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Abstract

Prototyping is an important phase of designing a product. It involves creating an early model
of the final product and evaluating the visual appearance under different lighting conditions
with different materials applied. There are two distinct approaches to creating a prototype:
creating a physical prototype, or creating a virtual prototype. A physical prototype is usually
formed out of clay or Plasticine, resulting in an untextured model. This model only conveys
the form, but omits the actual material, not showing the final appearance of the object under
different lighting conditions. A virtual prototype approach consists of a 3D geometric model
combined with image synthesis algorithms, offering a convincing textured preview of the final
product. This approach allows to quickly apply different textures, but is limited by the selection
of materials available.

We propose a new method which combines the advantages of the physical and virtual ap-
proaches, allowing to directly transfer the material of a physical reference object to another.
Our goal is to design a method which is fast enough to allow relighting the source object and
see the lighting dynamically change on the destination object in real time. We introduce a
setup which is portable and only consists of components that are widely available. This allows
the user to easily transport the setup to new locations, with the setup not requiring much time
to be assembled.
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1. Introduction

Prototyping is an important phase of designing a product in many different branches of the
industry. It involves creating an early model of the final product and evaluating the visual
appearance under different lighting conditions with different materials applied.

There are two distinct approaches to creating a prototype: creating a physical prototype, or
creating a virtual prototype. The former is an approach which feels natural, allowing to inspect
the prototype under real light conditions and from arbitrary directions. A physical prototype is
usually formed out of clay or Plasticine. The result is usually an untextured model. This model
only conveys the form, but omits the actual material, hence not showing the final appearance
of the object under different lighting conditions. Painting the model by hand does not work for
many materials, and is also time consuming as well as impractical if one desires to quickly test
different materials.

The latter, a virtual prototype approach, consists of a 3D geometric model combined with image
synthesis algorithms, offering a convincing preview of the final object. A virtual approach
allows to apply any texture at a click of a mouse button, but is limited by the selection of
materials available. Acquiring new materials for the model often requires a stationary or
expensive setup, or sometimes even both. The acquisition process also tends to take a lot of
time with most techniques.

We propose a new method which combines the advantages of the physical and virtual ap-
proaches, allowing to directly transfer the material of a physical reference object to another.
Our approach consists of several methods to calculate the correspondences between the source
and destination objects. These correspondences can then be used to map the pixels of the
destination object to the source object, thus displaying the texture of the source object on
the destination object. The user can then proceed to relight the source object and see the
illumination changing accordingly on the destination object.

Our goal is to design a method which is fast enough to allow relighting the source object and
see the lighting dynamically change on the destination object in real time. We introduce a
setup which is portable and only consists of components that are widely available. This allows
the user to easily transport the setup to new locations, with the setup not requiring much time
to be assembled.
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1. Introduction

The thesis is structured as follows: first, we will discuss prior work done in the field, describing
its relation to our thesis. Then, we will cover the concepts important for this thesis, such as
calculating the normals of our objects and search algorithms used to calculate the distance
between a point on the source object and a point on the destination object.

Following that, we will describe our hardware setup, our method to acquire the evaluation data
used for the calculation of correspondences between the objects, as well as our implementation
of the actual calculation algorithms. The same chapter will also cover the improvements we
made to make our methods more robust.

In the next chapter, we will evaluate our results as well as discuss the problems encountered
while working on this thesis and the decisions we made to solve them. We will also present
selected benchmarks comparing the runtimes of methods at different resolutions and settings.
The same chapter will also offer insights into mapping quality of each algorithm, as well as
show a few examples of objects relighted using novel light positions. To conclude the chapter,
we will offer a few words on the time the whole process takes from acquisition to being able to
see the results of the appearance transfer under dynamic lighting conditions.

The last chapter offers a summary of the thesis as well as possible future work based on the
methods presented in this thesis. The appendix contains additional results created for different
objects under different lighting, followed by acknowledgments pertaining any foreign material
used in the thesis
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2. Related Work

This chapter will touch upon prior work done in the related fields. The work we see as related
can be classified into three fields: Material Acquisition/Correspondence Generation, Search
Algorithms and Augmented Reality. In the three sections below, we will explain the essence of
each related work and show how it is connected to our thesis.

2.1. Material Acquisition/Correspondence Generation

There has been a lot of related work done on the field of acquiring a sample material and
transferring it to a 3D model. One of the methods to achieve this is by sampling the bidirectional
reflectance distribution function (BRDF) of the object. Goldman et al. [GBCHS10] attempt
to reconstruct the BRDF of an object by exploiting the fact most objects consist of multiple
so-called base materials. Combining these base material results in a correct BRDF. This allows
the objects to be re-rendered under a novel lighting while maintaining a realistic appearance.
Oxholm et al. [ON12] proposed a method of reconstructing the BRDF and the geometry of an
object without relying on controlled illumination as traditional Photometric Stereo approaches
do. The work assumes known, but uncontrollable illumination and reconstructs the BRDF and
the geometry by joint simulation of both.

We decided that reconstructing the BRDF is too exact and also requires a complex setup.
Choosing a simpler approach should still deliver believable results while reducing complexity.
This lead us to the Photometric Stereo approach. Photometric Stereo was first covered by
Woodham [Woo80], proposing a method for acquiring the normals of the object by taking
multiple photos with a fixed view and differing lighting using multiple light sources, recon-
structing the normals from the intensity information varying between the different photos.
This approach relies on a controlled light setup, which poses a restriction, but is relatively
simple to implement.

Basri et al. [BJK07] presented a photometric approach which does not rely on a controlled light
setup, making it more suitable for everyday use. The work assumes convex, nearly Lambertian
objects. The reconstruction is based on spherical harmonics, making the implementation more
complex.

9



2. Related Work

Tingdahl et al. [TGG12] use a traditional approach to Photometric Stereo but enhance it
with an automatic decomposition of an object into its base materials. One example shown
is a strawberry, which is decomposed into the seeds, the leaf, and the fruit’s specular and
Lambertian base materials. This approach is more exact than the traditional Photometric
Stereo, but it requires a complex setup consisting of a 260 LED dome, which speaks against
pursuing this route in our case.

Aliaga et al. [AX10] proposed a self-calibrating method for photometric acquisition using
structured light. Their setup allowed for three ways of reconstruction: geometric, photometric
or a combination of both. A special aspect of the work was to use hardware components
available to the masses, specifically a projector and an uncalibrated camera. This made
the approach interesting for us. However, the acquisition process takes up to 15 minutes
per material, which we deemed to be too slow. In the end, we decided to go with the
traditional Photometric Stereo approach to maximize the acquisition speed while still retaining
an acceptable degree of accuracy by increasing the light sources count.

2.2. Search Algorithms

In order to be able to map between the source and destination objects, we need a reasonably
fast method of finding the closest match for each point on the destination object. Muja et
al. [ML09][ML12] describe a fast approximate nearest neighbor approach which resulted in
the FLANN library1. This library proved to be fast enough for our needs.

Another way to calculate correspondences between two images called Patch Match was de-
scribed by Barnes et al. [BSFG09]. The algorithm matches square patches between images.
It consists of several stages, starting with an initialization with random guesses, followed by
several iterations to improve the guess as well as a random search stage to improve the guess
even further. This appeared to be perfect for our needs, so we decided to adapt the algorithm
according to our needs.

One more approach appeared to be suited for our needs: Region Growing presented by Adams
et al. [AB94]. The algorithm segments an image into distinct regions, with seeding points
supplied by the user figuring as starting positions of each region. We have adapted the idea
and implemented our own variation as one of the attempts to generate correspondences.

1http://www.cs.ubc.ca/research/flann/
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2.3. Augmented Reality

2.3. Augmented Reality

To look for a method to display the results of our texture transfer, we decided to look into the
field of Augmented Reality. Bradley et al. [BRB09] has presented a method to paint a video on
a moving piece of cloth in realtime, with correct lighting applied to the scene. The work uses
black and white coded ring markers to track the cloth, then impaints the scene and superposes
the video on top of it.

Since we assume a fixed view and a static object with only the lighting being dynamic, we
had to look for methods better suited for our needs. Umakatsu et al. [UMKT12] introduced an
Augmented Reality interface which allows the user to touch the source object in a scene to select
its material, then touch the destination object and hereby transfer the texture between two
objects. To transfer the texture, they first generate the texture by unwrapping the 3D mesh of
the object. This is done utilizing Least Squares Conformal Maps by Lévy et al. [LPRM02]. The
texture is then decomposed into regions of interest by an approach inspired by cross-boundary
brushes by Zheng et al. [ZT10]. The texture then can be transferred between the region on the
source and the region on the destination object. Another work by Umakatsu et al. [UMKT13]
based on that further expanded the functionality, allowing the user to also pinch the texture
before transferring it to the destination object.
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3. Basic Concepts

This chapter covers the basic concepts used in this thesis. This includes a rough overview of
Photometric Stereo, used to calculate object normals, as well as linear, FLANN and Patch Match
search algorithms, used to calculate the correspondences between two points of the source
and destination objects.

