
Institute for Visualization and Interactive Systems

University of Stuttgart
Pfaffenwaldring 5a
D–70569 Stuttgart

Master’s Thesis Nr. 3522

Extending Parking Assistance for
Automotive User Interfaces

Radu Georoceanu

Course of Study: Infotech

Examiner: Prof. Dr. Albrecht Schmidt

Supervisors: Dipl.-Inf. Bastian Pfleging

M.Sc. B.Eng. Philipp Mayer

Commenced: 2013-07-09

Completed: 2014-01-08

CR-Classification: H.5.2, I.5.5

Abstract

Nowadays the trend in the automotive industry is to integrate systems that go beyond the
scope of just maneuvering the car. Navigation, communication, and entertainment functions
have become usual in most cars. The multitude of sensors present in vehicles today can be
used to collect information that can be shared with other drivers in order to make the roads
safer and cleaner. A more troubling issue that affects drivers is the search for free parking
spots, because of the time waste, fuel consumtion and effort. There are already solutions
available that try to help drivers diminish these problems, like crowdsourcing smartphone
apps, but they are still far away from being a reliable solution. The overall goal of this thesis
is to find new ways of providing parking information to drivers. This information is collected
from vehicles which are equipped with latest sensoric hardware capable of detecting parking
spaces while driving and distribute these information to the cloud, sharing it with other drivers
using smartphones or vehicle’s integrated displays. Though the idea is simple, there are many
challanges that need to be addressed. The thesis will also look into ways of improving parking
surveillance for vehicles to make them less susceptible to vandalism and thefts, by using latest
vehicle-integrated video camera systems. A study will be made to see what information drivers
want to have related to parking and how this information can be displayed to them. Further,
a cloud based-implementation of such a system will be presented in detail and an evaluation
will be made to see how the system behaves in the real world.

i

Kurzfassung

Der aktuelle Trend der Automobilindustrie ist es Systeme zu integrieren, die über das Ziel
hinausgehen ein Fahrzeug lediglich zu fahren. Navigations-, Kommunikations- und Entertain-
mentfunktionen sind inzwischen üblich in vielen Fahrzeugen. Die Vielzahl an verfügbaren
Sensoren, die heutzutage in Fahrzeugen verfügbar sind, ermöglichen es Informationen zu
sammeln welche mit anderen Fahrern geteilt werden können, um Straßen sicherer und sauberer
zu machen. Ein nervenauftreibendes Problem, welches viele Fahrer aufgrund des Zeitverlustes,
des Benzinverbrauchs und des Aufwands beeinflusst, ist die Suche nach freien Parkplätzen. Es
existieren bereits Lösungen, diese Probleme für den Fahrer verringern, wie z.B. Crowdsourcing
Smartphone Apps, aber diese sind immer noch weit davon entfernt zuverlässige Lösungen
darzustellen. Das übergreifende Ziel dieser Thesis ist es neue Möglichkeiten zu finden dem
Fahrer Parkinformationen zur Verfügung zu stellen. Diese Informationen werden von Fahrzeu-
gen gesammelt, welche mit der neuesten Sensorik ausgestattet sind, die es ermöglicht während
der Fahrt Parkplätze zu detektieren und diese Informationen über die Cloud zu verteilen und
somit mit anderen Fahrern über Smartphones oder integrierte Displays zu teilen. Obwohl die
Idee recht einfach ist gibt es viele Herausforderungen, die bewältigt werden müssen. Dazu
wurde auch eine Studie ausgetragen, um zu untersuchen welche Informationen Fahrer im Bezug
auf Parken gerne zur Verfügung hätten und wie diese Informationen ihnen angezeigt werden
können. Weiterhin werden in dieser Thesis Möglichkeiten evaluiert die Überwachung von
Fahrzeugen durch die Verwendung von in Fahrzeug integrierten Videosystemen zu verbessern.
Eine Cloud-basierte Implementierung des beschriebenen Systems wird im Detail präsentiert
und eine darauf basierende Evaluierung vorgestellt, um zu sehen wie sich derartige Systeme in
der realen Welt verhalten.

iii

I want to gratefully and sincerely thank for their contribution in realizing this thesis to...
Prof. Dr. Albrecht Schmidt, Dipl.-Inf. Bastian Pfleging and M.Sc. B.Eng. Philipp Mayer.

v

Contents

1 Introduction 1
1.1 Problem statement . 3
1.2 Proposed solution . 4
1.3 Overview of the following chapters . 4

2 Related Work 5
2.1 Smartphones and The Cloud in the Automotive Environment 5
2.2 Providing Parking Space Information . 6
2.3 Supporting Parking Surveillance . 8
2.4 Discussion . 9

3 Technical Background 11
3.1 Car Sensors . 11

3.1.1 Vehicle Dynamics Sensors . 11
3.1.2 Ultrasonic Sensors . 12
3.1.3 Radar Sensors . 12
3.1.4 Lidar Sensors . 12
3.1.5 Vision Based Sensors . 13

3.2 Vehicle Electronic Networks . 13
3.2.1 Architecture . 14
3.2.2 Bus Systems . 15

3.3 Parking Assistance Systems . 15
3.3.1 Degrees of Parking Assistance . 16
3.3.2 Requirements for Parking Assistance Systems 16
3.3.3 Informative Assistance Systems . 16
3.3.4 Guided Parking Assistance . 17
3.3.5 Semi Automatic Parking . 18
3.3.6 Fully Automated Parking . 19

vii

3.4 Android . 19
3.4.1 Hardware Capabilities . 20
3.4.2 Android Architecture . 20
3.4.3 Application Components . 21
3.4.4 Activity lifecycle . 21

3.5 Cloud Computing . 22
3.5.1 Cloud Computing Components . 22
3.5.2 Ups and downs . 24

3.6 Machine learning . 24
3.6.1 Linear Models for Regression . 24
3.6.2 Logistic Regression . 25
3.6.3 Tree Based Methods . 26

4 Concept 27
4.1 Basic Architecture . 27

4.1.1 Vehicles . 27
4.1.2 Cloud Server . 28
4.1.3 Clients . 29

4.2 Use Cases . 29
4.3 Challenges . 30

5 User Interface Investigation 31
5.1 Paper Prototypes . 31
5.2 Focus Group . 33

5.2.1 Participants . 33
5.2.2 Discussion . 33

5.3 Results . 34

6 Implementation 37
6.1 Distributed Architectures . 37
6.2 Vehicle . 38

6.2.1 Car PC . 38
6.2.2 Transfer Smartphone . 42

6.3 Server . 42
6.3.1 Entities . 43
6.3.2 Processing Detected Parking Spaces . 46
6.3.3 Filtering Algorithm . 49
6.3.4 Processing Park-in and park-out messages 51

6.4 Client . 51
6.4.1 Parking Space Information Display . 52
6.4.2 Video Client . 53

7 Evaluation 55
7.1 Data Acquisition . 55

7.1.1 Goals . 55

viii

7.1.2 Required Hardware and Software . 55
7.1.3 Hardware Setup . 56
7.1.4 Code for Acquiring Data . 57
7.1.5 Itinerary . 57

7.2 Analyzing the Performance of the Ultrasonic Parking Space Detection 59
7.3 Street Matching Algorithm Test . 60
7.4 Data Filtering Algorithm . 61
7.5 Feasibility Discussion . 62

8 Summary and Conclusion 63
8.1 Summary . 63
8.2 Conclusion . 64

CD-ROM Content 65

Bibliography 67

ix

List of Figures

1.1 Car head unit . 2
1.2 Car dock . 3

3.1 Electronic system in modern vehicles . 14
3.2 Visual output of ultrasonic sensors . 17
3.3 Vehicle lateral semi-automatic parking . 18
3.4 Vehicle hardware components for parking assistance 19
3.5 Andoid activity lifecycle . 22
3.6 Cloud computing relashionships . 23
3.7 Tree learning example . 26

4.1 Basic Concept Architecture . 28

5.1 User interface papaer prototype . 32
5.2 Pre study resulting prototype . 34

6.1 Distributed architecture . 37
6.2 Car PC . 38
6.3 Remote monitoring principle . 40
6.4 Top view image . 40
6.5 Transfer smartphone operation . 42
6.6 Parking space data processing steps . 47
6.7 Street mapping . 48
6.8 Merging parking spaces . 49
6.9 Learning algorithm for parking space validation 50
6.10 Client User Interface - Parking Spaces Display 52
6.11 Client User Interface - Information Bubble . 54
6.12 Video client operation . 54

7.1 Setup for data acquisition . 56
7.2 Vehicle setup . 57
7.3 Data acquisition code operation . 58
7.4 Video frame of the data acquisition campaign 58
7.5 Data Acquisition Itinerary . 59
7.6 Street matching algorithm test . 61

x

List of Tables

3.1 Sensor types comparison . 13
3.2 Bus systems comparison . 15

6.1 Video transmission alternatives . 41

7.1 Data analysis results . 60

Listings

6.1 Simplified Java code of the video capture based on the JavaCV library 41
6.2 ParkingSpace entity is used for storing parking space information 44
6.3 ValidParkingSpace entity - is created when the filtering algorithm validates a

ParkingSpace entry and associates with it . 45
6.4 Query task code - uses the generated backend API for retreiving ValidPark-

ingSpace objects from the database . 53

xi

1
Introduction

Interaction in automotive environments has broadened beyond the typical tasks that are
required to maneuver a car. Current cars offer a multitude of features and functions from
navigation and assistance to entertainment and remote communication. The rise of new
technologies supporting vehicle intelligence (sensors, networks, computers) brought all this
features closer to the public, allowing for safer and more comfortable driver experiences.

The technological evolution of driver assistance systems has pushed the automotive industry
closer to autonomous driving. Many driver assistance systems are available in production
vehicles nowadays. Adaptive cruise control uses radar sensors to permanently scan the
carriageway, adapting the speed and maintaining the distance to the lead vehicle. Video
camera systems are being used in lane departure warning systems, that can alert the driver if
this occurs and than automatically steer the car back into the right lane. The traffic jam assist
system allows when travelling in heavy traffic at speeds of up to around 40 km/h, to move
with the other traffic and stay relaxed while passing through the congestion. It automatically
keeps the desired distance from the vehicle in front by controlling speed independently, braking
down to a standstill and even actively controlling the steering. Research is being made also for
systems that can detect driver drowsiness and can send a proper alert to the driver.1 With
the help of ultrasonic sensors, the automatic parking assist systems assist the driver with the
parallel parking maneuvers by automatically controlling the steering wheel. This systems have
also been extended to park the car without the driver even being inside it, and only sending
the necessary commands through a smartphone.2

Internet and cloud applications are also making their way into the vehicles. By using an UMTS
module and a SIM card, many Internet services can be provided, like Google Earth, weather,
news and music stream that are displayed using the car’s head unit (Fig. 1.1). On top of

1http://www.bmw.com/com/en/insights/technology/technology_guide/index_category.html?code=4&view=S
afety

2http://www.bosch.com/en/com/boschglobal/automated_driving/technology_for_greater_safety/pagination
_1.html

1

1 Introduction

Figure 1.1: Car head unit integrated in vehicle’s dashboard provides cloud based services
(Source: B.Pfleging)

these, the car can be used as an Internet hotspot so that all passengers can have access to
Internet inside the vehicle. The BMW Connected Drive3 offers a wide range of intelligent
services and apps that provide the driver and passengers with information and entertainment
during the journey. Among these are real-time traffic information, intelligent emergency call,
remote services, Internet and online entertainment. Daimler is also focusing on developing
new communication technologies. The cloud-based telematic strategy @yourCOMAND from
the F 125 research vehicle provides a preview of the Mercedes-Benz infotainment systems of
the future. Authorised persons can access information, such as fuel level, next service date
or fuel consumption via the vehicle’s own homepage at any time. Similarly, the navigation
or entertainment system or the desired temperature for each seat can be preset via a PC or
smartphone4.

Smartphones have evolved very rapidly in the last few years, which made it possible to
provide powerful functionalities like networking, web surfing, video-streaming and games. The
processor power and memory size are now similar to that of laptop computers which allow
for the introduction of these devices into new contexts. Integrating smartphones into cars by
means of car docks (Fig. 1.2) offers the possibility of introducing new infotainment and driver
assistance services.

3http://www.bmw.com/com/en/insights/technology/connecteddrive/2013/index.html
4http://www.intellimec.com/myconnectedcar/mobile-media/mercedes-benz-infotainment-system/l

2

1.1 Problem statement

Figure 1.2: Car dock supporting the smartphone inside the vehicle

1.1 Problem statement

One of the main challanges that car drivers have to face is the search for a parking space.
They most likely want to park their cars as close as possible to their destination. However, in
big cities, at certain times during the day this is not always possible so they have to drive
around and search for a free parking space. This is not a pleasent situation, especially when
they do not have sufficient time at their disposal. One study has shown [Shoup, 1997] that
the average search time for parking is nearly 10 minutes during evening hours and around 9
minutes on average. It is further shown that around 30% of the traffic is parking traffic, that
means people that just drive around and search for a parking sopt. Adding all vehicles on
the street results in a enormous amount of excess driving leading to air pollution and traffic
congestion. Another study [Caliskan et al., 2006] has shown that in the district of Schwabing
of Munich, the annual damage caused by parking search consists of around 20 million Euros of
economical damage, 3.5 million Euros for gasoline and diesel and 150 000 hours of wasted time.
Clearly this has a significant impact in urban areas with regard to economical and ecological
aspects and finding solutions that help eliminate or diminish these problems is desired.

