
Institute of Parallel and Distributed Systems
Department of Machine Learning and Robotics

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

CSIRO
Autonomous Systems Lab

1 Technology Court
QLD–4069 Pullenvale

Diploma Thesis Nr. 3571

Real-Time Stabilisation for
Hexapod Robots Using
Task-Space Constraints

Marcus Hörger

Course of Study: Software Engineering

Examiner: Prof. Dr. rer. nat. Marc Toussaint

Supervisor: Dr. Alberto Elfes

Commenced: September 23, 2013

Completed: March 25, 2014

CR-Classification: I.7.8, I.2.9

Abstract

Legged robots such as hexapod platforms are capable of navigating in rough and unstructured
terrain. When the terrain model is either known a priori or is observed by on-board sensors,
motion planners can be used to give desired motion and stability for the robot. However,
unexpected leg disturbances could occur due to inaccuracies of the model or sensors or simply
due to the dynamic nature of the terrain. This thesis presents a method based on task-space
constraints for real-time stabilisation of hexapod robots which keeps the robot inside defined
task-space constraints to recover from unexpected events such as leg slip. A ROS-based control
system for hexapod robots is developed and implemented, integrating the presented stabilisation
method. The approach is experimentally evaluated using two PhantomX hexapod platforms -
one with extended tibia segments which significantly reduces its stability. The results show
that the proposed method significantly improves the static stability when unexpected events
occur during locomotion.

3

Contents

1 Introduction 9

2 Mathematical foundations 11
2.1 Basic kinematic equations . 11
2.2 Kinematic chains . 11
2.3 Denavit-Hartenberg transformation . 12
2.4 Inverse kinematics . 13
2.5 Quaternions . 14
2.6 Tait-Bryan-angles . 15
2.7 Manipulator trajectory planning . 15
2.8 Locality sensitive hashing . 17

3 System description 21
3.1 Overview . 21
3.2 Hardware architecture . 21
3.3 Software architecture . 22

4 Hexapod model 29
4.1 Body model . 29
4.2 Leg model . 30
4.3 Definition of the joint angles . 31
4.4 Transformation tree . 31
4.5 Leg kinematics . 33

5 Stability-margins 37
5.1 Static stability . 37
5.2 Calculation of the CoM projection . 38
5.3 Dynamic stability . 38

6 State-space 39
6.1 State-space representation . 39
6.2 Configuration space . 39
6.3 Task-space . 40
6.4 Constraint manifolds . 41
6.5 Sampling strategies . 41
6.6 Task-space constraints . 42
6.7 Stable states . 44

5

6.8 Critical states . 44

7 Random sample based planning techniques 47
7.1 RRT . 47

8 Stabilisation approach 53
8.1 Overview . 53
8.2 Planning domain . 53
8.3 Offline generation of RRT* trees . 54
8.4 Real-time stabilisation . 55

9 Experiments and results 59
9.1 Experimental setup . 59
9.2 Experiments . 61
9.3 Results . 63

10 Conclusion and future work 67

Bibliography 69

6

List of Figures

2.1 Illustration of the LSH-preprocessing of the data set (the coloured points in the
circle). The data points get mapped into buckets by a set of hash functions
h1, ..., hk. Similar data points get hashed into the same bucket with a higher
probability . 18

2.2 A point p (red dot) gets hashed into the l hash tables and a brute-force nearest-
neighbour search is performed to find the nearest point inside the buckets p has
been mapped to. 19

3.1 Overview of the hardware setup for the hexapod platform. 21
3.2 Software architecture . 23
3.3 Overview of the software architecture. The blocks are ROS nodes. The solid

lines between components indicate that one node accesses the other using service
calls. The dashed line indicates a publish/subscribe relation between two nodes,
while the node on the arrow side consumes messages published by the node on
the other end of the line using ROS message queues. 25

4.1 Hexapod model . 29
4.2 Hexapod leg model . 30
4.3 Model of a joint . 31
4.4 The tree structure used to represent the relationships between the single local

coordinate frames . 32
4.5 Inverse-kinematic model of the hexapod legs . 34

5.1 A model of a hexapod during a tripod locomotion. The blue vertices define the
support polygon. The violet sphere is the projection of the CoM on the support
polygon . 37

6.1 Configuration manifold of a kinematic chain with three joints. The axes are the
joint angles for each joint of the chain (in radians). 40

6.2 The task-space of a three-link kinematic chain. The blue area is the set of
feasible end-effector positions. 41

6.3 Projection of task-space constraints into the C-space of a three-link manipulator.
The left figure shows the constraint for the end-effector position (the end-effector
has to move inside the blue area). The right figure shows the related constraint
manifold in the manipulator’s S-space. 43

7.1 RRT tree after 100 (a), 1000 (b) and 5000 (c) iterations. 48

7

7.2 A RRT-tree gets trapped behind an obstacle Mi when the p is too high. 49
7.3 RRT-tree in a 3 dimensional space with a goal biasing value of 0.001. The path

from the start node (green dot) to the end node (blue dot) is shown as the cyan
branch. 50

7.4 RRT-tree in a 3 dimensional space with a goal biasing value of 0.05 and the
same start end end node as in 7.3 . 50

7.5 Comparison between RRT and RRT* (source: http://sertac.scripts.mit.
edu/web/?p=502, access date: 20.03.2014) . 52

8.1 cinint of a hexapod on different inclined surfaces (side-view) 54
8.2 This plot shows the average time (in seconds) RRTConnect takes to find a path

from a critical state sc to it’s nearest neighbour snear for 100 critical samples,
depending on the number n of nodes in the RRT*-trees. 56

8.3 Overview of the process connecting sc to the nearest node to find a path back
to a stable state. 57

9.1 Modified PhantomX hexapods (a) with additional computing and sensing, (b)
with extended tibia segments for reduced stability. 59

9.2 Outdoor setup . 62
9.3 Inclination experiment . 63
9.4 Leg-slip experiment . 65
9.5 This graph shows the body roll (a) and pitch (b) during a leg-slipping event

with and without stabilisation system. 65

List of Tables

9.1 This table shows the the number of broken servos and the amount of times the
hexapod lost static stability during the leg-slipping experiments. 64

9.2 This table shows the standard deviation of the body’s pitch and roll angles from
a series a leg-slipping experiments. 66

List of Algorithms

7.1 Build RRT . 48

8

http://sertac.scripts.mit.edu/web/?p=502
http://sertac.scripts.mit.edu/web/?p=502

1 Introduction

Hexapod robots are well suited for navigating in rough and uneven terrain that can be
challenging to conventional wheeled or tracked vehicles. These robots can efficiently adapt to
the complex terrain by adjusting their gait patterns, footfall trajectory or footholds. There are
broadly two approaches in attaining hexapod locomotion: when terrain is unknown, the hexa-
pod executes repeated pattern of coupled footfall or a gait with little feedback [LLC88]; and
when the terrain model is completely known or is observed by on-board sensors with sufficient
accuracy, the footfalls are computed to give desired motion and stability [HBL+08] [BRL03]
[Bel11] [BS12] [BS11]. The former approach relies on the stochastic nature of the hexapod’s
interaction with the terrain to recover from slips and trips. However, there is no guarantee of
the approach working in very challenging environments like steep slopes or on slippery surfaces
in the event of unexpected disturbances in the leg-terrain interaction such as leg slips or
changes in the body orientation due to incomplete and uncertain terrain information. In order
to navigate such challenging terrains, a fast reactive approach is necessary which is able to
compensate these unforeseen disturbances. The stable footfall generation for a known terrain
is computationally expensive due to the high dimensionality of the planning space. When
a slip occurs, the planner often has to recompute the footfall from a new post-slip configuration.

In this thesis, a real-time stabilisation system based on state-of-the-art motion planners is
proposed to detect and arrest external disturbances in real-time, without knowledge of the
local terrain, before the body moves to an unstable configuration, potentially damaging itself,
or to a configuration from where recovery is difficult.
To evaluate the proposed method, a software control architecture for legged-locomotion of
hexapods has been developed and implemented. This software system integrates the proposed
stabilisation method using the ROS-framework, a widely used software-framework in the
robotics community.

Structure of this thesis

The structure used for this thesis is the following:

Chapter 2 – Mathematical foundations: Summarises the mathematical foundations an
methods used in this thesis.

Chapter 3 – System description Overview of the hardware setup and the software system
developed during the thesis work.

9

1 Introduction

Chapter 4 – Hexapod model Describes the model of the hexapods (including methods for
forward- and inverse kinematics).

Chapter 6 – State-space Introduces the state space, including important subspaces of the
hexapod.

Chapter 7 – Random sample based planning techniques Gives an overview of current
state-of-the-art random sample based planning techniques.

Chapter 8 – Stabilisation approach Describes the stabilisation approach based on ran-
dom sample based planners.

Chapter 9 – Experiments and results Validates the developed stabilisation approach by
describing the experimental setup and the achieved results.

Chapter 10 – Conclusion and future work Gives a conclusion of the work that has been
done for this thesis and summarises ideas for future work.

10

2 Mathematical foundations

This chapter gives an overview of the basic mathematical foundations which are required
further in this thesis. It describes basic kinematic methods and, further in this section, more
problem specific methods.

2.1 Basic kinematic equations

Let point p be a point in the reference frame M . The trajectory of p which is traced relative
to a fixed frame F is

(2.1) P (t) = [T (t)] · p =
[
R(t) d(t)

0 1

]
=
(
p

1

)

With [T (t)] being a homogeneous transformation assembled by a set of rotations [R(t)] and
translations [d(t)].

The velocity Vp of the trajection of point p can be obtained by deriving the transformation
with respect to the time t:

(2.2) Vp =
[
Ṫ (t)

]
· p =

[
Ȧ(t) ḋ(t)

0 1

]
·
(
p

1

)

with the dot denoting the derivative with respect to time.

2.2 Kinematic chains

A kinematic chain is a set of links [li] connected by a set of joints [ji]. The joints play the
most important role in kinematic chains as they define the type of motion and constraints of
body A in respect to body B. Therefore they are also called kinematic pairs. In general there
are two classes of kinematic joints:

• Lower-pair joints

• Higher-pair joints

11

2 Mathematical foundations

2.2.1 Lower-pair joints

A lower-pair joint is an ideal joint which defines contact between a point, line or plane of a
body to a point, line or plane of another body. A joint is a lower-pair joint if the two bodies
connected by this joint have a surface contact.

2.2.2 Higher-pair joints

A joint is called a higher-pair joint when the the two bodies have a point or line contact.

It is clear that the physical joints used for the hexapod platforms are lower-pair joints. However,
the hexapod model described in 9.4(a) treast them as lower-pair joints (two links have point
contact at the joint).

