
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3601

A multilayered model for REST
applications

Jens Petersohn

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dipl.-Inf. Florian Haupt

Commenced: December 13, 2013

Completed: June 13, 2014

CR-Classification: I.7.2

Acknowledgements

First and foremost I offer my sincerest gratitude to Prof. Dr. Frank Leymann and particularly my
supervisor Dipl.-Inf. Florian Haupt who made this thesis possible at the Institute of Architecture
of Application Systems (IAAS). Without his commitment and support this thesis would not have
been feasible. His assistance, advice and guidance were extremly valuable while accomplishing
and completing this task.

I am incredibly thankful for the support of my family which stood by my side during the
duration of study. Especially my parents which allowed me the most worriless time that student
could possibly imagine. Their support and advice for every situation in my life was and will be
invaluable. For this I will always be grateful.

Further I want to thank all of my friends which accompanied me for years and those I
met during my studies. You enriched this part of my life and made it memorable.

Finally I want to show my gratitude to RedScreen which provided me the possibilitiy to
gain my best practical work experience overseas. Thank you so much for an interesting and
versatile working environment and for your constant support.

3

Abstract

Representational State Transfer (REST) web services rapidly increased their importance in
the last years. Nowadays a lot of services use this architectural style to benefit from the
advantages and characteristics of a RESTful system. To call a web service REST compliant
several constraints have to be fulfilled by software developers. The compliance of these
guidelines is often not ensured even though many services call themselves RESTful. By
applying Model Driven Software Development aspects to the design of REST applications a
system was developed to decrease the effort which is needed to follow those constraints and
reduce the time it takes to design and implement a REST web service. The process involves the
modeling and editing of several abstract models which act as an input for a code generator
that creates a JAX-RS web service. The models are defined by using the Eclipse Modeling
Framework (EMF) with additions for graphical modeling.
Since the current outcome of the existing prototype is not completely REST compliant certain
improvements have to be made. This thesis reveals flaws during the modeling process in several
meta models and in their transformations. It states enhancements how to improve and ease
the process as well as increasing the quality and REST compliance of the generated outcome.
To verifiy an improved state of the software a show case is used as a reference throughout the
document. Finally the applied changes to the approach and the system structure are realized
and demonstrated regarding this show case.

5

Contents

1. Introduction 11
1.1. Motivation . 14
1.2. Outline . 14
1.3. Abbreviations . 15
1.4. Typography . 15

2. Background 17
2.1. Representational State Transfer (REST) . 17

2.1.1. Best Practices For RESTful APIs . 20
2.2. Model Driven Software Development . 23

2.2.1. Areas Of Application . 24
2.2.2. Advantages And Disadvantages . 27

3. Condition Of The Prototype 31
3.1. Platform Independent Models . 32

3.1.1. Domain Model . 32
3.1.2. Gen Model . 33
3.1.3. Resource Model . 36
3.1.4. Deployment Model . 37

3.2. Platform Specific Models . 37

4. Deficits Of The Prototype 39
4.1. Modeling The Domain Model . 39
4.2. Modeling The Resource Model . 40
4.3. Modeling The Deployment Model . 42
4.4. HTML Documentation Generation . 43
4.5. REST Compliance Of The Result . 44
4.6. List Of Stated Issues . 45

5. Enhancements 47
5.1. Domain Model . 47
5.2. Resource Model . 49
5.3. Deployment Model . 63
5.4. HTML Documentation . 64

7

5.5. REST Compliance . 65

6. Technologies 69
6.1. Eclipse Epsilon . 69

6.1.1. Emfatic and EuGENia . 69
6.1.2. ETL - Epsilon Transformation Language 72
6.1.3. EVL - Epsilon Validation Language . 73

6.2. JET - Java Emitter Templates . 73

7. Implementation 75
7.1. Overall Architecture . 75
7.2. Altered Model Structure . 75
7.3. Code Generator - Example Invocations . 78
7.4. Resource Property Add-On . 79
7.5. HTML Generation . 80
7.6. Version Management . 80
7.7. Eclipse Epsilon Evaluation . 81

8. Conclusion 83

9. Perspectives 85

A. Appendix 89
A.1. Eclipse Epsilon Listings . 89
A.2. Ecore Meta Model Graphs . 94

Bibliography 97

8

List of Figures

1.1. API Protocol Types (ProgrammableWeb 2010 [DuV10]) 12

2.1. Richardson Maturity Model Levels . 19
2.2. MDA Multiple Model Tranformations . 24
2.3. Market Of Mobile Operating Systems 2012-2014 (Source: statista.com) 25
2.4. Snake Example - UML Class Diagram To Code Transformation 26
2.5. MDSD Approach In An Intercommunicable Embedded System 27

3.1. Eclipse RESTModeling Prototype Models . 32
3.2. CRUD Alternative I . 34
3.3. CRUD Alternative II . 35
3.4. Mapping A Domain Model Aggregation To The Resource Model 36

4.1. Coffee Shop Show Case . 40
4.2. Domain Model Deficits Illustrated By An Example. 41
4.3. Deployment Mapping Inconsistency . 43

5.1. Interconnection Possibilities In The Domain Model. 49
5.2. Addition Of The Resource Model Root Resource. 51
5.3. Domain-To-Resource Link Transformation Rules 53
5.4. Resource Method Structure Of The Current System 54
5.5. Prospective Resource GetMethod Structure. 55
5.6. Prospective Resource PutMethod Structure. 55
5.7. Prospective Resource DeleteMethod Structure. 56
5.8. Improved Structure Of A Resource With A Detailed View On Interactions. 58
5.9. Interaction Request Structure Demonstrated With An Example. 59
5.10.Domain Attribute To ListResource Parameters Mapping. 60
5.11.Property-Addon In The Resource Diagram. 62
5.12.New Deployment Mapping - URL To Link. 63
5.13.Fully Populated Deployment Model . 66

6.1. Eclipse Epsilon Architecture Overview . 70
6.2. EuGENia-Emfatic Model Stack . 71
6.3. Example GMF Editor Generated From An Example EMF Source File. 72
6.4. JET Process Of A Single Template. 73

9

7.1. New Architecture Of The RESTModeling Tool 76
7.2. New Structure Of The Resource Model . 77
7.3. Structure Of The Code Generator Component. 79

9.1. Workflow Coffe Shop Show Case . 86
9.2. Validation Handler Between Domain And Resource Model 87

A.1. Diagram Graph Of The Meta Domain Model . 95
A.2. Diagram Graph Of The Meta Resource Model 96

List of Tables

2.1. HTTP Status Codes Extract . 22

5.1. General Pagination Rules For Lists . 67

List of Listings

5.1. HATEOAS Example: OrderResource text/xml 65
5.2. HATEOAS Pagination Example: OrderResourceList text/xml 67

A.1. Example EMF Source File For A Graphical Model Editor. 90
A.2. Model XML Code Of Figure 6.3 (Model). 91
A.3. Example ETL Transformation Script. 91
A.4. Example EVL Script To Validate Instances Of Model A.1. 92
A.5. Documentation Index Page Built With A Java Emitter Template (JET). 93

10

1. Introduction

The Representational State Transfer (REST) architectural style became an important guideline
for web services, especially when accessing hypermedia information. Besides SOAP (Simple
Object Access Protocol), XML-RPC (Extensible Markup Language - Remote Procedure Call)
or JavaScript APIs, REST is the most used protocol according to ProgrammableWeb’s 1 API
database. However, this thesis only concerns with the REST API and its characteristics.
The architectural style is mainly compound of constraints which influence the components
and consequently the whole web service in its structure and behavior. The architectural
properties which should ensue by following those guidelines are primarily, among others,
network performance, scalabalitiy of components that interact with each other and simplicity
of their accessible interfaces.

To achieve this, the development of the service should preferably fit all, or at least a set
of these constraints stated by Roy Fielding in his dissertation in 2000 [Fie00]. A lot of services
accessible by the internet call themselves REST compliant but they do not follow the given
guidelines entirely. Thus, they are only in parts “REST” compliant. To provide a web service
with the mentioned advantages a web service has to fulfill all specified REST constraints.
Leonard Richardson developed a model (Richardson Maturity Model [WPR10]) to classify a
web service by the set of its applicable REST constraints. This model will be used to classify
different compliance conditions. It will be introduced and described in detail in chapter 2
(Background).

One of the best examples applying the REST service style is the World Wide Web (WWW)
itself. The REST characteristics and constraints were defined and specified by analyzing today’s
web. Hence there are a lot of obvious similarities when analyzing the WWW based on the
REST architecture style. Some constraints are already fulfilled by the Hypertext Transfer
Protcol (HTTP) which is the required basis when interacting within the web. Still one of
the main issues is the realization of the constraints that have to be explicitly followed by a
software architect or software developer and that are not originally covered by any of the
WWW standards. Common ones are tunneling requests through a single HTTP method (GET,
POST, ...), ignoring hypermedia (HATEOAS), ignoring multiple MIME types for resources and
a single URI as the service endpoint [Vit10]. This is currently the part of the REST web service

1ProgrammableWeb - http://programmableweb.com/

11

1. Introduction

development where most of the “RESTful” characteristics get lost.

Figure 1.1.: API Protocol Types (ProgrammableWeb 2010 [DuV10])

As stated above it turns out that there is a need of improvement for the REST web service
development. There has to be a structured approach to increase the quality and REST com-
pliance of new web services and additionally decrease the effort and complexity to design
them. During the development there most probably emerges an abstract design document
which will generically describe the components and their interactions or relations with each
other. This document will then be the foundation for the upcoming code development. The
code realization of it can be quite error-prone due to misunderstandings, indistinctness or in
some cases even ignorance. To reduce or even better avoid those implementation errors and to
create a clearly defined connection between the abstract software model and the software code
itself, the use of Model Driven Software Development (MDSD) is recommended or in some
cases compulsory.

Precondition for an executable software are the models that have to be formal. A formal
model should describe an aspect of the software completely by following predefined rules.
Transforming the model automatically means that it can be used as an input for other models
or code generation without any user interaction. The transformation can be performed by a
script, an engine or an automated mechanism. Hence there is only little or no user input at
all, the model provides the key aspect of the transformation source. The final software does
most often consist of auto-generated parts combined with manually implemented code. In the
following a common process of software development without using MDSD is described.

Usually the connection between a draft or an abstract design of a software and the final
version of the code is the documentation. The documentation is normally created by a devel-
oper or by a quality assurance instance reinterpreting the already existing draft. However the

12

challenge that has to be faced is to create code and documentation out of drafts. Hereby a lot
of effort is needed for repetitive work like creating files, writing duplicate code or maintaining
software quality. In case some piece of code contains an error and it is copied all over the
software, the resulting bug has to be fixed in every file or document separately.

Using Model Driven Software Development these tasks can be done much faster, more
unsusceptible to errors and with a definite way of quality. Therefore, the draft has to be a
formal model that explicitly reflects predefined characteristics of the software. A widely used
modeling language which is standardized and applicable for formal models is UML (Unified
Modeling Language)2. By transforming the model it is possible to generate executable code in
an automated manner by interpreting the model based on the capability of its expressiveness.
The transformation process can be performed with different technologies, as long as they can
parse and process models or diagrams which use the UML notation. The essential about the
generation is that it is automated as far as possible and it only needs few or even no human
interaction at all. The precondition for this is a correct and structured transformation process
which has to be individually developed for each target model or code.

By combining REST and MDSD there is a possible solution of guided RESTModeling that
can approach the varying REST compliance in a special way. If there would be a single or
multiple suitable formal model descriptions for a REST service a transformation could generate
other models or even executable source code to provide the designed web service. The huge
benefit from combining these two technologies is that constraints which have to be followed
by the developers can now be fulfilled by correct and formal model definitions as well as the
predefined model-to-model translations. So in case a model is valid for a transformation we
can assume that the outcome is as “RESTful” as the transformation process alters it. As a start
and proof of concept in [Sch13] an Eclipse3 plugin has been developed which allows modeling
a REST web service and transform it into other models or even to JAX-RS code by using a
custom code generator. Since it was a first approach towards model driven REST service
development some constraints which have to be fulfilled are not yet designed and integrated
in this solution.

2Unified Modeling Language - http://www.uml.org/
3Eclipse IDE - http://Eclipse.org/

13

1. Introduction

1.1. Motivation

The current state of the modeling plugin is insufficient to build a fully REST compliant web
service. Certain basic approaches and assumptions that were made have to be improved and
specified in detail. The focus of this thesis is to identify inconsistencies during the modeling
process and increase the REST compliance of the generated outcome. To achieve this the
current system is analyzed and tested by using an example show case. By applying this show
case, several issues were revealed and documented. These stated deficits were improved and
corrected during the process of this thesis.

1.2. Outline

The approach towards proper REST modeling is structured as follows:

Chapter 2 – Background about the thesis’ topics and foundation of the following work.

Chapter 3 – Condition Of The Prototype which is used for RESTModeling.

