
Hanlwue and Softwue for Real Time Process Control
1. Zalewski and W. Ehrenberaer (Editon)
ElJe .. ler Science Publishers B. v. (North·Holland)
C> IFIP, 1989

Languages, Methods, and Tools
for Software Specification
Invited paper1

Jochen Ludewig
Swiss Federal Institute of Technology Zurich,
Computer Science Departement2

225

Specification systems consist of methods, languages, and tools;
the languages may be more or less formal. In this paper, the
general ideas of ·semi-formal· specification systems are
presented, and some examples are shown.

1. Introduction

This paper is based on my experience in the field of Software Engineering,
in particular in Software Requirements Engineering. Many observations and
reports indicate, however, that there is not much difference between
information processing systems in general (including hardware and
software) and software in particular, as far as specification is concerned.

·Specification· is used in many ditterent meanings. I am discussing the
kind of specifications used by practioners in an industrial environment. My
objective is to provide some information useful for achieving better
requirements specifications, which in turn enables the developer to
produce better software more efficiently, Le. to improve quality and
productivity. Note that the latter is the overall productivity, which does
not necessarily imply cheaper specifications (see 2.2) .

In the following chapter 2, some fundamentals are discussed. These include
the life cycle model and the distribution of costs over the various
activities, some definitions, and a rationale for semi-formal specification.
Chapter 3 provides a general outline of a specification system, whose
desirable properties are deduced from the qualities of good specifications.

1 An earlier version of this paper was published before (Ludewig, 1987).

Any descriptions of specification systems are based on the material
available to me. This information may be incomplete, or out of date.
Therefore, I am sorry in case some features are not reported correctly.
Please contact the suppliers (see 7.3).

Trademarks of software tools etc. are not indicated in this paper.

2 Author's address: Institut fOr Informatik, ETH-Zentrum, CH 8092 ZOrich

226 J. Ludewig

In chapter 4, we present some typical specification systems. The primary
goal is to show some typical features of such systems rather than to
describe them in detail. Chapter 5 reports some observations from the
author's own experience with specification systems. In chapter 6, some
general conclusions are drawn. The references in chapter 7 include a list of
suppliers.

2. Fundamentals

2.1 Life Cycle Model

Only very small systems can be built in the same way as primitive peoples
build houses. As soon as the system is slightly complex, a systematic
approach is necessary. The sequence of steps to be taken from the first
idea to operation and further on until the system is discarded, is called the
System Life Cycle. Though there are many different life cycle models, they
are all based on the distinction between certain activities or phases,
namely

analysis and specification

design

implementation

integration

operation and maintenance

Note that the life cycle may be used as a phase model, or a model of
activities, or a list of roles. In the sequel, the second meaning is assumed.

Recently, the life cycle concept has been attacked by several authors, not
only because it does not reflect the experiences of many projects. but also
because alternative ways of building systems (for instance by prototyping)
are ignored. See the references in 7.1.

2.2 Cost Distribution

About half - or even two thirds - of the total cost of software are caused
by activities which take place when the software is already operational.
i.e. during -maintenance-' (Boehm. 1976). Therefore. every attempt to
reduce the high cost of software should be focused on maintenance.

, Note that there is an important difference between maintenance of
hardware and of software: while hardware is actually maintained. Le. the
original state is conserved or restored, software is corrected, extended.
or adapted to new requirements, Le. it is modified. A program is
different from its original state after maintenance.

Languages. Methods. and Tools for Software Specification 227

There are three ways of reducing the need for maintence:

• reduce need for correction

• reduce effort for modification

• reduce total volume (by using standard components)

A good specification contributes to each of these subgoals. Therefore. the
overall goal is not to reduce the effort for specification. but rather to
invest more in specification in order to save much more during
maintenance (and also during design. implementation. and integration).

2.3 Terminology

2.3.1 Specification
Like many other relevant terms. specification is defined in a standard by
the IEEE (1983):

(1) A document that prescribes. in a complete. precise. verifiable
manner. the requirements. design. behavior. or other characteristics of
a system or system component. See also design -. formal - . functional
-. interface -. performance -. requirements -

(2) The process of developing a specification.
(3) A concise statement of a set of requirements to be satisfied by a

product. a material or process indication. whenever appropriate. the
procedure by means of which it may be determined whether the
reguirementsgiven are satisfied. (ANSI N4S.2.10-1973)

This definition is compatible with the following one (from Kramer et al..
1982):

A description of an object stating its properties of interest. It usually
implies that the description should try to be precise. testable. and
formal.
It is recommended that "specification" be used with some attribute.
e.g. "requirement s~ecification".

Specifications are written and read by many people. like analysts.
customers. managers. and programmers. Since these people differ widely in
their background. education. and interest. they have usually not the same
idea about content and style of a specification. Tools. which can change the
representation of a given information automatically. can help to meet the
requirements of more than just one single group.

2.3.2 The System Triangle
When we talk about programming systems. or specification systems. we
distinguish three components. or sets of components. namely methods,
languages, and tools.

Methods indicate how to proceed, like recipes in a cookbook. Languages
restrict the set of possible statements to a particular universe of

:!28 J. Ludf'Ntg

discourse, and to a certain syntactical representation. Tools check, store,
and transform such slatements.

All three are strongty interrelated by the abstract concepts of the
(specification-) system. Note that the term "methodotogy" means "science
of methods", though it is often misused for "method". Figure 1 exemplifies
the system triangte :

Tool(s)

Figure 1: System triangle

2.3.3 Levels of Formality
The IEEE glossary (IEEE, 1983) contains also a definition of lormal
speclfcatlon:

(1) A specification written and approved in accordance with
established standards.

(2) In proof of correctness, a description in a formal language of the
externally visible behavior of a system or system component.

The definition of formal language is, in turn :

A language whose rules are explicitely established prior to its use.
Synonymous with artificial language

The distinction of only two styles, formal and natural, is not sufficient for
our purpose. Therefore, another two levels of formality are introduced,
formatted and semi-formal, restricting "formal" to those languages which
can be used for formal reasoning.

Figure 2 compares the styles, or levels of formality.

Languages. Mnhods. Qnd Tools for Software Specification 229

Style Syntax Semantics Example

informal not (precisely) defined natural languages

formatted restricted not (precisely) defined forms

semi-formal defined partially defined pseudo-code

formal defined defined programm. languages

Figure 2: levels of formality

For coding programs, we use a formal language. (Though the semantics of
most programming languages are not preCisely defined, if at all, there is
always a translator which provides a de-facto-definition .) All other
documents are written in informal language, sometimes on forms. Forms
impose certain restrictions on the way natural language is used, and
require the user to answer all relevant questions. Semi-formal languages
are comparatively new; their first application was as program design
languages (pseudo code).

2_4 Seml·Formal Specification

Scientists all over the world have done much work on formal specification
techniques, like algebraic specification . These techniques, however, have
not yet reached a state sufficient for users in industry . Therefore, this
paper does not treat formal specification. Semi-formal specification, i.e .
an approach which is based on semi-formal speCification languages, has (at
least for the time being) several advantages:

• The languages can be learned and understood with limited effort by
people who did not have extensive training in formal methods

• Documents resemble those written in natural language

• Incomplete and vague information fits better in such a system

On the other hand, semi-formal specification systems are superior to
traditional informal specifications because

• many deficiencies which would be buried in plain text become visible

• it can be stored in, and retrieved from, a data base
• automatic tools can be used for checking and changing the notation.

Figure 3 shows schematically how the software development process is
inlluenced by a system for semi-formal specification . In the traditional
approach, there is practically no formalized information until the software
is coded . Then , full formalization must be achieved in a Single step. This
method is, as we all know, error prone, because there are many misunder
standings, inconSistencies, simple errors and other shortcomings in the
specs which are not discovered, because the document produced next, i.e.