2.3 Denavit-Hartenberg transformation

The Denavit-Hartenberg transformation is a standard procedure based on homogeneous
matrices to transform a local coordinate system Tn−1 into the local coordinate system Tn in a
kinematic chain. The Denavit-Hartenberg transformation is widely used for forward-kinematic
purposes. To transform the system Tn−1 to Tn there are three assumptions which have to be
met by the local coordinate systems:

• The zn-axis defines the axis of motion of joint jn
• The xn-axis is the cross-product of zn−1 and zn

xn = zn−1 × zn

• The system (xn, yn, zn) forms a right hand system

With those assumptions, the Denavit-Hartenberg transformation consists of the following
single transformations:

1. A rotation θn around the zn−1-axis till xn−1 and xn are parallel

(2.3) DRot(zn−1, θn) =


cos θn − sin θn 0 0
sin θn cos θn 0 0

0 0 1 0
0 0 0 1



12

2.4 Inverse kinematics

2. A translation dm along the zn−1-axis to the intersection point of zn−1 and xn

(2.4) Dtransd(zn−1, dn) =


1 0 0 0
0 1 0 0
0 0 1 dn
0 0 0 1



3. A translation an along the xn-axis till the origins of both systems are congruent

(2.5) Dtransa(xn, an) =


1 0 0 an
0 1 0 0
0 0 1 0
0 0 0 1


4. A rotation αn around the xn axis to make zn−1 and zn congruent

(2.6) Drotαn (xn, αn) =


1 0 0 0
0 cosαn − sinαn 0
0 sinαn0 cosαn 0
0 0 0 1


The resulting transformation Dn has the form

(2.7) Dn−1
n (θn, dn, an, αn) = DRot(zn−1, θn)Dtransd(zn−1, dn)Dtransa(xn, an)Drotαn (xn, αn)

(2.8) Dn−1
n (θn, dn, an, αn) =


cos θn − sin θn cosαn sin θn sinαn an cos θn
sin θn cos θn cosαn − cos θn sinαn an sin θn

0 sinαn cosαn dn
0 0 0 1



2.4 Inverse kinematics

The purpose of inverse kinematics is to calculate the joint angles θj , j ∈ {c, f, t} of leg i for a
given end-effector pose p̂ = (p, o), with p being the position and o being the orientation of the
end-effector, relative to a frame F . Depending on the kinematic chain, it can be complex to
solve the inverse-kinematic problem, since no general approach exists to solve the problem. In
practice, several algebraic, geometric and numeric approaches are used. Another difficulty is
the fact that in general, multiple solutions for the inverse-kinematic problem exist, given an
end-effector pose p̂.
However, solving the inverse-kinematic problem for the legs of the hexapod platforms used in
this thesis can be achieved by a simple geometrical approach, which is detailed in 4.5.2.

13

2 Mathematical foundations

2.5 Quaternions

Assume we have a rigid body which has a certain position p and orientation o relative to
a reference frame F0. There are several approaches to represent "orientation" in a three-
dimensional euclidean space, such a rotation matrices or Tait-Bryan-angles.
Another approach is representing the orientation by a rotation quaternion. A quaternion
is an element of a four-dimensional vector-space, consisting of a real and three imaginary
components. Every quaternion q can be written as

(2.9) q = x0 + x1i+ x2j + x3k

with xi ∈ R. The elements {1, i, j, k} form the standard base of the quaternion space.
In real applications, quaternions are often represented as four dimensional vectors
(x0, x1, x2, x3).
In robotics and other fields, quaternions play an important role since a unit quaternion repre-
sent a rotation x0 around the axis (x1, x2, x3) in a three-dimensional space. A quaternion can
be normalised like any other vector by dividing it by it’s magnitude.

2.5.1 Conjugation and Hamilton product

Let q = x0 + x1i+ x2j + x3k be a quaternion. The conjugation of q denoted by q−1 is defined
as

(2.10) q−1 = x0 − x1i− x2j − x3k

Two quaternions can be multiplied using the Hamilton product. Let q1 = x1
0 + x1

1i+ x1
2j + x1

3k
and q2 = x2

0 + x2
1i+ x2

2j + x2
3k be to quaternions. The product of these quaternions is defined

as

(2.11) q1q2 =


x1

0x
2
0 − x2

0x
2
1 − x1

2x
2
2 − x1

3x
2
3

+(x1
0x

2
1 + x2

0x
2
0 + x1

2x
2
3 − x1

3x
2
2)i

+(x1
0x

2
2 − x1

1x
2
3 + x1

2x
2
0 + x1

3x
2
1)j

+(x1
0x

2
3 + x1

1x
2
2 − x1

2x
2
1 + x1

3x
2
0)k


Let p = p1i+ p2j + p3k be an arbitrary vector in a three-dimensional euclidean space written
as a quaternion. As stated earlier, a quaternion represents a rotation in three-dimensional
space. This rotation can be applied to p using

(2.12) p′ = qpq−1

with p′ being the rotated vector. Assume now, we first want to rotate p with the unit quaternion
q1 and then apply another rotation represented by q2. The two rotations can be represented
by a single quaternion qres with

(2.13) qres = q2q1

14

2.6 Tait-Bryan-angles

This means when rotations are represented in quaternion form, and arbitrary combination of
these rotations can be expressed as a single quaternion, using the Hamilton product. Note
that the quaternion multiplication is not commutative, so the order of rotations applied to a
vector plays an important role.

2.6 Tait-Bryan-angles

Tait-Bryan-angles represent the orientation of a frame F relative to a reference frame R in
3-dimensional Euclidean space. They are usually denoted as (ϕ, θ, ψ) which is a sequence of
three elemental rotations about the axis of a coordinate system.
There are a number of conventions defining the order of the axis the rotation is applied. Here
the z-y′-x′′ intrinsic rotation is used defined as follows:
Let R be a reference frame with the coordinates (x, y, z) and the origin oR = (0, 0, 0))andletF
be a rotated frame with the coordinates (x̃, ỹ, z̃) and the origin oF = oR. Furthermore let N
be the intersection between the x, y-plane and the ỹ, z̃-plane. The Tait-Bryan-angles (ϕ, θ, ψ)
are defined as follows:

• ϕ is the angle between y and N (yaw)

• θ is the angle between x̃ and the x-y-plane (pitch)

• ψ is the angle between N and ỹ (roll)

2.6.1 Conversion between Quaternions and Tait-Bryan-angles

Let q = x0 + x1i+ x2j + x3k be a unit quaternion. q can be converted into Tait-Bryan-angles
(ϕ, θ, ψ) with

• ϕ = arctan2((x2x3 + x0x1), 1
2 − (x2

1 + x2
2)

• θ = arcsin(−2(x1x3 + x0x3))

• ψ = arctan2((x1x2 + x0x3), 1
2 − (x2

2 + x2
3))

2.7 Manipulator trajectory planning

The goal of manipulator trajectory planning is to plan a trajectory which brings a manipulator
from state si−1 to si. Generally there are two approaches to plan a trajectory: Workspace
planning and - for an n-link kinematic manipulator - joint space planning. The first approach
is used to plan a desired trajectory for the end-effector, thus requiring knowledge of the exact
inverse-kinematic model of the serial chain since the time dependent tip trajectory p(t) has to
be mapped into the joint space to perform the trajectory. In general there is no easy solution
for the inverse-kinematic problem of an n-link serial chain. Therefore joint-space planning
approaches are are more interesting for complex kinematic chains.

15

2 Mathematical foundations

Joint-space planning approaches aim to plan a joint-trajectory q(t) which describes a path
in joint-space from a start configuration q0 = q(0) to an end configuration qn = q(Tn). Often
intermediate points qi = q(Ti) are defined which have to be passed during the traversal of the
path.
The easiest way to plan a trajectory in joint-space for a given set of points qi, 0 6 i 6 n is to
assign a linear path between two successive points qi−1, qi.
However, this approach has some obvious drawbacks. Let q(t) be a function which describes a
path with linear segments between the points. q(t) is not differentiable at the intermediate
points which leads to non-smooth trajectories. A function q(t) which describes a smooth
trajectory has to include the following features:

• Be computational efficient

• q(t) and it’s velocity profile q̇(t) (sometimes the acceleration profile q̈(t) as well) have to
be continuous functions of time

• Describe an "optimal" curve under given position, velocity and acceleration constraints.

In the most simple case of a trajectory, a start position q0, and end position q1 and the start
and end velocities q̇0, q̇1 are given. Then the problem is to define a function q(t) under those
position and velocity constraints. In general such problems can be solved, using n− 1-degree
polynomial functions

(2.14) q(t) = a0 + a1t+ a2t
2 + ...+ ant

n

where n is the number of constraints of the function which have to be verified at each point of
the trajectory to guarantee it’s smoothness.
Going back to the simple case where the initial and end position, as well as the initial and end
velocity are given. The four constraints lead to a polynomial of degree 3 is required:

(2.15) q(t) = a0 + a1t+ a2t
2 + a3t

3

The four parameters have to be calculated such that the four constraints are satisfied. Having

(2.16) q̇(t) = a1 + 2a2t+ 3a3t
2

we get from the four initial constraints:

(2.17)

q(0) = q0 = a0

q̇(0) = q̇0 = a1

q(T) = q1 = q0 + q̇0t+ a2T
2 + a3T

3

q̇(T) = q̇1 = q̇0 + 2a2T + 3a3T
2

16

2.8 Locality sensitive hashing

From q(T) and q̇(T) we get

(2.18)
a2 = 3(q1 − q0)− (2q̇0 + q̇1)T

T 2

a3 = 2(q0 − q1) + (q̇0 + q̇1)T
T 3

The (cubic) polynomial we are looking for is therefore

(2.19) q(t) = q0 + q̇0t+ 3(q1 − q0)− (2q̇0 + q̇1)T
T 2 t2 + 2(q0 − q1) + (q̇0 + q̇1)T

T 3 t3

In general a trajectory through n points can be defined using a (n − 1)-degree polynomial.
However, this often leads to high oscillations of the curve defined by the polynomial. To avoid
this, we are not looking for one polynomial describing the complete trajectory, but (n − 1)
polynomials with degree d, d < n− 1 which interpolate the trajectory between two succeeding
points qi−1, qi. The degree d is chosen such that the position and velocity constraints in the
intermediate points are satisfied. Mathematically we are looking for

(2.20) q(t) = {qk(t), t ∈ [tk, tk+1] , k = 1...n− 1}

with

(2.21) qk(ρ) = a0 + a1ρ+ a2ρ
2 + ...+ anρ

n, ρ ∈ [0, Tk] , Tk = tk+1 − tk

and the conditions

(2.22)

qk(0) = qk

qk(Tk) = qk+1

q̇k(Tk) = q̇k+1(0)
q̈k(Tk) = q̈k+1(0)

The resulting curve is a spline interpolation of the points qi and has the least amount of
oscillation and therefore the lowest "curviness"

2.8 Locality sensitive hashing

Locality sensitive hashing [IM98] is a method to perform a approximate or exact nearest-
neighbour search in a high dimensional space M . The idea is to use a family of hash functions
where each hash function maps a set S ⊂ M into l "buckets", such that similar elements
p ∈ S are hashed into the same bucket. Those hash functions are elements of a LSH-family
H(c,R, P1, P2) with P1 > P2 defined for a metric space M = (M, d) with the following
properties:

17

2 Mathematical foundations

1. ∀p, q ∈M : if d(p, q) ≤ R then hi(p) = hi(q) with probability at least P1

2. ∀p, q ∈M : if d(p, q) ≥ cR then hi(p) = hi(q) with probability at most P2

for any hash function hi ∈ H. If two elements p, q ∈M are close regarding the distance metric
d, such that d(p, q) < R, they are mapped into the same bucket with a higher probability than
two elements with a greater distance.
LSH can be used for an approximate nearest neighbour search. Consider a LSH family F
with a set of hash functions {f1, f2, ..., fn} and a new family of hash functions H where each
function hi ∈ H is constructed by concatenating k randomly chosen hash functions from F
such that

(2.23) hk(p) = [f1(p), f2(p), ..., fk(p)]

A common type of functions to use for the fi is defined as

(2.24) fi(p) = pi

where pi is the i-th bit of p. Concatenating randomly chosen fi to constructs k hash functions
hi, i ∈ 1, ..., k as defined in 2.23, which are called k-bit LSH functions as each fi results in
a single bit from the input vector p. Using these kind of hash functions compares two input
vectors p, q in a k-bit Hamming space using the Hamming distance. It can be shown that ...