3.1. Photometric Stereo

Photometric Stereo is a method used to derive the orientation of each point of an object from a
set of images. The first work to deal with Photometric Stereo was Woodham’s “Photometric
method for determining surface orientation from multiple images” [Woo80]. The method
requires a set of pictures of an object under differing light conditions to deliver accurate results.
It assumes one camera with a fixed viewpoint, as well as distant lighting. This means the
intensity and direction of the light is assumed to be the same for every point of the object.

The normals can be reconstructed by observing the varying intensities of a point when lit
by different light sources, with one light source active at a time. This means we require as
many photos per set as we have light sources. As per findings of the paper [Woo80], two light
sources are sufficient to derive the normals of the object, provided neither of the light sources
are coplanar with respect to the azimuth. Additional light sources help to overdetermine the
resulting non-linear equations and lead to more reliable results.

The system of equations to derive the normals is given as follows:

I = L · N
I0
I1
...
In

 =


L0,0 L0,1 L0,2
L1,0 L1,1 L1,2

...
...

...
Ln,0 Ln,1 Ln,2

 ·

 N0
N1
N2



I is a vector of intensities, each component corresponding to lighting under one of the light
sources. L is a 3×n matrix consisting of transposed vectors representing the light sources’
position. Each line represents one light source. N is the vector representing the unknown
normals. Solving this system of equations gives us the normals we are looking for.
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3. Basic Concepts

3.2. Search Algorithms

3.2.1. Linear Search

Linear search is the most naïve approach, which iterates over all pixels until it finds a match
when searching for an exact match. A slight modification of the linear algorithm iterates over
all pixels, minimizing the distance between the query and the current point. The calculation of
the distance is done component-for-component at first, summing up the individual distances to
acquire the distance for this point. This approach is very slow due to its quadratic runtime in
relation to the image size. In our evaluation (see Section 5), we show that it is not viable to
use this approach with our data sets.

3.2.2. FLANN: Fast Library for Approximate Nearest Neighbors

FLANN is a very fast approximate nearest neighbor search algorithm, which has its origins in
the two papers by Muja et al.: “Fast Approximate Nearest Neighbors with Automatic Algorithm
Configuration” [ML09] and “Fast Matching of Binary Features” [ML12].

The algorithm utilizes several kd-trees. A kd-tree is a k-dimensional tree structure where each
non-leaf node defining a hyperplane which subdivides the points into two half-spaces: to the
left from the hyperplane and to the right from the plane. Each further non-leaf node either
to the left or to the right of the previous node further subdivides the space, with the spaces
getting smaller and smaller until one decides to stop the subdivision. This structure enables to
locate any given point in linear time in the worst case, but logarithmic times can be achieved
in practice. This is significantly faster than the linear approach described above.

Additionally, FLANN creates multiple kd-trees to parallelize the search. The library has innate
multi-threading support, so no additional work is required to accelerate execution even further.
This results in a runtime which is “orders of magnitude faster than the algorithms performing
the exact searches” according to its documentation1, while still delivering accurate results. The
dimensionality of the kd-tree is determined by the dimensionality of the points.

1http://www.cs.ubc.ca/research/flann
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3.2. Search Algorithms

To find approximate matches, FLANN uses the L2 distance measure, also known as the
Euclidean distance, in the default case. The L2 distance between two points p and q is defined
as follows:

(3.2) d(p, q) =
n∑

i=0

√
(pi − qi)2 =

√
(p0 − q0)2 + (p1 − q1)2 + ... + (pn−1 − qn−1)2 + (pn − pn)2

Further, the FLANN algorithm builds a list of all points, only passing a subset of these points
to the function which builds the actual k-dimensional searching structure. The point picking
algorithm is very efficient, maintaining a high accuracy of the results.

3.2.3. Patch Match

The Patch Match algorithm was created as a part of the paper titled “Patch Match: A Random-
ized Correspondence Algorithm for Structural Image Editing” by Barnes et al. [BSFG09]. The
algorithm uses a randomized nearest neighbor approach, which takes two images as input,
then proceeds to find correspondences by minimizing the Euclidean distance between a patch
in image A and another patch in image B. A patch is defined as a square area, with the pixel
position defining the upper left corner of the patch. The basic implementation we use supports
matching translating patches only, meaning it cannot find an optimal match if the matching
patch is rotated or scaled. However this does not pose a problem for us, because the quality of
the algorithm is high enough to deliver good results. The algorithm itself is iterative and the
paper has shown that the results converge after only a few iterations, making the algorithm
very fast.

Figure 3.1 illustrates the search process described below. The first phase of the algorithm is the
Initialization: The correspondence map is initialized with random values. The function then
proceeds to iterate over all pixels that have the patch still lying within the image boundaries,
calculating the distances between the current patch and the randomly assigned position of the
other patch. In the next step, the program attempts to improve the guess by “shaking” the
currently assigned patch position – the Propagation stage. This means that for iterations with
an even number, the patch position is shifted to the left and to the top. For iterations with an
odd number, the patch position is shifted to the right and down. This is the stage where the
results converge with each iteration.

Another attempt to improve the guess is the random Search stage, in which the algorithm is
searching in boxes of exponentially decreasing size around the current best guess. In the end,
we obtain a map of correspondences as well as their distances for each pixel in the image. The
results are accurate, even with as few as five iterations in the Propagation stage.

15



3. Basic Concepts

Figure 3.1.: Phases of the randomized nearest neighbor algorithm: (a) patches initially have
random assignments; (b) the blue patch checks above/green and left/red neigh-
bors to see if they will improve the blue mapping, propagating good matches;
(c) the patch searches randomly for improvements in concentric neighborhoods.
Image and description taken from [BSFG09]
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4. Setup and Implementation

In this chapter, we will provide an overview of our workflow, detailing the hardware setup,
the process of acquiring the data sets needed for calculating the similarities between objects,
as well as the methods used to calculate the correspondences between the source and the
destination object and perform the associated mapping.

4.1. Physical Setup

One of our goals was for our setup to only use parts widely available. Therefore, no specialized
or overly expensive components are required. Our setup consists of a Canon 5D Mark II camera
for photo and video capture and a chipboard which can hold up to eight light sources. The
chipboard is 8 mm thick and measures 1x1 m and is mounted on the tripod along with the
camera, as shown in Figure 4.1. By doing so, the setup is centered with respect to the camera
sensor, allowing to easily adjust the camera direction and keep the orientation of the light
sources and the camera sensor synchronized. The chipboard also has several sets of holes
to allow adjusting the chipboard’s relative position to the camera sensor. This allows to use
different cameras with the same setup with minimal adjustments.

The chipboard holds eight E27 sockets, which are fitted with seven Philips Hue1 lamps. The
sockets are positioned in a circle with a radius of 0.47 cm around the approximate center of the
camera sensor. The bottom socket is not used, because the light from it would be obstructed by
the tripod. Each socket is equipped with its own switch to allow manually switching the light
sources on or off if desired, for example to restrict the number of light sources.

The Philips Hue lamps are calibrated RGB LED lamps, with the deviation between the brightest
and darkest of our seven lamps being 0.7%. Each lamp can communicate with the base
station over Wi-Fi. The base station allows setting different parameters of each individual
light bulb: the color (either as RGB values, from 0 to 255, or as xy-coordinate, from 0.0 to
1.0 in the CIE 1931 system2), the color temperature in reciprocal megakelvin3, (from 153 to

1http://www.meethue.com/
2http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_$xy$_chromaticity_diagram_and_the_CIE_

$xy$Y_color_space
3http://en.wikipedia.org/wiki/Mired
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4. Setup and Implementation

Figure 4.1.: Our setup: closeup of the camera mount (upper left), the chipboard with the
eight light sockets and seven lights mounted (upper right) and the fully assembled
setup on a tripod, ready to take photos of the object on the table.

18



4.2. Implementation

500, corresponding to 6500K to 2000K respectively) and the brightness (from 0 to 255). Each
instruction has a minimal latency of 100 ms, however this only holds if all instructions for
all lights are sent to the base station as one JSON4 object. Otherwise, each JSON object will
be processed sequentially, each change taking 100 ms before the result is applied. Sending
instructions can either be done via the web interface, by writing each JSON object by hand,
or by writing a program using the API provided5. We decided to do the latter, as it allows for
much more flexible control and scripting.

4.2. Implementation

This section describes the implementation of our algorithms. The Data Capture and Light Con-
trol Section 4.2.1 describes how the image information required is captured. The Calculation
of Correspondences Section 4.2.2 covers our methods to calculate and map correspondences
between the source and target image sets. The last Section 4.2.3, Repaint and Display, describes
the process of applying the calculated correspondences to the video feed of the source object
to be able to display lighting changes on the destination object.