Another troubling issue related to parking is that especially in unsupervised parking locations
cars are possible targets for acts of vandalism or even stealing. A report done by the US
Department of Justice says that: "Car-related thefts are among the most common offenses
calling for a police response." There are many reasons for why thiefs do such acts: joyriding,
car use, disassembiling cars for spare parts or even stealing items from inside the vehicle, such
as radios, batteries or wheels. Most thefts happen when cars are parked on the streets or on
the owner’s property, the main reason for this being that this is where the cars are usually
parked. Even so, the same report mentions that the risk is higher in dedicated parking facilities
because of the poor security. Many cars are parked in poor lighting or blind spots where cars

3

1 Introduction

the cars can not be supervised. All these problems call for finding better solutions for car
surveillance during parking hours.

1.2 Proposed solution

This thesis looks into existing ways that support driver assistance focusing on enhancing
parking assistance and how this can be extended to other parking functions. It will show how
parking information can be provided to drivers in order to overcome the main challanges of
parking space search and also on how to improve parking surveillance. One goal of this thesis
is to find new ways of providing this parking information to drivers to help them find a suitable
parking space before they arrive at their destination so that time and fuel consumtion are
reduced. The focus will be on vehicles which are equipped with latest hardware and software
technologies capable of acquiring parking space information. This information can be collected,
processed and distributed to the cloud so that is shared with other drivers using smartphones
or vehicle’s integrated display. Though the idea is simple, there are many challanges that
need to be addressed. We will look how these information can be collected and what kind of
processing needs to be done in order to provide only reliable information to drivers. Parking
space information can be combined with open source map-services data in order to bring
even higher value to this concept. The second goal is to find new ways of improving parking
survaillance of the vehicles using the latest available technologies. We will look into how
multicamera systems integrated in the vehicles can help in this matter. The thesis also focuses
on the end-users and will try to find the best way for making the information available to
them. A study will be made to see what information drivers want to have related to parking
and how this information can be displayed to them. Further, a cloud-based implementation of
such a system will be presented in detail and an evaluation will be made to see what are the
advantages of using such a system compared to other solutions.

1.3 Overview of the following chapters

Chapter 2 looks into similar work that has been done so far, related to vehicle cloud-based
application and parking support systems. Chapter 3 presents the basic technologies on which
our proposed system relies. Chapter 4 describes the basic concept of our proposed solution for
a parking space search system. Chapter 5 includes a study in which we try to understand what
are the user needs related to parking space search. For this, several user interface prototypes as
well as a focus group report will be presented. Chapter 6 contains a detailed description of the
prototypical implementation of our system, starting from the acquisition of data, distribution
to the cloud server, necessary processing steps and the end-user interface. Chapter 7 shows
several evaluations of the built system. We will analyze the costs of the system, show what
are the main challenges and how we overcome them and test several algorithms for filtering
the acquired data. Chapter 8 draws a final conclusion for this work.

4

2
Related Work

This chapter will take a short glimse into state of the art work related to cloud applications in
the automotive environment. First, general cloud applications will be presented and afterwards
the focus will be on applications that provide parking support. Afterwards, will present a
short discussion about how our work differes from the presented ones.

2.1 Smartphones and The Cloud in the Automotive Environment

The rise of the Internet and wireless communication technologies, combined with the processing
power of the smartphones, made it possible to connect vehicles to the WWW world. More
and more applications are developed that provide information or entertainment to drivers and
passengers, either by using direct Internet connection in the vehicle, or by using smartphones.

Bose et al. [Bose et al., 2011] presents the terminal mode concept. In terminal mode, the
smartphone is the application platform for the automotive environment, and the car head unit
is responsible for user input and output. The smartphone hosts and runs all applications and
services and also is responsible for transferring data to the cloud while the head unit provides
the physical I/O mechanisms through which the driver or passenger accesses the smartphone.
The user interface hardware can include output devices such as one or more displays, audio
playback, and haptic feedback systems as well as input devices such as touch screens, buttons,
multifunctional knobs, and microphones. By treating the smartphone like an application
platform, Terminal Mode makes it much easier to add new capabilities to the car head unit
by simply upgrading the smartphone. One of the advantages of the Terminal Mode concept
is that it provides the capability of running the latest applications and services that connect
the car to the environment. The user gets the same experience as when using an application
running natively on the head unit but without any of the associated disadvantages.

Another use of the smartphone in the automotive environment is to collect data from the
car sensors and electronic components and to display the readings through the user interface.

5

2 Related Work

Torque Pro1 is an Android application that can show what the car is doing in real-time, get
On-Board Diagnostic (OBD) fault codes, car performance data, sensor data and more. It is a
vehicle performance diagnostics tool and scanner that uses an OBD-II (improved version of
OBD) Bluetooth adapter to connect to the engine management ECU.

Same idea of collecting vehicle data is presented as SMaRTCaR [Campolo et al., 2012]. This
is a software/hardware integrated platform which can retrieve different types of vehicle and
environment related data and remotely transfer them. This is realised by an interconnection
with the vehicle communication bus and augmented through some dedicated hardware to
retrieve data from external sensors, not directly connected to the CAN bus. Its software core
is based on a mobile application specifically developed for Android smartphones and the main
functions are triggering the retrieval of data, data visualization, and remote data transfer
through internet connectivity. For the aquisition and preprocessing of data, an Arduino USB-
enabled microcontroller board is used. Kinematics-related data are supplied by the internal
vehicle CAN bus. The smartphone is responsible for the data visiaulzation and transmission.
An important aspect presented in this paper is the tagging of data. The information gathered
by the microcontroller is complemented with the time and GPS position information gathered
from the smartphone. After that, data are tagged according to their latency and delivery
requirements, with different priorities.

The OBD-II protocol is also used in [Zaldivar et al., 2011] for presenting a fully automated
accident detection concept. Accident detection is done by analyzing parameters provided
through the OBD-II interface (e.g. airbag triggering, acceleration). This data is combined
with the smartphone GPS readings in order to locate where the accident has happend and
then sent through the smartphone’s Internet connection to an emergency services database
or to other third parties defined by the user. The whole process, including reading critical
data from the vehicle’s bus, delivering information about the accident through both e-mail
and SMS, and finally starting an emergency call, takes less than three seconds. Such a system
is already integrated into production vehicles, like BMW’s eCall2, that can report parameters
like number of car occupants, number of airbags deployed, the precise location and severity
towards a BMW call center in case an accident occurs.

2.2 Providing Parking Space Information

There are different ways in which parking space information can be collected and provided to
drivers in order to assist them in their search for a free parking space.

One way is to collect third party information and make it available to drivers. In US, Audi has
launched an update for their Audi Connect interface that helps drivers find a suitable parking
space near a location 3. The parking locations information is taken from parking garages
that want to be part of this project and contribute by providing their availability information

1https://play.google.com/store/apps/details?id=org.prowl.torque&hl=ro
2http://www.euroncap.com/rewards/bmw_assist_advanced_ecall.aspx
3http://www.automotto.com/audi-connect-best-place-park-vehicle.html

6

2.2 Providing Parking Space Information

to Audi. Another example is the collaboration between Cisco and Streetline, where drivers
from several cities in US can search for a free parking space directly on their smarthpone, by
using the Parker app4. Magnetometer and light sensors are installed in the asphalt to detect
whether a parking space is free or occupied. By using a Cisco Wi-Fi mesh network, these
sensors can send their state to the cloud. Users can interact with the data provided by these
sensors through the app and are able to find free parking spaces in real-time. Navigation to
these parking spaces is also possible and also drivers can mark where they parked the car.
BestParking5 is another example app that can steer drivers towards the prefered parking
garages.

Many applications use crowdsourcing as their source of information, by using the collective
intelligence of their users. This idea has been introduced also for parking search applications,
like Google’s OpenSpot6. This is an Android application that helps drivers find and share
parking spots in their vicinity. Chen et al. [Chen et al., 2012] presents a similar system, together
with its challenges and drawbacks. Another interesting idea that is using crowdsourcing data is
bidding for parking. Applications like Parkonaut7 are encouraging users to list their personal
parking spaces inside the app so that other people can use them. For a small amount of money,
users can make bids on a listed parking space and the winner can use that space for a certain
amount of time, until the owner needs it back again.

Global Positioning System (GPS) information can also be used for the purpose of determining
parking locations, by GPS trajectories. For a study [Montini et al., 2012], a large GPS data set
has been collected in two cities, Zurich and Geneva over a period of two years consisting of GPS
positions with timestamps. Applying different algorithms, parking search traces are separated
from other driving and so, parking locations have been determined. A similar concept is also
presented in [Yang et al., 2013]. Large GPS data sets obtained from vehicles are transformed
into parking space locations. The concept is based on User Generated Geo-Content, so that
users are able to insert their trajectories into the system and this is able to determine if a
parking space is an on-streetparking space or parking zone.

Chen et al. [Chen et al., 2010] proposes a vision-based system for counting the number of
vehicles and determining the parking space availability in outdoor parking lots. This system
uses multiple cameras for merging multiple scenes by applying an affine transformation. Then
using a set of features like color, position and motion vehicles can be tracked and thus the
availability of parking spaces is determined.

The idea of collecting parking space information from the vehicles has already been proposed.
ParkNet [Mathur et al., 2010] is a mobile system comprising vehicles that collect parking
space occupancy information while driving by. Vehicles are equiped with GPS receivers and
ultrasonic sensors to spot free parking spaces. A central server collects the data and builds

4http://reviews.cnet.com/8301-13746_7-57556954-48/parker-smartphone-app-enables-realtime-parking-
search/

5https://play.google.com/store/apps/details?id=com.bestparking&hl=en
6http://www.geek.com/android/google-releases-open-space-a-crowdsourced-parking-spot-app-for-android-
1269214/

7https://play.google.com/store/apps/details?id=de.parkonaut&hl=en

7

2 Related Work

a real-time map of parking availability. Users can then query the server to receive available
parking spaces information.The location coordinates provided by a GPS receiver are usually
accurate to 3 m. This paper introduces an environmental positioning concept to achieve a
greater accuracy for matching the parking slots. For this, as a first step GPS error correlation
is calculated, by means of location-tagging of certain objects on the road. Over multiple
runs, video traces are collected and analyzed. Fingerprinting the environment by relying on
features in the sensor trace that are produced by fixed objects in the environment, provides a
possible means to improve location accuracy beyond that provided by GPS alone. However,
this requires multiple traces from a certain street, from which the locations of objects that
are very likely fixed can be determined. After this, the estimation of the GPS error is done
by comparing the reported location of the pattern produced by a series of fixed objects to
the known location of the same pattern. The offset between these two gives the error in the
reported location. It was proved that parking spot counts are 95% accurate and occupancy
maps can achieve over 90% accuracy. Other researches address the same problem of mapping
street parking spaces using ultrasonic sensors. It is possible to use data from these sensors
to classify parking spaces into legal and illegal. [Coric and Gruteser, 2013] Multiple passes of
a vehicle on the same street provide the parking occupancy data of that street. To decide if
a parking space is legal or illegal, the algorithm uses the following idea: spaces that almost
never have parked cars are probably not legal parking spots (fire hydrants, garages, bus zones
etc.); spaces which are frequently occupied almost every time are likely to be valid parking
spaces. Such information can be inferred by aggregating available time series.

2.3 Supporting Parking Surveillance

The standard security mechanisms present in cars, like locks and alarm systems may not be
sufficient for protecting the car against experienced thiefs or against vandalism. Also, old
camera-based surveillance systems that use human operators for monitoring the images by
looking at several monitors, is not an ideal solution, because it has to rely on human operation
and finding an automated system that does this is desired.

Foresti et al. [Foresti et al., 2004] presents an automatic visual-based surveillance of parking
lots. Images are observed for in order to get and analyze specific events that occur. These events
are classified into standard or dangerous according to predifined motion models. Similar event
recognition system is explained by Ng et al. [Ng and Chua, 2012]. Here, four main processes
are presented: object tracking, event representation, training and event recognition. Object
tracking involves the detection of the moving object and the collection of spatial-temporal
information. Event representation process is in charge of determining the feature vector from
motion trajectories and the training process computes the representation of the known-events.
The event recognition identifies each type of event.

Another approach is to also use acoustic sensors, on top of visual sensors. Such a system is
presented by Na et al. [Na et al., 2009] which uses microphone sensors to localize acoustic
events such as car alarms. When such an event is localized, the cameras are directed towards
that location.

8

2.4 Discussion

2.4 Discussion

Even though there are quite a few applications that support parking search and parking
surveillance, each of these have their own drawbacks and with the constant evolution of the
Internet and vehicle technologies, there is certainly room for improvement.

Using parking space information from parking lots and garages, like Audi’s parking recom-
mendation provides too little information for drivers. This kind of systems can only show if a
parking garage has available spots or not and the location. And what about on-street parking?
Parker app might be a better solution, but mounting sensors into every parking spot across
a big city involves enormous costs. Same problem occurs when using video-based systems
for determing parking availability. These are only feasible to be mounted in parking lots and
garages, doing this for every street again involves high costs. Crowdsourcing can be the way to
go, but like Chen et al. [Chen et al., 2012] concludes in their paper, users that contribute with
providing parking information not always give the most accurate data. Misled or even bad
intended people can decisevely lower the quality of this data. The participation rate is a very
important factor when designing such a crowdsourcing system, much more important than
the amount of information that is provided by each individual. If the rate is too low, some
other mechanisms need to be introduced in order to compensate for the lack of data sources.
Acquiring data directly from vehicles can be the most convinient and precise way to provide
parking information. Everything can be done automatically, without affectiong drivers in any
way and with high accuracy for the provided information.