230 J. Ludewig

the code. can only be understood at the level of single Instructions. In the
modern approach. there are much better chances for detecting deficiencies
of the specs. and improving them. Therefore. specification systems do not
accelerate the specification phase. but improve the quality of the resulting
document.

degree of
formalization

development with semi
formal specification

100 % - - - - - - - - - - - - -.:.-;..;--:.;-........ --'l,--:7T - ---- --- ---.

idea specific. design coding

supported by
spec. system

tradit ional
development

test ...

Phase

Figure 3: Degree of Formalization during the Software life Cycle

3_ Principles of Specification

3.1 Qualities 01 Speclllcations

A specification should be

, correct (i.e. it should reflect the actual requirements)

, complete (i.e. it should comprise all the relevanl requirements)

• consistent

• unambiguous

, protected against loss of information and unintended changes

, easily writeable and modifyable

• readable and concise (in order to ease the communication between user
and analyst)

, implementable (Le. it should ease design and implementation)

, verifyable (Le. there should exist a procedure to check whether or not
the product complies with its specs). This quality is also called
'testable' .

, validateable (Le. there should be a mechanism to ensure that the
specification really reflects the use~s specification)

, traceable (Le. when the specification is changed. it should be easy to
identify all statements in other documents affected by that change) .

LAnguagts. Mtthods. and Tools lor Solrwart Sptcl/icatlon 231

Note that these goals are highly inconsistent. For instance, a formal (e.g.
algebraic) specification is verifyable, but not readable for most people, at
least not for the average customer. Therefore, it is not validateable.

The first four of the qualities listed above (correctness, completeness,
consistency, and unambiguity) do not have the same meaning to all people:
vendors of tools for specification , for instance, often claim that their
system can guarantee correctness. This does, of course, not imply that the
content of the specs is correct with respect to the intentions of the
customer, but only that certain formal requirements are met. The reason
for this is that there is no reference (except the user's brain) to prove
specifications correct or complete, in contrast to programs being provably
correct with respect to the underlying specification.

3, 2 Useful Properties of Specillcations

In order to achieve the qualities listed above, certain properties are
Obviously useful :
o The specilications must be recorded on some permanent medium (e.g.

paper, magnetic tape).
o They should be as formal as possible, and as informal as necessary.

Also, they should support the processing of information which is
vague, incomplete, or not yet well defined (i.e. providing a fill-in that
indicates the lack of information) .

o Specs should exist only in one single copy (Osingle source conceptO).
o There should be tools for automatic checks and transformations

between different representations.
o Specs must be available in representations appropriate for those who

have to use them (e.g . graphical representations which naturally
mirror human's way of thinking) .

3,3 Specification Systems Requirements

From the useful properties stated above, we can derive the requirements of
specification systems; such a system should provide

o a data base system as the central information repository,
o a semi-formal specification language and several representations,

including a graphical one,
o tools for all clerical tasks (storing, retrieval, checking , trans-

formation) .

Since software systems are developed by several people, and usually exist
in several versions and variants at the same time, the specification
system should also provide
o multi user operation of tools,
o automatic management of versions and variants.

.:!3: J Lud~wig

3.4 General Structure of a Specification System

As mentioned above. an ideal specification system consists of a method. a
language. and a set of tools. which are all based on a common set 01
concepts . The list following below summarizes the most desirable
features .

Abstract concepts

• Life cycle model

• Stepwise completion

• Permanent validation

Methods supported by the system

10 Enter every information immediately

• Allow for informal texts
• Check early for correctness. completeness. conSistency. unambiguity

• Concentrate on information necessary for speCification .

Languages

• Semi-formal specification language

• Several syntactical representations of a speCification (e .g. graphics.
tables etc.).

Tools

• Multi-user data base system. which provides for version- and varianl
management

• Tools for checking. retrieval and selection .

In reality. however. most systems are incomplete. They are usually based
on either of the components. and do never cover the full scope. Some
activities started from a particular method (e.g. SA. see 4 .2) . or from a
certain representation (e.g . SADT. see 4.1). or from a set of tools (e.g.
EPOS. see 4.5) . In the following chapter. some specification systems are
presented. Our goal is to give an idea of their dominant feature; we
certainly do not attempt to provide complete information. Please refer to
the references (7 .1. 7.2). or contact the vendors listed in 7.3.

4. SpecIfication Systems: Some Examples

In this chapter. we present some examples of specifications in various
languages. Additionally. we briefly describe their underlying methods. The
purpose is to show some typical styles rather than to describe systems in
detail. These are the examples chosen for this paper:

SADT (4 .1) is one of the best known graphical languages for expressing
specifications;

Languages. Methods. and Tools [or So[tware Specification 233

Structured Analysis (SA) (4.2) is similar to SADT, but has a wider range
(towards design). We present it together with teamwork and ProMod,
tools which support SA.

PSL/PSA (4.3) is the classical tool-based specification system.

SR EM (4.4) is a very powerful system for describing, and simulating, real
time software.

E P 0 S (4.5), another tool dedicated to the development of real time
systems, is fairly successful in Germany and central Europe.

SPADES (4.6) was developed by the author and co-workers. It is mentioned
here because chapter 5 refers to it.

Many more systems should be presented, like HOS/USE.lT or PAISLey for
functional speCification, MASCOT/Perspective for high level design, NET
for specification and simulation based on Petri-Nets, etc. (cp. 7.1, 7.3).

Our fist covers only some of the systems that we know, which in turn are
certainly only a small fraction of those that exist. Therefore, our choice
should by no means be interpreted as a judgement or recommendation.

4.1 SADT (Structured Analysis and Design Technique)

SADT was developed by SofTech between 1972 and 1975. It covers the
requirements analysis, the design and the documentation of specifications,
aiming at improved communication between analysts, developers, and
users.

4.1.1 The Method
The method SADT focuses on data flow and implies a stepwise refinement
of so called SADT-diagrams which are hierarchically ordered. In its
original definition (Ross, 1977), there is a duality between so called
actigrams and datagrams modelling the data flow in two different ways
representing different views of the system:

• actigrams identify functions as central elements of the description
and data providing e.g. input or output for the functions

• datagrams identify data as central elements of the description and
functions providing e.g . input or output for the data.

The redundancy makes it possible to prove consistency, Le. one can check
whether every function in an actigram is comprised in some datagram, and
vice versa.

4.1.2 The Language
SADT is a graphical specification language allowing the user to describe
the system in terms of activities and data. As outlined above, on the one
hand there are actigrams consisting of activities and data. Activities are
represented by boxes and data by arrows. On the other hand there are

datagrams, where boxes stand for data, white arrows represent activities.
Practical experience, however, indicates that most users tend to use only
actigrams. In order to control complexity, the language restricts the
number of boxes per SADT -diagram to seven.

Figure 4 shows an SADT-box with its typical components :

Conlrol

ACTIVITY
Input Output

Resource

Figure 4: SADT-box (Actigram)

Actigrams on the following pages show an activity ("ASSIST SADT USERS")
at two levels of refinement; the highest level (diagram SAS/A-O), where
the whole system is represented as a single box with inputs from, and
outputs to its environment, is not shown. Note that the second actigram
(fig . 5 b) relines an activity ("CREATE KITS") of the first one (fig . 5 a) .
(Source: Lissandre et aI., 1984, from IGl, PariS)

4.1.3 Tools
SADT is still a paper and pencil method. And there is no problem in drawing
all the diagrams once. However, when there are changes (and the need for
change is the only property of software that does never change), diagrams
must be redrawn again and again . This is very annoying . Therefore, there
have been several activities for providing tool support; the examples in
figures 5 a. b were produced by such a tool (but for technical reasons
redrawn by the author). Their capabilities range from simple graphics (i.e.
they are used as an automatic drawing machine) to fairly sophisticated
programs which do some semantic checking and analysis. According to D.T.
Ross, who invented SADT, "none (of the tools) is fully successful in
implementing SADT" (Ross, 1985 b) .

