD GET "SELECT * FROM EndPoint where tenantId = $1 and
39 userId =$4”;
40 postgres_escape $instanceId $arg_instanceUUID;
41 postgres_query HEAD GET "SELECT * FROM ports where instanceUUID =
42 $instanceId”;
43 postgres_escape $port $arg_port;
44 } ## end of location directive
45
46 rewrite ^ http://$instanceId:$port$request_uri?;
47 }
48 }

Listing 6.1: Nginx Http Configuration

54

 Implementation and Validation

6.2. JBIMulti2 extension

The JBIMulti2 application is extended to introduce new API in support of this thesis. To avoid
giving clients direct access to business-tier components and to prevent tight coupling with the
clients the Session Facade pattern with a superordinate AccessLayer is used [Muh11]. The
business logic is implemented as the following stateful session beans: SystemAdminFacadeBean,
TenantAdminFacadeBean, and TenantOperatorFacadeBean which provide a method for each use
case described in section 4.3.

6.3. ESB ServiceMix Cluster

This section describes the implementation details for the clustering of the ServiceMix instances
using JBI clustering technique and ActiveMQ. It also describes the implementation details for the
modifications made to Multi-tenant Binding Component, Service Engine and
JMSManagementService.

6.3.1. Multi-tenant Binding Component and Service Engine

The Servicemix-http-mt inserts the tenant UUID to the endpoint configuration to distinguish
from tenants of other organizations [Muh11]. The HttpConsumerEndpoint and
HttpProviderEndpoint implement the new interface TenantEndpoint that declares a method for
applying the tenant UUID to the endpoint configuration. These two classes have been extended
to insert userID as well into the endpoint URI. Since we might have the same BC installed on
many instances running on the same node, it has to be ensure that each of the BCs use a separate
port. Therefore, we have extended the HTTPConfiguration where we set the tenantsLocationUri.
While installing the BC the user is prompted to enter one of the available ports on the instance
and this port is set on the Servicemix-http-mt BC using the setTenantsLocationURI method.

6.3.2. JMSManagementService for Apache ServiceMix

The JMSManagementService is an OSGi bundle that is deployed in the Apache ServiceMix OSGi
container and listens to a JMS topic for management messages from the JBIMulti2 web
application [Muh11]. A configuration file is included in ServiceMix instance, which contains the
registered instanceID for that instance. When a management message arrives we need to have a
filtering technique to ensure that the message is intended to that particular instance only. To
enable filtering on the JMSManagementService we set the instance id on the
InstallJBIComponents and DeployServiceAssemblies class object so that the
InstallJBIComponentHandler and DeployServiceAssemblyHandler on the JMSManagementServie
can compare the instance id with the one included on ServiceMix instance and then decide either
to install the component or discard it.

6.3.3. ActiveMQ Broker of Networks

For massive scalability the ESB instances inside the JBI cluster are interconnected using network
connectors to form a broker network. The Broker network helps us to partition message
destination to sub-domains of the network. The network connector can be considered as glue

55

 Implementation and Validation

that defines the pathway between brokers and are responsible for controlling how a message
propagates through the network [NwC]. An ActiveMQ consumer (within an ESB instance) is one
who is connected to the broker network and this network keeps track of all the consumers and
gets notified whenever a consumer gets connected or disconnected. Xml configuration file is
used for specifying the connections and main parameters of this broker of networks. In XML, a
network connector is defined using the networkConnector element, which is a child of the
networkConnectors element.

The xml Configuration for network connectors is shown below.

1 <beans ...>
2 <broker xmlns="http://activemq.apache.org/schema/core"
3 brokerName="brokerA" brokerId="A" ... >
4 ...
5 <networkConnectors>
6 <networkConnector name="linkToBrokerB"
7 uri="static:(tcp://localhost:61002 ……..)"
8 networkTTL="3"
9 />
10 </networkConnectors>
11 ...
12 <transportConnectors>
13 <transportConnector name="openwire" uri="tcp://0.0.0.0:61001"/>
14 </transportConnectors>
15 </broker>
16 </beans>

Listing 6.2: Network Connector configuration [NwC]

