
Institute for Natural Language Processing

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diploma Thesis No. 3569

Interactive Exploration and
Model Analysis for Coreference

Annotations

Markus Gärtner

Course of Study: Computer Science

Examiner: Prof. Dr. Jonas Kuhn

Supervisor: M.Sc. Anders Björkelund

Commenced: April 19, 2013

Completed: September 27, 2013

CR-Classification: D.1.5 H.5.2 J.5

Abstract

I present the design and implementation of an interactive visualization- and exploration-
framework for coreference annotations. It is designed to meet the needs of multiple different
users on a modern and multifaceted graphical exploration tool. To demonstrate its suitability
for these various needs I outline several use cases and how the framework can help users in
their individual tasks.

It offers the user different views on the data with additional functionality to compare several
annotations. Complex analysis of annotated corpora is supported by means of a search engine
which lets the user construct queries both in a graphical and textual form. Both qualitative
and quantitative result breakdowns are available and the implementation features specialized
visualizations to aggregate complex search results. The framework is extensible in many ways
and can be customized to handle additional data formats.

3

Contents

1 Introduction 9

2 Background and Motivation 11
2.1 Forms of Coreference Representation . 11
2.2 Visualization of Coreference Structures . 12
2.3 User Groups . 14
2.4 Summary . 14

3 Related Work 17
3.1 MMAX2 . 17
3.2 SALTO . 18
3.3 TrEd . 18
3.4 BRAT . 18
3.5 Summary . 19

4 Framework Features 21
4.1 Management and Browsing . 21
4.2 Querying and Exploration . 29
4.3 Error Analysis . 30

5 Architecture 35
5.1 Features . 35
5.2 Data Model . 37

6 Evaluation 41
6.1 Phenomena Exploration . 41
6.2 Error Detection / Property Exploration . 43
6.3 Error Analysis / Annotation Comparison . 45

7 Conclusion 49

A Appendix 51
A.1 Allocation Format . 51
A.2 Label Pattern Syntax . 52

Bibliography 55

5

List of Figures

1.1 Example Text . 9

2.1 Coreference Representation . 12
2.2 Example Text (Highlighted) . 12

4.1 Coreference Perspective . 22
4.2 Coreference Manager . 22
4.3 Coreference Explorer . 23
4.4 Coreference Text-Outline . 25
4.5 Coreference Graph-Outline . 26
4.6 Coreference Grid-Outline . 27
4.7 Entity Grid Label Customization A . 27
4.8 Entity Grid Label Customization B . 28
4.9 Property Window . 28
4.10 Search Window . 30
4.11 Query Editor . 31
4.12 Example Query . 31
4.13 Error Analysis using the Graph-Outline . 32
4.14 Error Analysis using the Grid-Outline . 33

5.1 ICARUS platform architecture . 35
5.2 Coreference document (data model) . 37
5.3 Coreference document set (data model) . 38

6.1 Example Query (Cataphora-Detection) . 42
6.2 Example Result (Cataphora-Detection) . 42
6.3 Example Query (Gender-Mismatching) . 43
6.4 Example Result (Gender-Mismatching) . 43
6.5 Refined Example Result (Gender-Mismatching) 44
6.6 Detail View of a Search Result . 44
6.7 Text-Outline used for Error Analysis . 45
6.8 Graph-Outline used for Error Analysis . 46
6.9 Grid-Outline used for Error Analysis . 47

6

List of Tables

2.1 Example of an Entity Grid . 13

A.1 Magic Characters for Label Patterns . 52

7

1 Introduction

The linguistic term coreference denotes that two or more expressions in a text represent or
refer to the same entity. These so called mentions of a mutual referent (the entity they all refer
to) can be distributed across several sentences in a text, making coreference an inter-sentential
relation. The text below is an excerpt from a larger document and illustrates an example for
coreference structures, showing the mentions of four entities marked with brackets:

In the summer of 2005, a picture that people have long been looking forward to started
emerging with frequency in various major [Hong Kong]a1 media. With [their]b1 unique
charm, [these well-known cartoon images]b2 once again caused [Hong Kong]a2 to be a focus
of worldwide attention. [The world’s fifth [Disney]d1 park]c1 will soon open to the public
here. The most important thing about [Disney]d2 is that [it]d3 is a global brand. Well, for
several years, although [it]c2 was still under construction and, er, not yet open, it can be said
that many people have viewed [Hong Kong]a3 with new respect. Then welcome to the official
writing ceremony of [Hong Kong Disneyland]c3 .

Figure 1.1: An example text with mentions from four sets being marked. The sentences
are the beginning of a larger document from the CoNLL-2012 Shared Task
development set (Pradhan et al., 2012).

To make the text more readable only those mentions are marked that are part of an actual
coreference relation. Mentions indexed by the same character refer to the same real world
entity and are therefore coreferent. For example the mentions {c1,c2,c3} all refer to the park
“Hong Kong Disneyland”.

Besides having a common referent entity mentions can also refer to one another. Looking at
the same set of mentions it becomes obvious that “it”c2 directly refers back to the previous
mention “The world’s fifth Disney park”c1 . On the other hand the mentions b1 and b2 form
a forward reference where the pronoun “their”b1 refers to the later introduced phrase “these
well-known cartoon images”b2 . These linguistic phenomena are called anaphora for backwards
references and cataphora for references to mentions that appear later in a text.

The task of deciding whether two mentions are coreferent is known as coreference resolution.
It is an important subtask in natural language processing (NLP) systems such as information
extraction and discourse analysis. Even for human readers the task of resolving a coreference
relation is often non-trivial. The knowledge one requires to solve this task spans over multiple
levels, from morphological and lexical information all up to semantics (Mitkov, 2003, pp.
266-279). Several resolver systems have been developed (Fernandes et al., 2012; Björkelund
and Farkas, 2012; Soon et al., 2001) and a number of projects for annotating corpora with
coreference information exist (Eckart et al., 2012; Poláková et al., 2012; Pradhan et al., 2007).

9

1 Introduction

Existing visualization tools dealing with coreference annotated data were often developed as
annotation tools in the first place. This way they primarily serve the purpose of assisting
in an annotation task and not in providing special visualization and exploration capabilities.
Considering the importance of coreference resolution, there is a strong need for dedicated tools
which can properly handle the specific properties of coreference structures.

In this thesis I will present the design and implementation of a very flexible coreference
visualization and exploration framework suitable for a broad audience. For the course of
this thesis it will go by the title of IEC which is short for “Interactive Exploration tool for
Coreference data”. It attempts to satisfy the needs for users that motivated by their background
are interested in rather different aspects of coreference and therefore require specialized tools.
It features advanced implementations of three different views on coreference and a data model
that aims not to restrict the variety of possible input data. Altogether it is designed to provide
a maximum of usability. The integrated search engine supports very expressive (graphical)
queries and has the ability to create both qualitative and quantitative breakdowns of results.
This renders it very practical for complex exploration and analysis of coreference models.

The remainder of my thesis is structured as follows: Chapter 2 elaborates the motivation
for implementing a new framework and gives a more in-depth background on the topic. In
Chapter 3 I list a selection of existing tools and projects that aim on providing similar software.
Chapter 4 outlines the features of IEC and their functionality while Chapter 5 presents a more
technical overview of the architecture. Chapter 6 evaluates in which ways the implementation
can be applied to real data and how it meets the requirements of different user groups and
Chapter 7 concludes.

10

2 Background and Motivation

The phenomenon of coreference plays an important role in several tasks in the field of
(computational) linguistics. It is therefore subject to examination from a wide range of
disciplines. The people which are interested in coreference often focus on different aspects of it
and for this reason require a special view on the data they are working with. This chapter
is intended to give a wider background overview on the field of coreference and the various
parties working with it and to emphasize the demand for new tool frameworks that specifically
address the needs of those parties. The first sections explain the possible ways coreference
can be represented and visualized. This not only includes well established designs but also
new ideas. In Section 2.3, I will outline the different groups of users and their individual
requirements regarding a visualization and exploration framework for coreference. The final
Section 2.4 summarizes the chapter and provides a basic overview on the design idea of my
framework.

2.1 Forms of Coreference Representation

The most basic way of representing a coreference structure is to picture it as a collection of
distinct sets of mentions. Each set or cluster encapsulates all the mentions that are considered
coreferent. An example for this representation being used is the CoNLL-2012 Shared Task
(Pradhan et al., 2012) format.1 A clear disadvantage of this representation is that it is very flat
and does not provide real structural information: It does not honor phenomena like anaphora
or cataphora or inter-mention relations at all and instead treats all mentions in a cluster alike.
The often used chained model of a cluster only provides the benefit of preserving the order of
mentions as given by the raw text.