Our proposed system uses vehicle sensor data and GPS information for providing parking space
information. Like the ParkNet system this information is collected by using ultrasonic sensors
whicle driving by. Even though very high accuracy can be achieved, ParkNet uses object
recognition mechanisms for fingerprinting the environment, which requires quite extensive
processing and also a lot of passes over the same area. For determining where the legal parking
spaces are located, we propose collecting park-in and park-out messages from vehicles. Using
latest vehicle automatic parking technologies this can be done and consequently, a precise
map of legal parking spaces can be built. Also, we show that by using map services data, the
quality of the information can be even further increased.

Regarding vehicle parking surveillance, most of the existing systems are based on video cameras
that need to be mounted in parking lots or parking garages. Our proposed system uses own
vehicle cameras for monitoring the vehicles while they are parked. Doing this, increased
security is achieved even for on-street parking or any other location where vehicles are parked.
There is no dependency on separate systems, so every vehicle owner can secure its vehicle
without any other help.

9

3
Technical Background

For better understanding the proposed system, this section presents the main technologies on
which our system relies.

3.1 Car Sensors

The modern day car means much more than an engine with four wheels that can be used to
move from A to B. It has to provide comfort, entertainment, communication, efficiency and
most important, safety. Integrating all these functions would not be possible without the use
of electronics and sensors. The most common sensors present in vehicles are: vehicle dynamics
sensors, ultrasonic sensors, radar sensors, lidar sensors and vision based sensors.

3.1.1 Vehicle Dynamics Sensors

Main functions of the dynamics sensors are to identify the position of certain vehicle components
relative to the three orientation axes. The main sensors are [Winner, 2012a]:

• Wheel sensors: can determine wheel movement parameters like speed, accelaration and
direction. This are one of the most important parameters since they determine vehicle’s
deceleration and stability.

• Steering wheel angle sensors: determine the position of the steering wheel in order to
control vehicle’s stability.

• Rotation sensors: determine the vehicle’s body rotational movements in all three spacial
axes. Electronic stability control (ESP) system uses this information.

11

3 Technical Background

• Acceleration sensors: these measures the gradient driving forces on the main orientation
axis. Also the radial acceleration can be determined for the measurement of the road
inclination.

• Brake pressure sensors: are used to determine the driver’s braking force, by measuring
the pressure in the master brake cylinder. In more complex vehicle dynamics control
systems even the pressure in each wheel brake cylinder is measured.

3.1.2 Ultrasonic Sensors

Piezoceramic ultrasonic sensors have been available in production vehicles since 1992 [Winner, 2012a].
Today’s sensors are very compact and can be integrated even in the painted vehicle bumpers.
Improvements are still being made regarding measuring distance reduction, signal to noise
ration and better self diagnosis ability. Ultrasonic sensors are being used in parking assistance
systems for measuring the parking spaces to determine if there is enough space to park. They
are mounted on the left and right sides of the vehicle as well as incorporated in the front and
back vehicle’s bumpers. They can detect parked vehicles, their lateral boundaries and corner
positions, can measure the parking space in depth and also possible obstructions on the path
of the vehicle. Automatic parking systems are already on the market which use these sensors
in order to automatically steer the vehicle into the desired parking space. A newer application
where ultrasonic sensors are used is the Side View Assist (SVA). When traveling with speeds
up to 140 km/h and initiating an overtake manouver, the driver is informed if another vehicle
is in his "blind spot" so that he knows if he can do the manouver.

3.1.3 Radar Sensors

Radar (Radio Detection and Ranging) is a technology that can measure distance to objects by
using radiowaves. This technology first appeared in vehicles in 1998 for ACC [Winner, 2012a].
Another application where it is currently used is collision detection. Current world-wide
regulated frequency for automotive radar is 76.5 GHz, but also other frequency ranges are
available (24.0-24.25 GHz, 77-81 GHz etc.). Though a lot of effort is put into lowering the costs
of radar sensors, these are still quite high because of the strict requirements that automotive
applications need: smaller frequency spacing, smaller Doppler frequencties, multiple target
capability and lower sizes. The main competitor of radar, Lidar, has also made a lot of progress
in the last few years. Nevertheless, radar has its benefits: ability to measure the Doppler effect
and a high weather robustness.

3.1.4 Lidar Sensors

LIDAR (Light Detection And Ranging) is an optical measurement method for the detection
and measurement of the distance to objects [Winner, 2012a]. The principle is similar to radar,
only instad of radiowaves, Lidar uses light. Current development directions are targeting

12

3.2 Vehicle Electronic Networks

higher power with reduced instalation space and costs. The trend is to find more and more
cost effective sensors and consequently Lidar sensors come more and more to the front.

3.1.5 Vision Based Sensors

An image sensor builds light patterns from multidimensional measurement signals. From these
primary measurements, secondary measured values are then extracted by means of image
analysis, such as the positions, the velocities, or the type of objects of interest [Winner, 2012a].
Since the prices of cameras are getting lower and lower, they become more attractive for
automotive applications. The advantage compared to other types of sensors is that they
provide the most comprehensive representation of information. They are superior in potentiol
to other sensors, but the light patterns information acquired needs to be translated to 3D
information using complex image processing algorithms. In contrast, lidar and radar provide
these information directly. Table 3.1 shows a short comparision between vision, lidar and radar
sensors.

Table 3.1: Comparison of different sensor types and their behaviour in different automotive
applications (Source: [Winner, 2012a])

3.2 Vehicle Electronic Networks

Electronics represent more than 25 percent in the production value of a car. The complexity
of such automotive systems is growing higher with the integration of new innovative functions.
More and more mechanical and hydraulic systems are being replaced by electronic systems (e.g.
Drive by Wire). We have reached the point where we find more than 100 electronic control
units (ECU) and more than 4 kilometers of wire in a single vehicle [Kim et al., 2011].

13

3 Technical Background

3.2.1 Architecture

The architecture of an automotive electronic system is depicted in Fig. 3.1. It is actually
an in-car network that consists of ECU’s that need to communicate with each other using
different bus systems, in order to complete their functions. Automobile electronics can be
split in three domains: power train management, body electronics and information processing.
These categories require different levels of functional safety and reliability. The growth in the
number of ECU’s becomes an increasing problem for the bus systems, that have to provide
determinism and massive bandwidth capabilities.

Figure 3.1: Electronic System in Modern Vehicles - ECU’s communicate with each other
through different bus systems (Source: [Zimmermann and Schmidgall, 2010])

A car is supposed to work in severe conditions like the temperature ranges within the engine
compartment, high electromagnetic interferences (EMI), vibrations etc. For the electron-
ics in a car all these factors can have negative effects regarding reliability. Safety critical
systems are those systems that should never fail, even in the presence of this negative fac-
tors, or life threatening consequences may follow. That is why the car manufacturers have
to comply with standards in order to achieve the needed safety requirements. The ISO
26262 [Leitner-Fischer and Leue, 2011] standard defines the functional safety aspects through-
out the life-cycle of electric and electronic systems found in the automotive industry. The
standard defines four safety levels named Automotive Safety Integrity Levels (ASIL),which
range from A (lowest safety-critical) to D (highest safety-critical). The levels are based on the
probability of exposure, controllability and severity. A certain product has to be developed
according to the ASIL that has been specified beforehand. The main goal is to ensure functional
safety by recording all the steps in the development process.

14

3.3 Parking Assistance Systems

3.2.2 Bus Systems

As depicted in Fig. 3.1, there are different bus systems that handle different vehicle functions.
FlexRay1 is the latest and most powerful one, created for handling all the current needs of the
automotive industry. Even though this standard is already available, old standards like Local
Interconnect Network (LIN) and Controlled Area Network (CAN) are still being used mainly
because of the lower costs. A short comparison with the previous standards is shown in Table
3.2, according to [Talbot S.C., 2009].

Table 3.2: Comparison of different bus systems. The new FlexRay protocol is certainly the
best, but the old ones have the lower costs advantage
(Source: [Talbot S.C., 2009])

3.3 Parking Assistance Systems

Parking assistance systems can help drivers to find a suitable parking space, or to receive
additional warnings while parking and even do the necessary parking maneuvers. In this
chapter we will try to understand parking assistance systems that are available in vehicles
today.

1www.flexray.com

15

3 Technical Background

3.3.1 Degrees of Parking Assistance

Many possible forms of parking assistance systems are now avalable in production vehicles.
Among the challanges drivers have to face when parking is the vehicle’s front and rear geometry.
Aerodynamic design related requirements and windows can limit the driver’s field of view.
To compensate for this, assistance systems based on environmental sensor data have been
developed. These systems can be divided into [Winner, 2012b]:

• Informative assistance systems: include the systems in which distance to objects notify
the longitudinal direction, as well as those for pure parking space measurement.

• Guided parking assistance: concrete maneuver indications are given based on environment
information. These include cameras with superimposed guides or parking assistant that
suggests steering maneuvers.

• Semi-automatic parking: system automatically controls steering and the driver only has
to control the brake and acceleration.

• Fully-automated parking: the system is in charge of the entire vehicle guidance.

3.3.2 Requirements for Parking Assistance Systems

Depending on the specific system and the degree of assistance some requirements must be
specified when designing such a system. First, the system must be for everyday use. An easy
to use interface must be available and it must be usable in real situation. Regarding the
environment sensors, the following requirements can be formulated [Winner, 2012b]:

• high robustness against environmental influences like pollution and precipitations;

• high accuracy of detected parking spaces;

• low signal distortion;

• low cost;

• minimum space requirement.

3.3.3 Informative Assistance Systems

The most common parking assistance is the ultrasonic-based parking aid. [Pruckner et al., 2003]
The sensors are installed in the front and in the back of the vehicle in order to determine
the distance to the nearest object. The distance is reported by an intermitent sound to the
driver. The frequencies for front and rear warnings can be chosed differently so that the driver
can distinguish them accordingly. Recently, acoustic warnings have been extended to visual
output by using colored areas around the vehicle. For example, the area changes colour when
an object is detected (see figure 3.2). Ultrasonic sensors are mostly used because of low system
costs. Alternatively, short-range radar sensors can be used. These have the advantage that
they can have a neutral design and can be hidden in the rear bumper and lights. However,

16

3.3 Parking Assistance Systems

these are more expensive and are only used in combination with more advanced assitance
systems like automatic cruise control.

Figure 3.2: Visual output of ultrasonic sensors shows different colours around the car
according to how close the surrounding objects are located from the vehicle
(Source: Bosch GmbH)

This category of Informative assistance systems also includes those that are able to detect
suitable parking spaces when the vehicle passes around them. The driver is informed when a
parking spot is detected, usually with using visual display. However, this only works at low
speeds usually between 15 and 30 km/h [Winner, 2012b].

3.3.4 Guided Parking Assistance

These systems give explicit driving instruction to the driver in order to assist maneuvering
the car into the parking space. Usually, guiding information is added on top of the reversing
camera image. Wide-angle lenses are used for these cameras to cover a wide as possible range
behind the vehicle [Vestri et al., 2005]. This system can be used to park in both perpendicular
and longitudinal parking spaces. In the case of perpendicular spaces, contour of the vehicle as
well as the predicted driving path can be displayed. For parallel parking spaces, labeled fields
and auxiliary lines will be displayed. The following steps are necessary: survey of parking
spaces, trajectory planning, continuous positioning, display driving actions.

The trajectory planning is composed of straight lines and circular arcs. It is important to take
into account the driver reaction times. For the displaying of driving actions it is important to
position the vehicle relative to the parking space so that the planned path can be determined
precisely. This can be done by analyzing natural reference points in the environment, but
due to their dynamic behavior are less suitable. An alternative is the so called odometry
that is based on observation of the wheels. The distance traveled is calculated by counting
the revolutions of the wheel. For a better quality of the localization, other internal vehicle
information is used like steering wheel angle and yaw rate. Using these values, the vehicle
behaviour can be mapped to a single track. The following information should be displayed
to the driver: target steering angle or steering angle difference, direction, stop points, end of
parking.

17

3 Technical Background

3.3.5 Semi Automatic Parking

In semi-automatic parking, the driver is relieved of the vehicle steering maneuvers, usually for
lateral parking (figure 3.3). Instead of only showing guiding directions, the car is able to steer
on its own. This is achieved by using Electric Power Steering (EPS). For such a system to be
implemented, some strict regulations must be followed. The driver must be able at any given
time to take control of the steering and also the system must be switched off if a certain speed
limit is exceeded. Another aborting situation is when for some reason some of the signals are
no longer received or are faulty [Jung et al., 2010].

Most semi-automatic parking systems are based on data from camera systems and ultrasonic
sensors. Compared to ultrasonic based systems, optical systems show variable performance since
they are dependent on the lighting and weather conditions. Semi-automatic parking systems
require intensive communication for the components involved. This is usually implemented via
the CAN bus. The relevant compontents are (see figure 3.4):

• ECU of the parking system;

• button to activate system;

• speed sensors on all wheels;

• steering angle sensor;

• acceleration sensors;

• ultrasonic sensors (side / front / rear);

• parking aid warning buzzer;

• electronic steering;

• brake control unit.

Figure 3.3: Vehicle doing reverse parallel parking maneuver with the support of
semi-automatic parallel parking using ultrasonic sensors (Source: Bosch GmbH)

18

3.4 Android

Figure 3.4: Vehicle "xray" presenting different components of the semi-automatic parking
system (Source: Bosch GmbH)

3.3.6 Fully Automated Parking

The first automatic parking systems have already been developed2. The Fully Automated
Parking Assist system developed by Bosch is used in combination with a parking space search
system, being able to first detect a suitable parking space and then do the necessary steering
manouvers to drive into the space. When parking, the driver only has to start the system by
interracting with the user-interface and wait until the parking maneuvers are completed by
the system.