The DiscoveryAgent associated with the NetworkConnector will initiate setting up a bridge for
each transport URI specified in the uri attribute of the NetworkConnector. For each of the
network URI list if the bridge was not able to be successfully connected for some reasons then it
will be attempted to recreate the bridge. So one broker establishes a network connector to
another broker. As we expand this network of brokers we can build a complex network topology
for more sophisticated message routing. We encountered some challenges before getting the
broker network to work. We need to make sure that each of the ESB instance is using a different
RMI registry port set in the org.apache.management.karaf.cfg configuration file. Furthermore,
the Karaf instance name, the OSGi HTTP port should be unique for each of the ESB instances.

6.3.4. JBI Clustering

The JBI Clustering engine enables us to use the Apache ActiveMQ configured as a broker of
networks to specify the endpoints of a clustered JBI environment. The clustering engine works
in conjunction with the normalized message router (NMR), and uses Apache ActiveMQ in
conjunction with specifically configured JBI endpoints to build clusters [JBICls]. Implementing
clustering between JBI containers gives us access to features including load balancing and high
availability.

56

 Implementation and Validation

Clustering enables JBI containers to form a network, and dynamically add and remove the
containers from the network. It enables the JBI containers to handle the different tasks by
spreading the workload across multiple containers.

The configuration for JBI cluster engine is show below. We need to change the default cluster
and destination name for the Cluster eninge with the values of the properties set in the
org.apache.karaf.management.cfg file.

1 <bean id="clusterEngine" class="org.apache.servicemix.jbi.cluster.engine.ClusterEngine">
2 <property name="pool">
3 <bean class="org.apache.servicemix.jbi.cluster.requestor.ActiveMQJmsRequestorPool">
4 <property name="connectionFactory" ref="connectionFactory" />
5 <property name="destinationName" value="${destinationName}" />
6 </bean>
7 </property>
8 <property name="name" value="${clusterName}" />
9 </bean>
10 <osgi:list id="clusterRegistrations"
11 interface="org.apache.servicemix.jbi.cluster.engine.ClusterRegistration"
12 cardinality="0..N">
13 <osgi:listener ref="clusterEngine" bind-method="register" unbind-method="unregister" />
14 </osgi:list>
15 <osgi:reference id="connectionFactory" interface="javax.jms.ConnectionFactory" />
16 <osgi:service ref="clusterEngine">
17 <osgi:interfaces>
18 <value>org.apache.servicemix.nmr.api.Endpoint</value>
19 <value>org.apache.servicemix.nmr.api.event.Listener</value>
20 <value>org.apache.servicemix.nmr.api.event.EndpointListener</value>
21 <value>org.apache.servicemix.nmr.api.event.ExchangeListener</value>
22 </osgi:interfaces>
23 <osgi:service-properties>
24 <entry key="NAME" value="${clusterName}" />
25 </osgi:service-properties>
26 </osgi:service>
27 <osgix:cm-properties id="clusterProps"
28 persistent-id="org.apache.servicemix.jbi.cluster.config">
29 <prop key="clusterName">${karaf.name}</prop>
30 <prop key="destinationName">${servicemix.cluster.destination}</prop>
31 </osgix:cm-properties>
32 <ctx:property-placeholder properties-ref="clusterProps" />
33 </beans>

Listing 6.3: Cluster engine Configuration extended from [JBICls]

When using a JBI packaged SA, we must create a spring definition to register the endpoint as a
clustered endpoint. The xbean-xml configuration file used in HTTP SOAP consumer endpoint
service unit is shown.

57

 Implementation and Validation

1 <beans>
2 <http:soap-consumer service="tx:httpSoapConsumer"
3 endpoint="TaxiProviderHttpSoapConsumerEndpoint"
4 locationURI="http://localhost:8163/httpSoapConsumer/
5 TaxiProviderHttpSoapConsumerEndpoint"
6 targetService="tx:httpSoapProvider"
7 targetEndpoint="httpSoapProviderEndpoint"
8 wsdl="classpath:service.wsdl"
9 useJbiWrapper="false" />
10
11 <bean class="org.apache.servicemix.jbi.cluster.engine.OsgiSimpleClusterRegistration">
12 <property name="name" value="c1" />
13 <property name="serviceName" value="tx:httpSoapConsumer" />
14 <property name="endpointName" value="TaxiProviderHttpSoapConsumerEndpoint" />
15 </bean>
16 </beans>