As an alternative, a tree-based model for coreference has been proposed (Fernandes et al., 2012)
which is able to encode a much richer set of features. Figure 2.1 shows the basic difference
between a flat chained structure and the tree representation. Considering modern approaches
to coreference resolution (Soon et al., 2001) that are based on the mention-pair model (Ng,
2010) trees can be seen as sort of a natural representation. The idea of this model is for a pair
of mentions to decide whether or not they are coreferent or to provide a probability. This can
be done by means of enforcing similarities between mentions in terms of features like gender,
number, etc. Traversing the mentions in a given text in reading order the system then has
to find the most probable already visited candidate to form a coreference relation. Since this

1http://conll.cemantix.org/2012/data.html

11

http://conll.cemantix.org/2012/data.html

2 Background and Motivation

The world's fifth Disney park

Hong Kong Disneyland

it

The world's fifth Disney park

Hong Kong Disneylandit

Chain Tree

Figure 2.1: Two representations of coreference structures as generated by coreference reso-
lution tools. The mentions are members of the set {c1,c2,c3} from the example
text in Figure 1.1.

automatically forms directed links between mentions the overall structure of a cluster becomes
a list (if all mentions refer back to their nearest cluster neighbor) or a tree. It is important to
note that the tree representation allows for more fine-grained comparison or error analysis of
the output generated by automatic coreference resolver systems.

Besides the structural differences between models, the total amount of additional information
being encoded varies greatly. Annotation projects or automatic coreference systems all store
features in their models which are specific to their individual task. This makes it particularly
difficult for visualization or exploration tools to properly handle all the various models.

2.2 Visualization of Coreference Structures

In the summer of 2005, a picture that people have long been looking forward to started
emerging with frequency in various major [Hong Kong]a1 media. With [their]b1 unique
charm, [these well-known cartoon images]b2 once again caused [Hong Kong]a2 to be a focus
of worldwide attention. [The world’s fifth [Disney]d1 park]c1 will soon open to the public
here. The most important thing about [Disney]d2 is that [it]d3 is a global brand. Well, for
several years, although [it]c2 was still under construction and, er, not yet open, it can be said
that many people have viewed [Hong Kong]a3 with new respect. Then welcome to the official
writing ceremony of [Hong Kong Disneyland]c3 .

Figure 2.2: The example text from Figure 1.1 with cluster-based color highlighting.

Regardless of the exact format there will always be the need to visualize and explore coreference
annotations in an interactive way. Tools presenting coreference structures and their underlying
text typically generate floating text and visually highlight relevant portions or surround
them with square brackets. Several examples for this visualization technique are listed and
described in Chapter 3. Figure 2.2 shows the annotated text from the introduction enriched
by colored highlighting of the mentions based on their cluster. This visualization presents a
very intuitive and from a readers perspective easy to understand way of outlining clusters over
a large portion of text. It is however unable to properly handle structural information like

12

2.2 Visualization of Coreference Structures

links between mentions. Attempting to graphically link mentions across floating text usually
generates very confusing results, and is therefore not a viable solution.

When one is interested in the mere structural properties of a coreference annotation it is
possible that the parts of text not affected by the annotation are of minor interest. In this case
visualizing the structure as a graphical tree provides a viable solution. For this approach
mentions are transformed to nodes and the links between them translate into directed edges.
Figure 2.1 in the previous section shows an example for visualizing a cluster as a tree. Compared
to the text highlighting mentioned above, this technique provides a purely structure-focused
view on the data. In addition to the very simple version in the figure it is also possible to
include additional information in the nodes and edges of the tree to further improve the
visualization.

Sentence a b c d

1 X
2 O S
3 S X
4 S
5 O S
6 X

Table 2.1: Visualization of the coreference structure introduced in Figure 1.1 in the form of
an entity grid. The value in a cell shows which syntactical function a given entity
represented by the cluster xε{a, b, c, d} has in a particular sentence. The values
are S for subject, O for object and X for other.

As a third way of visualizing coreference structures I propose a tabular view that is inspired by
the so called Entity Grid. The entity grid was originally introduced to model local coherence
(Barzilay and Lapata, 2008) of texts or discourses, i.e., the way speakers or writers make
transitions across sentences “smooth”. It is essentially a table that lists sentences as rows and
entities as columns. A cell indicates the syntactic function an entity has in a given sentence.
The possible values for a cell (provided the entity occurs in a given sentence) are S for subject,
O for object and X for other. Table 2.1 shows the example text from the introduction as it
would appear in an entity grid. Note that however the basic specification of the entity grid
exists for some time there are to my knowledge still no implementations of tools featuring a
graphical interface based on that grid view.

My idea is to take the concept of a tabular outline and apply it to coreference annotations
while lifting the limitations on what has to be the label for a given cell. Again a row in the
table represents a sentence and each column holds a single cluster with all the mentions of
that cluster’s entity. The value of a cell should not be restricted but be left to the user’s
decision. The compact nature of the grid is well suited to provide a brief overview, even on
an entire document. Combined with the flexibility regarding the actual content of a grid cell I
propose, this design can help users to get a valuable view on entities in a document and how
their references behave.

13

2 Background and Motivation

2.3 User Groups

Very tightly coupled with the actual view on coreference structures is the context in which it
is to be used and by whom. For the course of this thesis I will focus on two types of potential
users as representatives for groups with rather different expectations and needs. I am going
to outline for both groups the aspects of coreference they might be interested in and what
requirements a tool should meet in order to assist them.

The first group labeled as corpus linguists will be focused on analyzing a gold or automatically
annotated corpus or set of corpora for special phenomena. Their questions for a search engine
would be of the form “Is this construct a rare phenomenon? If yes, how rare exactly?” or
“How often does this phenomenon A appear while phenomenon B is absent? What are actual
instances of A in my corpus?”. To answer such questions they need interfaces to query a
corpus for potentially very complex structures and require both qualitative and quantitative
breakdowns of the results. In this context I think the most vital visualizations will be the text
outline and entity grid. The first to view coreference annotations in their textual context and
the latter in order to follow several entities over the course of a document and compare their
role or other properties. For non-technical persons it is also of importance that the tools are
easy to use and do not require deeper technical knowledge than the linguistic task itself.

In the second group I collect all developers of coreference related systems or other NLP
software. Those people will be primarily interested in the investigation of critical phenomena
that can cause problems or difficulties to their systems. For example the developer of a
coreference resolver when looking at the predicted output of his tool could ask “Given a clear
case of mismatch, how often does it happen? In which context does it happen?” or “On which
node in the tree does my resolver make its first mistake?”. This indicates that unlike the
regular corpus linguist a developer usually requires a more structure focused visualization.
Here the tree-outline and entity grid dominate over the pure textual representation in terms of
importance. Furthermore this type of user has the possible need for an additional visualization
feature not mentioned before: The ability to directly compare two annotations for the same
base data. To properly evaluate the predictions of an automated system it is often vital to
perform a very fine-grained comparison between both the gold data and the predicted output.
This should be supported by an interactive tool that wishes to assist NLP developers. In
addition it would be a helpful feature to be able to systematically search for differences in
those two annotations.

2.4 Summary

In the previous sections of this chapter I have outlined several properties of coreference
annotations that, when combined, pose a strong requirement for a dedicated visualization and
exploration framework to be developed:

• Different user groups focus on very different aspects of coreference and therefore need
highly specialized tools to assist them.

14

2.4 Summary

• The trend in representing coreference structures leads to tree-based models. New tools
should be able to handle both unstructured “old” data as well as the relatively new
models.

• There are multiple ways to visualize coreference structures. Besides the more “classic”
approaches I have presented the design of a tabular view resembling an improved entity
grid.

As will be shown in Chapter 3 several tools exist which address certain of the needs stated
above. However most of those tools were designed as annotation tools and in most cases not
even specifically to handle coreference. As a result they serve their intended role in assisting
human annotators but lack the flexibility to perform specialized visualization and exploration
tasks on coreference annotations. In addition my suggested tabular visualization approach has
not been implemented before in any way.

IEC was designed to satisfy as many of the above requirements as possible. It is dedicated to
the tasks of visualization and exploration of coreference annotations. For both tasks it features
special tools with a maximum of usability. In terms of visualization it offers implementations
of all three techniques listed above. Additionally it is able to provide comparative views for
two different annotations. To support a wide range of coreference annotations, its internal
data format is minimalistic in its core but very extensible. Using the plugin-based architecture
anybody can also include a custom format for new annotations.

15

3 Related Work

Coreference annotations in their role as an important subtask of NLP have steadily grown in
terms of received attention. In contrast, the number of tools developed to visualize and explore
said annotations is still quite low. In this chapter I will introduce a selection of (annotation)
tools that can be used to inspect coreference annotations and perform search operations of
varying complexity on them.

3.1 MMAX2

MMAX2 is an annotation tool (Müller and Strube, 2000, 2006) that offers various ways to
interact and modify annotated corpora. It is highly customizable both in terms of the data
formats it supports and the visualization capabilities on the user front-end. Although it is not
specifically designed for visualization of coreference structures, the flexible nature of its data
model enables it to process them. It relies on the principles of stand-off annotation (Thompson
and McKelvie, 1997), where annotations should not modify the underlying data in a corpus
and preferably be entirely separated from it, and multi-level annotation. Stand-off annotation
allows several annotations representing different phenomena to be contained in the same
corpus, while the principle of multi-level annotation enables phenomena on different levels to
be related to each other.