U
TI

LI
S

A
TI

O
N

A
l
J
T
E
~
:

/.G
.L

TR

A
V

A
IL

L£

C
T

aJ
R

D

AT
E

CO
N

TE
X

TE

P
R

O
JE

T:

S.
P.

E
.C

.I.
F.

D

AT
E

0
1

/0
4

/8
3

x

R
EC

O
M

t.W
IO

E

R
E

V

P
U

B
LI

C
A

TI
O

N

O
C

M
JE

T
N

O
TE

S
:

1
2

3
4

5
6

7
8

9
1

0

TE
A

M
 O

B
JE

C
TI

V
E

S

~
IN

TE
R

V
IE

W
 N

O
TE

S

p
o

C
R

EA
TE

O

IR
E

C
TI

V
E

S
 F

O
R

 K
IT

 U
S

A
G

E

T
E
C
~
1
C
O
<
:
O
M
M
E
R
C

. O
O

C
U

M
 .

•
K

IT
S

O
~
G
R
A
M
S
·
C
O
U
M
~
.
~
~

E
X

T.
 O
~
G
 .•

C
O

M
M

 .•
R
E
A
C
T
~

, O
~

•
H

t:
I\

\i
 •
•

IN
:;

 I
~
1
A
E
:
N
I
:
;

-
,

~

C
O

 I
A
M
~
 O

N
 E

X
TE

R
f ~
)

lA
G

R
A

M
S

E
X
T
E
R
~
 C

O
M

M
EN

TS

C
R

IT
IC

IZ
E

K
IT

S

.

,
IR

E
:J

U
ES

TS
 F

O
R

 P
f p

.,E
C

T
O

O
C

U
IA

EN
TS

 I
AN

SW
ER

S

M
AN

AG
ER

S
&

 T
E
C
~
1
C
A
l
 C

O
M

M
. O

IR
E

C
Tl

V
E

S

IN
TE

R
FA

C
E

~
..

W
IT

H

.
M

A
N

A
G

E
R

S

R
E

O
U

E
S

TS

0
R

M
 O

R
 E

O
IT

 ~
 p

o
e

L
S

,
• , r H

M
O

LE

P
A

O
..e

C
T

O
O

C
U

M
E

N
TA

TI
O

N

IA
O

O
EL

S

•
M

O
D

EL
S

M
E

A
S

U
R

E
M

E
N

T
O

R
 V

E
R

IF
IC

A
TI

O
N

,R

E
O

U
E

S
T

M
E

A
S

U
R

E

-.
N

I:
)

M
E
A
S
U
R
E
I
.
I
~
 &

V
E

R
IF

Y

~

.

N
O

EU
O

:
S

A
S

/A
O

01

1 T
IT

R
E

:
A

S
S

IS
T

S

.A
.D

.T
.

U
S

E
R

S

I.N
U

M
E

R
O

:
_

._
--

-
-
~

-
-
-
-
-
-

-
-
-

-
-

F
ig

u
re

 5
 8

:
S

A
D

T
-D

ia
g

ra
m

,
fir

st

le
ve

l
b

e
lo

w

to
p

I ~ ;;.
 ~ ~ ~ t:;

- "0- .. ~ ~ ~

~ S
; B
 ... C"

:.

N
 ..., '"

U
T1

.1
SA

 T
IO

N
A1

.J1
"E

UR
:

I.G
.L

.
TR

AV
AI

L
LE

C
T

R
.fI

<>

IT
E

C
O

N
TE

XT
E

""
O

JE
T

,
S

.P
.E

.C
.I.

F
.

<>
IT

E
0

1
/0

4
/

8
3

x

R
E

C
O

U
U

A
ta

R
EV

PU

BL
lC

A
llO

N

N
O

TE
S

1

2
3

4
5

6
7

8
9

1
0

S

A
S

lM

NO
DE

 I
ND

EX
 U

ST
 I

EO
U

ES
T

FO
R

 n
us

 LI
ST

C
l<

XU
AE

N
TS

C

R
O

SS
 F

EF
ER

EN
C

E
,

C
R

EA
TE

D

A
TA

O
fI

A
C

 In
vI

TY
 U

ST

D
IA

G
N

O
ST

IC
S

,

IN
TE

R
V

IE
W

 R
E

S
ll

.l
S

LI

S
TS

C

O
H

ER
EJ

C
E

O
E

C
K

A
N

D
O

O
TE

S
I

N
O

TE
S

<I
lE

A
TE

R

E
O

U
E

S
T

FO
R

 A
 0L

0\G
RA

M
 I

R
E

O
U

E

T

E
D

""
""

'"

~

.-
D

IA
G

 ..
..

. S

'.-
N

E
W

 "
"
"
' .

..
..

 S

E
X

TE
B

'W
. A

E
.iC

Tl
O

N
S

A

E
A

C
Tl

O
H

S

EX
TE

R
N

A
L

D
IA

G
R

A
M

S
N

D
 A

EJ
rC

Tl
O

N
!

ex
r:

~
E

X
TE

R
N

A
l.
0

' p
..

..
.S

C
O

M
M

EN
TS

V

E
R

IF
IC

A
,T

l(
..

 R
E

<
ll
6

T

UP
!Jo

'.T
E

R
EA

C
TI

O
N

S

r DI
AG

R
AM

S
-

R
EA

D
ER

"S
 L

IS
T!

R

E
al

E
S

T
 F

O
R

 S
t.J

C2
-I L

IS
T

A
l/T

H
O

R
"S

 W
iO

Ft
<F

Il£

K
IT

S

M
AK

E
...

.
A

K
IT

K

rr
 U

SA
G

E
D

IR
EC

TI
VE

S

•
NO

EU
O

:
S

A
S

JA
l

03

TI
TR

E
,

C
R

E
A

T
E

K

IT
S

N

U
M

ER
O

:

F
ig

u
re

 5

b
:

S
A

D
T

-D
ia

g
ra

m
.

se
co

n
d

lo

ve
l

,
~

~
 " !

Languages. Methods. and Tools fOT Software Specification 237

4.2 Structured AnalysIs (SA)

SA was developed by deMarco (1978). Although the name is very similar to
SAOT, only the data flow as the central principle is common to both: SA is
supplemented by Structured Oesing (SO), a design technique.

4.2.1 The Method
The method allows the user to model a system with data-flow diagrams
(OFOs) consisting of data, and processes transforming the data. In other
words, OFOs describe the flow of data through the system by denoting
sources and sinks for data flows, the data flows itself, and processes. So
called mlnlspecs are used to describe processes in more detail. For
refining the structure of data, a data dIctionary (~O) is applied. The
system's dynamic behaviour cannot be expressed in the notation of SA;
therefore, real-time diagrams (RT 0 s) are used for this purpose (see
4.2.3). SA proposes a stepwise decomposition of OFOs so that each process
in the parent OFO is broken down into several child OFOs. Consequently,
several levels of OFOs emerge.

SA proposes two major steps. The first one is to develop a so called
context diagram, which shows how the system is connected to its
environment. Hereby, the user defines the interface in terms of sources and
sinks of the environment, processes, data flows, and files. Note that the
data flow consists of both the data and the direction of flow.

In the second step, the user partitions, and refines the system "as long as
possible", i.e. each process of a OFO is described in more and more detail
until the level of atomic processes is reached. Then the user writes
minispecs demonstrating the algorithmic structure of these atomic
processes. Also, a data dictionary is created containing the structure of
the data. SA also gives naming conventions for processes, dataflows, files,
which can help the user to express his understanding most clearly.

4.2.2 The Language
The sources and sinks belonging to the environment of the target system
are shown as boxes on a data-flow diagram. Other symbols are circles
representing processes, arrows representing data flows, and bars
representing files. Please note that the first time a file is referenced in a
OFO two bars are used (see fig. 7a, file "Bit Map") while further references
to this file (in other OFOs) are denoted by a single bar (see fig. 8a, file "Bit
Map").