Listing 6.4: JBI packaged endpoint configuration

Some problems were encountered before we got the JBI clustering to work with ActiveMQ. We
cannot use static and multicast network connectors together with in a JBI cluster. We have to
use any one of them. Since we are using embedded broker network for clustering we should
disable conduit subscriptions to ensure that use of message selectors is respected across different
consumers listening on the cluster queue. Finally we need to ensure that all ServiceMix
instances broker name is unique with in the cluster.

6.4. Validation

The validation is done on single virtual machine. We used an Echo web service as a backend
shared service hosted on Apache Tomcat 7.0.23 [ApTom] for testing the SOAP HTTP multi-
tenant configured clustered endpoints. JOnAS 5.2.2 [JOn] was used for hosting the JBIMulti2 web
application. PostgreSQL 9.1.1 [PSQ] hosts the serviceRegistry database, tenantRegistry database
and ConfigurationRegistry database. All these databases are accessed by the JBIMulti2
management application. Apache ActiveMQ 5.2.0 [AMQ] instance was used for creation of
external topic JbiMulti2.managementMessages where the messages were delivered to from the
JBIMulti2 web application. Apache ServiceMix 4.5.3 [SMXa] was used with along with internally
run Active MQ 5.7.0 for forming a network of brokers. The JMSManagementService OSGi bundle
was deployed on ServiceMix and it listens for management messages on the external ActiveMQ
instance on the topic JbiMulti2.managementMessages to deploy the BCs and SAs. For clustering
the JBI endpoints we used JBI Cluster engine 1.6.1 [JBIMvn]. For LB we used the Nginx 1.4.4
reverse proxy along with a third party postgres module which allows Nginx to directly
communicate with PostgreSQL database.

To interact with JBIMulti2 over Web Service API, we used the SoapUI 4.0.1 Web service testing
tool. sample SOAP messages for the extended operations are depicted.

58

 Outcome and Future Work

Figure 6.1 : Registering a load balancer with JBIMulti2 web application using SoapUI.
On the left side we can see soap request and on right side the response message.

Figure 6.2: Deploying consumer SA on one instance and provider SA on another
instance. With Clustering the provider SA end point configuration will be available on

the consumer instance.

59

 Outcome and Future Work

7. Outcome and Future Work

This master thesis contributes to another building block for a full-fledged PaaS Cloud Platform.
In Chapter 2 we have presented relevant fundamentals like Cloud Computing, SOA, ESB, Load
Balancing and Scalability patterns. After an investigation on the previous work on developing a
scalable load balanced architecture in the Cloud we have introduced concepts for enabling
horizontal scalability on a multi-tenant aware ESB in chapter 4. For scalability concepts and
approaches we particularly focused on distributing the load across multiple interconnected ESB
instances. For this purpose, the JBI clustering technique along with ActiveMQ broker of
networks were used and adapted. A use-case analysis has brought out a specific management
concept for multi-instance ESB administration and management. Together, these concepts target
the fourth level of SaaS maturity model where the tenants share set of application instances
[CC06].

These concepts have led to a system design in chapter 5 that describes a detailed architecture for
managing multiple instances of ESB. Additionally extensions to JBIMulti2 component [Muh11]
were done for installing JBI BCs and deploying SAs to individual ServiceMix instances to support
this scalable architecture. Nginx proxy server is as a solution for the proposed load balancing
cluster.

Due to time constraints extensive performance test against benchmarking could not be included
in this thesis, and therefore are proposed as future work. Furthermore, automation and dynamic
deployment of ESB instances using Cloud infrastructure framework such as Chef [Chf] can be
also part of future work. To further enhance the scalability of the system vertical and diagonal
scalability patterns can be introduced. In the future, the management application should get
informed if the management tasks are successfully executed by Apache ServiceMix, currently
there is a dead letter queue for unprocessed messages [Muh11]. There also should be an
implementation for the web-based graphical user interface for managing the JBIMulti2 web
application.