MMAX2 uses XML files for both the specification of possible annotation by means of an
annotation scheme file and as storage for base data (the raw corpus data) and annotation data.
Its main purpose as an annotation tool is to support human annotators in the process of an
annotation task. Besides this core functionality it also features several useful tools to explore
and otherwise manipulate a corpus.

The most relevant functionality in the context of this thesis is the querying tool that lets the
user search a corpus for examples of certain phenomena. It is based on a multi-level query
language called MMAXQL which allows for textual definition of a query. Both the base data
and mentions of every available level can be queried with the support of regular expressions and
several structural relations regarding the spans of mentions declared in the query. Visualization
of corpus elements (sentences) and their annotations in MMAX2 is realized as highlighted
text where customizable style-sheets are used to create visual enhancements of the plain text
comprised of word tokens. These enhancements can be, among others, changes in font type
or style, underlining mentions or surrounding them with square brackets or connection lines
representing relations between mentions. There is no additional way of visualizing certain
structures like trees available in MAAX2 other than the relation lines across floating text or
recursive bracketing of spans.

17

3 Related Work

3.2 SALTO

Another graphical tool for manual annotation is SALTO (Burchardt et al., 2006). While other
tools similar to MMAX2 perform visualization and annotation on a mere textual representation
of the data, SALTO works with graphical tree structures. Another relevant point is the level
on which the manual annotation takes place. SALTO works on top of syntactically annotated
data and adds a second structural layer on top of it. This makes it well suited for the
annotation of semantic roles and semantic classes, discourse structure or anaphoric relations.
It is however restricted to the scope of a single sentence. Data has to be available in the
TIGER XML format (Brants et al., 2002) or the derived SALSA/TIGER XML (Erk and
Padó, 2004) which is SALTO’s output format. By interfacing with a treebank search engine
called TIGERSearch (Lezius, 2002) the tool allows the user to select datasets for annotation
by means of queries. Current utilization in the field of coreference annotation includes the
DIRNDL (Eckart et al., 2012) project, a discourse corpus of radio news, featuring a very rich
annotation scheme (Baumann and Riester, 2012).

3.3 TrEd

Another annotation tool focused on visualizing data in tree form is TrEd (Pajas and Štěpánek,
2009). It is part of a larger framework developed around a generic and open encoding scheme
for annotations called PML (Hana and Štěpánek, 2012). Much like MMAX2 it allows users to
define scheme files for arbitrary annotations structures and is therefore open to a wide range
of existing formats. Once accessible to TrEd, a corpus resource can be queried via its own
query language PML-TQ (Pajas and Štěpánek, 2008). A graphical query editor built into
TrEd supports the definition of queries both graphically and textually. Besides the basic search
functionality, it features reporting capabilities that can present the user with occurrence-counts
or distribution information. Depending on the search, query results can be presented by a text
report or as a list of matches that can be further browsed.

3.4 BRAT

Unlike the previously introduced tools the brat rapid annotation tool (BRAT) (Stenetorp et al.,
2012) is purely web-based. A server side installation of the tool can be accessed from any
modern web browser. Visualization is performed by an open-source text annotation visualizer
STAV (Stenetorp et al., 2011). It uses a text-based approach and renders annotations and
connections between them within the line spacing area, enlarging it when necessary. The highly
configurable design of the tool makes it applicable for many annotation structures including
coreference. Also implemented by BRAT is a comprehensive search functionality that allows
the user to search document collections. Possible constraints include, but are not limited to,
text span annotations, relations, or text forms and can be defined via a compact dialog.

18

3.5 Summary

To address some of the technical shortcomings of BRAT and to integrate it with a framework
for collaborative annotations, a project named WebAnno (Yimam et al., 2013) has been built
around it. WebAnno is a web-based annotation tool that, in addition to the original BRAT
features, offers project and user management and is able to interface with a crowdsourcing
platform. Unlike BRAT it is able to support arbitrarily large documents while still maintaining
a sufficiently high performance. It is on the other hand currently limited to only a handful of
annotation types which include coreference.

3.5 Summary

I have listed a small collection of current tools which offer a combination of capabilities relevant
to my thesis. First comes the visualization of coreference structures in an intuitive and easy
to read form. Second is the possibility for a user to explore a given annotated corpus by
means of querying. All introduced tools were intrinsically developed as annotation tools or
platforms, and in general not focused on coreference data. The lack of dedicated exploration
tools for coreference annotations leaves as only alternative the usage of general purpose tools
or such that by their extensibility are able to handle them. In consequence of their original
purpose (assisting a human user in annotating raw or preprocessed data) they all feature
search capabilities with varying complexity and expressiveness to let the user explore and
analyze the data he is working with.

In terms of visualization there are only two types available, namely textual representation as
implemented in BRAT and MMAX2 or a tree outline with SALTO or TrEd as representatives.
The latter is in addition often restricted to a single sentence and therefore unable to visualize
coreference structures spanning an entire document. This is no surprise considering that those
tools are not focused on coreference. Usually a tool provides a single type of visualization,
effectively locking the user into one view on the data. The third possible visualization technique
described in the introduction, the entity grid, is actually only a theoretical model and has not
yet been implemented in a proper graphical user interface.

In total the collection of available tools is sufficient for their intended purpose, that is the
assistance in annotating corpora. Besides that, they generally lack the specialized visualizations
or comparison features as listed in Chapter 2. This clearly emphasizes the need for a dedicated
framework designed to specifically address those needs not already satisfied by existing tools.

19

4 Framework Features

IEC itself is a plugin for ICARUS1(Gärtner et al., 2013), a Java based open-source platform
for tools related to corpus analysis and research. The offered functionality of IEC is essentially
divided into two collections of tools. One holds the interfaces to manage the coreference data
the user wishes to process and simple tools to inspect this data in a manual way. These tools
will be covered in the immediately following section. The other set of tools is integrated into
the core search engine of ICARUS and will be outlined in Section 4.2. It basically contains
components that customize the existing search engine and provide new types of constraints
and supported search targets. Section 4.3 shows how the features of IEC’s inspection tools
can be employed to comfortably browse a given resource for differences compared to a second
annotation. The order of introduction follows the steps a new user would probably perform
when using the framework to search for phenomena in a corpus.

4.1 Management and Browsing

The purpose of the Coreference Perspective as shown in Figure 4.1 is to concentrate all the
tools needed for the task of manually browsing coreference annotations in one place. It holds
the tools to register and manage the corpora and annotations that a user intends to work
with. Besides that, it provides implementations for all the three essential ways of visualizing
coreference structures as outlined in the introduction:

1. Text-Outline

2. Graph-Outline

3. Grid-Outline

Each of these outlines will be introduced in a separate portion of this section with a strong
emphasis on their individual features.

4.1.1 Coreference Manager

Users of visualization or browsing tools often find themselves using very large collections of
data. Certain tasks might even require the combination of several data sources to be combined,

1Interactive platform for Corpus Analysis and Research tools, University of Stuttgart

21

4 Framework Features

Figure 4.1: Complete screenshot of the Coreference Perspective containing interface compo-
nents to manage document sets, allocations and to inspect them.

Figure 4.2: Coreference Manager-View that allows creation and management of document
sets and the associated allocations.

22

4.1 Management and Browsing

which in conjunction with the fact that such data collections can be distributed in nature,
makes keeping track of them an inherently difficult task for the user.

To aid users in this task, IEC provides a dedicated module called Coreference Manager, a
snippet of which can be seen in figure 4.2. It allows for the definition of document sets that can
be used with the various other tools of the platform. A document set is an ordered collection
of documents containing an arbitrary number of sentences. Each document represents a
contextual boundary for coreference relations (see Section 5.2 for detailed information about
the data structures) and together they form a corpus. Each document set is assigned a unique
identifier and a pointer to the physical location of the content whereby multiple document sets
with different purposes can relate to the same physical data.

IEC reads the format introduced by the CoNLL-2012 Shared Task (Pradhan et al., 2012).
The extensibility of the platform being used allows other plugins to contribute new data
formats. In addition, the user can define arbitrary textual properties to each document set
in the form of key-value pairs that can store further information or meta-data. Multiple
so called allocations, holding for each document the tree or list structure that represents
mentions and their respective coreference relations, can be assigned to each document set. See
Appendix A.1 for a detailed format specification. The same statement about extensibility
applies to allocations. After the initial set-up of document sets and their allocations in the
manager they can be accessed with other tools.

4.1.2 Coreference Explorer

Figure 4.3: Coreference Explorer-View showing a list outline of the documents contained in
a selected document set.