The minispecs are written in pseudo-code, the data described in the data
dictionary is written in a BNF-like notation.

The examples given below were taken from a paper on an early version of
the Tektronix-tool (Bell, 1985, cpo TekCASE in 7.3). They show data-flow
diagrams, together with minispecs and information stored in the data
dictionary.

238 J Lud.wtg

Figure 6 a:
DFD for a display controller -...

...... ' -.. ----

ron

..... ~
\ -,

Figure 6 c: DFD for Generate
Bit Map from fig. 6 a

COP~_PIXEl. _ PIXEl.
BIT_MAP _ADDRESS _INTEGER
PIXEL _lOGICAl.
TEXT _ ASCILCHAR
GlW'HICS

- JPOl YUNE I POl VI.IARI<ER I AREAfU I GOPI
SCIHN_CXJNIR1

- JSCOOll.I ERASE I REVERSE I HClRIZ-,XlNTRll1
Ia!_SClHN_CONTROl_~_CONTROl

BIT_LIAP -(PIXElI
BIT_MAP _PIXEL. PIXEL
TEXCPlXEl- PIXEL
GlW'HICS]IX.El_ PO<EL
COMMAND_STRING _ ((ASCII_CHAR) • OEUMITERI
OISPIAY_PRIIAlTIVES

• GRAPHtCS. TEXT • SCREEN_CONTR:ll
GIN. x_POSrnON + Y _POSITION
X_POSITJJN. Y _POSfTX)H. tfTEGER

Figure 6 b : Data Dictionary for 6 a

CHARACTER_GENERATON_MAI' _lOCATON
_ASCII_CHAR

FORI.1T012DO
CHAR_GEN_MAP _INDEX. 1

FORJ.l TOG 00
IF CHAR_GEN_MAP _CONTENTS (J) _ TRUE

SEND 1 TO BIT MAP
ELSE

SEND 0 TO OIT MAP;
END

ENO

Figure 6 d: Minispec for 6 C

4.2.3 Tools for Structured Analysis
Teamwork is a product of CADRE Technologies Inc. It consists of a set of
tools for Structured Analysis (Team work/SA: DFDs, process specili
cations), information modeling (Teamwork/1M: entity relationship
diagrams, data dictionaries) , real-time system modeling (Teamwork/R7) ,
and Structured Design (Teamwork/SO) . It is built on top of a data base
system; other user-specific tools can access that data base via
Teamwork/ACCESS.

The tools are implemented on powerful workstations (Apollo, DEC VAX
station, IBM RT, SUN, HP). The DBMS is not part of Teamwork; instead, on
any of the Teamwork machines, an existing DBMS has been integrated.
Therefore, Teamwork offers very fast access, quick consistency checking ,
and networking. Several users can work with the same data base, only the
information currently shown on any of the screens is locked. Teamwork has
a very nice user-interface, and it seems to be really fast.

Languages. Methods. and Tools lOT Soltware Specification 239

Like most other SA-tools. Teamwork supports Structured Design (SO. see
Yourdon. Constantine. 1979) as the method to be used for software design.
SO. however. is not an up-to-date approach. so it does not give much help
to a designer who strives for well structured programs. A new component
recently announced is the Buhr Structure Graph Editor. which allows for
graphical design of Ada programs.

DDJtCt ... I Proc ... I 'ype C".ltor
e..,111 IH'I Dat •• (W''''Od)
lit. kbM.: flu.,.1

:::: :::::::: ::::::: : ::::::: : :::: :: ::::::::::::::::::::::::::::::::::::: ::::::::::::: ::::: :::::::::::::::: :: :: :::::::::::: :: : ::: ::::::::: :::: :: : !!:::: :: :::::: ::::::::::::::::: ::::: ::
,.,.,.,.. AutMGOll. '",1 .. (.,.Vel I •
(.,.,,...1 SpHG I J
CN'" e ',..1 IIV I'M MKfIl : e_t •• t-OIl
"',",'N SfHG : 1
... sure I. It : 1
C.-.l III" : ~ . 1 "', It.,., ' t.,.. : , 1
'-tt IN ,.,. ... 'w. I , 1
"",,11M
,., : 1-.1
teftv-.I s,... : ,·.a
"OAtt.,. AutMClOll, ,., \-.0
[.,.,,...1 SptH J-U
(tIft,,..1 s,... It""'t (!\art
CIU'\ tlln ,ll'VCl'" U~.,.t
(tv •• , COftt,.._ Slrvct"". [1\.,.,

...
'·Slte
'-SIte
'·SHe
'-W(C

1 , -me
• -Slte ,.. ...
'I! ...
sc
sc
sc

'" " '" " " •• .,
•• •• I, I,
IJ
•• ..
'" "

"/K'" ",."t, : H'M' J.5 Tru. 1111 lilt CJuI to lacl'l

"'Hill :
'''05''1 KIOS/OI:

"'''''1 : 16115/15 :
H/15/11 . "115111 .

I5IH/I. I "~S/Gl I
I

.lOt ", (~t. ttlll .. ,,",,)"' •
'tnclling taY11t1ll

: IIlInllM DOne
. . . .

" / 04111 : K/.'/n : Klr..tn : MII1" L.".I SC

Figure 7: snapshot from Teamwork. showing three windows on a screen

ProMod. which was developed by GEl. Aachen. FRG. is another environment
based on the SA-concept. Its central information repository is the so
called ProMod project library.

Tools for Structured Analysis are:

OFO-processor

DO-processor

TO-processor

AAO-analyzer

editing and processing of data flow diagrams

data dictionary system

minispec-processor

cross checking between OFOs. DO and minispecs.

like Teamwork. ProMod supports real time analysis by control specifi
cation (finite state machines. see fig. 8).

~40 J Ludewig

Figure 8: Real time modeling with control specifications

ProMod offers tools for Modular Design, an extension of SO which supp"rts
data abstraction:

Translator from SA- to MD-System

MS-processor for module specifications

FS-processor for functional specifications

DO-processor data dictionary system

SE-analyzer cross-checking at design level

Below the level of Modular Design, ProMod provides PDL and DAR TS, two
pseudo-code-systems. Other tools generate code-frames in several
languages (PASCAL, FORTRAN, COBOL).

ProMod is available on VAXNMS, and IBM-PC (XT, An/PC-DOS. Compared to
Teamwork , it is less impressing at the user interface. Since there is
currently no real DBMS in ProMod, accesses are rather slow, and checks for
consistency may take some time. On the other hand, ProMod does not leave
the software developer alone after analysis. These components would be
even more useful if there would be a way to trace late changes through the
various documents (in both directions) .

There is a large number of other tools that support SA/SO, including IDE
Structured Analysis and Design Tools, which are based on Software through
Pictures , T ek CAS E by Tektronix (AnalysIlRT, Designer, Auditor) ,
Structured Architect by META-Systems (see 4.3) and many others (cp. 7.3).

LanguagtJ. Mt lhods. and Tools l or Soltware Specification 241

4.3 Problem Statement Language/Problem Statement
Analyzer (PSL/PSA)

PSL was developed at the University of Michigan by the ISDOS-project
(Information System Design and Optimization System) in the seventies. PSL
primarily supports requirements analysis and documentation.

PSLlPSA was the very first tool·based system for semi-formal specifi·
cation which was actually useful - and commercially successful. All other
such systems are copies of PSLlPSA. at least in part. Like some other tools
developed at universities, PLSIPSA is now supported, improved, and
commercially distributed by a private company (META-systems, cpo 7.3) .

4.3.1 The Method
PSLlPSA emerged since 1970 in a very organic manner, and Daniel
Teichroew and his co-workers did never put too much effort in writing
down the method they had in mind. Still, there is a method behind PSL: It is
the one sketched in 3.4.