Chapter 4 – Deficits Of The Prototype which were revealed.

Chapter 5 – Enhancements that have to be made for an improvement.

Chapter 6 – Technologies which are used for the modeling process.

Chapter 7 – Implementation which was necessary to realize the stated enhancements.

Chapter 8 – Conclusion about the completed work of this thesis.

Chapter 9 – Perspectives for future improvements or development.

14

1.3. Abbreviations

1.3. Abbreviations

Within this thesis several abbreviations are used. To provide clarification of the used terms and
to avoid confusions with similar abbreviations the following list outlines the ones which may
not be commonly known and used within the whole thesis. Other abbreviations which appear
in a specific context are described right before they are used.

Abbreviation Meaning / Description

IDE Integrated Development Environment
EMF Eclipse Modeling Framework
GMF Graphical Modeling Framework
JAX-RS Java API For RESTful Web Services
Ecore EMF Core Meta Model
Emfatic Ecore Syntax
EuGENia Ecore Model Processing Engine

1.4. Typography

Within this thesis there are several references to examples, figures, meta models and to the
show case. To explicitly underline them they are written with spaced characters to avoid any
different or confusing meanings.

15

2. Background

This chapter provides a more detailed introduction to the REST constraints as well as the
background behind model driven software development and provides the foundation of the
thesis.

2.1. Representational State Transfer (REST)

The REST architectural style provides a lot of benefits which are hard to achieve using other
web service patterns which will be shown within this section. It differs significantly to other
well known architectural styles, what brings up the subsequent advantages if we compare it
for example to RPCs (Remote Procedure Calls).

Loose Coupling RPC systems or components have to know a lot of their counterpart (pro-
cedure signature, ip address, port, ...) to interact with it. That will most likely cause
issues when a modification of one of the parties is required. The new knowledge about
the changed parties’ attributes has to be updated in every communicating component
which should still be able to interact properly with that system. To avoid unnecessary
and time-consuming changes a uniform interface is used by REST compliant services. By
following the constraints, the knowledge regarding the API structure can be reduced to a
minimum between two systems.

Interoperability The desired quality of a highly interoperable system is that it does not matter
what kind of implementation two communication systems have, as long as they have a
distinct set of standards which both of them follow. This is why REST uses the typical
web standards HTTP, URIs and XML (HTML). No matter which technology is used for
internal purposes of a system, while it uses HTTP as the transfer protocol and URIs to
identify resources it can be easily connected to others. Remote procedure calls in contrast
are often based on some sort of middleware or Remote Procedure Invocation (RMI)
protocols which need a lot of adjustability for communication if the protocol differs.

Performance and Scalability Due to the fact that HTTP is stateless and REST service requests
carry their current state within themselves, a lot of requests can be answered by a cache
and request overheads can be reduced to a minimum. In some cases the requests do
not have to be answered by the same server what brings the possibility to balance the
workload.

17

2. Background

To benefit from these entities the REST architecture demands a set of constraints that have
to be fulfilled by the web service. These constraints were specified and designed by Roy
Fielding [Fie00]. Outlining the constraints results in the following list according to Stefan
Tilkov [Til11]:

Unique Resource Identification Using a global naming scheme (URIs) every resource should
be uniquely identifiable. Every provided abstraction of the system should be accessible
by an URI independent whether it is an individual entry or an amount of resources.

Different Representations In case there are multiple instances of a resource available the
client should be able to specify an accepted content type to get the data representation
he desires. This requirement is specified in the header of an request and provides more
flexibility for different purposes.

Hypermedia As The Engine of Application State (HATEOAS) To navigate back and forth
between two REST states and to connect resources with each other Link objects should
be provided in a response. By using them the application flow can be controlled by the
server and the navigation is obvious for the requesting system.

Stateless Communication Due to the usage of the HTTP protocol a request contains its own
state. Hence it is not required that further requests have to be processed by the same
server that returned previous responses. This results in a high scalability of a REST web
service and increases its performance.

Standard Methods The Usage of the available HTTP operations (POST, GET, PUT, DELETE,
HEAD, ...) realizes the CRUD (Create, Read, Update, Delete) strategy for a REST web
service. Other web services often only support POST and GET which does not exploit the
richness of the HTTP protocol.

R. Fielding stated that a web service is REST compliant if it fulfills all of his listed characteristics
and constraints. Since the constraints are not ordered in a preferred hierarchy or dependence
most of the web services which should be REST compliant only satisfy a disordered subset
of them. Therefore Leonard Richardson [WPR10] developed a model that breaks down the
principal elements of a REST application into three levels. Each level reflects an improvement
of the web service quality to get closer to a fully compliant REST service. Using the Richardson
Maturity Model a self-proclaimed REST web service can be classified in a structured approach.
Figure 2.1 displays the different levels of the model. A service is valid in a level X if it satisfies
all requirements of level 0 to level X itself whereas level 0 is the lowest and initial level.

18

2.1. Representational State Transfer (REST)

Figure 2.1.: Richardson Maturity Model Levels

Level 0 To achieve this level the HTTP protocol has to be used as a transport system with
an arbitrary operation (GET/POST). Not using HTTP makes the model not applicable
and does not match to the REST constraints at all. All interactions happen with a single
endpoint that represents every resource in the system.

Level 1 This level requires the accessibility of different resources. By querying the initial root
resource the service has to return further resources which can be addressed individually.

Level 2 Using HTTP and providing access to different resources this level covers the usage of
multiple HTTP operations or verbs. The WWW does not use all the HTTP verbs itself but
it is required that REST web services use (POST, GET, PUT, DELETE).

19

2. Background

Level 3 The final step to a fully compliant REST web service is the provisioning of links
(HATEOAS). This supports discoverability for any client of the service and makes it more
self-documenting.

2.1.1. Best Practices For RESTful APIs

To ease the realization of a REST web service and increase the constraint compliance a list
of best practices were outlined by Stefan Jauker [Jau14]. This list may help developers to
improve their conception of a RESTful API.

Use Nouns No Verbs Every web service end point should be identified with a noun. In case
a list of cars wants to be requested via HTTP GET, a reasonable URL for an end point
would be /cars instead of /getAllCars or /listAllCars.

Idempotentce of HTTP GET Since HTTP GET is idempotent [FIa99] influencing or altering
states should not be possible by performing GET requests. For this purpose HTTP POST,
PUT and DELETE should be used. Requests like GET /accounts/3212/deactivate should
not be used to deactivate an account.

Plural Nouns To keep simplicity singular and plural nouns should not be mixed up. Using the
plural of every resource’s noun keeps it simple even though only a certain resource is
requested (e.g. /accounts/3212 instead of /account/3212).

Sub-Resource Usage To show relations between different objects sub-resources should be
used. In case an account has multiple owners, the connection should be obvious by
querying a certain URL. Requesting the URL /accounts/3212/owners via HTTP GET
returns all owners of the account which is identified by 3212. Respectively requesting
/accounts/3212/owners/3 should return the owner identified by 3 for the account 3212.

Format Communication To identify the format which is used for a client-server-communication
HTTP headers should be used to identify the MIME type. Via the header attributes
Content-Type and Accept it should be defined what format defines the request body and
what formats are acceptable as a response body.

Use HATEOAS This guideline directly addresses the previously mentioned constraint to pro-
vide a better navigation through the API.

Collection Response Customization Since collections (e.g. /accounts) may have a lot of
entries, it should be possible to filter and sort them, as well as querying for specific
fields and limit the amount of their returned entries by adding query parameters. As an
example: requesting /accounts?active=true&sort=+ID&start=0&stop=10 would return
at maximum the first ten accounts which are active and in ascending order by their ID.

20

2.1. Representational State Transfer (REST)

API Versioning API versioning should be mandatory since no API should be released unver-
sioned. Hereby the dot notation should be avoided. It is advised to use “v” as a prefix of
a version identifier (e.g. /blog/api/v2).

Proper HTTP Status Codes There should not be a generel status code for errors or states of
a web service. Error handling should not be neglected by simply returning one HTTP
code (e.g. 500). HTTP provides over 70 status codes which are categorized into different
groups. Table 2.1 shows an extract of HTTP status codes and their meaning. Besides
returning a correctly identifying status code, an error payload can be returned to the
requesting client as well. The format of this payload may be XML or JSON providing
additional information about an occured error.

Overriding HTTP Methods Some proxies do not allow to use different HTTP methods than
POST and GET. To still maintain the RESTfulness of an API despite that limitation,
the API needs a way to override the POST and extend its use since HTTP GET must
remain idempotent. One way of implementing this is using the custom HTTP header
X-HTTP-Method-Override for the POST method.

21

2. Background

Code / Code Group Description

1xx Group Information. Request received, continuing process.

2xx Group Success. Request received, accepted and processed success-
fully.

200 OK Standard response.
201 Created Request fulfilled and new resource created.
202 Accepted Request accepted for processing but not processed yet.
...

3xx Group Redirect. Client must take additional action to complete
request.

300 Multiple Choices Multiple options for a certain resource are available (e.g.
formats).

301 Moved Permanently This and all future request should be directed to the returned
URI.

...

4xx Group Client Error. Returned in case it seems that the client has
errored.

400 Bad Request Request can not be fulfilled due to bad syntax.
...
403 Forbidden Request was valid but server refuses response.
404 Not Found The requested resource could not be found.
...

5xx Group Server Error. Server failed to fulfill an appranetly valid re-
quest.

500 Internal Server Error Generic error message.
501 Not Implemented Server does not recognize the requested method.
...

Table 2.1.: HTTP Status Codes Extract

22

2.2. Model Driven Software Development

2.2. Model Driven Software Development

According to [SVEH07] the definition given in 2.2.1 describes the characteristics of Model
Driven Software Development.

Definition 2.2.1 (Model Driven Software Development [SVEH07])
“Model Driven Software Development is a genus for techniques which create executable software
out of formal models.”

It is based on three important aspects that result in MDSD when composed.

Formal Models Models do not necessarily have to describe all aspects of a software but
they should describe a specific part of it. Hence an accurate description about the
expressiveness of the model is compelling. So it has to be obvious which model can be
used for what type of problem.

Generate Runnable Software In general a distinction between a code generator and a code
interpreter is necessary. For this thesis an interpreter is not relevant so every statement
about generating runnable software addresses the code generator, which uses a given
model to generate a separate piece of code by processing it. In case a model is not
formally described the transformation performed by the generator will most likely cause
problems.

Automated Processing Even though a model has to be designed manually the generation of
code should happen automated or at least with very little effort. So changes that should
affect the system or the code itself can be made in the model and transformed into code
afterwards.

MDSD or Model Driven Architecture in general is based on two key types of models [Mei05].
The Platform Independent Model (PIM) identifies the target domain where only specific aspects
of a software are modeled and no statements about their realization are made. Although
this model does not have to result in a piece of code or software it is still valid and provides
a foundation for prospective discussions or developments. In contrast the Platform Specific
Model (PSM), which is the result of combining a Platform Description Model (PDM) and
the PIM, describes a specific implementation or representation for a specific platform. The
process of using a PDM with a PIM would be a proper transformation which can result in a
new model or in a piece of code, even though a piece of code would obviously be just another
representation of a model.
In case a scenario involves multiple transformations (Figure 2.2) of a PIM, the PIM would act
after its transformation to a PSM as a PIM for the next transformation layer. This can result in
a repetitive flow so that every PIM is the PSM of a previous transformation.

23

2. Background

Figure 2.2.: MDA Multiple Model Tranformations

2.2.1. Areas Of Application

A common use of Model Driven Software Development is to generate Applications out of in-
stances of predefined meta models. A target language independent tool for this is Actifsource1.
A specified meta model can be easily transformed into an graphical editor. The modeled output
of that editor can be used to generate exectuable code (e.g. Java). It is built on Eclipse and
provides a large set of tools for the meta modelling process.

Besides the generic use of application development for desktop machines or servers there
are other fields which gain more and more importance. The mobile application development
industry is rapidly growing due to the intensive use of mobile devices. Especially mobile
applications for Android2 operating systems increases significantly as it can be seen in Figure
2.3.

1Actifsource - http://www.actifsource.com/
2Android - http://www.android.com/

24

2.2. Model Driven Software Development

Figure 2.3.: Market Of Mobile Operating Systems 2012-2014 (Source: statista.com)

For the development of mobile Android applications Google provides a Java based Application
Interface (API). Using this API A. Parada and L. Brisolara developed an approach towards
model driven Android application development in [PB12]. The two types of models which are
needed are completely based on UML syntax. UML class diagrams are used to define classes
and their relations and sequence diagrams describe their behavior and semantic guidelines.
The models are used as input for the also self-developed project GenCode which generates
Java code out of UML syntax based models. Figure 2.5 shows their presented show case of the
mobile device game Snake. The grayly highlighted classes represent classes of the API, classes
having a transparent background are self modeled classes of the game.

An already existing software for model driven software development for Android and iOS3 is
MD2. It is a set of plugins for Eclipse which allow the cross-plattform development of native
business apps.

