
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis Nr. 3586

Energy-proportional Machines

for Cloud Data Centers

Arturo Francato

Course of Study: Information Technology/InfoTECH

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Dr. Frank Dürr

Commenced: June 13th, 2013

Completed: December 13th, 2013

CR-Classification: C.2.1, C.2.3, C.4

Abstract

Today’s concern is about the energy efficiency of servers and high power machines
in a cloud datacenter infrastructure. According to Barroso et al. [1], an ideal
machine consumes energy proportional to the work performed. In this case, an idle
machine should consume no energy and a machine in operation should only consume
energy proportionally to the number of tasks performed. Even though the energy
efficiency of machines is constantly improving, they are still not perfectly energy-
proportional. Therefore, Dürr proposed the concept of Elastic Tandem Machines
Instances (ETMI) in [2] aims to improve the energy efficiency in particular for idle
and weakly loaded instances.

In this thesis, we attempt to improve the concept of Elastic Tandem Machines.
The original concept only integrated one low-power system on a chip (SoC) machine,
which operates during low load on the datacenter, and exactly one high-power vir-
tual machine(VM) instance, powered on when the traffic increases and needs to be
redirected. However, if the performance of the SoC and the VM instance differed too
much, the efficiency of the approach suffered since at the performance limit of the
SoC, when the transferred occurred, the high-power would be almost idle. There-
fore, we integrate different performance classes of VMs (e.g., small, medium, and
large instances) into Elastic n-Instance Machines to further improve the efficiency
and scalability of the system. We then design a predictive algorithm and integrate
it with the ETMI to decide, in advance, when the best time is, before overloading
any server, to switch among the instances.

The handover algorithm, based on a software-defined networking and the pre-
dictive algorithm, based on an Autoregressive Integrated Moving Average (ARIMA)
model are presented. The performance of the system with respect to the energy
efficiency and machine elasticity is evaluated using experiments and performance
benchmarks. The evaluations of the model demonstrate the applicability of low
and medium power instances serving low and medium loads efficiently, in addition
to the scalability of the solution among n-instances. The predictive method shows
satisfactory results when forecasting seasonal data, different models may have to be
implemented for non-seasonal series.

i

Acknowledgements

This thesis would not have been possible without the contribution of many dif-
ferent people, each of whom played a very supportive and distinctive role. I would
like to thank the following:

First, Prof. Dr. Kurt Rothermel for the opportunity he provided me to write
my thesis in the Institute of Parallel and Distributed Systems.

My supervisor Dr. Frank Dürr for his guidance and patience during these six
months of hard work.

My friends Alexandru Costinoaia, Ana Cristina Pintilie, Sukanya Bhowmik, Dar-
shana Das, Sreedhar Mahadevan and Naresh Nayak for helping and motivating me
when things got difficult, and also for creating a great atmosphere in the lab.

I would also like to thank Nicholas Mann for proof reading my thesis and giv-
ing me advice, and Noel Byrne for understanding and giving me time off work to
complete this thesis.

And last but not least, I would like to thank my family for always being there
for me in every moment of my life. Without their love, support, understanding and
patience this would not have been possible.

I am very grateful.

iii

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures vii

List of Tables ix

List of Algorithms xi

Acronyms xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Structure . 2

2 Background Fundamentals 3
2.1 Cloud Data Centers . 3
2.2 Cloud Computing . 3
2.3 Energy . 4

2.3.1 Energy Consumption . 4
2.3.2 Energy Efficiency . 6

2.4 Software-Defined Networking and OpenFlow 8
2.4.1 SDN Concept . 8
2.4.2 OpenFlow Protocol . 10

2.5 Time Series Analysis . 15
2.6 Related Work . 19

3 Problem Statement and System Model 21
3.1 Problem Statement . 21
3.2 System Model . 25

4 System Design 29
4.1 Overview . 29
4.2 ETMI and Handover Algorithm . 30
4.3 Predictive Algorithm . 35

v

Contents

5 Implementation 39
5.1 Description of the Hardware . 39
5.2 Description of the Software . 41
5.3 Measurement Circuit . 46

6 Evaluation 49
6.1 System Performance . 49

6.1.1 LPMI Performance . 49
6.1.2 MPI Performance . 50
6.1.3 ETMI Performance . 51

6.2 Energy Efficiency . 54
6.2.1 LPMI Power Consumption . 55
6.2.2 MPI Power Consumption . 56
6.2.3 HPI Power Consumption . 57
6.2.4 ETMI Power Consumption . 58

7 Summary and Future Work 59
7.1 Summary . 59
7.2 Future Work . 60

Bibliography 61

Author’s Statement 63

vi

List of Figures

2.1 CPU Utilization to Power Consumption[3] 5
2.2 Analysis of a typical 5,000 square foot data center[4] 6
2.3 Server power usage and energy efficiency at varying utilization levels[1] 7
2.4 Power usage and energy efficiency in a more energy-proportional server[1] 7
2.5 Traditional network device . 8
2.6 SDN Architecture[5] . 9
2.7 SDN architecture with openflow enabled components 12
2.8 Floodlight controller with its interfaces and applications[6] 13

3.1 Server power consumption and energy efficiency at varying utilization
levels, from idle to peak performance 23

3.2 System model with interfaces and key components 25
3.3 Raspberry Pi architecture and components[7] 26
3.4 BeagleBone Black board architecture and components[8] 27

4.1 System architecture . 31

5.1 Test bed topology. 41
5.2 Sequence flow diagram . 46
5.3 Circuits . 47
5.4 Final circuit . 48
5.5 Complete circuit . 48

6.1 LPMI performance . 50
6.2 MPI performance . 51
6.3 Seasonal time series . 52
6.4 Predicted load . 52
6.5 ETMI performance . 53
6.6 Stationary time series . 54
6.7 LPMI power consumption . 55
6.8 MPI power consumption . 56
6.9 HPI power consumption . 57
6.10 ETMI power consumption . 58

vii

List of Tables

2.1 Fields from packets used to match against flow entries[9] 11
2.2 Required list of counters for use in statistics messages[9] 11
2.3 Special ARIMA cases[10] . 18

6.1 Time to predict . 54

ix

List of Algorithms

4.1 Handover Algorithm . 33
4.2 Predictive Algorithm . 35
5.1 Floodlight Controller Module . 42
5.2 StatsThread . 43
5.3 AutoArima application . 44
5.4 PredictionController . 45

xi

Acronyms

AIC Akaike Information Criterion

AICc Corrected Akaike Information Criterion

API Application Programing Interface

AR Auto-Regressive

ARM Advanced RISC Machines

ARMA Autor-Regressive Moving Average

ARIMA Autoregressive Integrated Moving Average

ARP Address Resolution Protocol

CPU Central Processing Unit

DNS Domain Name Server

DDR3L Double Data Rate type three Low Voltages

DHCP Dynamic Host Configuration Protocol

DPID Open vSwitch Data Path Identifier

eMMC embedded Multi-Media Controller

ETMI Elastic Tandem Machines Instances

HPI High-Power Instance

HTTP HyperText Transfer Protocol

IaaS Infrastructure as a Service

IP Internet Protocol

JSON Java Script Object Notation

KPSS Kwiatkowski Phillips Schmidt Shin

LLDP Link Layer Discovery Protocol
xiii

List of Algorithms

LPMI Low-Power Micro Instance

MA Moving Average

MAC Media Access Control

MPI Medium-Power Instance

NIC Network Interface Card

NFS Network File System

OS Operating System

OVSDB Open vSwitch Database

PaaS Platform as a Service

QoS Quality of Service

REST REpresentational State Transfer

RISC Reduced Instruction Set Computer

SaaS Software as a Service

SARIMA Seasonal Auto-Regressive Integrated Moving Average

SDN Software Defined Networking

SDRAM Synchronous Dynamic Random Access Memory

SLA Service Level Agreement

SLO Service Level Objective

SoC System On a Chip

SSL Secure Socket Layer

ToS Type of Service

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

VIF Virtual Interface

VLAN Virtual Local Area Network

VM Virtual Machine

VN Virtual Network

XML Extensible Markup Language

xiv

Chapter 1

Introduction

A few years ago cloud computing was considered a tendency. As the concept
developed and more companies started using and benefitting from it, a major concern
was raised regarding energy efficiency. Since cloud computing systems, or cloud
data centers, need a great number of servers in order to provide different services,
such as infrastructure as a service (IaaS) and platform as a service (PaaS) among
others, they have a high energy consumption. Nowadays one of the main concerns is
about clean and renewable energy, as the data centers increase and more servers are
required to satisfy customers demands, an increasing demand for power also creates
growing energy costs, hence improving energy efficiency becomes a critical issue for
datacenter management.

Most of the time, high power servers that consume a lot of energy do not even
use their full potential and even when in idle mode consume a lot of energy. With
a large amount of servers running at the same time, and usually in a limited space
data center, a lot of heat is dissipated which means that a good cooling system needs
to be implemented to cool down the machines so they can operate properly.

The use of virtualization, where multiple virtual machines (VM) can be created
in one physical device, attempts to decrease the number of servers and the unused
resources needed to provide specific services. However, to obtain more resources a
cloud client needs to transfer its application from one VM to a more powerful one.
Sometimes this transfer might not be as smooth as expected, since a new provisioning
model from the service provider might only be through static allocation, it would
be hard to constantly reallocate resources when the workload keeps fluctuating.

Energy efficient machines are improving, but they are still not entirely energy-
proportional, meaning that the machine should consume energy proportional to the
number of tasks performed [1]. For example, a typical server used in cloud data
centers is energy efficient for medium and high load, but when under low load or
even in idle mode it still consumes too much energy. Therefore, the proposed concept
of Elastic Tandem Machines Instances (ETMI) in [2] improves the energy efficiency
in particular for idle and weakly loaded instances. This concept only integrates
one low-power system on a chip (SoC) machine and exactly one high-power virtual
machine(VM) instance. The SoC machine serves low load and is always available,
when the load increases the VM is powered on and the traffic transferred to it.

1

1.1. Motivation

However, if the performance of the SoC and the VM instances vary too much, the
efficiency of the approach suffers, since at the performance limit of the SoC, when
the traffic redirection occurs, the high-power machine would be almost idle.

1.1 Motivation
The goal of this thesis is to improve the energy efficiency and the power consump-

tion of cloud data centers by expanding the concept of Elastic Tandem Machines
proposed by Dürr [2]. To overcome the limitations provided by the SoC and avoid
the use of high power machines to perform during medium load, we integrate differ-
ent performance instances to smooth out the scalability and improve the efficiency of
the system. By adding more instances, such as Medium-Power Instances (MPI) we
prevent underutilized resources and with the use of low power instances we decrease
the energy consumption of the datacenter.

The previous system uses a relatively simple concept to decide when to switch
between instances; it basically uses a threshold scheme based on the current load of
the system. Therefore we integrate a more complex load and performance model. A
predictive model is designed and integrated into the system; it forecasts the future
load on the datacenter to decide in advance where to redirect the traffic.

1.2 Thesis Structure
Chapter 2 discusses the background concepts applied in the research and devel-

opment of this thesis, such as cloud computing, software-defined networking (SDN)
along with its elements and protocols, energy consumption in cloud data centers and
the ARIMA model which was used to predict and decide in advance when to switch
the traffic to the appropriate server. It also presents some related literature about
this work. Chapter 3 gives a clear description of the problem statement and intro-
duces the model of our system. Chapter 4 presents the system design and explains in
detail the handover algorithm, based on Software-Defined Networking (SDN) tech-
nologies and the predictive algorithm used to forecast the load in the datacenter.
The implementation of our system, together with the description of the hardware
and software used in our solution, is described in chapter 5. Chapter 6 evaluates
the performance benchmarks for the LPMIs and HPI in addition to the energy con-
sumption measurements of the tested devices, as well as the performance analysis
of the ETMI concept. Chapter 7 concludes the thesis and gives some suggestions
for future work.

2

Chapter 2

Background Fundamentals

In this chapter, concepts such as cloud data centers and cloud computing, energy
consumption and energy-proportional machines, along with Software-Defined Net-
working and OpenFlow will be introduced. The prediction model used to forecast
the traffic load on the web server will also be presented.

2.1 Cloud Data Centers
A data center, also known as a server farm, is where the majority of an enter-

prise’s servers, storage and network equipment are located, controlled and managed.

These data centers consist mainly of support infrastructure, IT equipment and
maintenance operations. The support infrastructure refers to the equipment re-
quired to support data center operations, containing power distribution units (PDU),
uninterruptible power supply (UPS), generators, computer room air conditioners
(CRACs), remote transmission units (RTUs), chillers and air distribution systems
among others. IT equipment includes the racks, cabling, servers, storage, network
gear and management systems required to provide computing services. Maintenance
operations ensure that both IT and infrastructure systems are properly operated,
maintained, upgraded and repaired when necessary.

Typically a data center is on-premise hardware that stores data within an orga-
nization’s local network, whereas a cloud data center is an off-premise form of com-
puting that keeps the hardware infrastructure at a different location and the data
can be accessed via the internet. Companies that provide cloud computing services
outsource their infrastructure, platform or even software to third-party companies
in the form of services.

2.2 Cloud Computing
Cloud computing is a technology in which the computing resources, such as

servers, databases and applications, are distributed over a network and shared
throughout the internet. The ability to segment this infrastructure and run different
applications on many connected servers at the same time is ideal for organizations

3

2.3. Energy

to offer their resources, as a service, to other companies. Cloud providers offer
their computing resources in various models, like infrastructure as a service (IaaS),
platform as a service (PaaS), and software as a service (SaaS).

Since the users’ requirements for cloud services are vast and diverse, the providers
must be able to quickly adapt and reallocate their resources for a better utilization
and efficiency of their equipment. Currently, the companies outsource their infras-
tructure in the form of virtual machines (VMs), where in a single physical machine,
multiple virtual computing environments can coexist.

As cloud computing becomes more popular, reliable and efficient, the cloud
providers need to update and improve their data centers and a major concern in
doing so is the energy consumption and efficiency of their infrastructure.

2.3 Energy
Energy is the capacity of a physical system or a body to perform work. There

are different forms of energy, such as electrical, mechanical, chemical, thermal, or
nuclear. Energy can also be transformed from one form to another. It can be
measured by the amount of work done in joules (J), according to the international
System of Units (SI).

Power is described as the work done per unit of time, it is measured in watts
(W) according to the SI and it is denoted by the letter P . Equation 2.1 shows the
electrical power produced by an electric current I going through a voltage difference
of V .