4.2.1. Data Capture and Light Control

To be able to map texture data between two objects, we first need to acquire a set of images for
each object. Each set consists of seven photos, each photo taken with one light source active
at a time. Each of the photos of a set have to be taken with the same aperture and exposure
time, as well as ISO6. This satisfies the conditions needed to calculate the normals of the object
using Photometric Stereo, as described in Section 3.1. That said, the aperture and exposure
can differ between different sets, which allows to choose values appropriate for the object to
be acquired.

The camera is connected to the computer via USB. The camera response curve is assumed
to be linear. A simple script is used to take the photos utilizing gphoto27 and to convert the
raw image into the ppm8 format using dcraw9. The same script also controls the application
in charge of controlling the lights. The user can modify the script behavior by supplying the
aperture and exposure arguments. ISO is fixed at 100 in order to minimize noise. Since the
camera is fixated on the tripod, the resulting longer exposure times do not pose a problem.

4http://json.org/
5http://developers.meethue.com/
6en.wikipedia.org/wiki/ISO_(photography)
7http://www.gphoto.org/
8http://netpbm.sourceforge.net/doc/ppm.html
9http://www.cybercom.net/~dcoffin/dcraw/
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4. Setup and Implementation

To be able to use our correspondence map without having to correct for the resolution differing
between photo and video mode, we resize our captured data to match the resolution of the
camera in video mode. Using our Canon EOS 5D Mark II, gphoto2 delivers a video resolution
of 1024×680. The photos taken with the camera have the same aspect ratio, meaning we can
resize the photos without having to correct for the aspect ratio.

Each object is placed one meter away from the camera sensor, with the position of the camera
sensor being indicated by the marks on the camera body. The object is photographed on a
dark background, in our case a piece of black cloth. We require the destination objects to
be captured first, and the source object to be captured last, as moving the source object after
capture would invalidate the calculated correspondences.

Considering our objects’ sizes are much smaller than their distance from the camera sensor, we
can assume distant lighting. This means we assume the intensity and direction of the light is
the same for every point of the object. The objects we selected are nearly Lambertian, the form
being both convex and concave. We assume there are no global lighting effects like indirect
illumination and that our seven light bulbs are the only light sources in the scene. This means
we have to darken the room as much as possible.

4.2.2. Calculation of Correspondences

Before we can calculate the distances and find correspondences, we have to be able to separate
the object from the background. This is important to prevent the mapping of pixels which are
part of the background to be displayed as part of the destination object. To achieve this, we ask
the user to specify a segmentation threshold for both the source and the destination objects.
The user is also asked to select the object on the photo or specify the coordinates via command
line to further limit the working area. To determine whether the current point should be
added to the working set, we sum up the components of the intensity vector representing the
intensities of each image of a set and only add the position, if the resulting value is above or
equal to the segmentation threshold.

The mapping step calculates the correspondences between two points of the objects using
several different methods. These correspondences will then be used to transfer the pixels
from the source object to the destination, thus transferring the texture and the lighting of the
source object. These methods can be classified by the way they build the correspondence map
into three categories: direct, Patch Match and Region Growing. Each method minimizes the
Euclidean distance between either normals or intensities to find the best correspondence for a
query. Intensities are defined as the normalized sum of R, G and B values of a pixel:

I(x, y) = R(x, y) + G(x, y) + B(x, y)
3
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We use different criteria to minimize the distance by. Our first approach is calculating the
Euclidean distance between the source and the destination normalized vector of intensities,
where each component stands for the intensity of one of the seven photos calculated from the
RGB value at the current position. Equation 4.1a is used in this case, with dI(x, y) describing
the distance over intensities for the current xy-coordinates, Isi and Idi

being the i-th component
of the source and destination intensity vectors respectively and n being the number of lights.
Dividing by the sum of intensities performs the normalization.

Another approach is to calculate the Euclidean distance between the source and the destination
normals as shown in Equation 4.1b, dN (x, y) being the distance over normals for the current
xy-coordinates, Nsi and Ndi

being the three components of the source and destination normal
respectively. Normals are assumed to be already normalized, so no additional normalization is
needed in this case. One approach would be to use angle distance for normals, but angle and
Euclidean distances are equivalent for normals, so we decided to use the Euclidean distance
for uniformity reasons.

To increase robustness of the match, we not only use the current pixel information, but extend
it to include the neighbor pixel information. The resulting Equation 4.1c shows the calculation
of the distance for a patch of intensities or normals.

dI(x, y) =

√√√√√√√√
n∑

i=0

 Isi(x, y)
n∑

j=0
Isj (x, y)

− Idi
(x, y)

n∑
k=0

Idk
(x, y)


2

(4.1a)

dN (x, y) =

√√√√ 2∑
i=0

(Nsi(x, y) − Ndi
(x, y))2

(4.1b)

dP (x, y) =
x+⌊ p

2 ⌋∑
xp=x−⌊ p

2 ⌋

y+⌊ p
2 ⌋∑

yp=y−⌊ p
2 ⌋

dm(xp, yp) | p ∈ {1, 3, 5, 7}; m ∈ {I, N}

(4.1c)

The most basic set of methods maps correspondences per pixel. Each pixel from the destination
object which lies above the segmentation threshold is used as a query for the matching function.
The program first iterates over all pixels of the segmented source object image set to build and
initialize the FLANN search structures (see Section 3.2). The next step consists of iterating
over all pixels of the segmented destination object image set and using each valid pixel as a
query, which is then passed to the search function.
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4. Setup and Implementation

Figure 4.2.: Left: illustrates picking mirrored pixels when neighbors are out of bounds.
Right: illustrates two overlapping patches, with center pixels acting as neighbors
for the other patch.

The result of the search function represents the correspondence between the two objects at
this pixel position. It is written to an output image, the xy-position in the image representing
the location on the destination object (current query), while the red and green components
hold the x and y location on the source object respectively. The blue component is not used,
but we fill it with a value of 1.0 for visual consistency.

To be more robust we extended our methods to match patches of a size of 1 × 1, 3 × 3, 5 × 5 or
7 × 7 pixels instead. The process stays essentially the same as with the pixel-based method
described above. In case of border pixels, we supplement the missing pixels by mirroring. The
difference is that if a pixel passes the check, its neighbors are also added to the same entry
vector. This means that for a patch of a size of 3 × 3 pixels, the entry vector has the size of
7 · 3 · 3 = 63 components. The approach leads to overlapping patches, so that each pixel’s
intensities and normals are used by more than one patch, each time appearing at a different
position in a patch. Figure 4.2 illustrates the overlap.

Depending on the object, we run into the problem of more than one point on the source object
qualifying as a match for a point on the destination object. In the worst case, for example
choosing a cube as the source object, the algorithm will always pick one and the same point
of a side, because it is sequentially the “first“ match our algorithm finds. Other positions on
the side of the cube will not improve the match, because they have exactly the same distance
between the query and the current position on the cube.

To work around that, we save a list of potential matches sorted by ascending distance, then
pick the entry which is ”locally closer“ to the query position in the image. Figure 4.3 illustrates
the process of picking a candidate. ”Locally closer“ is defined as follows: first, we translate the
matched pixel’s image coordinates to destination object’s coordinates using Equations 4.2. fcor

stands for the correction factor to be applied to the x-coordinate of the source (xsrc) or the
destination (xdst) object, f ′

cor being the correction factor for the y-coordinate.
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Figure 4.3.: Picking the right candidate: the query (blue) returns several matches. Transferring
the query to source coordinates (cyan) results in green point being picked as
match, as orange ones are further away.

Once we have translated the coordinates, we subtract the x-coordinate of the potential match
from the query to get the distance on the x-axis. We repeat the same for the y-coordinates,
then add both up to get the total distance between the pixels. The potential match with the
smallest distance between itself and the query is then picked.

The intention is to prevent the algorithm from getting ”stuck“ at first match, thus allowing it to
actually transfer the texture in case of multiple matches. The reasoning behind this approach
is that points, for example in the middle of the destination object (as captured on the image)
should most likely be mapped to the ones near the middle of the source object to correctly
transfer the texture.

(4.2)

fcor =xsrc

xdst
f ′

cor =ysrc

ydst

xdst =xsrc

fcor
ydst =ysrc

f ′
cor

xsrc =xdst · fcor ysrc =ydst · f ′
cor

We have also adapted the Patch Match algorithm10 described in Section 3.2.3 according to
our needs. The most important change was to account for segmentation. This involved not
allowing coordinates containing ”empty“ normals to be randomly matched to valid normals
and vice versa. Another change we had to do was to define the distance to an ”empty“ normal
as maximal, otherwise such a match was deemed to be optimal in some cases. The Patch Match
algorithm returns a complete correspondence map.