23

4 Framework Features

A possible first step in the further use of registered document sets is the simple browsing of
the contained data. IEC ships with a special module named Coreference Explorer which lets
the user select a document set to be inspected. Figure 4.3 shows the user interface of this tool
with an example document set currently picked. Note the two additional drop-down menus
below the document set selection where the user can assign up to two allocations previously
associated with the document set. The term Default Allocation in the options refers to the
optional allocation that a document set can contain in its original data. As the name suggests
an item in the Gold Allocation menu will be referred to as gold standard or correct version
of an annotation whereas the Allocation choice signals an allocation to be of predicted nature
that needs to be compared against the correct one. The individual assignment of allocations
in this part of the interface controls how later visualizations present the data to the user.

Selecting a specific document in the list below sends it to the next component of the coreference
perspective called the Document Outline which manages the actual graphical representation.
The document outline will be covered in the next section. Note that the following sections
related to the different ways of visualizing the data only assume one allocation assigned by
the user and only in Section 4.3 the additional features regarding a second allocation will be
explained.

4.1.3 Document Outline

One of the most crucial aspects of interactive systems that deal with abstract data is the way
this data is visualized and how the user can customize the visualization engine or otherwise
interact with it. Some data structures like for example parse trees in the form of phrase- or
dependency-structures ’demand’ a certain type of visualization by nature. Parse trees are
typically presented in a sort of graph view outlining the tree structure. In-place visualization,
that is embedding the structural information to be visualized directly into the basic textual
form the underlying text comes in, is possible for trees but very difficult for human users to
follow when reading. Coreference structures on the other hand can be viewed in many different
ways, three of which are implemented in IEC.

Text-Outline

The first and most common type of presenting coreference annotations is a simple textual
in-place approach as shown in Figure 4.4. All mentions in a document are enclosed by square
brackets and highlighted with a certain color where mentions sharing a color belong to the
same cluster. Besides the default highlight type of coloring the background of a mention’s
span, the user has the choice between modifying font type or color of the text and to underline
it. Meta information about each mention such as the cluster id or its start index are included
in the highlighting but can be hidden at the user’s decision.

When the current allocation contains a huge number of mentions in general or mentions which
are alone in their cluster, so called singletons, the excessive amount of colors can easily lead to
a very unclear overview. To work around this problem there are two independent options for

24

4.1 Management and Browsing

Figure 4.4: Default visualization of a single document in the text-based Document-Outline-
View with mentions colorized in the text.

the user that both hide a large portion of the currently ’unneeded’ highlights. First the user
can choose to completely ignore all singletons in the document. Additionally, a filter option for
the currently selected mention in the text is available via the upper tool-bar and the right-click
context-menu in the text area.

To the right of the text outline itself is the so called property outline that can be (de)activated
depending on necessity. It always displays information about the currently selected element
of the coreference tree, in particular the set of properties assigned to that element (other
visualizations show similar informations additionally via tool-tips). It is part of the general
document outline and therefore available for all visualizations alike.

Graph-Outline

The second visualization option presents the coreference structure as a tree using a graph
visualization library2 where each cluster forms a separate sub-tree with its mentions, as shown
in Figure 4.5. Each node in the graph represents exactly one mention and is labeled with that
mention’s cluster id, its numerical boundaries (sentence index, begin index and end index) and
the excerpt of the original text it covers. Edges between cells stand for the coreference relation
between their mentions. In addition to the filtering of singletons which works the same way as
described for the text based visualization, there are some more highlight options available.

Since the graph view hides large sections of the documents text outside of any mention and
only produces a structural point of view to the data, it might be useful for a user to see the

2http://www.jgraph.com/

25

http://www.jgraph.com/

4 Framework Features

Figure 4.5: Graph-based variant of the Document-Outline-View with nodes representing
mentions in the coreference tree.

content of a particular node in its entire textual context. A special option was added to the
right-click menu of the graph component so that the user can select any number of nodes and
then open a sub menu that lets him switch to the text outline with the previously selected
nodes set as current filter.

Grid-Outline

The third and final visualization option is an extension of the Entity Grid model. An entity
grid is essentially a table where each column represents an entity and each row stands for a
sentence in the document. The content of a cell in this table is usually determined by the
syntactic function an entity has in the given sentence (Barzilay and Lapata, 2008). Here this
idea is taken one step further and the user himself is able to decide what exactly he wishes
the label of a cell to represent. The default value is simply the number of times an entity is
mentioned in a sentence. Via a button in the tool-bar the user can activate a text-field for text
patterns to enter. These patterns will then be compiled into instructions on how to format
the information of choice in each cell. There is a collection of so called magic characters all
of which have predefined meanings. When generating the actual label for a given cell those
characters will be replaced by the respective information value from the mention data. For a
full list of magic characters consult Appendix A.2. An example of using a simple pattern is
shown in Figure 4.7. The pattern “b-e” contains the two magic characters “b” and “e” which
cause the begin and end index of a mention’s span to be inserted.

More complex patterns are possible by using so called property expressions that refer to
property values stored on a span or the underlying sentence data. In Figure 4.8 such an
advanced pattern can be seen. The corpus in this example is in the CoNLL-2012 Shared Task

26

4.1 Management and Browsing

Figure 4.6: Document visualization in the style of a highly customizable Entity Grid.

Figure 4.7: Simple example on how to use the label pattern mechanics of the entity grid
visualization to customize the cell labels in the grid. The pattern “b-e” causes
begin- and end-index of a mention to be used as label separated by a hyphen.

27

4 Framework Features

Figure 4.8: A more advanced way of using a pattern to customize cell labels. In this case
the underlying sentence will be queried for the property “tag” at the index that
is defined as a mention’s head.

Figure 4.9: A useful utility tool to collect and display available property keys for a given
combination of document set and allocation.

28

4.2 Querying and Exploration

format and the “§tag§” expression used in the pattern links to the value of the tag property of
the word that is marked as the head of the span. Similarly to the graph-based outline, the grid
allows the user to easily switch back to the bare text outline with the spans of a cell filtered.

To use the pattern engine to its fullest extent, the user needs knowledge of the exact property
names used in both the allocations and the corpus itself. Since the data model (see Section 5.2)
poses no restrictions on the number and naming of properties, the user would have to manually
search the data files in question for occurrences of interesting properties to acquire the exact
name or to learn about possible properties in the first place. A special utility tool accessible
via the coreference manager’s tool-bar was developed to avoid this additional effort on the
user’s side. In a special window shown in Figure 4.9 the user can, in the same way as in the
explorer view, combine a document set and an allocation. The tool then traverses both the
raw corpus data and the allocation and collects all the property names that are used. After
completion it presents the user with a list of these property names split by their target type
(word in a sentence, span or edge) combined with an occurrence count. Double-clicking a row
in one of those lists directly copies the corresponding property name in the system clipboard
so that users do not have to transcribe them for use in the label pattern text-field.

4.2 Querying and Exploration

While the features described in the previous section allow the user to comfortably inspect
corpora and their coreference structures, they are by no means sufficient when it comes to
more complex exploration needs. The ICARUS platform ships with a dedicated plugin that
manages search operations and, in that regard, provides a wide range of graphical interfaces
to the user. Figure 4.10 shows the main perspective of this Search-Tools plugin. The area to
the left is dedicated to managing a search by selecting the type (which in the current case will
be a search on coreference structures that returns documents as result items) and target of it.
Valid targets are all the corpora previously registered via the coreference manager.

When the basic choices regarding type and target are made, the user can continue to express
his exact query using the Query Editor view on the right. A screenshot of this editor is shown
in Figure 4.11. The editor is split in two components, the upper one holds the graphical
representation of the query and the lower one displays the query in textual form. Which way of
defining a query to use is up to the user. Graphical and textual queries can also be converted
into one another by means of a single mouse-click. The query shown in the screenshot is
intended to investigate possible values for the “Type” property of nodes that refer to nodes
tagged as “Name”. Note the usage of the special grouping operator <*> in the constraint of
the second node that refers to the property “Type” on the node level. This operator collects
the instances of a given constraint in the target tree when matching the query tree and groups
them. Search results created that way can then be viewed as frequency lists or tables depending
on the number of grouping operators in the query. Specialized visualizations are available for
up to three groups and include lists and tables to properly outline the frequency breakdowns.

29

4 Framework Features

Figure 4.10: Complete window currently showing the Search-Perspective where a user can
define, execute and manager search operations and view their results.

After executing the search, the user can then browse the search results in the “Result Outline”.
Figure 4.12 shows the result breakdown of the query mentioned earlier in this section. Since
there was exactly one grouping operator involved the result will be presented by means of
a frequency list containing all the instances that have been found using the constraint the
grouping operator was used for. Next to each instance a cell lists the exact frequency of its
occurrence. By double-clicking this cell the user selects a portion of the result that will then
be presented to the right. Using the exact same visualizations as the document outline in
Section 4.1.3, the result outline preserves the same flexibility in terms of how particular items
in the result will be presented. In addition to the basic features of the document outline, the
user can filter out all coreference members (nodes or edges) in the visualization that are no
immediate part of the result structure (i.e. they do not map to definitions in the query).