A completely different and one of the most challenging fields in software engineering is the
development of embedded systems, especially in the automotive sector. Due to the increasing

3iOS - https://www.apple.com/de/ios/

25

2. Background

Figure 2.4.: Snake Example - UML Class Diagram To Code Transformation

amount of electronic driven innovations, software systems emerge to a central aspect in this
industry. Challenging about the application of MDSD to embedded systems is that almost
everything wihtin such systems must be developed from scratch. Only some very little parts
can be reused, compared to a common desktop software. Since most of the code is often
written in C or even lower level programming languages many object oriented patterns can not
be applied to them.

In [VSK06] the focus is the communication between several embedded systems. The ap-
proach is to create a specific container which lays upon an embedded device’s operating system
and provides a certain level of abstraction with reusable components and constructs. Therefore
the meta model specifies different aspects (component types, interfaces, connectors among
components, hardware topology, network types, etc). A single component (C)has still be
designed and developed manually regarding the given container interfaces.
Modeled containers are used by a code generator to create the required infrastructure code for
the embedded environment.

Another field is approached in [MSGR09] which addresses the security of Smartcards. Smart-
cards are used in electronic passports, payment or loyalty cards or mobile sim cards. The major
ingredient of them are their cryptographic protocols to secure linked data. The developed
software SecureMDD provides the development of secure Java card codes based on a set of
UML based meta models (class, deployment and activity diagrams). By defining reusable
constructs a certain level of security can be granted due to model-to-code transformations
which focus on security. A concrete software is currently not available on the market.

26

2.2. Model Driven Software Development

Figure 2.5.: MDSD Approach In An Intercommunicable Embedded System

2.2.2. Advantages And Disadvantages

By using MDSD developers gain a lot of ease when creating new complex systems. Apparently
it is not possible or very unlikely to create a system only based on automated code generation
out of formal models. Specific input from developers is still needed but it is significantly
reduced. According to [SV06] there are some obvious benefits but likewise some serious
disadvantages.

Advantages resulting of MDSD:

Development Speed Achieved through the already mentioned automated code generation.

Software Quality The predefined models and the automated transformation result in a deter-
mined state of code and software quality.

Manageability of Technical Changes Changes that have to be made to a piece of code or
software are simply made in the modeled representation of it.

Redundancy Avoidance As long as the automated code generation does not replace or alter
any user specified code a lot of changes can be done quickly by editing the model.

Reusability Defined models and transformations can be reused to imitate a software produc-
tion line.

27

2. Background

Disadvantages resulting of MDSD:

High Initial Effort Repetitive work is significantly reduced, but the initial effort of defining a
model and creating transformations and generations is very high.

Complex Code Generator The generator has to differentiate manually added code and auto-
generated code.

Code Loss If the generator does not take care of manually added code it will be overwritten
most probably.

Complex Configuration Management Not versioning auto generated code saves resources
but it needs a lot of customized configuration adjustments.

Runtime Debugging Using an interpreter to process a model could result in inevitable runtime
debugging.

Multiple Technologies Often multiple technologies are necessary for modeling and processing
the models and the compatibility between them can not be taken for granted.

The advantages and disadvantages of Model Driven Software Development have to be con-
sidered and prioritized individually for every project or task. However, there are inevitable
risks which may occur in different situations when using a MDSD approach or solution which
were stated by Johan Den Haan [DH09]. In section 2.2.1 different arreas of application are
described which definitely have individual risks but some risks apply to all of them.

Increased Rigidity In comparison to manual code development a large degree of design
freedom gets lost when using MDSD. Since a model is generally a higher level of
abstraction the developer or designer has to specify less but generate more. Smaller
changes can often not be applied to a generalizing model.

Predefined Flexibility Using predefined models does not provide much flexibility unless it
is explicitely designed. Limiting factors are the usage of the tool (or tools) to perform
MDSD and the Domain-Specific Languages that are used. The higher the level of a DSL
is, the more hard-coded code fragments will be used from the framework.

Project Member Roles The common software development process has software program-
mers and architects which code the and design the software. Since MDSD builds a certain
bridge between Business and IT new roles are defined for such a project. Programmers
used to move into a “meta-team” that defines the factory of a model to code generation.
The solution is now build by “business engineers” which have to combine background
knowledge and the business requirements into such a model. Acquiring these rare
employees having this skill set can be very difficult.

28

2.2. Model Driven Software Development

Difficult Model Version Control Conventional version control systems like Subversion4 or
Git5 work fine for actual code or textual documents. The versioning of a large and
complex software in a graphical representation can be much more difficult when working
in large teams.

Incomplete Modeling Tool In case a modeling tool (or model-driven software factory) is not
finished at the point of its initial use in a project huge risks can be the result of applying
it. In case there are DSL or meta model changes in the middle of a MDSD process it may
result in incompatibility to the already modeled software.

Awareness Of Modeling Possibilities A huge risk is the missing awareness of technical possi-
bilites of the modeling process. In case some unaware employee makes promises to a
customer about features or constructs which are not realizable, a lot of credibility and
trust can get lost.

Neglect Of Project Objectives Using a MDSD tool and focusing on its advantages may result
in neglecting other important project objectives like project management or sticking to
some certain process.

4Apache Subversion - http://subversion.apache.org/
5Git - http://git-scm.com/

29

3. Condition Of The Prototype

This chapter describes the state of the already existing technology. The exploratory work
[Sch13] covers certain simple model definitions and transformations which are realized in a
set of Eclipse plugins. This prototype provides modeling of REST applications on a very basic
level and conduces as a first proof of concept. Since the used technologies remains the same
during the enhancements of this thesis all technical details are described in chapter 6.

The tool allows to graphically model a REST web service from different views, whereby a
view corresponds with at least one model or a combination of models. By designing abstract
relations between objects and mapping them to resources for the web service, JAX-RS1 stubs
are a possible result of the system. Additionally a HTML documentation can be generated
which lists the available paths and the provided HTTP methods of the generated web service.

The concept rests upon several models that are related to each other. Every model pic-
tured in Figure A.2 can be generated by using its predecessor from an upper level. Models
which have an opaque green background are supported by a graphical diagram editor, gray
and orange models only have an XML representation which can be altered. The generation
itself is only unidirectional so transforming back and forth is not possible. Starting on a generic
basis, the first model types are platform independant. Modeling within these levels does
not influence any specific implementation for desired target applications. Further, to obtain
a specific implementation or Platform Specific Model certain transformations have to be
applied to the previous Platform Independant Models.

1JAX-RS - https://jax-rs-spec.java.net/

31

3. Condition Of The Prototype

Figure 3.1.: Eclipse RESTModeling Prototype Models

3.1. Platform Independent Models

3.1.1. Domain Model

The Domain Model provides the first and initial possibility to graphically model objects of the
domain the web service should be related to. Within this model the user can design object
to object relations with an aggregation. The object itself can contain several attributes of a
primitive type and methods (Figure A.1). Every modeling object except the aggregation has
an optional author and description. At first appearance this looks quite similar to a UML class
diagram, however it does not cover the same functionality. Hence it is more like a subset of

32

3.1. Platform Independent Models

UML.
The resulting model acts as the basic application interface but does not include any REST
characteristics yet. To get a closer approach to a REST web application some more user input
is needed which intentionally is not covered by the Domain Model.

3.1.2. Gen Model

The term Gen Model is an abbreviation of Generic Resource Model since it is not the final
version of a Resource Model. This model is an intermediate stage between the domain and the
Resource Model. It is generated by certain choices a user makes during the transformation
process of a Domain Model. Therefore it influences the transformation of the Domain Model
into the Resource Model. To summarize, the Gen Model is a Domain Model enhanced with user
input which will be transformed into the Resource model. So there is no direct transformation
between domain and Resource model.

Currently there are two wizard-steps that have to be performed to transform a Domain
Model into a Gen model. Due to the fact that POST is not an idempotent operation, the first
step is to define what kind of CRUD strategy should be applied for every Domain Model object.
Depending on this decision certain stubs for GET, POST, PUT and DELETE are created in the
resulting Resource Model. The different choices are as follows:

Create Empty Resources, Update Them Afterwards If this option is selected and a client
wants to create a new Resource A by requesting a superior Resource B two steps have
to be performed (Figure 3.2). First of all the client sends a POST request to create a new
resource to the location of Resource B. This request contains no special data input at
all. The server creates a new empty Resource A and returns its location in a response
header field with the HTTP status 201 (created). After receiving the location of the
empty created Resource A the client requests this location via HTTP PUT and sends data
for this resource. The web service updates the resource for the given location and returns
in case of success the HTTP status 200.

This strategy should be used if the creation of a new element should be ensured and
additional communication overhead is not crucial. In case the update of the method fails
it can be repeated until it succeeds without creating new filled resources. Additionally
empty, not updated resources can be deleted after a certain amount of time to reduce
redundancy.

33

3. Condition Of The Prototype

Figure 3.2.: CRUD Alternative I

Create Filled Resources Assuming the same precondition as for the first option (creating a
new Resource A by addressing a superior Resource B) only one step has to be done for
this type of strategy (Figure 3.3). The client sends a single POST request to the location
of Resource B already containing data for the new Resource A. The web service tries to
create the new resource with the provided data and returns the HTTP code 201 with the
location to the newly created Resource A. In case the process fails before returning the
location of the new resource the client does not receive a response. Due to a missing
reaction from the server, the client would most likely retry its request and generate the
new resource for the second time. In case this process fails again this might end up in a
huge garbage of data at the server side after some time.

This strategy does not have the communication overhead of an additional request,
but it might cause issues regarding data integrity and redundancy.

34

3.1. Platform Independent Models

Figure 3.3.: CRUD Alternative II

No HTTP Methods In case of selecting this strategy resources will be generated within the
resource model but they will not contain any HTTP methods at all.

The second step of the wizard allows to influence the creation of artificial ListResources to
export the aggregation function from a Domain Model object to an additional object in the
Resource Model. There are only two selectable options for this step, but are depicted in detail
below.

Create Additional ListResources In case additional ListResources should be created, every
aggregating relation of the Domain Model ends up in an artificial ListResource construct.
The aggregating object (Object A) and the aggregated object (Object B) in Figure 3.4
are transformed directly into a SimpleResource element of the Resource Model. The
aggregating link is transformed into a ListResource which is referenced by the resource
object (Resource A) that was transformed out of the aggregating Domain Model object
(Object A). Additionally it aggregates the the transformed Resource B and manages its
instances. Requesting and creating objects of the type Resource B has to be done by
addressing the ListResource.

35

3. Condition Of The Prototype

Figure 3.4.: Mapping A Domain Model Aggregation To The Resource Model

Do Not Create Additional ListResources Not creating additional ListResources still trans-
forms both objects to SimpleResources but the aggregation is still done by the former
Object A (now Resource A). Creating new resources and retrieving a list or a certain set
of resources has to be done by addressing Resource A.

After applying all custom features the final Gen Model file is created and transformed into the
Resource Model.

3.1.3. Resource Model

The root of a Resource Model instance is the ResourceDiagram element (Figure A.2). The Re-
source Model itself consists of SimpleResources and ListResources which are either connected
by an Aggregation or a Reference. Every resource has a subset of methods whereby every
method is identifiable by a type (GET, POST, PUT, DELETE, OPTIONS, HEAD). These methods
have different lists of media types which they can consume and produce. In case a method
needs a parameter that has to be passed to perform an action, a list of parameters can be set
for it. ListResources can be used to handle a list of SimpleResources and already contain, in
case they are auto-generated, HTTP methods with querying parameters to ease requests for
subordinates of this list.
The Resource Model diagram editor allows to graphically add and alter HTTP methods for
every resource which is equal to a domain object before the transformation, except any added
list resources from the interim stage (Gen Model). By defining consumption and production
types, different representations of a resource can be realized. After completing this model, the

36

3.2. Platform Specific Models

applied mappings of the HTTP methods to resource elements or additional, new objects can be
transformed into the Deployment Model without any further user input.

3.1.4. Deployment Model

The Deployment Model provides a generic basis for the URI structure of the application
interface by mapping resources to a single user specific link. Dynamic parts in URLs are
identified by curly brackets ({ }) and can be used to query for attributes related to the Domain
Model.

3.2. Platform Specific Models

The platform specific models are needed for transformations of the application abstraction into
a specific desired piece of code. Currently there are two different models that can be used
to get a final "executable" result, the HTML Doc Model and the JAX-RS Model. Both of the
models are used by a code generator to create a JAX-RS web service with empty stubs and
the related documentation in HTML. The corresponding Ecore diagrams of the two platform
specific models are kept simple, thereby it is not necessary to illustrate them in here.