4.3.2 The Language
PSL is based on the entity· relationship approach first described by Chen in
1976 but 3pplied long before. The entity-relationship model was originally
used as a database model splitting the world to be described into entities,
and relationships between these entities . The dominant feature of this
approach is the similar treatment of entities and relationships.

Different from SADT and SA, PSL is a linear (textual) language. PSL
provides some 30 entity-classes and 75 relations to the user. The most
important ones are :

Entity-classes;

REAL WORLD ENTIN

PROCESS
INPUT

SET

Relations;

GENERATES

RECEIVES

UPDATES

CONSISTS

objects outside the target system

activities

input data

set of data elements

e.g. <process> GENERATES <data>

e.g. <process> RECEIVES <data>

e.g. <process> UPDATES <data>

describes data structures ; e.g. colour CONSISTS
yellow, red , green, blue

Figure 9 shows a fragment of a PSL-input source listing; the speCification
describes cargo·vessels and their organizational environment.

(Source of all examples in 4.3: Papers from ISDOS, 1983)

242 J Lud<w/g

Jut 23. 198) 20:05: 19
PSt/'SA ~ 1$00$ - V~tKS

,PSt 'nput Source lilting

P.r~tcrs! DB-YESSEL.Dlf INPUT-VESSEL.PSL SOURC{-LISTINC NOCAOSS-REf[R[NC(
UPDATE DATaIASE-REFERENCE NOWAAN-NEV-08J[ClS NOSTAT[n£NT-N~[RS

OBNIUr-200 VIDTH-8\ LIN!S-60 INDENT-o H[ADINe 'ARAftlTER$ 'AC[-CC-ON
NOUPUHATIOM

LINE STilT

I >/It
2 •

This ,. a Ict of PSl It.t~ntl to define user views *'
) >/• • Hcr. I. the global users' view *'
S >O(F ENTITY
,,. Tur
7" SUBPARTS ARE
8 • , .

10 •

" .
12'
I» •
14,. DESC.

Uscrvlews;
'Cloba";
User-Ylew-I.
User-VI~2:.
User-YJ~l,

User"Y'ew-t..
User-YI~S.
User-YI~'.
User-YI~7:

IS >Thls Is • globa. view o(a ship ca.pany.;
16.
17 >
18 >/. I, •
20 >OEt ELE
21 •
22 •
2) • ,..
2S •

Ve,s.,.targo-Yo'u.c.Det.II,.Port.Date-ol-Arrlval.
Date-ol-Departure.Cons';nee,Contalnerl,Slze,
Shlpplno-Agent.Vayblll/,
Dellvery-Cate,Contents,
Handllng-Instructions_

26 •
27 >/e
28- •

Here I, the local user,' view ./

29 >OEf ENTITY
30" TXEY
,I" CSTS OF
)2" ATTR ARE
)) . ,ft,. RPD IS
JS' O[SC:

User-View-I:
'VI':
VIew-I-Ship:
fREQUE:NCY-IS
TlftINC-RE:QUIR[n£NT
'E . Ba,ar' :

100,
25:

)6 >Infor •• tion is stored about each ship, including
37 >the volyae of its cargo .torage capacity.:
)tr •
)' .
40 >DEF ENTITY
41" TK[Y
1,2" CSTS Of
4) •
4O.
45 >
46 >
47 >

ATTR ARE

RPO IS

User-Vicw-l ;
'V2:' :
View2:-Ship.
Yiew2:-Ship-Port,
Yiew2:-Port:
fREQUENCY"'IS
TlnINC-REQUIREft!NT
'E:. B.asar';

100,
50:

Figure 9: PSL source listing (incomplete)

Languages. Mtthods. and Tools for Software Specification

PSA Version AS·2R2H Jul 23. 198) 20:05: 19
PSl/PSA - ISOOS - VH/C~

Contents Report

Par~~eters; DS-VESSEL.D8F FILE-PSANAHES.PSAT[ftP NOCOHPlETENESS-CH[CK
NOINDEI NOPUNCHED-NAHES lEVELS-ALL LINE-NUMBERS lEV[l-NUH8ERS
08J[CT-TYP[S PRINT NONEY-PACE D8NBUF-200 WIDTH-84 LINES-60 INDENT-O
HEADING PARAMETERS PACE-Ce-ON NOEIPLANATION

,. ([NT I TV) I UlCer-View-l , (CROUP) , Viewl-Ship , (ELUUNT)) Vessel
3 (HE"ENT) 3 Cargo-Voll,Dc

• (ELEMENT) 3 Deai Is ,. (ENTITY) I Uler-View-2 , (CROUP) 2 Vlew2-Ship , (ELE"ENT) 3 Veuel
) (CROUP) 2 Vicw2-Ship-Port

• (ElE"ENT)) Port
5 (HEH[NT)) Ve.sscl
6 (ELEKENT)) Datc-.of-Arr Ivai
1 (ELEHENT)) Date-aI-Departure

Figure 10 8: PSA Contents Report (incomplete)

An A in (I.j) .eans that coluan j 1& contained
directly or indirectly in row I. The columns
dO not consist of anything further. Intcr.~diate

CROUPS .re ignored.

14 Size ------------------------- I
I) Handling-Instructions -------- I

12 Contents --- ------------------ I
11 Delivery-Date ---------------- I

10 Wayblill -~-------------- ---- I
9 Shipping-Ao~t --------------- I

8 Containcrl ------------------- I
1 Consignee -------------------- I

6 Date-of-Departure ------------ I

5 Oate-of-Arrival -------------- I
4 Port --------- ---------------- I

1 Details -------------- ----- --- I
2 Caroo-Volume ----------------- I
Vessel ----------------------- I I

---------------------------------+----------+----------+--------+ 1 User-View-l ---------_________ * A ~
2
3 •
5

User-Vlew-2
User-View-)
User-View-4
User-View-S

6 User-View-6
1 User-View·1

-------.----------
--------.---------

• • • • • • • • • • • • • • •• • • • • • ••
+----------+----------+--------+
I:: : I ~ ~I

Figure 10 b: Basic Content Matrix

243

! 44 J. Ludtwig

4.3.3 The Tools
PSA, the tool, is actually the system. It is built upon a COOASYL-database
system, and offers a large selection of services and report functions. PSA
is a huge FORTRAN-program consisting of some 60 000 lac. It is available
on many time-sharing machines and workstations (IBM/MVS, IBMIVM,
VAXNMS, MicroVAXlULTRIX, HP9000/UNIX, Tandem Guardian, Apollo and
others) .

The report in fig . lOa shows a tree-structure (the hierarchical content
relation) by indentation. The second one (fig. lOa) shows part of the same
information in a table. These examples represent the traditional position
of the ISOOS-project, where all output had to be line-printer oriented.
Therefore, pseudo-graphics was the best representation available. But the
system has now been extended by new tools, which support also high
resolution diagrams (not shown here) .

4.4 Software Requirements Engineering Methodology (SREM)

SREM is directly based on PSUPSA; it was developed by TRW since about
1975. It supports the early phases (analysis, definition, verification , and
validation of requirements) of the soltware development process. It is
especially tailored for the development of large , embedded, real-time
systems; the U.S. Air Force was the contractor of that project. For more
information on SREM, see 7.1.

4.4.1 The Method
SREM possesses two important features missing from most other methods
or lac.guages for specification . Firstly, it allows the stepwise development
of specifications beginning with informal descriptions, from wh ich an
increaSingly formal specification is developed. Secondly, data on
performance (estimated or required) of the target system can be formally
included in the specification . Since there is a tool for Simulating specs,
software designers can check early whether or not they will be able to
meet response time requirements.

The method (SREMj is applied in seven steps:

1. Define kernel : identify the interlace between the system and the
environment and describe the data flows and the data-processing units
inside the system.