Figure 2.1 illustrates the hashing of an existing data set.

High-dimensional
data points

Hash functions

Buckets

Figure 2.1: Illustration of the LSH-preprocessing of the data set (the coloured points in the
circle). The data points get mapped into buckets by a set of hash functions
h1, ..., hk. Similar data points get hashed into the same bucket with a higher
probability

18

2.8 Locality sensitive hashing

Given a query point q, the algorithm hashes q into each of the l hash tables using the hk hash
functions (as shown in figure 2.2). After that, a brute-force nearest-neighbour search over
the points of the data set which were mapped into the same buckets as q is performed. The
nearest-neighbour search is stopped as soon as a point p (the approximate nearest-neighbour
of q) is found such that

(2.25) d(p, q) ≤ cR

Query point

Hash functions

Buckets

Figure 2.2: A point p (red dot) gets hashed into the l hash tables and a brute-force nearest-
neighbour search is performed to find the nearest point inside the buckets p has
been mapped to.

19

3 System description

3.1 Overview

This section gives an overview of the hardware setup used for the hexapod vehicle, as well as
an component description of the software architecture and its ROS-implementation developed
for this thesis.

3.2 Hardware architecture

PandaBoard Embedded
computer

Laptop computer

USB to Serial
USB

UART

SBG IG500N IMU DynamixelServos

USB

Onboard
Hexapod

WiFi

data
control

Figure 3.1: Overview of the hardware setup for the hexapod platform.

21

3 System description

The hardware setup consists of a PandaBoard embedded computer mounted on the hexapod
vehicle, an SBG IG-500N internal measurement unit (IMU), 18 Dynamixel AX18 robot ac-
tuators, a USB-to-serial interface which connects the PandaBoard to the AX18 servos and
a laptop computer connected to the PandaBoard via wireless LAN. The IMU is mounted
on top of the PandaBoard, providing orientational information at a 100 Hz rate. The AX18
servos are connected to the PandaBoard via a single serial bus, providing internal information
(position, goal position, torque, voltage, temperature) at a rate of 35 Hz. The operating system
which runs on the PandaBoard is a compiled Ubuntu 12.04 Desktop version, hosted on a 4 GB
SD-Card, the same Ubuntu version which runs on the laptop computer.

For performance purposes, only the ROS drivers for the IMU and the AX18 servos (see 3.3.4)
are running on the PandaBoard while the rest of the system runs on the laptop computer.

3.3 Software architecture

In this section the developed software control architecture and its ROS implementation is
described. A brief introduction to the ROS-framework is given, as well as an overview of the
ROS-system used in this paper with a detailed description of its components.

22

3.3 Software architecture

3.3.1 Overview

GaitEngine

LegController

MotionPlanning

LowLevelDrivers

Kinematics

Monitor

Control
Feedback

Figure 3.2: Software architecture

The core component of the software control architecture developed for this thesis is the
GaitEngine component. It serves as the main control component, taking inputs from the user
and generating gaits using the MotionPlanning component. This MotionPlanning component
is a two-level motion planner. The first level generates trajectories and foothold positions for
a given task (here, task refers to world coordinates the hexapod has to move to). The second
level generates trajectories for the foot-tips for each gait step.
The LegController component servers as an abstraction for each of the single legs. Each
LegController controls a single leg. It uses the second level of the MotionPlanning component
to generate foot-tip trajectories and converts them into servo trajectories using the inverse-
kinematic functionality of the Kinematics module. These generated servo trajectories are sent
to the LowLevelDriver component where they are sent to the servos.
In order to be able to monitor the current state of the hexapod in run-time, a Monitor
component is used. This component collects the raw data coming from the LowLevelDriver
components and mediates them to the GaitEngine and the LegControllers.

3.3.2 ROS

ROS (Robot Operating system) is an open-source software framework developed and main-
tained by WillowGarage (http://www.willowgarage.com/) for developing software for robot

23

http://www.willowgarage.com/

3 System description

platforms. It is actively used and maintained by the robotics community. ROS consists of
a collection of tools, libraries and conventions which aim to support the user in developing
robotics software. It consists of a workspace environment, a file system the user can navigate
using abstractions of common Unix commands (e.g. roscd is the abstraction of cd) a build
system, and a package manager. The main feature of ROS is it’s highly modularised package
structure. Functionality for a wide range of existing robots and concepts has been developed
by the community and encapsulated into packages. The package system allows for an easy
integration of existing packages into a system.
The main features of ROS are

• Highly modularised architecture to encapsulate functionality

• File system which is easy to navigate through using abstractions of common Unix
commands

• Integrated build system

• Package manager to easily integrate existing packages into the system

Not only the ROS-framework is modularised. ROS offers a wide range of concepts to develop
modularised software. In ROS, functionality is encapsulated in nodes. The nodes a software
system consists don’t communicate directly with each other. Instead, ROS uses an asynchronous
publish/subscribe communication infrastructure as well as a synchronous service architecture.
The information provided by a node gets published to a topic other nodes can subscribe to. If
a node provides functionality (e.g. calculating a trajectory of a robot), this functionality is
offered by the node using a service. Other nodes can call that service to access the functionality
a node provides. The location of a node is not fixed: All nodes can be moved to a different
client in a network. This makes it easy to develop distributed systems with nodes running on
different machines.

For a full feature-list and detailed descriptions of ROS, the reader is referred to the ROS
website: http://www.ros.org/

24

http://www.ros.org/

3.3 Software architecture

3.3.3 Overview

GaitEngine

StateMonitor

MotionPlanning

BodyTrajectionPlanner

LegTrajectoryPlanner

StablePathPlannerStablePathPlanner

DynamixelDriver IG500NDriver

PandaBoard

feedback

OMPL

MotionValidator

RRTstar

RRTConnect

LegAgent

KinematicsSolver

feedback

Figure 3.3: Overview of the software architecture. The blocks are ROS nodes. The solid
lines between components indicate that one node accesses the other using service
calls. The dashed line indicates a publish/subscribe relation between two nodes,
while the node on the arrow side consumes messages published by the node on
the other end of the line using ROS message queues.

3.3.4 Components

GaitEngine

The GaitEngine component is responsible to take user inputs in the form of goal coordinates
for the body in world-coordinates. It generates gaits using the BodyTrajectionPlanner and
delegates these gaits to the LegAgents. The GaitEngine keeps track of the current state of the
system using a MotionValidator provided by the OMPL package. It can interrupt the current
execution of a gait and delegate new movement targets to the LegAgents

25

3 System description

LegAgent

The LegAgents are an abstraction of each of the hexapod’s leg. They keep track of the current
state of each leg by getting feedback from the StateMonitor component. The LegAgents
receive tasks from the GaitEngine and use the LegTrajectionPlanner component to generate
leg movements to perform these tasks.

MotionPlanning

The motion planning component consists of several parts responsible for planning any kind of
motion the hexapod platform can perform.

BodyTrajectionPlanner

The BodyTrajectionPlanner uses the current position pcurrent = (x y z)T of the hexapod
in world coordinates and a user-defined goal position pgoal = (xgoal ygoal zgoal) to plan a
path from pcurrent to pgoal the body has to follow. To achieve this, it uses OMPL and its
MotionValidator component to plan a trajectory in the hexapod’s environment. This trajectory
is then converted into foothold positions and returned to the GaitEngine.

LegTrajectionPlanner

The LegTrajectionPlanner generates paths for the tip positions of the legs to bring them from
a start position tstart = (x y z) to a goal position tgoal = (xgoal ygoal zgoal) (expressed in the
local leg-frame coordinates, see 4.2). In the simplest case, this tip-path is a cubic polynomial,
describing a stride movement from tstart to tgoal. However, it can use local terrain information
to plan paths for the tip position to avoid these obstacles. When the leg is in support phase,
the planned tip path is simply a straight line from tstart to tgoal (which keeps the tip positions
stationary on the ground, but "pushes" the body towards the desired direction). After the
tip-trajectories have been calculated, the LegTrajectionPlanner discretises these paths and
calculates the joint angles for each sample. These angles are then returned to the LegAgent.

OMPL

OMPL (Open Motion Planning Library) is an open-source software package which includes
implementations of common motion-planning algorithms. It is not tied to any collision-checking,
environmental or visualisation specifications and can therefore be flexibly used in any motion-
planning environment. The package includes many state-of-the-art motion-planning algorithms
as well as the possibility to define new algorithms due to it’s flexible architecture. OMPL
is implemented in C++, although Python bindings exists as well. Since OMPL offers ROS
bindings, the package can be easily integrated into existing ROS systems.

26

3.3 Software architecture

The ROS system developed for this thesis utilises OMPL and integrates the RRT , RRT∗
and RRTConnect algorithms into the stabilisation framework. It also uses OMPL to define a
custom MotionValidator.

MotionValidator

The MotionValidator is an custom implementation of OMPL’s abstract MotionValidator class.
It’s purpose is to validate motions generated by the BodyTrajectionPlanner, LegTrajection-
Planner and the GaitEngine. Since the navigation problem is not addressed in this thesis, the
planned path is always a straight line from pcurrent to pgoal. However, the MotionValidator is
implemented in a way which makes it easy to include terrain or vision information to plan a
path for the hexapod to avoid obstacles in the environment the hexapod operates in.

StateMonitor

The StateMonitor receives the current servo and IMU state at a rate of 35 Hz, converts the servo
positions into joint angles and the IMU orientation information into Tait-Bryan-angles and
publishes that information to the GaitEngine and LegAgents. It also uses the MotionValidator
to determine the current state of the system (stable, critical and unstable).

KinematicSolver

The KinematicSolver is a node providing services to solve the forward and inverse kinematic
problem. It uses the Denavit-Hartenberg convention (see 2.3) to solve the forward kinematic
problem and an analytical solver as described in 4.5.2 for the inverse kinematic problem.