3.4 Android

Android3 is one of the largest mobile platforms powering millions of mobile devices all around
the world. It is a powerful platform that gives the chance to everyone to create apps and
games and distribute them freely to the marketplace. In the last years Android has had a
really fast growing rate, every day another million users choosing to buy a device running on
this platfrom. One of the main reasons for this is that it is open-source, its purpose being to
encourage developers to build innovative apps.

Android provides a powerful development framework that makes it possible for every developer
to develop a single app that can be installed across a wide variaty of devices. Android Developer
Tools form a Java IDE that contain everything needed to develop a new app.

Google Play is the place where the Android apps are distributed and sold. The developer is
in much control of how to realize this, being able to set the payment type, market segments,
target devices, visibility.

2http://www.bosch.com/en/com/boschglobal/automated_driving/technology_for_greater_safety/pagination_1.html
3http://developer.android.com

19

3 Technical Background

3.4.1 Hardware Capabilities

Android devices have build-in sensors that provide different measurement capabilities. There
are three main categories in which these sensors can be split:

• Motion sensors: measure acceleration and rotational forces along three axes. These
include rotational vector sensors, gyroscopes, gravity and accelerometers

• Environmental sensors: measure environment parameters, like air temperature, air
pressure, illumination and humidity. These include barometers, photometers and ther-
mometers.

• Position sensors: measure the physical position of a device. These include orientation
sensors, magnetometers and a built in GPS. This can easily provide to apps localization
information like latitude, longitude and height.

• Other sensors: offer specialized functions. E.g. microphone, camera.

3.4.2 Android Architecture

Android is basically composed of the following layers:

• Applications: a developers work; written in Java and executing in Dalvik virtual machine.

• Application Framework: provides the support for the development of apps like managing
the life cycle of an application, holding information about installed application packages,
display management, managing telephony services and many more;

• Libraries: are implemented in C and accessed through the Applicatiion Framework.
These include: standard C library (libc tuned for embedded devices), media libraries
(audio/video playback, recording), Surface Manager (access to display subsystem), SGL
(2D graphics engine), Open GL (3D graphics), FreeType (bitmap and vector font
rendering), WebKit (web browser engine), SQLite (relational database engine);

• Android Runtime: each application runs in its own Dalvik virtual machine. This is
optimized for low memory and processing requirements. Java byte code is converted to
Dalvik Executable format (.dex);

• Operating System: it is Linux Kernel 2.6; manages system resources and handles hardware
access.

20

3.4 Android

3.4.3 Application Components

Android applications consist of components. These components facilitate re-use, meaning
that one application can use the components of other applications. There are four component
types:

• Activity: this is the most important type because it provides a graphical user iterface
(GUI). It supports one particular task, e.g. reading an email;

• Service: supports long-running background tasks. It it has no GUI, being controlled
only through the activities that communicate with the service;

• Broadcast Receiver : receive and react to broadcast messages, also with no GUI;

• Content Provider : provides data to applications, by storing it in local database or files.

3.4.4 Activity lifecycle

The activity life cycle is depicted in figure 3.5. State changes are signaled to activity via
callbacks (onCreate(), onStart() etc.). Consequently, Android activities have four states:

• Active/Running state: this is the state when the activity is completely visible and the
user can interract to it. It is in the foreground (on top of other activities) and has the
focus;

• Paused state: the activity only partially visible, but not active and lost focus. The
activity is completely alive, but it can still be killed by the system to free up memory;

• Stopped state: the activity is no longer visible and another one is in foreground. Though
it is still alive and preserves its state, it is more likely to be killed by the system in order
to free up resources;

• Destroyed state: this is the case when the activity no longer exists in memory.

21

3 Technical Background

Figure 3.5: Android activity lifecycle consists of the four main states: running, paused,
stopped and destroyed (Source: Android Open Source Project)

3.5 Cloud Computing

Cloud computing is a term wrongfully conceived as a metaphor for the Internet. However,
it means much more than that. Cloud computing can be defined as a construct that allows
users to access applications that reside at a different location than their computer or de-
vice [Velte et al., 2010]. "Cloud computing refers to both the applications delivered as services
over the Internet and the hardware and systems software in the data centers that provide
those services" [Armbrust et al., 2010]. There is no unique way to implement a cloud solution.
The infrastructure will depend on the application and on how the provider has chosen to build
the solution. There are many vendors that provide cloud services. Among these are: Google
(App Engine and Web Toolkit), EMC, Amazon (Elastic Compute Cloud, Simple DB, Simple
Storage Service, CloudFront), Salesforce, IBM etc.

3.5.1 Cloud Computing Components

The simplified topology of a cloud solution is made up of three elements as illustrated in Fig.
3.6: clients, service providers and cloud providers [Armbrust et al., 2010].

22

3.5 Cloud Computing

Figure 3.6: Users and providers of cloud computing and their relationship - service providers
buy platform from cloud providers in order to be able to offer their services to
clients

3.5.1.1 Clients

Clients are the end systems that interact with the cloud. They can be desktop computers,
laptops, smartphones etc. Three categories of clients can be distinguished:

• Mobile: PDA’s or smartphones;

• Thin: clients that have no internal hard-drives and all the work is done by the cloud
servers. They are used only to display the information;

• Thick: regular PC’s

Thin clients become more and more popular, because of several advantages like lower hardware
costs, lower IT costs, security, less power consumption, less noise.

3.5.1.2 Service Providers

The service providers are the datacenters where applications are hosted. They are the clients
of cloud providers and further provide services to cloud clients. An important aspect is
virtualization that consists in running multiple instances of virtual servers on the same physical
server.

3.5.1.3 Cloud Providers

In cloud computing, not all the servers have to be located in the same place. Even if these are
placed far away from each user, to the cloud users this would have absolutely no impact. This
offers the service provider a lot more flexibility in designing and securing the system.

23

3 Technical Background

3.5.2 Ups and downs

The idea behind cloud computing is that other companies host your application. This offers
many advantages for the developers of applications. First of all, scalability is a main concern
when launching an application on the market. Instead of buying, installing and configuring
new equipment, you can just buy more storage or CPU capacity from the hosting company.
Another advantage is that your software will have less capital expenditures since there is
no need to buy the necessary equipment. Also the cost for maintainance is reduced since
everything is handled by the hosting company. Simplicity of this concept is also an advantage,
because it offers the possibility to get the application running in no-time. On the down side,
there is the issue regarding senzitive information. In some cases, vendors can not agree to
introduce a third party into their business plan. Privacy can be achieved by encrypting the
data before sending it to the third party.

3.6 Machine learning

Data classification is of large importance in many applications and data mining techniques are
used to overcome it. The purpose of a classification algorithm is to build a classification model
given some examples of the classes we are trying to model. This model can be used to classify
new examples or just understand better the given data. It is being used in a wide variaty of
areas like science, industry and finance. Using a set of data (called training data) machine
learning algorithms can predict an outcome for new data, quantitive or categorical, based on a
set of features [Hastie et al., 2009].

The outcome of a prediction can be quantitive or categorical. Regression is the statistical
approach for getting the quantitive predictions. Examples: predicting the prices of houses,
speed of cars, number of errors. Categorical classification gives discrete results e.g. sick/not
sick, will rain/will not rain, predict if a vegetable is a carrot/tomato/onion/none.

There are two main types of machine learning techniques: supervised and unsupervised. In
supervized learning, the training data is labeled, meaning that we have outcomes for this
set of data. Let’s use the example of predicting height of the people based on their weight.
In this example, the height is the outcome variable and the weight is the feature. We have
a training set in which each entry reprezents a person with a known weight. A supervized
learning algorithm also needs the labels i.e. the heights for each entry of the training set
in order to "learn". Unsupervised learning does not need labels in the training data set for
creating preadictions.

3.6.1 Linear Models for Regression

The linear model has been one of the most important models in statistics in the past 30
years [Hastie et al., 2009]. This model assumes that the function F(Y/X) is linear in the

24

3.6 Machine learning

inputs X1, ...Xp. Having this input vector of features X we can predict the output Y using
the hypothisis h(θ):

(3.1) Y = hθ(X) = θ0 +
n∑
j=1

Xjθj

where θ0 is known as the bias in machine learning.

The most popular method for fitting the training set to a linear model is the least squares
method. The idea behind is to find the vector θ so that h(θ) is close to Y for our training set
example (X,Y). This means minimizing the squared error over our training set:

(3.2) RSS(θ) =
N∑
i=1

(hθxTi − yî)2

RSS(θ) is a quadratic function of the parameters. Its minimum alwas exists, but may not be
unique.

Though linear models are quite old, there are still a few good reasons for why they are still used.
They are simple and and it is easy to see how the inputs effect the output. They sometimes
perform better then newer non-linear models, especially where only small training data sets
are available.

3.6.2 Logistic Regression

Logistic regression is one of the most used classification algorithms. It is used to put data into
classes. For example, it can be used to decide weather a mail is spam (y = 1) or not (y = 0).
The output of such a classifier is a probability value (0 ≤ hθ(x) ≤ 1) and by using a threshold
new data can be inserted into one of the classes.

Logistic regression can use the sigmoid function for the hypothesis:

(3.3) hθ(x) = g(θTx)

where

(3.4) g(z) = 1
1 + e−z

hθ(x) is the estimated probability that y = 1 on input x. For example, hθ(x) = 80% means
that there is 80% chance that the mail is a spam.

25

3 Technical Background

3.6.3 Tree Based Methods

Tree-based methods split the feature space into sets and then fit a simple model to each set. A
popular method is Classification And Regression Tree (CART). Let’s consider a regression
example with continuous response Y and inputs X1 and X2 that take values in the unit interval.
Fig. 3.7 shows an example representation of a binary tree. The full data set is located at the
top of the tree. Observations satisfying the condition at each juntion are assigned to the left
branch and the others to the right branch.The leaves of the tree represent the regions in which
the dataset is split. The regression model predicts Y with a constant cm in region Rm:

(3.5) f(x) =
5∑

m=1
cmI{(X1, X2 ∈ Rm)}

Figure 3.7: Example binary tree with five regions in which the dataset is split

A key advantage of the recursive binary tree is its interoperability [Hastie et al., 2009]. The
feature space can be fully described by a single tree and it can handle both numerical and
categorical data. However, with more than two inputs partitions can be difficult to draw and
because the decision is made at each node, such algorithms do not guarantee to return an
optimal decision globally. Also, complex trees do not generalise well from the training data,
problem known as overfitting.

26

4
Concept

The multitude of sensors present in vehicles today can be used to collect information in such a
way that can be shared between drivers. This thesis proposes a concept for parking spaces
data acquisition from ultrasonic and camera sensors mounted on vehicles and distribution of
this data to the cloud, where it can be accessed by other drivers as well as a concept for remote
monitoring of the vehicle while it is parked. The system is able to construct a parking spaces
map by using only these sensor information in combination with GPS position information
and map services data. Remote monitoring is done using video images taken from cameras
directly integrated into vehicles and sent to the vehicle owner’s smartphone.

4.1 Basic Architecture

In order to collect sensor data from vehicles we envision an architecture like the one in Fig.
4.1. It consists of vehicles, which are the sources of information, cloud server, which is where
the data is stored and processed and clients, which will use the acquired information.

4.1.1 Vehicles

The vehicle are the sources of information for the presented system. For this concept, we
consider only vehicles equipped with ultrasonic and camera sensors. These sensors are mounted
on the left and right sides of the vehicle as well as incorporated in the front and back vehicle’s
bumpers.

This vehicles have separate ECU’s for processing ultrasonic and camera sensor information.
The parking processing ECU is running algorithms that use ultrasonic sensors information for
detecting parked vehicles, their lateral boundaries and corner positions and can measure the
parking space in depth and also possible obstructions on the path of the vehicle. While the
vehicle is passing near a free parking space, the ECU generates a message containing length

27

4 Concept

Figure 4.1: Basic Architecture consists of vehicles that provide data, cloud server that
collects and processes data and the clients who use the data

and depth information, type of parking (cross or parallel), reference type (curbstone, wall),
distance to corner of the parking space and many other parameters. We add GPS information
to this data and send it to the cloud server in order to build a database of available parking
spaces by the means of a mobile Internet connection. This ECU also controls the automatic
parking function. It also sends a message when the automatic parking process was completed
successfully and also when the pull out manouver was finished. This information can also be
sent to the cloud server. The camera ECU uses multiple cameras mounted on the vehicle to
build a virtual top image of the vehicle. We want to use this images for remote monitoring of
the vehicle while it is parked by sending video information towards the owner of the vehicle
using the smartphone, in case the alarm starts or even on demand. The camera system can be
also used in the parking space detection by running line detection or other algorithms and can
add even higher value to the concept.

4.1.2 Cloud Server

The cloud server has the task of collecting data from the vehicles. The data has to be processed
and labeled so that only valid, accurate and consistent data is sent to clients. These clients
make queries to get access to information according to certain parameters like their location
and prefered options. The sever can be a dedicated server configured exactly for this application
or can be hosted by a service provider like Amazon S3, Google App Engine or many others.