10http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/index.php
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4. Setup and Implementation

Figure 4.4.: Region Growing: 1) Finding direct match and queuing neighbors.
2,3,8) Passing neighbor distance check, growing region.
4,5) Failing neighbor distance check, stop growing.
6) Skipping to next unfilled pixel, finding direct match again (new region).
7) Neighbor check shows overwriting improves distance.

Another method to improve the texture transfer is the Region Growing algorithm. The algorithm
iterates over all pixels of the destination object and consists of two phases. Each pixel can
have three states: empty, matched and filled. Empty means that the pixel has yet to be mapped.
Matched means that the pixel was successfully mapped using the matching function utilizing
either Equation 4.1a, 4.1b or 4.1c. Filled means that the pixel was mapped by the neighborhood
checking algorithm. Figure 4.4 illustrates the Region Growing process.

In the first phase, seeding, we check whether the current pixel does not have a correspondence
mapped yet, meaning the result image at that position is empty. If that is the case, then we
search for the optimal match using either Equation 4.1a, 4.1b or 4.1c. Otherwise, the pixel
is skipped. Once the match is found, it is written to the correspondence map, setting this
position’s state to matched. Following that, the four neighbors (above, below, left, right) are
added to a set of pixels to be filled via Region Growing.
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This set is then passed to the Region Growing function, along with the current matched pixel
position, an array holding the state of the pixel (empty, matched, or filled) as well as an array
holding the current distances between the pixels. This corresponds with step one on Figure 4.4
and concludes the first phase.

The second phase consists of a series of checks to determine whether each of the points
currently in the set of neighbors can be filled without searching, thus growing the region.
First, the function checks if the current neighbor pixel is empty. If it is, then we have to check
whether it is safe to fill the current pixel.

For this purpose we make three checks. Failing any of these will result in the cancellation of
the growth process in the current direction. First we check if the distance between the parent
pixel and its neighbor pixel is below the defined threshold. This would mean the neighbor
pixel is a part of a smooth region on the source data set. We also have to check if the pixel we
are about to fill is part of a smooth region on the destination data set. We further constrain the
growth process so that the distance between the current neighbor on the source data set and
the current position on the destination data set is below the defined threshold as well.

These three constraints guarantee that only pixels which are a part of a smooth region are
added, but only if the added pixel does not break the smoothness of the region (with respect
to intensity or normal changes) on the destination object. If the pixel can be filled, then its
neighbors are added to the end of the set of neighbors (see steps two and three on Figure 4.4).
Otherwise, we have reached the end of the smooth region, so adding the neighbors is not
needed (steps four and five on Figure 4.4). In both cases the function then proceeds to work
on the next neighbor in the set.

If the current neighbor pixel was not empty, we check whether the pixel was matched or filled.
If it was matched, we can skip it, as we will not be able to improve our match any further.
However, if the pixel was already filled by a previous pass of the algorithm, then we can check
whether we can improve our estimate. To do this, we check if filling with a new neighbor
decreases the distance between the destination pixel and the current neighbor.

If this is the case, we overwrite the previous result with our new one, then proceed to check the
rest of the neighbors (see step seven on Figure 4.4). Otherwise, we can safely cancel growing
the region in that direction. The Region Growing function continues iterating through the
neighbors until all of them have been checked. Once this is the case, the algorithm returns to
phase one and skips to the next empty pixel of the correspondence map. This continues until
all positions have either been filled or matched.
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4.2.3. Repaint and Display

In this section we will describe the process of applying the correspondences and displaying
our results to the user. The camera is switched to video capture mode, with the source object
still being at the same position. This is important, since moving the object would change its
position in the picture, invalidating the calculated correspondences.

The program loads the generated correspondence map, then displays the source and destination
objects side by side. As we mentioned in Section 4.2.1, the aspect ratio of the video and the
correspondence map are the same. Since we have also resized our data sets to match the
resolution of the video, no further adjustments are needed to be able to transfer the appearance
of the source object to the destination object using the generated correspondence map.

The destination object is repainted by taking the pixels of the video capture and transferring
them to the position on the destination object according to the correspondence map. The user
can now move the light around the source object and see the light change accordingly on the
repainted destination object on the computer monitor.
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In this chapter, we will perform an evaluation of different aspects of our implementation, as well
as the results produced by our different approaches. The Runtime Comparison Section 5.1 will
cover the performance of our implementation, comparing the runtimes at different resolutions,
as well as between different approaches. The Problems and Decisions Section 5.2 will discuss
the problems encountered while working on this thesis and give reasons for our decisions on
how to solve them. In our Results Section 5.3, we will offer a deep insight on how different
approaches affect the results. We will first evaluate our direct matching methods for a few
representative objects and pick the approach showing the best results. Following that, we will
evaluate how the results the algorithm we picked produces at different settings compare to two
other methods we implemented: Patch Match and Region Growing. Next, we will show a few
examples of objects relighted under novel light conditions. Finally, the Setup and Processing
Times Section 5.4 will evaluate the time the whole process from start to finish takes.

5.1. Runtime Comparison

To evaluate the performance of our implementation, we have run a series of benchmarks on
our test system with an Intel Core i7-2600K CPU @2.67GHz. All benchmarks were single-
threaded.

The first benchmark (Table 5.1) illustrates the importance of segmentation, as well as the
speed advantage the FLANN library offers compared to linear implementation. The Pixels
column shows how many pixels have to be processed by the search algorithm. The reduction of
calculation times gained by segmenting a set of seven images before building the data set are
massive. Even taking the fact segmentation itself takes a certain amount of time into account,
enabling segmentation is worth it: The calculation times listed on the right of Table 5.1 include
the time needed to segment the image.

Looking at the speed gains provided by FLANN show a similar picture, with the calculation
process taking an acceptable amount of time even without segmentation: under a minute at
1280×800 pixels. With our resolution being limited by the camera’s video output resolution
of 1024×680 pixels, we have a calculation time of 21.514 seconds without segmentation.
Enabling the segmentation delivers a large speedup, netting a total runtime of only 0.258
seconds (segmentation: 0.089 seconds; mapping: 0.169 seconds).
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Segmentation Off Segmentation On
Resolution Pixels Linear FLANN Pixels Linear FLANN
640×426 0 272 640 00 h 32 m 36.940 s 00 h 00 m 06.671 s 08 532 00 h 00 m 04.964 s 00 h 00 m 00.091 s
800×533 0 426 400 01 h 20 m 57.010 s 00 h 00 m 08.948 s 13 242 00 h 00 m 12.042 s 00 h 00 m 00.147 s

1024×680 0 696 320 03 h 34 m 51.200 s 00 h 00 m 21.514 s 21 161 00 h 00 m 32.285 s 00 h 00 m 00.258 s
1280×853 1 091 840 08 h 46 m 12.200 s 00 h 00 m 44.719 s 32 375 00 h 01 m 18.635 s 00 h 00 m 00.439 s

Table 5.1.: Linear search vs. FLANN over intensities: Time to calculate the correspondences
between one and the same object, at different resolutions and patch size of 1×1,
with segmentation disabled (left) and with segmentation enabled (right).

FLANN Patch Match Region Growing
Patch Size Over Intensities Over Normals Over Intensities Over Normals Over Intensities Over Normals

1×1 0.657 s 0.677 s 0.569 s 0.495 s 16.970 s 16.053 s
3×3 1.041 s 1.037 s 0.650 s 0.617 s 17.092 s 16.137 s
5×5 1.667 s 1.684 s 0.833 s 0.767 s 17.124 s 16.349 s
7×7 2.401 s 2.392 s 1.035 s 0.982 s 17.183 s 16.083 s

Table 5.2.: Patch Sizes: Total runtime for each algorithm with segmentation enabled, depend-
ing on patch size. Linear not measured as it only supports a patch size of 1×1.
Resolution: 1024×680. Region Growing uses a threshold of 0.02.

The second benchmark (see Table 5.2) shows the performance of each of our correspondence
calculation methods at our target resolution of 1024×680, as well as the impact of increasing
the patch size (as described in Section 4.2.2). Since the patch size is also used for segmenting
both the source and the destination image set, basing the decision on whether to add a point to
the list of valid positions on the patch of pixels centered at this point, we decided to show the
total runtime of the program instead. The discrepancy between the intensity and the normals
approaches for each method comes from the fact the intensity approach uses a seven-component
vector, while the normals approach uses only a three-component vector. This means that
calculating the distance takes slightly longer for the intensity approach.