DynamixelDriver

The DynamixelDriver is a low-level driver which directly communicates with the servo-
controllers using a serial bus. It provides services and message queues to interact with
the servo-controllers. This includes setting a goal-position, speed, torque and several other
parameters of the servos. Furthermore, the DynamixelDriver constantly queries the servos to
receive their current state (the query rate is around 35 Hz). This state is then published to
expose the servo state to the higher-level components.

IG500NDriver

THe IG500NDriver is a low level driver which communicates with the SBG-IG500N IMU. It
reads the raw values (orientation, velocity, and acceleration data) of the IMU and publishes it
at a rate of 100 Hz. Note that only the orientation data is used by the higher level system.

27

3 System description

The orientations gets published in quaternion form which is converted to Tait-Bryan-angles
using the method described in 2.6.1.

28

4 Hexapod model

This chapter describes the mathematical model of the hexapod platforms used in this thesis.
This includes a full kinematic description as well as a definition of the local frames of the
components and their relationship amongst each other.

4.1 Body model

Leg 1

Coxa
Femur

Tibia

Leg 2

Leg 3 Leg 4

Leg 5 Leg 6

Figure 4.1: Hexapod model

29

4 Hexapod model

The hexapod consists of six legs connected to a rigid body via coxa joints. The total body width
is Wa. Wa is the distance between the middle-left and middle-right coxa joints. The width
Wb describes the distance between the front-left and front-right (or rear-left and rear-right)
coxa joint. The total body length is Lb, defined by the distance between the front-left and
rear-left (front-right and rear-right) coxa joints. The 3-dimensional Cartesian body frame B
lies in the centre of the body with its x-axis pointing forward, its y-axis pointing to the left
and its z-axis pointing upwards (right-hand rule).

4.2 Leg model

Coxa joint

Femur joint

Tibia joint
z

y

x

Femur

Tibia

Foot

Figure 4.2: Hexapod leg model

A leg (4.2) consists of three links. the coxa link Lc, the femour link Lf and the tibia link Lt
with an end effector et. Lc is connected to the body via a coxa joint jc, the femour link is
connected to the coxa link via a femour joint jf and the tibia link is connected to the femour
link via a tibia joint jt. Each joint has a local reference frame Fj , with the z-axis being the
joint’s rotation axis and the x and y axis forming a right-hand-system together with the z-axis.
The local reference frame of the coxa joint serves also as the leg frame Fl of the corresponding
leg. Since the coxa joints for the front legs are rotated by −45◦ degree (front-right leg) and 45◦
degree (front-right leg), their local frame FL is rotated relative to B accordingly. The same
applies for the rear legs (135◦ degree for the rear-left and −135◦ degree for the rear-right leg)

30

4.3 Definition of the joint angles

and the middle legs (90◦ degree for the middle-left and −90◦ for the middle-right leg).
Each link Li, i ∈ c, f, t has a fixed length li, i ∈ c, f, t.

4.3 Definition of the joint angles

Invalid angles

Figure 4.3: Model of a joint

The local coordinate frames Fj,i, i ∈ {c, f, t} of the revolute joints are three-dimensional
systems following the right-hand rule with the z-axis being the rotation axis of the joint. 0̃
denotes the the zero position of the joint where the joint angle θ = 0. The rotation angle of a
joint is limited to operate within {−150◦, 150◦}.

4.4 Transformation tree

The model consists of several local frames: The joint frames Fj,i, the leg frames FL,j , as well
as the body frame B. In order to model the relationship between those frames, they are stored
in a tree structure, where each node consists of a local coordinate frame and a link between
two nodes represents a transformation between those two nodes. Note that the transformation
between two local frames requires homogeneous coordinates.
The root of the tree is a fixed world frame W with the origin being ow = (0, 0, 0)T .
Figure 4.4 shows the structure of the transformation tree.

31

4 Hexapod model

Figure 4.4: The tree structure used to represent the relationships between the single local
coordinate frames

Since this thesis doesn’t cover the problem of navigation of hexapods, the transformation
TBW : W → B is a fixed transformation with

(4.1) TBW =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



The transformations TFL,iB between the body frame B and the leg frames FL,i uses the geometry
of the body and the location of the coxa joints relative to the centre of the body.
The origin of the coxa joint of leg 1 relative to B is achieved by translating oB (the origin of
B) LB

2 in x and Wa
2 in y-direction and rotating it by 45◦. Therefore the transformation TFL,1B

from B to FL,1 is defined as

(4.2) TFL,1B = R(π4)T (LB2 ,
Wa

2)

R(π4) is a rotation a rotation matrix and T (LB2 ,
Wa
2) a translation matrix.

The transformation between two local joint frames Fj,i can be expressed as a Denavit-Hartenberg
transformation (see 2.3)

32

4.5 Leg kinematics

4.5 Leg kinematics

4.5.1 Forward kinematics

While the rotation axis of the coxa joints jc is the z-axis of FL,i (the frame of the leg, the
joint belongs to), the rotation axes of jf and jt are orthogonal to the y-z-plane of FL,i, in case
the joint angles of all three joints are 0. Let θi be the angular displacement of joint ji and
lj , j ∈ {c, f, t} the length of link Lj . We can determine the position pi of the end-effector of
leg i relative to the body frame B by applying a combined transformation to the origin oB of
B:

(4.3) Dl([lj] , [θi]) =
[
R d

0 1

]
= T

FL,i
B D1D2D3

T
FL,i
B is the transformation from the origin of B to the leg frame FL,i. D1 is the DH-

transformation from the coxa joint to the femour-joint j1
i , D2 the DH-transformation from the

femour joint to the tibia-joint j2
i and D3 the DH-transformation from the tibia-joint to the

end effector.
T
FL,i
B , D1, D2, D3 have the form

(4.4) TFL,iB =


0 −1 0 1

2
1 0 0 0
0 0 1 0
0 0 0 1



(4.5) D1 =


cos θ1 0 sin θ1 l1 cos θ1
sin θ1 0 − cos θ1 l1 sin θ1

0 1 0 0
0 0 0 1



(4.6) D2 =


cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0
0 0 0 1



(4.7) D3 =


cos θ3 − sin θ3 0 l3 cos θ3
sin θ3 cos θ3 0 l3 sin θ3

0 0 1 0
0 0 0 1


Combining these transformations with

(4.8) Di = T
FL,i
B D0D1D2D3

33

4 Hexapod model

gives the end-effector position pi of leg i relative to the body frame B, by multiplying Di with
the origin oB of B:

(4.9) pi = DioB

4.5.2 Inverse-kinematic solution

(a)

(b)

Figure 4.5: Inverse-kinematic model of the hexapod legs

34

4.5 Leg kinematics

Since the legs of the hexapod platform used in this thesis consist of only three links connected
by three joints, it it possible to find a trivial analytical solution for the inverse kinematic
problem.
Let FL,i, called the leg-frame of leg i, be a frame with it’s origin oL,i being in the centre of
the coxa joint jc of the leg we want to find a solution for the inverse kinematics problem
for. Furthermore, let pi = (xi, yi, zi) the coordinates of the end-effector expressed in FL,i. To
calculate the coxa angle θc we calculate the angle between the x-axis of FL,i and the vector
from oL,i to pi:

(4.10) θc = arctan
yi
xi

This reduces the inverse kinematic problem into a two dimensional problem.
Next we calculate the distance lo,p from jf to pi:

(4.11) lf,p =
√
z2
i + (l1 − lc)2

with lc being the length of the coxa link and l1 being an imaginary line-segment from jf to pi
in the x, y-plane defined as

(4.12) l1 =
√
x2
i + y2

i

This give us α1:

(4.13) α1 = arccos
|zi|
lf,p

α2 can be calculated using the cosine rule:

(4.14) α2 = arccos
lt

2 − lf 2 − lf,p
2lf lf,p

With α1 and α2 the joint angle θf can be calculated:

(4.15) θf = α1 + α2 − 90◦

The angle θt can be calculated using the cosine rule as well:

(4.16) θt = 180◦ − arccoslf,p
2 − lt2 − lf 2

2ltlf

35

5 Stability-margins

In this chapter, an overview over common stability in legged locomotion is given. When a
walking system has to be "stable", stability has to be defined in order to be able to distinct a
stable state from an unstable state, using a stability function d. d can be a mapping of the
current state c of the system to the set {0, 1} such that

(5.1) S(c) =

0 c is unstable
1 c is stable

In general, there are two categories of stability: Static and dynamic stability

5.1 Static stability

A legged vehicle is called statically stable when it is able to stand on the ground without
violating the stability constraints. In other words, a hexapod is statically stable, when the
projection of the centre of mass (CoM) is inside polygon defined by the tip positions of the
support legs (support polygon) [MI79]. Figure 5.1 shows the model of a hexapod during a
tripod gait with the projection of the CoM on the support polygon.

Figure 5.1: A model of a hexapod during a tripod locomotion. The blue vertices define the
support polygon. The violet sphere is the projection of the CoM on the support
polygon

37

5 Stability-margins

5.2 Calculation of the CoM projection

To calculate the coordinates of the CoM projection onto the support polygon, it is sufficient to
reduce this problem to a line/plane intersection problem. Let oB = (0 0 0)T being the origin
of the CoM and v0 = (0 0 − 1)T being a vector defined in the body frame B. Furthermore,
let e = (r p y) be the orientation of the body relative to the world frame W , expressed in
Tait-Bryan-angles.
First, v0 is rotated around oB with −e in order to make it perpendicular to the world frame’s
x, y-plane. The resulting vector is ṽ0. The problem is now to determine if the intersection
point Ip of the line which goes through ob and ṽ0 and the plane P the polygon lies in, is inside
the support polygon. Standard algorithms given in [Bad90] or [O’R98] project the support
polygon and Ip into a two dimensional plane and test for inclusion. However, these methods
are relatively slow, since a projection has to be found which avoids degeneration.
Therefore the method proposed in [MT97] is used, which solves the inclusion problem directly
in 3D-space. For further details, the reader is referred to [MT97].

Even though this constraint ensure static stability, it is not enough to ensure that the system
is capable of performing it’s task. A hexapod might rest on it’s belly with all six legs being
spread out and in support phase. In this case the above stability margin is still fulfilled, even
though the hexapod is not able to perform it’s task (performing a gait). Therefore additional
stability constraints are necessary. These additional constraints are defined in 6.6.1

5.3 Dynamic stability

Dynamic stability margins are not being used in this thesis, so only a brief overview will be
given.
Most dynamic stability criteria are moment-based criteria. When a legged vehicle is about to
topple-over, it’s moments are exceeded about a toppling-axis. [LS01] introduced the concept of
a Dynamics Stability Margin (DSM) which takes the external, foot, gravitational and inertial
forces and moments imparted on the tip-positions into account and calculates the minimum
resultant moment about the boundaries of the support polygon. If the resulting moment about
one support polygon boundary is negative, the vehicle is about to topple over this boundary.
Another dynamic stability criteria is a zero-moment-point-based criteria [TT90].