28

4.2 Use Cases

4.1.3 Clients

The clients are other drivers that are searching for available parking spaces and vehicles owners
that want to make sure that their vehicles are safe while parked. They make queries and the
information has to be given to them in a proper way. A good user interface is important in order
for such a system to be launched on the market. One possibility is to make the parking space
data available through the human machine interaction (HMI) displays of the vehicles. Many
services that use cloud support are already available into production vehicles (see Chapter 1)
by using integrated 3G modems that offer the possibility of inserting a SIM card with mobile
Internet connection. The HMI offers services like navigation, media streaming, email and
traffic information. We must think of how to integrate parking space availability information
into existing displays and into current services prezent in vehicles. Another possibility is to
make data available through smartphone applications. Users could use it at home in their
houses or in their cars by using docks to support their smartphones.

For designing a good interface we must consider the user needs and behaviour. We have to
analyze what kind of information must be displayed to clients and in what way.

4.2 Use Cases

Let’s consider our "hero", John is driving in the morning to the city center to solve some issues
with his credit card at his bank. He wants to be there early thinking it won’t be so crowded
and won’t have to wait at a long line. But when he arrives there with his car, he notices that
there aren’t any availalbe parking spaces in the area. So he starts the application on his car
that can help him find a free parking spot. Luckily, Lucy is driving to work just 100 m in front
of John and her car detects a parking space on the side of the road. John is informed through
his car display that a parking spot is free in front of him. He parks his car there and he can
now go solve his credit card problems. Since he parked there, on the smartphone application,
the parking spot is not available anymore. After an hour, he solved his issues at the bank and
he drives out of the parking space. Now the parking space is made available for other drivers
that search parking spaces in that area.

Now John wants to drive to work. Since he does not have a fixed parking location near his
work place, he wants to know in advance where free parking spaces are located near that
location. He opens the smartphone application that can help him view the parking situation
in that area. He sees that there are enough free spaces there, so he is not worried that he
might not find a parking spot.

Driving to work, John hears at the radio that in the last week there have been reported many
car thefts in the city. Now he is frightened that someone might want to steal his new car. But
he remembers that his car has the option for remote parking monitoring. If anything happens
with his car, he will see it through his smartphone and he can than intervene. He is again
releaved of his worries.

29

4 Concept

4.3 Challenges

Though the idea of collecting parking space data and sharing it with other drivers is simple,
there are some challanges that we need to overcome.

First of all, we need to considered the validity of the acquired information. Though the software
running on the vehicles is able to detect free parking spaces, these may not necessarily be valid.
The algorithms use ultrasonic sensor data to measure distance from one corner of a parked
vehicle (or object) to another parked vehicle (or object). These measured spaces could be
anything from garaje entrances to illegal stoping zones. That is why it is necessary to process
the collected data on the server side in such a way that only valid data is sent to clients. For
this purpose there has to be a filtering algorithm that can tag data accordingly into valid and
invalid.

Another challange is the freshness of data. A parking space can be free now, but the next
minute a car can occupy it. So we must use timestamps to keep track of when the data was
acquired.

GPS accuracy can also be a problem. Putting an accurate location tag on the detected parking
space it is very important. GPS devices provide coordinate readings accurate to a few meters,
but this is not always the case. Accuracy depends on the number of sattelites that are available.
That is influenced by the clearness of the sky and the surroundings near the location of interest.
Improvement can be achieved by combining GPS data with map-based services.

An aspect that we must not neglect is the anonimity of the collected data. Users would
most likely not accept to use this system if the collected data would contain their personal
information, like where they drove and parked their vehicles. Also back-tracking must not be
possible i.e. users must not be able to access journey or personal information of other users.

30

5
User Interface Investigation

In this chapter we investigate how the parking availability information can be presented to the
end-users. Paper prototyping and focus group methods have been used with the purpose of
finding a proper user interface for our concept.

5.1 Paper Prototypes

Paper prototyping is a method used in the design process of a software product that helps
developers to better understand what are the user’s needs and expectations of that software.
To make other people understand our concept and to generate new ideas, three paper proto-
types were prepared. This are basically map overlays that contain parking space availability
information.

The first prototype shown in Fig. 5.1 (top) shows parking spots as round coloured dots. Each
dot reprezents a parking space and its color shows its availability. If the user presses on a dot,
an information bubble appears that displays additional information regarding that parking
spot. Next one (middle) presents parking areas and not single parking spots. A green rectangle
means that it is very probable that there is a parking spot into that area. Unavailable parking
area are represented in red. And the last prototype (bottom) represents parking spots as green
rectangles, which means that it is very probable that there is a parking spot into that area.

31

5 User Interface Investigation

Figure 5.1: User interface prototypes - the top figure shows parking spaces as round colored
dots according to their availability; in the middle figure parking spaces are
represented as red and green rectangle areas; in the bottom figure only available
parking spaces are represented green rectangle areas

32

5.2 Focus Group

5.2 Focus Group

A focus group was held in order to get new ideas for our system while also getting feedback
for the concepts we already had. The discussion was conducted in order to get the following
ideas from the involved people:

• To understand what problems people are facing when looking for a parking space

• To find out if they already use or know about such a system.

• To get ideas on how they would envision such a system.

• To see what information would they find interesting to have.

• To know what they think of the concept.

• To get feedback and new ideas for the paper prototypes.

• To know in what situations would people use the system.

5.2.1 Participants

The participants of the focus group are all with technical background either from software or
hardware domains: 2 managers, 1 engineer, 2 students and 2 discussion conductors.

5.2.2 Discussion

All participants agreed that it is a common problem not knowing where to park your vehicle in
crowded cities and they would be interested in having some kind of help regarding this matter.
One problemis that in large cities, there are different costs for parking from street to street
and you can not know the prices only if you know the area or if you have been there before.
Also, the tickets are not available from one area to the other. It would be good to have this
kind information available in advance.

A tool that provides information related to parking would be useful to everyone. The
participants would want to know where parking spaces are available, the costs and other details
about the parking zones. For example, it would be interesting to know in what type of area is
the parking space located to make sure it is safe to park there (dark street, underground) or if
it is directly under the sun etc. Some people also prefer certain parking types (parallel over
cross parking). Another case where such a parking space application would be useful is when
planning a car trip to a new location. It would certainly be helpful to know in advance where
parking spots are located. Map based applications have been used for this purpose so far.

An interesting idea generated in the gocus group discussion is that the user interface of the
available parking search system can be just an extra add-on to the navigation software of the
vehicle. While driving, the users do not care of having too much information and just want
to be guided to the nearest parking space. They would prefer having as few text as possible

33

5 User Interface Investigation

and information displayed by symbols. The system could remember personal preferences for
parking spots and make automatic recommendations while driving. Accuracy of the provided
information is a very important aspect. Users would not want to be guided to a parking space
and when they get there to see that it is already occupied or it does not match their interest.

Another inportant aspect is related to privacy. It is important to collect anonymous information
from the vehicles. Users are generaly not against the collection of information from their
vehicles as long as privacy is maintained.

5.3 Results

One of the most important aspects is that people would prefer having a single system that
integrates all the functions: parking, navigation, road information etc. and they probably
would not use different platforms for each of these. Another resulting conclusion that we can
draw is that we need to differentiate between two use cases:

• When people plan their drive in advance, from their home maybe and they want to find
suitable parking spaces near their destination

• While driving, when people want to find the nearest parking space.

Based on the results of the focus group, a new user interface prototype was designed (Fig.
5.2).

Figure 5.2: Pre study resulting prototype - parking space availability information integrated
into the navigation software of the vehicle

34

5.3 Results

The parking space availability information is integrated into the navigation software of the
vehicle. The default use case is like this: the driver starts the navigation software and selects
its destination. When he is close to its destination, maybe a few hundred meters, he will receive
some popup messages on the display to inform him that some parking spaces where detected
by other vehicles in front of him. He can then press on such a parking space and further
information will be displayed, like the type of parking space, length and other caracteristics,
offering also the possibility to reroute its destination towards that selected parking space.

35

6
Implementation

This chapter describes a first prototypical implementation of the concept. The prototype is
basically a complete system that is able to collect parking space information, send it to a server
database where it is also processed and classified and clients can make queries for accessing
this data. Also real-time video communication has been implemented for remote monitoring of
parked vehicles. For this, a vehicle equipped with a semi-automatic parking assistance system
and multi-camera system as the data source, Google App Engine platform as the cloud server
and an Android based client were used.

6.1 Distributed Architectures

Figure 6.1: Distributed architecture of the prototype includes the vehicle equipped with the
car PC that acquires data from the CAN bus and smartphone used for its GPS
and fortrasferring data to the server, App Engine server that stores and processes
the data and the Android client that displays parking space information

37

6 Implementation

The prototype architecture consists of several parts. The car PC grabs the data from the CAN
bus and sends it to an intermediate smartphone via a WIFI connection. The smartphone is
used as a gateway to the server for its Internet connection and also for the integrated GPS.
The App Engine server collects and processes the data and accepts queries from Android
clients.

6.2 Vehicle

The implementation relies on a vehicle that is specially equipped by Bosch. The vehicle is a
Mercedes B class and the main components that are important for the implementation are:

• Automatic parking assist aystem: using ultrasonic sensors the system is able to detect
parking spaces while the vehicle is moving. When the system finds a suitable parking
space, this is reported to the driver via a display mounted in the vehicle. The driver
then has the option to let the system park the vehicle on its own into that parking space.
Also, the option to park out from the same parking space is available when the driver
wants to leave. The software that this system uses is running on an car integrated PC.

• Multi-camera system: the system consists of four externally mounted (front, back and
sides) VGA cameras together with an ECU that is able to construct a virtual top view
image of the vehicle.

6.2.1 Car PC

The car PC is used in the implementation to retrieve the parking space data from the CAN bus
and the video signal from the camera ECU. It is a Windows 7-based PC, specifically designed
for vehicle integration.

Figure 6.2: Car PC connected to vehicle CAN bus through the CAN2USB interface and to
the camera ECU through the NTSC2USB interface

38

6.2 Vehicle

A CAN to USB interface1 is used for fetching the messages from the bus. The PC runs a
HTTP server that can distribute this messages to incoming connectrions through the WIFI
receiver module. The NTSC signal coming from the multi-camera ECU is sent to the PC
through a NTSC to USB converter. We used an Elgato Video Capture device2, capable of
digitizing the NTSC signal in real-time.

6.2.1.1 CAN Messages Acquisiton

For this prototype we chose to use an intermediate smartphone for communicating with the
server and also for its GPS capabilities, so we used an HTTP RESTful server implementation
that is able to read the CAN messages acquired through the CAN to USB converter. The
server cyclically reads the signal values from the CAN bus and sends the values to the HTTP
clients when they make requests. The reason for choosing this implementation is that, since
the project is in collaboration with Bosch, this part of the project was available from a previous
one.

There are three type of messages that are acquired from the CAN bus for the implementation:

• Detected parking space messages: This messages provide information about parking
space that are detected by the ultrasonic sensors of the automatic parking assist system.
Length, width, type and other parameters are included.

• Parked-in messages: When using the park-in option of the automatic parking assist, a
CAN signal is issued after the maneuver has successfully completed.

• Parked-out messages: When using pull-out control of the automatic parking assist, a
CAN signal is issued when this maneuver is completed.

6.2.1.2 Video Transmission

The cloud server receives the requests for starting the transmission, either from the vehicle
or from the smartphone, and sends back the necessary information for the connection to be
established, like illustrated in Fig. 6.3.

The video that is transmitted is a top view image of the vehicle constructed by the multicamera
system ECU of the vehicle. The image is virtually constructed using four VGA cameras
mounted on the vehicle. A sample of the image can be seen in fig. 6.4.

Several solutions were tested to find what is the best choise for transmitting live video between
the vehicle’s car PC and an Android client. The results are resumed in table 6.1.

The video acquisition server runs on the car PC. This grabs the video from the USB device
and sends it remotely thorugh WIFI or mobile connection to an Android client. Using the

1http://vector.com/vi_cancase_xl_log_en.html
2http://www.elgato.com/video/video-capture

39

6 Implementation

Figure 6.3: Remote monitoring principle - vehicle sends request to the server in case the
alarm is triggered, the server establishes the connection between smartphone
client and the vehicle so that live video is transmitted

Figure 6.4: The top view image is a virtually constructed image using the four VGA
cameras mounted on the vehicle

JavaCV library3 it is very easy to process the video from any USB device. Frames can be
captured with defined rates and encoded to almost any video format. We chose mpeg format
because it proved to work the best in real-time with regard to latency. The encoded video can
then easily accessed through a UDP connection on the defined socket. The simplified Java

3https://code.google.com/p/javacv/

40

6.2 Vehicle

Table 6.1: Comparison of different real-time video transmission software and libraries

code is shown in listing 6.1.

// start the frame grabber
grabber.start();
IplImage img;

// create frame recorder
FFmpegFrameRecorder stream = new FFmpegFrameRecorder("udp://46.115.82.158:6000", 150,

150);

stream.setFormat("mpegts");
// set other encoding options
// ...

stream.start();

while (running) {
// grab frame
img = grabber.grab();
// record video

stream.record(img);
}
// delay for modifying frame rate
Thread.sleep(80);

Listing 6.1: Simplified Java code of the video capture based on the JavaCV library

41

6 Implementation

6.2.2 Transfer Smartphone

An intermediate Android smartphone is used because the GPS signal is not accessible on the
bus of the test vehicle. So for the prototype we are using the GPS of the smartphone and
also its mobile Internet connection for transferring the data to the cloud. Another alternative
would have been to use a separate GPS device and a mobile Internet USB stick connected to
the car PC. The smartphone performs the operations shown in fig. 6.5.