60

 Bibliography

Bibliography

[AAG] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A view of cloud computing. Commun. ACM 53, 4 (April 2010), 2010.

[ALB] The Apache Software Foundation. Load Balancing Algorithms.

http://camel.apache.org/load-balancer.html

[AMQ] The Apache Software Foundation. Apache ActiveMQ. http://activemq.apache.org/.

[AMQinA] B.Snyder, D.Bosanac, R.Davies. ActiveMQ in Action. Manning, 2011.

[AMQMid] Puppet Labs. ActiveMQ Middleware Configuration.
 http://docs.puppetlabs.com/mcollective/deploy/middleware/activemq.html#
 settings-for-networks-of-brokers

[AMV] The Apache Software Foundation. Apache Maven. http://maven.apache.org/.

[APA11a] The Apache Software Foundation. Apache Camel User Guide 2.7.0. 2011.
 http://camel.apache.org/manual/camel-manual-2.7.0.pdf.

[APA11b] The Apache Software Foundation. Apache Karaf Users’ Guide 2.2.5. 2011.
 http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual2.2.5.pdf.

[ApTom] The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/

[BBG11] R. Buyya, J. Broberg, and A. Goscinski. Could Computing Principles and
 Paradigms. John Wiley & Sons, 2011.

[Bnw] The Apache Software Foundation. Network of Brokers.

http://activemq.apache.org/clustering.html

[CC06] F. Chong and G. Carraro. Architecture Strategies for Catching the Long Tail. MSDN,

2006. MSDN. http://msdn.microsoft.com/en-us/library/aa479069.aspx

[CCW06] F. Chong, G. Carraro, and R. Wolter. Multi-Tenant Data Architecture. MSDN, 2006.
 http://msdn.microsoft.com/enus/library/aa479086.aspx.

[Cha04] D. A. Chappel. Enterprise Service Bus: Theory in Practice. O’Reilly Media, 2004.

[Chf] The Chef Community. Chef Automation deployment. http://docs.opscode.com/

[CiA11] Claus Ibsen and Jonathan Anstey. Camel in Action. Manning, 2011.

[ClusO] Oracle Corporation. Configuring JBI Components for GlassFish clustering.
 http://docs.oracle.com/cd/E19509-01/821-0826/jbi_clustering-about_c/index.html

61

http://camel.apache.org/load-balancer.html
http://activemq.apache.org/
http://docs.puppetlabs.com/mcollective/deploy/middleware/
http://docs.puppetlabs.com/mcollective/deploy/middleware/activemq.html%23settings-for-networks-of-brokers
http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual2.2.5.pdf
http://activemq.apache.org/clustering.html
http://docs.oracle.com/cd/E19509-01/821-0826/jbi_clustering-about_c/index.html

 Bibliography

[ClusWSO2] WSO2 Inc. Clustering in WSO2.
http://docs.wso2.org/display/CLUSTER420/Overview

[ESBMt] S. Strauch, A. Andrikopoulos, S. Sáez, F. Leymann. A Multi-tenant aware

Enterprise Service Bus. In: International Journal of Next-Generation
Computing. Vol. 4(3), Perpetual Innovation Media Pvt. Ltd., 2013.

[FUS11] Red Hat Inc. Fuse ESB 4.4 – Using Java Business Integration. 2011.
 http://fusesource.com/docs/esb/4.4/jbi/.

[GCC] K. Stanoevska, T. Wozniak, S. Ristol. Grid and Cloud Computing:
 A Business Perspective on Technology and Applications. Springer, 2010.

[Gcca] Office of the Privacy Commissioner of Canada. Cloud Computing.

http://www.priv.gc.ca/resource/fs-fi/02_05_d_51_cc_e.pdf

[Gom12] Gómez Sáez, Santiago. Integration of Different Aspects of Multi-tenancy in an Open

Source Enterprise Service Bus. Universität Stuttgart, Fakultät Informatik,
Elektrotechnik und Informationstechnik, Studienarbeit Nr. 2394, 2013.