38

6 State-space

This section gives an overview of the state-space used for the proposed stabilisation approach.
It defines the state-space, including its sub-spaces and classifications of different state types
inside the state-space (stable, critical and unstable states) and their properties.

6.1 State-space representation

The state-space S of a dynamical system is the set of states {si} the system can take. Each
state of the system corresponds to a unique point in S. The state space S of the hexapod
platform used in this thesis is an 21 dimensional space, containing 18 dimensions for the joint
angles (the configuration space C ⊂ S, see 6.2) and 3 dimensions for the body orientation
expressed as Tait-Bryan angles.

6.2 Configuration space

The configuration space C of a dynamical system is a n-dimensional manifold inside S. It
consists of the set {ci} of all possible configurations of the system. n is the number of degrees
of freedom of the system. In the case of the hexapod platform with 18 servo joints, C is
an 18-dimensional manifold. Note that dim(C) ≤ dim(S) since S can contain arbitrary,
non-controllable or indirectly controllable dimensions (e.g. the body orientation, which can be
indirectly controller by changing the system’s configuration), while C consists of all controllable
degrees of freedom. C is a topological space, which allows us to define distance metrics within
C. C is usually constraint by the constraints of each dimension. (e.g. the minimum/maximum
angle of a joint).
Consider a kinematic chain consisting of three links connected by three joints with a mini-
mum joint angle of −150 and a maximum joint angle of 150 degrees. Figure 6.1 shows the
configuration manifold of that system sampled by 60000 states:

39

6 State-space

-3
-2

-1
0

1
2

3 -3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

θ3

θ1
θ2

θ3

Figure 6.1: Configuration manifold of a kinematic chain with three joints. The axes are the
joint angles for each joint of the chain (in radians).

The configuration space used in this thesis is the 18-dimensional joint space of the hexapod
defined as

(6.1) C =
{
ci : −150 · π

180 ≤ cni ≤
−150 · π

180

}

where cni is the n-th component of ci, and ci is an 18-dimensional vector. Each cni represents
the angle of the n-th joint.

6.3 Task-space

A task-space (also called workspace) of a system is the space, the system operates in. For the
three-link kinematic chain defined in 6.2, this could be a 6-dimensional euclidean space R6

where the 6 dimensions are end-effector position and orientation of the end-effector relative to
a reference frame F .

40

6.4 Constraint manifolds

Figure 6.2: The task-space of a three-link kinematic chain. The blue area is the set of feasible
end-effector positions.

Note that the task-space of a system can be arbitrarily extended in it’s dimensionality. It
can include dynamics and other task-related properties of the system. For a hexapod, the
task-space can consist of the foot-tip positions and orientations of all legs relative to a frame
fixed to the centre of the body, as well as the body position and orientation relative to a
world-frame W , the foot-tip velocities, the friction force imparted on the foot-tips, or (as used
in this thesis) stability constraints of the hexapod.

6.4 Constraint manifolds

Constraint manifolds are defined in the system’s state space and consist of the set of states
the system can take. There are some important properties of constraint manifolds which have
to be taken into account when planning inside constraint manifolds. Constraint manifolds
are usually non-convex. Thus, when planning a path in S-space from a start state sstart to a
goal state sgoal, a direct connection between those states does not always exist. Therefore,
a planner has to search inside the manifold for a valid path from sstart to sgoal. Another
important property of constraint manifolds is that it can consist of disjoint parts. In that case,
there is no valid path from sstart to sgoal when both states are inside different disjoint parts of
the manifold. A planner, which generates a tree structure inside the constraint manifold (such
as RRT, see 7.1) can only generate trees inside one part of the manifold.

Since, in general, it is difficult to define a analytical representation of a constraint man-
ifold, techniques are required to efficiently sample constraint manifolds as well as, for a given
state s, deciding if s lies within the manifold.

6.5 Sampling strategies

There are several sampling strategies being used to sample a constraint manifold. One simple
sampling strategy is called rejection sampling: This technique samples the entire S-space

41

6 State-space

uniformly and uses an evaluation function I to determine if the sampled state s is inside a
manifold M or not:

(6.2) I(s) =

0 s is inside M
1 s is outside M

If I(s) = 0, the sample is rejected and a new sample inside S is generated. This is repeated
until a configuration s has been found such that I(s) = 1.
This sampling technique is efficient when M covers a significant volume of S. In order to
determine if a sample lies within M , the concept of task space constraints is used (see 6.6).

Other sampling techniques use a gradient-descent projection methods: First, S is sampled
uniformly. If the sampled configuration s lies outside M it is projected on the boundary of M
(needs some further details).

6.6 Task-space constraints

Constraints of a system defined in its task-space T are called task-space constraints. These
constraints can be defined in a more intuitive manner compared to S-space constraints. For a
hexapod system, task-space constraints can for example include the workspace of the foot-tips,
body position, orientation and velocity constraints, or any other task-specific constraint.
More importantly in this scope, task-space constraints can be used to define stability criteria.
These stability criteria can then be utilised by a reactive stabilisation system, preventing the
platform to get into a state where it is no more able to perform its task (see 8).
These task-space constraints mapped into S define the boundaries of a task-constraint manifold
Ss ⊂ S. However, in general there exists no analytical mapping MS

T from T to S, or MS
T has

an infinite number of solutions when mapping a state t ∈ T to S. Therefore it’s difficult to
map task-space constraints into S.
To overcome this issue, in this thesis a concept called task-space-regions [BSK11] is used,
utilising the mapping MT

S : When checking if a state s ∈ S is valid according to the task-space
constraints (or in other words, lies within the constraint manifold Ss), it is mapped into
task-space using MT

S such that

(6.3) MT
S (s) = t ∈ T

and t is evaluated using the task-space constraints. An example of a mapping MT
S is the

DH-transformation defined in 2.3

42

6.6 Task-space constraints

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.8
-0.6

-0.4
-0.2

0
0.2

0.4
0.6

-2.5

-2

-1.5

-1

-0.5

0

θ3

θ1

θ2

θ3

Figure 6.3: Projection of task-space constraints into the C-space of a three-link manipulator.
The left figure shows the constraint for the end-effector position (the end-effector
has to move inside the blue area). The right figure shows the related constraint
manifold in the manipulator’s S-space.

6.6.1 Definition of the task-space constraints

As mentioned in 5.1, the stability margin defined in [MI79] is not sufficient to keep the vehicle
in a manoeuvrable state. In this thesis, additional stability constraints are defined to overcome
this issue. These constraints are entirely defined in task-space and include

• The foot-tips have to remain inside a specific area.

• The body has to maintain a certain distance to the support polygon.

• The orientation of the body has to be within certain angular constraints.

The definition of these constraints are as follows:

(a) Workspace of the foot tips

Each tip has an initial Cartesian coordinate oi, expressed in the body frame B. The workspace
of each tip is defined as

(6.4) w =

x− xb, x+ xb
y − yb, y + yb
z − zb, z + zb

 =

w
−
x , w+

x

w−y , w+
y

w−z , w+
z



with
(
x y z

)T
= oi and

(
xb yb zb

)T
being the maximum distance in each dimension the

tip is allowed to displace from its initial position oi.

43

6 State-space

(b) Distance of the body to the support polygon

During locomotion, the support polygon is calculated (by calculating the tip-positions of the
support legs). Let dp =

(
dxp dyp dzp

)
be the coordinate vector of the vertical projection of the

body’s centre of mass onto the support polygon expressed in B. Then
∣∣∣dzp∣∣∣ has to be within

(6.5) dl ≤ dzp ≤ dh

This regulates the distance of the body to the support polygon. dl and dh are the lower and
upper bounds of dzp.

(c) Orientation limits of the body

Let e =
(
r p y

)
be the roll, pitch and yaw rotation of the body about its body frame B,

expressed as Tait-Bryan-angles. r and p have to be within

(6.6) σl ≤ a ≤ σh

with a ∈ {r, p}. and σl, σh are the bounds of the body’s orientation. The yaw-angle has no
effect on the hexapod’s stability and is therefore ignored.

These task-space constraints, along with the static stability margin form a set of constraints
in which the hexapod maintains a safe distance to the ground and keeps the system in a
manoeuvrable state.

6.7 Stable states

A state s is called stable, when it’s inside a defined stability manifold Ss ⊂ S. This manifold
is bounded by the defined task-space constraints mapped into S. As mentioned in 6.6, it is
difficult to map these constraints from T into S. Instead, the transformation ITS , which maps a
state s into the task-space T is utilised. Thus, a state s is table when the mapping ITs (s) fulfils
the task-space constraints defined in 6.6.1, and unstable, when at least one of the task-space
constraints are violated.

6.8 Critical states

The set of critical states Sc ⊂ Ss is a manifold defined as

(6.7) Sc = {s ∈ Ss : |s− sbound| < ζ, sbound ∈ Bc}

with Bc being the set of states which lie on the boundaries of Ss. In other words, a state is
called critical, if its distance to the boundaries of the stability manifold Ss is smaller than a

44

6.8 Critical states

certain threshold ζ. To check, whether the current state of the system is critical, the concept
of task-space constraints can be used as well, using the same task-space constraints that define
Ss, but with different constraint areas. A state s is called critical if s ∈ Ss and at least one of
the following conditions are met:

1. Let wi = (wx, wy, wz) be the workspace of each tip position of leg i as defined in 6.6.1.
The critical area ai of the tip-position of leg i is defined as

(6.8) ai =


(
x y z

)
∈ R3 :

x < w−x + 20 ∨ x > w+
x − 20

y < w−y + 20 ∨ x > w+
y − 20

z < w−z + 20 ∨ x > w+
z − 20




If the tip-position of at least one leg lies within that critical area, the current state of
the system is critical.

2. Let e =
(
r p y

)
be the roll, pitch and yaw rotation of the body about its body frame

B. If

(6.9) a > 5.0 ∨ a < −5.0

with a ∈ {r, p}, then the current state of the system is critical

3. Let dp =
(
dxp dyp dzp

)
be the coordinate vector of the vertical projection body’s centre

of mass (CoM) onto the support polygon, expressed in B. If

(6.10) dzp > −250 ∨ dzp < −500

then the current state of the system is critical (or in other words: s ∈ Sc).

45

7 Random sample based planning techniques

This chapter gives an overview about sample-based planning techniques used for the proposed
stabilisation method. It describes the basic RRT-algorithm and discusses state-of-the-art
extensions for RRT which significantly improve the performance of the basic RRT-algorithm.

