
State-based Context Prediction

in Mobile Systems

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Stefan Föll

aus Tübingen

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Mitberichter: Univ.-Prof. Mag. Dr. Alois Ferscha
Mitprüfer: Prof. Dr. rer. nat. Volker Diekert
Tag der mündlichen Prüfung: 25. August 2014

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2014

Acknowledgments

I would like to express my gratitude to my supervisor Prof. Dr. Kurt Rothermel for
his excellent support and guidance during my time at the University of Stuttgart. The
big effort he puts into advising the work of his doctoral students has been a great
contribution for this thesis. I am very grateful to have had the special opportunity to
conduct research in his group, where one can find great conditions for learning and
enhancing fundamental skills that are essential to academic research. Also, I would like
to thank Prof. Dr. Alois Ferscha for accepting the role as a second reviewer. With
the two theses of Dr. Rene Mayrhofer and Dr. Stephen Sigg, he already reviewed
two contributions with great impact in the field of context prediction, and I feel very
honoured that he is also a reviewer of my thesis.

Special thanks go to my project supervisor Dr. Klaus Hermann. I was always fascinated
by his excellent communication and writing skills, and the constructive feedback he
provided me with served as a great inspiration to improve my own ones.

At the University of Stuttgart, I had a great time during which I met brilliant researchers
and - most importantly - warm people and colleagues. It was a humble experience to
be part of a research group where colleagues helped each other not only in research, but
in all aspects of academic life. While, as explored in this thesis, predictions are always
uncertain to some degree, I am confident that there is no uncertainty involved when
saying that I will stay in close contact with them in the future. Also, I would like to thank
all of my colleagues whom I met in the European research project ALLOW. Having
worked in an international research project over several years, I enjoyed very much
collaborating with other researchers from universities all across Europe on interesting
research problems.

Finally, I would like to thank my family and all my friends for their enduring support
in every situation of my life. Only because of their strong encouragement, care and
love, my academic endeavour has been made possible. I feel very happy to know that
I can not only count on them during this important stage of my life, but also in the
future whatever may happen next.

3

Contents

Abstract 9

Zusammenfassung 11

I. Introduction and Background 13

1. Introduction 15

1.1. Motivation . 15

1.2. Contributions . 18

1.3. The ALLOW Project . 22

1.4. Structure of Thesis . 22

2. Background 25

2.1. Trends in Context-aware Computing 25

2.2. Applications of Context Prediction . 27

2.3. Architecture of a Proactive Context-Aware System 30

2.4. Context Prediction Methods . 34

2.4.1. ARMA . 35

2.4.2. Regression Analysis . 36

2.4.3. Classification . 37

2.4.4. Bayesian Networks . 37

2.4.5. Markov Models . 39

2.5. Summary . 40

5

Contents

II. Context Prediction Models 41

3. System Architecture 43
3.1. Requirements . 43

3.2. System Components . 45

3.2.1. Context History . 45

3.2.2. Stochastic User Model . 46

3.2.3. Learning Algorithm . 47

3.2.4. Context Prediction Query . 47

3.2.5. Prediction Algorithm . 48

3.2.6. System Component Instances 48

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows 51
4.1. Introduction . 51

4.2. Adaptable Pervasive Flows . 53

4.2.1. Flow Model . 53

4.2.2. Flow Instance . 55

4.3. Flow-Based Context Prediction . 56

4.3.1. Context Prediction Models . 57

4.3.1.1. History Predictor . 57

4.3.1.2. Flow Predictor . 59

4.3.2. Learning Algorithm . 60

4.3.3. Prediction Algorithms . 64

4.3.3.1. Short-term Context Prediction 64

4.3.3.2. Long-term Context Prediction 66

4.4. Evaluation . 69

4.4.1. Evaluation Setup . 70

4.4.2. Evaluation Results . 71

4.5. Related Work . 73

4.6. Summary . 75

5. Expressive Context Prediction using Stochastic Model Checking 77
5.1. Introduction . 77

5.2. Overview of the PreCon Approach . 79

5.3. Time-dependent Stochastic User Model 80

5.3.1. Semi-Markov Model . 80

5.3.2. Learning Approach . 81

5.3.2.1. User States . 81

5.3.2.2. Transition Probabilities 81

5.3.2.3. Dwell Time Distribution 82

5.4. Prediction Query Language . 83

6

Contents

5.5. Model Checking Algorithms . 85
5.5.1. Next Operator . 87
5.5.2. Until Operator . 89

5.6. Evaluation . 92
5.6.1. Evaluation Metrics . 93
5.6.2. Evaluation Results . 94

5.7. Related Work . 97
5.8. Summary . 99

III. Context Prediction in Mobile Systems 101

6. Mobile Sensing Applications 103
6.1. Application Scenario . 104
6.2. System Model . 105
6.3. Energy Characteristics of Mobile Data Communication 106

7. Energy-efficient Context Update Protocols using Context Prediction 109
7.1. Introduction . 109
7.2. Problem Statement . 111
7.3. Approach Overview . 112
7.4. Basic Update Protocols . 114

7.4.1. Time-based Update Protocol . 114
7.4.2. Deviation-based Update Protocol 115

7.5. Stochastic User Model . 117
7.6. Context Predictors . 118

7.6.1. Next-Step-Predictor (NS) . 118
7.6.2. Multi-Step-Predictor (MS) . 120
7.6.3. Expected-Dwell-Time-Predictor (ED) 121
7.6.4. Last-Transmitted-Predictor (LT) 123

7.7. Evaluation . 124
7.7.1. Synthetic Traces . 125
7.7.2. Real Traces . 128
7.7.3. Discussion . 130

7.8. Related Work . 131
7.9. Summary . 133

8. Predictive Context Update Protocols with Hard Energy Constraints 135
8.1. Introduction . 135
8.2. Predictive Update Protocol with Hard Energy Bounds 137

8.2.1. Problem Statement . 137
8.2.2. Approach Overview . 138

7

Contents

8.2.3. Update Protocols . 140
8.2.3.1. Memory-less Update Protocol 140
8.2.3.2. Update Protocol with Memory 143

8.3. Predictive Sensing and Update Protocol with Hard Energy Bounds . . 147
8.3.1. Extended Problem Statement 148
8.3.2. Approach Overview . 149
8.3.3. Sensing and Update Algorithm 151

8.4. Evaluation . 155
8.4.1. Evaluation Methodology . 155
8.4.2. Stochastic User Model . 156
8.4.3. Update Protocols . 157
8.4.4. Sensing and Update Protocol 159

8.5. Related Work . 161
8.6. Summary . 162

IV. Summary and Outlook 165

9. Summary 167
9.1. Context Prediction Models . 168
9.2. Context Prediction in Mobile Systems 169

10.Outlook 173

Bibliography 183

8

Abstract

Context-aware computing has developed from a pure research area to a widely ac-
knowledged design principle of modern mobile systems over the last years. Mobile
applications, able to automatically adapt to a user’s dynamic context and improve the
ease of human-computer interactions, are commonly available today. However, with
current context-aware services such as restaurant finders or mobile tour guides, it is
possible to support users with respect to their present behaviour only. As the next stage
in context-aware computing more intelligent proactive applications are envisioned which
can not only respond to the current, but also the future context of humans: Smart
homes capable of controlling the ambient environment in expectation of the inhabitants’
prospective actions; Social network applications which alert users about places where
their friends might be going to; Personalized mobile recommender system to promote
events and offers at venues which are relevant to the daily schedules of humans.

The development of suitable context prediction methodologies to turn such applications
into a reality is however a challenge. The reason is that future context information,
hidden in the raw context traces left by users in the real world, is not immediately
accessible to applications. Therefore, sophisticated context prediction approaches are
required that are able to discover and mine patterns of a user’s behaviour from observed
context histories. However, approaches which make accurate and expressive context
predictions available and exploit this knowledge to optimize context-aware systems
are missing in current research. As a consequence, the full potential of context-aware
technologies has not been completely realised yet. In order to address this issue, we
contribute in this work new context prediction algorithms and models for state-based
context data, suitable for a range of different context types, such as a user’s locations
or activities. To this end, this thesis makes the following contributions.

In the first part of this thesis, we develop a novel context prediction system which applies
statistical modeling concepts to automatically learn a machine-processable model of a
user’s behaviour and infer context predictions. With our context prediction system, we
identify and address two shortcomings of existing approaches, prediction accuracy and
prediction expressiveness, and propose suitable techniques and algorithms to improve

9

Contents

them. For increasing the prediction accuracy over current systems, we develop a new
context predictor that is able to exploit the conditional dependency of context changes
on a user’s activities to anticipate forthcoming context states. Further, in order to
overcome the limited expressiveness of prevailing prediction approaches, we explore
the application of model checking algorithms for enabling expressive time-dependent
forecasts in context prediction systems. Based on the algorithms and models developed
in the first part of this thesis, we are able to significantly increase the amount and
accuracy of the knowledge provided to proactive applications for the prediction of future
context information.

In the second part of this thesis, we shift our attention towards tailored context
prediction approaches to optimize the performance of mobile sensing applications. These
applications represent a new class of mobile systems in the focus of current research,
designed to forward streams of sensed context updates to interested parties over wireless
communication channels. As mobile data communication induces a substantial energy
overhead on mobile devices, we develop novel prediction-based protocols for improving
the energy efficiency of mobile sensing applications. First, we present update protocols
which are able to exploit context predictions for reducing the number of transmitted
context update messages and trading off context accuracy vs. energy consumption.
Then, we extend our approach and show how knowledge about a user’s future behaviour
can be used to find the optimal update schedule for both sensing and communicating
context data given hard bounds on the energy consumption on a mobile device.

We have implemented and validated our context prediction models in detailed exper-
imental evaluations using synthetic and real-world context data. The results of our
experiments demonstrate the effectiveness of our concepts for enhancing the accuracy
and expressive power of predictions, as well as for increasing the energy efficiency of
context-aware mobile systems.