P = V ⇥ I (2.1)

Most of the electrical power that passes through a computer or server is converted
into heat. Depending on the amount of energy the server consumes, the greater the
heat dissipation. To avoid overheating these devices, heat sinks and fans are often
used to increase their capacity to dissipate heat. The goal to reduce the amount of
energy consumed by these servers, in other words, the efficient use of the energy, is
the main cost-effective strategy today.

In this thesis, we are concerned about the amount of electrical energy that is
being transferred by the servers, therefore the electric power produced when the
servers are in use and in idle mode.

2.3.1 Energy Consumption
Energy consumption of electric energy is measured by W ⇥ h (Watt x hour).

Electric devices use electric energy to produce a desired output, but not all of the
energy is converted as desired. Therefore, the energy efficiency of a device is mea-
sured by the amount of work accomplished compared to the amount of energy it
consumed to perform the operation.

4

2.3. Energy

The main source of power consumption in a server is the CPU [11]. The power
consumption of the processor can vary depending on many aspects such as number of
cores, technology used and also by its work load. Nowadays, multi-core processors
are much more power-efficient than previous models, but they are still not 100
percent power-efficient. As shown in Figure 2.1, even when the server is idle the
power consumption is still very high.

Figure 2.1: CPU Utilization to Power Consumption[3]

When evaluating the power consumption of a data center, not only the servers
but many other elements should be taken into consideration. In an analysis made
by [4] in Figure 2.2, where they modeled and examined the energy consumption of
a 5,000 square foot data center, they categorized the energy use in either supply
or demand, where demand systems are the servers, storage, network and other IT
systems and the supply systems support the demand side, in this case UPS, cooling,
PDUs etc.

Since much of the electrical energy that goes into the server is converted into
heat, a lot of energy is also required to remove the generated heat from the server
or a data center filled with servers. To cool down the servers and a data center a
cooling system is required, which accounts for almost 40% of the power consumption
of the datacenter.

5

2.3. Energy

Figure 2.2: Analysis of a typical 5,000 square foot data center[4]

2.3.2 Energy Efficiency
Energy efficiency is the amount of work done compared to the amount of energy

used. The exact way to measure and compare energy efficiency varies depending
on the particular application. When considering the energy efficiency for services
provided by a cloud or a server, it could be for example how many Joules are needed
for completing a transaction or retrieving a file from a web server. Depending on
the application, the metrics can greatly vary.

As stated by Barroso and Hölzle [1], servers usually operate most of the time
between 10 and 50 percent of their maximum utilization levels. When measuring
the energy efficiency of a typical server, the efficiency between those levels can be
half of the efficiency at peak performance. To obtain the energy efficiency, a simple
division between utilization and power value is performed, where utilization is a
measure of an application’s performance, for example the number of requests on a
web server, normalized to the performance at maximum load levels.

Figure 2.3 shows the comparison of the power usage and the energy efficiency
of a server varying the utilization levels from idle to maximum performance. When
analyzing the efficiency where the servers spend most of their time (10 to 50 percent),
it is evident that the power usage is too high compared to the utilization level.

6

2.3. Energy

Figure 2.3: Server power usage and energy efficiency at varying utilization levels[1]

For a better power usage of the servers, Barroso and Hölzle [1] proposed the
idea of energy-proportional machines, where energy-efficient servers consume energy
proportionally to their utilization or amount of work done. With energy-proportional
servers, the energy consumed in a datacenter could decrease considerably. As seen
in Figure 2.4, the energy efficiency of the server is above 50 percent in the typical
operating region.

Figure 2.4: Power usage and energy efficiency in a more energy-proportional server[1]

7

2.4. Software-Defined Networking and OpenFlow

2.4 Software-Defined Networking and OpenFlow

2.4.1 SDN Concept
Software Defined Networking (SDN) is a developing network architecture de-

signed to innovate and address some issues in today’s traditional network. The
traditional network architecture is formed by three planes of operation, which are
the management, the control and the data planes, all combined in a single network
device.

The management plane is responsible for maintaining, configuring and moni-
toring the devices, through protocols such as Secure Shell (SSH), Simple Network
Management Protocol (SNMP) and Telnet among others.

On the control plane the network devices run routing protocols, like Open Short-
est Path First (OSPF), Border Gateway Protocol (BGP), etc, to learn about the
neighbor devices and the complete network topology or reachability information.
The routing protocols then load the data into the Routing information Base (RIB),
which will populate the Forwarding Information Base (FIB).

The data plane contains the FIBs and once a packet/frame is received through an
input port, it will be then checked on the the forwarding table and will be dispatched
to an output port. Figure 2.5 shows the design of a traditional network device.

Network(Device(-(router(

Management(
Plane(

Control(
Plane(

Data(
Plane(

packet(
in(

packet(
out(

CLI(

OSPF/BGP/EIGRP(
RIB(

Forwarding(Table(
FIB(

SSH/Telnet/SNMP(

Figure 2.5: Traditional network device

The rapid increase in cloud data centers and services, server virtualization, mo-
bile devices and content are some trends motivating the networking industry to
reevaluate its traditional architectures. Many conventional networks are built with

8

2.4. Software-Defined Networking and OpenFlow

layers of Ethernet switches arranged in a tree structure. This architecture was suit-
able when client-server computing was dominant, but today’s needs in the enterprise
data centers, universities campuses and carrier’s environments for a new dynamic
computing make the traditional static architecture unsuitable [5].

According to the OpenFlow Networking Foundation (ONF)[5], SDN is the new
emerging design that is dynamic, convenient, cost-effective and adaptable, which
makes it ideal for today’s networking needs. This new architecture separates the
control and the data planes, giving the control plane programmable features and
the data plane more focus in the forwarding of packets.

As illustrated in Figure 2.6, the SDN architecture shows the division of the
control and data planes. Now all of the intelligence of the network is centralized in
the control layer, where software-based SDN controllers keep the general view of the
whole network. The infrastructure or data layer receives and accepts instructions
from the controllers and acts accordingly.

Figure 2.6: SDN Architecture[5]

This design simplifies the expansion and configuration of the network, when now
network managers just programmatically configure the controllers that will then
update the network, instead of having to configure each network device by hand.

SDN also has an application layer and with a set of supported APIs it is possible
to develop applications according to each business and network strategy. Routing,
traffic engineering, QoS, security and management are examples of common network
services that can be implemented and customized to meet customer requirements.

9

2.4. Software-Defined Networking and OpenFlow

Communication between the control layer and the data layer takes place through
the standard OpenFlow protocol, as shown in Figure 2.6.

2.4.2 OpenFlow Protocol
OpenFlow is the standard protocol responsible for the interface between the

control and the forwarding layers deployed in an SDN architecture. It provides
access to the forwarding layer of the network devices, such as switches and routers,
enabling traffic management and control.

The OpenFlow protocol is present at both ends of the interface. The control
plane operation, which previously resided in the network device, is now shifted to
run on external servers, so-called controllers. The network devices can be designed
to support not only the traditional forwarding but also OpenFlow-based forwarding.

OpenFlow Controller

The controller is an application that should be connected to all network devices
in order to send updates and receive data from these devices. The controller is
responsible for managing the data flow between servers and network devices in an
SDN environment. It creates a topology of the network and runs an algorithm to
decide how the forwarding table will appear; as soon as the algorithm is performed
across the network topology, the forwarding tables are dispatched to the switches or
routers through the OpenFlow protocol.

The OpenFlow controller maintains an encrypted Secure Socket Layer (SSL) con-
nection with the OpenFlow switches in order to communicate through the OpenFlow
protocol. There is also a link discovery protocol so the Controller can discover what
the network devices look like and the switches can signal back link/port state to the
controller.

OpenFlow Switch

The OpenFlow switch or a traditional switch that is OpenFlow-based contains a
secure channel, connected to an external controller, and a flow table, responsible for
packet lookup and forwarding. Compared to the traditional switch, the OpenFlow
switch’s functionalities have been reduced as it only has to deal with packet handling,
which it does using flow tables.

The flow table consists of a set of rules or flow entries; each flow entry contains
a matching field or header field, activity counters or statistics, and a set of actions.
When a packet ingresses the switch, it is compared against the switch’s flow table
based on prioritization. An entry that specifies an exact match (e.g. it has no
wildcards) is always the highest priority. Higher priority entries must match before
lower priority ones. If multiple entries have the same priority, the switch is free to
choose any ordering. If no match is found for that particular packet, the switch
sends the packet to the controller, which will handle the packet. When a match

10

2.4. Software-Defined Networking and OpenFlow

is found, the action determined for that specific match will be performed and the
statistics counters will be updated [9].

As defined in the Openflow Switch Specification version 1.0.0 [9], the header
fields that the packets are matched against can be seen in Table 2.1.

Ingress

Port

MAC

src

MAC

dst

Ether

Type

VLAN

ID

VLAN

Prior

IP

src

IP

dst

IP

Port

IP

Tos

TCP

UDP

src

port

TCP

UDP

dst

port

Table 2.1: Fields from packets used to match against flow entries[9]

The action field consists of the instruction that the switch will apply in the
packet; some of these actions are “forward”, which sends the packet to a specific
output port; it can also send the packet to multiple ports or even to the controller
and “drop”, where the switch drops the packet. Other optional actions may also
be performed, such as forward the packet to a queue attached to a port, flood the
packet to all ports and other switch’s ports, and also modify a field, including setting
a VLAN ID, changing the MAC address, modifying the IPv4 destination address
and so on.

Statistics are also provided by the switch; whenever a rule is reached the switch
will increment a counter. These counters can be per-table, per-flow, per-port and
per-queue [9]. Table 2.2 shows the counters that can be retrieved by statistics
messages.

Counter Bits
Per Table

Active Entries 32
Packet Lookups 64
Packet Matches 64

Per Flow
Received Packets 64
Received Bytes 64
Duration (seconds) 32
Duration (nanoseconds) 32

Per Queue
Transmit Packets 64
Transmit Bytes 64
Transmit Overrun Errors 64

Counter Bits
Per Port

Received Packets 64
Transmitted Packets 64
Received Bytes 64
Transmitted Bytes 64
Receive Drops 64
Transmit Drops 64
Receive Errors 64
Transmit Errors 64
Receive Frame Alignment Errors 64
Receive Overrun Errors 64
Receive CRC Errors 64
Collisions 64

Table 2.2: Required list of counters for use in statistics messages[9]

Figure 2.7 shows the SDN architecture with openflow enabled components.

11

2.4. Software-Defined Networking and OpenFlow

Figure 2.7: SDN architecture with openflow enabled components

Reactive and Proactive Approaches

There are two methods which the OpenFlow controller follows to set up the flow
tables in the OpenFlow switches: One is the reactive flow instantiation and the
other is the proactive flow instantiation.

The reactive flow happens when a packet received by a switch is not matched to
any flow table and the switch reacts to it by encapsulating it in a so-called PACKET-
IN and sending it to the controller in order to receive instructions on what to do with
the packet. In other words, upon receipt of a packet from the switch the controller
will determine the correct traffic for it and it will update the flow entries in that
switch.

Even though this approach saves memory by not storing several flow tables in
the switch and efficiently using the flow tables, it has its drawbacks. The controller
is essential in this approach: if the connection is lost between the switch and the
controller, the switch will have limited utility. It also uses a great amount of the con-
troller’s CPU, for example in a large network where several switches are connected
and requesting instructions at the same time from the controller.

With proactive flow instantiation rather then reacting to the packet and sending
it to the controller, the controller populates the flow tables of the switches ahead of
time. In this case the controller must know the topology of the network and all the
addresses of the end devices in order to download the flow entries into the switches.

12

2.4. Software-Defined Networking and OpenFlow

In this approach, if the connection to the controller is lost, the traffic will not be
interrupted and it also removes any latency produced by requesting the controller
for flow entries.

Floodlight Open SDN Controller

Floodlight is a software implemented in Java which is not only an OpenFlow
controller but also a set of applications built on top of the Floodlight controller [6].

Through a collection of functionalities, the Floodlight controller can analyze and
control an OpenFlow network and, with applications built on top of it, users can
develop different features to fulfill their needs.

By adopting a modular architecture, besides implementing its core network fea-
tures through its controller modules, Floodlight also has application modules that
implement other applications for various purposes. These applications are developed
based on Java and REpresentational State Transfer (REST) application program-
ming interfaces (API), which serves as the interface between the applications and
the features supported by Floodlight.

Figure 2.8 shows in detail the Floodlight controller architecture, together with
the controller built-in modules and the Java and REST API interfaces connected to
the application modules.

Figure 2.8: Floodlight controller with its interfaces and applications[6]

Controller Modules

The controller core modules are a set of common functions already implemented
and that are used by a great number of applications, such as discovering and moni-
toring that state of the network, capturing events and building the network’s topol-

13

2.4. Software-Defined Networking and OpenFlow

ogy and flows, allowing the communication between the controller and the switches
connected to the network through the OpenFlow protocol, managing the applica-
tion modules and the resources shared between the modules, besides providing a
graphical web user interface.

The following paragraphs describe some of these implemented controller modules.

FloodlightProvider

The “FloodlightProvider” module monitors the connections between the Flood-
light controller and the OpenFlow switches, collects the OpenFlow messages trans-
ferred, such as PACKET-IN, PortStatus notification, FlowRemoved, etc., and adapts
them into events that can be used by other modules. It is also responsible for de-
termining the order in which these messages are transmitted to the modules.

DeviceManagerImpl

The “DeviceManagerImpl” module monitors the trajectory of end-host devices
in the network by collecting information from packet-in events and matching their
attachment points to switches, and it defines the destination device for a new flow.

LinkDiscoveryManager

The “LinkDiscoveryManager” module uses Link Layer Discovery Protocol (LLDP)
and broadcast packets to detect and manage the status of links in the OpenFlow
network.

TopologyService

Besides keeping track of the network topology for the controller, the "Topolo-
gyService" module can also discover routes in the network. The module depends
on the results of the LinkDiscoveryManager and the FloodlightProvider modules to
operate.

RestApiServer

The “RestApiServer” module permits that other modules present their services
through the REST API. It uses the HTTP protocol and its methods such as GET,
POST, PUT and DELETE to perform different operations. It can be invoked by the
four methods using the custom Uniform Resource Locator (URL) and by modeling
the data structures in the form of Extensible Markup Language (XML) or Java
Script Object Notation (JSON) objects.

Application Modules

Floodlight already implements a few application modules that allow the con-
troller to perform the reactive and proactive approaches to set up the flows in the
OpenFlow switches.