The two FLANN based methods (over intensity and over normals) use the patch size for both
the segmentation and the correspondence map calculation steps. Our Patch Match based
approaches do not use the FLANN search structures at all and are more efficient, because
the underlying algorithm uses the structure of the image to it’s advantage, thus managing to
be consistently faster than our FLANN based methods. Most of the impact in case of Patch
Match comes from segmentation taking slightly longer due to a bigger patch size. The Region
Growing methods use the FLANN search structures for the first stage of the algorithm (seeding)
only. The second stage, the actual Region Growing, has such a large impact on the speed that
increasing the patch size does not show any significant differences.
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Patch Size Candidates: 1 Candidates: 25 Candidates: 50 Candidates: 100
1×1 0.677 s 2.952 s 4.847 s 8.302 s
3×3 1.037 s 5.634 s 7.691 s 11.301 s
5×5 1.684 s 7.451 s 9.892 s 14.616 s
7×7 2.392 s 9.133 s 12.372 s 18.719 s

Table 5.3.: Impact of enabling the additional improved candidate picking step (as per Sec-
tion 4.2.2) for FLANN over normals at different patch sizes. Resolution: 1024×680.

Our last comparison (Table 5.3) shows how enabling our improved matching method of
keeping a list of candidates and picking the locally closest one, as described in Section 4.2.2,
affects the time needed to calculate the correspondences. For this benchmark, we picked
FLANN over normals as our representative method and looked at the impact at different patch
sizes. The Candidates column refers to how many candidates, sorted by ascending distance
between the normals of the query and the candidate point, are stored in the list. One candidate
means we do not enable the additional step.

The impact is relatively large due to the fact our current optimization function uses a linear
approach. This penalty could be lessened by using a FLANN search structure instead, but
for short candidate lists the gains are negligible. This is because initializing a FLANN search
structure per pixel introduces a performance hit in itself. Increasing the candidate list length is
not viable beyond a certain length, as we are going to detail in Section 5.2, so switching from
linear to FLANN approach for this step is debatable.

5.2. Problems and Decisions

In this section we will discuss the problems encountered while working on this thesis and
explain our reasoning behind the decisions on how to solve them.

5.2.1. The Data Capturing Stage

One of the main problems at the capturing stage lies in the controlled lighting required by the
Photometric Stereo approach. To reduce any unwanted light influencing the results, objects
have to be captured in a low-light environment, ideally a windowless room. One has to also be
wary of unwanted reflections on the objects which might come from unexpected sources.

For example, our early image sets were taken in a completely darkened room, with only a
computer monitor at the opposite end of the room. The light from the monitor did not seem to
be bright enough to reach the object at first glance, but upon closer inspection, a reflection
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caused by the monitor could be seen even on brightest of objects. These reflections in turn
caused artifacts on the normal map of the captured object.

Another problem at the capturing stage is posed by the fact the object must be in exactly the
same position in all seven photos of a set. Otherwise, the images will not align properly and
the calculation of the normals and intensities will not be exact. This also means that the tripod
has to be standing perfectly still, as well. Due to the weight of the setup, the tripod is more
susceptible to vibrations. This means that depending on the flooring, walking around the setup
might suffice to misalign the images.

People walking around the setup while taking the pictures could also lead to light conditions
changing due to light from the setup reflecting from the clothing, or the person blocking a wall
which reflected more light in a prior photo within a set. The best approach is to position the
setup in a way the user can start the capturing process and remain sitting until the process is
finished.

5.2.2. The Correspondence Calculation Stage

The approach utilizing the normals require segmentation to prevent our algorithms from
mistakenly mapping parts of the background to the object, resulting in ugly black artifacts. To
prevent this from happening, we load the corresponding image set along with the normals
and perform the segmentation on the intensities, setting a normal which pixel failed the
segmentation check to a predefined value. This value has to be chosen in a way that the
distance between the invalid and a valid normal is always higher than between two valid
normals to avoid mistakenly matching to an invalid normal.

In case of Patch Match, we also had to additionally prevent the random initialization from
assigning an empty pixel to a value, or vice versa. We achieved that by instructing the algorithm
to repeat the assignment until a non-empty pixel is assigned.

5.2.3. The Relighting Stage

The newest version of gphoto2 at the time of writing (2.5.4) introduced a regression which
marked our Canon EOS 5D Mark II camera as incapable of video capture. We were able to
downgrade to an earlier version (2.4.14) without any side effects.

The most obvious problem however is the fact that just as it was the case at the capturing stage,
the source object must not be moved, otherwise the correspondence map will end up pointing
to wrong pixels. This means we have to first capture our destination object, then the source
object we wish to use, and do not move the source object after that.
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5.3. Results

Since we cannot easily obtain a ground truth result, we had to find some sort of a baseline to
compare our methods against. For this purpose, we have implemented a baseline algorithm
which resizes the segmented source object to the dimensions of the destination object and
creates an artificial correspondence map which merely copies the texture of the source object
for every pixel that is not empty in both the source and the destination objects. This works
well for objects of similar forms, but fails for an object pair with different geometries.

In our evaluation, we will also show the correspondence map to better illustrate the position
each pixel is mapped to. Figure 5.1 shows a sample correspondence map with each pixel
mapped to itself. This means that on our actual results, the higher the red value of the pixel is,
the more to the right of the source image it was taken from. The green value on the other hand
shows how far from the top of the source image the value was taken from. A combination of
red and green gives yellow as a result, marking the lower right corner.

We will also show a few images describing where some pixel’s origins are. For this purpose we
created a tool which requires the correspondence map, it’s rendition in RGB, the source and the
destination object images, as well as the mapped result as input. The user can click anywhere
on either the correspondence map, the destination object or the mapped result and the tool
will draw a line between that point and the matched point in the correspondence map.

To be able to better evaluate our results, we have picked an appropriate light direction for
each of our examples. All light positions used are generated from the captured image sets of
the corresponding object. The light direction is stated in the image description and within
the text. For example, “light: coming from the right” means we took the intensities from the
second photo of the source data set and used the correspondence map to transfer them to the
destination image. Appendix A provides more light positions for selected object pairs. The
examples shown in Section 5.3.3 however, come from screen captures of a video recorded
while moving the light around the object to positions different from the seven light positions
our hardware setup provides.

Figure 5.1.: A sample correspondence map showing the mapping of each pixel to itself. The R
component contains the x coordinate, G the y coordinate. B is always set to the
value of 1.0 for consistency reasons.
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5.3.1. Evaluation of Direct Distance Measures

Our direct distance measures are represented by our two FLANN based methods: FLANN over
intensities and FLANN over normals. In this section, we will compare the two methods using
several object pairs and decide which one delivers better results.

Figure 5.2 shows the results of mapping the texture of an apple to a banana. For this example,
we have picked the light coming from the right. The baseline method does not preserve the
geometry of the object in the results, as can be seen in the top right corner. It does however
succeed in transferring more of the finer details of the texture, as visible in the yellow zoomed
area.

For the other methods, there is a rather obvious flaw in the mapping, namely the black area
in the middle of the banana (green and blue zoomed areas). Looking at the correspondence
map in the same area, it does not appear smooth, the higher red value signifying the pixel was
matched from around the indentation of the apple. Figure 5.3 shows this assumption is correct.
This flawed mapping comes from the fact intensities do not discriminate between colors and
the intensity happened to be closest to the intensity on that area of the banana.

Another reason for this type of mismatch can be caused by segmentation. Choosing a higher
cutoff value in this case could help to avoid including pixel too dark for a reasonable mapping
into the matching list. However this is not the case here, as visible on the FLANN over normals
results (blue zoomed area), the dark area is much smaller in this case. The mismatches in this
case come from the fact there are two or more intensity or normal vectors which happen to
have nearly the same distance to the query vector. This misleads the algorithms into picking
the one with the wrong color, since neither intensities nor normals contain color information.

It is also visible that our methods working on intensities have lost the highlight on the right,
while the texture on the left side of the banana is not smooth (green zoomed area). The
normals approach manages to transfer the highlights and keep the surface smooth (blue
zoomed area). The highlight also looks glossy as it is on the apple (source object), not the
diffuse kind as visible on the banana (destination object).

Overall, the intensity approach seems to be more susceptible to mismatches should the intensity
appear to be closer in an area of the source object with a completely different orientation.
On the other hand, the normals approach manages to produce less mismatches, but suffers
from a “grainy” appearance, the effect especially visible around the highlight of the result.
However, depending on the texture, the “grain” might improve the subjective appearance, by
emulating the fine details of a texture. The normals method also transfers more highlights
than the intensity approach, leading to more promising results for this object pair.
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Figure 5.2.: Comparison of Direct Distance Measures I. Top: Destination object, FLANN over
intensities, FLANN over normals, baseline methods. Middle: Respective zoomed
regions. Bottom: Source object and the correspondence maps for the methods
above. Light: coming from the right.

Figure 5.3.: The Origins of (Mis)matches I. Top row: source and destination objects. Bottom
row: the correspondence map and the result of mapping the texture. Method:
FLANN over intensities. Light: median of intensities.

33



5. Evaluation

Figure 5.4.: Comparison of Direct Distance Measures II. Top: Destination object, FLANN over
intensities, FLANN over normals, baseline methods. Middle: Respective zoomed
regions. Bottom: Source object and the correspondence maps for the methods
above. Light: coming from the right.