[HTLC] Ronald Schmelzer. How to Think Loosely Coupled. 2004.

http://www.zapthink.com/2004/05/28/how-to-think-loosely-coupled/

[IBMSc] IBM Smart Cloud. SCE high availability and load balancer workshop.

[IBMScl] IBM Corp. IBM Server Clusters Horizontal and Vertical Scaling.

http://pic.dhe.ibm.com/infocenter/brdotnet/v7r0m2/index.jsp?topic=%2Fcom.ibm.
websphere.ilog.brdotnet.doc%2FContent%2FBusiness_Rules%2FDocumentation%2
F_pubskel%2FRules_for_DotNET%2Fps_RFDN_Global478.html

[JBIMvn] The Apache Software Foundation. JBI cluster engine.

http://mvnrepository.com/artifact/org.apache.servicemix.jbi.cluster/org.apache.ser
vicemix.jbi.cluster.engine

[JBI01] Adrien Louis. Use JBI Components for Integration. 2006.
 http://www.javaworld.com/article/2071793/soa/use-jbi-components-for-
 integration.html

[JbI05] Sun Microsystems, Inc. Java Business Integration 1.0. August 2005.

[JBICls] Red Hat, Inc. Clustering JBI endpoints.

http://access.redhat.com/site/documentation/en-
US/Fuse_ESB_Enterprise/7.1/html/Using_Java_Business_Integration/files/

 ESBJBICluster.html

[JOn] OW2 Consortium. OW2 JOnAS. http://jonas.ow2.org/xwiki/bin/view/Main/.

[KK12] I. P. Kumar and S. Kodukula. A Generalized Framework for Building Scalable
 Load Balancing Architectures in the Cloud. International Journal of
 Computer Science and Information Technologies, Vol. 3 (1):3015 – 3021, 2012.

62

http://docs.wso2.org/display/CLUSTER420/Overview
http://fusesource.com/docs/esb/4.4/jbi/
http://www.priv.gc.ca/resource/fs-fi/02_05_d_51_cc_e.pdf
http://www.zapthink.com/2004/05/28/how-to-think-loosely-coupled/
http://pic.dhe.ibm.com/infocenter/brdotnet/v7r0m2/index.jsp
http://www.javaworld.com/article/2071793/soa/use-
http://access.redhat.com/site/documentation/en-
http://access.redhat.com/site/documentation/en-
http://jonas.ow2.org/xwiki/bin/view/Main/

 Bibliography

[LB] Citrix Systems, Inc. Load Balancing. http://www.citrix.com/glossary/load-

balancing.html

[LVS] The Linux Virtual Server Project. Job Scheduling Algorithms in Linux Virtual

Server. http://www.linuxvirtualserver.org/docs/scheduling.html.

[Muh11] D. Muhler. Extending an Open Source Enterprise Service Bus for Multi-Tenancy

Support Focusing on Administration and Management. Universität Stuttgart,
Fakultät Informatik, Elektrotechnik und Informationstechnik. Diploma Thesis Nr.
3226, 2012.

[NwC] Red Hat Inc. Network Connectors.

https://access.redhat.com/site/documentation/en-
 US/Fuse_ESB_Enterprise/7.1/html/Using_Networks_of_Brokers/files/
 FMQNetworksConnectors.html

[Nginx] Nginx Inc. Nginx Architecture. http://www.aosabook.org/en/nginx.html

[NginxH] Clement Nedelcu. Nginx HTTP Server. Packt, 2nd Edition 2013.

[OJ07] S. Ortiz Jr. Getting on Board the Enterprise Service Bus. Computer, 40:15–17,
 April 2007.

[OSG09] OSGi Alliance. OSGi Service Platform: Service Compendium Version 4.2. 2009.
 http://www.osgi.org/Download/Release4V42/.

[OSG11] OSGiTM Alliance. OSGi Service Platform: Core Specification Version 4.3. 2011.
 http://www.osgi.org/Download/Release4V43/.

[PSQ] The PostgreSQL Global Development Group. PostgreSQL.

http://www.postgresql.org/.

[Scal] Andre B. Bondi. Characteristics of Scalability and their impact on performance. In

Proceedings of the 2nd International workshop on Software and Performance
(WOSP’00). ACM.