14

2.5. Time Series Analysis

Forwarding

The “Forwarding” module is the default reactive approach application of the
Floodlight controller. Upon receipt of a packet-in, it will calculate the shortest path
and forward the packets to the designated devices; if the controller does not know
the destination of a particular packet, it will flood the packet onto the network.

Static Flow Pusher

The “Static Flow Pusher” module is the proactive approach that allows the
manual insertion and extraction of static flows into the switches’ flow tables. These
flows will neither age out nor be removed automatically from the switches.

Open vSwitch

Open vSwitch is an open source project licensed by Apache 2.0 and mostly
developed and deployed in Linux. It is a production quality, multilayer virtual switch
that also supports the OpenFlow Protocol. It allows substantial network automation
using programmatic extension and supports standard protocols and interfaces such
as 802.1ag link monitoring, Spanning Tree Protocol (STP) and IPv6 among others
[12].

Open vSwitch acts as an Ethernet physical switch but deployed in software.
Logical ports can be created and configured, attaching either virtual network inter-
faces (VIFs) to perform virtual machine connectivity or network interface controllers
(NICs) to emulate a physical interface. To distinctively identify an Open vSwitch
instance bridge, a Data Path Identifier (DPID) is given and each logical port is
assigned a port number.

The Open vSwitch can perform traffic forwarding between hosts and VMs con-
nected to a physical network or forward traffic among VMs inside the same physical
host. It supports standard management interfaces, for example sFlow, NetFlow,
CLI and the Open vSwitch Database (OVSDB) management protocol to administer
and query port status and configurations.

2.5 Time Series Analysis
Time series is the collection of data observed sequentially over a period of time.

In order to obtain significant characteristics and statistics of the data, methods of
time series analysis are used for analyzing time series data.

There are two main purposes for analyzing a time series: One is to comprehend
and model a sequence of random variables that gives rise to an observed series and
the other one is to predict or forecast the future values of a series based on previously
observed values and other factors [13].

Time series data models may contain different forms and reproduce distinctive
stochastic processes. When modeling variations in the level of a process, three main

15

2.5. Time Series Analysis

classes, which depend linearly on previous data points, are presented: the Auto-
Regressive (AR) models, the Integrated (I) models, and the Moving Average (MA)
models. New models can be generated by combining these classes, such as Auto-
Regressive Moving Average (ARMA) and Autoregressive Integrated Moving Average
(ARIMA) models.

Time Series Concepts

• Stationarity - a time series is called stationary if its properties do not depend
on the time at which the series is observed. For example, if y

t

is a stationary
time series, then for all s, the distribution of (y

t

, . . . , y

t+s

) does not depend on
t. Time series containing trends or seasonality are considered non-stationary,
while a white noise is stationary [10].

• Differencing - is the calculation of the difference between consecutive obser-
vations. This method is used in order to make a time series stationary and
remove its seasonality and trend features.

• Akaike Information Criterion (AIC) - for a given set of data AIC measures
the appropriate quality of a statistical model. It helps in the selection of a
model from a set of models. When selecting a forecasting model, the model
with the lowest AIC is considered the most suitable. A second-order variant of
AIC, also called AICc, was derived by Sugiura 1978, Sakamoto et al. (1986),
as when the number of parameters in relation to the size of the sample is too
high the AIC could perform weakly [14].

• Backshift operator - also known as the lag operator, is a convenient notation
in time series analysis when an element of a series is operated to produce the
previous element. The backshift operator can be denoted as B or L(for lag),
as seen in equation 2.2 , B operating on y

t

moves the data back k period(s).

B

k

y

t

= y

t�k

(2.2)

The use of the backshift operator is also convenient when describing the
method of differencing; in a first order difference the backshift notation
can be written as

y

0
t

= y

t

� y

t�1 = y

t

� By

t

= (1� B) y
t

(2.3)

in a more general view, a difference of order k can be written as

(1� B)k y
t

(2.4)

• White Noise - In statistical forecasting, white noise refers to a time series that
has no correlated variables, with zero mean and finite variance.

16

2.5. Time Series Analysis

ARIMA Model

An ARIMA model is the combination of differencing with autoregression (AR)
and moving average (MA). The differencing of the time series, causing the removal
of its trend and seasonality, is integrated into an Auto-Regressive Moving Average
(ARMA) model, thereby creating the ARIMA model. The same conditions, such
as stationarity and invertibility, used for AR and MA are applied to the ARIMA
model.

In the autoregressive (AR) model the prediction of the output variable is gener-
ated using a linear combination of the previous values of the variable, as indicated
by the name autoregression or the regression of the variable against itself [10]. An
autoregression model of order p is denoted by AR (p)and it is defined as

y

t

= c+ �1yt�1 + �2yt�2 + · · ·+ �

p

y

t�p

+ e

t

(2.5)

where �1, . . . ,�p

are the parameters of the model, c is a constant and e

t

is white
noise. Applying the backshift notation the equation can be abbreviated to

y

t

= c+
pX

i=1

�

i

B

i

y

t

+ e

t

(2.6)

The moving average (MA) model, instead of depending on the past values of the
forecast variable in a regression, uses a linear regression of the current and previous
white noise errors. As seen in equation 2.7, where e

t

is white noise and �1, . . . ,�q

are the parameters of the model

y

t

= c+ e

t

+ ✓1et�1 + ✓2et�2 + · · ·+ ✓

q

e

t�q

(2.7)

The equation can be abbreviated the equation with the backshift operator B

y

t

= c+ (1 + ✓1B + · · ·+ ✓

q

B

q) e
t

(2.8)

The ARMA model, combining AR and MA, assumes that the process y

t

is sta-
tionary, but to deal with non-stationary series the differencing can help to make the
process stationary, thus the ARIMA model extends ARMA. The series y

0
t

, as seen
in equation 2.9, is the differenced series and the other parameters are the lagged
values of y

t

and lagged errors

y

0
t

= c+ �1y
0
t�1 + · · ·+ �

p

y

0
t�p

+ ✓1et�1 + · · ·+ ✓

q

e

t�q

+ e

t

(2.9)

A non-seasonal ARIMA model is defined as an ARIMA (p, d, q) model, where

(1� �1B � · · ·� �

p

B

p) (1� B)dy
t

= c+ (1 + ✓1B + · · ·+ ✓

q

B

q)e
t

" " "
AR(p) I(d differences) MA(q)

17

2.5. Time Series Analysis

The ARIMA model can also represent other models according to the selected
values of p, d and q. Table 2.3 shows some examples of special ARIMA cases.

White Noise ARIMA (0, 0, 0)
AutoRegression ARIMA (p, 0, 0)
Moving Average ARIMA (0, 0, q)

Table 2.3: Special ARIMA cases[10]

The ARIMA model may experience some variations and extensions to forecast
different types of series. When a seasonal effect is suspected in the model, an
extension of the ARIMA model can include seasonal components to capture the
periodic variations in the series. This extension of the ARIMA model is also called
Seasonal ARIMA (SARIMA) and the only difference from the non-seasonal model
is that it adds backshift components of the seasonal period. The seasonal ARIMA
is defined as

ARIMA (p, d, q) (P,D,Q)
m

where (p, d, q) is the non-seasonal part of the model and (P,D,Q) is the seasonal
part with m being the number of periods per season.

The equation involving the seasonal periods, without differencing, can be written
as

� (Bm)� (B) (y
t

� c) = ✓ (B)⇥ (Bm) e
t

(2.10)

The non-seasonal part is:

AR: � (B) = 1� �1B � · · ·� �

p

B

p

MA: ✓ (B) = 1 + ✓1B + · · ·+ ✓

q

B

q

The seasonal part is:

SAR: � (Bm) = 1� �1B
m � · · ·� �

p

B

pm

SMA: ⇥ (Bm) = 1 +⇥1B
m + · · ·+⇥

q

B

qm

Statistical software and programming languages are widely used to automate the
forecasting of time series. R programming languages is an example of software and
programming language used by statisticians to develop statistical software and data
analysis.

R provides a variety of packages, containing functions and extensions, to facilitate
the implementation of statistical and graphical techniques, such as the forecast,
which provides forecasting functions, tseries, for time series analysis and so on.

18

2.6. Related Work

2.6 Related Work
In this section, we review some literature related to our approach to improving

the energy efficiency and resource utilization of cloud infrastructures.

In [15], the authors present a model of elastic resources framework for IaaS
to address the need for a more flexible resource allocation mechanism to benefit
the variable workload on servers and VM. They developed a forecasting engine
that predicts the expected demand which a resource manager uses to allocate the
resources and minimize the service level agreement (SLA) violations.

In their approach, they predict the VM CPU requirement based on the requested
rates and they use the response time to measure SLA violations. After verifying their
prediction with the pricing policy and SLA penalties, they choose the appropriate
resources.

Another approach similar to [15] is [16], where an original scheme named PRe-
dictive Elastic reSource Scaling (PRESS), to automatically adjust the resource al-
location to applications’ demands, is presented. They developed a signal processing
technique that identifies patterns in the system. Then a discrete-time Markov chain
is applied to predict the demand for the near future. According to the prediction,
PRESS tries to avoid under-estimated values to prevent service level objective (SLO)
violations.

Even though their approach is similar to ours in the sense of predicting the load
and reallocating resources, they are concerned specially with preserving performance
SLA and SLO, and not with energy efficiency. Since they use a homogeneous sys-
tem with VM allocation, meaning the resource even if idle will still be powered on
and consume energy. This is different from our approach, which utilizes heteroge-
neous hardware to efficiently support idle and weakly loaded VMs without sacrificing
availability.

Based on energy-proportional systems, [17] also attempts to reduce energy con-
sumption in data centers. The approach of using a hybrid datacenter design, com-
bining low and high power platforms to balance the workload, is proposed with an
Intel Atom SoC and a Xeon platform. The traffic is transferred from one platform
to the other as soon as the load increases or decreases. If there is no traffic on either
device, that device will be in idle mode and will be awakened by the other device
when the traffic needs to migrate.

This approach uses a complete and discrete design to integrate their system,
whereas we propose a network-based mechanism to integrate our system.

With the emergent OpenFlow standard, alternative network solutions are en-
abled. For example, in cases where balancing the traffic load is necessary, the use of
OpenFlow-enabled switches and OpenFlow controllers could avoid dedicated load
balancers, which can become a bottleneck on the network. An approach which takes
advantage of the SDN architecture is presented in [18], where the openflow network

19

2.6. Related Work

switches together with the controller are responsible for dividing the traffic among
the servers by creating wildcard rules to handle the packets and automatically bal-
ance the load without disrupting current connections.

Even though this approach relates to ours, as it uses an SDN solution to bal-
ance the load across the datacenter, it has some weaknesses when redirecting the
traffic. The system uses the TCP SYN flag to distinguish between new and existing
connections, which can only be matched by the openflow controller. In the case of
a centralized controller it might lead to a bottleneck in the system. Another prob-
lem is when the system tries to identify the end of a connection, which it does by
assuming 60 second of inactivity. This might lead to broken connections if packets
are transferred after the 60 second timeout. We prevent this scenario by keeping a
connection available between the servers and the controller that maintains the open
connections while still transferring the new ones to another instance.

This thesis attempts to improve a previous approach proposed by [2], where the
concept of Elastic Tandem Machines Instances (ETMI) was introduced. It integrates
two servers to simulate an energy-proportional machine and it aims to improve the
energy consumption of cloud data centers. One server would be a SoC machine,
referred to as a Low-Power Micro Instance (LPMI), and the other a commodity PC
host, called High-Power Instance (HPI).

The basic idea of the approach is to keep the LPMI constantly running, since it
only consumes a few watts, and leave the HPI in a sleeping mode. During low load
conditions only the LPMI will be running to improve the energy efficiency; as soon
as the load rises beyond a certain predefined threshold, where the performance of
the LPMI drops, the HPI is turned on and the traffic is transferred to the HPI. The
same process happens when the load drops, when the traffic is transferred back to
the LPMI and the HPI returns to a dormant to consume less energy.

SDN technology is used to seamlessly perform the handover from one instance to
the other. This ensures that currently established connections are not broken and
new connections can be forwarded to the new instance in a way that is transparent
for the clients.

To achieve a more energy efficient system, we try to fill the gap between an LPMI
and an HPI by adding more instances to bring the energy efficiency curve as close
as possible to an ideal energy-proportional machine, as described in [1].

Besides increasing the number of instances, a predictive model is used to improve
the efficiency and scalability of the system, determining in advance when to transfer
the load among the machines.

20

Chapter 3

Problem Statement and System

Model

In this section, the intended system model and the assumptions for our approach
are presented. Based on the current data centers’ architecture and infrastructure
we show their disadvantages and we attempt to efficiently improve them with our
model.

Our system design is focused on specific data centers where IaaS providers offer
their infrastructure resources to the customers. In order to improve efficiency and
resource utilization, these providers use methods such as virtualization combined
with server consolidation and overbooking of resources. These methods can be very
beneficial in some sense, but as we show in the next paragraphs some disadvantages
also prevent them from being cost and energy efficient.

3.1 Problem Statement

Server Virtualization

When virtualizing physical servers, IT organizations partition these servers into
many virtual machines. Distributing resources through VMs reduces the number of
physical hosts needed in a data center. Since most of these servers do not utilize their
full capacity, using only between 10 to 50 percent of their potential [1], this method
relieves the problem of underutilized physical hardware. In order to overcome this
issue, operators sometimes overbook their servers by creating more VMs on the
same host. However, this solution also has a side effect as overbooking the server
with too many VMs may cause the server to overload, consequently decreasing its
performance. In addition, overbooking also increases the complexity of the system.

Even when the resources are not being used, the operators must keep them
available in case of a rise in the load, for example in a web or application server,
when the amount of requests suddenly increases these VMs need to quickly respond
with the minimum delay possible. Keeping the resources available even in idle mode
not only wastes resources but also energy. Although being an effective approach,

21

3.1. Problem Statement

it requires complex adaptation mechanisms. When migrating to different virtual
machine to avoid overloading under dynamic circumstances, it must also keep the
VM available while being idle or slightly loaded.

To avoid these issues, we propose a system based on heterogeneous physical hard-
ware which adapts itself according to the scenario. It uses low power consumption
machines, for low load and performance demands, and it gradually scales up to more
powerful instances when the load increases and higher performance is required. With
this approach, we try to approximate as much as possible to an ideal machine which
when in idle mode consumes almost no power and when requested can be promptly
available thereby proportionally consuming energy according to the amount of work
performed (see Hölzle et al.) [1].