10

Zusammenfassung

In den letzten Jahren haben sich kontextbezogene Systeme von einer reinen Forschungs-
disziplin hin zu einem allgemein anerkannten Prinzip für die Entwicklung moderner
mobiler Systeme entwickelt. Mobile Anwendungen, die sich automatisch an den dy-
namischen Kontext eines Benutzers anpassen und so die Einfachheit der Interaktion
von Mensch und Maschine verbessern können, sind heutzutage weit verbreitet. Mit
gegenwärtigen kontextbezogenen Anwendungen wie bspw. Restaurant-Finder oder mo-
bilen Touristenführer ist es jedoch nur möglich Nutzer hinsichtlich Ihrem gegenwärtigen
Verhalten zu unterstützen. Als nächste Stufe im Forschungsbereich kontextbezogener
Systeme wird dagegen an proaktiven Anwendungen gearbeitet, die nicht nur auf den ge-
genwärtigen, sondern auch den zukünftigen Kontext von Benutzern intelligent reagieren
können: Intelligente Häuser, deren Steuerung an die voraussichtlichen Handlungen Ihrer
Bewohner angepasst wird; Anwendungen im Bereich sozialer Netzwerke, die Nutzer
über Orte benachrichtigen, welche von Ihren Freunden als nächste besucht werden;
Personalisierte mobile Empfehlungssysteme, die über ortsabhängige Ereignisse und
Angebote informieren, welche hinsichtlich der Tagesabläufe Ihrer Nutzer relevant sind.

Die Entwicklung von geeigneten Technologien zur Kontextvorhersage um solche Anwen-
dungen Wirklichkeit werden zu lassen stellt jedoch eine große Herausforderung dar. Ein
Grund hierfür ist, dass zukünftige Kontextinformationen in den rohen Kontextdaten
versteckt sind, die Menschen in der realen Welt zurücklassen und somit nicht einfach zu-
greifbar sind. Daher werden Verfahren zur Kontextvorhersage gebraucht, die in der Lage
sind charakteristische Verhaltensmuster aus erfassten Kontexthistorien zu erkennen. In
der gegenwärtigen Forschung fehlen jedoch Verfahren, die genaue und ausdrucksstarke
Vorhersagen möglich machen und dieses Wissen ausnutzen können um kontextbezogene
Systeme zu verbessern. Infolgedessen ist das ganze Potential kontextbezogener Systeme
noch nicht volllständig ausgeschöpft worden. Um dieses Problem zu beheben, steuern
wir in dieser Arbeit neue Algorithmen und Modelle bei zur Vorhersage von beliebigem
zustandsbasiertem Kontext wie bspw. die Orte und Aktivitäten eines Nutzers. In dieser
Hinsicht leistet diese Arbeit die folgenden Beiträge.

11

Zusammenfassung

Im ersten Teil dieser Arbeit stellen wir ein neues Kontextvorhersagesystem vor, welches
auf Grundlage von statistischer Modellierungskonzepte ein für Computer verarbeitba-
res Modell des Nutzerverhaltens automatisch lernen und Kontextvorhersagen ableiten
kann. Mit unserem Kontextvorhersagesystem adressieren wir Schwachstellen hinsichtlich
Genauigkeit und Ausdruckstärke der Vorhersage, die wir bei gegenwärtigen Ansätzen
ausgemacht haben. Um die Vorhersagegenauigkeit gegenüber bestehenden Verfahren
zu verbessern, wird ein neuer Kontextprädiktor entwickelt, der die Beziehung zwi-
schen Kontextänderungen und vom Nutzer ausgeführten Aktivitäten lernt um bedingte
Abhängigkeiten für die Vorhersage ausnutzen zu können. Darüber hinaus erforscht
diese Arbeit den Einsatz von Algorithmen aus dem Bereich Model Checking um aus-
drucksstarke zeitabhängige Vorhersagen berechnen zu können und so die limitierte
Ausdrucksstärke existierender Ansätze zu verbessern. Mit Hilfe der Algorithmen und
Modelle, die im ersten Teil dieser Arbeit entwickelt werden, erhöhen wir so die Menge
und Genauigkeit an Information, die proaktive Anwendungen für die Vorhersage von
zukünftigem Kontext zur Verfügung gestellt wird.

Im zweiten Teil dieser Arbeit wird das Augenmerk auf neue Ansätze zur Kontext-
vorhersage gerichtet um die Performanz mobiler sensorgetriebener Anwendungen zu
optimieren. Diese Anwendungen stellen eine neue Klasse mobiler Systeme dar, welche
im Fokus gegenwärtiger Forschungsarbeiten stehen um kontinuierlich Kontext auf einem
mobilen Gerät zu erfassen und über drahtlose Kommunikationskanäle an interessier-
te Konsumenten weiterzuleiten. Da mobile Datenkommunikation für mobile Geräte
einen beträchtlichen Energiemehraufwand bedeutet, entwickeln wir in dieser Arbeit
neue vorhersagebasierte Updateprotokolle um die Energieeffizienz dieser Anwendungen
zu verbessern. Als Erstes stellen wir Updateprotokolle vor, die Kontextvorhersagen
ausnutzen um die Anzahl der übertragenen Kontextupdates zu reduzieren und den
anfallenden Energieverbrauch gegenüber der erzielten Kontextgenauigkeit abwägen
zu können. Zusätzlich wird ein erweiterter Ansatz entwickelt, der Kontextvorhersa-
gen ausnutzt um eine optimale Entscheidung zu finden, wann Kontext erfasst und
verschickt werden soll, wenn feste Schranken hinsichtlich des Energieverbrauchs auf
mobilen Geräten gegeben sind.

Die in dieser Arbeit beschriebenen Kontextvorhersageansätze wurden implementiert
und in ausführlichen Experimenten mittels simulierten und echten Datensätzen be-
wertet. Die Ergebnisse der Experimente belegen die Wirksamkeit der Ansätze um die
Genauigkeit und Ausdrucksstärke von Vorhersagen verbessern und die Energieeffizienz
kontextbezogener mobiler System erhöhen zu können.

12

Part I.

Introduction and Background

13

Chapter 1
Introduction

1.1. Motivation

Challenged by the increasing complexity of today’s software systems and physical
environments, new technologies are required which seamlessly integrate with human
life. The advent of context-aware computing has paved the way for a new generation of
personalised and ubiquitous applications [ST94]. These applications exploit awareness
of a user’s context to provide intelligent services and promote unobtrusive interactions of
humans with their surroundings. Thus, users of context-aware applications are promised
a unique and convenient experience: no manual input is necessary to communicate their
aspired goals and intentions with computer systems. This has led to a vision where
computer devices of various forms and shapes, e.g., smartphones, public displays, and
wearable devices, can automatically recognize the user’s needs and adapt to them.

In order for this vision to come true, context-aware applications have to gain accurate
knowledge about the context of users and the environment in which they are acting
[SBG99]. Hence, since the early days of context-aware computing, a major interest has
been in techniques to extract and infer meaningful information that are relevant to a
user’s context. In the past, research has primarily focused on approaches for recognizing
a user’s real-time context, including information about his physical state (e.g. location,
activity) [TIL04], emotional situation (e.g. stress level) [LRC+12], social state (e.g. in
a meeting) [EPT+06], or parameters of the surrounding environment (e.g. light, sound,
etc.) [BBHS03]. Based on these technologies, novel human-centred applications such as
restaurant finders or mobile tour guides could be developed that rely on information
about users’ instantaneous context [SGP+05]. This enables the provision of effective
context-aware services to support humans in their current environment, e.g., providing
a list of recommended restaurants which are close to the user’s current position. As a
next stage in context-aware computing which goes even one step further, not only the

15

1. Introduction

user’s current context, but also his future context shall become relevant to inform new
kinds of applications and services [PNF05].

Future context information is seen as a key to facilitate novel proactive context-aware
systems that are able to incorporate the prospective behaviour of users [May05]. These
systems are envisioned to exploit predictions of the future situation of users, e.g. where
they might be going and what they might be doing, for improving the experience of
human-computer interactions and enabling new ways of how technology can foresee the
needs of humans at any time scale. For instance, in mobile advertising, knowledge about
future context enables enhanced information campaigns, advertising location-dependent
offers to people whose forthcoming travel routes are close to points-of-interests such as
shops or restaurants [PP09]. This allows customers to be informed with personalized
offers linked to their future activities and mobility habits, thus increasing the relevance
and usefulness of information seen by them. Further applications of context predictions
to enhance the proactive behaviour of computer systems can be found in a wide range
of different scenarios. For example, in the field of ambient intelligence, smart homes
have emerged as the idea of automated living environments which can seamlessly adapt
to the life habits of their residents [RDB07]. In order to increase the comfort of living
and reduce the costs of operating the house, knowledge about the residents’ current and
prospective actions is vital to control the ambient environment in a way which does not
interfere with their typical usage patterns [RRD06].

However, while the great potential of proactive computing systems has been often
discussed among researchers, many of the envisioned application scenarios cannot be
realized yet. In particular, effective context prediction techniques are missing which are
able to gain knowledge about users’ future context patterns required to enable proactive
behaviours. This is due to the fact that, in contrast to present and past context data,
future context is a piece of hidden information which is not directly visible from sensor
output. Present context information can be provided by currently available commercial
or academic context recognition systems, e.g., location positioning systems such as
UbiSense [SG05] or activity recognition frameworks such as Opportunity [RLFC11].
These systems process and interpret raw signals from a set of heterogeneous sensors,
e.g., GPS, infra-red, accelerometers or microphones, to gain a real-time understanding
of the current situation of humans. Past context information is accumulated in temporal
databases or knowledge repositories, where changing contextual behaviour is recorded
over a period of time [HLA+04]. This allows for advanced context-aware services
involving histories of time-stamped context data, e.g., queries for past trajectories of
moving objects [LDR08]. However, future context data is encoded in the typical habits
and routines of human behaviour and therefore much more difficult to obtain. It is
neither available from the immediate output of sensors nor from collections of past
context records. Therefore, the field of context prediction and the development of
sophisticated prediction techniques is still an open research problem.

16

1.1. Motivation

A great challenge in predicting context data is due to the intrinsic characteristics of
human behaviour. Since our everyday choices are variable and transient, there is a
high degree of uncertainty involved in human actions which makes context prediction a
difficult and complicated task. Therefore, predictions of future context cannot be simply
derived from deterministic rules, but more complex methods are required which are
based on an inherent measure of uncertainty to learn and represent a model of the user’s
behavioural patterns. The choice of a suitable prediction model and its underlying
properties has therefore large implications on the predictability of human behaviour.
In prior research, the focus has been on fundamental aspects of context prediction
systems such as system architecture design, context inference, and basic prediction
algorithms [May04]. However, even though the idea of context prediction for designing
proactive computer system has gained importance since then [PNF05], there has been
only little progress in designing more effective context prediction approaches and their
exploitations in specific contexts. In this thesis, we identify and overcome several major
limitations of current prediction systems in order to help proactive applications become
more sophisticated and gain more practical relevance.