37

4. Deficits Of The Prototype

The current state of the REST Modeling system is still in need of improvement. To state the
deficits of the current system a show case is used, which should be possible to design by
using this tool. The example describes several interactions that a customer can perform while
interacting with a coffee shop. Figure 4.1 describes an abstract structure of this model. To
maintain simplicity every order has a list of Beverages and respectively a single Receipt. In
case a beverage needs a customized flavor, a set of different Additions should be optionally
selectable. After adding all necessary beverages to the order it can be payed and the customer
receives a receipt. This chapter covers the listing of issues that are in need of improvement by
utilizing every view and model from top down which the REST Modeling tool provides.

4.1. Modeling The Domain Model

The current toolbar of the graphical domain editor provides three objects (Object, Attribute,

Method) and a single link (Aggregation-Link) to connect them with each other. An Object

contains Attributes and Methods, whereby a Method and an Object can contain Attributes. A
detailed graphical structure is depicted in Figure A.1. The multipurpose usage of the Attribute

modeling object (highlighted in Figure 4.2) leads to the first inconsistency. Actually a Method

should contain proper parameter objects to distinguish between an Object’s Attribute and a
parameter which can be passed to the Method. Additionally not every property that applies
to an Attribute is valid or reasonable for a method parameter (e.g. property: unique). As
a result modeling the pay() method for an Order object for the given show case would be sloppy.

If two modeled objects have some sort of relation or connection the Aggregation-Link can
be used to connect them. Since not all the object-to-object relations are aggregations (show
case: Order - Receipt), a link type for associations is missing. Hence an accurate distinction
between a real aggregation and a simple one-to-one relation is not possible its inevitable to
use the Aggregation-Link to connect them. The example in Figure 4.2 forces an aggregation
between the coffeshop and Bar objects instead of a simple reference or association.
Furthermore the concept of cardinalities was implemented by adding them to the property list
of an Aggregation-Link. However they do not show up in the graphical editor yet.

39

4. Deficits Of The Prototype

Figure 4.1.: Coffee Shop Show Case

4.2. Modeling The Resource Model

After transforming a potential Domain Model into a Resource Model every Domain Model object
is mapped to a SimpleResource. The intermediate Gen Model allows creating ListResources

for aggregated links, in case the user demands it. The graphical editor provides the two
mentioned resource types, methods which act as HTTP methods for a resource and related
parameters that can be used when invoking a HTTP method. Resources can either be connected
via a Reference or Aggregation link.
Regarding the given show case, the resulting Resource Model of the transformation has a lot
of inconsistencies. A real root resource is not generated automatically, whereby every object
which has no incoming edge in the Domain Model graph becomes a root or “entry point” for
the web service. Discovering a complex web service graph would be partly impossible if not

40

4.2. Modeling The Resource Model

Figure 4.2.: Domain Model Deficits Illustrated By An Example.

every root resource is already known.
Even though the Resource Model provides two different ways of connecting resources, the
transformation process is not capable of identifying a reference in the Domain Model from
a real aggregation. This results in an additional ListResource for every newly transformed
SimpleResource, in case the user specified wizard input demands it. The missing possibility of
a simple one-to-one relation and the fact of a “forced” aggregation influences the outcome of
the Domain Model transformation and requires a lot of manual modeling work to achieve it in
a Resource Model.

The methods within a resource that represent HTTP methods are specified by a type which
can be set in their properties. All methods have the same class specification, whereby every
method has a certain subset of properties which do not fit to the method description specified
by the Network Working Group ([FIa99]). A full property list contains produce and consume
entries for requests and replies independent of their method types. So in case a method type
does neither have a body part in the reply nor in the request it would be possible to set a
consume or produce property. HTTP methods which are currently supported and match that

41

4. Deficits Of The Prototype

inconsistency are OPTIONS and HEAD. Thus a proper and precise modeling of performable
interactions with a resource are not possible.

At a closer look the only obvious connection between the Domain Model and the gener-
ated Resource Model are the SimpleResources. Attributes and Methods, as well as related
Parameters are ignored during the transformation process and not inserted into the Resource
Model in any way. Any information from the Domain Model which is necessary to design the
Resource Model has to be looked up in the domain diagram file. In case the pay() method
of the Order domain object should be somehow realized within the Resource Model, several
approaches can be used. The invocation of the domain method with its parameters can be
mapped to any arbitrary resource method using the given resource parameter objects, but
there is no distinct way. Due to these missing structural guidelines a lot of effort has to be
done to build, parse and process generic parameters that are sent to a resource method (HTTP
method) to achieve a functional method call.

4.3. Modeling The Deployment Model

The Deployment Model is used to specify URLs to the given resources from the Resource Model.
The meta model structure of the Deployment Model combines a Resource Model element with
a string or mapping element which acts as a local identifier for this resource. If a web service
has a specific root (e.g. /coffeeshop) and a subsequent resource BarResource has the URL
/bar, it would be possible to send requests to /coffeeshop/bar. In Figure 4.3 there are two
ways to address the OrderResource resource (or, if desired, an overlying list). The first one as
a subsequent resource from KitchenResource and the second one as a subsequent resource
from BarResource. Since there is only one property field to specify the URL, it would not be
possible to have an individual name for each incoming edge. This reveals a wrong fundamental
approach of the Deployment Model. Instead of mapping resources to URLs, every linking
element from the Resource Model should have a separate URL to provide individual access to
the modeled resources.

42

4.4. HTML Documentation Generation

Figure 4.3.: Deployment Mapping Inconsistency

When filling the URL mapping parts for every resource (prospectively links) the user has to
know all the Domain Model details for that resource to create dynamic URLs, if needed. The
Deployment Model editor like every other model editor is not coupled or related directly to
others. This results in a bad usability caused by an increased overhead for looking up relations
or attributes while editing or setting up URL mappings.

4.4. HTML Documentation Generation

After finishing the URL mappings an HTML documentation can be generated by documenting
elements of the resource and Domain Model. The documentation lists all resources of the
Resource Model and their URL mappings specified in the Deployment Model. A detailed view
of a single resource contains metadata (author, comment, ...), as well as the supported HTTP
methods describing their consumption and production types. Every entry of a resource has
a separately listed but linked domain object, in case it exists. A relation between a Domain
Model element and the corresponding resource element is not visible.
Further the HTML documentation should be a reference document for a single resource’s
details and relations, hence an absolute URL for every given resource should not be needed.
The web service itself should provide links to linked resources in the response to provide
service exploration which is led by the server side or chosen by the client side. The additional
Domain Model information should be combined and integrated into the given related resource
information.

43

4. Deficits Of The Prototype

4.5. REST Compliance Of The Result

In case all models are completely modeled and defined the RESTModeling application allows
creating a standalone REST web service. This web service provides several Java method stubs
for the modeled HTTP methods to implement the missing logic for every resource. Although
real content is missing the service should be usable in a “RESTful” manner. To verify what
kind or level of “RESTfulness” the outcome of the current system matches, the features of the
JAX-RS web service will be mapped to the requirements made by the Richardson Maturity
Model from page 19. In the following every requirement of each level beginning at the initial
level zero to level three is analyzed. A level is only valid if all conditions of every predecessor
level and those from the level itself apply to the application.

Level 0 The initial Level requires the use of the HTTP transport with at least one of the
two HTTP methods GET or POST. Since the current system does not support any other
protocols besides HTTP it is obvious that this condition is fulfilled, even though it is
theoretically possible to remove all the HTTP methods when designing the Resource
Model of an application. In this specific case no interaction would be possible at all, due
to missing stubs in generated code. Nevertheless for this assessment the responsible user
or designer should always focus on a correct and runnable application. Intentionally bad
usage of the system is not assumed.
The second requirement is a single service endpoint that can be addressed for requests.
The transformation of the Domain Model into the Resource Model maps domain objects
with no incoming edge to resource objects tagged as a root resource. The existence of
multiple endpoints is possible, but there is at least one. Thereby the second requirement
for this level is fulfilled and the outcome is valid for this level.

Level 1 The only additional condition to fulfill this level is that resources are accessible by
different URIs. By using the given transformations from domain to resource and resource
to Deployment Model every object of the Domain Model is at least mapped to a single
resource or optionally to a list of resources managed by a superior list resource. After
combining them into a corresponding Deployment Model every resource has its own URI
sequence or subsequence.

Level 2 To fulfill level two of the maturity model multiple HTTP methods have to be supported
by the web service. The assumption that the designer wants to build a REST compliant
application applies here as well. Basically there are six available HTTP methods which
can be used in the graphical Resource Model editor: POST, GET, PUT, DELETE, OPTIONS
and HEAD. Since the required methods for the operations Create, Read, Update and
Delete are the first of the four provided, the web service will have a guaranteed REST
compliance for level two. The additional methods OPTIONS and HEAD are just optional
features that can implemented in the service stubs and do not further influence the
compliance.

44

4.6. List Of Stated Issues

Level 3 The provision of HATEOAS (Hypertext As The Engine Of Application State) is the final
requirement. It ensures that links to other resources, alternatives or representations are
sent as meta information when requesting the service. These links can be either wrapped
in a compartment in the message body or returned to the client in the header field of the
response. Using HATEOAS makes the discovery of a service more self explaining, just by
following a link in a response. The current result of the application does not return any
type of links at all, neither in the header nor wrapped in the message body. Consequently
a currently generated service does not fulfill the final condition for level three.

As stated, the present outcome of the code generation is not completely REST compliant
regarding the given model. Chapter seven of the original thesis (“Zusammenfassung und
Ausblick”) [Sch13] already lists the introduction of this feature as a required precondition to
gain a “RESTful” application.

4.6. List Of Stated Issues

In the following, the issues that were mentioned above in this chapter are outlined to provide
a rough overview. In chapter 5 all model enhancements, structural improvements and code
changes to mend the deficits of the current system will be described in detail.

1. Domain Model

a) Avoid Ambiguous Attribute Objects.

b) Aggregation-Link as the only link type.

c) Missing cardinalities.

2. Resource Model

a) Missing single root resource, entry point.

b) Every Domain Model link results in a ListResource.

c) (HTTP) Methods contain redundant properties.

d) Missing integration of Domain Model methods.

e) Missing integration of Domain Model attributes.

f) Missing visible connection in the graphical modeling editor with the Domain Model.

3. Deployment Model

a) Multiple URL mappings of a single resource are not possible.

b) Automatically generated URL properties.

45

4. Deficits Of The Prototype

4. HTML Documentation

a) Missing integration of Domain Model information into a single resource’s details.

b) URLs are not needed in the documentation, references should be supported.

5. REST Compliance

a) The generated outcome is not REST compliant according to Richardson Maturity
Model level three.

46

5. Enhancements

As shown in chapter 4, the current state of the REST Modeling system is still in need of
improvement. Major as well as smaller changes in model the structure and the code have
to be made to provide a better usability and quality of the outcome when modeling a web
service. This chapter covers all necessary steps to improve the listed deficits. To provide a
structural approach of every enhancement the list of issues from section 4.6 will be processed
in detail step by step. A solution to a deficit does not cover a code based description of the
improvement. Most of the time they describe a general abstract approach which will be realized
and implemented in chapter 7 (Implementation).

5.1. Domain Model

The strongest inconsistency of the Domain Model is the insufficient definition of its meta model.
A lot of details are simply omitted which results in a bad usability and in a badly formed model
structure.

Deficit 1a.) Avoid Ambigous Attribute Objects

To avoid the usage of an Attribute element as a member of an Object and a Method, a new
domain modeling object Parameter is added to the Domain Model. The new Object has a
type, a name as well as the additional comment and author properties of every object. This
Parameter can only be added into Method objects.

Deficit 1b.) Aggregation-Link as the only link type

Basically there is the need of two different link types for different semantic use cases. The
first type is semantically very close to a directed association from the UML notation. It is used
to connect two objects with each other and to describe a one way “knowing” relationship.
For example the Order and Receipt object from the show case could use a unidirectional
association to navigate from an order to a receipt. This relationship is not necessarily a
one-to-one relationship. By combining cardinalities with the association link multiple elements
can be associated to a single superior object (e.g. Bar - Order).

47

5. Enhancements

The other type which is needed is some sort of the UML notation’s composition. A com-
position represents a special dependency of two objects. It is used in case the linked object is
required as a part of the whole and could not exist on its own. A perfect example for this is the
relation between a Beverage and a set of its Additions.
An addition could not exist without a beverage but it is sometimes needed to refine it. Therefor
an addition could be a shot of milk, some cream or a special additional taste.

So far the semantic differences for the domain modeling are made clear, the resulting changes
for the Resource Model will be described in the upcoming section. Both of the new link types
have all the Aggregation-Link’s properties since there is no difference in their usage.

Deficit 1c.) Missing Cardinalities

Even though cardinalities were added to the model it was not possible to set or edit them
in any way. To provide a correct syntactic and semantic cardinality feature the super class
of every linking object (Aggregation-Link, Association) has to have a minOccurence and
maxOccurence property and the cardinalities which are related to a link have to appear in the
graph.
Using the UML notation regarding multiplicities, a connection between two single objects (e.g.
Order and Receipt) would result in a link label displaying a simple 1 at each end of it. This is
necessary due to the UML notation’s support of bidirectional connections between objects.