Server Adaptation

Another concern when creating VMs concerns resource allocation and how much
should be provided in order to fulfill the SLA and at the same time avoid wasting
resources. Some providers, such as Amazon [19] offer different instance types and
features, such as small, medium or large with specific processor, memory, network
performance etc. This type of mechanism is suitable for companies in which the
requirements match one of the proposed types. However, for businesses in which
the workload varies constantly and which need to suddenly either increase or de-
crease their resource, this method would not be appropriate, since every time more
resources are needed, they either have to buy another instance or switch the old
one to a larger one. Further, to book new instances and adapt them to the specific
traffic also takes some time, therefore a mechanism to trigger the adaptation in time
without overloading the instance and avoiding transition periods is needed.

With our heterogeneous approach combined with a predictive model, this issue
could be resolved. We propose a predictive mechanism based on the ARIMA model
using past values to forecast the future resources needed and according to those
predictions act in advance by transferring the load to the specific machine capable
of performing the workload at the right time, avoiding the machine becoming over-
loaded. If the predictions are either under- or over-estimated, another mechanism
is also implemented in which each instance can communicate to the main controller
warning the controller of its load, thus causing the controller to automatically re-
spond by transferring the load to a more appropriate instance. This method will be
detailed in the system architecture and in the implementation chapters.

Energy Consumption and Energy Efficiency

Cloud data centers also suffer as a result of the great amount of energy consump-
tion. With more servers been stacked closely together in racks and inside closed
warehouses, more electricity is required not only to power these machines but also
to cool the equipment and infrastructure. Most of the electrical energy consumed
by the servers is transformed into heat. During operations, a large amount of heat

22

3.1. Problem Statement

is dissipated by the various components of the machine, such as power supply, mem-
ory, and mainly the processor. In order to keep these devices from overheating and
within their safe operating temperatures, cooling methods need to be implemented.

Several methods are available today to cool the servers’ components. The use
of heat sinks is one of the methods that uses a thermal conductor to transport the
heat away from the components to the larger surface of the sink, thus dissipating the
heat and cooling the device. Other methods such as fans and water cooling are also
implemented. Besides cooling the servers’ components, larger and more powerful
equipment is required to cool the entire infrastructure. Combined, these cooling
systems may account for almost 40% of the energy consumption of a data center,
for example in a 5,000 square foot data center research investigated by Emerson [4].

The servers not only consume a great amount of energy but they are also not
energy efficient. The ideal host, according to Barroso et al. in [1], is energy-
proportional when the energy consumption is proportional to the utilization or work
done. Our approach attempts to get as close as possible to an ideal machine. As seen
in Figure 3.1a, in an ideal system the power consumption would be proportionally
distributed according to the utilization, but Figure 3.1b shows a real system, where
it can be seen that even when the utilization is low the power consumption is very
high.

Typically, a server starts becoming efficient above around 60 percent of its ca-
pacity utilization [1]; before that it consumes a lot of energy even though it is not
being significantly utilized. From Figure 3.1b we can also see that the typical oper-
ating region of servers is between 10 to 50 percent of capacity utilization, therefore
in order to avoid that gap of inefficiency we designed a model that uses low-power
instances to fill that region.

P
ow

er
 c

on
su

m
pt

io
n

(p
er

ce
nt

 o
f p

ea
k)

100

100

0
0

Utilization (percent)

(a) Ideal system

P
ow

er
 c

on
su

m
pt

io
n

(p
er

ce
nt

 o
f p

ea
k)

100

0
0

100
Utilization (percent)

Typical operating
region

Energy Efficiency
curve

Efficient region

(b) Real system and energy efficiency curve

Figure 3.1: Server power consumption and energy efficiency at varying utilization
levels, from idle to peak performance

Our system’s approach implements an energy-proportional system by using low
power machines such as SoCs, which consume only a few watts even in high load
circumstances, and since it consumes low energy, the heat dissipation of these devices

23

3.1. Problem Statement

is also very low, rendering the use of heavy cooling equipment redundant. Another
advantage of our design relies on the fact that the high-power instances remain in
a dormant mode when not being used, saving energy and dissipating less heat. In
Chapter 6, we evaluate and demonstrate the power consumption of these devices
and the energy efficiency of our system.

Network Elements

A network element of common use is load balancers. These devices are used to
direct the traffic to specific servers according to the load, in order to avoid overload-
ing a particular server. It can also be used for redundancy: if one of the machines
fails the traffic can be directed to another device. The problem with load balancers
is that besides increasing the amount of devices in the system, and thereby also
increasing the energy consumption of the datacenter, they also add another point of
failure to the system. In this case redundant load balancers are necessary to avoid
this issue, which brings us back to the problem of too many devices.

Our approach involves the use of an SDN architecture, which helps to resolve
some network issues. The OpenFlow controller together with OpenFlow-enabled
switches can not only decrease the amount of devices in the network but also fa-
cilitate the configuration and maintenance of the network. The OpenFlow protocol
interfacing the controller and the switches using a SSL connection facilitates com-
munication among the devices connected to the network and helps to keep the
controller informed of the network topology with information such as link and port
status, switch availability, etc.

Transparency

The integration of many devices can be difficult, inefficient and sometimes cause
gaps in system availability. In order to design a transparent system where the
data center can be accessed by clients through a single IP address and a range of
heterogeneous hardware can be integrated, we utilize SDN technology to perform
the redirection of the traffic to different instances, a handover protocol to avoid
unavailability during transitions and a predictive algorithm to determine the best
time to switch before overloading the machine.

In the next section, we present the complete model of our system, combining the
heterogeneous hardware solution with an SDN architecture and taking advantage of
a predictive mechanism to improve the data center’s resource allocation and energy
efficiency.

24

3.2. System Model

3.2 System Model
To model our system, we extended Dürr’s [2] design, where implementation is

carried out by having one low-power SoC hardware accommodating the Low-Power
Micro Instance (LPMI) and one commodity computer hosting the High Power In-
stance (HPI). To further improve this approach we add more instances, such as low,
medium and high power, assuming the performance of the high-power hosts would
be considerably better than the performance of the low-power ones and the medium-
power hosts scale up in power and performance. Figure 3.2 provides an overview of
the proposed model. In the next paragraphs we describe the main elements of the
model.

Figure 3.2: System model with interfaces and key components

Our approach considers a typical single data center acting as an IaaS provider
and consisting of physical devices such as servers and network equipment. The
servers which run the applications of the datacenter include: LPMIs, MPIs and
HPIs. HPIs can host virtual machines (VMs), depending on the demand of the
customer, since their performance is higher than the LPMIs. On the other hand,

25

3.2. System Model

in our case the LPMIs are not virtualized since their resources are limited. LPMIs
have an advantage over HPIs when comparing their power consumption, as LPMIs
are expected to consume only a few watts. However, their resources are reduced,
with fewer memory, lower CPU and network speed, but still capable of hosting
a web or application server, as shown in the evaluation section. Medium-Power
Instances (MPIs) are machines that fall between LPMIs and HPIs, with not too
many resources as compared to an HPI but at the same time more powerful than
LPMIs.

For the SoC-based LPMI we take for example, the Raspberry pi, which is a low
cost credit-card-sized single-board computer that has a Broadcom BCM2835 system
on a chip and is based on the ARM 11 processor running at 700 MHz. The main
storage device is an SD card and has a 512 MB SDRAM at 400 MHz. There is a
10/100 Mbps USB to Ethernet chipset and the board is powered by a 5V power
source via a MicroUSB with a 322mA at idle and rated at 700mA [20]. Figure 3.3
shows the structure of the Raspberry pi and its components.

Figure 3.3: Raspberry Pi architecture and components[7]

Another SoC-based LPMI that the data center may contain is the BeagleBone
Black board, which is designed with a low-cost ARM Cortex-A8 based processor
running at 1GHz.

The BeagleBone Black offers an onboard 2GB eMMC and a microSD card as its
main storage. A single 512MB DDR3L memory device is used and it operates at
a clock frequency of 303MHz yielding an effective rate of 606MHZ on the DDR3L
bus and allowing for 1.32GB/S of DDR3L memory bandwidth. A 10/100 Mbps
Ethernet is the connection to the network. The board can be powered from four
different sources: a USB port on a PC limited to 500mA, a 5VDC 1A power supply

26

3.2. System Model

plugged into the DC connector, a power supply with a USB connector and through
expansion connectors [8]. A detailed structure and the key components of the board
can be seen in Figure 3.4.

Reset
Button

Power
Button

USB
Host

uHDMI

uSD

Boot
Button

HDMI
Framer

Sitara
AM3359 eMMC

512MB
DDR3

Ethernet
PHY

PMIC

DC
Power

10/100
Ethernet

LEDs

Figure 3.4: BeagleBone Black board architecture and components[8]

All of the instances (LPMI, MPI and HPI) are connected to the same data
center network, which contains switches, routers, the OpenFlow controller and the
file and database servers. In our network topology, we assume that the routers are
the gateways connected to the Internet, the switches provide connectivity among the
machines inside the data center and clients outside the data center and an OpenFlow
controller is connected to the core switches, which are OpenFlow enabled. The other
switches can be any multi-layer switch capable of forwarding packets between layers
2 and 4 through source and destination MAC or IP addresses and port numbers.

Since a number of network switch and router vendors already support the Open-
Flow protocol, including Big Switch Networks, Brocade Communications, Cisco and
IBM among others, our assumption of having our core switches being OpenFlow-
enabled is plausible.

Our solution is focused on a typical three-tier architecture, where we use the
middle tier services, such as web and application servers, to implement our approach.
All of the instances, LPMI, MPI and HPI run these servers. Separate machines
dedicated to store persistent data and state information, such as databases and
file servers, are always running and are disregarded in the measurements of our
optimization approach.

Since the hardware platform of the SoCs may differ from the high-power hosts, as
the first uses ARM architecture and the last one x86, the transfer of state information
between these servers can be complex. Accordingly, we assume that all information
is stored in the backend servers (file servers or database) or in the client’s machine,
except for specific individual requests which the middle tier service will use as volatile

27

3.2. System Model

state information. For example, when clients want to access dynamic content on the
web, in order to do so a server-side scripting, such as PHP or ASP, might request
information from the database, handle it and write the results back to the database,
all within the same request from the client. Other information such as HTTP cookies
is stored on the client’s machine. These assumptions are very realistic for web-based
applications, such as LAMP (Linux, Apache, MySQL and PHP) or servlet engines
connected to a persistent storage.

28

Chapter 4

System Design

This thesis extends the concept introduced by Dürr [2] which implements efficient
and scalable machine instances. His approach uses a single LPMI and a single
HPI to provide an Elastic Tandem Machine Instance (ETMI) and a non-disruptive
handover protocol based on SDN technologies to transfer the traffic to the specific
instance, either the LPMI or the HPI. In order to decide when to switch between
devices, it uses a load monitor to indicate when the machines are either under- or
overloaded. Our approach improves the ETMI by adding more instances between
the LPMI and HPI, which we call Medium-Power Instances (MPI), in order to make
the scale up or down smoother. We also add a predictive algorithm to determine
in advance when the machines will be under/overloaded, switching between devices
before the performance of the system decreases. In this chapter, we present the
entire architecture of our system, combining some implementations performed by
Dürr [2] and our extended achievements to the system.

4.1 Overview
As previously mentioned, we are interested in offering a system which is energy

efficient and at the same time always available and capable of scaling up and down
depending on demand. Through the ETMI we incorporate different instances, such
as LPMIs, MPIs and HPIs to achieve that goal. We assume that every instance is
connected to the same data center and they have the middle tier software installed
and configured in the same way. They also share the same file server and databases.
For example, in a web server, a request from a client to a certain service will have the
same behavior regardless of the instance which responds to the request. A predictive
algorithm will be running on the background to forecast the load and transfer the
prediction to the controller, which will decide when and to which instance it should
forward the traffic.

Since past values related to the load of the datacenter are needed in order to
predict future loads, the prediction algorithm must wait until enough values are
saved in order to best estimate the forecast. During that time, the transfers are
made according to the current load on the instances. At first, assuming the load on
the servers is low, only the LPMIs will be running, benefiting from the low power

29

4.2. ETMI and Handover Algorithm

consumption of the SoCs. As soon as the load increases beyond the performance
of the LPMIs, an MPI is automatically booted; once the instance is ready new
connections are transferred to the MPI, releasing the load on the LPMI. The same
procedure will take place if the MPI becomes overloaded, but this time scaling up to
an HPI (in case of multiple MPIs, it will be sent to a more powerful MPI). During
the transition between instances, requests are still forwarded to the previous host
until the next instance is available.

Traffic statistics are periodically collected from the OpenFlow switches, saved
and used by the predictive algorithm. Once enough data is available, the prediction
will be performed and sent to the controller for analysis. After the prediction has
been analyzed, the transition between instances will occur according to the fore-
casted values. The original system will still be running in case a sudden change
occurs which was not captured by the prediction. The transitions should occur as
smoothly as possible, so for the client outside the data center they would be im-
perceptible. The control logic, which decides the path the traffic should flow, is
implemented in software by the SDN controller, which configures the core switches
to perform the forwarding of the packets in the communication network.

Even though the ETMI is formed by n instances, it is accessible by only one
public IP address, so for the outside world it looks like a single machine. One
of the difficulties in making this transparent to the client is during the handover
process, where depending on the protocol used to communicate with the data center,
e.g. HTTP requests over TCP, connections may still be established between one of
the instances and the client. In such a case, to avoid breaking these connections
and since our approach does not implement VM migration, we have to make sure
these connections are still sent to the original instance until they are naturally
disconnected, while the new connections are forwarded to the new host. In the next
section, we will describe in detail the complete architecture, the predictive algorithm
and the handover protocol implemented in our approach.

4.2 ETMI and Handover Algorithm
Our system is designed as a single data center, consisting of network equipment

such as switches and routers, backend servers such as file servers and databases, the
ETMI and a server running the predictive algorithm. Part of the network is based
on SDN architecture, which contains the main element of our approach, the SDN
controller. The core switches are OpenFlow-enabled, so they can communicate with
the SDN controller through the OpenFlow protocol. Aggregation switches connect
the ETMI to the core switches; these may not be OpenFlow enabled since they only
need to perform layer 2 forwarding. Virtual switches connecting the VMs may also
be implemented. The SDN controller is not only connected to the core switches but
also the aggregation ones for the internal communication. The backend servers are
connected to the network and are accessible by every instance of the ETMI. The
LPMIs, MPIs and HPIs form the ETMI; these servers are connected to the network
through the aggregation switches, therefore they do not need to be physically close

30

4.2. ETMI and Handover Algorithm

to each other. Since the predictive algorithm is implemented in software, it does not
necessarily need to be on a separate server; in our implementation it runs on the
same machine as the SDN controller. Figure 4.1 illustrates the architecture of our
system, the key components and the interfaces that connect them.