Figure 6.5: The transfer smartphone listens for parking events and when such an event
occurs the GPS location is added and the data is sent to the server

A HTTP client cyclically sends requests to the HTTP server that runs on the car PC for
reading the CAN message values that are of interest. When a parking space is detected,
or a parked-in or parked-out message is issued, a separate async task is created that sends
the information to the server. A separate thread constantly reads the GPS position of the
smartphone device and when such a parking event occurs, the position information is added.
The communication with the server is performed using an API created using the server part of
the code. This is described later in section 6.3.

6.3 Server

The server stores the parking space data sent by the vehicles that are equipped like described
in the previous sections. This parking space data is sent by through the smartphone’s Internet
connection and stored into a database. The server also performs some processing on the
collected data. First of all, the collected parking space locations are map matched with the help
of open-source map-based services. Secondly, a filtering algorithm is applied for distinguishing
the valid entries from invalid ones.

42

6.3 Server

The server implementation relies on Google App Engine. Google App Engine4 allows developers
to build their own applications on the same infrastructure that is being used by Google’s
own applications. It supports applications written in several programming languages. Java
Runtime Environment allows code written for JVM, Java servlets, Java programming language,
JavaScript or Ruby. App engine also provides a Python runtime environment which includes
a Python interpreter and the Python standard library and also features a PHP runtime for
Google Cloud SQL and Google Cloud Storage support. App Engine provides a straightforward
way of creating an Andoid connected project using Eclipse IDE5.

Java Persistance API (JPA) is an interface available in App Engine used for storing objects that
contain data into relational databases. Using JPA it is easy to create object entities that will
contain the data to be stored. An entity is a lightweight persistence domain object. Typically
an entity represents a table in a relational database, and each entity instance corresponds to a
row in that table.6. These objects are also available in the client code in order to keep the
data to a consistent format.

After the entities are defined, App Engine provides a straight forward way of creating the
endpoint code coresponding to each entity, used to process insert, update, retreive and delete
requests. Google Cloud Endpoints allow to generate APIs and client libraries from an App
Engine application, i.e. the API backend in order to simplify client access to data from other
applications7.

6.3.1 Entities

Each entity propriety is a column in the table that the entity represents. For each propriety,
get and set methods need to be defined.

6.3.1.1 ParkingSpace entity

For storing parking space information we created the ParkingSpace entity. This contains the
proprieties of the detected parking spaces that we need for the processing and filtering of the
data. The entity is shown in listing 6.2.

The parking space location is stored using latitude and longitude coordinates and also orien-
tation. lastLength and lastWidth store the length and width of that parking space. When
detecting a parking space, a certain length is measured, according to the objects that delimit
this space. If the same parking space is detected some other time, the length of this parking
space can be different. For example, the vehicle in front has left and now the area is larger.

4https://developers.google.com/appengine/?hl=ro
5http://www.eclipse.org/
6http://docs.oracle.com/javaee/5/tutorial/doc/bnbqa.html
7https://developers.google.com/appengine/docs/java/endpoints/

43

6 Implementation

@Entity
public class ParkingSpace {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
@Column(name = "parkingSpaceId")
private Key parkingSpaceId;
private int accumulatedLength;
private boolean availability;
private long lastDetected;
private long lastParked;
private int lastLength;
private int lastWidth;
private String lastUser;
@Latitude
private double latitude;
@Longitude
private double longitude;
@Geocells
private List<String> geoCell;
private String locationType;
private OSMStreet osmStreet;
private int orientation;
private String parkingType;
private String side;
private int timesDetected;
private int timesParked;
private int usersParkedNumber;
private int usersDetectedNumber;
private boolean validity;
private long validationTimestamp;
@ManyToMany(fetch = FetchType.EAGER)
@Unowned
private List<User> usersThatDetected;
@ManyToMany(fetch = FetchType.EAGER)
@Unowned
private List<User> usersThatParked;

//getters
...

//setters
...

Listing 6.2: ParkingSpace entity is used for storing parking space information

We keep track of the total length of the parking space using accumulatedLength, and so the
parking spaces will grow in size. To keep track if a parking space is free or occupied we use
the availability variable. lastDetected and lastParked are the timestamps for when the parking
space was last detected, respectively when a vehicle last parked in it. We also keep track of
the users that detected each parking location. This users are not the end clients, but the
providers of information i.e. vehicles equipped with ultrasonic sensors. lastUser stores the id
of the user that provided the information, usersThatDetected and usersThatParked store every
user id that detected and parked into a certain parking space. validity will be set to true if
the filtering algorithm determines that a certain stored parking space is valid. The filtering

44

6.3 Server

algorithm uses some counters for determining the validity: timesDetected is incremented each
time a parking space is detected near the same location, timesParked is incremented when
someone parks in the same parking space, usersParkedNumber keeps track of the total users
that parked in that parking space and usersDetectedNumber stores the total number of users
that detected the respective parking space. OSMStreet is a separate entity that stores street
information from OpenStreetMap. Using this we can asociate a parking location with the
street on which is located.

geoCell is used to overcome one limitation of the App Engine database queries: "Inequality
filters are limited to at most one property"8. For bounding box queries this becomes a big
problem. Bounding boxes queries are the ones where the latitude and longitude values both
have to be between a minimum and a maximum value. To overcome this we used the geomodel
library9. This provides a generalized solution for performing basic indexing and querying of
geospatial data in Google App Engine.

6.3.1.2 ValidParkingSpace entity

After a parking space is validated by the filtering algorithm, a new entity is asociated with it.
We use this so that the time for processing a client query is reduced, by only searching for
these valid parking spaces into the database.
public class ValidParkingSpace {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
@Latitude
private double latitude;
@Longitude
private double longitude;
@Geocells
private List<String> geoCell;
private ParkingSpace parkingSpace;

//getters
...
//setters
...

Listing 6.3: ValidParkingSpace entity - is created when the filtering algorithm validates a
ParkingSpace entry and associates with it

8https://developers.google.com/appengine/docs/java/datastore/queries
9https://code.google.com/p/geomodel/

45

6 Implementation

6.3.1.3 User entity

The user entity stores the id of the user. Each vehicle that provides information has to have
its own id, so that we can count the number of users that detects a certain parking space.

6.3.1.4 OSMStreet entity

In order to map each detected parking space to a certain street, OpenStreetMap (OSM)
information is used. OSM data is available in many different formats, among which is .xml.
The architecture of the OSM model consists of nodes, ways and relations10.

Nodes are the core elements of this model. They represent single points in space defined by
latitude, longitude and node id. They can define standalone point features by using tags (e.g.
a fuel station can be tagged with amenity=fuel) or can be used to define the shape of a way.
A way is an ordered list of nodes which should also contain at least one tag or it is part of a
relation. A relation consists of one or more tags and an ordered list of nodes and/or ways.
These are used to model logical or geographic relationships between objects.

Streets are defined by OSM as ways. For this, we use in the OSMStreet entity two lists:
centerLatitude and centerLongitude. These are order lists that represent the latitude and
longitude of each node in the way. To simplify the query of a street according to its GPS
position we also use centerLatitude and centerLongitude. These represent the position of the
middle node in the way (e.g. if the way consists of five nodes, the center node would be node
3). infoName represents the name of the street and type, the type of the street (e.g. highway,
residential street).

OSM street data was extracted from large "planet" .xml files which provide the entire world
map information. Smaller files exist for each country or even smaller areas. This files are
available for download from many servers (e.g. http://download.geofabrik.de/) and most of
the files are updated regulary. Specific data (like the streets in our case) can be extracted from
these files using a small tool called Osmosis11. After only the street information was extracted,
the data was inserted into the App Engine database using the bulkloader tool12. This can
insert large amounts of data using .csv files as input.

6.3.2 Processing Detected Parking Spaces

Parking space data is received from vehicles that make insert requests to the App Engine server
in the form of ParkingSpace entities. The basic structure of an insert request is described in fig.
6.6. First step after a new ParkingSpace object is received is to map its location coordinates
to a street from OSM. New latitude, longitude and orientation values are calculated, after
which it is checked if that parking space is already in the database. This is done by checking if

10http://wiki.openstreetmap.org/wiki/OSM_XML
11http://wiki.openstreetmap.org/wiki/Osmosis
12https://developers.google.com/appengine/docs/python/tools/uploadingdata

46

6.3 Server

the location coordinates of the respective parking space are approximately the same with one
of a parking space from ParkingSpace table. If this is the case, then they are merged together
and a check is done to see if the old entry was already validated. If the entry was validated,
this new entry will also be considered as valid and the database will be updated. In the case
that the parking space is not validated, the validation algorithm is applied. For every new
validated ParkingSpace object, a ValidParkingSpace object is created so that the data of the
validated parking spaces can be accessed easier.

Figure 6.6: The parking space data is received by the server and certain processing steps are
taken according to the data that is contained

47

6 Implementation

6.3.2.1 Street Mapping

Street mapping consists of asociating the position of a detected parking space with a street
from OSM database. This is helpful to correct a GPS reading that is not so accurate. First
all the streets in a range of 500 meters are retrieved from the database. Since OSM streets
are actualy ordered lists of nodes that define the path of the street, we search for the closest
distance between the position that we want to map and the line that ties every two nodes,
after which we map the position onto that line, according to fig. 6.7.

Figure 6.7: The position of the detected parking space is corrected and mapped to the
closest street

Since every point is defined in latitude and longitude we need to somehow convert to a planar
system and for this we use the Mercator projection13. This projects the Earth to a cyilinder
and GPS coordinates can be converted to planar values. To convert a latitude and longitude
point to a planar point we use the following formulas:

(6.1) x = longitude

(6.2) y = ln (tan (π4 + latitude

2))

To calculate the distance between a point and a line we use the following formula:

(6.3) distance = |ax0 + by0 + c|√
a2 + b2

,where ax+ by + c defines the line equation, a = y1 − y2, b = x2 − y1 and c = (x1 − x2) ∗ y1 +
(y2 − y1) ∗ x1, x1, x2, y1 and y2 being the point coordinates of the two delimiting nodes and

13http://wiki.openstreetmap.org/wiki/Mercator

48

6.3 Server

x0 and y0 represent the coordinates of the original point. After we find the street segment
which is closest to the point that we test, we must find the coordinates of that point on the
street. We use the following formulas for calculating the planar coordinates using the distance
to that street segment:

(6.4) x′ = x0 − cos (arctan |b|
|a|

) ∗ distance

(6.5) y′ = −c− a ∗ x
′

b

6.3.2.2 Merging Parking Spaces

When inserting a new parking space into the database we check to see if other parking space are
close enough to that one. The approximation value that is used is the accumulatedLength/2
of the parking space to which we check. If two or more parking spaces are close enough, we
merge these into a single ParkingSpace entity. This is shown in fig. 6.8.

Figure 6.8: Parking spaces that are close enough are merged into a single parking space

For the parking spaces that are merged together, certain values need to be calculated and
others taken from one of the spaces that are merged. New latitude, longitude and orientation
values are determined, accumulatedLength is set to the total length of the merged spaces. If
one of the parking spaces is validated, then the new merged space will also be valid.

6.3.3 Filtering Algorithm

A good processing of the collected parking space data is necessary so that only valid information
is made available to clients. Determining the model for the classification of data is an important
part of the concept. A learning algorithm must be implemented that will be capable of learning
to distinguish between valid and invalid detected parking locations. Valid spaces are the ones
which are detected by the vehicles and are trully parking spaces, while the invalid spaces are
ones which are wrongfully detected as parking spaces i.e. false positives. The quality of the
provided data towards clients depends on the algorithm that is implemented. The algorithm

49

6 Implementation

uses parking space data collected from multiple vehicles. The process is illustrated in Fig.
6.9.

Figure 6.9: The learning algorithm for parking space validation uses the labeled training
data for establishing the learning model afterwhich new data can be labeled
accordingly

The parking space information consists of length, depth, road side, type, certain distance
values, GPS data etc. We will count the number of times each parking space is detected at the
same GPS location. But this information is not enough for determining if a detected parking
space is valid or not. In this concept, we use also the information provided by the automatic
parking systems and collect the messages from the CAN bus regarding the completion of
automatic parking in and parking out maneuvers. This is useful because we can also count
the number of times vehicles park in and out at the same location. For better determining
the correct GPS position of the parking spaces, map services data can be used. There are
open source providers that allow their information to be used for purposes like this. Using
this, we can easily determine if a detected parking spaces is located on a street, parking lot or
other location. In [Mathur et al., 2010], it is used an environment fingerprinting technique for
accurate determination of a parking location. In this concept, we can accurately determine
the position of the parking spaces using GPS combined with map services information.

First, we need a lot of parking space data that we can use as the training data for the algorithm.
Example of features that we can use are:

• timesDeteted: Number of times a parking space was detected.

50

6.4 Client

• timesParked: Number of times a vehicle parked into a parking location.

• usersDetectedNumber : Number of users that detected a certain parking location.

• usersParkedNumber : Number of users that parked into a certain parking location.

• accumulatedLength: Length of the parking location.

• width: Width of the parking location.

• type: Cross or parallel parking type.

Once it is decided on the features to use, the learning algorithm can be applied so that
parameters are found i.e. the learning model that will help decide when a parking space
becomes valid, when new data is collected. After we determine the learning model, new parking
data can be classified accordingly. When a parking space is detected, we can determine if it is
valid or not according to the model parameters.

6.3.4 Processing Park-in and park-out messages

Parked-in messages are counted for each ParkingSpace entry and used as a feature in the
filtering algorithm. The number of times a vehicle parks in at a certain location has a great
impact on the validity of that parking location. Parked-in and parked-out messages that
come from the automatic parking assist system are also used in our system for changing
the availability of a parking space in our database. This is the case only for the validated
parking spaces. When a park-in message is received after a successful automatic parking assist
maneuver, an update request is sent to the server with the GPS location of where the message
was created. If a validated parking space is found at that location, its availability is changed.
Park-in messages set the availability to false and park-out messages to true.