2. Establish baseline: outline the very first description of the system
using either the graphical R-Net formalism (R-Net means require
ments-net, a stimulus-response network) or the linear language RSL
(requirements statement language) .

3. Define data: define data input to , and output from, each so called
ALPHA (active component) ; complete, and improve the RSL
specification developed so far; implement Pascal-procedures for
ALPHAs.

Languagel, Melhods. and Tools for Software Specification 245

4. Add project Information, and establish traceability: add
management informations. e.g. deadlines. milestones. needed tools etc.

5. Simulate functionality: prove syntactical correctness and simulate
dynamic behaviour

6. Identify performance requirements: define traceable. testable
performance requirements; each path should be constrained by
response time and accuracy

7. Demonstrate feasibility: prove that the current design is useful as
a basis for a technical realization by means of a analytical feasibility
study

4.4.2 The Language
SR E M offers the user two means of description. a graphical language
(R-Ne,s) and a textual language (RSL) .

Elements
are standard types defining
features of each object of such
a standard type . For example.
MESSAGE. DATA. and FILE are
standard types used to describe
data; e.g. ALPHAs stand lor
processes. Elements represent
nouns in the language.

Relationships
express logical links between
Elements. e.g. <data> INPUT TO
<alpha>. They represent verbs
in the language.

Attributes
are used to complete the
description of Elements. e.g.
<data> INITIAL VALUE <value>.
They represent adjectives in
the language.

Structures
are used to define the se
quences of processing steps
and represent R-Nets. SUBNETs.
and VALIDATION-PATHs in
terms of RSL-statements.

Fa.

Figure 11 : Types and symbols in SREM

D

246 J. Ludewig

R-Nets are stimulus-response networks describing reactions In a system
evoked by events. An R-Net consists at nodes (ALPHAs and SUBNETs) and
arcs connecting the nodes. While ALPHAs are functional specifications of
processes, SUBNETs are specifications of processes at a lower level of
hierarchy. The flow of control is described by some single entry - single
exit constructs (AND for parallel execution, OR for a multiway branch, FOR
EACH for a loop). Additionally, validation-points can be inserted in order to
express performance requirements.

See figure 11 for a list of all symbols used in R-Nets.

RSL is also used to enter the R-Nets, which are then automatically drawn.

A few examples are given below. Figure 12 shows a schematic R-Net. In
figures 13a and 13b both the RSL-representation and the flow graph repre
sentation of a sample R-Net are exhibited (from papers by M. W. Alford) .

4.4.3 The Tool
Like PSUPSA, SREM is based on a large tool, called REVS (Requirements
Engineering Validation System). Beyond the abilities of other tools, REVS
allows for project dependent extensions of the specification language, and
for simulation of the specs. Maybe that REVS is currently the most
powerful tool for specification; but prospective customers in Europe
cannot buy it because its distribution is still limited to the U.S.

"

v.

Y

Figure

~MEW"'"
vAlJlATION POWT

PFlXESSWO STEP (ALPHAJ

'Ne NOOE

52 S3 SELECTOR
VARIABlE

on< c OT>< 'CR"NOOE
0

H

v, V1 VII

0JTl'UT
HTEFFItaS

12: A schematic R-Net

Language3, Methods. and Toolf lor Soltware SpeciftcalJon

R NET: PROCESS RADAR RETURN.
STRUCTURE:

INPUT INTERFACE RADAR RETURN BUFFER
EXTRACT MEASUREMENT
DO (STATUS = VALID_RETURN)

DO UPDATE STATE AND KALMAN FILTER END
DETERMINE ELEVATION
DETERMINE IF REDUNDANT
TERMINATE

OTHERWISE

END
END.

DETERMINE IF OUTPUT NEEDED - -
DO DETERMINE IF REDUNDANT

DETERMINE ELEVATION
TERMINATE

AND DETERMINE IF GHOST

TERMINATE

Figure 13 a: A sample R·Net, textual representation

NE_
F GHOST

OTHERWiSE

DE _
EVAlUATION

(STATUS _ VAIiUlETlJRNj

OETERt.IINE...

Figure 13 b: A sample R·Net, flow graph representation

247

:!48 J Lud~ft

4 . 5 EPOS (Engineering and Project-management Oriented
Support system)

EPOS was developed at TU Stuttgart by R. Lauber and co-workers since
1978. The product is now sold and supported by GPP (see 7.3) .

4.5.1 The Method
EPOS is one of the systems which do explicitely not support a particular
method (though they do refer to the general principles of SADT). Several
styles which are related to some method are supported.

4.5.2 languages
In EPOS. there is no clear distinction between languages and tools, i.e. the
same name is used both for the language and for the program which is used
for processing that language. Therefore. the following list may be
inconsistent with other papers on EPOS.

There are three languages used for input:

EPOS-R language for requirements definition (formatted)

EPOS-S language for syst~m design (semi-formal)

EPOS-P language for project management information
(sem i- formal)

Several graphical representations can be generated by the tools , for
instance Petri-Nets, Nassi-Shneiderman diagrams.

~~=-----

prolf.m
pac
(Ioftwarc
tooll)

t!'Ialuatina
the

datab.lc

figure 14: EPOS languages and tools

Languages. Methods. and Tools for Software Specification 249

4.5.3 The Tools
The tools of EPOS are shown in fig . 14. The documentation tools offer a
particularly large choice of diagrams, which can be generated from the
EPOS project database (e.g. Petri-Nets, Nassi-Shneiderman diagrams, data
flow diagrams and many others). A" tools access the (non-standard) data
base.

EPOS is available on most micro-computers and workstations (e.g. Apo"o,
Data General, DEC VAX and MicroVAX, HP 9000, IBM PC XT, AT, Intel
8086/80286, PCS Cadmus, SUN) and also on mainframes (IBM with VM or
MVS, Siemens 7000 with BS 2000).

4.6 SPADES (Specification and Design System)

SPADES is based on ESPRESO, which emerged from 1977 to 1980 as a part
of the authors doctoral dissertation. The name of the system was changed
to SPADES aftpr recoding in MODULA-2. SPADES was enhanced and extended
at Brown Boveri & Co., Baden, Switzerland, until 1987', when a decision
was taken against further support.

4.6.1 The Method
Like other systems, SPADES is based on the idea of stepwise enrichment of
a specification. As its name expresses, there is no clear distinction
between specification and design . In the begin, a specification consists of
informal texts. When the perception of the target system is more complete,
objects like modules and data are introduced, and the description changes
slowly from a specification to a (high level) design.

4.6.2 The Language
There are two notations for SPADES, linear and graphica/. The latter is
used for inspection of the data base only.

The linear notation, named SPADES-L, is a simple, but recursive language,
Le. hierarchies of objects may be represented by a nested description.

In SPADES-L, the target system and its environment are modeled by
entities and relationships. classes for entities (e .g. "module") and relations
for relationships (e.g. "contains") are predefined. Classes are structured
hierarchically; when an entity belongs to a super-class (like "medium",
which comprises "variable" and "buffer"), it means that its definite nature
is not yet known.

A" objects may contain any number of informal texts as attributes. Though
these texts do not have a formally defined semantics, they may contain
references to other objects which can be automatically evaluated. (This
feature of SPADES is now fairly common.)

, Major extensions were done by M. Glinz.

250

A unique property of SPADES-L Is its formal definition by an attribute
grammar. This definition does not only cover the full context-sensitive
syntax. but also the semantics. i.e. it provides a formal specification of
the tool for entering specifications into the data base. (Note that languages
like SPADES-L do not have semantics like programming languages. i.e. there
is no formal mapping onto a sequence of actions.)