First, in order to increase the satisfaction of users with proactive applications, context
predictions systems must provide predictions with a high degree of accuracy for their
actual occurrence. However, while context variables of different types (e.g. a user’s
activity and location) may reveal useful correlations, existing context predictions systems
often do not model such latent relationships. Incorporating dependencies among different
context types can be a relevant discriminating factor for resolving uncertainties and
achieving more accurate predictions. Second, the type of forecasts which are feasible
with current prediction system are highly restricted in query semantics. Currently, only
predictions of the next most likely context state are supported (e.g. the user’s next
location). In order to allow for predictions which go beyond the next context state,
new methods are required which are able to increase the expressiveness and range of
possible forecasts that can be derived from context histories. Third, new application
domains arise where context prediction can play an important role to improve the
behaviour of these systems. In particular, mobile sensing applications (e.g. mobile
social networking [MPF+10]) are becoming increasingly popular as a research area, but
face technical obstacles for a wide-spread deployment in reality. Since these applications
are designed to transfer continuous steams of context data from the user’s mobile device
to remote subscribers, high energy costs are incurred that are a critical factor for the
usability of mobile devices and thus the end users’ experience. The great potential of
using context prediction for optimising the energy costs of these applications has not
been addressed in current state-of-the-art.

As this discussion shows, significant challenging research problems can be identified
which have not been sufficiently addressed in prior research. In this thesis, we investigate
these problems in detail and propose new context prediction methods to solve them. A
detailed discussion of the contributions of this thesis is subject to the next section.

17

1. Introduction

1.2. Contributions

In this thesis, we contribute a comprehensive approach for the prediction of mobile
user context to improve the proactive behaviour of context-aware applications. To
this end, we propose a context prediction system that is based on novel statistical
methods to forecast state-based user context. State-based context data represents a
powerful context model in the focus of current research to describe a wide spectrum
of meaningful user behaviours. Developing an effective context prediction system
that supports state-based user context therefore enables context forecasts in various
application domains, addressing user activities (e.g. sitting, biking, walking), symbolic
location information (e.g. home or office), social or emotional status (e.g. in a meeting),
and even combinations of those (e.g. sitting in front of the TV at home).

However, in order to develop such an approach, a number of significant challenges need
to be addressed. These challenges arise from the need for a set of key characteristics
that proactive applications require to obtain knowledge of future context information. A
fundamental problem is to develop a context prediction system which cares for accurate
predictions, enables applications to pose queries for future context with expressive
semantics, and provides the ground for prediction-based mechanisms to overcome
current limitations of context-aware applications. In the following, we elaborate on
each of these dimensions, explaining the underlying problem in detail so as to state our
concise contributions.

1. Prediction Accuracy: The quality of service delivered by proactive applications
is strongly depending on the prediction accuracy of a context prediction system.
Since these applications are supposed to take proactive actions on behalf of
the user, reliable context predictions are essential for enabling a positive user
experience. While current prediction systems incorporate limited information
about a user’s past behaviour into a prediction (e.g. the sequence of most recently
visited locations), the instantaneous decisions taken by users often depend on
changing external conditions which are not reflected by these patterns. Activity
models which are designed to unveil the conditions and constraints of a user’s
actions appear as an ideal choice to close this gap. However, the integration of
information from activity models into context predictions systems has not been
explored yet to help deliver more reliable forecasts. Therefore, the first problem
addressed in this thesis can be phrased as: how can we integrate and exploit
models of a user’s activities to increase the accuracy of context predictions over
current prediction approaches?

To address this challenge, we propose a new approach to inject knowledge from
flow-based models of user behaviour into context prediction systems. These mod-
els reveal the flows of activities a user performs in process-oriented application
domains, e.g., typical work routines in hospitals. We propose a new predictor,
the so-called flow-based predictor, which combines information about activity

18

1.2. Contributions

executions with the user’s context changes in a statistical model of the user’s
behaviour. This model is able capture latent conditional dependencies for pre-
diction where the user’s next context change is related to his attached flow of
activities (e.g. when moving to a room to perform the next work item). In order
to realize this approach, we develop a new bi-variate Markov predictor which
encodes both information sources in a probabilistic state transition system. For
this purpose, we propose a learning algorithm, which is explicitly designed to
reflect the correlation of activity and context information, and present prediction
algorithms to efficiently traverse the probabilistic search space for determining the
most likely upcoming context states. Our evaluations show that the flow-based
prediction scheme significantly increases the prediction accuracy when exploiting
activity information as a discriminating factor.

2. Prediction Expressiveness: The value of a context prediction system is strongly
influenced by the range of queries it is able to answer. In order to support the
rich information needs of proactive applications, a powerful prediction interface is
required. In particular, an expressive prediction query language that allows applic-
ation to pose flexible queries with well-defined semantics is vital. Unfortunately,
current context prediction system only cater for simple queries, as just next-state
predictions are supported (e.g. predictions of a user’s next location). Further
methods for answering time-dependent queries and exploring context occurrences
beyond the immediate state successors at an arbitrary future time are not foreseen.
This severely limits applications in many scenarios where more advanced context
predictions are required. Therefore, the second main problem studied in this
thesis is: how can we devise a context prediction system that supports more
expressive queries than possible with current state-of-the-art approaches?

As a response to this challenge, we develop PreCon, a novel context prediction
system which allows for expressive predictions of a user’s context changes. PreCon
is based on a temporal-logic query language, which entails various temporal oper-
ators to query for future context with well-defined formal semantics. Due to the
expressive power of temporal logics, predictions with time-dependent constraints
become possible, e.g. whether a user x will eventually reach his home within a
time horizon of t minutes. In order to accomplish this, PreCon improves stochastic
model checking techniques from the field of formal system analysis. Specifically,
the user’s behaviour is represented as a Semi-Markov Model which encodes a
probabilistic state transition system augmented with state dwell time information.
Context prediction is then performed as a stochastic inference process over the
Semi-Markov Model to infer the probability of satisfying temporal-logic formulas
with time constraints. In our evaluation, we apply our approach to real-world
context data and demonstrate the effectiveness of our approach based on metrics
from information retrieval. PreCon is the first context prediction approach which
explores the combination of statistical methods and logic-based formalisms to

19

1. Introduction

express and compute forecasts of human behaviour.

3. Prediction-based Cost Optimization in Mobile Systems: In recent years,
mobile sensing applications have emerged (e.g. mobile social networks), which
require to constantly sense and send streams of context updates over ubiquitous
wireless networks to interested subscribers. However, due to the limited capacities
of the devices’ batteries, energy expensive operations are critical for the batteries’
lifetime and may significantly impair the usability of mobile devices. A funda-
mental challenge in these systems is therefore to achieve a good trade-off, i.e., one
that does not overspend the device’s energy budget, but nevertheless guarantees a
high context accuracy to interested consumers. In order to improve this trade-off,
predicting a user’s future behaviour provides means to acquire knowledge about a
user’s context with much less energy overhead. Specifically, context prediction can
be an interesting technique to estimate a user’s yet unknown context. However,
the opportunity of this approach for increasing the energy efficiency of mobile
sensing systems has not been explored in prior research. Therefore, as a third
main problem studied in this thesis we investigate: how we can optimize the
costs of acquiring streams of context data on mobile devices using novel context
prediction approaches?

In this thesis, we tackle this challenge by the design of protocols and algorithms, which
make use of tailored context predictions to optimize the energy/accuracy trade-off in
mobile sensing applications.

First, we develop novel update protocols for the efficient distribution of streams of
context data on mobile devices based on integrated prediction mechanisms. Specifically,
we propose time- and deviation-based update protocols, which limit the inaccuracy of
the context data experienced by remote consumers, and combine them with prediction-
based update strategies to provide an update-to-date view on a user’s context in spite
of missing update messages. For this purpose, we devise and compare four Markov
predictors that can be used to accurately predict the current context state of a user
based on the last context update which has been received. Since accurate predictions
reduce the need for continuous transmissions of context changes, our prediction-based
update protocols are able to significantly lower the energy consumption on the sending
as well as the receiving device.

Second, as an extension to these protocols, we propose a more rigorous approach,
which not only reduces the energy consumption, but gives hard guarantees about the
energy required on mobile devices for sensing and communication of context data. We
approach this problem as a constrained optimization problem, where the accuracy
of the context data that is delivered to remote consumers shall be maximized while
the amount of consumable energy is strictly limited by a given energy budget. We
formalize the problem as a Constrained Markov Decision Process (CMDP), and propose

20

1.2. Contributions

State-based

Context

Predictors

P
re

d
ic

tio
n

A
cc

u
ra

cy

P
rediction

E
xpressiveness

Prediction-based

Cost Optimization

Figure 1.1.: Venn diagram of thesis contributions

a statistical model of the update process for which we incorporate information about a
user’s predicted context changes. Based on this model, we find an optimal configuration
of our update protocols which guarantees the most effective update decisions within the
given energy limit. In our evaluation, we show for real-world traces of user behaviour
that even for small energy budgets we can achieve a high context accuracy. This means
that significant energy savings can be achieved on the device, while the loss of quality
for context-aware applications in terms of the negative effect on the context accuracy is
minimal.

The main contributions of this thesis are visually summarized in the Venn diagram
shown in Figure 1.1. The core of our contributions are novel state-based context
predictors, which are devised to address the three problems stated above: improving
prediction accuracy, enhancing prediction expressiveness and using predictions to
optimize the costs of mobile systems. We hence contribute novel effective solutions
to fundamental problems in the field of context prediction, ranging from universal
prediction models to tailored prediction-based approaches for improving the performance
of mobile systems. As a result of this research, the context predictors developed
over the course of this dissertation can be exploited to increase the proactiveness
and efficiency of mobile systems in a broad range of different scenarios. As part
of this thesis, the contributions have also been described in different publications
[FHH10,EFH+09,FHR11,FHR12,FBHR12].

21

1. Introduction

1.3. The ALLOW Project

The research of this thesis has been conducted within the research project ALLOW
- Adaptable Pervasive Flows [HRKD08]. ALLOW is a Future and Emerging Techno-
logies (FET) project funded by the European Commission under the 7th Framework
Programme. The project was running from February 1st 2008 to July 31st 2011 and
involved six universities across Europe.