6.4 Client

The clients are the ones that finally use the information that is provided by our system. They
can search for available parking spaces and monitor their parked vehicle wih the help of live
video transmission.

The client prototype is implemented on an Android smartphone. We used a Samsung Galaxy S4
for development. The implemented Android application is able to display parking information
by making queries to the App Engine server and also display live video directly from the
multi-camera system installed on the test vehicle.

51

6 Implementation

6.4.1 Parking Space Information Display

For displaying parking space information Osmdroid14 library is used. This is a substitute for
Google’s MapView that uses OpenStreetMap data. Its main advantage is that it offers mainly
the same possibilities with an open source license.

6.4.1.1 Parking Spaces Overlay

Using Osmdroid it is possible to add overlays on the standard map tiles according to GPS
coordinates. Available parking spaces are displayed as green rectangles. They are scaled
according to their length and a standard width, according to the zoom level of the map.

Figure 6.10: User can view available parking spaces as green rectangles on the map
(c©OpenStreetMap contributors)

6.4.1.2 Bounding Box Queries

The parking space data is queried from the App Engine database according to bounding GPS
coordinates of the screen. The minimum and maximum latitudes together with tthe minimum
and maximum longitudes determine the box. With every scroll and zoom movement on the
map, this box is recalculated and a QueryTask is created for retriving the parking spaces from
the database. This query task uses the created backend API to retreive the ValidParkingSpace
objects that are in the bounding box. The query request is built using the API and the results
are retreived through HTTP. The latitude and longitude values that define the box are passed
as parameters to queryValidParkingSpace server method.

14https://code.google.com/p/osmdroid/

52

6.4 Client

@Override
protected Long doInBackground(Context... contexts) {

// backend API code for creating the endpoint communication
Validparkingspaceendpoint endpoint = ...
...

try {
// calling the server method for retreiving the entries from the

database that satisfy the bounding box
CollectionResponseValidParkingSpace result =

endpoint.queryValidParkingSpace(mMinLatitude,
mMaxLatitude, mMinLongitude,

mMaxLongitude).execute();

// ValidParkingSpace result list
List<ValidParkingSpace> spaces = result.getItems();

} catch (IOException e) {
...

}
}

Listing 6.4: Query task code - uses the generated backend API for retreiving
ValidParkingSpace objects from the database

6.4.1.3 Information Bubble

Additional information is displayed if the user touches a parking space on the map. Also, the
user can press the navigate button in order to open navigation directions towards the selected
parking location. The bubble is illustrated in fig. 6.11

6.4.2 Video Client

The clients that will use this option are the owners of the monitored vehicles. The idea is
to send real-time video on the owner’s smartphone when the alarm of the vehicle starts or
when the owner wants to access this video data (on-demand). The Android prototype code for
displaying the live video transmitted by the car pc uses the same JavaCV library as for the
transmission. The mpegts frames are received through a UDP connection and the are decoded
and ransformed into bitmaps. These bitmaps can then be displayed in using the ImageView
class provided by the Android system. This process is resumed in fig. 6.12

53

6 Implementation

Figure 6.11: When the user touches a parking space on the screen, an information bubble
will pop-up containing information about that parking space and the possibility
to open navigation directions towards that parking space location
(c©OpenStreetMap contributors)

Figure 6.12: The video client receives the mpegts frame from the car pc through UDP, it is
decoded it into a bitmap and displayed

54

7
Evaluation

This chapter presents several evaluations of the implemented system. Severel analysis were
made in order to see how the system behaves in the real world.

7.1 Data Acquisition

Parking space data was acquired in order to analyze how the system behaves. For this, a
separate setup was arranged that is able to grab parking space data from the ultrasonic sensors
and also video data from the multicamera system of the test vehicle. The video is intended for
visually analysing the captured parking space data from the ultrasonic sensors and

7.1.1 Goals

The goal of this campaign is to get data that can be used for testing the filtering algorithm
as well as cost estimations for the implemented system. Also, the accuracy of the ultrasonic
sensor system for detecting parking spaces is analysed. Another goal is to get an insight on
the dynamic parking situation in a crowded city.

7.1.2 Required Hardware and Software

For the acquisition of the above mentioned data the following items were used:

• Mercedes B-Class test vehicle equipped with the automatic parking assist system, multi-
camera system and Windows 7 PC

55

7 Evaluation

• Laptop with CANAlyzer1 software for viewing and logging the messages that are passed
through the CAN bus.

• Video grabber device used for transforming the NTSC video signal to USB signal that
can be processed on the laptop

• Webcam for recording the front view of the vehicle while driving

• GPS device for logging the position

• Camera for taking pictures of the setup

7.1.3 Hardware Setup

The setup schematic is illustrated in fig. 7.1. Parking space data is acquired from the CAN bus
and the top view video is recorded from the multicameara system and a windshield mounted
webcam. A USB GPS device (Wintec G-Rays 22) is used for logging the positions of the
parking space data.

Figure 7.1: For data acquisition the car PC and a laptop is connected to the CAN bus for
getting access to the parking space messages and two separate videos are
recorded, the top view of the multicamera system and a front view using a
webcam mounted on the windshield

1http://vector.com/vi_canalyzer_en.html
2http://www.wintec.com.tw/en/Products/gps/wbt_202.html

56

7.1 Data Acquisition

The camera mounting and the display of the car PC can be seen in fig 7.2.

Figure 7.2: The webcam that records the frontview is mounted on the windshield of the
vehicle and the code that logs and records the video is running on the car PC

7.1.4 Code for Acquiring Data

A Java program was developed for acquiring video and parking space data. Its operation is
illustrated in fig. 7.3.

The video frames are grabbed from the webcam that is installed on the windshield using the
JavaCV library. When a parking space is detected by the ultrasonic sensor system, information
about that parking space is added to the frame (timestamp, GPS location, width, length,
type). The detected parking space entry is also saved in a .CSV log file together with the GPS
location. For reading the GPS data in Java from the Wintec G-Rays 2 USB device, the RXTX
library was used3. Also a separate GPS log file is saved where locations are acquired with a
period of 500 ms. The video frames are recorded to .MPEG format with a frame rate of about
15 frames per second. A sample frame can be seen in fig. 7.4.

7.1.5 Itinerary

For data acquisition two separate areas were chosen. Both areas were scanned at different
times to evaluate the system’s functionality during different day times. The first location is
in Leonberg, Germany, where four smaller, not so crowded residential streets were scanned.

3http://rxtx.qbang.org/wiki/index.php/Main_Page

57

7 Evaluation

Figure 7.3: The Java program grabs each frame from the webcam and each time a parking
space is detected, GPS location is read and textual information is added to the
frame; also the parking space data is saved in a separate log file

Figure 7.4: The video frame contains information about each detected parking space and its
GPS location

The area was selected to evaluate the behavior of the system in an area with a number of
available parking spaces during the entire day. The total length of the path is around 500 m.
We acquired data for one hour in the morning, between 10:00 and 11:00 and in the afternoon,
between 13:00 and 14:30. The second location is close to the center of Stuttgart, a very crowded
area, with a path length of around 1 km. Here we acquired data in the evening between 15:00

58

7.2 Analyzing the Performance of the Ultrasonic Parking Space Detection

and 16:30. In addition, data was acquired in the morning between 8:00 AM and 9:00 AM,
which is the morning rush hour where many residents leave for work or grocery shopping or
students arrive to the nearby school, resulting in a more dynamic parking behavior. The two
itineararies can be viewed in fig. 7.5.

Figure 7.5: Two locations were chosen for acquiring parking space data: Leonberg -left and
Stuttgart West - right (c©OpenStreetMap contributors)

7.2 Analyzing the Performance of the Ultrasonic Parking Space
Detection

After the data was collected from the specified locations, an analysis was performed in order to
examine how accurate the detection of parking spaces using ultrasonic sensor system actually is.
For this purpose, the recorded videos and log files were analyzed and the following information
was extracted:

• Number of parking spaces: parking spaces that were present on the street from which
the data was collected. This were extracted visually from the recorded video files.

• Number of detected parking spaces: spaces that are detected by the ultrasonic sensor
system

• Number of valid detections: detected parking spaces that are actually parking spaces
(true positives)

The acquisition of data consisted of multiple runs (laps) on each of the two locations. The
above values were extracted from each run and average values were calculated. The results
are resumed in table 7.1. It can be seen that the detection accuracy using ultrasonic sensors
is pretty low at around 40-50%. In Stuttgart West, the accuracy is a bit higher since it was
more crowded, and the cars were parked almost everywhere. The ultrasonic sensors were

59

7 Evaluation

able to detect the spaces between the vehicles. In Leonberg, since there were a lot of empty
areas where nothing was present on the side of the road, the sensors did not have so good
landmarks and the processing algorithms produced more errors than in the other case. Based
on the detection accuracy, it is clear that a filtering algorithm is needed for splitting the valid
detections from invalid ones.

Table 7.1: Video and log files where analysed for each run on each location and average
values were calculated for measuring the performance of the ultrasonic sensor
detection

As mentioned, in Stuttgart-West data was collected in the morning between 8:00 and 9:00
where around 30

7.3 Street Matching Algorithm Test

A few GPS coordinates of parking locations acquired from Leonberg were used for testing the
street matching algorithm. As seen in fig. 7.6 the positions are accurately corrected to match
the street to which they are close to.

60

7.4 Data Filtering Algorithm

Figure 7.6: The left picture shows the unmatched parking location, their position being the
one read from the GPS device. The right picture shows the position matched on
the street (c©OpenStreetMap contributors)

7.4 Data Filtering Algorithm

As mentioned before, using only the information provided by the ultrasonic sensors when
detecting a parking space (width, length, type etc.) is not enough for distinguishing valid
from invalid detections. The proposed concept relies on using also the information from the
automatic parking assist system. From this we collect the messages that are created when a
vehicle is parked in or out at a certain location. For testing how a learning algorithm could be
applied to the system, the following features for each detected parking location are used:

• Number of times detected

• Number of times parked

• Users that detected parking spaces

• Users that parked into parking spaces

When vehicles are parked at a certain location a multiple number of times, the probability
of that parking space to be valid should be higher. User information is also important since
private parking spaces can be distinguished from public ones. If only one or two users park at
the same location multiple number of times, it is most likely for that location to be a private
parking space. On the other hand, if many users park at the same location then it is very
probable to be a public parking space. Private parking spaces should not be validated since
the information is not useful for users if they are not allowed to park at that location. The
training data set is constructed from the log files of the collected parking space data. From
these files the above mentioned number of times detected feature was extracted. The other
three features have to be generated. Number of times parked has been added to the collected
data set at certain parking locations (labeled as valid). Also, five users have been simulated,
even though we used only one vehicle for collecting the data. Number of times parked values
where added to the parking locations which we considered as valid by analyzing the videos.

61

7 Evaluation

Values between 1 and 7 where added. The data set was labeled by visually analyzing the video
files. Data was labeled as valid at the parking locations where the vehicle parked more than
three times and where at least two users detected and parked in a parking space.

The libsvm4 library was used in Matlab to create a learning model for classifying the detected
parking spaces by using support vector machine learning. This library provides a way to
create the learning model by applying the svmtrain function to the provided training data set.
Afterwards, new values can be predicted using this model by using the svmpredict function.
The model "learned" that at the locations where the users also parked and where the user
number is higher, the respective parking space is valid.

7.5 Feasibility Discussion

From the filtering algorithm tests was concluded that a parking space would be needed to
be detected around 10 times and at least 2 drivers would need to park at least 5 times in a
parking space to validate it. This would imply a large number of vehicles that are able to
collect this data for creating a parking space map of an entire city. A solution would be to have
a number of designated vehicles to drive around the city for a certain amount of time in order
to detect but also park in and out into each parking space around that city. For a city with
1000 streets, 10 vehicles could realiye this map in about four months. If the automatic parking
assist systems would become a standard option for production vehicles, then the process of
building parking spaces maps in cities would be not so time consuming.

4http://www.csie.ntu.edu.tw/ cjlin/libsvm/

62

8
Summary and Conclusion

In this chapter a summary of the work is presented and a conclusion from the performed work
is drawn. The implementation in this paper is compared to previous works that were presented
in chapter 2.

8.1 Summary

We presented at the beginning of the paper the main challenges of parking in crowded cities.
Lost time, fuel consumption, vandalism and theft are only a few of these problems. Solutions
that rely on crowdsourcing or third party providers try to bring parking space information to
drivers, but they have their own problems, mainly related to the fact that the performance
relies on the participation rate or, respectively on the information provided by other sources.
The system presented by [Mathur et al., 2010] collects parking space data using ultrasonic
sensors and uses an envirmonment fingerprinting technique for accurately determining the
correct location of the detected parking spaces. However, this needs extensive processing and
many passes over the same area. Our proposed solution relies not only on ultrasonic sensors,
but on information provided by the vehicles that park in and out into/from parking spaces.
All these data is collected, map matched and filtered so that an accurate map of valid parking
locations is build and afterwards parking availability can be determined. Also we propose a
solution for remote vehicle monitoring while the vehicle is parked. The solution is based on
a multi-camera system integrated in the vehicle that can construct a top-view image of the
vehicle. Live video can be transmitted to the owner’s smartphone in the case the alarm is
triggered or on demand.