7.1 RRT

RRT (Rapid exploring random tree) is an algorithm introduced by Lavalle and Kuffner [Lav98].
RRT has been designed to efficiently search high-dimensional spaces by building a random
tree from a start configuration within the search space. The idea is to grow a tree, rooted at a
rood node into large, yet unreached areas in order to quickly cover the whole search space by
the tree.
Starting from a root node, the algorithm creates a random sample in the search space and
finds the closest node in the search tree. If there’s a feasible connection between the closest
node and the random sample (the connection obeys any constraints), the random sample is
added to the tree with the closest node being the parent of the random sample.
The probability of expanding an existing node is proportional to the size of it’s Voronoi region.
Therefore the tree expands to large, unreached areas with a higher probability than to smaller
undiscovered areas, which leads to a vast coverage of the entire search space.
In most cases the length of the connection is limited by a growth factor. This factor can
account for the physical constraints of the system the state space the search is performed for,
for example the maximum displacement of a joint within a time-step ∆t. If this is the case, a
random sample is not directly added to the tree, but the closest node in the three is expanded
towards the random sample such that the new sample qnew added to the tree lies between
the nearest node qnear and the random sample and the distance dist(qnew, qnear) satisfies the
connection constraints.
Figure 7.1 shows an RRT-tree after 100, 1000 and 5000 iterations:

47

7 Random sample based planning techniques

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1.5
-1

-0.5
0

0.5
1

1.5

-2

-1.5

-1

-0.5

0

0.5

θ3

θ1

θ2

θ3

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

θ3

θ1

θ2

θ3

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

θ3

θ1

θ2

θ3

(a)

Figure 7.1: RRT tree after 100 (a), 1000 (b) and 5000 (c) iterations.

The basic RRT-algorithm is shown in 7.1

Algorithmus 7.1 Build RRT
Require: Initial configuration qinit, number of max vertices K, expansion constraint∆ q
T ← {qinit}
for i=0 to K do

qrand ← RANDOM_SAMPLE()
qnear ← NEAREST_NODE(qrand, T)
qnew ← NEW_NODE(qnear,∆q)
T.add_node(qnew)
T.add_edge(qnear, qnew)

end for
return T

7.1.1 Properties of RRT

The RRT is an efficient random-sample based search algorithm for high dimensional space.
Since the probability of sampling a goal state approaches 1 if the number of iterations goes
towards infinity, the algorithm is called probabilistic complete. However, the basic RRT
algorithm has some fundamental drawbacks. In general it is very unlikely to sample a defined
goal state, or the algorithm takes a large number of iterations until the tree reaches the goal
position. The probabilistic completeness ensures that a path from a start state to a goal state
will be found, if both states are not within disjoint areas of the manifold. However, even
though RRT is guaranteed to find a path if one exists, it is not guaranteed that RRT finds an
optimal solution regarding an optimality function O (an example of an optimality function
would be O(path) = l, with l being the path length).
Another drawback of the basic RRT-algorithm is the fact that it performs poorly if the constraint
manifolds in the search space form narrow passages. Therefore a couple of improvements have

48

7.1 RRT

been developed to deal with those drawbacks without losing the probabilistic completeness of
the basic algorithm.

7.1.2 Extensions of the RRT-algorithm

Goal biasing

The performance of the standard RRT can be greatly improved by biasing the growth of the
tree towards the goal state. This can be accomplished by choosing the goal state as the random
sample with a probability of p and choosing a random sample uniformly within the search
space with a probability of p− 1. p is usually small (between 0.01 and 0.1), which ensures that
RRT maintains its explorative behaviour and preventing it to get stuck in ẗraps̈. Figure 7.2
shows an example of a trapped node, when planning a path from qstart to qgoal in a manifold
M with an obstacle Mi, if p is chosen too greedily.

Figure 7.2: A RRT-tree gets trapped behind an obstacle Mi when the p is too high.

However, depending on the shape of the manifold RRT tries to find a path from a start state
qinit to a goal state sgoal in, p can be increased to achieve a more greedy behaviour with a better
performance, since a fewer number nodes have to be sampled before RRT finds a path from
qstart to qgoal. Figure 7.3 shows the path from a start state qstart and the generated RRT-tree,
while figure 7.4, shows the path for the same start and goal states using goal biasing.

49

7 Random sample based planning techniques

-2

-1

0

1

2 -2

-1

0

1

2

-2

-1

0

1

2

θ3

θ1
θ2

θ3

Figure 7.3: RRT-tree in a 3 dimensional space with a goal biasing value of 0.001. The path
from the start node (green dot) to the end node (blue dot) is shown as the cyan
branch.

-2

-1

0

1

2 -2

-1

0

1

2

-2

-1

0

1

2

θ3

θ1
θ2

θ3

Figure 7.4: RRT-tree in a 3 dimensional space with a goal biasing value of 0.05 and the same
start end end node as in 7.3

50

7.1 RRT

RRTConnect

RRTConnect [KL00] is an extension of the the basic RRT-algorithm which rapidly increase the
performance when finding a path from a start state sstart to a goal state sgoal. RRTConnect
uses greedy connect heuristics combined with two trees, starting from sstart and sgoal. In each
iteration step, an attempt is made to connect the first tree to the nearest vertex of the other
tree. Then the trees are swapped and the second tree attempts to connect to the nearest
neighbour of the first tree. When a connection between both trees is found, the algorithm
returns the path that has been found.

RRT*

Even though RRT is guaranteed to find a path between two states qstart and qgoal if one
exists, it tends to find non-optimal paths (paths which can be much longer than the shortest
path). A more recent variation of RRT is called RRT* [KF11] which deals with that issue.
Let T = (V,E) be a tree. RRT* uses a cost function Cost(q) defined as

(7.1) Cost(q) = c, q ∈ V

with c being the accumulated cost of the path from qstart to q and Cost(qstart) = 0.
The RANDOM_SAMPLE function is similar to the one used in the standard RRT algorithm,
however RRT* differs from RRT in the way the EXTEND function is implemented. Given a
sample qrand generated by RANDOM_SAMPLE, RRT* first extends the tree towards qrand
using the NEW_NODE function which returns qnew. After that, a NEAR function is used to
find as st of nodes N in the tree for which the distance to qnew is smaller than a threshold σ:

(7.2) NEAR(qnew) = {q ∈ V : d(q, qnew) < σ}

with d being a distance function.

In that set of near nodes a node qmin ∈ N is found such that

(7.3) qmin = argmin
q∈N

c(q, qnew)

with

(7.4) c(qi, qj) = Cost(qi) + Cost(E(qi, qj))

and an edge E(qmin, qnew) from qmin to qnew is added to the tree.
Then the algorithm performs a r̈ewiringp̈rocedure. For all nodes qnear ∈ N \qmin the algorithm
checks if these nodes can be reached through qnew with a lower cost, such that:

(7.5) Cost(qnew) + c(E(qnew, qnear)) < Cost(qnear)

if this is the case, the edge from E(qparent, qnear) (qparent is the parent node of qnear) is removed
and replaced with E(qnew, qnear). This ensures that the accumulated cost C(q) of the path

51

7 Random sample based planning techniques

from qinit to q ∈ V is minimal.
Figure 7.5 shows a comparison between RRT and RRT* after 1000, 3000 and 10000 iterations.
It can be seen that RRT* converges against an optimal solution as the number of iterations
increases.

Figure 7.5: Comparison between RRT and RRT* (source: http://sertac.scripts.mit.
edu/web/?p=502, access date: 20.03.2014)

52

http://sertac.scripts.mit.edu/web/?p=502
http://sertac.scripts.mit.edu/web/?p=502

8 Stabilisation approach

In this chapter the main contribution of this thesis, the real-time stabilisation approach is
described. An overview of the planning domain is given, as well as a detailed description of
the core of the approach which is a planning method based on RRT-trees inside a stability
manifold.

8.1 Overview

In order to keep a legged vehicle stable, it has to meet defined stability constraints at any
time during locomotion. As mentioned in 6.6, these stability constraints can be defined in the
robot’s task-space. A complete description of the task-space stability constraints is given in
6.6.1.
The main objective of the stabilisation approach presented in this thesis is to prevent the
robot’s state from falling out of these constraints. In other words, the state of the system has
to be inside the manifold (called stability manifold) bounded by the task-space constraints
mapped into the robot’s state space S at any time. Therefore, a stabilisation system which
reacts when the state of the system is outside the stability manifold is not suitable for that
task (When a system gets unstable, it might not be possible anymore to get back to a stable
state). Instead, the stabilisation algorithm proposed in this reacts before the state of the
system falls outside the stability manifold.
This is being achieved by separating stable from critical states (see 6.8) and reacting, as soon
as the system gets into a critical state. It utilises random sample based planners to bring
the system back into a defined stable area inside the stability manifold. This is achieved
by an offline tree generator, generating RRT* trees inside a stability manifold CS . First, n
configurations are sampled from a Gaussian distribution with its mean µ being the robot’s
initial configuration cinit. These samples are the roots of the trees. Starting from these roots,
the trees are grown into CS .
During run-time, when the system gets into a critical state sc, sc is connected to the nearest
tree and a path is followed back to the root of the tree. A definition of the stability manifold
and the stable area is given in 8.2.

8.2 Planning domain

The stabilisation approach proposed in this thesis frames the issue of keeping the system inside
defined task-space constraints mapped into S as a motion planning problem in the robot’s

53

8 Stabilisation approach

configuration space C ∈ S. S consists of 3 subspaces CS , CR, and SC . CS ∈ C is the stability
manifold in which the motion planning problem is solved. SC is the set of critical states as
defined in 6.8. CR is a set of configurations considered to be very stable. Here, CR is sampled
by a Gauss distribution with it’s mean being cinit (the robot’s initial configuration) and the
variance σ2 = 0.01. CR is the area which is sampled to gain the roots for the stability trees
(see 8.3).

8.3 Offline generation of RRT* trees

The proposed stabilisation approach consists of an offline tree generator which grows RRT*-
trees inside CS , starting from samples around the robot’s initial configuration. RRT* is chosen
over the standard RRT-trees because of its optimality properties (needs more explanations).
First, the algorithm generates n samples ri ∈ CR by sampling a normal distribution with its
mean µ being the robot’s initial configuration cinit. The variance σ of this distribution is
chosen such that the samples ri are close (regarding the euclidean distance metric in C) to
cinit. Note that cinit varies, depending on the inclination angle β of the surface the robot walks
on (see figure 8.1). Therefore a different CR has to be defined for each angle of the surface. To
reduce the number of CR’s, the inclination angle is discretised (otherwise the number of CR’s
would be infinite).

Figure 8.1: cinint of a hexapod on different inclined surfaces (side-view)

The samples ri from the different CR’s serve as the roots of the trees.
Next, for each ri a goal configuration ci is sampled with

(8.1) ci ∈ CC

This ensures, that the trees are leaving CR and are grown towards the critical area CC .

Starting from ri the algorithm grows an RRT*-tree into CS until a path to ci has been found.
The RRT*-algorithm uses a sampler which uniformly samples C and checks whether newly

54

8.4 Real-time stabilisation

generated samples cn are inside CS . This is done by mapping cn into T and validating if this
mapping fulfils the task-space constraints defined in 6.6.1. If this is the case, the algorithm
grows the tree towards that sample. If not, the sample is rejected and a new sample is
generated.
After generating a tree for each ri, the trees are saved and loaded during run-time of the
system.