4.3 Error Analysis

The Sections 4.1 and 4.2 have shown how document sets with a single allocation can be browsed
and explored both manually and with the help of the search engine. To address specifically
the needs of NLP tool developers and other users who are interested in a comparison of two

30

4.3 Error Analysis

Figure 4.11: Editor for defining queries both in a graphical and text based way. The query
in the screenshot is used to generate a quantitative summary for the “Type”
property of all the immediate children of nodes whose “Type” is set to “Name”.

Figure 4.12: Result of a so called 1-dimensional query, motivated by the number of grouping
operators <*> used in it.

31

4 Framework Features

different allocations, additional highlighting features have been implemented for two of the
visualization types introduced above. When the user assigns a second allocation to a document
set via the explorer, both the graph- and grid-outline offer a special highlighting mode. A
set of buttons on their respective tool-bars (de)activates the graphical emphasis of nodes
and/or edges (the latter only in the graph-outline) that are found to be false positives or false
negatives.

Figure 4.13: Example of the highlighting features of the graph-outline supporting manual
error analysis. False positives are marked as red and false negatives appear with
a dashed stroke-style.

In the graph-outline, the decision can be made for nodes and edges independently since crossing
edges that indicate false negatives can easily lead to confusion. As is obvious from Figure 4.13
false positives are marked in a typical red and false negatives get a dashed stroke-style. Similarly
to this, but without the visualization of edges, the grid-outline in Figure 4.14 lets the user
decide whether or not to mark false positives with a red label and false negatives with a green
one.

To perform a quick check for errors or mismatches of some automatically created coreference
data the user only has to assign the corresponding allocations to a document set and then
chose amongst the two outline types. By simply scrolling through the outline, the user can
quickly identify errors and investigate them further.

32

4.3 Error Analysis

Figure 4.14: Manual error analysis using the grid-outline’s compare feature. Spans found to
be false positives are marked in red and false negatives are colored green.

33

5 Architecture

IEC is essentially a plugin for the open-source tool platform ICARUS(Gärtner et al., 2013).
This chapter is intended to provide an overview of this platform and the components relevant
to the thesis. Section 5.1 lists the core features and structure of ICARUS and in Section 5.2 I
will outline the main aspects of the data model used by IEC.

5.1 Features

Plugin-Framework

Plugin Manager

Plugin Registry

Utility-Frameworks

Actions

Localization

Graphics

SerializationLogging

Configuration

Rendering Content-TypesEvents

Layout SchedulingI/O

Core
Components

Plugin
Components

Launcher

Core

Language-Tools

Search-Tools TCFjGraph

Dependency

mate-tools Weblicht

IEC

Figure 5.1: Components of the ICARUS platform with members of the core framework in
the lower area and plugins contained in the current distribution above. Colored
plugins are prerequisites of the IEC plugin.

The ICARUS platform is a collection of frameworks and tools with a plugin-based architecture.
It is focused primarily on interactive visualization of data used in NLP tools and the ability to
explore said data with its customizable search engine. Figure 5.1 provides a quick overview

35

5 Architecture

of the main components that form the ICARUS platform and their hierarchic relations. The
collection of core components in the lower part of the figure consists of three modules of which
only two will be covered here since the launcher module’s responsibility does not transcend
the platform start-up:

Plugin-Framework Centered around the open-source Java-Plugin-Framework (JPF)1 this
module manages the registration, validation and dependency checks of all plugins. In
addition, it monitors the life-cycle for each active plugin and performs lazy activation,
that is it only activates a plugin as soon as its content is actually required. Plugins are
registered using a manifest file in XML format. This manifest describes all elements and
properties of a single plugin. A very important part is played by the extension-points
and extensions a plugin declares in its manifest. Extension-points describe well-defined
adapter points which other plugins can connect to by an extension declaration. This
declaration passes the required arguments on to the extension-point.

Utility-Frameworks The vast majority of code in the platform core outside the aforemen-
tioned plugin-framework is organized in a multitude of frameworks that greatly simplify
the process of developing and managing user interfaces.

The upper part shows the plugins that ship with the current distribution of the platform.
Their arrangement reflects a prerequisite-hierarchy where a plugin depends on all plugins
located directly below the rectangle holding its name. IEC on top is an exception of this and
depends only on the other colored plugins. These prerequisites of IEC will be outlined in the
following:

Core The core plugin manages the basic visual appearance of the platform. It organizes
windows and defines the frameworks and mechanics used for communication between
different plugin components within the same window. Additionally, it serves as a kind of
bridging point between some of the core frameworks of the platform and new plugins to
ensure proper initialization of the first and correct usage by the latter. Two of the most
important and very frequently used extension-points that the core plugin defines are
View and Perspective which are vital in the structural organization of the user interface.
Both of them are used by the IEC plugin, too. While a View serves as container for a
single specialized interface component or tool, like for example a list with log entries or a
graph visualization of some data, it is always a part of an enclosing Perspective which
in turn arranges multiple View objects associated with a certain context.

Language-Tools In principle a large collection of constants and very general interfaces
intended to allow other plugins to define their own data models and to keep them
compatible with other tools.

Search-Tools Being the by far largest plugin of the ICARUS platform, it hosts all the funda-
mental interfaces and tools related to search operations. Although the basic data models
all refer to general (graph) search applications, most of the default implementations are
restricted to tree structures. The plugin provides a multitude of components for user

1http://jpf.sourceforge.net/index.html

36

http://jpf.sourceforge.net/index.html

5.2 Data Model

interfaces that can be used to manage multiple searches, define and edit search queries
both graphically and textually, and to visualize search results depending on the number
of grouping operators in the query. Example screenshots of these components together
with some content were presented in Section 4.2.

jGraph Centered around the identically named open-source graph visualization library
jGraph2, this plugin focuses on integrating graph visualization into the platform’s
user interface. It defines several components that can be customized by other plugins
to meet their requirements in presenting different types of data. It also provides other
plugins a large number of predefined utility functions that greatly increase their usability.
Being able to manually adjust an automatic graph output or to export parts of a graph
as a graphic or into XML are only a few examples.

5.2 Data Model

The IEC plugin is composed of many data types that model various aspects of coreference
structures and the raw corpus data underneath it in a hierarchical fashion. In the following
sections I will explain how the two main components of that hierarchy are designed and how
they preserve the flexibility that is needed to model the wide range of coreference formats
available.

Document

Sentence 1 Sentence 2 ...

Span 1 Span 2 Span 3

Edge 1

SpanSet

SentenceDataList

EdgeSet

CoreferenceDocumentData

Figure 5.2: Hierarchical data model of a single coreference document.

IEC uses a collection of data structures ordered hierarchically to represent the various elements
involved in a coreference model. The sentence model was designed as flexible as possible
in order to not pose restrictions on the levels of annotation a certain base data corpus may
already contain. The CoreferenceData is an extension of the original sentence format that
the ICARUS platform provides, which only served as a logical grouping container for the word
tokens in a sentence. The derived implementation expands the container by the ability to

2http://www.jgraph.com/

37

http://www.jgraph.com/

5 Architecture

assign an unlimited and unrestricted amount of annotations in the form of key-value pairs to
each word. The actual coreference structure is built on top of this sentence model. Figure 5.2
shows the types and levels involved in the representation of a single document. The base
data is organized in a list of sentences. Above those all the mentions are represented as Span
objects consisting of information about the span of text they cover and a reference to their
assigned Cluster. As mentioned in Chapter 1, there are many different sets of attributes the
various groups involved in design and annotation of coreference data assign to both nodes and
edges in a coreference graph. Therefore the Span type supports key-value attributes to model
arbitrary information very much like the abstract sentence representation.

The collection of edges that represent coreference relations are placed on top of the Spans,
each holding references to their source and target Span and providing the same support for
additional property data. Between the Span and Edge level exists the Cluster model as a sort
of utility type. It holds all the Span objects belonging to the same cluster (referring to the
same entity) and for each such Span the incoming Edge in the coreference tree if the node is
not the root of a sub-tree. To allow for easy traversal and to provide a logical organization,
the elements of each level are grouped in list-like structures as can be seen on the right of
the figure. Both the data models on the bottom and the top of this hierarchy are introduced
as interfaces with various predefined possible default implementations to enable future
extensions to integrate additional capabilities without the need to redefine the entire data
model. Note that the default implementations do not store the SpanSet and EdgeSet objects
themselves but query their surrounding document set container (see below) when required.

Document-Set

Document 1 Document 2 ...

Default Allocation

Document List

Assigned Allocation

CoreferenceDocumentSet

SpanSet 1

EdgeSet 1

SpanSet 2

EdgeSet 2

(SpanSet 1)

(EdgeSet 1)

(SpanSet 2)

(EdgeSet 2)

(optional)

Figure 5.3: Hierarchical data model of a set of coreference documents and the possible
allocations.