We implemented a prototypical system that consists of a vehicle that is able to collect parking
space data, a server that stores and processes the data and an Android client that can visualize
parking space availability information. The server uses OSM data for accurately matching
the position of each detected parking space to a certain street. Also, real-time transmission
solutions have been tested for sending video images between the vehicle and an Android

63

8 Summary and Conclusion

smartphone. A JavaCV implementation has been chosed that uses UDP as the transmission
protocol and .mpeg as the video format.

We sustained a data acquisition campaign for testing how accurate the ultrasonic sensor system
is in detecting parking spaces and for collecting parking space data that can be used for testing
filtering algorithm. We chose two locations on which we recorded video from the front-view of
the vehicle in order to later analyse and count the parking locations. We also saved the CAN
messages related to parking space detection in a log file. The analysis of the data proved that
the accuracy of the ultrasonic parking space detection is pretty low for our intended purpose
and for that a filtering algorithm is necessary. We tested how such an algorithm could work
for filtering this parking space data.

8.2 Conclusion

With the more increasing traffic in crowded cities it is important to find better solution that
assist drivers in finding parking spaces. We showed that such a system that can provide
parking space availability to drivers can be constructed. Even though parking space detection
by ultrasonic sensors is not accurate enough, this can be increased by using parked-in and
parked-out messages that are already available on the vehicles that are equipped with automatic
parking assist systems and by using map-based services for map-matching the parking space
locations. A simple filtering algorithm with only four features can easily filter the valid parking
locations from the invalid ones.

64

CD-ROM Content

Abstract

• Abstract of the thesis in English and German

Master Thesis

• MT_Radu_Georoceanu_Extending_Parking_Assistance_for_Automotive_User_ In-
terfaces

Code

• ParkConnect

• ParkConnect-AppEngine

• VideoStreamServer

• DataAcquisition

• VideoRecorder

65

Bibliography

[Armbrust et al., 2010] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski,
A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2010). A view of cloud
computing. Commun. ACM, 53(4):50–58. (Cited on page 22)

[Bose et al., 2011] Bose, R., Brakensiek, J., Park, K.-Y., and Lester, J. (2011). Morphing
smartphones into automotive application platforms. Computer, 44(5):53–61. (Cited on
page 5)

[Caliskan et al., 2006] Caliskan, M., Graupner, D., and Mauve, M. (2006). Decentralized
discovery of free parking places. In Proceedings of the 3rd International Workshop on
Vehicular Ad Hoc Networks, VANET ’06, pages 30–39, New York, NY, USA. ACM. (Cited
on page 3)

[Campolo et al., 2012] Campolo, C., Iera, A., Molinaro, A., Paratore, S., and Ruggeri, G.
(2012). Smartcar: An integrated smartphone-based platform to support traffic manage-
ment applications. In Vehicular Traffic Management for Smart Cities (VTM), 2012 First
International Workshop on, pages 1–6. (Cited on page 6)

[Chen et al., 2010] Chen, L.-C., Hsieh, J.-W., Lai, W.-R., Wu, C.-X., and Chen, S.-Y. (2010).
Vision-based vehicle surveillance and parking lot management using multiple cameras. In
Proceedings of the 2010 Sixth International Conference on Intelligent Information Hiding
and Multimedia Signal Processing, IIH-MSP ’10, pages 631–634, Washington, DC, USA.
IEEE Computer Society. (Cited on page 7)

[Chen et al., 2012] Chen, X., Santos-Neto, E., and Ripeanu, M. (2012). Crowdsourcing for
on-street smart parking. In Proceedings of the second ACM international symposium on
Design and analysis of intelligent vehicular networks and applications, DIVANet ’12, pages
1–8, New York, NY, USA. ACM. (Cited on pages 7 and 9)

67

Bibliography

[Coric and Gruteser, 2013] Coric, V. and Gruteser, M. (2013). Crowdsensing maps of on-
street parking spaces. In Distributed Computing in Sensor Systems (DCOSS), 2013 IEEE
International Conference on, pages 115–122. (Cited on page 8)

[Foresti et al., 2004] Foresti, G., Micheloni, C., and Snidaro, L. (2004). Event classification
for automatic visual-based surveillance of parking lots. In Pattern Recognition, 2004. ICPR
2004. Proceedings of the 17th International Conference on, volume 3, pages 314–317 Vol.3.
(Cited on page 8)

[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. Springer
series in statistics. Springer. (Cited on pages 24 and 26)

[Jung et al., 2010] Jung, H. G., Lee, Y. H., and Kim, J. (2010). Uniform user interface for
semiautomatic parking slot marking recognition. Vehicular Technology, IEEE Transactions
on, 59(2):616–626. (Cited on page 18)

[Kim et al., 2011] Kim, S., LEE, E., Choi, M., Jeong, H., and Seo, S. (2011). Design Opti-
mization of Vehicle Control Networks. IEEE Trans. on Vehicular Technology, vol. 60, no. 7,
pp. 3002 –3016. (Cited on page 13)

[Leitner-Fischer and Leue, 2011] Leitner-Fischer, F. and Leue, S. (2011). The QuantUm
Approach in the Context of the ISO Standard 26262 for Automotive Systems. University
of Konstanz and Steinbeis Transfer Center for Complex Systems Engineering. (Cited on
page 14)

[Mathur et al., 2010] Mathur, S., Jin, T., Kasturirangan, N., Chandrasekaran, J., Xue, W.,
Gruteser, M., and Trappe, W. (2010). Parknet: drive-by sensing of road-side parking
statistics. In Proceedings of the 8th international conference on Mobile systems, applications,
and services, MobiSys ’10, pages 123–136, New York, NY, USA. ACM. (Cited on pages 7,
50 and 63)

[Montini et al., 2012] Montini, L., Horni, A., Rieser-Schüssler, N., and Axhausen, K. (2012).
Searching for Parking in GPS Data. 12th Swiss Transport Research Conference. (Cited on
page 7)

[Na et al., 2009] Na, K., Kim, Y., and Cha, H. (2009). Acoustic sensor network-based parking
lot surveillance system. In Proceedings of the 6th European Conference on Wireless Sensor
Networks, EWSN ’09, pages 247–262, Berlin, Heidelberg. Springer-Verlag. (Cited on page 8)

[Ng and Chua, 2012] Ng, L. L. and Chua, H. S. (2012). Event recognition in parking lot
surveillance system. In Proceedings of the 12th Pacific Rim International Conference on
Trends in Artificial Intelligence, PRICAI’12, pages 875–878, Berlin, Heidelberg. Springer-
Verlag. (Cited on page 8)

[Pruckner et al., 2003] Pruckner, A., Gensler, F., GRAEF, H., SPANNHEIMER, H.,
GRESSER, K., et al. (2003). Der parkassistent-ein weiteres innovatives fahrerassistenzsystem
zum thema connecteddrive aus der bmw-fahrzeugforschung. FORTSCHRITT-BERICHTE
VDI. REIHE 12, VERKEHRSTECHNIK/FAHRZEUGTECHNIK, (525). (Cited on page 16)

68

[Shoup, 1997] Shoup, D. C. (1997). The High Cost of Free Parking. Transportation Center,
University of California, Berkeley, Berkeley, USA. (Cited on page 3)

[Talbot S.C., 2009] Talbot S.C., R. S. (2009). Comparison of FieldBus Systems, CAN, TTCAN,
FlexRay and LIN in Passenger Vehicles. Distributed Computing Systems Workshops. ICDCS
Workshops ’09. 29th IEEE International Conference. (Cited on page 15)

[Velte et al., 2010] Velte, T., Velte, A., and Elsenpeter, R. (2010). Cloud Computing, A
Practical Approach. McGraw-Hill, Inc., New York, NY, USA, 1 edition. (Cited on page 22)

[Vestri et al., 2005] Vestri, C., Bougnoux, S., Bendahan, R., Fintzel, K., Wybo, S., Abad,
F., and Kakinami, T. (2005). Evaluation of a vision-based parking assistance system. In
Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE, pages 131–135. (Cited
on page 17)

[Winner, 2012a] Winner, H. (2012a). Handbuch Fahrerassistenzsysteme Grundlagen,
Komponenten und Systeme für aktive Sicherheit und Komfort - Section B, Chap-
ters10,11,12,13,14,15. Vieweg + Teubner, Wiesbaden. (Cited on pages 11, 12 and 13)

[Winner, 2012b] Winner, H. (2012b). Handbuch Fahrerassistenzsysteme Grundlagen, Kompo-
nenten und Systeme für aktive Sicherheit und Komfort - Section F, Chapter 31. Vieweg +
Teubner, Wiesbaden. (Cited on pages 16 and 17)

[Yang et al., 2013] Yang, B., Fantini, N., and Jensen, C. S. (2013). ipark: identifying parking
spaces from trajectories. In Proceedings of the 16th International Conference on Extending
Database Technology, EDBT ’13, pages 705–708, New York, NY, USA. ACM. (Cited on
page 7)

[Zaldivar et al., 2011] Zaldivar, J., Calafate, C. T., Cano, J. C., and Manzoni, P. (2011).
Providing accident detection in vehicular networks through obd-ii devices and android-based
smartphones. In Proceedings of the 2011 IEEE 36th Conference on Local Computer Networks,
LCN ’11, pages 813–819, Washington, DC, USA. IEEE Computer Society. (Cited on page 6)

[Zimmermann and Schmidgall, 2010] Zimmermann, W. and Schmidgall, R. (2010). Bussys-
teme in der Fahrzeugtechnik - Protokolle, Standards und Softwarearchitektur - 4. Auflage.
Vieweg Teubner. (Cited on page 14)

All links were last followed on January 05, 2014.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Problem statement
	1.2 Proposed solution
	1.3 Overview of the following chapters

	2 Related Work
	2.1 Smartphones and The Cloud in the Automotive Environment
	2.2 Providing Parking Space Information
	2.3 Supporting Parking Surveillance
	2.4 Discussion

	3 Technical Background
	3.1 Car Sensors
	3.1.1 Vehicle Dynamics Sensors
	3.1.2 Ultrasonic Sensors
	3.1.3 Radar Sensors
	3.1.4 Lidar Sensors
	3.1.5 Vision Based Sensors

	3.2 Vehicle Electronic Networks
	3.2.1 Architecture
	3.2.2 Bus Systems

	3.3 Parking Assistance Systems
	3.3.1 Degrees of Parking Assistance
	3.3.2 Requirements for Parking Assistance Systems
	3.3.3 Informative Assistance Systems
	3.3.4 Guided Parking Assistance
	3.3.5 Semi Automatic Parking
	3.3.6 Fully Automated Parking

	3.4 Android
	3.4.1 Hardware Capabilities
	3.4.2 Android Architecture
	3.4.3 Application Components
	3.4.4 Activity lifecycle

	3.5 Cloud Computing
	3.5.1 Cloud Computing Components
	3.5.1.1 Clients
	3.5.1.2 Service Providers
	3.5.1.3 Cloud Providers

	3.5.2 Ups and downs

	3.6 Machine learning
	3.6.1 Linear Models for Regression
	3.6.2 Logistic Regression
	3.6.3 Tree Based Methods

	4 Concept
	4.1 Basic Architecture
	4.1.1 Vehicles
	4.1.2 Cloud Server
	4.1.3 Clients

	4.2 Use Cases
	4.3 Challenges

	5 User Interface Investigation
	5.1 Paper Prototypes
	5.2 Focus Group
	5.2.1 Participants
	5.2.2 Discussion

	5.3 Results

	6 Implementation
	6.1 Distributed Architectures
	6.2 Vehicle
	6.2.1 Car PC
	6.2.1.1 CAN Messages Acquisiton
	6.2.1.2 Video Transmission

	6.2.2 Transfer Smartphone

	6.3 Server
	6.3.1 Entities
	6.3.1.1 ParkingSpace entity
	6.3.1.2 ValidParkingSpace entity
	6.3.1.3 User entity
	6.3.1.4 OSMStreet entity

	6.3.2 Processing Detected Parking Spaces
	6.3.2.1 Street Mapping
	6.3.2.2 Merging Parking Spaces

	6.3.3 Filtering Algorithm
	6.3.4 Processing Park-in and park-out messages

	6.4 Client
	6.4.1 Parking Space Information Display
	6.4.1.1 Parking Spaces Overlay
	6.4.1.2 Bounding Box Queries
	6.4.1.3 Information Bubble

	6.4.2 Video Client

	7 Evaluation
	7.1 Data Acquisition
	7.1.1 Goals
	7.1.2 Required Hardware and Software
	7.1.3 Hardware Setup
	7.1.4 Code for Acquiring Data
	7.1.5 Itinerary

	7.2 Analyzing the Performance of the Ultrasonic Parking Space Detection
	7.3 Street Matching Algorithm Test
	7.4 Data Filtering Algorithm
	7.5 Feasibility Discussion

	8 Summary and Conclusion
	8.1 Summary
	8.2 Conclusion

	CD-ROM Content
	Bibliography

 HistoryItem_V1
 TrimAndShift

 Bereich: alle ungeraden Seiten
 Beschneiden: keine
 Versatz: rechts um 4.25 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20131206132801
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 338
 295
 Fixed
 Right
 4.2520
 0.0000

 Odd
 3
 AllDoc
 55

 CurrentAVDoc

 None
 28.3465
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 58
 85
 84
 43

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: alle ungeraden Seiten
 Beschneiden: keine
 Versatz: unten um 2.83 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20131206132801
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 338
 295

 Fixed
 Down
 2.8346
 0.0000

 Odd
 3
 AllDoc
 55

 CurrentAVDoc

 None
 28.3465
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 58
 85
 84
 43

 1

 HistoryList_V1
 qi2base