[ScalDP] Kanwardeep Singh Ahluwalia. Scalability Design patterns. In Proceedings of the

14th Conference on Pattern Languages of Programs (PLOP’07). 2007. ACM.

[SMXa] The Apache Software Foundation. Apache ServiceMix.

http://servicemix.apache.org/.

[SmxCl] The Apache Software Foundation. Clustering in ServiceMix.

http://servicemix.apache.org/docs/5.0.x/user/what-is-smx4.html

63

http://www.citrix.com/glossary/load-balancing.html
http://www.citrix.com/glossary/load-balancing.html
https://access.redhat.com/site/documentation/en-
http://www.aosabook.org/en/nginx.html
http://www.osgi.org/Download/Release4V42/
http://www.osgi.org/Download/Release4V43/
http://www.postgresql.org/
http://servicemix.apache.org/
http://servicemix.apache.org/docs/5.0.x/user/what-is-smx4.html

 Bibliography

[SSOA] TechTarget. Service Oriented Architecture.
http://searchsoa.techtarget.com/

[TJ09] Tijs RadeMakers and Jos Dirksen. Open-Source ESBs in Action. Mannings, 2009

[Var11] J. Varia. Architecting for the Cloud: Best practices. 2011.

[WSPA] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web

Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and more. Prentice Hall, 2005.

64

http://searchsoa.techtarget.com/definition/service-

 Declaration

Declaration

I hereby declare that the work presented in this thesis is entirely my own.

I did not use any other sources and references that the listed ones. I have marked all direct or
indirect statements from other sources contained therein as quotations.

Neither this work nor significant parts of it were part of another examination procedure. I have
not published this work in whole or in part before.

The electronic copy is consistent with all submitted copies.

Stuttgart, 31 January 2014

(Arun Kumar Hanumantharayappa)

65

	1. Introduction
	1.1. Scope of Work
	1.2. Outline
	1.3. List of Abbreviations

	2. Fundamentals
	2.1. Cloud Computing
	2.2. Service-oriented architecture
	2.2.1. Enterprise Service Bus

	2.3. Technologies
	2.3.1. Java Business Integration
	2.3.2. OSGi Framework
	2.3.3. Apache ServiceMix

	2.4. Horizontal Scalability
	2.4.1. Measuring Scalability
	2.4.2. Scalability Patterns

	2.5. Load Balancing
	2.5.1. Common Load Balancing Algorithms

	2.6. Multi-tenancy
	2.7. Nginx Proxy Server
	2.7.1. Nginx Architecture

	2.8. Apache Camel
	2.9. ActiveMQ

	3. Related Works
	3.1. Load Balancing Architectures in the Cloud
	3.2. Multi-instance Management Approaches
	3.3. Evaluating Clustering Scenarios

	4. Concept and Specification
	4.1. System Overview
	4.1.1. Components

	4.2. Multi-tenancy and Multi-instance
	4.2.1. Role-based Access Control
	4.2.2. Communication Requirements

	4.3. Use Cases
	4.4. Non-functional Requirements

	5. Design
	5.1. Horizontal Scalability Support Architecture
	5.1.1. Non Interconnected ESB Instances
	5.1.2. Interconnected ESB Instances

	5.2. Database Schemas
	5.2.1. Tenant Registry
	5.2.2. Configuration Registry
	5.2.3. Service Registry

	5.3. ServiceMix Extensions
	5.3.1. Management Interface over Messaging
	5.3.2.
	5.3.3. Multi-tenant aware JBI Binding Components

	6. Implementation and Validation
	6.1. Nginx Server Configuration
	6.2. JBIMulti2 extension
	6.3. ESB ServiceMix Cluster
	6.3.1. Multi-tenant Binding Component and Service Engine
	6.3.2. JMSManagementService for Apache ServiceMix
	6.3.3. ActiveMQ Broker of Networks
	6.3.4. JBI Clustering

	6.4. Validation

	7. Outcome and Future Work
	Bibliography

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Average

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages false

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Average

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages false

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>

 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /NoConversion

 /DestinationProfileName ()

 /DestinationProfileSelector /NA

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure true

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /LeaveUntagged

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