The next step into the bigger hierarchy is the grouping of several documents into a single
CoreferenceDocumentSet that forms the actual corpus. Its main purpose is to provide an
ordered view on the document objects and to manage the so called allocations that can be
assigned to a single document set. Each CoreferenceDocumentSet can contain up to two
allocations. The default allocation is created when the underlying corpus is loaded and cannot
be modified afterwards. This allocation will only be available when the format of the corpus
already supports coreference information as for example the one specified by the CoNLL-2012

38

5.2 Data Model

Shared Task.3 If this is not the case, the default allocation will stay empty. The second
allocation enables other parts of the software to programmatically change the allocation that
should be used for the document set. This is however not to be confused with the allocations
the user can manually assign when using the various tools of IEC.

3http://conll.cemantix.org/2012/data.html

39

http://conll.cemantix.org/2012/data.html

6 Evaluation

In this chapter I present discussions on how IEC meets the various requirements that different
users impose on a utility tool for interactive visualization of coreference annotations. The
two most notable user groups will be represented by corpus linguists and NLP developers,
respectively. Data being used in this chapter is obtained from the CoNLL-2012 Shared
Task development set (Pradhan et al., 2012) and annotations are created using an IMS-local
implementation of the system of (Fernandes et al., 2012).1 The gold coreference trees were
produced by the same system, but applying it in a constrained setting which only outputs
correct trees.

6.1 Phenomena Exploration

For corpus linguists or various non (computational) linguists from other disciplines, the
focus of interest lies in intuitive visualizations that allow a comfortable inspection of the data
without special technical knowledge being required to use the tool in question. In addition, the
user should be provided with different visualizations where possible and given the ability to
comfortably query a corpus for instances of a specific phenomenon. Depending on the task, it
might be necessary to switch back and forth between these different views on the data. So far,
IEC is perfectly suited to satisfy the needs of anybody intending to browse through coreference
annotated data. It is easy to use, requires no installation and is by design of the ICARUS
platform extensible in a lot of ways. Therefore anybody can integrate new readers for other
corpus or allocation formats.

Besides providing the user with informative visualizations, it is vital to aid him in the search
for examples of certain phenomena that he is interested in. The search engine IEC ships with
allows the user to define queries both in plain text and graphically, the latter being much
like “drawing” a tree representation of the phenomenon. Constraints range from properties
and structural relations on nodes or edges in the tree, down to word tokens in the underlying
text and all the additional annotations in the corpus that are encoded via properties on the
sentence level. The search supports a large collection of operators and can handle negations
and disjunction in the query expressions.

A very straightforward application in the context of corpus linguistics is the search for certain
rare phenomena in a large corpus that would require immense human effort to search manually.
Forward references or “cataphora” have been described in Chapter 1 and are a usually rare

1Thanks to Anders Björkelund for providing this.

41

6 Evaluation

Figure 6.1: A very simple query to look for cataphora constructions involving a pronoun
referring to a non-pronoun.

Figure 6.2: Result of the query in Figure 6.1 applied to an example corpus. The list shows
documents containing cataphora.

construct. The following example outlines a possible approach, assuming the user is familiar
with the nature of the phenomenon but has no technical knowledge about the particular corpus
and allocation formats being used. Cataphora typically involve a pronoun referencing a later
introduced non-pronoun. With help from the explorer and the property outline from Chapter 4
the user figures out the property name being used in the data is “Type”. The constructed
query is shown in Figure 6.1 and executing the search yields the result outline in Figure 6.2.

Besides finding instances of a particularly rare phenomenon, the search engine can be used
to determine the “rareness” of a given construct. “How often does phenomenon X occur in
my corpus? in a single document? among all mentions or clusters?” are typical questions
asked by corpus linguists when investigating a corpus. The ability to generate quantitative
breakdowns of search results aids in answering those questions. Using the above example of
finding cataphora, a collection of further queries could be defined to gather additional data to
form an actual statistic. Typical examples for such additional information would be the total
number of pronouns and clusters to see how frequent cataphora are in different contexts.

42

6.2 Error Detection / Property Exploration

6.2 Error Detection / Property Exploration

The needs of NLP developers and analysts as the second group are often more complex
and require a more detailed discussion. Naturally, the demands of proper visualization and
convenient usability as stated above persist. A common issue regarding development of NLP
tools is the investigation of errors or false predictions. Utility tools can aid in this matter by
providing either a dedicated exploration capability that allows (semi) automatic analysis of
the data or by means of some comparison being created between predicted data produced by
the NLP tool and a given correct version. This section is focused on using the search engine
for automatic detection of systematic errors in the output of a coreference resolver.

Figure 6.3: So called 2-dimensional query, motivated by the number of grouping operators
<*> used in it. This query is used to generate a quantitative summary for all
the existing gender properties of nodes that are either start or end of a path in a
given coreference tree.

To show how the query functionality in IEC can be used to facilitate complex analysis and error
detection, I will use the issue of gender-mismatches. It should be noted that the gender
assignments used in this chapter were assigned automatically and that sometimes the automatic
assignments are wrong. Ideally, all the mentions referring to the same entity should also be of
the same gender, or at least form a compatible combination. The term “compatible” in this
context is motivated by the fact that there are legal combinations of mentions sharing the same
cluster without holding the exact same gender tag. Reasons are that it is not always possible
for an automatic system to determine the gender of a mention (therefore assigned “Unknown”
in the allocation used for this section) or that an entity introduced as generic “Neutral” is
later referenced by an actual “Female” or “Masculine” mention. Real mismatches are clearly
represented by mixed occurrences of masculine and feminine references in a single cluster.

Figure 6.4: High-level result overview of the query in Figure 6.3. Numbers in a cell indicate
how often an instance of the search query was found in the target with grouping
constraints replaced by the actual values of the given row and column labels.

43

6 Evaluation

A very simple query that makes use of the value distribution feature of the search engine
in IEC is shown in Figure 6.3. It will match any two nodes in the coreference tree that are
connected by a path (the transitive edge represents a path of arbitrary length).

Figure 6.5: A result very similar to the one shown in Figure 6.5 but restricted to directly
connected nodes. This outline can be used to quickly check for errors in a
coreference resolver by looking at the cells that signal a relevant mismatch (like
“Masc/Fem”).

The tabular outline in Figure 6.4 presents the result of the gender-query on an automatically
created output from the resolver. The value in a cell states the number of times there was a
path from a node with the gender property of the row label to a node with a gender property as
given by the column label. As one would expect the majority of combinations is concentrated
on the diagonal axis but some noisy gender assignment is expressed by the table. Of special
interest are the cells that signal an extreme gender-mismatch like an entity that is introduced
as being female and referred to by a node that is tagged as male or vice versa. After knowing

Figure 6.6: Detail Outline of the frequency table in Figure 6.5 listing all the actual instances
in the corpus that contributed to the count for the selected gender combination
“Masc/Fem”.

the general distribution of gender relations in clusters, the user might be interested in the
gender properties of two directly connected nodes. By revoking the transitive feature from the
single edge in the above query while leaving the rest intact the search yields the distribution
of Figure 6.5.

44

6.3 Error Analysis / Annotation Comparison

The outline in Figure 6.6 shows examples in the investigated allocation for female nodes
referencing male nodes. When looking at the example, it is obvious that the assignment “Masc”
on the phrase “Erica Hill from Headline News” is erroneous, thus causing a gender-mismatch
with respect to the correctly interpreted name “Erica” later in the sentence (which is correctly
labeled female).

6.3 Error Analysis / Annotation Comparison

The previous section described the detection of fundamental mismatches regarding gender
by using the search engine of IEC. I will now introduce another important use case of the
framework for NLP developers, that is error analysis by means of comparison between gold
and predicted annotations. In order to understand the nature of a given mistake made by
a system, it is often essential to have a look at structural differences between the erroneous
output and a gold version. Hereinafter the various tools of IEC which can aid in that matter
will be outlined. As example I take a very short document containing several mistakes made
by the resolver.

Predicted Annotation
Two months after [a bomb]a1 blasted [[its]a2 hull]b1 , [the “USS Cole”]c1 is back in the United
States. [The damaged ship]c2 was carried from Yemen aboard a Norwegian transport ship.
17 sailors were killed when [the ship]c3 was attacked by suicide bombers in the port of
Aden. [A temporary patch]d1 has already been made to cover [the 40]e1 by 40 hole in
[[the ship’s]c4 hull]b2 . [It]d2 will be welded to [the ship]c5 before [it]c6 is unloaded from
[the carrier]e2 . Repairs in Mississippi are expected to cost more than $ 150 million and last a
year at a ship-building facility in Pascagoula, Mississippi.