The goal of the project has been the development of a new programming paradigm for
human-oriented pervasive applications. Key to this approach are behavioural modeling
concepts (called flow models) that allow for formalizing and describing the activities
of humans in the real world. Based on these models, pervasive technical systems are
enabled to adapt automatically and seamlessly to humans involved and embedded
in them, explicitly supporting people in achieving well-defined goals in dynamically
changing environments and contexts.

To achieve the goals of the project, activity recognition and context prediction have
been considered as key approaches to provide pervasive application with rich knowledge
about the dynamic context of humans. While activity recognition is concerned with
the extraction of higher-level activities from low-level data signals (e.g. sound or
acceleration) in real-time, context prediction is a complementary concept and studies
the evolution of this behaviour over time. As a consequence, context information of
different temporal scales - the past, present and future - can be derived when context
recognition and prediction are applied simultaneously, thus yielding a comprehensive
picture of situations that are or become relevant to the user.

As a result of this thesis, we have contributed new machine-processable behavioural
user models and prediction algorithms to the ALLOW vision. These concepts have been
integrated into the overall ALLOW system architecture to support proactive designs of
applications in domains such as logistics or health-care which have been in the main
focus of the project. Aside from these scenarios, the ALLOW concepts can be applied
to any domain where pervasive applications are driven by (future) changes in human
behaviour.

1.4. Structure of Thesis

This thesis is structured as follows.

In Chapter 2 important background information is given about previous research
into context prediction. As part of this chapter, the role of context prediction for
designing proactive computer systems is discussed. This includes a detailed description
of application domains in which context prediction can improve the behaviour of
computer systems. Further, a range of available statistical data analysis methods is

22

1.4. Structure of Thesis

reviewed, which we can be exploited as a foundation to deal with different kinds of
prediction problems.

Given the required background information to understand the problem domain, we
then describe the contributions of this thesis along two major parts which both involve
several chapters.

The first part of this thesis is focused on the design and implementation of novel
context prediction models with high expressiveness and accuracy. Initially, we present
in Chapter 3 the architecture of our context prediction system and discuss different
components which are involved in predicting context data. Based on this architecture,
we introduce in Chapter 4 a new context predictor for enhancing the accuracy of context
predictions by exploiting the relationship of flows of human activities and associated
context changes. Then, we present in Chapter 5 a new context prediction system that
is inspired by model checking approaches to enable new forms of expressive context
predictions.

The second part of this thesis studies how context prediction can be exploited to improve
the energy efficiency of mobile sensing applications, a class of mobile systems in the
current focus of research. Initially, we present in Chapter 6 a system model of mobile
sensing applications and analyse the energy costs on mobile devices for communicating
frequent updates of context data over wireless communication networks. Then, we
propose in Chapter 7 a prediction-based update protocol which reduces the costs for
sending context updates by anticipating context changes at a consumer. Furthermore,
we extend this approach in Section 8 and develop predictive update protocols to satisfy
hard energy limits on a mobile device for sensing and communicating streams of discrete
context data.

Finally, we summarize the contributions of this thesis in Chapter 9 where the key results
are listed. Moreover, we discuss in Chapter 10 suggestions for future work in the field
of context prediction, which extend on the contributions of this thesis.

23

Chapter 2
Background

In this chapter, we discuss various important concepts from the area of context-aware
computing that form the background of this thesis. First, we highlight in Section 2.1
significant advancements in context-aware computing which have paved the way for
research into context prediction systems. In Section 2.2, we then explore a range of
different application areas, in which knowledge about future context can be exploited to
enhance the behaviour of computing systems and experience of users. Thereupon, we
describe in Section 2.3 the relation of context recognition and context prediction using
a layered architecture of a proactive context-aware system. Subsequently, we review
in Section 2.4 prevailing data prediction methods that represent well-known tools for
statistical data analysis. Finally, we summarize in Section 2.5 the main facts from our
background study and discuss their relevance for this thesis.

2.1. Trends in Context-aware Computing

The vision of context-aware computing has led to a new view on the design of computer
systems and applications. As proposed by Schilit et al. [ST94], context-awareness is
defined as the ability of a mobile user’s application to perceive and respond to various
stimuli from the environment. While former software systems showed no relation
to the surrounding environment in which computers are embedded, context-aware
computing thus promotes a new way of improving the interactions of computers with
the physical world. Therefore, Schilit et al. stated that context-aware applications
can be characterized as software that adapts according to the location of mobile users,
the collection of nearby people, hosts, and accessible devices [BNSW94]. For instance,
the Active Badge system [WHFG92], an infra-red based indoor location system, is
considered to be the first context-aware system on top of which applications such as
contextual reminders [BNSW94] have been developed.

25

2. Background

Central to these applications is the notion of context, whose meaning gradually expanded
over the years to cover a wide range of different aspects. Initially, Schilit et al. proposed
a classification scheme and distinguished between different categories of context; these
are the user environment, physical context and computing context [BNSW94]. Further,
Schmidt et al. have stressed the importance of context information beyond location
and advocated a wider understanding of context including information from a range
of different sensors, e.g., audio, motion or bio-sensors [SBG99]. Dey proposed a more
general definition of context, which is nowadays widely accepted among researchers. He
referred to context as any information that can be used to characterize the situation of
an entity, which is relevant for the interaction between a user and applications [Dey00].
This discussion around the notion of context shows that from the very beginning of
research in this area there has been a great interest in extending the scope and meaning
of context information.

In recent years, a new trend towards the discovery of more sophisticated, complex
context information could be observed. Specifically, a lot of advancement has been
made in the field of activity recognition, which aims at the detection of higher-level user
activities [AR11]. Early activity recognition systems required users to wear wireless
sensors distributed across several parts of the human body, e.g., wrists and hips [BI04].
Due to their complex and expensive setup, these systems have been successfully applied
to specific settings only, e.g. maintenance assistance systems [KWK+09], and found
to be of limited relevance in more natural everyday situations. Therefore, the latest
research has concentrated on commercial off-the-shelf mobile phones as underlying sensor
hardware, and it has been shown that human activities such as walking and running can
be accurately recognized by smartphones with on-board sensors such as accelerometers
or microphones [KWM10]. As a consequence from the steady progress in the field
of activity recognition, the knowledge available to ubiquitous computing systems has
expanded and facilitated new context-aware applications with rich information about
the user’s behaviour. For instance, in application domains such as health-care, novel
applications have been developed to monitor and assess the activities of patients to
give medical advice or automatically notify caregivers about recognized anomalies in a
patient’s behaviour [TF08,SARK09].

Beyond these techniques, further directions are currently pursued to discover useful
context information and better understand human behaviour. While context-aware
systems have often relied on technologies for acquiring the users’ current context,
the temporal evolution of this context has also been considered to be a valuable
source of information [May05]. This allows for making assumptions about the user’s
prospective behaviour, thus enabling computers to support users not only in their
current environment, but also when moving through distinct contexts (e.g. related
to their locations or activities) over time. Consequently, as a latest trend in context-
aware computing, context prediction methods are studied for improving the proactive
behaviour of context-aware applications. For this purpose, researchers analyse traces

26

2.2. Applications of Context Prediction

of context data to discover characteristic patterns in the users’ behaviour. To support
the goals of this research, repositories such as CRAWDAD [KH05] have emerged which
provide access to human context traces that have been recorded as part of various
user studies. The availability of such real-world data has intensified the interest in
context prediction among researchers with different backgrounds. This research area is
driven by the idea of novel proactive applications that can take advantage from such
predictions. A detailed discussion of such proactive applications and the benefits that
they can provide is subject to the next section.

2.2. Applications of Context Prediction

Context prediction is seen as a basic enabler of proactive behaviour in various ap-
plication domains. Proactivity describes a special feature of computing systems, and
characterizes the ability of applications to take the initiative on behalf of users [Sig08].
In conjunction with context-aware systems, this can be understood as the ability of
performing adaptations in expectation of a course of future actions and situations of
the user. Compared to a reactive system, the user experience can greatly benefit from
such an application design, since the prospective steps and future needs are directly
reflected in the decisions of those applications.

In the following, we discuss various applications areas where knowledge about the user’s
future behaviour is of major benefit. Even though the list is not non-exhaustive with
respect to the many potential use cases that can be envisioned with current or even
future technologies, it will clearly demonstrate in which ways a proactive design of
context-aware systems can improve the underlying system performance. For this purpose,
various performance metrics are discussed which relate to both the technical aspects of
systems (e.g. reduced energy consumption of operating smart homes) as well as the
end user experience (e.g. retrieval of more relevant personalized information), where
the availability of future context data enables improved behaviours of context-aware
computing platforms.

Wireless Networks. Wireless networks provide mobile users seamless access to
information anytime and anywhere. From a technical point of view, wireless data
connections are established among the users’ devices and the nearest wireless access
points (in case of WiFi) or base stations (in case of e.g. GPRS or UMTS) ∗. In order to
maintain these connections in the face of the user’s mobility, during which the user may
leave the communication range of an access point, efficient handovers are required. As
part of such a handover, the state associated with the active wireless connection has to be
transferred between two neighboured access points, which is a critical step for the data
connection quality. It has been shown that such handovers can incur significant delays

∗For the ease of explanation, we refer in the following to wireless access points only, while the same
principle equally applies to base station handovers

27

2. Background

when the transfer is initiated only after the physical association has taken place [MSA03].
This negatively affects the quality of the communication service, especially in case
of applications such as voice or multimedia applications where the users often keep
permanent connections while moving through the network. To alleviate this problem, it
has been shown that a proactive approach can significantly reduce these delays and
support more effective handover management [MSA04]. The idea behind proactive
handovers is to transfer the session information associated with the connection already
ahead of the association time to other access points. In order to guarantee a scalable
handover management and minimize the number redundant transfers, predictions of
the user’s mobility behaviour are used to identify the access stations with which he
most probably connects next. This has shown to achieve significant reductions of
the handover latency in the scale of an order of magnitude [MSA04]. Consequently,
the availability of context predictions in these scenarios enhances the management of
complex decentralized wireless systems to guarantee users a seamless experience of
always-on connections.