Before we decide which algorithm to choose as our representative for further evaluation, we
would like to look at more examples. Our previous object pair had many different normals for
the source object, with the surface having specular highlights and a rather fine texture detail.
The destination object had a diffuse, monochrome surface except for a few black spots. Both
objects were overall convex, except for the indentation on the apple’s top and a slight concavity
around the banana’s stem.

For our next example, we picked a pair of objects which have a restricted variation of normals
for the destination object and kept a spherical object as source. Figure 5.4 shows the result of
mapping the texture of an orange to a wooden bull statue. The light is coming from the right,
demonstrating the behavior of the highlights on the statue’s head. The concave form of the
destination object poses a challenge for our methods. There are also some black holes in the
statue due to the wood being rather dark, so our segmentation step discards parts of the object
to not let any background pixels make it into the image.

Our FLANN over intensity approach succeeds at mapping the diffuse highlight of the orange to
the head of the statue, but overemphasizes it, making it appear overexposed (green zoomed
area). The resulting image does not appear to belong to a statue with an orange skin texture
as the texture is too glossy.
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There is a rather peculiar mismatch in the form of a dark spot in the same area. Looking at the
correspondence map, that patch was matched from a completely different position on the map
(from the bottom right of the orange), as the yellow value is higher. This means our approach
once again falls victim to the problem of two intensity vectors on the source object having
nearly the same distance to the position on the destination object and the wrong one being
picked.

Looking at the results produced by FLANN over normals (blue zoomed area), shows an image
much closer to the desired result. The highlights are present at the correct locations, but are
diffuse, just like they are on the skin of an orange. This again shows the higher robustness of
the normals approach for objects with a fine texture. The shadows appear natural around the
bull’s feet.

The result produced by our baseline approach does not have much resemblance with the bull
statue anymore, the geometries of the source and destination objects are too different for the
approach to deliver reasonable results. The highlight is on a completely different position, with
the area around the hind feet being bright instead of staying shadowed as with our FLANN
base approaches, appearing unrealistic. The edges of the wooden statue are also not visible
anymore.

Finally, we tested our two direct methods with an object with a much coarser texture: a cup
with several colored dots. The result can be seen in Figure 5.5, showing a mapping of a dotted
cup to a white one. The light is again coming from the right to be able to better illustrate the
artifacts near the handle of the cup.

With the geometries of the source and destination objects being so similar, the baseline method
(yellow zoomed area) manages to deliver very good results. The highlights are in the correct
position, the colored dots are perfectly visible and the overall appearance of the cup looks
convincing, except for an unclean cut around the cup’s handle due to its form and position
differing between the two cups.

Both FLANN over intensities and FLANN over normals methods seem to fail to produce smooth
results, with a lot of dark patches being matched to a light area (green and blue zoomed areas
respectively). As before, multiple match candidates with nearly the same distance to the query
point lead to our algorithms picking the wrong match. Figures 5.6 and 5.7 illustrate where the
mismatches come from. Smoothness of the results can be improved by increasing the patch
size and taking the position of the match in the account, as we described in Section 4.2.2. We
will demonstrate the effects of doing so in the next section of this chapter.

Looking at the rest of the matching, both methods seem to succeed in roughly pinpointing the
location of the colored dots. This is rather unsurprising in case of our FLANN over normals
approach as it merely succeeds in approximately matching the correct normals. FLANN over
intensities is not aware of the orientation of the surface however, so seeing less mismatches in
its results is unexpected.
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5. Evaluation

Figure 5.5.: Comparison of Direct Distance Measures III. Top: Destination object, FLANN over
intensities, FLANN over normals, baseline methods. Middle: Respective zoomed
regions. Bottom: Source object and the correspondence maps for the methods
above. Light: coming from the right.

However, even though there are less visible mismatches, the ones that are visible, such as
the black spot near the handle in the green zoomed area, are rather bad. Looking at the
correspondence map, this spot was matched to a pixel near to the edge of the cup, as shown in
Figure 5.6.

The highlights are kept at the same positions as they should appear on the destination object,
with the FLANN over intensity approach keeping them closer to the original. This is because
the surface properties of the two cups are similar, so finding the correct match by intensity is
easier than picking the correct normal out of several similar ones in this case. However, the
highlights are still at the correct position for the FLANN over normals method as well, and
the results can be further improved by making the method more robust. Even though the
results produced by the method based on normals are inferior to the intensity approach for the
last object pair, considering the normals method was able to show better results in the two
other cases, we think it is the superior method. For this reason, we are going to present the
improvements we implemented to make the methods more robust and show how they affect
the results by using FLANN over normals in the following section.
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5.3. Results

Figure 5.6.: The Origins of (Mis)matches II: FLANN over intensities. Top row: source and
destination objects. Bottom row: the correspondence map and the result of
mapping the texture. Light: median of intensities.

Figure 5.7.: The Origins of (Mis)matches III: FLANN over normals. Top row: source and
destination objects. Bottom row: the correspondence map and the result of
mapping the texture. Light: median of intensities.
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5. Evaluation

Figure 5.8.: Comparison showing the effect of increasing the patch sizes using the FLANN
over normals method. From left to right: Patch size 1×1, 3×3, 5×5, and 7×7.
For source and destination see Figure 5.5. Light: coming from the right.

5.3.2. Evaluation of Improvements

Now that we have decided which approach we wish to improve, we can look at any gains
enabling the improvements described in Section 4.2.2 provides. There are three types of
improvements we described: improving direct matching itself by varying the patch size and
taking the position of matches in the image into account, changing to a different approach by
using the Patch Match algorithm and finally taking a hybrid approach with Region Growing.

As we have shown in Table 5.2, increasing the patch size has an impact on the runtime of
about two seconds for our FLANN based approach. To look at which advantages we might
gain from doing so, we have run the FLANN over normals algorithm with different patch sizes
on our third object pair, the dotted and the white cup. Figure 5.8 shows the result. The light
remains unchanged from Figure 5.5, coming from the right.

Increasing the patch size leads to less mismatches. Nearly all of the black spots that marred
the results in Figure 5.5 are gone after increasing the patch size to 3×3 pixels (green zoomed
area). Further increasing the patch size leads to the results growing progressively smooth (blue
and yellow zoomed areas). Due to the differing geometry of the objects, the bottom of the
texture is stretched, while the middle is squished.
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5.3. Results

However, there were only small improvements where the actual texture, the colored dots,
is considered. The position is correct for those points, with them still being present after
smoothing out the result by increasing the patch size, but the texture is still very distorted.

To further improve the texture features’ positioning, we have also implemented an approach
which prefers matches locally closer to the query (candidate optimization). Figure 5.9 shows
the result of matching two spheres of a different color to a Lego block. We have picked two
spheres of different colors as the source object in order to have at least two different normals
with the same orientation. This way the effect our candidate optimization step has on the
result for this object pair can be visualized in a better way.

The destination object is constructed from bricks of four different colors: yellow, green and
two shades of blue. The Lego block has a restricted number of normal orientations, so in
order to be able to clearly see both sides of the block, we decided to show the scene with light
generated from the median of intensities. Matching the two spheres directly using FLANN over
normals leads to poor results (green zoomed area). The two colors are seemingly randomly
scattered around the Lego block.

Turning on the candidate picking optimization immediately changes the color distribution
(third column). While not perfect at the top of the cube, the color distribution is correct on the
cube’s sides (blue zoomed area) with as few as three candidates in the list. As visible on the
correspondence map, the black line on the right side of the cube comes from segmentation, as
the green brick is very dark.

Sometimes the candidate optimization step does not work well. Each object pair requires
carefully tuning the number of candidates in the list. Choosing a too low count leads to little
to no effect compared to matching directly, while picking a too high candidate count leads to
bad matches being picked, breaking the texture completely. This effect can be seen in the last
column of Figure 5.9, with the list containing seven candidates. Looking at the middle of the
zoomed area (yellow), there are some dark pixels becoming visible where previously were
none. These pixels do not appear due to segmentation but are actual mismatches, as can be
seen on the correspondence map.

An example where our candidate picking optimization does not work as expected is shown in
Figure 5.10. For this scene we have picked two Lego blocks constructed from bricks of four
different colors: yellow, green and two shades of blue. Both objects have a distinct texture and
the same geometry, with only two distinct normal orientations on the sides, one orientation
per side (not counting the edges of the individual bricks and the top side).

This makes it very hard for our matching algorithm to work without candidate picking opti-
mization enabled, as the algorithm ends up always matching the first normal with the correct
orientation, coloring most of area yellow. The second column of Figure 5.10 illustrates this
case, with the left side only having a few dark spots and the right side being randomly assigned
(lime zoomed area).
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5. Evaluation

Figure 5.9.: Effect of candidate picking optimization: Picking the locally closer match, even
if it is not optimal distance wise, improves the result. Top: Destination object,
FLANN over normals with one, three and seven candidates to pick from. Middle:
Respective zoomed regions. Bottom: Source object and the correspondence maps.
Light: median of intensities.