Gold Annotation
Two months after a bomb blasted [its]f1 hull, [the “USS Cole”]f2 is back in the United States.
[The damaged ship]f3 was carried from Yemen aboard [a Norwegian transport ship]g1 . 17
sailors were killed when [the ship]f4 was attacked by suicide bombers in the port of Aden.
[A temporary patch]h1 has already been made to cover the 40 by 40 hole in [the ship’s]f5 hull.
[It]h2 will be welded to [the ship]f6 before [it]f7 is unloaded from [the carrier]g2 . Repairs in
Mississippi are expected to cost more than $ 150 million and last a year at a ship-building
facility in Pascagoula, Mississippi.

Figure 6.7: Annotations for an example text. The upper highlighting shows the result of an
automatic resolution, while the lower version represents a gold annotation. To
improve readability all singletons in the annotations are left unhighlighted.

Figure 6.7 shows the textual visualization of the two annotations in question. To not confuse
the reader, I left out all singletons in both annotations so that primarily relevant mentions are
highlighted. Where applicable the same color is used for clusters in the different annotations
that actually refer to the same entity and are not part of a general mistake made by the resolver.
The visual differences in the two highlighted texts clearly hint on some serious mistakes made
by the resolver, but a more structural inspection and comparison is necessary to pinpoint the
exact types of errors.

45

6 Evaluation

Figure 6.8: Graph outline showing the two annotations from Figure 6.7 in a comparative
view. Red edges mark false positives in the predicted output and dashed edges
or nodes signal false negatives. Again singletons of both the gold and predicted
annotations are hidden to not obscure the visualization.

To achieve the required visualization, the user can assign both annotations as allocations to
the document set in question and activate the comparison features of the graph-outline. The
result of this is illustrated in Figure 6.8. Solid lines mark nodes and edges of the predicted
allocation. The content of each node is the cluster id as assigned by the resolver, the part of
text covered by the mention and a numerical representation of the mention itself. Furthermore,
there are special treatments for false positives and false negatives in the prediction. Edges
colored in red signal a false positive mistake of the system, and parts of the graph rendered
with dashed lines are false negatives that the resolver missed. While the error outline might
already prove useful for the developer, a deeper understanding of the reasons for a particular
error is required to fix it. Looking at the graph-outline there are several issues in the predicted
annotation.

The first relates to the clusters {a bomb, its}(a1−a2) and {the “USS Cole”, the ship, the ship’s,
. . . , it}(c1−c6). With help from the textual visualization and the properties outline, it becomes
obvious that the mistake is caused by a cataphoric relation. At the point where the resolver
has to assign the referent of the mention “its”a2 , the only possible target is “a bomb”a1 . This
is because the mention-pair model only considers the mentions located before the current item.
This type of mistake can be quickly recognized in the graph when there is a dashed path
(visiting a pronoun) that is an alternative for a single red edge.

Another mistake presented by the comparison view is the faulty assignment of the mention
“the carrier”e2 to the cluster of “the 40”e1 instead of “a Norwegian transport ship”g1 . Since the
resolver has no semantic knowledge it has to rely on other features. While it recognizes the
entity of the transport ship by means of a mention (this can be checked by deactivating the filter
for singletons), it is not able to form a relation when considering the mention “the carrier”.

46

6.3 Error Analysis / Annotation Comparison

Figure 6.9: Grid-Outline of the two annotations in Figure 6.7 in comparison mode.

For reasons of completeness, Figure 6.9 shows the same comparison using the grid-outline.
Compared to the graph-based visualization, a major drawback is the lack of structural
information expressed by edges. It does however offer a much more compact view on the
annotation. In addition, the ability to change the actual labels used for cells in the table
grant a high degree of flexibility. This way the user can perform his analysis in a much more
target-oriented manner. This allows for easy manual detection of errors when browsing a
document. It does however still require human effort for searching, since the search engine
is unable to handle more than one annotation simultaneously. To enable such a feature a
considerable amount of redesign on the ICARUS platform level is required, and I left this for
further work.

47

7 Conclusion

I have presented IEC, an interactive tool for exploration and analysis of coreference annotations
that is realized as a plugin for the tool-platform ICARUS. It is aimed at a wide user group
comprising not only (computational) linguists in the field of corpus linguistics or natural
language processing. Depending on their individual focus of interest, these users impose
different requirements on the tools they work with. Such requirements include the way and
complexity of visualization and exploration capabilities and have been outlined in detail in
Chapter 2. IEC has been specifically designed to satisfy the combined needs of both (corpus)
linguists and (NLP) developers as representatives of the two main groups of potential users.

IEC enables users to visualize coreference structures in one of tree ways:

1. a plain text-outline with graphical highlighting of mentions

2. a graph-based diagram modeling a coreference tree

3. an advanced implementation of a customizable entity grid

The different visualizations offer fast browsing of coreference annotations. The ability to
switch between these views on a given set of data avoids locking the user into a single way of
visualization. Both the data model and modules used for visualization are designed in such a
way as not to pose restrictions on the data being processed.

In order to outline how IEC can be used to satisfy the needs of different users I have presented
several use cases. The scopes of application have been interactive exploration of corpora and
the detection and analysis of errors using various tools provided by the framework. For all three
of these applications IEC has proven to be a proper solution. This applies especially to the
ability to present both annotations and search results in several different views, respectively.

The tool supports the corpus format used in the CoNLL-2012 Shared Task (Pradhan et al.,
2012) and an additional proprietary allocation format to define mentions and their links. In
conjunction with the extensible platform design of ICARUS it is however straightforward to
integrate additional formats with very little effort.

49

A Appendix

The following two sections provide a more technical description of formats introduced by IEC.
Appendix A.1 outlines the default format used to read allocations (the default format for
document sets is the same as defined in the CoNLL-2012 Shared Task1). In Appendix A.2
I give an overview on the syntax of label patterns which can be utilized to customize the
grid-outline introduced in Section 4.1.

A.1 Allocation Format

The default format for reading coreference allocations is a very compact list structure as shown
in the following text which contains a shortened example of the nodes and edges for a single
document in the referenced corpus:

#begin document (bc/cctv/00/cctv_0000); part 000
#begin nodes
ROOT
0-2-5 Gender:Neut;HEAD:3;Number:Sin;Type:Common;
0-5-5 Gender:Unknown;HEAD:5;Number:Unknown;Type:Common;
...
26-26-26 Gender:Neut;HEAD:26;Number:Sin;Type:Name;
#end nodes
#begin edges
ROOT>>0-2-5 Type:IDENT
ROOT>>0-5-5 Type:IDENT
...
7-14-15>>26-2-3 Type:IDENT
9-12-13>>26-5-6 Type:IDENT
...
ROOT>>26-26-26 Type:IDENT
#end edges
#end document

The opening line contains the unique id “(bc/cctv/00/cctv_0000); part 000” of the doc-
ument as defined in the corpus this allocation is referring to. The section of text delimited

1http://conll.cemantix.org/2012/data.html

51

http://conll.cemantix.org/2012/data.html

A Appendix

by the lines “#begin nodes” and “#end nodes” represents the SpanSet for this document as
a sequence of one-lined Span descriptions. Each Span is defined by a 3-tuple of indices that
indicate sentence-, begin- and end-index. The sentence-index is zero-based whereas the other
two indices start at index 1 for the first word in a sentence. The notion of the generic ROOT
node is optional. Each node besides this ROOT node can have an indefinite number of properties
assigned to it after a separating tab-character (\t). Properties are defined as “<key>:<value>”
statements with multiple properties separated by semicolon (;) and an optional extra semicolon
after the last property.

Similar to the nodes section, the part listing edges is circumscribed by “#begin edges” and
“#end edges” and orders its content one edge per line. The format of edges is such that both
the source and target Span are given as defined in the nodes section with the special edge-
separator “>>” between them as in “7-14-15>>26-2-3”. Syntax for optional edge properties
follows the exact same rules as outlined above for nodes.

A.2 Label Pattern Syntax

As shown in Chapter 4, the entity grid visualization supports a flexible way of customizing the
grid labels. The following table lists all the characters that yield replacement strings when
used within a label pattern:

Character Description
\ Escaping character to allow formagic characters to be used without

substitution
b Begin-index of a Span
e End-index of a Span
c Number of Spans within the current sentence that share the given

Cluster. This is exactly the default label when label patterns are
deactivated

r Range of the Span, i.e. the number of word tokens it covers, as
given in the sentence structure

l Length of the Span in terms of characters including white-spaces
between word tokens

Table A.1: List of magic characters that can be used when defining a label pattern for the
entity grid visualization.

Besides the magic characters listed above, there exist three special expressions to reference
certain properties of a Span or the corresponding sentence. All of these property expressions
are of the form “x<key>x” where x is the corresponding delimiter and “<key>” signals for
which property to query:

Span-Properties ’%. . .%’ Returns the value of the specified property of the Span

52

A.2 Label Pattern Syntax

Sentence-Properties ’$. . . $’ Returns a concatenation of the specified properties on the
sentence level using all the words covered by the current Span. As example take the
sentence “John saw the green car .” with word tokens stored in a property called “form”
and a Span ranging from word 3 to 4. When the expression “$word$” is used the output
for this label would be the sequence “green car”.