Since the Domain Model only consists of unidirectional links it is reasonable to support a
simplified concept of cardinalities between two Domain Model objects. The generic structure of
a cardinality label is [Link.Name] [Link.minOccurence] ... [Link.maxOccurence] whereby
the start of an edge is always assumed to be a single entity. The properties Link.minOccurence
and Link.maxOccurence identify the minimum and maximum amount of entities of the target
object.

The resulting possible interconnections for a Domain Model graph are depicted in Figure
5.1. The one-to-one association for Order and Receipt would be read as: An Order object has
minimum one and maximum one (=exactly one) Receipt object. Accordingly the one-to-many
Composition: A Beverage object has minimum none and maximum unlimited Addition objects.

48

5.2. Resource Model

Figure 5.1.: Interconnection Possibilities In The Domain Model.

5.2. Resource Model

Since there are a lot of deficits regarding the modeling process with the Resource Model the
following enhancements are one of the key aspects that have to be improved.

Deficit 2a.) Missing single root resource, entry point

Currently every Domain Model object with no incoming edge is transformed into a root
resource element. This may result in a set of resource elements which all act as a root node.
The need of an absolute superior root node is necessary to provide a proper discovery of the
REST web service.

Inserting a root node into the Resource Model can be forgotten by a developer. There-
fore an inevitable way is needed so the root will be created automatically. An appropriate
environment to set details for a root node is the Domain Model Diagram root. The root node
of a Domain Model diagram is a separate object which is not visible in the toolbar but is
automatically available as soon as the model is created. Besides the current properties author
and comment, a new property (application-context) is added to define a context for the
elements of a Domain Model. It needs a default value in case the user does not set it. This

49

5. Enhancements

property is used to create a single and absolute root node in the Resource Diagram. By altering
the transformation process from the domain to the Resource Model, a root resource has to be
generated using the application-context. The additional new root resource has to link to every
former root of the Resource Model to provide its precedence.

The artificial root resource is required for the enhanced Deployment Model structure which
is described below in this chapter. Due to the fact that the new Deployment Model assigns
URLs to linking elements instead of resource elements the root resource is used to create
an incoming link for every transformed “root” object of the Domain Model. The Resource
Model root element is omitted when creating the platform specific JAX-RS Model. It is used to
populate the base URL property of the web service.

The introduction of the application context property results in a change for every model
up until the final generated web service code.

Domain Model The Domain Model is used to specify the application context as a property of
its absolute root element (DomainDiagram).

Gen Model The Gen Model stores the DomainDiagram property in its absolute root due to its
participation in the web service generation.

Resource Model When transforming the Gen Model into the Resource Model the application
context property is used to create a single superior resource element.

Deployment Model The application context property is not represented in the Deployment
Model at all. Only the links from the Resource Model are added, which have its corre-
sponding resource element as a source.

JAX-RS Model The generation of the JAX-RS Model uses the value from the Gen Model as the
baseURL property for the web service web.xml file (url-pattern).

50

5.2. Resource Model

Figure 5.2.: Addition Of The Resource Model Root Resource.

As an example Figure 5.2 depicts this scenario for the show case of this thesis. The two objects
Kitchen and Bar are simply translated into resource elements. The additional root resource is
named after the application context of the Domain Model. The additional links to the former
Object Model roots are the actual enhancement. The resulting Deployment Model would
provide URLs for the following list of links. Without this enhancement the first two links would
not be definable.

• CoffeshopResource (root)-To-KitchenResource

• CoffeshopResource (root)-To-BarResource

• KitchenResource-To-[SuccessorResourceA]

• BarResource-To-[SuccessorResourceB]

Deficit 2b.) Every Domain Model link results in a ListResource

The enhanced set of links and the newly introduced cardinalities build the major prerequire-
ment for this improvement. The transformation into the intermediate Gen Model has to
differentiate between a Domain Model Composition and Association regarding their given
cardinalities. The additional user selection of an additional ListResources influences the
transformation of the links significantly.

The Resource Model is a completely different view designed on different semantic assumptions

51

5. Enhancements

and rules. As a consequence the Resource Model does not support any cardinalities for links
because it would not be reasonable. Links are only used to visualize the existence of a connec-
tion between two resources. The type of link (References or Aggregations) is only needed to
make a visible sematic difference between them. It is irrelevant for further transformations
(e.g. Deployment Model, HTML PSM Model).

Due to the different semantics of the domain and Resource Model specific rules have to
apply for a transformation process depending on the user selection. There are two main
identifiers for a transformation of Domain Model objects and their interconnection. The
first one is the user selection which determines whether to create an artificial ListResource
in between two transformed resources (former domain objects) or not. The second one is
maxOccurence property of a cardinality which influences the amount of resources that are
linked. Combining them results in four possible cases for each type of Domain Model con-
nection (one-to-one Association, one-to-many Association, one-to-many Composition and for
the sake of completeness, one-to-one Composition, although the use of this construct is very
unlikely). Since the type of link does not influence the transformation process Figure 5.3 only
depicts transformation rules for an Association. Every rule can be applied to a Composition

in the exact same way.

In case the user wants to create additional ListResources a simple one-to-one associa-
tion (or composition) between objects is transformed into a one-to-one reference between
resources. In contrast, a one-to-many association or composition is transformed into a cus-
tom construct. The source of the connection will be transformed into a SimpleResource

(BarResource). The target is transformed into a ListResource (OrderListResource) which
has an incoming reference from the transformed source resource (BarResource) and an outgo-
ing aggregation link to another SimpleResource (OrderResource) which represents a single
transformed target resource itself. The ListResource (OrderListResource) can be used to
get a certain or even filtered list of OrderResources and to create new OrderResources.

If no additional ListResources are required the one-to-one link transformation for Domain
Model links obviously remain the same. The one-to-many connection will now result in a simple
aggregation between two SimpleResources (BarResource, OrderResource) whereby new in-
stances of an OrderResource are created via accessing the aggregating parent (BarResource).

Deficit 2c.) (HTTP) Methods contain redundant properties

To improve the deficit that there is no strict separation between the different model types,
lots of additional changes have to be made in the modeling structure. Every HTTP method in
the Resource Model can be queried with parameters, but actually not all the HTTP methods
need parameters or provide a request body consumption or response body production. So
as an approach to specify each HTTP method properly it is necessary to introduce a certain

52

5.2. Resource Model

Figure 5.3.: Domain-To-Resource Link Transformation Rules

resource object for every type. The previous element Method which combines and represents all
types is replaced by a GetMethod, PostMethod, PutMethod, DeleteMethod, OptionsMethod

and HeadMethod. All of them need to be specified with different attributes and different child
elements.

The current structure of a Resource Method object is defined as follows:

The properties Consumes and Produces in Figure 5.4 both have a list of Mutlipurpose Internet
Mailextension (MIME) types. These MIME types which refer to the body of the request or
response are assigned individually. The method type is replaced by the new resource type
itself. Since the return code property depends on the processing of a request it can not be set
in general for a HTTP method type.
In the following a reasonable set of properties and child elements (parameters) are mapped to

53

5. Enhancements

Figure 5.4.: Resource Method Structure Of The Current System

each method, regarding the stated characteristics of the Network Working Group ([FIa99])
and assumptions about the modeling process using the RESTModeling tool.

GET A HTTP GET method needs parameters that can be passed in a request. Resources which
require a parameterized GET method are for instance ListResources with query parame-
ters to return a specific subset of its subordinated list. Further this type of method needs
no property of a MIME type list for incoming input due to a missing body in an HTML
GET request.

54

5.2. Resource Model

Figure 5.5.: Prospective Resource GetMethod Structure.

PUT In case a PUT method updates a resource and returns it in a desired format to the user
it may consume and produce data for and of this resource in different MIME types.
Consequently it is necessary to provide parameters and the possibility to set consuming
and producing mime types for the request and response body.

Figure 5.6.: Prospective Resource PutMethod Structure.

DELETE According to [FIa99] a DELETE method may return an entity in its response body. For
the context of this thesis we determine that this is not necessary. Hence the produce

55

5. Enhancements

MIME type can be omitted for this method. In contrast a property list of MIME types for
incoming request parameters is required.

Figure 5.7.: Prospective Resource DeleteMethod Structure.

HEAD, OPTIONS The HEAD method is used to return metadata of a entity which is available
when addressing a certain URL. All the information is stored in the header whereby
a consume or produce property as well as parameters are not necessary. The OPTIONS

method represents an information interface for navigating further starting at the re-
quested URL. It can, but should not contain a message body containing this information.
For the purpose of the modeling tool HEAD and OPTIONS do have the same properties -
none.

POST The exception is the POST method which will be described in detail in the next subsection.

2d.) Missing integration of Domain Model methods

Integrating Domain Model methods and Domain Model object attributes are approached
separately. Yet, there was no possibility to integrate any existent method from the Domain
Model into the Resource Model. The previously omitted structure of a PostMethod is used to
integrate them. Every method which is defined in the Domain Model will result in a separate

56

5.2. Resource Model

interaction in a resource object embedded in a PostMethod object. Since a HTTP POST provides
the possibility of a request and response body it can be used for the input and output of a
method.
A related example is the pay() method within the Order domain object. It is mapped to a
single OrderResource as an Interaction object. Assuming that there are multiple methods for
a Domain Model object, every object will be transformed in a single Interaction. As stated,
every interaction acts as a service end point. Thus, it is necessary that the user can define a
list of consuming and producing MIME types. Parameters of a Domain Model method are not
necessary for the graphical modeling of the Resource Diagram. They do not influence any
structural coherences but are required to perform proper requests with a PostMethod resource.

The Interaction object is the only object where the previously removed attribute Return

Code (HTTP return code) is applicable. HTTP codes are used by default for every interaction
with a HTTP operation. The codes are returned to identify the state of the request which
was sent to the server. By providing a return code in case of a successful method execution
the service developer has the choice to customize a HTTP response. Thereby it is possible to
individualize the behavior of a web service for every modeled interaction. Since the return
code can only be modeled for a successful method execution, other HTTP operations (GET,
PUT, DELETE, ...) do not have this property. They have to be implemented manually in the
web service code.

Compared to other invocable HTTP methods an Interaction needs no separate parame-
ter in the modeling toolbar. Information and data is passed via the request body. The different
consumable MIME types have to be supported by the corresponding code in the JAX-RS web
service. In every request addressing this code, the body has to contain the name of the
interaction, a list of method parameters (specified in the Domain Model) and the value for
each parameter.
The resulting structure for a resource can be seen in Figure 5.8. It contains a subset of methods
including a PostMethod embedding Interactions.

57

5. Enhancements

Figure 5.8.: Improved Structure Of A Resource With A Detailed View On Interactions.

Figure 5.9 represents an example for an invocation of the pay() method from the coffee
shop show case. The highlighted parts colored in green represent the Interaction itself
(former Domain Model method). The Consumes attribute (highlighted gray) of the interaction
predefines a set of accepted MIME types. In this particular case the example request uses an
XML structure. The root element of the XML request is the interaction containing a subset of
parameters. These parameters are only modeled and defined in the domain method (orange)
due to their irrelevance for the Resource Model. Using the given domain and Resource Model
extract a request can be built very easy when addressing the OrderResource.

58

5.2. Resource Model

Figure 5.9.: Interaction Request Structure Demonstrated With An Example.

2e.) Missing integration of Domain Model attributes

Since the Domain Model methods are mapped to Resource Model Interactions, the attributes
of domain objects still need to be included. Processing attributes of a domain object in its
corresponding resource object causes no real benefit or improvement and there is no need for
a SimpleResource to own Domain Model attributes.
An advantage of transforming attributes from the Domain Model into the Resource Model
is gained when using them within a ListResource. Precondition for the integration of Do-
main Model attributes is that a simple object from the Domain Model is transformed into a

59

5. Enhancements

SimpleResource (e.g. Order object) and the superior ListResource during an intermediate
step. This ListResource links and manages every SimpleResource object that was transformed.
When addressing this list a set of SimpleResources is returned. The set can be modified during
the request by start and stop parameters (Integer). These parameters are similar to the LIMIT
function of the MySQL syntax for a SELECT query [Gie12]. The start parameter indicates the
index of the first element, the stop parameter indicates the last index of a resource element in
the whole list. In case of wrongly set index bounds the returned set will contain no entries at
all.

Figure 5.10.: Domain Attribute To ListResource Parameters Mapping.

By enhancing the transformation process, attributes of the related Domain Model object are
transformed into query parameters of its related list (Figure 5.11). Hence it is possible to not
only influence the number of results that are returned, the list can be filtered for certain entries
by querying with values for the added parameters (attributes). The compulsory precondition
for this feature is the addition of ListResources.