The core switches are responsible for forwarding the traffic to the appropriate
instance in the ETMI. They do it according to their forwarding tables updated by
the SDN controller through the OpenFlow protocol, which decides, based on the
prediction, the best instance to redirect the load to. In order to keep the network
consistent, the SDN controller configures all of the core switches with the same
forwarding table entries. The SDN controller is also responsible for periodically
collecting traffic statistics, e.g. bytes and/or packets received/transmitted, from the
switches. This information is used by the predictive algorithm to forecast the load.

Figure 4.1: System architecture

The ETMIs are each configured with two different IP addresses. One is a private
and distinct IP address, which is used for internal communication among the backend

31

4.2. ETMI and Handover Algorithm

servers and the SDN controller. The other one is the public IP address of the service,
which is the same for every instance of the ETMI. Since the SoCs only have one
network interface, both IPs are assigned to the same NIC, applying a method named
IP aliasing. To redirect the traffic from the client to the appropriate instance, the
core switches perform a MAC address rewriting, which is previously configured by
the controller. This process is explained in detail further on.

According to the traffic statistics collected by the controller, the predictive algo-
rithm reads these statistics and applies an ARIMA model to forecast the traffic load
for the next period. It then, according to the prediction, decides which instance is
more suitable for the load at each specific time. After making the decision, the algo-
rithm sends the result to the controller. The controller will then apply the handover
algorithm to update the flow table entries of the core switches to forward the traffic
to the specific instance.

As previously mentioned, if the prediction is not accurate and the load is either
higher or lower than predicted, the system can still adapt based on the approach
proposed by Dürr [2] with a few modifications. A load monitor, installed and exe-
cuted on each instance of the ETMI, determines the load of the particular instance
and constantly updates the controller about its status by sending either under- or
overloaded messages. To decide when a server is under/overloaded, threshold values
are defined for each instance. Different metrics can be implemented to measure the
load on the instances, for example CPU load, request rate etc. Upon receiving the
messages from the instances, the controller decides where to redirect the flow. Mech-
anisms to avoid too many changes in a short period of time are also implemented.
Since the HPIs and possibly the MPIs (depending on the machine used) need to boot
every time the traffic is forwarded to them, we added a function that first verifies if
the instance is underloaded in case old connections are still loading the host; if not
we check if the redirection has happened within a 120-second interval. A Virtual
Machine Manager is responsible for starting the MPIs and HPIs after receiving the
command from the controller. The manager also informs the controller when the
instance is ready to receive requests.

To clarify in more detail how the handover and the prediction algorithms work,
we present them in the next sections.

Handover Algorithm

Since the new model contains more than two instances and a prediction process
has been added to the design, the new handover algorithm contains a few modifi-
cations from the previous handover protocol implemented by Dürr [2]. First, the
algorithm must identify to which device it should redirect the traffic, according to
the prediction received from the predictive algorithm. Second, it should transfer the
traffic at a specific time before the instance is overloaded. This last step is performed
by the prediction controller, which will be introduced in the implementation chap-
ter. The handover algorithm is formally presented in Algo. 4.1 as a pseudo-code,
followed by the detailed explanation of the steps required to perform the operations.

32

4.2. ETMI and Handover Algorithm

Algorithm 4.1 Handover Algorithm
1: procedure ONHANDOVERALGORITHM
2: newInstance prediction
3: if newInstance 6= previousInstance
4: VMManager.bootAndWaitForResponse()
5: ConnectionBlockerPreviousInstance.blockSynRequests()
6: C ConnectionMonitorPreviousInstance.getConnections()
7: for all c 2 C do {pin established connections}
8: addFwdTableEntry:
9: match[c.asrc, c.adest, c.portsrc, c.portdst] !

action[dstMac = mPreviousInstance]
10: end for
11: modifyFwdTableEntry: {forward new connection to newInstance}
12: match{apublic} ! action[dstMac = mNewInstance]
13: ConnectionBlockerPreviousInstance.unblockSynRequests()
14: end if
15: end procedure

The algorithm is responsible for redirecting the traffic to the correct instance.
Since our approach is based on an SDN technology, the controller is able to statically
configure the switches’ flow table entries to specify the forwarding path that the
packets should follow. As mentioned earlier, every instance of the ETMI is configured
with the same public IP address; to distinguish among the instances we use their
individual MAC addresses.

Whenever requested, the controller will push a static flow table to the switch
with the action of rewriting the MAC address of incoming packets that match the
destination public IP address of the data center. In this way, different flows will be
installed according to the instance that should receive the traffic and the old flows
will be deleted from the table. Thus, when a packet arrives at the switch with the
destination public IP address of the data center, the core switch will write the MAC
address of the corresponding instance and forward the packet to the aggregation
switches; since the aggregation switches perform layer-2 forwarding the packets will
be sent based on their MAC addresses. The action of rewriting the MAC addresses
is only necessary for incoming packets, since every instance contains the same public
IP address; through IP aliasing, outgoing packets will always be forwarded to the
client from the same source IP address.

Before redirecting the traffic to a specific instance, the controller must identify
established connections to avoid breaking them when forwarding the traffic to a
new host. To accomplish that, two components installed on the instances help
the controller to identify and block the new connections to the host. One is the
connection monitor, which upon request from the controller will detect all of the
established TCP connections between the client and the instance and send them
to the controller. The other element is the connection blocker, which is responsible
for blocking new requests to the instance during the handover between instances.

33

4.2. ETMI and Handover Algorithm

The following steps demonstrate the procedures of the handover algorithm once the
controller is triggered by the ETMI.

Step 1 – Identifying the new instance:

The new instance is selected according to the prediction received from the pre-
dictive algorithm. Before going to the next step, it first checks if the new instance
is the same as the old instance; if it is the next steps do not need to be performed.

Step 2 – Booting new instance:

If the new instance is not an LPMI, which should always be running, the con-
troller either sends a request to the VM Manager to start the instance or it sends a
Wake On LAN (WOL) packet to the desired machine. Once the machine has been
booted and is ready, the controller is acknowledged.

Step 3 – Pinning established connections:

Before transferring the new connections to the new instance, the controller needs
to make sure that old connection are still forwarded to the former instances and not
destroyed. To achieve that, the controller requests from the connection monitor, of
the former instance, all of the established TCP connections. The connection monitor

replies to the controller the source and destination IP addresses and port numbers
of each TCP connection. In order to maintain those connections, the controller pins
them by updating the flow tables of the switches adding a new forwarding rule,
with a higher priority to rewrite the MAC address of only those connections. By
applying a higher priority, we assure that these packets will be transferred to the
original instance even after the new flows are added in the next step.

Step 4 – Blocking SYN requests:

In order to avoid a race condition that could lead to broken connections during
the handover, when connections might still be established between a client and
the previous instance, after the controller has requested the connection monitor for
opened connections and before the connections were pinned. To solve this issue,
before pinning the old connections, the connection blocker applies a firewall rule to
drop SYN messages received by the server; in this case no new connections will be
established with the old instance. During the blocking period some packets could
be lost, but it would not be a problem since IP packets are retransmitted after a
small timeout, and by then it would be forwarded to the new instance as performed
in the next step.

Step 5 – Redirecting new connections:

After blocking new connections and pinning the old ones to the old instance, the
controller installs a new forwarding table entry on the switches that matches the
public destination IP address and rewrites the MAC address to the new instance.
This new flow will have a lower priority than the specific pinned flows of the old
connections. In this way we assure that the packets are being forwarded to the
correct instance. After forwarding the new connections to the new instance, the
connection blocker can unblock the old instance to receive SYN messages.

34

4.3. Predictive Algorithm

As a final stage to prevent the switches from having a large amount of flow tables
and to save space in their memories, the controller removes the flow table entries of
the pinned connections of step 2. To do so, the controller checks the status of the
connections by periodically querying the connection monitor of the related instance
to identify the closed connections and remove its entry from the switches.

4.3 Predictive Algorithm
Our predictive algorithm uses past history of the system load to build a time-

series model from it. An analysis of the time-series is then implemented to build
a prediction model. To analyze the time series and predict it, we use an ARIMA
model. For our analysis, we considered the bytes received per unit of time to define
the metric of the load on the system. The bytes received are periodically captured by
the controller from the core switches. The period can be defined manually, depend-
ing on the load of the system. After collecting the information from the switches,
the controller saves it in a file. The predictive algorithm reads the file and creates
a time-series object out of the saved information and according to the period de-
sired. Once the time-series object is generated, an ARIMA model is constructed
through a variation of the Hyndman and Khandakar algorithm [10, 21], combin-
ing unit root tests (to check the stationarity of the time-series), a minimization of
the AICc and a Maximum Likelihood (MLE) method to estimate the parameters
of the ARIMA model. An ARIMA model, as seen previously, can be of the type
ARIMA (P,D,Q) (p, d, q)

m

for seasonal data, where m is the seasonal frequency,
and ARIMA (p, d, q) for non-seasonal data. The sequence of operations of the pre-
dictive algorithm is introduced in Algo. 4.2, followed by the description of each
step.

Algorithm 4.2 Predictive Algorithm
1: procedure ONPREDICTIVEALGORITHM
2: read file
3: ts generateTimeSeriesObject()
4: fit fitARIMAModel(ts, frequency)
5: forecasts forecast.ARIMA(fit, periodsAhead)
6: return forecasts

7: end procedure

Step 1 - Generating time series:

The saved file containing the load information is read and, according to the
configured number of observations per unit of time, a time series is generated.

Step 2 - Fitting into an ARIMA model:

Once the time series is generated, it is time to fit it into an ARIMA model,
following the procedures of the automatic Hyndman and Khandakar algorithm [21]:

35

4.3. Predictive Algorithm

Selecting d and D: The Canova-Hansen test [22] is performed, even though
it includes seasonal dummy terms it can still be applied to choose D in a strictly
ARIMA framework, as tested by Hyndman et al. [21]. After selecting D, successive
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit-root tests are executed to deter-
mine the number of differences d. For models where d +D < 2, the constant c, in
equation 2.10, can be different than zero.

Selecting p, q, P and Q: To select p, q, P and Q, every potential model would
have to be fit and the model with the lowest AICc would be the best. Since trying
every single possibility would not be feasible and it would take a lot of time and
processing, a set of the four most common models are tested first:

• ARIMA (2, d, 2) if m = 1 and ARIMA (2, d, 2) (1, D, 1) if m > 1

• ARIMA (0, d, 0) if m = 1 and ARIMA (0, d, 0) (0, D, 0) if m > 1

• ARIMA (1, d, 0) if m = 1 and ARIMA (1, d, 0) (1, D, 0) if m > 1

• ARIMA (0, d, 1) if m = 1 and ARIMA (0, d, 1) (0, D, 1) if m > 1

After testing with these models if d + D 1 then constant c 6= 0, or else
c = 0. The model with the smallest AICc value will be denoted the “current”
model and if frequency m = 1 the model will look like an ARIMA (p, d, q) and if
m > 1 ARIMA (P,D,Q) (p, d, q)

m

. Besides the four models, another set of thirteen
alternatives from the current model is considered:

• where one of p, q, P and Q is allowed to vary by ±1 from the current model

• where p and q both vary by ±1 from the current model

• where P and Q both vary by ±1 from the current model

• where the constant c is included if the current model has c = 0 or excluded if
the current model has c 6= 0

After each variation, the AICc is verified and checked against the current model;
if it is lower, then the model becomes the new “current” model. This procedure is
repeated until the lowest model is found.

To avoid convergence and near unit-roots problems a few constraints are applied
to the fitted models:

• Upper bounds are defined for p, q, P and Q, with p, q not being higher than 5
and P,Q not being higher than 2.

• The absolute values of the roots of � (B)� (B) and ✓ (B)⇥ (B) should be
smaller than 1, 001, or else the model is rejected since it approximates to non-
invertible or non-causal.

• The non-linear optimization routine used for estimation should have no errors
otherwise the model is also excluded.

36

4.3. Predictive Algorithm

Step 3 - Forecasting:

After a model is finally selected, we use it to predict our workload. The number
of periods for forecasting can be configured manually. Once the forecasted points
are returned, they are used to decide the best instance to serve the predicted load.
The forecast function also returns prediction intervals of 80% and 95% upper and
lower limits, which can also be selected before choosing the instances.

For clients accessing the data center, for example a web server, they are interested
in the time the server takes to respond to their requests. According to an acceptable
response time, each server is given a threshold of how many bytes it can handle
before affecting its performance. Based on the prediction and the threshold values
of each server, the predictive algorithm decides which server will best perform for
the specific time. After the decision is made the algorithm sends the information
to the controller which will be in charge of changing the flow table entries of the
switches at the specific time, redirecting the flow to the appropriate instance.

37

Chapter 5

Implementation

In Chapters 2 and 3 we modeled and designed the architecture of our approach,
stating the components, their interfaces and the protocols they use to interact with
each other, to provide a more efficient data center. In this Chapter, we describe the
implementation of the components in a prototype system.

There are three separate parts of our testing system: One is the hardware part,
consisting of the servers and switches; another is the software, involving the con-
troller and its modules for the SDN topology, the operating systems (OSs) and the
other software developed, such as the predictive algorithm, the prediction controller,
connection monitor and blocker and the load monitor. Lastly, since we are concerned
with providing an energy-efficient data center, we have designed an electronic cir-
cuit to measure the current flowing in the device in order to calculate its power
consumption. In the next sections we describe each part of the system.