4.6.3 The Tools
SPADES-T (see fig. 15). the tool of SPADES. is rather primitive. compared
to modern tools with windowing etc. SpeCifications must be entered into a
text file. which is then fed into CONV. the tool for processing SPADES-L.
DECONV retrieves information from the data base. The data base system is
in fact nothing but a data management based on the Entity-Relationship
concept. During work. all data is kept In virtual memory. This DBMS' has
been successfully applied in other systems as well.

I ___ ~.,
I ~ "/1 roN 1\

,- CB:nN \\

1 __ ...:1-4 SPADES- f V--~-'I>l:£S--;f--<,,~p;;;ADiD ~
Analyst .. I 1<1

I
~on lor

Reporl
Interlace

..•..• REPORT I

REPORT 2

REPORT 3

• • •
Graphlcal!+ ____ J

Inlerface

... .. Main Data Stream
Conlrol {bkjlrecUonat

Figure 15: Structure and data flow of SPADES-T

5_ Lessons from experience

From our work on ESPRESO and SPADES. and from many discussions with
colleages and users. I can report some experiences:

, Implemented by Hj. Huser at Brown Boveri

LtmguageJ, MethodJ. and Tools for Software Specification 251

1. A single person (or a group of two), with a sound background in
Software Engineering and specification systems. is the prerequisite
for the conception of a speCification system. The task requires much
creativity, and cannot be well distributed. Experience with existing
systems is mandatory.
ESPRESO was done in such a way; a recent attempt to define a
software development environment in a team of well educated, but
unexperienced freshmen failed.

2. Writing a formal definition (not simply BNFI) of a speCification
language is hard work; building a system without such a definition is
much harder. The grammar of ESPRESO was extremely useful,
preventing any disagreements about the language.

3. Building a specification system is certainly not a small task. Such a
tool is much more complex than an average compiler, not only because
it requires a DBMS and a comfortable, graphical man machine
interface. The most important difference is that the goal of a compiler
project is fairly clear, while our ideas of speCification systems are
still rather vague. Therefore, even a mere prototype-system requires
at least some ten to twenty developper years.

4. Different from our situation ten years ago, there are now good
standard components (DBMSs, Window-packages, menue-generators,
etc.). Extensive use of such components may reduce the effort. Even
when analysis shows that such modules are deficient for some
reasons, one should use them until a prototype has been implemented
(maybe their deficiency does not matter, or first experiences make a
major revision necessary) .

5. Graphical languages are very important for two reasons. Obviously,
users like graphics. Therefore, people will not buy a specification
system without smart graphics. But there is another, more subtle
reason : Only structures which are fairly simple can be graphically
displayed (like trees) . If one starts from a graphical representation,
chances are good to obtain also an elegant, simple linear language.

S. In order to be useful, a speCification system must be quite large. It is
not possible to do only half of the work: Either the system is fairly
complete, comfortable, and reliable, or it is condemned to die.
Even when it is acceptable, it requires steady support .

7. A specification system is not just a tool, it is a whole philosophy.
Users may be able to learn in a few hours how to operate the tool, but
it takes months until they understand the philosophy. Good training,
and a hot line for problems, are essential.

8. The decision to use a specification system, and the choice of a
particular product, require a commitment of the management.
Introduction of a specification system is very expensive. The cost of

the system itself and, possibly, of new hardware is olten high, but it
is usuaUy negligible compared to the cost of training (or the failures
due to insullient training) . The step to using a specification system is
of similar importance like the step to using a computer; if you are not
prepared to do it right, don't do it at alii Problems are inevitable, and
there will be a situation when an important project seems to be late,
because it is done with a specification system. II the management is
not prepared to show a bold front against the breakers, they will not
succeed.

9. The specification system may improve quality assurance and
project control . Most vendors advertise some management tools as
part of their products. To date, these are not very powerful. The real
improvemenl stems from the disciplin and standardizalion implied by
the application of a specification system. This side effect is in fact
the main improvement!

6_ Conclusions

o There are many specification systems commercially available .
Everybody who uses any of the more common machines, and operating
systems, will lind a specification system, if he or she wants to.

o II is obviously still possible to produce software (and systems)
without a specification system. Special problems, like developing user
interfaces, are actually betler done by other approaches, e.g .
prototyping.

o A specification system causes large expenses, mainly for training, but
can improve quality and productivity significantly. Therefore, it should
be regarded as a (medium- or long-range) investment

o A specification system improves standardization in the way that every
member of a project uses the same method, the same language, and the
same tool. Moreover, the documents themselvss have standardized
features . This implies a discipline which is the real benefit of a
speCification system!

o Evaluation of tools should start with a decision for a method of
software development The tool should fit the method, not reverse .

o Currently, tools do not support maintenance of specifications .
Therefore, the responsibility to change all documents, when one is
modified, rests with the user. II he or she fails to do so (what is the
normal situation), the specification becomes obsolete .

o Implementing one's own specification system is hardly feasible,
because it takes at least ten person years to develop nothing but a
prototype.

LallgUa6~s, M~thods. and Tools for Software Sp~clflcatlOn 253

7. References and Addresses of Suppliers

7.1 Index to References

Books and papers in German are indicated by an asterisk; all others are in
English.

Books on Software Engineering
Boehm, (1980), Fairley (1985), Sommerville (1985)

Fundamentals and principles of specification
Balzer, Goldman (1979), Boehm (1976; 1983), Brooks (1981) ,
IEEE (1983), Kramer (1982), Lehman (1980), Ludewig (1982),
Parnas, (1977), Swartout, Balzer (1982), Timm' (1982)

Surveys (articles and books)
Hommer (1980), COMPUTER (1982, 1985),
IEEE-SE (1977), Ohno (1982) , Prentice (1981)

Particular speCification methods and systems (see also 7.3)
EPOS: Biewald et al.(1979), Lauber, Lempp (1987)
ESPRESO: Ludewig (1983); SPADES: Ludewig et al. (1985)
HOs/USE.IT: Hamilton, Zeldin (1976)
PAISLey: Zave (1982)
PSUPSA: Teichroew Hershey (1977)
SAOT: Ross (1977, 1985 a,b); SAOT/SPECIF: Lissandre et al. (1984)
SA: deMarco (1978), Bell (1985); SO: Yourdon, Constantine (1979)
SOL: CCITT (1984)
SREM: Alford (1985)

Prototyping
Boehm, Gray Seewald (1984), Budde et al. (1984)

Software Engineering Environments
Howden (1982), Hunke (1981), Osterweil (1981)

7.2 Referen ces

Alford, M. (1985) : SREM at the age of eight: The distributed computing
design system. IEEE COMPUTER 18, 4, 36-46.

Balzer, A. , N. Goldman (1979) : Principles of good software specification and
their implications for specification languages. in Proceedings of
Specification of Reliable Software (SRS), IEEE, pp.58-67.

Bell, R. (1985) : Structured analysis aids in micro-computer system design.
EON, March 21, 1985, 251-257.

Biewald, J., P. Gohner, R. Lauber, H. Schelling (1979) : EPOS - a specification
and design technique for computer controlled real-time automation
systems. 4th Intern. Conf. on Software Engln., IEEE, pp.245-250.

Boehm, B.W. (1976) : Software Engineering.
IEEE Transactions on Computers, C-2S , pp.1226-1241 .

lS4 I Ludewig

Boehm, B. W. (1980): Software Engineering Economic • .
Prentice Hall, Englewood Cliffs , N.J.

Boehm, BW. (1983) : Seven basic principles of Software Engineering.
Journal 01 System. and Software, 3, 3-24.

Boehm, BW., T.E. Gray, Th. Seewald (1984): Prototyping versus Specifying: A
multi-project experiment. IEEE Trans, on SE, SE·l0, 290-303.

Brooks, W.O. (1981): Software Technology Payoff: Some statistical
evidence. Journal 01 Systems and Software, 2, 3-9.

Budde, R. K. Kuhlenkamp, l. Mathiassen, H. ZOllighoven (eds.) (1984):
Approaches to Prototyplng. Springer-Verlag, Berlin etc.