8.4 Real-time stabilisation

During the locomotion, the current state of the hexapod (the servo positions and the body
orientation) is monitored by the MotionValidator component with a rate of 35 Hz (which
is the maximum servo update rate for the current system design, see 3.3.4). As mentioned
earlier, the main approach to stabilise the system is to prevent it from getting into an unstable
state by keeping the system inside the defined task-space constraints. In order to find out if
the system can potentially get unstable, the MotionValidator checks, if it’s current state is a
critical state.

8.4.1 Connecting the current state to the offline generated trees

As mentioned in 8.1, the stabilisation algorithm has to react before the current state s of the
system becomes unstable. As soon as the system gets into a critical state sc, as defined in
6.8, the stabilisation algorithm attempts to bring the system back from the current critical,
to a stable state (which is a configuration inside Cs). This is done by using RRTConnect to
connect the current state to the nearest tree. First, a nearest neighbour search is performed to
find the nearest node in the offline generated stable trees.
A brute-force nearest-neighbour search iterates over each node in each tree and finds a node
such that

(8.2) g(sc) = {c | ∀s ∈ N : d(sc, c) ≤ d(sc, s)}

with N being the unification of the nodes of each tree and d being a distance function. The
run-time of this brute-force nearest-neighbour is O(|N |), which can be, depending on the total
number of tree nodes |N |, too slow for a real-time system. Therefore, instead of performing
a brute-force nearest-neighbour search, the algorithm uses the concept of locality sensitive
hashing (see 2.8).

After the nearest node (or an approximate nearest node) snear has been found using locality
sensitive hashing, the algorithm uses RRTConnect to find a path pc in Cs from the current
state sc to snear. The time limit for RRTConnect to find a solution is δ = 0.5 seconds. Since
RRTConnect uses two RRT-trees grown from sc and snear combined with greedy connection
heuristics, in most of the cases RRTConnect this solve time limit is sufficient. However,
depending on the defined task-space constraints and the resulting shape of the stability
manifold, RRTConnect can take longer than δ. When RRTConnect reaches the time limit
δ to solve the path finding problem, the algorithm terminates and the path pc is a straight

55

8 Stabilisation approach

line from sc to snear, even though this could cause pc to intersect with C \ Cs, temporarily
bringing the system into an unstable state.
A factor which greatly affects the performance of RRTConnect is the coverage of CS by the
generated RRT* trees. If the trees cover a large volume of CS , the average distance for each
critical state to its nearest neighbour is smaller compared to a set of trees which covers only a
small volume of CS . Therefore, RRTConnect has to övercomeä smaller distance to find a path
from sc to snear.
However, surprisingly the average time RRTConnect takes to find a path form sc to snear
increases as the number of nodes in the RRT*-trees increases (and therefore the coverage of CS
by the trees increases as well) and then starts to decrease again as the number of nodes grows
further. Figure 8.2 shows the average time RRTConnect takes to find a solution, depending
on the number of nodes in the RRT*-trees.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 500 1000 1500 2000 2500 3000

t

n

Figure 8.2: This plot shows the average time (in seconds) RRTConnect takes to find a path
from a critical state sc to it’s nearest neighbour snear for 100 critical samples,
depending on the number n of nodes in the RRT*-trees.

This result could be explained by the shape of CS . When the number of nodes in the trees is
small, for each critical state sc, snear is close to the root of the trees. When the number of
nodes is increased, the nearest node snear of a critical state sc might be inside a region which
is, starting from sc, is difficult to reach for RRTConnect. However, as the number of nodes is
increased, the probability that snear is close enough to be reached from sc without avoiding
regions which are inside C \ CS increases.

56

8.4 Real-time stabilisation

The issue of finding the most efficient size of a set of RRT*-trees leads to a more comprehensive
analysis of the task-space constraints and their effect on the shape of the constraint manifold
CS , which is out of scope for this thesis.
For the experiments in this thesis RRT*-trees are constructed with the combined number of
nodes being at least 4000, which turned out to be sufficient for an efficient performance of
RRTConnect.
After a path pc from sc to snear has been found, the final stabilisation path ps consists of pc
and the path pnear,r:

(8.3) ps = pc ∪ pnear,r

where pnear,r is the path from snear to the root r of the tree of which snear is a node.
ps is then executed by the robot such that each joint is consecutively set to the angles defined
in the nodes of the path. Figure 8.3 illustrates the stable-path finding process.

C

CR

CS

CC

(a)

C

CR

CS

CC

(b)

CR

sC

(c)

CR

sC

rt

(d)

Figure 8.3: Overview of the process connecting sc to the nearest node to find a path back to
a stable state.

57

9 Experiments and results

In this chapter the proposed stabilisation approach is evaluated and its effectiveness is shown
by conducting several experiments on two real hexapod platforms. First, an overview of the
experimental setup is given. The results of the conducted are discussed and analysed.

9.1 Experimental setup

The experimental setup consists of two hexapod platforms. The first hexapod platform is a
standard commercial PhantomX platform by TrossenRobotics, using AX18 servo actuators.
The second platform is a modified PhantomX platform with extended tibia links. This gives
the platform a greater flexibility in unknown terrain as is can overcome medium-sized obstacles
like rocks. The standard tibia link length is 144 millimetres. The extended tibia link length is
405 millimetres. Figure 9.1 shows the two hexapod platforms.
The platform with extended tibia links is used to validate the stabilisation system’s performance
in the event of unexpected leg slips, whereas the standard platform is used to validate the
stabilisation system when the robot walks on inclined slopes.

(a) (b)

Figure 9.1: Modified PhantomX hexapods (a) with additional computing and sensing, (b)
with extended tibia segments for reduced stability.

The laptop computer which runs the core part of the developed ROS system is a Intel Core i7
octacore 2.7 Ghz laptop computer with Ubuntu Desktop 12.04 OS, connected to the on-board
Pandaboard embedded computer via a WiFi connection. For the outdoor experiments this
WiFi connection is replaced by a wired ethernet connection. The complete hardware setup is

59

9 Experiments and results

described in 3.2.

9.1.1 Task-space constraints for the standard hexapod platform

(a) Workspace of the foot tips

The initial tip positions oi of the standard hexapod platform are

(9.1)


175

190
−95

 ,
 175
−190
−95

 ,
−175

190
−95

 ,
−175
−190
−95

 ,
 0

230
−95

 ,
 0
−230
−95




The leg order of these tip-coordinates is front-left, front-right, rear-left, rear-right, middle-left,
middle-right.

With these in-ital tip positions, the workspace of each tip is defined as

(9.2) w =

 x− 80, x+ 80
y − 40, y + 40
z − 100, z + 100



with
(
x y z

)T
= oi

(b) Distance of the body to the support polygon

The constraints for the distance
∣∣∣dzp∣∣∣ of the centre of mass (COM) of the hexapod to the

support polygon are defined as

(9.3) −110 ≤ dzp ≤ −50

(c) Orientation limits of the body

With r, p being the roll and pitch of the body about its body frame B (expressed as Tait-
Bryan-angles), the orientation limits for r and p are

(9.4) −5.0◦ ≤ a ≤ 5.0◦

with a ∈ {r, p}.

60

9.2 Experiments

9.1.2 Task-space constraints for the hexapod platform with extended tibia links

(a) Workspace of the foot tips

The initial tip positions oi of the hexapod platform with extended tibia links are

(9.5)


 300

290
−350

 ,
 300
−290
−350

 ,
−300

290
−350

 ,
−300
−290
−350

 ,
 0

380
−350

 ,
 0
−380
−350




With these initial tip positions, the workspace of each tip is defined as

(9.6) w =

x− 170, x+ 170
y − 160, y + 160
z − 180, z + 180



with
(
x y z

)T
= oi

(b) Distance of the body to the support polygon

The constraints for the distance
∣∣∣dzp∣∣∣ of the centre of mass (COM) of the hexapod to the

support polygon are defined as

(9.7) −410 ≤ dzp ≤ −300

(c) Orientation limits of the body

The constraints for the body roll and pitch r, p are the same as for the standard hexapod
platform.

9.2 Experiments

In the first series of experiments, the standard hexapod platform is performing a locomotion
using a tripod gait, walking outdoors on even terrain towards an inclined slope. The task con-
straint in this experiment is to maintain an even body orientation. Therefore, the stabilisation
system has to automatically adapt the body’s pitch angle relative to the ground, when the
ground inclination changes.

61

9 Experiments and results

Figure 9.2: Outdoor setup

In the second series of experiments, the platform with extended tibia links performs a tripod
gait on even indoor terrain. During its locomotion one leg is stepping on a slippery surface
- in this case a small metal plate. Due to a low friction coefficient between the metal plate
and the terrain, stepping on the metal plate caused it to slip away, along with the leg which
stepped on the plate, causing instabilities of the whole system. The goal of that experiment is
to show that the stabilisation system is able to keep the legs into their workspace as well as
stabilising the body movements which, if not stabilised, can lead to catastrophic events like
toppling over of the platform.
The first set of runs were performed without the stabilisation system. Starting with the
front-left leg, each leg stepped three times on the slippery metal plate. During the locomotion,
the body orientation was measured and recorded. Since the system had no information about
the leg slip, it tried to keep performing it’s task (walking straight with a tripod gait).
The next set of runs was performed with the stabilisation system turned on, where the
stabilisation system actively reacted to the leg slipping event, bringing the system back to a
stable state and eventually, after the recovery phase, tried to continue to perform the given
task.

62

9.3 Results

9.3 Results

In the first experiment, when standard hexapod platform was performing a tripod-gait walking
on an inclined surface, the body’s pitch angle was automatically regulated by the stabilisation
system. Without the stabilisation system, the hexapod was not able to keep an even body
orientation. Even though the hexapod was statically stable when not using the stabilisation
system, the defined task-space constraints were violated, leading to an inclined pitch angle of
the body, parallel to the ground.
Figure ?? shows a time-slice where the hexapod walks towards an inclined surface (picture
1-2), changing it’s body orientation according the task-space constraints (picture 3-4) and
continues it’s gait with the regulated body orientation.

Figure 9.3: Inclination experiment

During the leg-slipping experiment, it became clear that even when the hexapod robot
maintains static stability when performing an alternating tripod gait, disturbances in foot-
ground interactions like leg slippages lead to instabilities of the platform. This impairs the
ability to perform locomotion or in worst case, the robot topples over and potentially suffers
structural damages due to uncontrolled forces on the joints.
During the whole set of experiments with 3 slip events per leg, 3 servo motors were damaged
and had to be replaced. It could be noticed that leg slippages tent to destabilise the system in
a way that it eventually topples over when no stabilisation system is used. Table 9.1 shows a
summary of damaged servos and loss of static stability during the leg slipping experiments.

63

9 Experiments and results

broken servos loss of static stability

With stabilisation 0 0
Without stabilisation 3 6

Table 9.1: This table shows the the number of broken servos and the amount of times the
hexapod lost static stability during the leg-slipping experiments.