2f.) Missing visible connection in the graphical modeling editor with the Domain
Model

As stated above a connection between the Resource Model and the Domain Model is essential
to design a proper web service. The auto-generated graphical modeling editor for Resource
Models has no real connection to the Domain Model editor, so any relation between a resource

60

5.2. Resource Model

and a domain object is not obvious. The corresponding ecore models are treated as two
single and separate models by the EuGENia 1 engine. Even though it is possible to import
the models into each others meta models a graphical relation between them is missing. Only
ETL scripts which transform a domain into a Resource Model links them, by producing a
graphically independent result (Resource Model) from a source (Domain Model) that can be
used for further modeling steps. Consequently the Resource Model is an enriched and altered
version of the Domain Model and provides, based on the mentioned enhancements in this
chapter, already a few integrated and transformed Domain Model elements (Interactions,
Attributes). Especially for the mapping of Domain Model Methods to Interactions it is
important to know what kind of parameters the Interaction needs. The example invocation
shown in Figure 5.9 is only possible having all the parameter information from the Domain
Model and the name and MIME type information from the Resource Model.

Due to the auto generated editor there are only a few possibilities to integrate a decent
visual connection into Eclipse. To display the related Domain Model information the property
tabs are extended by an additional one. This new tab displays information which is retrieved
from the Domain Model by focusing a certain resource graph element. Since not every object
within a Resource Model graph has a related object in a Domain Model, information will be
displayed in the following cases:

• The resource object has a related Domain Model object (e.g. SimpleResource - Object).

• The resource object is an Interaction and has a related Domain Model method.

In cases of a missing connection a simple message is displayed that indicates an absent
counterpart in the Domain Model. Figure 5.11 depicts screenshots of the property add-on. The
parts highlighted with a green outline represent the information that is displayed when focusing
an interaction. Additionally the view provides sample data for a certain set of consumable
MIME types to ease queries addressing the superior PostMethod. Accordingly, parts highlighted
in orange are displayed when focusing a resource element.

1Eclipse EuGENia is a tool that automatically generates all models for a graphical editor from an Ecore meta
model.

61

5. Enhancements

Figure 5.11.: Property-Addon In The Resource Diagram.
62

5.3. Deployment Model

5.3. Deployment Model

3a.) Multiple URL mappings of a single resource are not possible

The fact that the Deployment Model rests on a wrong assumption concerning URL mappings
leads to a complete restructuring of the model itself. The previous model which connects a
resource object (SimpleResource, ListResource) to a user defined URL will be altered into a
model that connects a resource link (Reference, Aggregation) to a user defined URL. Thereby
multiple mappings for a single resource are feasible (Figure 5.12) and the stated issue in Figure
4.3 can be now specified properly.

Figure 5.12.: New Deployment Mapping - URL To Link.

3b.) Automatically generated URL properties.

To provide a better usability and to improve the efficiency of the modeling process some small
adjustments can be applied to the creation of the Deployment Model. The current way of
defining a URL is done by a simple text input field. Manually added curly brackets indicate
that the enclosed URL part is an unique attribute of the domain object which makes the URL
dynamic. Likewise it is possible to omit any dynamic attributes and define a static URL part to
a resource. Since the usability is not very user-friendly a conducted way of setting a dynamic
or static URL to a resource is required. By automatically populating a static URL and a dynamic
URL part, if possible, the usability is perceptibly improved. The behavior of the auto generation
has to follow certain rules. In case a resource object has a related Domain Model object
containing an unique attribute it can be used as a dynamic URL part. To illustrate the auto

63

5. Enhancements

generation of a URL the coffee shop example is used. Assuming that the ID attribute of the
Order object is unique the resulting URL would be /order/{ID}. If ID is not unique or there is
no unique attribute at all a generated URL would be /order/. Consequently a lot of effort can
be saved by defining a proper Domain Model and automatically populate the corresponding
URL into the Deployment Model. Nevertheless, the created URLs can be individually altered by
the user. Applying any URL patterns the use of plurals for nouns within the URL have to be
made by the user since the nouns are simply created by using Domain Model object names.

5.4. HTML Documentation

4a.) Missing integration of Domain Model information into a single resource’s details.

Due to new POST interactions with a resource a lot more information is needed to perform
correct requests. The current structure of a single documented resource is very simple. In case
it has a linked Domain Model element it is just added on the bottom of the resource description.
Building a correct request requires some lookup effort to browse through the unstructured
documentation.

To increase the information content and its appearance every interaction from the Resource
Model should be linked to its corresponding method in the Domain Model. Metadata as well
as required parameters and example requests for certain content types support the user to
understand coherences and request details. As interactions are the only interface where details
are specified by the Domain and Resource Model it is currently the only reasonable part to
provide detailed examples for a request.

4b.) URLs are not needed in the documentation, references should be supported.

Since the HTML documentation is only used to give details about a resource element the
web service discovery is not part of it. Therefore any given URLs are from the Deployment
Model not listed in it. Instead, unidirectional references between resources should be obvious
and easy to follow. The root resource has to be tagged in any way so that the structure is
understandable by following linked resources beginning at the root.

By now the HTML documentation has to document the following for every resource:

• Metadata (author, comment, name)

• Parameters for each of the HTTP methods (except POST)

• Interactions mapped to HTTP POST

64

5.5. REST Compliance

• Examples for Interactions

• Relations or connections to other resources

5.5. REST Compliance

Improving the REST compliance of the resulting JAX-RS web service is the last major issue that
has to be solved during the enhancement process. Currently HATEOAS (Hypermedia As The
Engine Of Application State) are missing whereby the service discovery is impossible due to
missing link elements in response headers or bodies. Links enable discoverability for a web
service. Several servers providing that service can respond to any client at almost any stage
because the client carries its state within its requests. The state can easily be mapped to a
graph which is local respectively relative from a single resource’s point of view. Combining
all of these local resource graphs into a bigger graph, the structure of the web service can be
ascertained.

An extract from a possible resulting Resource Model dependent on the show case is visi-
ble in Figure 5.13. To serve as an appropriate example the graph has an additional URL
mapping for the given resource connections.

Listing 5.1 HATEOAS Example: OrderResource text/xml
HTTP/1.1 200 OK

Content-Type: text/xml

<?xml version="1.0"?>

<orderresource ID="2389" totalPrice="3.45" isPaid="true">

<link rel="self" href="/orders/2389"/>

<link rel="receipt" href="/orders/2389/receipt"/>

<link rel="baverages" href="/orders/2389/beverages"/>

...

</orderresource>

A current request to the OrderResource via HTTP GET /latestOrder would return the resource
with no further navigation possibilities. A connection to the BaverageListResource and the
ReceiptResource would not be obvious. A required functionality would be that for every
requested URL (resource) a set of links (if possible) are returned to the client. Since a resource
can have multiple MIME types it is necessary to return a type conform link. Using a text/xml
content type the links could be returned in the return message’s body as described in Listing
5.1.

65

5. Enhancements

Figure 5.13.: Fully Populated Deployment Model

The provision of such a navigation forces changes in the generation of the web service source
code. In exactly the same way as the resources are linked for the HTML documentation
generation it is necessary to find all outgoing connections to other resources to provide the
directed navigation for every node of a resource graph. In case a logical process influences
the provision of certain links (e.g. /receipt is available after the order is paid) it has to be
implemented in the corresponding code parts manually.

So far the link provisioning is limited to links resulting from the Resource respectively Deploy-
ment Model. A further feature of the HATEOAS enhancement is the pagination for lists. It
allows navigating through a list of resources by providing links for a predecessor page and (if
available) a successor page.
In case a ListResource is requested with query parameters (start and stop) to limit the results
links can be provided by analyzing the amount of resources in this list by using the query offset.

66

5.5. REST Compliance

This concept rests upon the assumption that the lowest bound of a start parameter is zero.
Thus, the entries per page (page size) are calculated as follows:

page size = Request Parameter stop - Request Parameter start + 1

Using the page size, a generic way of building predecessor and successor links is listed in Table
5.1. For the sake of completeness the reference to the actual requested page itself is added as
well. Every row in the table contains the link name and the start and stop parameters used for
addressing this specific page.

Link To Start Parameter Stop Parameter
previous Current start Parameter - page size Current start Parameter - 1
self Current start Parameter Current stop Parameter
next Current stop Parameter + 1 Current stop Parameter + page size

Table 5.1.: General Pagination Rules For Lists

Example OrderResourceList

Assuming that the OrderResourceList has at least 15 entries the web service’s response to
the request /orders?start=5&stop=9 contains the links (previous, self, next) of Listing 5.2 to
provide the desired pagination.

Listing 5.2 HATEOAS Pagination Example: OrderResourceList text/xml
HTTP/1.1 200 OK

Content-Type: text/xml

<?xml version="1.0"?>

<orderlistresource>

<link rel="previous" href="/orders?start=0&stop=4"/>

<link rel="self" href="/orders?start=5&stop=9"/>

<link rel="next" href="/orders?start=10&stop=14"/>

...

</orderlistresource>

67

6. Technologies

6.1. Eclipse Epsilon

The whole system is based on Eclipse Epsilon1 which is a special release of the regularly
published Eclipse IDE. It has already pre-installed plugins to ease model driven development.
It is a family of languages and tools based on the core of Epsilon, the Epsilon Object Language
(EOL) which is a combination of JavaScript and OCL (Object Constraint Language). Using
Epsilon provides simplification in code generation, model-to-model transformation, model
validation, comparison, migration and refactoring. The overview in Figure 6.1 (based on
the Eclipse Epsilon documentation) clarifies the composition of the two main parts EOL and
ECM (Eclipse Model Connectivity). By combining them, languages for specific tasks can be
extended from EOL. A full list of all available languages provided by Epsilon can be found
on the documentary website [Eps14]. The REST Modeling plugins only use the Epsilon
Transformation Language (ETL) and the Epsilon Validation Language (EVL) which will be
described in the following.

6.1.1. Emfatic and EuGENia

Emfactic is a language to create EMF Ecore models in a textual form. An Ecore model file
represents the meta model description of a specific model (e.g. Domain Model, Resource
Model, ...). In case elements from other meta models (ecore files) are required, they can be
imported within each other. The syntax is related to Java and provides a set of annotations for a
better customization of the resulting GMF Editor. By describing and designing the editor model,
the complexity is massively reduced. All previously described models (Domain, Resource,
Deployment, ...) are described by such an EMF file, although not everyone of them provides a
graphical modeling editor. EuGENia allows to easily transform those models within the context
menu into Java source code. The code reflects at least the model structure of the Emfatic
file and additionally the source files for the graphical GMF or plain textual editor, in case the
model contains any GMF annotations. In Figure 6.2 all files and intermediate models are
listed which are required to get a graphical editor out of the source file. Every single model
can be created step by step by transforming predecessor models. Several custom changes can

1Eclipse Epsilon - http://www.Eclipse.org/epsilon/

69

6. Technologies

Figure 6.1.: Eclipse Epsilon Architecture Overview

be made in the Ecore and Genmodel model to have some further influence on the resulting
editor. Alternatively, if no specific changes have to be made, the Emfatic file can be transformed
directly into an editor and intermediate models are generated automatically.

70

6.1. Eclipse Epsilon

Figure 6.2.: EuGENia-Emfatic Model Stack

Listing A.1 is a simple example of a graphical model editor specified in an EMF file. In
general it can be compared to a Java class with additional information for the GMF editor. It
describes classes, abstract classes, enums as well as primitive and complex data types. Using
the gmf.diagram() annotation special properties of the editor for that specific type of diagram
can be set. In this example case the only defined property is the file extension for the model
(model_extension), the actual data of the diagram, and the extension of the diagram itself
(diagram_extension). To maintain simplicity there are only two classes of nodes (gmf.node(...))
and one type of connection (gmf.link(...)). Without the GMF annotations it would only be
possible to generate an XML representation from the model. Generating the modeling tool out
of this, it would be possible to have objects in the diagram linked with each other through
connections and containing multiple attributes which are type of the given enumeration
AttributeType. A graphical representation of a modeled example within this editor is Figure
6.3 and its related XML representation Listing A.2.

71

6. Technologies

Figure 6.3.: Example GMF Editor Generated From An Example EMF Source File.

6.1.2. ETL - Epsilon Transformation Language

To transform the set of models from one to another, the ETL language is used. ETL combines
declarative and imperative model transformation languages into a hybrid language. It is
based on the abstract EOL language with certain singularities for the transformation process.
A transformation file contains a set of rules and operations that have to be applied to the
elements of the source and target model. The scripts can be invoked by the Epsilon-API or
Ant-Script2 targets. Currently all model to model transformations are invoked by a Java class
which uses the necessary ETL files. As an example Listing A.3 describes a transformation of a
SourceElement from a SourceModel into a TargetElement of a TargetModel. All rules in an ETL
script will be processed in the same order they are listed. Operations can be invoked by those
rules to perform additional actions. A rule consists of a source which has to be transformed
into a target element and optionally a guard statement which allows ignoring a rule in case the
guard is not active. Almost every transformation between the models of the REST Modeling tool
is performed by these scripts: Domain-to-Resource, Resource-to-Deployment and Deployment-

2Ant-Script - http://antscript.com

72

6.2. JET - Java Emitter Templates

to-Plattform-Specific-Models. The Gen Model (subsection 3.1) is the exception. It is build by
Java code by combining the wizard input of the user with the designed Domain Model.