Mobile Advertising. With the steady increase of mobile phone usage, mobile advert-
ising has become a new marketing tool to reach a large number of potential customers
which might be interested in novel products or services [Kru11]. However, advertisements
are often experienced as spam by receivers due to the large amount of information that
is not relevant to them. Therefore, new ways of how to provide potential customers with
personalized advertisements that better suit their individual interests are researched.
Specifically, it has been proposed to enhance the effectiveness of advertisement based on
information campaigns, where the content of advertisements should match the context
of mobile users closely [PP09]. For instance, the users’ visited locations reveal important
information to enable advertisements which are bound to certain spots, e.g., for sending
coupons to people living in close neighbourhood of the shops providing these offers.
However, most often these advertisements are useful only prior to a potential purchase
decision, so that interested buyers can become aware of these offers and take purchases
into consideration. Therefore, not only the current, but also future context can provide
valuable hints for placing more effective advertisements. For instance, knowing the
typical routes of people, special offers can be recommended that are offered by shops
which are in close travel time to those routes. The knowledge about these routes can
be gained from predictions about the sequence of locations visited by users at different
days of a week. This form of mobile advertising has great potential in increasing the
revenue of businesses and user satisfaction, thus establishing a win-win situation for
both, advertisers and consumers [PP09]. The prospective of how successfully such an
advertisement strategy can become is therefore strongly dependent on sophisticated
context prediction capabilities.

Smart Homes. The vision of transforming peoples’ homes into intelligent environments
has led to the development of smart homes [RRD06]. Smart homes are enriched with
sensor technologies to allow computers to effectively control various aspects that affect

28

2.2. Applications of Context Prediction

the in-house living conditions, e.g. heatings, lightings, etc. Since the operation of houses
is a complex of task for humans, smart home technology can thus provide relevant
support to increase the living comfort and improve the resource consumption efficiency.
Among the benefits, improved safety, reduction of costs, or ease of use are considered
to be the ones most valued by the house inhabitants [RBB+03]. However, in order to
automatically control and adapt the house environment, the specific lifestyles of the
house’s inhabitants need to be incorporated [RDB07]. This is to ensure that the house
environment is proactively brought to a state which is aligned with the everyday needs
and usage patterns of its residents. For instance, it has been shown that for controlling
actuators such as lights, fans, or air-conditioner in an automatic manner, a smart house
needs to recognize the absence of its inhabitants and anticipate when they are most
likely to come back [RRD06]. Specifically, to regulate the temperature in various rooms
with respect to the habits of the house’s inhabitants, the air conditioning system can
be deactivated during times of their absence, but must be activated already before
these rooms are expected to be used. Therefore, location and movement predictions can
reveal important information to identify at what times rooms are most likely accessed
in the house [RRD06]. This way, the manual effort can be significantly reduced to
relieve users from technical tasks of configuring their house environment. Consequently,
context predictions are relevant to seamlessly adapt technical systems which intervene
with the daily lives of people to automate human tasks.

Information Hoarding. The proliferation of mobile devices has changed the way
in which information can be accessed, enabling us to be continuously connect with
the Internet from almost everywhere regardless of our current location. However,
since mobile devices are limited in available resources such as their energy capacity
or available network bandwidth, novel strategies are required for mobile information
access that impose less burden on the resources of mobile devices. In particular,
the concept of information hoarding [KR01b,BMR04] has been proposed, where the
idea is that required information could be proactively downloaded during times of
high-bandwidth wireless data connections (e.g. in case of WiFi) and stored on the
device for later usage. Since with this approach most of the network communication
activities are concentrated on times of cheap data connections, the energy consumption
on mobile devices can be reduced and information can be provided with short response
times. Key to this approach is the accurate prediction of information items that can
become relevant to the user, given constraints about the amount of data which can be
hoarded on a mobile device. As in mobile computing scenarios information access has
found to be location-dependent, a hoarding approach can take advantage of a user’s
predicted future locations to increase the cache hit rate and thus make the process of
information hoarding more effective [KR02]. Based on the user’s predicted destinations,
the information objects with the highest access popularities at these locations can
then be transferred to the device. In order to improve the predictions, it has been
show that further domain knowledge, e.g. route trajectories as being managed by
navigation systems, are useful to identify the data items with are accessed during

29

2. Background

future user trips [KR01a]. Consequently, to decrease the cost of information access over
wireless networks based on an effective information hoarding strategy, accurate context
predictions are of great value to optimize the pre-fetching decisions.

Opportunistic Communication. Traditionally, mobile communication is realized as
an infrastructure-based service provided by mobile network operators. However, with
the standardization of wireless ad-hoc interfaces (e.g. Bluetooth or WiFi) and their
integration into commodity mobile phones, alternative ways of information delivery
have become possible. Since cellular networks are becoming increasingly overloaded
due to the large volumes of mobile Internet traffic consumed by users, new strategies
for reducing the load on cellular traffic are at the centre of current research [HHK+10].
Opportunistic communication is a new communication paradigm which is based on the
idea that data can be directly exchanged among mobile devices within local proximity
using short-range radio communication. This significantly reduces the dependency
on a conventional communication infrastructure, since the process of information
dissemination is performed completely autonomously or at least partly managed by
the mobile devices themselves [HCY08, BDR12a]. However, as human behaviour is
characterized by a high degree of mobility, human-carried mobile devices permanently
enter and leave the mutual communication range of their wireless radio adapters
in these scenarios. As a consequence, sophisticated routing strategies have to be
developed which can guarantee successful messages delivery based on opportunistic
contacts of nodes in the network. In order to achieve scalability and avoid flooding
of data packets, selective routing decisions have to be made to judge if a potential
carrier is a good candidate to help deliver a message to its final destination. For
this purpose, it has been proposed to predict encounters of mobile nodes at specific
locations, which allows for sending messages to selected nodes with a high meeting
probability [LFC06]. Beyond co-location patterns, also predictions about the social
relationship [DH07] and the underlying social network [HCY08] of message receivers
have shown to speed-up the information propagation process through the network.
This is strongly different to classical routing in infrastructure-based networks, since
opportunistic communication cannot rely on static network links and pre-configured
routes. Therefore, predictions are used to compensate for this lack of knowledge and
it has been demonstrated that such an approach can greatly relieve the load from the
cellular network infrastructure [HHK+10,BDR12a].

2.3. Architecture of a Proactive Context-Aware System

In the section, we discuss a layered view on the processing of context data in context-
aware computing scenarios. For this purpose, we introduce the architecture of a proactive
context-aware computing system which requires both recognition and prediction of mo-
bile user context. The architecture is found in state-of-the-art context-aware computing
systems [May04], [Sig08] and can be seen as a de facto standard for reasoning about

30

2.3. Architecture of a Proactive Context-Aware System

Universität Stuttgart

IPVS

Research Group

“Distributed Systems” 1

Sensor Data Acquisition

Data Post-Processing

Feature Extraction

Clustering and Classification

Context Prediction

Discrete Context States

Context Features

Cleaned Sensor Data

Sensor Data

Figure 2.1.: Layered architecture of a proactive context-aware system

context data. In the context of this thesis, a discussion of this architecture is predomin-
antly relevant for two reasons. First, it shows that the data obtained from sensors as
raw values needs to undergo various transformation steps before it becomes useful for
the task of context prediction. This will clarify on which level of abstraction our context
prediction system is operating. Second, the architecture precisely describes the relation
between context recognition and context prediction. Since both are concerned with
tools for the processing of context data, this will stress the need for additional analysis
methods beyond the functions implemented in the context recognition component to
gain predictive capabilities.

As shown in Figure 2.1, the architecture is composed of different layers of context data
processing services. From an abstract point of view, each service receives context data
as input, processes it and then forwards a more abstract representation of the context to
the next upper layer. While the raw sensor data is obtained at the most bottom layer,
context prediction is at the most upper layer and represents the end of the processing
chain. As a result of applying the chain of processing services, the level of abstraction
of the context data is gradually increased, so that more knowledge becomes available
which is hidden in the raw sensor data. In the following, we describe the functionality

31

2. Background

of each layer more in detail following a bottom-up approach.

Sensor Data Acquisition. This layer is concerned with the task of measuring raw
sensor data. For this purpose, a wide range of sensors have been developed in recent
years which are integrated into commodity hardware modules. For example, modern
smartphones such as the iPhone are equipped with various on-board sensors to detect
light, proximity, audio, location, video, etc. These sensors can be periodically sampled
to obtain a time series of physical measurements. For instance, using a GPS sensor, the
trajectory of geographical positions along which the user has moved can be recognized.
While the raw data is useful for specific purposes, e.g. for the sake of traffic monitoring,
it is often not expressive enough to describe the activities and mobility aspects which are
relevant in a human context. In order to gain more expressive meaning, the quantitative
measurements in form of numeric sensor values need to be transformed into higher level
semantic knowledge of discrete nature (e.g. describing user activities such as walking
or sitting). The extraction of this knowledge is subject to the higher layers of the
architecture, which look at the patterns contained in the sensor data.

Data Post-Processing. Before the raw sensor data can be analysed for interesting
patterns, validation and correction measures need to be applied that make sure that
the data is not overly affected by sensing errors. This is necessary because sensing
real-world phenomena with mobile devices does often yield inaccurate measurements
(e.g. due to faulty hardware, signal disturbances or bad exposition of the sensors to the
source of the signal). For instance, the positioning error of GPS is often not better than
5 meters [AG02], while in dense urban settings where not all required satellite signals
are visible even much larger errors may be observed. Also, retrieving data samples from
the sensors may occasionally fail, so that certain sensor readings may be missing in a
series of measurements. Therefore, as part of the post-processing process, the data is
cleaned from outliers which are identified as readings with an unnatural behaviour that
may imply noisy readings. To counter the outlier effect, interpolation and smoothing
techniques are applied where the trend of the data is exploited to adjust existing values
and insert averages for missing values in between two neighboured sensor readings. This
results in an enhanced time series of sensor values which carries less sensing errors to
increase the accuracy of the estimated user context.