Turning on optimization does not improve the situation. On the contrary, the distribution of the
colors has become even more random, with many green spots making it to the result on the left
side of the block and the previously correctly mapped dark blue part of the brick on the corner
is now incorrectly matched with yellow (cyan zoomed area) and light blue (orange zoomed
area), which was supposed to be mapped further to the right. It is interesting to see that the
dark green brick on the right side of the block starts to roughly gain a green color with a higher
candidate count (orange zoomed area), even if it is not respecting the brick boundaries.

The algorithm does not work correctly due to three reasons. One reason is that because the
Lego block has a limited number of normals per side, the list of candidates is more likely to be
filled up with candidates of the same color, as we see happening on the left side of the cube.

The other reason is that our algorithm matches the image by iterating through it column- or
line-wise. This explains why the brick boundaries are not respected and a hard horizontal line
separating the colors is visible instead.

And the last reason is that increasing the candidate list to include normals with other colors
results in normals with a too big distance being included into the list as well, harming the
result quality. This is again visible at the corner block, where dark pixels suddenly start to
appear.
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5.3. Results

Figure 5.10.: Candidate picking optimization failing to improve mapping. Top: Destination
object, FLANN over normals with one, seven and 50 candidates to pick from.
Middle: Respective zoomed regions. Bottom: Source object and the correspon-
dence maps. Light: median of intensities.

The methods and improvements presented so far manage to transfer the general appearance of
the object, as long as the source object does not have a limited normals count, like in our Lego
cube (Figure 5.10) example. The destination object’s geometry does not seem to affect the
result, with even some concave objects (our wooden statue, Figure 5.4) appearing sufficiently
realistic.

However, looking at more coarse textures like our two cups example (Figure 5.5) shows
that the improvements are not enough to achieve satisfactory results. To work around these
limitations, we implemented the Patch Match and Region Growing algorithms.

To compare the results we have reused the scene from Figure 5.4, transferring the texture
of an orange to a wooden statue of a bull and the light coming from the right. The results
produced by Patch Match over normals are nearly the same as the results produced by our
FLANN over normals approach, as visible in Figure 5.11. The quality of the results produced
by our Patch Match implementation suffers from the same flaws as the FLANN approach, with
the only benefit being the faster calculation time, as shown in Table 5.2.

Running Region Growing over normals for the same object pair does not seem to improve the
result. The highlights look the same, but the texture is more uneven, due to the bull statue
being concave. This means that the regions cannot be grown too big without deviating too
much from the destination object’s surface.
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5. Evaluation

Figure 5.11.: Top: Destination object, FLANN over normals, Patch Match and Region Growing
(growing threshold of 0.06). Middle: Respective zoomed regions. Bottom:
Source object and the correspondence maps. Patch size: 1×1; Light: coming
from the right.

However, when the source texture belongs to an object which is rough to begin with, Region
Growing over normals is able to provide more appealing results compared to the FLANN and
Patch Match approaches. Figure 5.12 shows how mapping of a stone to the same wooden
bull statue works out. With both the FLANN over normals and Patch Match over normals
approaches, the results manage to transfer the colors correctly, but the result does not appear
to belong to a stone, with the surface being too smooth and clean.

Region Growing however, delivers a more rough result, making the surface appear more
believable. Especially the region around the head (yellow zoom area) looks convincing, with a
light stone vein being seemingly transferred from the stone’s middle right corner.

One more example of Region Growing showing its strength is our “two cups” example, as
shown in Figure 5.13. This time we used light generated from the median of intensities to be
able to show the dots on both sides of the cup. While the results are not perfect (yellow zoom
area), it certainly manages to transfer much more of the texture than the FLANN over normals
and Patch Match approaches. There is still an issue with dots not quite converging, like the
blue dots at the left and the right side of the yellow zoom area. The green dots do not make
it to the final image either. There are also still some dark regions at the bottom edge of the
cup, but comparing the result to the ones produced by FLANN over normals and Patch Match,
Region Growing definitely is an improvement where texture is considered.
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5.3. Results

Figure 5.12.: Top: Destination object, FLANN over normals, Patch Match and Region Growing.
Middle: Respective zoomed regions. Bottom: Source object and the correspon-
dence maps. Patch size: 7×7; Light: coming from the right.

Figure 5.13.: Top: Destination object, FLANN over normals, Patch Match and Region Grow-
ing (with a threshold of 0.04). Middle: Respective zoomed regions. Bottom:
Source object and the correspondence maps. Patch size: 3×3; Light: median of
intensities.
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5. Evaluation

In conclusion, FLANN or Patch Match over normals produce good results for smooth textures,
both glossy or matte, as we have seen on our examples in Figures 5.2 and 5.4. Our Patch
Match implementation is faster than our FLANN approach but lacks the capability to improve
the match by picking the locally closer one. Running our Region Growing algorithm with a
threshold of 0.0 is equivalent to our FLANN approach, as it then does not grow the region,
searching for direct matches only. For this reason, we see it as the superior, albeit slower
approach, allowing to handle both smooth and rough textures.

5.3.3. Examples of Objects Relighted Under Novel Light Conditions

Having looked at the quality of our methods’ results, we would like to show how our tested
objects with a new texture mapped to them behave under novel light conditions. We have
extracted several frames from a video of each object, using light positions differing from the
seven positions our hardware setup provides.

Figure 5.14 shows the texture of an orange mapped to a wooden statue of a bull. The light
is traveling on an arc starting from the top of the object and moving to the left, with the
highlight wandering along the neck of the wooden bull statue according with the movement of
the highlight on the surface of the orange. The areas light up according to the light source’s
position, looking convincing with the surfaces shimmering not unlike the orange itself.

The surface overall is sufficiently smooth, without patches with mismatched brightness or
orientation visible. There are some pixels at the rear of the bull which appear to be lit even
though this should not be the case, but the effect is minor and does not harm the final
appearance much. The rest of the lighting appears natural, with only minor discrepancies
around the hind feet of the bull statue, where the light continues to shine even though in
reality it should have been blocked by the body of the statue.

Figure 5.15 shows the result of mapping two spheres of a different color to the Lego block
appear under a different lighting. To illustrate the fact the lighting still makes sense for the
limited normal orientation count of the Lego block, we have chosen light positions behind
the two spheres: at the left, top and to the right. The last column also shows the light being
positioned between the spheres and the camera.

The lighting of the Lego block behaves reasonably well, with shadow artifacts at the top
surface for the first three light positions. This is due to the object’s concave form. The rest
of the surfaces changes the lighting according to the light direction, with only a few pixels
standing out (red zoomed area). Some of the pixels appear black due to segmentation (see
correspondence maps on Figure 5.9).
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5.3. Results

Figure 5.14.: Relighted Example I: Orange texture over a wooden bull statue. Source object
at the top, source object at the bottom, light descending from above. Method:
FLANN over normals and patch size of 1×1.

Figure 5.15.: Relighted Example II: Two colored spheres’ texture on a Lego block. Mapped
object at the top, source object at the bottom. Light moving from left to right
behind the object, then to the front and below the object. Method: FLANN over
normals with three candidates and patch size of 1×1.
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5. Evaluation

Figure 5.16.: Relighted Example III: A dotted texture on a white cup. Mapped object at the
top, source object at the bottom. Light descending from left to right to the front
and below the object. Method: Region Growing with 50 candidates, patch size
of 3×3 and a threshold of 0.04.

Figure 5.16 shows our example with a dotted cup’s texture being transferred to a white cup.
The light travels from the left in front of the object on a downward arc, going below the table
our source object is placed on. This leads to the light gradually being obstructed by the table,
placing a shadow on the object.

We purposely chose this example to show that despite the result not being smooth over the
whole surface, the mapping does make sense within the regions themselves. The highlight is
traveling along the surface of the destination object, appearing at the correct positions.

When the light is obstructed by the table, a black patch suddenly appears on the destination
object, even though the light did not sink deep enough to cause the same shadow on the
source object. This is because this area of the destination object was matched to the area at
the outermost edge of the rim of the cup. Due to the differences in the cups’ geometry, these
normals presented a better match for our methods.

There is an interesting effect visible on the cup, with the area near the bottom of the cup (to
the top right outside the zoomed area) appearing lit even though the same area is not lit on
the source object. This is correct, as the destination object is smaller than the source object,
meaning that even though the light does not reach that spot on the dotted cup anymore, it
still does reach that area for the mapped one, showing that our mapping also appears realistic
when mapping object of different sizes.
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5.3. Results

Figure 5.17.: Relighted Example IV: A stone texture on a wooden bull statue. Mapped object
at the top, source object at the bottom. Light moving from left to right behind
the object, then ascending to right above the object.