5.1 Description of the Hardware
In order to replicate a single data center, in a condensed version, we assembled a

set of hardware in our implementation that is mainly formed by servers, which form
our ETMI solution, core and aggregation switches and backend servers for service
such as Network File System (NFS) and database. To compose our ETMI we use
3 types of devices, each of them to simulate the LPMI, the MPI and the HPI. Our
backend service runs on the same machine as the SDN Controller and a dedicated
machine runs software to simulate clients accessing the datacenter. The following
list describes the technical specification of each server of our test bed:

LPMI
Machine: Raspberry Pi
CPU: ARM 11 at 700 MHz
Memory: 512 MB SDRAM
Network: 10/100 Mbps USB to Ethernet interface

39

5.1. Description of the Hardware

MPI
Machine: BeagleBone Black
CPU: TI Sitara ARM Cortex-A8 at 1GHz
Memory: 512 MB DDR3
Network: 10/100 Mbps Ethernet NIC

HPI
Machine: Commodity computer
CPU: AMD Athlon 64 X2 dual-core processor 4200+ at 2.2 GHz
Memory: 2 GB RAM
Network: 2 ⇥ 1 Gbps Ethernet NICs

Controller
Machine: Commodity computer
CPU: Intel i5 quad-core at 2.67 GHz
Memory: 12 GB SDRAM
Network: 5 ⇥ 1 Gbps Ethernet NICs

Client
Machine: Commodity computer
CPU: AMD Athlon 64 X2 dual-core processor 4200+ at 2.2 GHz
Memory: 2 GB RAM
Network: 2 ⇥ 1 Gbps Ethernet NICs

For the LMPI we used the Raspberry Pi SoC machine. It is well suited to our
solution as it can perform fairly well as a web server, as shown in our evaluation
chapter, and it also consumes very little power, around 2W. The BeagleBone Black is
our next instance, We used it as an MPI since it is more powerful than the Raspberry
Pi and according to our tests it could handle more requests, but it could also be
used as a secondary LPMI since it is an SoC with a very low power consumption.
A more powerful computer was used for the HPI, which consumes more power than
the other two instances. At first this machine will be in a sleeping state until the
controller requests it to be awakened. The controller server is the main machine
of our implementation, as it runs not only the SDN controller but the predictive
algorithm, the backend services, the VM manager, and the Open vSwitch Bridge.
The client host runs software to generate the load (requests) on the data center,
either according to a Poisson or a uniform distribution.

Two different switches are used in our test bed. One is a basic Layer-2 forwarding
switch that connects all of our devices in a private network, and the other is an Open
vSwitch, which is installed on the same machine as the SDN controller. Since it has
5 network interfaces, we are able to use some interfaces for the Open vSwitch bridge.
One interface connects the controller to the aggregation switch used for the internal
communication among the servers and two other interfaces are configured for the
Open vSwitch bridge, one connecting the client to the datacenter and the other
connecting the core switch to the aggregation switch. Figure 5.1 shows the topology
of our test bed.

40

5.2. Description of the Software

Figure 5.1: Test bed topology.

5.2 Description of the Software
Regarding the operating system, every server runs a Linux distribution. The

HPI, the controller and the client run Ubuntu release 12.04. The Raspberry Pi and
the BeagleBone Black run Debian wheezy version 7.0. Every server on the ETMI
is configured in the same way and they all run a typical web-based application like
LAMP, where the operating system is Linux, the http web server is Apache, MySQL
is the database management server and PHP is the scripting language. Besides the
web application installed on the ETMI, a few other applications, based on Dürr’s
implementation [2], run on the servers and are described below:

Connection Monitor - is a c/c++ application designed to collect the set of
TCP connections of the corresponding server. It is triggered by the controller and it
not only replies to the controller the established TCP connections but also the ones
where the synchronization message (SYN) has been received; it does that through
the socket statistics (ss) command.

41

5.2. Description of the Software

Connection Blocker - runs a bash script to either block or unblock connec-
tions to the corresponding server. When triggered by the controller, it creates a rule
on the server’s firewall IPTABLES to drop all the SYN packets received from the
public IP address. If the controller needs to unblock the connections, it sends an
unblock message and the rule is simply deleted.

Load Monitor - also runs a bash script; it constantly monitors the load on the
server, creating a rule on the IPTABLES to count the packets and bytes received,
where the destination is the public IP address.

The Controller is the main component of the system, as this machine has the
most important elements installed on it. First, the SDN controller: We implemented
an extension of the Floodlight OpenFlow controller [6], for which we use the REST
API to set up the flow table entries on the OpenFlow switches, and also a separate
module we developed to collect traffic statistics from the core switches. Second, the
Predictive controller: a Java application responsible for performing the handover
algorithm either based on the prediction of the workload sent by the predictive

algorithm or based on the immediate workload sent by the load monitor. Thirds, the
NFS file server, where all of the data is stored. Besides the three main components
in our test bed, the predictive algorithm also runs on this machine.

To collect the traffic statistics from the Open vSwitch, we implemented a separate
module in the Floodlight controller. It runs a distinct thread, named StatsThread,
that is initialized when the floodlight controller starts running. The StatsThread

runs a timer task that periodically collects the bytes received from the core switches
and saves it in a separate file, called “swstats”. The timer task needs to be manually
configured with a couple of parameters in order to provide the correct information
that later will be used by the predictive algorithm. These parameters include, the
starting time of the thread and the period in between successive task executions.
This configuration is carried out according to a previous analysis of the workload
of the data center. For example, a web server receives higher requests during the
day than in the night, presenting signs of a 24 hours seasonality. In this case we
could start the timer task at midnight and collect the traffic statistics every hour,
building a time series with a frequency of 24. This way our predictive algorithm

could forecast, for instance, the 24 hours of the next day, based on the past values
saved by the StatsThread. Algorithm 5.1, shows the sequence of operations to start
StatsThread on the Floodlight controller, and once it is started algorithm 5.2 describe
its procedures.

Algorithm 5.1 Floodlight Controller Module
1: procedure ONFLOODLIGHTCONTROLLERSTART
2: load net.master_thesis.loadstats module
3: inside loadstats
3: startStatsThread
4: continue loading modules

42

5.2. Description of the Software

Algorithm 5.2 StatsThread
1: procedure ONSTATSTHREAD
2: schedule Timertask
3: start Timertask
4: inside Timertask
3: collect traffic statistics from SW
4: save statistics in swstats file {save timestamp and bytes received}
2: exit Timertask
2: wait until next execution
2: end procedure

The AutoArima is a Java application which runs the predictive algorithm. It
predicts the workload of the data center, based on the traffic statistics collected
from the file saved by the StatsThread, using an ARIMA model. The AutoArima

needs to be configured with the same frequency value specified in the StatsThread in
order to create an appropriate time series. AutoArima also runs a timer task which is
configured with a starting time, at which the task is to be executed, and the period,
which is the time between successive task executions. Once the task is started, it
performs the predictive algorithm explained in Chapter 4. Upon completion of the
prediction, the decision of the most suitable server takes place. To decide which
server is the most suitable for the specific predicted value, we previously tested
the servers to measure how many bytes they can handle before decreasing their
performance. The application then compares the predicted values with the measured
ones and creates a string array that contains the decision of the specific server for
each predicted value; the length of the string array is the same size as the number
of predicted values.

The predictive algorithm was implemented using the R programming language.
With its variety of packages and functions, it improved our implementation of
the statistical analysis. Packages such as the “forecast”, developed by Hyndman
et al. [23], provides a variety of functions such as forecast(), arima(), Arima(),

auto.arima(), predict() among others, which helped us to model, analyze and fore-
cast time series. Another package, such as “stats” provides the ts() function, used
to create time series objects. In order to integrate R into our Java application, we
used the Java/R Interface (JRI) which allows us to run R inside Java applications
as a single thread. It mainly loads the R dynamic library into Java and provides a
Java API to R functionality. JRI comes bundled with an R package named rJava.
To take advantage of the interface, we can simply import two main classes REngine,
which is the interface between an instance of R and the Java VM; and REXP, used
to encapsulate and cache R objects as returned from R [24].

To clarify the operation of the AutoArima, we can take our earlier example
where we mentioned a web server with a 24 hours seasonality. Once we know that,
we can configure the AutoArima to run at the beginning of the day and collect the
values saved from the previous day(s) to forecast the 24-hour of the coming day.
In this case, the algorithm will return 24 values which will then be compared to

43

5.2. Description of the Software

the workload of each instance to decide which instance should serve at each hour.
Algorithm 5.3 explains the steps of the procedures of the AutoArima application.

Algorithm 5.3 AutoArima application
1: procedure ONAUTOARIMA
2: read configuration file {file containing over/underload info of every server}
3: initialize R System
4: start Timertask
5: inside Timertask
6: read swstats file
7: prediction predictiveAlgorithm(swstats)
8: makedecision(prediction) {select best server according to traffic load}
9: i 0
10: for each p[i] in prediction do
11: if p < overloadA then
12: p[i] = "A"
13: else if p < overloadB then
14: p[i] = "B"
15: else if p >= overloadB then
16: p[i] = "C"
17: end if
18: i++
19: end for
20: send p {send array including ordered servers to PredictionController}
21: exit makedecision
22: wait until next execution
23: end procedure

In line 20 of Algorithm 5.3, the string array containing the sequence of the pre-
dicted instances is sent to the PredictionController. Knowing the frequency of the
time series and the number of predicted values, at a specific time the Prediction-
Controller sends the new flow table entry that directs the traffic to the predicted
instance to the OpenFlow switches. Following our previous example, the Predic-
tionController receives a string array containing 24 values, since the frequency is 24
hours and there is a change every hour. The PredictionController runs a timer task
every hour and checks the instance the traffic is being sent to. If the instance is the
same as the one running, the controller does not update the flow table entry of the
switch(es), but if a new instance is required, the controller, after waking the new
instance up (if necessary), sends the switch(es) the new flow table entry, transferring
the traffic to the required server. The operations of the PredictionController can be
seen in Algorithm 5.4.

44

5.2. Description of the Software

Algorithm 5.4 PredictionController
1: procedure ONPREDICTIONCONTROLLER
2: clear static flows
3: state <- LPMI
4: direct flows to state

5: listen to socket {receive messages from the servers and AutoArima}
6: if msgReceived = prediction
7: start Timertask {run task periodically}
8: p[] <- prediction

9: n <- 0
10: newServer <- p[n]
11: if newServer = state

12: return
13: else
14: handoverAlgorithm(newServer)
15: end if
16: n++
17: wait until next execution
18: else
19: checkserver&message {check the message(over/underload) and the server
which sent the msg, identify if a switch is needed}
20: if switchNeeded
21: newServer <- server

22: previousHandoverProtocol(newServer) {basic handover protocol with-
out prediction}
23: end if
24: end if
25: end procedure

A backup system will also be running in case the prediction was either under- or
over estimated. Every server runs the load monitor, in case the server gets overloaded
during its hour; it can also send a message to the controller saying it is overloaded.
In that case, the controller will then switch the traffic to the more powerful server.

Figure 5.2 shows the sequence diagram of the proposed system running inside
the controller host.

45

5.3. Measurement Circuit

Figure 5.2: Sequence flow diagram

5.3 Measurement Circuit
There are a few methodologies to evaluate the power consumption of a device.

One approach would involve simulations using the data given by the technical spec-
ification of the equipment. This approach would be suitable for large scale settings,
but it could also neglect essential details of a real system. Another approach would
be through real measurements utilizing real hardware; in this case a more realistic
scenario can be implemented and tested providing the effects of the actual hard-
ware. On the down side, only scenarios with limited devices can be implemented.
Fortunately, for our test case, we could design our own circuit in order to make our
measurements.

The parameter we need to calculate is the power consumption. To calculate
it, we need to multiple the voltage and the current of the device. In our case the
voltage is constant, therefore we just need to measure the current. By calculating
the power of these devices we can determine a more realistic effect of the hardware
we are utilizing.

Figure 5.3a shows the proposed current measurement circuit. By using Ohm’s
law, I = V/R, we can calculate the current flowing through the circuit, hence,
calculating the power of the device using equation P = V ⇥ I [2.1]. Since a new
resistor was added to the circuit, it becomes a voltage divider, where the voltage on
the device is V

device

= V

supply

� V

measure

. In order to keep the voltage on the device
as low as possible, the resistance on R

measure

should also be as low as possible.
In our design, we use a shunt resistor of 0.01⌦, 1W of power and a precision of
1% [25]. From the specification of the Raspberry Pi and the BeagleBone Black,
the input voltage of these devices is 5V and the maximum current is 700mA for
the Raspberry Pi [20] and 1A for the BeagleBone black [8]. Considering these
values, the maximum voltage drop on the circuit for the Raspberry Pi would be
V

measure

= 700mA ⇥ 10m⌦ = 7mV , and for the BeagleBone Black V

measure

=

46

5.3. Measurement Circuit

1A ⇥ 10m⌦ = 10mV . According to these values, the voltage on R

measure

is too
low, therefore we need to amplify V

measure

, by adding an Operational Amplifier (Op-
amp), which increases the voltage by a gain of ↵ (V

out

= ↵ ⇤ V
measure

), Figure 5.3b
shows the new circuit.

(a) Basic circuit (b) Op-Amp circuit

Figure 5.3: Circuits

For a better accuracy, we decided to use an instrumentation amplifier from Texas
Instruments with a 3 op-amp design and only a single resistor that sets the gain from
1 to 10,000; the model of the op-amp is INA 114 [26]. From the technical specification
of the op-amp, the gain is measured by the following formula:

G = 1 +
50 k⌦

R

gain

(5.1)

We opted to offer two different gains, one of 100 and the other of 1,000, to
provide a bigger range of options. By applying these gains to equation 5.1, we need
two different resistors R

gain

, one of 50.05⌦ and the other of 505.05⌦, respectively.
To provide these resistances we use two types of potentiometers one that goes up
to 100⌦ and the other until 1 k⌦. The final circuit with the addition of a few
other components, such as a DC/DC converter to provide ±15V for the operational
amplifier, a rectifier to have a polarity free input and a voltage regulator to have an
input voltage range from 8 to 15 volts, is depicted in Figure 5.4.

47

5.3. Measurement Circuit

Figure 5.4: Final circuit

To complete our implementation, additional hardware and software were neces-
sary, for example, a power supply to provide the necessary power to operate the
circuit, a PC board and an I/O module, to connect the circuit to the computer,
Using an application such as ME-Powerlab3 [27], we were able to automatically
and more precisely collect the values measured. After collecting the values from
the device, with a frequency of 1kHz, under different workloads, we inserted the
values in a script to calculate the power of the device. Figure 5.5 shows the final
implementation of the real circuit.

Figure 5.5: Complete circuit

48

Chapter 6

Evaluation

In this chapter, we first introduce the performance of the LPMI and MPI to con-
firm that the low power instances are capable of handling low and perhaps medium
loads. Then we present the complete ETMI system. Finally, we evaluate the power
consumption of the instances using our measuring circuit.

6.1 System Performance
To evaluate our instances, we use a scenario in which the servers deliver static

web pages to clients. The webpages used in our tests (http://www.netsys2013.de/)
were the same ones used in a real website for a Network Systems conference in March
2013. The website consists of 40 webpages, containing small images of average size
11 kB, style sheets, etc. The webpages are stored on a fileserver and are accessed
through a network file system (NFS) over the internal network.