Feature Extraction. Given a cleaned time series of sensor values as input, the next
step is to study features which are hidden in the data. The motivation behind this
is to extract data qualities that make the recognition of higher level context much
easier. Typically, features are chosen which describe statistical properties of the data,
since this allows to deal with variations in sensor readings which can be observed
for real-world user activities. For instance, simple features may be parameters such
as the average and standard deviation which shed a light on the distribution of the
data, assuming that different context states have unique signatures of such parameters.
More complex features may involve computationally intensive task such as the Fourier

32

2.3. Architecture of a Proactive Context-Aware System

transformation, which translates the time series from the time domain into a frequency
domain representation. For instance, the frequency domain entropy is a meaningful
feature to capture the spread of frequencies in discriminating user activities such as
assembly tasks [WLTS06]. Usually, not only a single, but many different features are
extracted from the sensor readings to increase the information richness of the data and
give insights into different kinds of statistical properties. If the dimension of the feature
space becomes too large which may aggravate the data analysis, dimension reduction
techniques are applied to keep only the most informative and discriminative features.
As result, a vector of feature values is derived for each data sample that is given as
input to the next layer for further analysis.

Context recognition. For recognizing meaningful classes of discrete context data
such as user activities (e.g. walking or sitting) or semantic locations (e.g. home or
office), numeric sensor values need to be transformed to discrete context classes. In
order to perform this task, data samples need to be assigned to higher level context
states, which embrace features characteristics with the same statistical properties. For
this purpose, different learning approaches can be used, among which clustering and
classification are the most popular methods for context recognition.

Clustering is a form of unsupervised learning, which means that any prior knowledge
about the existence of different clusters (i.e. context states) is not required. For this
purpose, clustering algorithms such as the k-means algorithm [Mac67] split the entire
data set into subsets of coherent data using suitable distance metrics. The distance
metrics are applied to the data feature values, so that members of the same cluster
are similar to each other in terms of their feature characteristics. The clusters gained
from the clustering process can then be associated with different semantics in human
behaviour. For instance, user activities such as walking or sitting can then be identified
as clusters with different acceleration signatures.

In contrast to clustering, classification is based on supervised learning which requires
more information to be available to perform the recognition of user context [RN09].
In this case, not only the features values associated with each data sample, but also
discrete class labels describing the semantics of the data (i.e. name of the context state)
has to be provided with the training set. Then, classification methods can be used to
learn the relationship of the data features with distinct classes, so that samples of sensor
data can be uniquely assigned to one of these classes. While clustering and classification
algorithms thus take a distinct approach for context recognition, both provide as output
discrete context states which are then available to the context prediction layer.

Context Prediction. The context prediction layer further increases the level of
abstraction of the sensed context data. For this purpose, it explores the temporal
dimension of the data and discovers patterns that describe sequences of typical context
changes. Hence, context prediction can be seen as the study of temporal user behaviour.
For the sake of context prediction, the user’s behaviour is regarded as a stochastic
process which evolves over time. Drawing on the statistical properties of stochastic

33

2. Background

processes, the current user behaviour can be extrapolated to identify probable context
changes in the future. To accomplish this, the prediction layer requires sophisticated
probabilistic reasoning techniques. Therefore, it is designed as a system on its own,
consisting of several sub-components with dedicated functions. We will discuss these
components in detail when introducing our context prediction system in Chapter 3.

As the discussion of this architecture shows, the interface between context recognition
and context prediction is clearly defined in this thesis. Context recognition provides us
a time series of the user’s context states, which is received by the context prediction
component to build a prediction model of temporal context changes. We like to point
out that this approach implies that we perform context prediction on the level of
discrete user states and not on numeric context data as proposed in [Sig08]. Due to
this approach, we are able to forecast meaningful transitions among discrete context
states involving significant changes in the underlying sensor data (e.g. transition among
the user’s home and work place). This is not possible in [Sig08] where only low-level
context such as raw sensor values can be predicted that occur within a short time scale.

Also, it is worth noting that the direction of interaction between context recognition and
context prediction is not limited to be one-way. The knowledge about the occurrence of
future context states can be used to optimize the behaviour of the context recognition
layer in turn and reduce the costs of the context recognition process. In this thesis, we
will present an approach in Chapter 7 and 8 where context predictions are fed back to
the lower layers to enhance the performance of mobile sensing applications, where the
process of context recognition faces energy limitations of mobile devices.

2.4. Context Prediction Methods

The application of data analysis and prediction methods as powerful problem solving
tools has a long tradition in different fields of computer science. While the invention
of these methods often dates back a long time ago, the constant emergence of new
data-driven application domains such as context-aware computing has retained their
attractiveness and relevance to date. For the purpose of context prediction, there is a
wide range of different statistical prediction methods which are potentially useful and
interesting.

In this section, we review and discuss existing methods that are commonly used to
address prediction problems. In the context of this discussion, we show that each
of these methods has been designed with a specific problem in mind, which makes
their application most useful in specific application contexts only. In the following,
we therefore reflect on their ability to support the prediction of human context, so as
to identify the most appropriate statistical prediction framework for the purpose of
this thesis. A summary of the discussed prediction methods and their most important
features is given in Table 2.1

34

2.4. Context Prediction Methods

Prediction Method
Numeric

Data
Discrete

Data
Temporal
Patterns

Data
Relations

Hidden
Variables

ARMA X X

Regression Analysis X X X

Classification X X

Bayesian Network X X X X

Markov Models X X

Table 2.1.: Overview of prevailing prediction methods and their characteristic features

2.4.1. ARMA

Autoregressive Moving Average (ARMA) models are a prominent method for the
analysis of time series [BJR08]. They are composed of two different, but complementary
parts: the autoregressive (AR) and the moving average (MA) model. An AR model is
based on the assumption that the future evolution of a time series is linearly dependent
on previous observations. The number of previous terms on which the time series
depends is defined by a parameter p, which is also known as the order of the model.
For instance, in case of a AR(1) model, the future output is regressed on the last time
series sample. In contrast, a MA model does not deal with data that can be directly
observed, but handles the effects of noise that is assumed to distort the data. According
to this model, the current value of the time series is influenced by q previous white
noise terms, where q is the order of the MA model. Each of the noise terms is typically
assumed to adhere to a normal distribution with zero means and a known variance. For
instance, a MA(1) thus consists of one normally distributed white noise term.

While both models, AR and MR, can be applied independently, ARMA(p,q) describes
a combined and hence more expressive model which integrates them into a single
prediction function [BJR08]. In order to apply the model to a given application scenario,
appropriate parameters for p and q need to be found, which is usually accomplished by
inspecting the (partial) autocorrelation function of the time series [Wei05]. Subsequently,
the model has to be fitted to given sample data to determine the strengths of the linear
dependency. The fitting process is usually based on least-square regression [WMH60].
Then, the fitted model can be used for predicting the evolution of the time series using
the most recent observations at current time t.

ARMA is used for continuous time series prediction, where the domain of the random
variable is numeric. This is beneficial when the prediction is applied to raw sensor
data, such as in case of temperature data which can be fitted to a weather forecast
model [BKVR10]. Also, when dealing with financial data such as stocks, ARMA is an
effective method to model the time series evolution [Tsa02]. However, in the context of
this thesis, where the focus is on context data with semantic labels, ARMA models fall

35

2. Background

short to naturally deal with the nature of states. Therefore, models for discrete context
data which can be used to reason over state transition trajectories are more meaningful
in the scope of our work.

2.4.2. Regression Analysis

Another popular method for statistical reasoning is regression analysis, which allows
for studying the relationship of different random variables in data sets [DS98]. For the
purpose of regression analysis, different kinds of variables are distinguished. The so-
called dependent variable Y models the outcome or effect in the data. The explanatory
variables X1, X2, . . . , Xp represent various input features which can be observed. Based
on a statistical model of this relationship, the current assignment of the explanatory
variables can be used to predict the corresponding value of the dependent variable. As
an example, consider the case of a demographic study, where regression analysis can be
used to explore the relationship of a population’s life expectancy (explanatory variable)
with people’s year of birth (dependent variable) for predictions about how old people
might become in the future [Sha05].

Regression analysis is often based on the variants of linear and logistic regression [DS98],
where the former may be applied to continuous and the latter to discrete dependent
variables. For the case of linear regression, it is assumed that the relationship among the
variables is linear, so that the outcome of the dependent variable can be described as a
sum of weighted observations from the explanatory variables [MPV01]. Additionally,
a random error term is included in the linear function to account for the presence of
noise in the data. In order to fit the linear function to a given data set, the least-square
methods is used as an estimation technique [WMH60]. In contrast to linear regression,
logistic regression allows the explanatory variables to be discrete. For this purpose, linear
regression is based on a binomial regression function which models the probabilities of
categorical outcomes [Men02]. Instead of a linear function, the relationship is modelled
as a logistic function, which has a characteristic S-shape. As a closed-form solution is
not available to find the required coefficients of the function, an iterative approach, e.g.
Newton’s method, is used to fit the model from data observations [Men02].

In its most widely used form, regression analysis is employed to compare and correlate
the values of different data variables of the same time instant [DS98]. The rationale
behind this approach is to obtain a predictor which allows for forecasting the outcome
of a variable that depends on related observations [MPV01,DS98]. However, reasoning
over temporal shifts in the data to extrapolate the outcome of the variable at future time
instants with unobserved input is not possible. For future time instants, observations of
the dependent variables have not been obtained yet, which are however expected as input
by the model to make a prediction. Therefore, we can conclude that regression analysis
cannot effectively support the goals of this thesis in learning patterns of temporal
context changes and predicting humans’ time-depending context.

36

2.4. Context Prediction Methods

2.4.3. Classification

Classification is one of the most widely studied prediction problems in statistical
learning. Given different data categories, the idea of classification is to predict the
missing category of a new data item [WFH11]. This basic problem has a wide range of
applications in the field of data mining. For instance, in online marketing, it can be
used to predict whether a customer is interested in buying a certain product based on
the customer’s profile (e.g. the user’s gender, age, or education) [Ama11]. While a
range of different approaches exist to perform classification tasks , we discuss two of the
most popular methods in the following: the Naive Bayes Classifier and Decision Trees.

The Naive Bayes Classifier adopts Bayes’ theorem for the sake of classification [WFH11].
For this purpose, the probability of a data item belonging to a specific class is computed
given different data features. In order to reduce the complexity of the prediction task,
the data features are assumed to be conditionally independent and a separate probability
is computed for each data feature which is then combined into a single estimate. The
prediction is then a maximum likelihood estimate of all classes. This means that, given
the probability of all candidate classes, the one with the highest probability is chosen
as a prediction.