6.1.3. EVL - Epsilon Validation Language

To ensure a valid designed model, the Epsilon Validition Language is used, which is another
task specific language (6.1) that extends the Epsilon Object Language. It allows validating
instances of meta models in the Ecore Model Editor and in the GMF editor. Certain rules
(constraints) define for a specific context what kind of properties or requirements have to be
fulfilled to gain a valid model. The EVL file is connected to both types of editors by using
Eclipse Extension Points. A simple example of such a validation file which validates an instance
of the resulting model from Listing A.1 is outlined in Listing A.4.

6.2. JET - Java Emitter Templates

Generators for platform specific models or code have to be written individually. The usage of
the Java Emitter Templates simplifies code generation to a very user-friendly level. JET allows
creating templates for individual needs which can be easily filled with certain content to get a
complete output file. The JAX-RS web service stubs and the HTML documentation are both
created using JET.

Figure 6.4.: JET Process Of A Single Template.

73

6. Technologies

Figure 6.4 depicts a process for a single JET template. The template itself has to have the JET
file extension (.jet). Within this file a class name has to be specified which will be used to name
the resulting Java class after the creation process. To provide a structured development other
files containing JET code can be included without any special statements. They are treated like
regular code in the JET file but they need a different file extension (e.g. .txt) otherwise the
Java Emitter Template Engine will cause an error. The JET files are automatically transformed
into Java files which can be imported and used a Java application. Listing A.5 shows an JET
file example of the HTML documentation’s index page.

74

7. Implementation

This chapter describes the new architecture of the RESTModeling system as well as some
individual aspects of the implementation. Further a comparison is drawn between experienced
advantages and disadvantages of describing Meta models with the Eclipse Modeling Framework
and transforming it into a Graphical Modeling Framework editor with EuGENia.

7.1. Overall Architecture

The performed enhancements described in chapter 5 affected some parts of the architecture
of the system. Most of the modifications are part of already existing models or components.
No further models were added during the process, only the existing ones were modified
to enrich their information content and improve their meta model structure. Figure 7.1
shows the different components highlighted gray, used models light green, model-to-model
transformations light orange and the resulting outcomes strong green.
The newly added property plugin is integrated into the Resource Diagram editor and receives
its input from the code generator. Further details on this plugin are outline in section 7.4.
The HTML-PSM-Model is now created right out of the Resource Model and can be transformed
into the documentation by the Code Generator afterwards. Apart from that, the architectural
structure is unaltered from the original system.

7.2. Altered Model Structure

Most of the meta model structures are kept the same way as they were in the prototype. The
Domain Model and Deployment Model have new elements or simply altered elements. How-
ever, the small enhancement (mapping URLs to links instead of resources) in the Deployment
Model caused huge inevitable modifications to the Deployment Model and JAX-RS Model
generation. The structure of the Gen Model was not influenced by this thesis at all and remains
in the same state it was before.

The most structural changes happened within the Resource Model’s meta model 7.2. The
previously element Method is now a super class of the PostMethod, GetMethod, PutMethod,

75

7. Implementation

Figure 7.1.: New Architecture Of The RESTModeling Tool

DeleteMethod, OptionsMethod and HeadMethod. The individual specified properties and con-
tainment relations from section 5.2 are depicted in the bottom part of the meta model diagram.
The newly introcuded object Interaction can be embedded in arbitrary quantity into the
PostMethod.
The resulting effects of this structural modification are spread all over the system. Trans-
formations from and into the Resource Model were altered as well as the generation of the
documentation and the JAX-RS web service.

76

7.2. Altered Model Structure

Figure 7.2.: New Structure Of The Resource Model

77

7. Implementation

7.3. Code Generator - Example Invocations

The example invocations which are used within the Resource Diagram editor’s property view
and in the HTML documentation are completely based on the code generator. The generator
project provides independent Java classes which can be imported and invoked from other Java
projects or components to get a list of example invocations for consumption types of a Resource
Model Interaction. Currently there are several classes for the generation of the JAX-RS web
service, the HTML documentation and the property add-on for the Resource Diagram. They
are created by the Java Emitter Template (JET) Engine by parsing their origin source file
(.jet). Each of these jet files may include a set of template part files (.txt) which contribute to
the whole template.

To generate example content into an already existing template file, the provided main
file in the /templates/examples/ directory has to be included. This part results a
simple HTML snippet containing the examples for a specific Resource Model Inter-
action (com.rmt.models.restresource.Interaction) related to a Domain Model Method
(com.rmt.models.domain.Method). These two objects have to be passed to the superior
JET template and forwarded to this part.

Currently there are only examples available for the media types APPLICATION_XML and
TEXT_XML. In case the component is invoked by using a not supported media type the return
will contain a list of types for which examples are available. Every set of media types e.g. XML,
JSON or HTML is located in its own file that is included in the main part.

78

7.4. Resource Property Add-On

Figure 7.3.: Structure Of The Code Generator Component.

7.4. Resource Property Add-On

The Resource Property Addon builds a completely separate project. It uses the TabbedProp-
ertView extension of the automatically generated Resource Diagram project and adds a new
tab to the property view. The view’s Standard Widget Toolkit (SWT) Pane has a simple child
element - a Java browser object. This browser is used to display data from the Code Generator.

Every focus of an element within the Resource Diagram triggers an event in the Java class
which is related to the property view. The add-on initially parses the Gen Model of the currently
edited resource diagram file. As soon as a supported element (listed in 5.2) is focused it
searches for the related Domain Model object within the Gen Model and uses both of them to
invoke the Code Generator. The generator is enhanced by a new JET file (Figure 7.3) for a
Detail Provider. The resulting Java class provides, if queried with correct parameters, HTML
content with combined information about the interaction and the Domain Model object. The
previously mentioned example invocations are included into the Detail Provider’s JET file as
well to provide example requests in case their interaction consumption types are supported.

79

7. Implementation

Instead of writing the Detail Providers content into a file it is directly retrieved as a String and
set as the content for the browser object in the view pane.

Using this method new resource element types can be supported easily by simply adding
new content for the Detail Provider’s JET file. The Java browser object uses the default Eclipse
browser to render its data. This browser can be changed within the Eclipse properties to other
installed browsers.

7.5. HTML Generation

Due to the fact that the URLs to a resource are not part of the HTML documentation no
Deployment Model information is needed to create it. By altering the structure of the HTML
Doc Model and its creation process several changes in the Code Generator were inevitable.
Now the Code Generator creates not only a single file containing all the resources, it is split
up into different parts. The main file contains a list of linked resources which provides to
navigate to a single resource. Every HTML resource content is now stored its own file inside a
subdirectory. Additionally necessary JavaScript content and libraries as well as the Cascading
Style Sheets (CSS) are stored in separate files. To provide invocation examples within the
HTML documentation the necessary template parts are added to the main JET file.

7.6. Version Management

Since the version management of auto-generated content is not simple to handle, the prototype
had all files under version control. Versioning every file of this system causes a lot of traffic and
especially a lot of required disk space on the server side. Committing altered files selectively
results in a lot of detail work.

Since most of the Java Classes for the models and their editors can be created out of the
EMF file all projects solely containing auto-generated code are deleted (e.g. domain.edit,
domain.editor, domain.diagram). Additionally all auto-generated code within a heterogeneous
project (auto-generated and manually written code) is deleted as well. Thus in the different
model projects only remain three files. The EMF file (initial file), the Ecore file and the Gen
Model file. This Gen Model file has no relation to the mentioned Gen Model, it exists in every
project. All remaining projects with manually written code are properly under version control.
Consequently the repository size (amount of files) has been reduced significantly and every
model, editor or diagram can be created within seconds by using EuGENia with the model
files.

80

7.7. Eclipse Epsilon Evaluation

7.7. Eclipse Epsilon Evaluation

While developing with Eclipse Epsilon and all its connected technologies (Emfatic, EuGENia, ...)
several pros and cons came up that either supported the implementation or required additional
effort. In the following some facts about using the Epsilon are compared to scenarios not using
any of these technologies.

Pros

Easy Syntax And Sematics The creation of a EMF file is pretty simple due to the Java related
syntax and logic. Several EMF classes with attributes and references can be used to
build a meta model definition using concepts of object oriented programming (e.g.
inheritance).

Single File Simple editors only need the single EMF file to become generated. In case the
editor has to be altered modifications have only to be made in the definition file instead
of many files.

Quick Results As soon as meta model definition exists an editor (graphical or textual) can be
created by EuGENia within seconds. Necessary views and projects are created automati-
cally during that process. Thus, compared to a manual implementation, there almost no
effort to get an executable editor.

Solid Model No assumptions or concepts are needed for the structure for an instance of a
meta model. The engine automatically generates an XML based model which is easy to
parse and use by ETL transformations.

Cons

Missing Flexibility The amount of supported EMF constructs is high, but still not everything
is realizable with them (e.g. single model editable by multiple editors). Using a manual
way of implementing an editor provides a lot more flexibility. A single editor could be
used to create an absolute RESTModling model which combines all the models covered
by this thesis. A single editor may simply provide multiple views and different tools to
alter it.

Enhancements Integration The integration of manually developed enhancements can be
complex and work-intensive due to the automatically overriding when regenerating an
editor.

Code Deletion Of course the use of EuGENia results in the already mentioned disadvantage
of code deletion (MDSD) as well.

81

7. Implementation

Transformation Effort Since there are many models for the different editors a lot of effort
goes into the creation of their transformations. Changing one model (e.g. Resource
Model) results in an inevitable change of four ETL transformations (Gen Model-To-
Resource, Resourece-To-Deployment, Resource-To-HTML, Deployment-To-JAX-RS).

Under Development Many unsolved issues were discovered while modeling meta models,
especially when using GMF annotations.

In summary, it can be stated that even though a lot of effort goes into the transformation
processes of the models, the realization of this exploratory work would have consumed much
more time using common procedures, even though the customization opportunities would
have been much better.

82

8. Conclusion

This thesis faces the conceptional issues when modeling and generating a REST web service
with the existing RESTModeling approach from [Sch13]. The issues can be grouped into two
major parts. The first one addresses the modeling process itself by using the different existent
layers of models and their graphical editor. The second part is the code outcome of the system
which covers an HTML documentation and several JAX-RS stubs that can be used as a basis for
a web service. From each of these parts certain conclusions can be drawn that are stated in
this chapter.

The added elements and classes to the graphical domain and resource editors provide a
better and more accurate way of modeling them. By using the Association link type and the
newly introduced cardinalities within a Domain Model only a certain set of combinations result
in a list in the resource model after the transformation. Due to separate HTTP methods and the
possibility to map Domain Model methods to specific resource objects a better and especially
more accurate Resource Model can be designed.

The usage of Emfatic and EuGENia does not allow multiple editors or views for a single
model whereby it is impossible to store the information in one model that can be edited
in different views using that technology. Splitting up the model into separate models each
addressing a different aspect of the modeling process is a reasonable approach using Emfatic.
By visually relating and integrating them into each other the information contained in a single
model is increased. The visual integration of the Domain Model information within Resource
Modeling editor and the simplified Deployment Model editing reduces or even removes the
effort to look information up in other models.
The integration of model information within other models allows that certain views (Domain,
Resource, Deployment) can be modeled by different technical groups since no detailed knowl-
edge about the related model is necessary.

An HTML documentation to a Resource Model provides a much more detailed view on
resources and their related Domain Model elements than before the modification. Related or
linked resources can be found more easily and sample requests are outlined for every listed
interaction. Further it is not necessary to populate the Deployment Model to get a proper
documentation.

83

8. Conclusion

Due to the new structure of the Deployment Model’s meta model a resource can be addressed
via multiple links. Thereby modeling more complex web services is now possible in the first
place. Different client types requesting the service can each have their individualized links to a
resource (e.g. accessing the OrderList of the show case via /customerorders as a Bar-client
or /tasks as a Kitchen-client).

One of the major aspects about this thesis is the improvement of the REST compliance of the
outcome. The integration of automatically generated links enhances the REST compliance
of the generated web service by fulfilling the third and last level of the Richardson Maturity
Model [Fow10]. For this purpose no special user input is required since the transformation
processes and the code generation take care of the HATEOAS provision. This yields in the
initially desired condition, obtaining a higher level of REST compliance with less or even no
additional effort.

The prerequirement is that every model which is necessary to generate the web service
is entirely and properly filled. Using an incomplete or malformed model may result in a
web service not fulfilling desired REST compliance. Hence a correct semantic and syntactic
validation would additionally ensure the quality of the outcome by defining strict rules and
supporting the user during the modeling process.