Head-Properties ’§. . . §’ As a specialized version of the Sentence-Properties expression
this one does not concatenate the property values of all underlying word tokens but
returns only the property for the index that is declared to be the Span’s head. Using
the above example sentence and Span, the output for the expression “§word§” would be
“car”.

Each of these expressions result in a single hyphen (-) as output in the case that the desired
property is not present at the respective object. All characters not introduced as magic char-
acters or expression delimiters remain untouched by the pattern engine. There is no limitation
on the size of a label pattern or the number of property expressions being used; however users
are advised that extensive use of the latter can easily lead to confusing results since the space
in each grid cell is limited unless manually widened.

53

Bibliography

Barzilay, R. and Lapata, M. (2008). Modeling local coherence: An entity-based approach.
Comput. Linguist., 34(1):1–34. (Cited on pages 13 and 26)

Baumann, S. and Riester, A. (2012). Referential and Lexical Givenness: Semantic, Prosodic
and Cognitive Aspects. In Elordieta, G. and Prieto, P., editors, Prosody and Meaning,
volume 25 of Interface Explorations, pages 119–162. Mouton de Gruyter, Berlin. (Cited on
page 18)

Björkelund, A. and Farkas, R. (2012). Data-driven multilingual coreference resolution using
resolver stacking. In Joint Conference on EMNLP and CoNLL - Shared Task, CoNLL ’12,
pages 49–55, Stroudsburg, PA, USA. Association for Computational Linguistics. (Cited on
page 9)

Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G. (2002). The TIGER treebank.
In Proceedings of the workshop on treebanks and linguistic theories, pages 24–41. (Cited on
page 18)

Burchardt, A., Erk, K., Frank, A., Kowalski, A., and Pado, S. (2006). SALTO: A versatile
multi-level annotation tool. In Proceedings of LREC-2006, Genoa, Italy. (Cited on page 18)

Eckart, K., Riester, A., and Schweitzer, K. (2012). A Discourse Information Radio News
Database for Linguistic Analysis. In Chiarcos, C., Nordhoff, S., and Hellmann, S., editors,
Linked Data in Linguistics. Representing and Connecting Language Data and Language
Metadata, pages 65–76. Springer, Heidelberg. (Cited on pages 9 and 18)

Erk, K. and Padó, S. (2004). A powerful and versatile xml format for representing role-semantic
annotation. In LREC. European Language Resources Association. (Cited on page 18)

Fernandes, E., dos Santos, C., and Milidiú, R. (2012). Latent structure perceptron with
feature induction for unrestricted coreference resolution. In Joint Conference on EMNLP
and CoNLL - Shared Task, pages 41–48, Jeju Island, Korea. Association for Computational
Linguistics. (Cited on pages 9, 11 and 41)

Gärtner, M., Thiele, G., Seeker, W., Björkelund, A., and Kuhn, J. (2013). ICARUS – an
extensible graphical search tool for dependency treebanks. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pages
55–60, Sofia, Bulgaria. Association for Computational Linguistics. (Cited on pages 21 and 35)

Hana, J. and Štěpánek, J. (2012). Prague markup language framework. In Proceedings of the
Sixth Linguistic Annotation Workshop, LAW VI ’12, pages 12–21, Stroudsburg, PA, USA.
Association for Computational Linguistics. (Cited on page 18)

55

Bibliography

Lezius, W. (2002). Ein Suchwerkzeug für syntaktisch annotierte Textkorpora. PhD thesis, IMS,
University of Stuttgart. Arbeitspapiere des Instituts für Maschinelle Sprachverarbeitung
(AIMS), volume 8, number 4. (Cited on page 18)

Mitkov, R. (2003). The Oxford Handbook of Computational Linguistics (Oxford Handbooks in
Linguistics S.). Oxford University Press. (Cited on page 9)

Müller, C. and Strube, M. (2000). MMAX: a tool for the annotation of multi-modal corpora.
In Workshop on Adaptive Text Extraction and Mining - IJCAI 2001. (Cited on page 17)

Müller, C. and Strube, M. (2006). Multi-level annotation of linguistic data with MMAX2.
In Braun, S., Kohn, K., and Mukherjee, J., editors, Corpus Technology and Language
Pedagogy: New Resources, New Tools, New Methods, pages 197–214. Peter Lang, Frankfurt
a.M., Germany. (Cited on page 17)

Ng, V. (2010). Supervised noun phrase coreference research: The first fifteen years. In
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,
pages 1396–1411, Uppsala, Sweden. Association for Computational Linguistics. (Cited on
page 11)

Pajas, P. and Štěpánek, J. (2008). Recent advances in a feature-rich framework for treebank
annotation. In Proceedings of the 22nd International Conference on Computational Lin-
guistics - Volume 1, COLING ’08, pages 673–680, Stroudsburg, PA, USA. Association for
Computational Linguistics. (Cited on page 18)

Pajas, P. and Štěpánek, J. (2009). System for Querying Syntactically Annotated Corpora.
In Proceedings of the ACL-IJCNLP 2009 Software Demonstrations, pages 33–36, Suntec,
Singapore. Association for Computational Linguistics. (Cited on page 18)

Poláková, L., Jínová, P., Zikánová, Š., Bedřichová, Z., Mírovský, J., Rysová, M., Zdeňková,
J., Pavlíková, V., and Hajičová, E. (2012). Manual for annotation of discourse relations
in prague dependency treebank. Technical Report 47, Prague, Czech Republic. (Cited on
page 9)

Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., and Zhang, Y. (2012). CoNLL-2012 shared
task: Modeling multilingual unrestricted coreference in OntoNotes. In Proceedings of the
Sixteenth Conference on Computational Natural Language Learning (CoNLL 2012), Jeju,
Korea. (Cited on pages 9, 11, 23, 41 and 49)

Pradhan, S. S., Hovy, E., Marcus, M., Palmer, M., Ramshaw, L., and Weischedel, R. (2007).
Ontonotes: A unified relational semantic representation. In Proceedings of the International
Conference on Semantic Computing, ICSC ’07, pages 517–526, Washington, DC, USA. IEEE
Computer Society. (Cited on page 9)

Soon, W. M., Ng, H. T., and Lim, D. C. Y. (2001). A machine learning approach to coreference
resolution of noun phrases. Computational Linguistics, 27(4):521–544. (Cited on pages 9
and 11)

56

Bibliography

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., and Tsujii, J. (2012). brat: a
web-based tool for nlp-assisted text annotation. In Proceedings of the Demonstrations at the
13th Conference of the European Chapter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for Computational Linguistics. (Cited on
page 18)

Stenetorp, P., Topić, G., Pyysalo, S., Ohta, T., Kim, J.-D., and Tsujii, J. (2011). Bionlp
shared task 2011: supporting resources. In Proceedings of the BioNLP Shared Task 2011
Workshop, BioNLP Shared Task ’11, pages 112–120, Stroudsburg, PA, USA. Association for
Computational Linguistics. (Cited on page 18)

Thompson, H. and McKelvie, D. (1997). Hyperlink semantics for standoff markup of read-only
documents. In Proceedings of SGML Europe’97, Barcelona. (Cited on page 17)

Yimam, S. M., Gurevych, I., de Castilho, R. E., and Biemann, C. (2013). Webanno: A
flexible,web-based and visually supported system for distributed annotations. In Proceedings
of the 51st Annual Meeting of the Association for Computational Linguistics (System Demon-
strations) (ACL 2013), pages 1–6, Stroudsburg, PA, USA. Association for Computational
Linguistics. (Cited on page 19)

All links were last followed on September 26, 2013.

57

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background and Motivation
	2.1 Forms of Coreference Representation
	2.2 Visualization of Coreference Structures
	2.3 User Groups
	2.4 Summary

	3 Related Work
	3.1 MMAX2
	3.2 SALTO
	3.3 TrEd
	3.4 BRAT
	3.5 Summary

	4 Framework Features
	4.1 Management and Browsing
	4.2 Querying and Exploration
	4.3 Error Analysis

	5 Architecture
	5.1 Features
	5.2 Data Model

	6 Evaluation
	6.1 Phenomena Exploration
	6.2 Error Detection / Property Exploration
	6.3 Error Analysis / Annotation Comparison

	7 Conclusion
	A Appendix
	A.1 Allocation Format
	A.2 Label Pattern Syntax

	Bibliography

 HistoryItem_V1
 TrimAndShift

 Bereich: alle ungeraden Seiten
 Beschneiden: keine
 Versatz: rechts um 5.67 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20130903125825
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 338
 295

 Fixed
 Right
 5.6693
 0.0000

 Odd
 14
 AllDoc
 14

 CurrentAVDoc

 None
 113.3858
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 13
 60
 58
 30

 1

 HistoryList_V1
 qi2base