Clients retrieve content from the web server by generating requests according
to a Poisson distribution P

�

(k) = �

k

k! e
�� with � being the requests per second on

average. The requested pages are selected randomly from a set of webpages, for
each request the complete webpage is downloaded, hence one request to a web page
may generate more than one HTTP request. The performance of the instances is
described below.

6.1.1 LPMI Performance
To analyze the performance of the LPMI, in our case the Raspberry Pi, we

first applied a load of �
min

= 1 request/second increasing it by 1 request every 50
seconds, up to a maximum load of �

max

= 30 requests/s. We then measured the
time taken by the server to deliver the complete web page, the response time for
each request. We also measured the average rate of successfully delivered web pages
(throughput). The result can be seen in Figure 6.1, where the average of 10 runs is
plotted. We noticed that after 1,000 seconds the response time increases above the
upper threshold that was considered to deliver web pages of 150 ms, indicating that
the LPMI was overloaded. At this time the number of requests that the LPMI was
processing was about 20 requests/s.

49

6.1. System Performance

In a further analysis, when the test reached 1,350 seconds the number of requests
remained at a rate of around 26 request/s meaning that the network connection
of the LPMI in this case was limiting the load. From the experiments, we can
determine that for the LPMI, its processor was the main bottleneck of this setting,
with a throughput of 20 requests/s and a response time of 150 ms.

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

500"

550"

600"

650"

0" 50" 100" 150" 200" 250" 300" 350" 400" 450" 500" 550" 600" 650" 700" 750" 800" 850" 900" 950" 1000" 1050" 1100" 1150" 1200" 1250" 1300" 1350" 1400" 1450" 1500"

Th
ro
ug
hp

ut
)[r
eq

ue
st
s/
s]
)

Re
sp
on

se
)T
im

e)
[m

s]
)

Time)[s])

LPMI)8)Performance)

Response"Time"

Throughput"

Figure 6.1: LPMI performance

6.1.2 MPI Performance
To evaluate the MPI’s performance, in our case the BeagleBone Black board,

since its processor is faster than the Raspberry Pi (1GHz versus 700MHz) and it has
Ethernet built into the chip instead of via USB, we increased �

max

to 50 requests/s
instead of 30 requests/s. As a result, the request rate in this experiment goes from
�

min

= 1 request/s up to �

max

= 50 request/s. We also averaged the results over
10 runs. Figure 6.2 illustrates the performance of the MPI. The response time in
this case only increases above 150 ms after 1,900 seconds, where at this time the
throughput is around 35 requests/s, 1.75 times higher than the throughput of the
LPMI. At around 2,350 s we notice that the network connection starts limiting the
load with a throughput around 45 requests/s. Both processors of the SoCs in our
experiments were the bottleneck, limiting the throughput below 40 requests/s for
the maximum constraint response time of 150 ms.

50

6.1. System Performance

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

500"

550"

600"

650"

0" 50
"
10
0"

15
0"

20
0"

25
0"

30
0"

35
0"

40
0"

45
0"

50
0"

55
0"

60
0"

65
0"

70
0"

75
0"

80
0"

85
0"

90
0"

95
0"
10
00
"
10
50
"
11
00
"
11
50
"
12
00
"
12
50
"
13
00
"
13
50
"
14
00
"
14
50
"
15
00
"
15
50
"
16
00
"
16
50
"
17
00
"
17
50
"
18
00
"
18
50
"
19
00
"
19
50
"
20
00
"
20
50
"
21
00
"
21
50
"
22
00
"
22
50
"
23
00
"
23
50
"
24
00
"
24
50
"
25
00
"

Th
ro
ug
hp

ut
)[r
eq

ue
st
s/
s]
)

Re
sp
on

se
)T
im

e)
[m

s]
)

Time)[s])

MPI)7)Performance)

Response"Time"

Throughput"

Figure 6.2: MPI performance

6.1.3 ETMI Performance
Both SoCs’ performance were satisfactory, considering their size and processing

power. They can be used in a realistic small data center with moderate demand
and workload. In order to overcome their limitations for higher loads, we introduced
our ETMI solution, which scales up to more powerful instances to take care of those
restrictions. This section shows the performance of our implemented ETMI solution.

We used the test bed topology, shown in Figure 5.1, to evaluate the ETMI per-
formance. In order to analyze our predictive algorithm, we performed two separate
tests. Since it requires past records in order to forecast future values, we first pro-
vided a non-stationary time series with a seasonal pattern to perform some tests and
analyze the data. We then applied a stationary time series, where no seasonality or
trend was observed.

To generate the seasonal data, we used a Poisson process with a �

min

= 5 requests/s

and we increased the rate every 60 seconds by 5 requests/s up to a �

max

= 55 requests/s.
Once it reached 55 requests/s we started decreasing the rate by 5 requests/s until
the load was back at 5 requests/s. By running this process a few times we eventually
created a seasonal series as shown in Figure 6.3.

Using the generated time series in the predictive algorithm we forecasted the load
of the next 21 values. These values were then compared against an offline benchmark,
where we set the overload threshold of the LPMI to T

overload/LPMI

= 80 kB/s and the
overload of the MPI as T

overload/MPI

= 138 kB/s. After analyzing the data against
the thresholds, the sequence of the servers to be used for each of the 21 predicted

51

6.1. System Performance

values was defined. This sequence was then sent to the prediction controller. The
prediction controller receives the forecasted values and is responsible for switching
the traffic to the correct instance by applying the handover algorithm.

0"

50000"

100000"

150000"

200000"

250000"

7:5
9:0
0"

8:0
1:0
0"

8:0
3:0
0"

8:0
5:0
0"

8:0
7:0
0"

8:0
9:0
0"

8:1
1:0
0"

8:1
3:0
0"

8:1
5:0
0"

8:1
7:0
0"

8:1
9:0
0"

8:2
1:0
0"

8:2
3:0
0"

8:2
5:0
0"

8:2
7:0
0"

8:2
9:0
0"

8:3
1:0
0"

8:3
3:0
0"

8:3
5:0
0"

8:3
7:0
0"

8:3
9:0
0"

8:4
1:0
0"

8:4
3:0
0"

8:4
5:0
0"

8:4
7:0
0"

8:4
9:0
0"

8:5
1:0
0"

8:5
3:0
0"

8:5
5:0
0"

8:5
7:0
0"

8:5
9:0
0"

Lo
ad

%[b
yt
es
/s
]%

Time%

Generated%Load%

Load"

Figure 6.3: Seasonal time series

Using the Poisson process of �
min

= 5 requests/s and �

max

= 55 requests/s, we
increased the load by 5 requests/s every 60 seconds and then decreased it back to 5
requests/s. The result of the load and the prediction is illustrated in Figure 6.4.

0"

50000"

100000"

150000"

200000"

250000"

7:5
9:0
0"

8:0
1:0
0"

8:0
3:0
0"

8:0
5:0
0"

8:0
7:0
0"

8:0
9:0
0"

8:1
1:0
0"

8:1
3:0
0"

8:1
5:0
0"

8:1
7:0
0"

8:1
9:0
0"

8:2
1:0
0"

8:2
3:0
0"

8:2
5:0
0"

8:2
7:0
0"

8:2
9:0
0"

8:3
1:0
0"

8:3
3:0
0"

8:3
5:0
0"

8:3
7:0
0"

8:3
9:0
0"

8:4
1:0
0"

8:4
3:0
0"

8:4
5:0
0"

8:4
7:0
0"

8:4
9:0
0"

8:5
1:0
0"

8:5
3:0
0"

8:5
5:0
0"

8:5
7:0
0"

8:5
9:0
0"

9:0
1:0
0"

9:0
3:0
0"

9:0
5:0
0"

9:0
7:0
0"

9:0
9:0
0"

9:1
1:0
0"

9:1
3:0
0"

9:1
5:0
0"

9:1
7:0
0"

9:1
9:0
0"

9:2
1:0
0"

Lo
ad

%[b
yt
es
/s
]%

Time%

Predicted%Load%

Load"

Predic5on"

Figure 6.4: Predicted load

To analyze the performance of the ETMI we measured the throughput and the
response time during the load. Figure 6.4 shows the ETMI’s performance over a time

52

6.1. System Performance

t = 1260 seconds. Analyzing the graph we notice that when the throughput reaches
around 20 requests/s the controller switches the traffic to the MPI and the response
time drops below our limit of 150 ms. When t = 360 s, where the request rate is
around 30 requests/s, the controller switches the traffic again but now to the HPI.
The same procedure can be observed after t = 900 s, when the load is decreased and
the controller transfers the traffic back to the MPI, and later at around t = 1140 s

the LPMI receives the traffic, all based on the prediction calculated by the predictive

algorithm.

0"

10"

20"

30"

40"

50"

60"

70"

80"

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

0" 50" 100" 150" 200" 250" 300" 350" 400" 450" 500" 550" 600" 650" 700" 750" 800" 850" 900" 950" 1000" 1050" 1100" 1150" 1200" 1250"

Time%[s]%

Th
ro
ug
hp

ut
%[r
eq

ue
st
s/
s]
%

Re
sp
on

se
%T
im

e%
[m

s]
%

ETMI%7%Performance%%

Response"Time"

Throughput"

Figure 6.5: ETMI performance

The experiments demonstrate the ability of the ETMI to scale up and down
according to predicted values calculated from past seasonal data of the workload an
the data center. The response time remains below the 150ms limit and the smooth
transition between instances makes it transparent to the client, who sees the web
server and the ETMI as a single machine accessed through one public IP address.

An issue when using an ARIMA model is the processing power and time required
to predict. Depending on the number of past values and the frequency of the data,
the calculation of the prediction may take some time. We measured the time spent
to calculate the prediction with different values and as can be seen in Table 6.1 the
time increases quickly. To prevent a delay in the prediction when the past traffic data
is too long, only a certain amount of the data can be used or the prediction should
be done less often, perhaps on a daily or weekly basis. Also, in our experiments
the same machine was used for the controller and the predictive algorithm, whereas
perhaps a dedicated server would provide a faster response.

53

6.2. Energy Efficiency

Number of values Time (s)
21 0.729
42 0.755
63 1.169
84 2.913

Table 6.1: Time to predict

When predicting a stationary time series with a non-seasonal data, the results
were less satisfactory as seen in Figure 6.6. Therefore, a different model has to be
designed in order to provide a more accurate prediction, which is not described in
this paper and will be part of a future work.

0"

50000"

100000"

150000"

200000"

250000"

11
:2
9:
00
"

11
:3
1:
00
"

11
:3
3:
00
"

11
:3
5:
00
"

11
:3
7:
00
"

11
:3
9:
00
"

11
:4
1:
00
"

11
:4
3:
00
"

11
:4
5:
00
"

11
:4
7:
00
"

11
:4
9:
00
"

11
:5
1:
00
"

11
:5
3:
00
"

11
:5
5:
00
"

11
:5
7:
00
"

11
:5
9:
00
"

12
:0
1:
00
"

12
:0
3:
00
"

12
:0
5:
00
"

12
:0
7:
00
"

12
:0
9:
00
"

12
:1
1:
00
"

12
:1
3:
00
"

12
:1
5:
00
"

12
:1
7:
00
"

12
:1
9:
00
"

12
:2
1:
00
"

12
:2
3:
00
"

12
:2
5:
00
"

12
:2
7:
00
"

12
:2
9:
00
"

12
:3
1:
00
"

12
:3
3:
00
"

12
:3
5:
00
"

12
:3
7:
00
"

12
:3
9:
00
"

12
:4
1:
00
"

12
:4
3:
00
"

12
:4
5:
00
"

12
:4
7:
00
"

12
:4
9:
00
"

12
:5
1:
00
"

12
:5
3:
00
"

12
:5
5:
00
"

12
:5
7:
00
"

12
:5
9:
00
"

13
:0
1:
00
"

13
:0
3:
00
"

13
:0
5:
00
"

13
:0
7:
00
"

Lo
ad

%[]
by
te
s/
s]
%

Time%

Sta2onary%Series%

Load"

Predic4on"

Figure 6.6: Stationary time series

6.2 Energy Efficiency
Besides offering an Elastic Tandem Machine Instance (ETMI) which is always

available and is able to transparently scale up and down according to predicted data
of the workload, we proposed to efficiently use the energy to approximate our system
to an energy-proportional machine, as discussed in the previous chapters. Therefore,
we use SoC hardware to provide the service to customers in low and medium load
situations. We have shown, in the earlier experiments, that the performance of these
SoCs is acceptable and reasonable to be used for low and moderate load in a realistic
scenario. We now evaluate their power consumption in different loads to prove their
capacity of performing those tasks consuming low energy.

To measure their power consumption, we use the developed measuring circuit
introduced in Chapter 5. In the next sections we show the power consumption
of each instance of our ETMI solution, then we analyze the results to check the
efficiency of our ETMI solution.

54

6.2. Energy Efficiency

6.2.1 LPMI Power Consumption
The LPMI in our solution is the Raspberry Pi SoC. To measure the current

flowing through the Raspberry Pi, we connected it in series with our measuring
resistor R

measure

(from Figure 5.3b in Chapter 5) and using the ME-Powerlab3 [27]
tool we could export the measured voltage on R

measure

, hence calculating the current
flowing through the circuit using Ohm’s law. We start our measurements in an idle
state where no load is being generated, we then start loading the instance with a rate
of 1 request/s, increasing the load by 1 request every 20 seconds. During each request
rate we export the measurement to calculate the power consumption experienced
during each load of the system. We apply a maximum load of 50 requests/s.

Figure 6.7 shows the power consumption of the Raspberry Pi. In an idle state
the power consumption of the Raspberry Pi is P

idle/LPMI

= 1.82 W ; the power con-
sumption increases as the load increases, reaching a maximum power consumption
of P

max/LPMI

= 2.04 W when the load reaches around 26 requests/s.