84

9. Perspectives

The enhancements and structural changes that were made within this thesis lead to the
improved REST compliance of the outcome, the HTML documentation and the usability of
the different model editors (graphical and textual). Nevertheless some additions can be
implemented that improve the state of the modeling process and the generated code. This
chapter lists some potential suggestions for the RESTModeling system.

Semantic Dependencies And Workflows

The current system does not support any semantic dependencies neither between elements of
the domain nor of the Resource Model. In case a special workflow has to be followed it is not
possible to have a semantically influenced link generation for the web service navigation. An
example is depicted in Figure 9.1 for the used show case from chapter 4. If the workflow would
be applied to the link generation of the web service the requesting client can be navigated by
following semantic dependencies. In the current state it is possible to give up an order that can
immediately be paid. It does not contain any beverages but there would be a “valid” link to a
receipt (Figure 5.13) which is semantically sloppy. A possible approach to integrate this would
be an enhanced or specially annotated Resource Model. A related issue which does not use any
MDSD but gives a first thought to workflow related REST services is described by Jim Webber,
Savas Parastatidis and Ian Robinson in “How to GET a Cup of Coffee” [WPR].

Long Running Request Realization

Sometimes HTTP POST or DELETE requests may take more time than a client is able to wait.
To take care of those types of request some additional features are required. In case of a long
running operation (LRO) a separate task resource may be added in the Resource Model for
every tagged method from the Domain Model. This task resource is created and returned to the
client as soon as a LRO is invoked. The temporary resource provides some sort of identification
about the progress of the request.

85

9. Perspectives

Figure 9.1.: Workflow Coffe Shop Show Case

Improved HTML Documentation

The HTML documentation provides an alphabetically ascending sorted list of resources and
their information (metadata, request properties, linked elements, ..). An order with breadth-
first search applied to the Resource Model may result in a nicer resource structure discovery.
Another additional feature is a graphical representation of every single resource interconnected
with each other in a graph within the HTML documentation. The model for this graph would
be the Resource Model itself.

86

Enhanced Model Validation

The current validation which is done by using the ETL (Eclipse Transformation Language) is
not covered by this thesis at all. There are already validations for every platform independent
and platform specific model. These validations are kept very simple and they only state basic
constraints like empty names and correct link targeting. Besides the simple property validation
the rules may be extended to validate structural parts (unreachable resources) or even correct
relations to other models.
Since the validations have to be triggered manually a validation handler could be integrated
which could be located between the transformation of a model into another model. In case
the transformation fails it would highlight non-compliant elements, labels or constructs that
violate the constraints. To provide the easy usability, the validation could be automatically
triggered if a user wants to transform from one model to another.

Figure 9.2.: Validation Handler Between Domain And Resource Model

87

A. Appendix

A.1. Eclipse Epsilon Listings

Listing A.1 shows an example for a EMF meta model. A graphical GMF editor can be created
out of this source file.

Listing A.2 is the resulting model code in XML of the modeled diagram in 6.3.

Listing A.3 outlines an example transformation for a source to a target element using Eclipse
Transformation Language (ETL).

Listing A.4 uses Eclipse Validation Language to validate instances of the given model in
Listing A.1.

Listing A.5 shows the template for the HTML documentation index page. This code will
be transformed into Java code regarding the given annotations.

89

A. Appendix

Listing A.1 Example EMF Source File For A Graphical Model Editor.
@gmf

package examplemodeling;

@gmf.diagram(

model_extension="examplemodel",

diagram_extension="examplediagram")

class ExampleDiagram extends DocumentedElement {

val Object[*] objects;

val Connection[*] connections;

}

abstract class DocumentedElement {

attr String name;

}

@gmf.node(label="name")

class Object extends DocumentedElement {

@gmf.compartment(style="list")

val Attribute[*] attributes;

}

enum AttributeType {

String;

Integer;

Float;

Character;

Boolean;

}

@gmf.node(label="name, type", label.pattern="{1} {0}")

class Attribute extends DocumentedElement {

attr AttributeType type;

}

@gmf.link(

source="source",

target="target",

source.decoration="none",

target.decoration="arrow",

tool.name="Connection")

class Connection extends Object {

ref Object source;

ref Object target;

}

90

A.1. Eclipse Epsilon Listings

Listing A.2 Model XML Code Of Figure 6.3 (Model).
<?xml version="1.0" encoding="UTF-8"?>

<example:ExampleDiagram xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:example="http://a.b.c/x/y/Z">

<objects name="University">

<attributes name="name"/>

<attributes name="ID" type="Integer"/>

</objects>

<objects name="LectureA">

<attributes name="topic"/>

</objects>

<objects name="LectureB">

<attributes name="topic"/>

</objects>

<connections source="//@objects.0" target="//@objects.1"/>

<connections source="//@objects.0" target="//@objects.2"/>

<connections source="//@objects.1" target="//@objects.2"/>

</example:ExampleDiagram>

Listing A.3 Example ETL Transformation Script.
rule SourceElemenToTargetElement

transform source : SourceModel!SoureElement

to target : TargetModel!TargetElement

{

guard : source.transformable == true

("Transforming: " + source.name).println();

target.name = source.name;

target.type = source.target;

if(source.addComment) {

addComment(target);

}

("Transformed: " + source.name).println();

}

operation addComment(element : TargetModel!TargetElement) {

element.comment = "Auto generated element.";

}

91

A. Appendix

Listing A.4 Example EVL Script To Validate Instances Of Model A.1.
context Object {

constraint hasID {

check: self.attributes.exists(a|a.‘type‘==Integer)

message: "Object should have an identifier attribute"

}

constraint hasName {

check: self.name <> ""

message: "Object should have a name"

}

}

context Connection {

constraint NoSelfLink {

check: self.target <> self.source

message: "Object can’t reference to itself"

}

}

92

A.1. Eclipse Epsilon Listings

Listing A.5 Documentation Index Page Built With A Java Emitter Template (JET).
<%@ jet

package="com.rmt.generator.templates.htmldoc"

class="IndexPage"

imports="

com.rmt.generator.util.WebHelper

com.rmt.models.psm.htmldoc.HtmlDocumentation

com.rmt.models.psm.htmldoc.ResourceElement

"

%>

<%

HtmlDocumentation doc = (HtmlDocumentation)argument;

%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">

<html>

<head>

<title>Documentation: <%=doc.getProjectName()%></title>

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

<link rel="stylesheet" media="screen" href="css/htmlDoc.css">

...

</head>

<body>

<h1><%=doc.getProjectName()%> HTML Documentation</h1>

<p class="info-box">

This documentation ...

</p>

<ul class="navi-list">

<% WebHelper.sortResourceObjects(doc.getResource().getElements());

for (ResourceElement element : doc.getResource().getElements()) {

if (element.isGenerateDocumentation()) {%>

<a

href="content/<%=WebHelper.normalizeResourceName(element.getResource().getName())%>.html">

<%=element.getResource().getName()%>

<% } %>

<% } %>

</body>

</html>

93

A. Appendix

A.2. Ecore Meta Model Graphs

The following graphs can be retrieved from an Ecore meta model (e.g. Domain Meta Model)
by using Eclipse EuGENia. They demonstrate the structure of a meta model graphically.

Figure A.1 depicts a graph of the prototype’s Domain Model meta model.

Figure A.2 depicts a graph of the prototype’s Resource Model meta model.

94

A
.2.

E
core

M
eta

M
odelG

raphs

Figure A.1.: Diagram Graph Of The Meta Domain Model

95

A
.

A
ppendix

Figure A.2.: Diagram Graph Of The Meta Resource Model

96

Bibliography

[DH09] J. Den Haan. 8 reasons why Model-Driven Development is dangerous,
2009. Http://www.theenterprisearchitect.eu/blog/2009/06/25/8-reasons-why-
model-driven-development-is-dangerous/. (Cited on page 28)

[DuV10] A. DuVander. REST vs. SOAP: Simplicity wins again, 2010.
Http://www.programmableweb.com/news/new-job-requirement-experience-
building-restful-apis/2010/06/09. (Cited on pages 9 and 12)

[Eps14] Epsilon. Epsilon Documentation, 2014. Version: 2014. (Cited on page 69)

[FIa99] R. Fielding, U. Irvine, et al. Hypertext Transfer Protocol - HTTP 1.1, 1999.
Http://www.w3.org/Protocols/rfc2616/rfc2616.html. (Cited on pages 20, 41,
54 and 55)

[Fie00] R. Fielding. Dissertation Chapter 5: Representational State Transfer (REST).
Internet, 2000. (Cited on pages 11 and 18)

[Fow10] M. Fowler. Richardson Maturity Model, 2010.
Http://martinfowler.com/articles/richardsonMaturityModel.html. (Cited
on page 84)

[Gie12] R. Giesler. MySQL Select Syntax, 2012.
Http://dev.mysql.com/doc/refman/5.0/en/. (Cited on page 60)

[Jau14] S. Jauker. 10 Best Practices for Better RESTful API, 2014.
Http://blog.mwaysolutions.com/2014/06/05/10-best-practices-for-better-
restful-api/. (Cited on page 20)

[Mei05] O. Meimberg. Möglichkeiten und Potentiale der Formalisierung in der Softwareen-
twicklung. In Schriften zum Software-Qualitätsmanagement. Logos Verlag Berlin,
2005. (Cited on page 23)

[MSGR09] N. Moebius, K. Stenzel, H. Grandy, W. Reif. SecureMDD - A Model-Driven Develop-
ment Method for Secure Smart Card Applications. In International Conference on
Availability, Reliability and Security. IEEE, 2009. (Cited on page 26)

[PB12] A. Parada, L. Brisolara. A model driven approach for Android applications develop-
ment, 2012. (Cited on page 25)

97

Bibliography

[Sch13] B. Schroth. Entwurf und Realisierung von REST-Anwendungen nach den Prinzipien
der modellgetriebenen Softwareentwicklung. Master’s thesis, University of Stuttgart,
2013. (Cited on pages 13, 31, 45 and 83)

[SV06] T. Stahl, M. Völter. Model Driven Software Development. WILEY, 2006. (Cited on
page 27)

[SVEH07] T. Stahl, M. Völter, S. Efftinge, A. Haase. Modellgetrieben Softwareentwicklung.
dpunkt.verlag GmbH, 2007. (Cited on page 23)

[Til11] S. Tilkov. REST und HTTP. dpunkt.verlag GmbH, 2011. (Cited on page 18)

[Vit10] T. Vitvar. API Anti-Patterns: How to Avoid Common REST Mistakes,
2010. Http://www.programmableweb.com/news/api-anti-patterns-how-to-avoid-
common-rest-mistakes/2010/08/13. (Cited on page 11)

[VSK06] M. Voelter, C. Salzmann, M. Kircher. Model Driven Software Development in the
Context of Embedded Component Infrastructures. In Component-Based Software
Development for Embedded Systems. Springer, 2006. (Cited on page 26)

[WPR] J. Webber, S. Parastatidis, I. Robinson. How to GET a CUP of Coffee. 2008.
Http://www.infoq.com/articles/webber-rest-workflow. (Cited on page 85)

[WPR10] J. Webber, S. Parastatidis, I. Robinson. REST in Practice: Hypermadia and Systems
Architecture. O’Reilly, 2010. (Cited on pages 11 and 18)

All links were last followed on June 10, 2014.

98

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Outline
	1.3 Abbreviations
	1.4 Typography

	2 Background
	2.1 Representational State Transfer (REST)
	2.1.1 Best Practices For RESTful APIs

	2.2 Model Driven Software Development
	2.2.1 Areas Of Application
	2.2.2 Advantages And Disadvantages

	3 Condition Of The Prototype
	3.1 Platform Independent Models
	3.1.1 Domain Model
	3.1.2 Gen Model
	3.1.3 Resource Model
	3.1.4 Deployment Model

	3.2 Platform Specific Models

	4 Deficits Of The Prototype
	4.1 Modeling The Domain Model
	4.2 Modeling The Resource Model
	4.3 Modeling The Deployment Model
	4.4 HTML Documentation Generation
	4.5 REST Compliance Of The Result
	4.6 List Of Stated Issues

	5 Enhancements
	5.1 Domain Model
	5.2 Resource Model
	5.3 Deployment Model
	5.4 HTML Documentation
	5.5 REST Compliance

	6 Technologies
	6.1 Eclipse Epsilon
	6.1.1 Emfatic and EuGENia
	6.1.2 ETL - Epsilon Transformation Language
	6.1.3 EVL - Epsilon Validation Language

	6.2 JET - Java Emitter Templates

	7 Implementation
	7.1 Overall Architecture
	7.2 Altered Model Structure
	7.3 Code Generator - Example Invocations
	7.4 Resource Property Add-On
	7.5 HTML Generation
	7.6 Version Management
	7.7 Eclipse Epsilon Evaluation

	8 Conclusion
	9 Perspectives
	A Appendix
	A.1 Eclipse Epsilon Listings
	A.2 Ecore Meta Model Graphs

	Bibliography