In contrast, Decision Trees [Qui86] take an information-theoretic approach to predict a
target class from given input features. For this purpose, a tree structure is learned from
training data, where the nodes of the tree represent conditions over the data features,
while the leaves correspond to different classes. The tree structure is optimized based
on an information gain criterion, so that the information entropy over increasing tree
levels is minimized. This leads to very compact trees and thus allows to understand
the specific conditions that are most explanatory for different class memberships. The
tree can then be applied to a new data item by testing the item’s features against the
conditions encoded by the tree to predict a target class.

While these models have applications in many areas, they are devised for classical
data mining scenarios in which prediction is regarded as a classification task [Nee12].
Classification is an effective tool for establishing a relationship between data observations
and the outcomes of a class variable [WFH11]. However, the representation of temporal
changes in the data to reason over future outcomes at arbitrary time horizons is not
supported. In order to enable the prediction of human context changes, statistical
models are needed which can capture sequential patterns to describe the temporal
evolution of a user’s context. Classification models such as the Naive Bayes Classifier
or Decision Trees are however not devised for time series analysis.

2.4.4. Bayesian Networks

Bayesian Networks (BNs) are a popular graphical probabilistic model, which can be
used to encode complex probabilistic relationships for the purpose of prediction [RN09].

37

2. Background

These networks are often used to determine the likelihood of uncertain events within a
given domain of discourse when some evidence about available observations is given.
For instance, in medical science, it can be used to study the probability of having
diseases (e.g. cancer) given different symptoms of a patient [Bas00]. At the same time,
it allows for reasoning in the backward direction, e.g., to determine the probability of
observing different symptoms of patients suffering from a particular disease.

Bayesian Networks are based on a graph model, where the nodes of the graph represent
random variables, and the edges model directed dependencies among them [Pea85]. The
structure of the graph is often defined by experts of the domain of discourse and reveals
conditional independence relationships. The random variables in this graph which share
no direct connections are considered to be conditionally independent. Conditionally
independent variables can be eliminated from the joint probability distribution, thus
significantly reducing the complexity of inference. This way, probabilistic inference
becomes possible in domains with a large set of random variables. Due to its graphical
representation, Bayesian networks can be understood very well by humans and allow
for much more obvious interpretations compared to other inference models.

Dynamic Bayesian Networks (DBNs) are extensions of Bayesian Networks, which are
capable of modeling variables and their temporal relationships [Mur02]. This means
that random variables are considered whose outcome evolve over time in discrete time
steps. Two different types of these variables are distinguished in DBNs, the so-called
observable and hidden variables. Observable variables can be measured in the real
world and denote a direct stimulus to the model. For instance, ambient temperature as
measured by a weather station is an instance of an observable variable. In contrast,
hidden variables denote an artificial construct of the model, representing data which
is not directly measurable, but has a latent relationship to the observable variables.
Distinguishing between observable and hidden variables has proven to be effective when
dealing with erroneous data, e.g., in case of a biased temperature sensor, since the
biased state can be smoothed by representing it both as observable and hidden variable.

Dynamic Bayesian network can be used to solve difference inference problems related
to the hidden variables in the model. Filtering refers to the problem of identifying
the current states of the hidden variables based on the observable input. Prediction is
the problem of extrapolating the future states of the hidden variables over subsequent
time steps. These inference tools can be applied to wide range of problems dealing
with data uncertainty. In particular, due to the separation of observable and hidden
states, Dynamic Bayesian Network are often employed for the purpose of context
recognition to predict the correct context state (hidden state) based on sensor data
(observable state) [MM07]. Since our context prediction model is situated above the
context recognition layer (see Section 2.3), smoothing and error correction tools are
performed as part of the context recognition process. As a consequence, there is no
need to distinguish between hidden and observable variables in our context prediction
approach. We rather collect and predict context data sensed by the context recognition

38

2.4. Context Prediction Methods

which provides us a time series of observable input. Therefore, DBNs do not match
the nature of the problem underlying our work targeting the prediction of observable
context data.

2.4.5. Markov Models

Markov models are classes of stochastic processes which model the temporal evolution
of random variables [How71a]. The simplest model is a Markov chain, which assumes
the random variables to be discrete and evolve in discrete steps. A key characteristic
of a Markov chain is that the state transitions adhere to the Markov property. The
Markov property states that the temporal evolution is memoryless, i.e., that the next
state is independent of all previous states, given the current state. The state transitions
can therefore be encoded in a compact way as a discrete probability distribution. This
assumption makes Markov chains a simple, yet effective method for representing real-
world processes. For instance, it can be used to build random walk models, which are
often applied to explain the rationale behind processes of observed choices which result
in sequences of dynamic state changes.

More complex stochastic process models have also been developed, which are based
on the Markov property. Semi-Markov chains [How71b] are generalizations of classical
Markov chains which include an explicit representation of the temporal state dynamics.
More precisely, in addition to the state transition probabilities, they also model the
state dwell time, which refers to the time spent in a state until the next state change
occurs. This eliminates a restriction of Markov chains, which allow the state dwell
times to be distributed according to a geometric distribution only.

Another model variant are Markov Decision Processes (MDPs), which augment Markov
chains with a decision logic component [Bel57]. They have applications in various fields
of artificial intelligence, where actions need to be taken that influence the state of a
system. For instance, the problem of directing robots in a way such that they reach
desired target locations can be represented as a Markov Decision Process. For Markov
Decision Processes, the model of Markov chains is extended with a choice of actions that
can be taken in each state and a function that reveals the reward of reaching certain
goal states. The solution of a Markov Decision Process then yields the best actions to
apply in a given state of the system, which can be used for supporting decision-making
in state-based transition system.

The simple, yet effective stochastic properties of Markov models make them an ideal
candidate to reason over discrete context changes which are affected by the uncertainty
in user behaviour. Therefore, in this thesis we rely on Markov models as a statistical
framework to deal with various challenges in predicting state-based context data. In
the rest of this thesis, we will show how the distinct, but related statistical properties
of Markov chains, Semi-Markov chains as well as Markov Decision Processes can be
exploited to address different context prediction problems in the focus of our work.

39

2. Background

2.5. Summary

In this chapter, we have presented the relevant background information to lay the
foundation of this thesis.

First, it has been shown that context prediction has recently gained much attention
in research as a promising way to design and enable new proactive applications. In
particular, the development of powerful context recognition technologies and the wide-
spread usage of sensor-enabled mobile devices has made it possible to gather context
histories which give insight into behavioural patterns of users for the prediction of
future context. In order to highlight the great potential of proactive systems, different
application domains have been explored which have a specific interest in future context
information. In these domains, knowledge about the future context is exploited in
various ways to improve the user’s experience with computer systems. Specifically,
we have seen that context predictions can help to increase the relevance of context-
dependent information delivered to mobile users (mobile advertising), maximize the
comfort provided by smart appliances (e.g. smart houses), decrease the cost of operating
a technical system (e.g. wireless networks), or optimize the effectiveness of algorithms
for mobile information dissemination (opportunistic communication).

Further, we have studied a generic architecture of proactive computing systems to
clarify the role of context prediction compared to other data processing techniques
involved with recognizing context data. We have described this architecture as a model
of several data processing layers, of which context prediction constitutes the most upper
layer dealing with time series of discrete context states. Then, we have discussed several
well-known methods that can be applied to address the problem of statistical data
analysis. This discussion has revealed that there are a range of different approaches (e.g.
Bayesian Networks or ARMA models) available from the field of statistics and artificial
intelligence, which are, however, most useful in specific application contexts only. We
have analysed the properties of these predictors in detail and identified Markov models
to be the most promising statistical toolkit for the task of context prediction based on
their simple, yet effective prediction model for discrete random variables whose outcome
undergo changes in time.

Consequently, this chapter shows that there is a close relationship between the problem of
context prediction, methods of statistical analysis and the design of proactive computer
systems, which will be explored deeply throughout the rest of this thesis.

40

Part II.

Context Prediction Models

41

Chapter 3
System Architecture

In this chapter, we give an overview about the design of our context prediction system
for learning and predicting context patterns in human behaviour. For this purpose, we
present a system architecture which entails a set of generic components involved in
a context prediction process. In the following two chapters, we will then discuss the
concrete instances of our context prediction system which are designed to solve specific
prediction problems based on the described architecture.

3.1. Requirements

The design of our context prediction system is based on a number of important require-
ments, which relate to the overall goal of enabling accurate and expressive forecasts
of state-based context data (see Section 1.1). In the context of our prediction system,
these goals can be translated into various aspects of our system model, including desired
properties of the prediction model, the degree of automatic learning, and the provided
query interface as described in the following.

Uncertainty Modeling. User behaviour in the real world is affected by a strong
degree of uncertainty. When observing human context events (e.g. a change in the user’s
location), the occurrence of the same events in the future can only be expected with a
certain chance. A context prediction system should measure the degree of uncertainty in
observed context patterns to identify the most reliable forecasts and enable applications
to understand the confidence in the predictions returned. In order to accomplish this,
likelihood measures from statistics and probability theory can be used, which provide
us a framework for drawing conclusions based on given evidence about a user’s observed
past behaviour.

Multi-dimensional Context. The set of available context information, e.g. a user’s
locations and activities, has increased with advancements in the field of context recog-

43

3. System Architecture

nition. With each additional context type, the description of a user’s context can be
augmented with more and varied kinds of information. A context prediction system
should be flexible with respect to managing multi-dimensional context information.
This requires our system to be based on a generic context model which allows for
processing and analysing arbitrary types of user context. In particular, there should be
no restrictions with respect to specific types of discrete context that can be integrated
into the context prediction model.

Sequential Behavioural Patterns. In the real world, users often make decisions
which are built on each other and occur together. For instances, when visiting a sports
club, a user might frequently go to a bar afterwards with his friends. Consequently, user
behaviour should be learned in terms of the sequential patterns which can be observed
in a series of context occurrences. A prediction system should be able to discover such
behavioural patterns and exploit them for prediction. This will allow the system to
accurately identify forthcoming context changes based on the most recent observations
of the current user behaviour.

Integration of Domain Knowledge. Beyond context data obtained from sensors,
also other sources of knowledge can provide valuable input to a context prediction
system. Specifically, domain knowledge which gives insight into how people typically
behave in target domains is very informative (e.g. in form of workflow models). Since
this information gives insight into higher-level constraints which cannot be derived
from sensor readings, the context prediction system should be able to integrate this
knowledge into a prediction model of the user’s behaviour.