COMPUTER (1982): Special issue on application oriented specification .
IEEE COMPUTER 15, 5 (May 1982), 10-59.

COMPUTER (1985): Special issue on requirements engineering environments.
IEEE COMPUTER 18, 4 (April 1985), 9-91.

deMarco, T. (1978) : Structured Analysis and System SpeCification .
Yourdon Press, New Yorl<.

Fairley, R. (1985) : Software Engineering Concepts . McGraw-Hili Book
Company, New Yorl< uSW.

Hamilton, 1.1., S. Zeldin (1976): Higher Order Software - a methodology for
defining software. IEEE Trans, on SE, SE· 2, 9-32.

Hommel, G. (Hrsg.) (1980): Verglelch varschledener Spezlflkatlons·
verlahren, am Beleplal elner Paketvertell.nlage. KfK-POV 186,
Teile 1 und 2, Kernforschungszentrum Karlsruhe, BRO.

Howden, W. (1982): Contemporary software development environments.
Comm_ ACM, 25, 5, 318-329.

Hunke, H. (ed.) (1981): Software Engineering environments .
North Holland Publishing Company, Amsterdam, New Yorl<, Oxford.

IEEE (1983) : Standard glossary of software engineering terminology .
IEEE Std 729-1983.

IEEE,SE (1977): Special collection on requirements analysis.
IEEE Trans. SE, SE-3, 2-84.

Kramer, J. (ed.) (1982) : Glossary of terms. TC on Application Oriented
Specilication. Jeffrey Kramer, tmperial College, 180 Queen's Gate,
GB - London SWl 2BZ.

Lauber, R.J., P.R. Lempp (1987) : EPOS Overview. Report, IRP, Stuttgart
University and GPP (see 7.3)

Lehman, 1.1 .1.1 . (1980): Programs. life cycles, and laws of software evolution.
Proc_ 01 the IEEE, 68, 9, 1060-1076.

Lissandre, 1.1., P. Lagier, A. Skalli, H. Massie (1984) : SPECIF - A specifi
cation assistance system. Institut de Genie Logiciel , PariS, France.

unguagu. Ntlhods. and ToolJfor Software SputfiCIJllon 255

Ludewig, J. (1982): Computer aided specification of process control
software. IEEE COMPUTER, IS, 5, 12-20.

Ludewig, J. (1983): ESPRESO - a system for process control software
specification. IEEE Trans_ on SE, SE-9, 427-436.

Ludewig, J., M. Glinz, H.J. Huser, G. Matheis, H. Matheis, M.F. Schmidt (1985):
SPADES - A Specification and Design System and its Graphical
Interlace. 8th Intern. Conl_ on SoHware Engln., IEEE, 83-89.

Ludewig, J. (1987) : Practical methods and tools for specification.
in A. KOndig, R.E. BOhrer, J. DlIhler (eds.): Embedded Systems.
Lecture Notes in Computer Science 284, Springer, Berlin etc., 174-207.

Ohno, Y. (ed.) (1982): Requirements Engineering Environments.
Proceedings, North Holland, Amsterdam usw.
(partially reprinted in COMPUTER, 1985).

Osterwei!, L. (1981): Software environment research : directions for the
next five years. IEEE COMPUTER, April 1981 , 35-43.

Parnas, D.L. (1977) : The use of precise specifications in the development of
software. in Gilchrist, B. (ed.): Information Processing 77. North
Holland Publishing Company, Amsterdam etc. , pp.861-867.

Prentice, D. (1981) : An analysis of software development environments.
ACM SIGSOFT SoHware Engineering Notes, 6, No.5, 19-27.

Ross, D.T. (1977) : Structured analysis (SA) : A language for communicating
ideas. IEEE Trans. on SoHware Engineering, SE-3, 16-34.

Ross, D.T. (1985 a) : Applications and extensions of SADT.
IEEE COMPUTER 18, 4, 25-34.

Ross, D.T. (1985 b) : Douglas Ross talks about Structured Analysis.
IEEE COMPUTER 18, 7, 80-88.

Sommerville, I. (1985) : SoHwar. Engineering .
Addison-Wesley Publishing Company, London etc., 2nd ed.

Swartout, W., R. Balzer (1982) : On the inevitable intertwining of
specification and implementation. Commun. ACM, 25 , 7, 438-440.

Teichroew, D., E.A. Hershey III (1977) : PSUPSA: a compute, aided technique
for structured documentation and analysis of information processing
systems. IEEE Trans. SoHware Eng .. SE-3, 41-47.

Timm, M. (1982) : Grundfagen von Anlorderungs- und Entwurfs
spezlllkationen 1m ProzeB der Sollware-Entwlcklung.
GMD-Studien, No. 66.

Yourdon, E., L.L. Constantine (1979): Structured Design: Fundamentals
01 a dlsclplln 01 computer programs and systems design.
Prentice Hall Inc., Englewood Cliffs.

Zave, P. (1982) : An operational approach to requirements specification for
embedded systems. IEEE Trans. SoHware Eng .. SE-8, 250-269.

156 J Lud,. ,lt

7.3 Address.. 01 Vendor.

Please note that the following list is rather arbitrary. and far from
complete. and it does not imply any judgement or r9COmmendation I

EPOS (Engineering and Project·management Oriented Support system)
GPP. Kolpingring 18a. 0 8024 Oberhaching. Tel. 0 (+89) 61 10 42 18

HOS (Higher Order Software) and USE.tT
Higher Order Software, Inc., 2067 Massachusetts Avenue Cambridge,
Massachusetts 02140, USA, Tel. USA (617) 661-8900

IDE Struclured Anatysls and Design Tools
Interactive Development Environments, 150 Fourth Street. Suite 210.
San Francisco. California 94103. Tel. USA (415) 543·0900

Inlormatlon Engineering Workbench/Workstation
KnowledgeWare. Inc .• 3340 Peachtree Rd .• N.E .. Atlanta. GA 30326.
Tel. USA (404) 231·8575

MASCOT (Modular Approach to Softw. Construction. Operation. and Test)
MASCOT Suppliers Association. clo Computing Standards Section.
Room L303. Royal Signals and Radar Establishment. SI. Andrews Rd ..
Malvern. Worcestershire. WR14 3PS. GB

Perspective (Includes a tool lor MASCOT)
Software Technology Centre, System Designers Ltd .. Systems House,
1 Pembroke Broadway, Camber ley, Surrey GU15 3XH Great Britain ,
Tel. GB (+276) 62244

ProMod (Projektmodell)
GEl, Pascalstr. 14. 0·5100 Aachen, Tel. 0 (+2408) 130

PSL/PSA (Problem Statement language/Analyzer) and related systems
META-systems. 315 E. Eisenhower Pkwy .• Suite 200,
Ann Arbor, MI 48104, USA; Tel. USA (313) 663·6027

5011001 (Softw. Managem., Developm .• Maintenance, and Conversion Tools)
SOFTOOL Co., 340 S. Kellogg Av., Goleta, CA 93117

SPECIF (Specification System) for SADT ·Diagrams
Inslitut de Genie logiciel (IGL) , 39 rue de la Chausee d'Antin,
F-75009 Paris, France; Tel. F (+33) 1 281 41 33

Teamwork
Cadre Technologies Inc., 222 Richmond Street. Providence, RI 02903;
Tel. USA (401) 351 -5950

TekCASE (AnalysURT. DeSigner, Auditor. Table Editor)
Tektronix Inc, CASE Division, P.O.Box 14752, Portland, Oregon 97214,
Tel. USA (503) 627-7111

PSltools: NET (editor and simulator for extended Petri-Nets) and BOlE
(tree·oriented development tool) PSI GmbH. FB Software Engineering.
Kurfiirstendamm 67, 0 1000 Berlin 15, Tel. 0 (+30) 88 42 30