During the experiments it became clear that especially slipping events of the middle legs
caused the robot to lose static stability. When the stabilisation system was turned off, 4 out
of 6 leg-slipping events for the middle legs caused the robot to topple over. The other two
stability losses were induced by slipping events of the front-right leg. It could be seen that a
leg-slip didn’t immediately cause the robot to topple-over. However, since the system has no
information about the leg-slip, it continued to perform the tripod gait, eventually causing the
robot to topple over after 2 to 3 gait steps.
By utilising the stabilisation system, the robot was able to react to these leg-slipping events
and eventually get back to a stable state in all of the test runs. It could be seen, that the
stabilisation system significantly improved the overall static stability of the hexapod after an
unexpected external disturbance which caused the hexapod to get into a critical state. As a re-
sult of this, the hexapod was able to continue its task after it recovered from these critical states.

Without the stabilisation system the servos were exposed to forces imparted by uncontrolled
body movements, causing damage to 3 servos.
As it can be seen in table 9.1, the stabilisation system successfully prevented these structural
damages. By reacting quickly to unexpected events, and keeping the system inside the stability
manifold.
Figure 9.4 shows one leg-slip event. The front-left leg steps on a small metal plate, causing
it to slip on the surface (picture 1-5). The stabilisation system reacts to that by bringing
the system back to a stable state (picture 6-8) and eventually continues to perform it’s task
(picture 9-10).

64

9.3 Results

1 2 3 4 5

6 7 8 9 10

Figure 9.4: Leg-slip experiment

In order to gain measurable results while validating the stabilisation system, the orientation
information provided by the IMU was measured during the leg-slippages. As seen in figure 9.5,
a leg-slip caused unpredictable changes in the orientation of the body (red line). As mentioned
earlier, these chaotic behaviours imparted strong forces impacting on the servos, causing three
of them to suffer structural damages. Another result of these uncontrolled orientation changes
is a loss of static stability eventually causing the hexapod to topple-over.
It can also be seen, that the stabilisation system is able to keep the body within stable
orientation constraints (green line).

R
ol

l a
ng

le
 (d

eg
)

Sampling steps

0 500 1000 1500 2000

Without stabilisation
With stabilisation

-5

0

5

10

15

20

25

Slip onset
Gait phase

(a)

Pi
tc

h
an

gl
e

(d
eg

)

Sampling steps

0 500 1000 1500 2000

Without stabilisation
With stabilisation

0

10

20

30

40

50

60

Slip onset

Gait phase

(b)

Figure 9.5: This graph shows the body roll (a) and pitch (b) during a leg-slipping event with
and without stabilisation system.

65

9 Experiments and results

During the experiments it could be seen that with the proposed stabilisation system, the
hexapods were able to keep their body orientation within the defined angular limits. This is
most notably when looking at a series of experiments and calculate the deviation of the pitch
and roll angles of the body about the zero angle.
Let µr = 0 and µp = 0 be the expected value for the roll and pitch angle of the body. During
the leg-slip and the inclination experiments, the orientation of the body was recorded and the
variance from µr and µp was calculated.

Table 9.2 shows the variance of the pitch and roll angle of the body (σroll and σpitch) with and
without the stabilisation.

σroll σritch

With stabilisation 1.10 deg 5.78 deg
Without stabilisation 8.91 deg 21.60 deg

Table 9.2: This table shows the standard deviation of the body’s pitch and roll angles from a
series a leg-slipping experiments.

It can be seen that the variance of the orientation angles is significantly smaller when the
proposed stabilisation system is used. The system is able to keep the body inside the defined
orientation constraints, both in the inclination and the leg-slipping experiments, avoiding
dangerous orientation angles which occur when the the platform is getting unstable and is
about to topple-over.

66

10 Conclusion and future work

In this thesis a hierarchically control software architecture for hexapod robots, which allows to
control and monitor the vehicles, has been developed. In order to achieve a high degree of
modularisation combined with the possibility to easily extend the system, the hexapod control
architecture was implemented in ROS. This implementation has been successfully tested on
two real hexapod platforms, the standard PhantomX hexapod robot and a modified platform
with extended tibia links.
The main contribution of this thesis however, is the development of a real-time stabilisation
system based on state-of-the-art planning algorithms such as RRT, RRT* and RRTConnect.
With the proposed stabilisation system, it is possible to define task-space constraints, which
are utilised as stability constraints, and keeping the hexapod platforms inside those defined
constraints in real-time. The proposed approach requires neither a dynamic model of the
hexapod robots, nor information about the local terrain the hexapod performs its task in. How-
ever, the implementation of the proposed stabilisation approach is flexible enough to include
dynamic models or additional sensor data, like terrain information coming from a stereo-camera.

The proposed stabilisation system has been shown to perform well under unexpected distur-
bances like leg-slipping or a change in the inclination angle of the terrain.

Future work

The proposed stabilisation system provides a fast and robust method to stabilise hexapod
platforms in real time by keeping the system inside user-defined task-space constraints. Even
though doesn’t require local terrain information, the system is capable of including terrain
information and utilising such additional information to improve the performance of the
approach. This could be addressed in future work. As mentioned in 8.4.1, the properties of
the stability manifold influence the performance of RRTConnect. Analysing the shape of the
stability manifold and utilising this information for a more efficient tree-generation algorithm
would be another field of work.
The stabilisation system described in this thesis strictly uses a deterministic model of the
hexapod (even though real platforms are never deterministic). Modelling the hexapod in
a probabilistic fashion leads to a field which is still subject of ongoing research. Another
drawback of the models used in this thesis is the fact that they are pure static models. Taking
the dynamics of the platform into account could improve the performance of the proposed
stabilisation system significantly.

67

Bibliography

[Bad90] D. Badouel. An Efficient Ray-Polygon Intersection. In A. S. Glassner, editor,
Graphics Gems, pp. 390–393. Academic Press, 1990. (Cited on page 38)

[Bel11] P. Belter, Dominik; Skrzypczynski. Integrated Motion Planning for a Hexapod
Robot Walking on Rough Terrain. In Proceedings of the IFAC World Congress,
volume 18, pp. 6918–6923. 2011. (Cited on page 9)

[BRL03] T. Bretl, S. M. Rock, J.-C. Latombe. Motion planning for a three-limbed climb-
ing robot in vertical natural terrain. In Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 2946–2953. IEEE, 2003. (Cited on
page 9)

[BS11] D. Belter, P. Skrzypczyński. Rough terrain mapping and classification for foothold
selection in a walking robot. Journal of Field Robotics, 28(4):497–528, 2011. (Cited
on page 9)

[BS12] D. Belter, P. Skrzypczynski. Posture optimization strategy for a statically stable
robot traversing rough terrain. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2012, pp. 2204–2209. IEEE, 2012. (Cited on page 9)

[BSK11] D. Berenson, S. S. Srinivasa, J. J. Kuffner. Task Space Regions: A framework for
pose-constrained manipulation planning. I. J. Robotic Res., 30(12):1435–1460, 2011.
(Cited on page 42)

[HBL+08] K. K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, B. Wilcox. Motion Planning
for Legged Robots on Varied Terrain. International Journal of Robotics Research,
27(11-12):1325–1349, 2008. (Cited on page 9)

[IM98] P. Indyk, R. Motwani. Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC ’98, pp. 604–613. ACM, New York, NY, USA, 1998.
doi:10.1145/276698.276876. URL http://doi.acm.org/10.1145/276698.276876.
(Cited on page 17)

[KF11] S. Karaman, E. Frazzoli. Sampling-based Algorithms for Optimal Motion Plan-
ning. International Journal of Robotics Research., 30(7):846–894, 2011. doi:10.
1177/0278364911406761. URL http://dx.doi.org/10.1177/0278364911406761.
(Cited on page 51)

69

http://doi.acm.org/10.1145/276698.276876
http://dx.doi.org/10.1177/0278364911406761

Bibliography

[KL00] J. J. Kuffner Jr., S. M. Lavalle. RRT-Connect: An efficient approach to single-query
path planning. In Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 995–1001. 2000. (Cited on page 51)

[Lav98] S. M. Lavalle. Rapidly-exploring random trees: A new tool for path planning.
Technical Report, 1998. (Cited on page 47)

[LLC88] T.-T. Lee, C.-M. Liao, T. Chen. On the stability properties of hexapod tripod gait.
IEEE Journal of Robotics and Automation, 4(4):427–434, 1988. (Cited on page 9)

[LS01] B.-S. Lin, S.-M. Song. Dynamic modeling, stability, and energy efficiency of a
quadrupedal walking machine. J. Field Robotics, 18(11):657–670, 2001. (Cited on
page 38)

[MI79] R. B. McGhee, G. I. Iswandhi. Adaptive locomotion of a multilegged robot over
rough terrain. IEEE Transactions on Systems, Man and Cybernetics, 9(4):633–643,
1979. (Cited on pages 37 and 43)

[MT97] T. Möller, B. Trumbore. Fast, Minimum Storage Ray-Triangle Intersection. J.
Graphics, GPU and Game Tools, 2(1):21–28, 1997. (Cited on page 38)

[O’R98] J. O’Rourke. Computational Geometry in C (2Nd Ed.). Cambridge University
Press, New York, NY, USA, 1998. (Cited on page 38)

[TT90] A. Takanishi, T. Takeya. Dynamic modeling, stability, and energy efficiency of a
quadrupedal walking machine. IROS, 2:795–801, 1990. (Cited on page 38)

All links were last followed on March 21, 2014.

70

Decleration

I declar that this thesis is the solely effort of the author. I did
not use any other sources and references than the listed ones.
I have marked all contained direct or indirect statements
from other sources as such. Neither this work nor significant
parts of it were part of another review process. I did not
publish this work partially or completely yet. The electronic
copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Mathematical foundations
	2.1 Basic kinematic equations
	2.2 Kinematic chains
	2.3 Denavit-Hartenberg transformation
	2.4 Inverse kinematics
	2.5 Quaternions
	2.6 Tait-Bryan-angles
	2.7 Manipulator trajectory planning
	2.8 Locality sensitive hashing

	3 System description
	3.1 Overview
	3.2 Hardware architecture
	3.3 Software architecture

	4 Hexapod model
	4.1 Body model
	4.2 Leg model
	4.3 Definition of the joint angles
	4.4 Transformation tree
	4.5 Leg kinematics

	5 Stability-margins
	5.1 Static stability
	5.2 Calculation of the CoM projection
	5.3 Dynamic stability

	6 State-space
	6.1 State-space representation
	6.2 Configuration space
	6.3 Task-space
	6.4 Constraint manifolds
	6.5 Sampling strategies
	6.6 Task-space constraints
	6.7 Stable states
	6.8 Critical states

	7 Random sample based planning techniques
	7.1 RRT

	8 Stabilisation approach
	8.1 Overview
	8.2 Planning domain
	8.3 Offline generation of RRT* trees
	8.4 Real-time stabilisation

	9 Experiments and results
	9.1 Experimental setup
	9.2 Experiments
	9.3 Results

	10 Conclusion and future work
	Bibliography