Our final example (see Figure 5.17) shows the texture of a stone transferred to the wooden bull
statue. The light is moving from left to right behind the stone, finally ascending to a position
above it. As with the example in Figure 5.14, the lighting appears convincingly realistic, with
only minor artifacts visible around the hind feet and the rear of the statue.

The texture on the bull statue behaves similar to the texture on the stone. While it does not
replicate the texture completely, the overall appearance is close to the original, with white
veins lighting up on the surfaces when light hits them, remaining dark otherwise.

Overall, the lighting on newly relighted objects appears convincing enough to be called realistic.
The texture on the destination object, while not transferred perfectly in all cases, gives the
object an appearance which bears a high grade of similarity to the source object’s texture. The
resulting appearance also manages to inherit the properties of the source object using our
approach. This means that transferring an appearance of a glossy object to an object with a
matte surface will result in the destination object appearing glossy as well. The same is true
for the opposite case.
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5. Evaluation

5.4. Setup and Processing Times

To conclude this chapter, we want to look at the time the whole process starting from acquiring
the two objects to starting the video capturing process takes. For this purpose, we have chosen
our worst case: two dark objects with a rough texture, our stone to wooden bull statue transfer
introduced in Figure 5.12. The time spent on the initial assembly of the setup requires about
one to ten minutes, depending on how far the setup was disassembled for the transport.

Not taking the time for the initial assembly of the physical setup into account, the longest
time is spent photographing an object: one minute and 28 seconds per object. This is due to
combination of a higher aperture required to keep all parts of the bull statue sharp, the amount
of light a single Philips Hue provides at maximal brightness and the dark surface of the wood
requiring a long exposure time of four seconds.

Once the capturing process is complete, converting the image set from the camera resolution
of 5634×3753 pixels to our target resolution of 1024×680 pixels takes about six seconds per
object. Calculating the normals takes seven seconds per object. This sums up to a time of about
three and a half minutes so far.

The rough texture of the stone requires us to use our slower Region Growing approach. The
calculation of the correspondence map with a threshold of 0.08 takes about 33 seconds. The
total time needed for our worst case is thus about four minutes.

We see this time as acceptable for a worst case scenario. However, this scenario does not
account for the time spent testing which aperture and exposure each object requires. Using
an object pair which does not require such a high exposure time is one way to reduce the
total time needed to start relighting the objects. Another large speedup can be achieved by
specifying a smaller threshold for the Region Growing algorithm. This could lead to degraded
results depending on the source object’s texture, however.
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6. Summary and Future Work

In this thesis, we have presented a new method to transfer the appearance of one physical
object to another, allowing the user to interactively view the destination object with the texture
of the source object applied under novel light conditions. To achieve that, we designed a
hardware setup consisting of a Canon EOS 5D Mark II camera and a chipboard holding seven
Philips Hue lamps, mounted on a tripod. All parts of the setup are widely available to anyone,
requiring no specialized or overly expensive parts.

Our workflow consists of capturing the destination and source objects (in that order), cal-
culating the correspondence map based on the image data and finally displaying the source
object’s texture on the destination object. Each object requires seven photos to be taken with
one of each lights active for each photo. The photos are used to obtain the normals of the
object as well as the intensities. We used several approaches to calculate the correspondence
map, directly matching two pixels of the source and destination objects by either normals or
intensities. By matching two patches of pixels instead, as well as keeping a list of candidates
and picking locally closest one, we presented several approaches to make the matching more
robust. We also introduced two more approaches, with Patch Match transferring the texture
on a patch-to-patch basis and Region Growing representing a hybrid approach of directly
matching pixels and attempting to transfer neighboring pixels as long as it does not violate
defined constraints.

The results were extensively evaluated and discussed in the second part of the thesis, offering
insights into runtime and quality of algorithms presented, also showing the impact and
gains brought by our measures to improve the results. We have also discussed the problems
encountered while working on this thesis, detailing our reasoning for the decisions made to
solve them.

In this final chapter of the thesis, we would like to offer several ideas for future work which
can be done based on the work presented, concluding the thesis.
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6. Summary and Future Work

Future Work

One major flaw of our approach is the fact that neither the source object nor the setup can
be moved after acquiring the data without the correspondences becoming invalid. A method
to be able to re-locate the correspondences is required. This could be done by overlaying a
half-transparent outline of the object over the camera picture, allowing the user to re-align the
source object with its position on the correspondence map.

The quality of the transferred appearance is lacking in some cases. To improve the matching, we
suggest using different distance measures to improve the results, for example using Normalized
Cross Correlation. Improving our Patch Match implementation by enabling the method to
also match rotating and scaling patches could improve the results. Trying out other matching
criteria is also worth pursuing, for example switching from the RGB to the HSV1 color space,
and using the value channel to define the intensity. Another approach would be to match
by taking color into account, discarding the match if already matched pixels neighboring the
current one are not of a similar color.

One could also work towards expanding the types of objects the methods can handle, allowing
to transfer the appearance for non-Lambertian objects, for example translucent objects. To
be able to do that, segmentation has to be handled in a way to account for the background
showing through the object. This could be achieved by improving the GUI2, allowing the user
to paint over the image of an object with a brush of a variable size to allow directly marking
valid pixels. There is also still work to be done to improve handling of concave objects, as well
as objects with limited normals. In case of objects with limited normals, the user could help
the program out by pointing where to map the texture to. We imagine combining the work by
Ukamatsu et al. [UMKT12][UMKT13] with our methods of transferring the appearance would
allow for an intuitive workflow.

On the performance side, there are several ways to improve it even further. For example,
utilizing FLANN’s multi-threading support should bring noticeable gains. In case further
improvements are desired, moving the whole code to a GPU3-based implementation should
provide even higher gains. This is viable, since most of the operations are performed per (patch
of) pixel(s). This means that the result of the segmentation check for this pixel only depends on
its own value and the values of the neighbors in case of patches, but not on the results for other
pixels. The same is true for the calculation stage, where the result for a pixel only depends on
the set of valid points to match against. Following this route could lead to the calculation of
the correspondence map being possible nearly in real time, since our current implementation
slows down considerably with increasing patch sizes and number of candidates saved, as we
have shown in Table 5.3.

1http://en.wikipedia.org/wiki/HSL_and_HSV
2Graphical User Interface
3Graphics Processing Unit
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A. Further Results

Figure A.1.: Results of mapping the source object (left) to the destination object (right).
Middle image is the RGB mapped input. Method: FLANN over normals. Light
(from top to bottom): Median of intensities, from the top, from the left and from
the right.
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A. Further Results

Figure A.2.: Left: source object. Right: destination object. Middle: the mapped result.
Method: FLANN over normals. Light (from top to bottom): Median of intensities,
from the top, from the left and from the right.
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Figure A.3.: Left: source object. Right: destination object. Middle: the mapped result.
Method: Region Growing over normals, patch size of 3×3. Light (from top to
bottom): Median of intensities, from the top, from the left and from the right.
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A. Further Results

Figure A.4.: Left: source object. Right: destination object. Middle: the mapped result.
Method: FLANN over normals, three candidates in the list. Light (from top to
bottom): Median of intensities, from the top, from the left and from the right.
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Figure A.5.: Left: source object. Right: destination object. Middle: the mapped result.
Method: Region Growing over normals, growing constraint of 0.08, patch size of
7×7. Light (from top to bottom): Median of intensities, from the top, from the
left and from the right.
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A. Further Results

Figure A.6.: A curious result of overgrowing the region. Left: source object. Right: destination
object. Middle: the mapped result. Method: Region Growing over normals,
growing constraint of 0.09, patch size of 7×7. Light (from top to bottom):
Median of intensities, from the top, from the left and from the right.
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B. Acknowledgements

This appendix lists all foreign code used in this thesis and states its source.

The image.h file contains code for reading and writing images in ppm and pfm format. The
code was written for the Visual Computing lecture by Jun.-Prof. Dr. Martin Fuchs at University
of Stuttgart and is used with permission. This code was used for most image input and output
related operations.

Several programs are using the openCV Open Computer Vision Library1, to be able to display
and manipulate images. The createOne() function in comap.cpp is utilizing the openCV library
to combine multiple images so that they can be shown side-by-side and was adapted from the
following source2.

Parts of the main function in lmv.cpp which reads a sequence of jpeg images from stdin using
openCV were adapted from here3.

The calculation of correspondences is mostly performed by utilizing the FLANN Fast Library for
Approximate Nearest Neighbor4 functionality.

Other algorithms adapted include Patch Match by Barnes et al. [BSFG09] and Region Growing
by Adams et al. [AB94]

1http://opencv.org/
2http://answers.opencv.org/question/13876/read-multiple-images-from-folder-and-concat/
3http://stackoverflow.com/questions/20899511/opencv-load-image-video-from-stdin
4http://www.cs.ubc.ca/research/flann/
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