1.4$

1.5$

1.6$

1.7$

1.8$

1.9$

2$

2.1$

0$ 1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$ 11$ 12$ 13$ 14$ 15$ 16$ 17$ 18$ 19$ 20$ 21$ 22$ 23$ 24$ 25$ 26$ 27$ 28$ 29$ 30$ 31$ 32$ 33$ 34$ 35$ 36$ 37$ 38$ 39$ 40$ 41$ 42$ 43$ 44$ 45$ 46$ 47$ 48$ 49$ 50$

Po
w
er
&C
on

su
m
p-

on
&[W

]&

Load&[requests/s]&

LPMI&9&Power&Consump-on&

Power$Consump8on$

Figure 6.7: LPMI power consumption

55

6.2. Energy Efficiency

6.2.2 MPI Power Consumption
The BeagleBone Black board is used as the MPI in our experiments. Using the

same technique presented for the Raspberry Ri, we measured the power consumption
of the BeagleBone Black under the same load, from idle to 50 requests/s. In our
previous tests we showed that the performance of the Beaglebone Black was almost
1.5 times better than the Raspberry Pi. While the Raspberry Pi was overloaded at
a request rate of 20 requests/s, the Beaglebone Black reached overload at around
35 requests/s. Figure 6.8 shows the power consumption of the MPI, from the graph
we notice that the energy efficiency is better than the Raspberry Pi. While idle the
BeagleBone board’s power consumption is P

idle/MPI

= 1.52 W , and the maximum
power consumption was P

max/MPI

= 1.77 W , below P

idle/LPMI

.

1.4$

1.5$

1.6$

1.7$

1.8$

1.9$

2$

2.1$

0$ 1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$ 11$ 12$ 13$ 14$ 15$ 16$ 17$ 18$ 19$ 20$ 21$ 22$ 23$ 24$ 25$ 26$ 27$ 28$ 29$ 30$ 31$ 32$ 33$ 34$ 35$ 36$ 37$ 38$ 39$ 40$ 41$ 42$ 43$ 44$ 45$ 46$ 47$ 48$ 49$ 50$

Po
w
er
&C
on

su
m
p-

on
&[W

]&

Load&[requests/s]&

MPI&9&Power&Consump-on&

Power$Consump8on$

Figure 6.8: MPI power consumption

56

6.2. Energy Efficiency

6.2.3 HPI Power Consumption
The HPI is a VM running on a physical host. To calculate its power consumption

we used a multimeter to measure the current flowing in the machine. Figure 6.9
displays the power consumption of the host from an idle state up to a load of 400
requests/s. While idle the host consumes P

idle/host

= 141.22 W , and the consump-
tion increases to a maximum of P

max/host

= 184.46 W when the load reaches 300
requests/s.

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

200"

0" 10" 20" 25" 30" 40" 50" 75" 100" 125" 150" 175" 200" 225" 250" 275" 300" 350" 400"

Po
w
er
&C
on

su
m
p-

on
&[W

]&

Load&[requests/s]&

HPI&9&Power&Consump-on&

Power"Consump6on"

Figure 6.9: HPI power consumption

When we compare the energy efficiency of the instances: P

idle/host

P

idle/LPMI

⇡ 77, which
means that the host would need 77 VMs to accomplish the same energy efficiency
of 77 LPMIs in idle mode, and for the MPI, P

idle/host

P

idle/MPI

⇡ 93 VMs. Consider-
ing that our physical host can support a limit of around 300 requests/s, thus
300 requests/s

/77 ⇡ 4 requests/s on each VM, loading 4 requests/s on each LPMI, their
power consumption, taken the load of static web pages shown in the previous sce-
nario, goes to P4req/LMPI

= 77⇥1.85 W = 142.45 W and calculating for the MPI the
request rate would be 3 requests/s, therefore P3req/MPI

= 93⇥ 1.53 W = 142.29 W .
The host with a load of 300 requests/s consumes 184, 46W , consequently it consumes
29% more power than 77 LPMIs and almost 30% more than 93 MPIs.

If we consider the upper limit request rate (20 requests/s) of the LPMI, the
improvement in energy efficiency increases significantly. For 76 LPMIs at 20 re-
quests/s, it would require at least 5 physical hosts to handle the same load (1540
requests/s). At the load of 20 requests/s the Raspberry Pi consumes 1.99W , thus
77 ⇥ 1.99 W = 153.23 W for 77 LPMIs. When we compare with 5 physical hosts
serving the same load (5 ⇥ 184.46 W = 922.3 W), the power consumption is more

57

6.2. Energy Efficiency

than 600% higher than 77 LPMIs. Employing the same comparison with the MPI,
we have a maximum request rate of 35 requests/s, therefore 11 hosts would be nec-
essary to execute the same load of 93 MPIs (3255 requests/s), thus leading to a
power consumption of 11⇥ 184.46 W = 2029.06 W , which is 1291% higher than 93
MPIs (93⇥ 1.69 W = 157.17 W).

6.2.4 ETMI Power Consumption
In Chapter 2, we mentioned the concept of an energy-proportional machine, con-

suming power according to the workload performed [1]. Our ETMI solution attempts
to provide a more energy-efficient system to approximate to an ideal system. We
compare the power consumption of an ideal system, shown in Figure 3.1 in Chap-
ter 3, against our ETMI solution, depicted in Figure 6.10. Despite the abrupt spike
when the load reaches around 40 requests/s, due to the fact that in our tests we only
used three instances to create our ETMI, we notice that when the load is low the
power consumption of the system is also very low. As the load increases beyond the
limits of our LPMI and MPI, the HPI boots and the power consumption suddenly
increases from 3.34 W (LPMI + MPI) to above 150 W, where all instances are on.
The sudden spike in the power consumption of the system could be smoothed by
the addition of more MPIs.

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

200"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250" 260" 270" 280" 290" 300"

Po
w
er
&C
on

su
m
p-

on
&[W

]&

Load&[requests/s]&

ETMI&;&Power&Consump-on&

Power"Consump7on"

Figure 6.10: ETMI power consumption

58

Chapter 7

Summary and Future Work

7.1 Summary
This thesis presented an enhancement to the concept of Elastic Tandem Ma-

chine Instances (ETMI) proposed by Dürr [2], by integrating different performance
instances, such as small, medium and large, to improve the scalability and efficiency
of the system. The previous model made use of only two instances to compose the
ETMI. By adding more instances to the system, instead of switching directly from
a low to a high power device, which could waste resources since the performance of
the instances varied significantly, intermediate instances were added to smooth out
the transitions between devices and improve the efficiency by having more adequate
instances to serve different loads.

To provide a transparent integration among the devices and avoid unavailabil-
ity during transitions from one instance to another, a handover protocol was im-
plemented, which utilizes software-defined networking technologies to seamlessly
switch among instances without interrupting any existing connections. A predictive
algorithm, based on an ARIMA model, was designed to decide in advance without
overloading the instances the best time to switch. Besides preventing resource waste
it also focusses on energy efficiency by only utilizing the server when required and
saving energy once in idle mode. The predictive algorithm also takes advantage of
the SDN technology. By the support of an SDN controller and statistics acquired
from the open vSwitch, traffic information could be retrieved and used to provide a
forecast of future activities.

Furthermore, we demonstrated the benefits of using low power SoC hardware
to improve the energy consumption of the data center and also serve as a realistic
three-tier system such as a web service. The SoCs demonstrated themselves to be
efficient when serving moderate load, whilst consuming very low power. The design
and implementation of an ETMI and the use of SoC hardware, for small and perhaps
medium loads, proved convenient to improve the energy efficiency of data centers.
With a proof of concept of the ETMI and the power consumption of the instances,
the experiments showed the possibility of utilizing the system in a real scenario.

59

7.2. Future Work

7.2 Future Work
Even though the results obtained in this thesis were satisfactory, as in most

system design and implementation, there are always possibilities for improvements
and enhancements.

One way to improve the system concerns the predictive algorithm. Currently, it
is able to predict non-stationary time series, where a trend or a seasonal pattern is
noticed. Further work could also support stationary time series, in this case the use
of a second prediction model could be applied. By supporting different prediction
models, a more efficient and accurate prediction can be generated, hence a larger
variety of data centers can be supported.

The presented design scales up and down according to the prediction of the load
on the data center, once the traffic increases the controller transfer the traffic to a
more powerful instance, leaving the previous instance idle. If the traffic increases
again, another instance is powered on and the traffic is redirected again, and the
previous server is either kept on and in idle mode, in case of an SoC, or is shut down,
in case of a VM. Instead of leaving the instance idle and transferring the traffic to
a new high power instance, perhaps two low power instances could balance the load
between each other and manage the traffic without the need for powering up a high
power instance.

Moreover, the test bed used two SoCs and a commodity server to form the ETMI
solution. Even though the results regarding scalability and energy efficiency were
effective, future experiments which add more devices to smooth the energy efficiency
curve and add more options to the controller to switch the traffic would be more
convenient. Furthermore, more extensive tests with real data from a web server, for
example, could be performed in order to provide more accurate results from a real
data center.

60

Bibliography

[1] Luiz André Barroso and Urs Hölzle. The case for energy-proportional comput-
ing. December 2007. [pages i, vii, 1, 6, 7, 20, 21, 22, 23, and 58]

[2] Frank Dürr. Improving the efficiency of cloud infrastructures with elastic tan-
dem machines. June 2013. [pages i, 1, 2, 20, 25, 29, 32, 41, and 59]

[3] Mark Blackburn. Five ways to reduce data center server power consumption.
2008. [pages vii and 5]

[4] Emerson Network Power. nergy logic: Reducing data center energy consump-
tion by creating savings that cascade across systems. 2009. [pages vii, 5, 6,
and 23]

[5] Open Networking Foundation. Software defined networking: The new norm for
networks. April 2012. [pages vii and 9]

[6] Floodlight OpenFlow Controller. http://www.projectfloodlight.org/

floodlight, October 2013. [pages vii, 13, and 42]

[7] Raspberry pi. http://www.maxoverpro.org/archives/752, November 2013.
[pages vii and 26]

[8] Gerald Coley. Beaglebone black system beaglebone black system reference man-
ual. Revision A5.2, April 2013. [pages vii, 27, and 46]

[9] Dan Talayco David Erickson Glen Gibb Guido Ap-penzeller Jean Tourril-
hes Justin Pettit KK Yap Martin Casado Masayoshi Kobayashi Nick McKe-
own Peter Balland Reid Price Rob Sherwood Yiannis Yiakoumis. Ben Pfaff,
Brandon Heller. Openflow switch specification version 1.0.0. December 2009.
[pages ix and 11]

[10] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and prac-
tice. https://www.otexts.org/fpp, November 2013. [pages ix, 16, 17, 18,
and 35]

[11] Intel. Power management in intel architecture servers. 2009. [page 5]

[12] Open vSwitch - An Open Virtual Switch. http://openvswitch.org, October
2013. [page 15]

[13] Jonathan D. Cryer and Kung-Sik Chan. Time series Analysis With Applications

in R. Springer, 2 edition, 2008. [page 15]
61

http://www.projectfloodlight.org/floodlight
http://www.projectfloodlight.org/floodlight
http://www.maxoverpro.org/archives/752
https://www.otexts.org/fpp
http://openvswitch.org

Bibliography

[14] Kenneth P. Burnham and David R. Anderson. Model Selection and Multimodel

Inference. Springer, second edition, 2002. [page 16]

[15] S. K. Nandy K. Gopinath Mohit Dhingra, J. Lakshmi and Chiranjib Bhat-
tacharyya. Elastic resources framework in iaas, preserving performance slas.
2013. [page 19]

[16] Xiaohui Gu Zhenhuan Gong and John Wilkes. Press: Predictive elastic resource
scaling for cloud systems. 2010. [page 19]

[17] Giuseppe Iannaccone Randy Katz Gunho Lee Byung-Gon Chun, Gianluca Ian-
naccone and Luca Niccolini. An energy case for hybrid datacenters. October
2009. [page 19]

[18] Dana Butnariu Richard Wang and Jennifer Rexford. Openflow-based server
load balancing gone wild. March 2011. [page 19]

[19] Amazon ec2 instance types. https://aws.amazon.com/ec2/

instance-types/, November 2013. [page 22]

[20] Raspberry pi technical documents. http://http://www.raspberrypi.org/
technical-help-and-resource-documents, November 2013. [pages 26
and 46]

[21] Rob J. Hyndman and Yeasmin Khandakar. Automatic time series forecasting:
The forecast package for r. Journal of Statistical Software, 27(3), July 2008.
[pages 35 and 36]

[22] Canova F and Hansen BE. Are seasonal patterns constant over time? a test for
seasonal stability. Journal of Business and Economic Statistics, (13):237–252,
1995. [page 36]

[23] Rob J Hyndman. forecast: Forecasting functions for time series and lin-
ear models. http://cran.r-project.org/web/packages/forecast/index.

html, November 2013. [page 43]

[24] Jri package. http://www.rforge.net/org/docs/, November 2013. [page 43]

[25] Bourns. PWR4412-2S Series Bare Metal Element Resistor, number REV.
03/09, January 2003. [page 46]

[26] Burr-Brown. Precision instrumentation amplifier. Technical report, Texas In-
struments, April 2013. [page 47]

[27] Me-powerlab3. http://www.meilhaus.de, November 2013. [pages 48 and 55]

62

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://www.raspberrypi.org/technical-help-and-resource-documents
http://www.raspberrypi.org/technical-help-and-resource-documents
http://cran.r-project.org/web/packages/forecast/index.html
http://cran.r-project.org/web/packages/forecast/index.html
http://www.rforge.net/org/docs/
http://www.meilhaus.de

Author’s Statement

Hereby I certify that I have realized this work on my own and that all the sources
that I have used or consulted are duly noted herein.

Furthermore, I certify that I know and accept that I have no right to exploit the
results of my Master Thesis by any means without the written permission of the
Institute of Parallel and Distributed Systems(IPVS).

Stuttgart, December 13th, 2013

Arturo Francato

63

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Thesis Structure

	2 Background Fundamentals
	2.1 Cloud Data Centers
	2.2 Cloud Computing
	2.3 Energy
	2.3.1 Energy Consumption
	2.3.2 Energy Efficiency

	2.4 Software-Defined Networking and OpenFlow
	2.4.1 SDN Concept
	2.4.2 OpenFlow Protocol

	2.5 Time Series Analysis
	2.6 Related Work

	3 Problem Statement and System Model
	3.1 Problem Statement
	3.2 System Model

	4 System Design
	4.1 Overview
	4.2 ETMI and Handover Algorithm
	4.3 Predictive Algorithm

	5 Implementation
	5.1 Description of the Hardware
	5.2 Description of the Software
	5.3 Measurement Circuit

	6 Evaluation
	6.1 System Performance
	6.1.1 LPMI Performance
	6.1.2 MPI Performance
	6.1.3 ETMI Performance

	6.2 Energy Efficiency
	6.2.1 LPMI Power Consumption
	6.2.2 MPI Power Consumption
	6.2.3 HPI Power Consumption
	6.2.4 ETMI Power Consumption

	7 Summary and Future Work
	7.1 Summary
	7.2 Future Work

	Bibliography
	Author's Statement