Time Representation. For proactive applications, time is an important source of
context information to anticipate when particular needs occur while users execute their
activities. A prediction system should therefore reflect time as a first order construct
in the prediction model. Specifically, the prediction model should allow for reasoning
over context patterns in user behaviour and their time of occurrence. This will enable
applications to predict what kind of activities can be expected next within a given time
window to trigger suitable adaptations.

Unsupervised Learning. In order to create unobtrusive and intelligent services,
manual interventions of the user should be minimized as much as possible. In particular,
no explicit input of the user should be required to make predictions possible. To achieve
this, behavioural user habits have to be learned in an unsupervised manner based the
user’s interactions with his environment. Hence, the prediction system is required
to process streams of observed context changes to discover patterns of typical user
behaviour in a fully automatic way.

Well-defined Prediction Semantics. In order to interact with a context prediction
system, proactive applications need a well-defined query interface. For the specification
of the queries, a natural language explanation is insufficient, since statistical prediction

44

3.2. System Components

Universität Stuttgart

IPVS

Research Group

“Distributed Systems” 5

Stochastic

User Model

Prediction

Algorithm

Context

Prediction

Query

Prediction

Result

generates

input

Context

History

Learning

Algorithm

User

Context

Recognition

System

monitors

feeds

analyzes

creates

Proactive

Application

submits

informs

supports

Figure 3.1.: Context prediction system architecture

models are complex and not easy to understand for non-expert users. Therefore, a
clear formal semantics is required which describes the meaning of predictions in an
unambiguous way. This will allow applications to make use of the full expressiveness of
context predictions and apply them in the right context to achieve their goals.

3.2. System Components

We have designed a context prediction system which covers the requirements discussed
above. The architecture of our context prediction system is illustrated in Figure 3.1.
Since context prediction is a data-intensive task, it comprises various components,
marked with dark boxes in the figure, which implement different aspects of data
processing and analysis. In the following, we discuss the role of each individual
component within our system in more detail.

3.2.1. Context History

The context history is a structured temporal database, which contains entries that
characterize the past behaviour of users. Each entry refers to a time-stamped event
that is related to a change in the user’s context. Various types of context events may
be recorded in the history that originate from a range of different context recognition

45

3. System Architecture

systems. For instance, enabled by location sensing systems that can track the movements
of people, recorded context events may correspond to the user’s visited locations.
Similarly, the events in the context history may refer to information about a user’s
activities, e.g., modes of locomotion such as walking or sitting, which can be obtained
from activity recognition systems [BI04]. Since all context events are associated with
their occurrence time, context histories can be regarded as a time series of a user’s
context changes observed in the real world.

For our context prediction system, we assume that the context history stores discrete
context data only. Most often, discrete context data is given as direct output from
various context recognition systems. For instance, activity information as being detected
by current systems is described with human-readable labels that are discrete by nature.
Hence, this kind of information can be directly fed into the context history. In the same
manner, many position systems such as the ones based on WiFi, RFID or Bluetooth
allow for capturing symbolic locations to locate users [DR03]. Moreover, different
techniques are described in literature to translate low-level data into discrete semantic
context data (cf. Section 2.3). For instance, fine-granular user positions such as
geometric coordinates that are returned by GPS receivers can be clustered to form
places of spatial dimensions which are meaningful for users (e.g., home or office) [AS02].
Therefore, the context history is open for a range of different context types which can
be included there as discrete context.

3.2.2. Stochastic User Model

The stochastic user model provides an abstract representation of the user’s behaviour,
which can be easily understood by computers. It is designed to give insight into
meaningful patterns which are hidden in the observable data. Hence, in contrast to
context histories, it does not encode isolated context events, but reveals relations of
consecutive context changes and dependencies among different context types, e.g.,
location and activity changes. Since these patterns may be specific to different users,
an effective prediction strategy requires an individual user model for every user whose
behaviour shall be predicted.

In our context prediction system, the stochastic user model is based on a probabilistic
representation. As real-world user behaviour is characterized by uncertainties and
variances, a probabilistic model most closely reflects the choices people make. As a
statistical framework, we use Markov models (cf. Section 2.4) due to their simplicity
and effective nature for dealing with state-based variables. Our context prediction
system exploits the properties of Markov models to map the user’s behaviour to a
state-based transition system, allowing for a) representing the context states in which
a user resides b) analysing the user’s transitioning behaviour among different context
states and c) modeling the time a user spends in different context states. Since Markov

46

3.2. System Components

models can be applied to any kind of discrete context data, our stochastic user model
is able to deal with information such as location, activity, etc. in a coherent manner.

3.2.3. Learning Algorithm

The degree of abstraction between context histories and the stochastic user model
strongly differs: while context histories record detailed information about a user’s past
context events, the stochastic user model is supposed to store behavioural patterns only.
The learning algorithm is intended to fill this gap by translating the raw events from
the context history into the representation needed for the stochastic user model. For
this purpose, learning algorithms are used which compute statistical summaries from
sequences of past context events.

In our work, we use specific learning algorithms to train Markov models of a user’s
behaviour. This allows for learning the existence of a user’s context states and the
sequences of states typically visited by the user. With each observed context change,
frequency statistics are updated that allow for deriving probabilities about the user’s
state transition dynamics. In order to account for deviations in the user’s behaviour,
the learning algorithm has to be executed periodically to update the stochastic user
model with the most recent behaviour. Thus, outdated knowledge about past context
changes that are no longer valid can be removed to avoid a negative impact on the
accuracy of context predictions.

3.2.4. Context Prediction Query

In order to support proactive applications with knowledge about future context events,
we provide a query interface to our prediction system. The query interface allows
applications to choose among a set of different predictions which best suit the purpose
for which the application is designed. Specifically, to enable proactive behaviours
in a wide range of scenarios, we provide an expressive query interface which enables
applications to pose queries with different operators and semantics.

We support different types of predictions in our context prediction system. From a
abstract point of view, we distinguish between most likely and verification queries for
future context, which both complement each other. Most likely queries ask for the
context event to happen next with the highest probability. For instance, in case of
mobility prediction, such a query could ask for the next visited location of a user,
which would return the user’s most likely destination. Most likely queries thus involve
the selection of context events among a set of candidates with different occurrence
probabilities. Verification queries, on the other hand, allow for predicting whether a
certain pattern holds in the future, where the answer is of boolean nature. For instance,
such a prediction could test whether a user will leave his current location soon. This

47

3. System Architecture

enables applications to explore whether a interesting situation might occur to trigger a
particular service on behalf of the user. As an example, a proactive mobile recommender
system could decide to deliver information about interesting events in a user’s local
surroundings if a user is predicted to stay at his current location for a sufficient amount
of time. A detailed discussion of the prediction inference process and query semantics
is subject to the next two chapters.

3.2.5. Prediction Algorithm

In order to answer a query for future context, a prediction algorithm is needed. The
purpose of this algorithm is to explore possible behaviours of the user, and then to rate
the probability with which this behaviour could hold. More precisely, a probabilistic
inference process is executed where two sources of information are processed. On the one
hand, the patterns contained in the stochastic user model are used as a search space of
possible context changes. On the one hand, information about the most recently sensed
context changes is used to condition the predictions on the current user behaviour. The
user’s current context is therefore integrated into the decision about what patterns are
most likely to re-occur next.

Using Markov models as a statistical framework, the inference process in our system
is conducted as a search algorithm in a state-based transition system. As part of the
inference process, paths of state transitions are explored for which the probability
is calculated to undergo sequential state changes. The inferred probabilities serve
as a measure of confidence in the occurrence of a prediction. This gives proactive
applications effective means at hand to judge whether a prediction is reliable or not.
For application that require reliable predictions (e.g., smart homes), only forecasts
with a high occurrence probability are incorporated. In contrast, for application where
false predictions can be tolerated more often (e.g., recommender systems), also lower
occurrence probabilities can be accepted to add more value to the provided services.

3.2.6. System Component Instances

As discussed in the last sections, we have designed our context prediction system using a
generic component-based architecture. In order to address specific prediction problems
in the focus of this thesis, dedicated instances of these components (e.g., prediction
algorithms) are required. In the following, we list the component instances which have
been developed as part of this work to increase the accuracy and expressiveness of
context prediction systems. A detailed discussion of these components is subject to the
next two chapters.

48

3.2. System Components

Context History:

• Flow-enhanced History (cf. Section 4.2.1). An extension of classical one-dimensional
context history with information about the sequences of context changes and
workflow activities.

• Multi-dimensional Context History (cf. Section 5.3.2.1). A generic representation
of a multi-dimensional context history which may encompass context information
from different sources and event types.

Stochastic User Model:

• Markov Model (cf. Section 4.2.1). A stochastic user model which represents the
discrete context states and state transition probabilities associated with a user.

• Semi-Markov Model (cf. Section 5.3.2). A stochastic user model which extends
classical Markov model with probability distributions about the time a user spends
in different context states.

Learning Algorithm:

• Bi-variate Markov Model Learning (cf. Section 4.3.2). An algorithm to learn a
bi-variate Markov Model which is able to reflect the correlation of two independent
random context variables (workflow activities and classical context information).

• Semi-Markov Model Learning (cf. Section 5.3.1). An algorithm to learn a Semi-
Markov Model which encompasses state transition probabilities as well as dwell
time distributions associated with different user context states.

Context Prediction Query:

• Most Likely Sequence of Context Changes (cf. Section 4.3.3). Query for of the n
most likely context changes which are to occur next.

• Temporal Stochastic Logic (cf. Section 5.4). Queries which are represented as
temporal logic expression to describe time-dependent patterns of future context
occurrences.

Prediction Algorithm:

• Most Likely Sequential Path Mining (cf. Section 4.3.3). A context prediction
algorithm to answer queries for the most likely sequence of context changes.

• Stochastic Model Checking (cf. Section 5.5). A context prediction algorithm
based on model checking techniques to verify the satisfaction of temporal logic
expression for the occurrence of future context patterns.

49

Chapter 4
Improving Context Prediction Accuracy
with Adaptable Pervasive Flows

4.1. Introduction

The design of proactive systems, based on knowledge of a user’s future context, provides
novel ways of supporting users more effectively in everyday tasks [PNF05]. In various
application domains such as smart homes or pervasive health-care, context predictions
can be exploited to minimize the amount of explicit input required by humans to control
the surrounding computing environment [RBB+03]. However, due to the inherent
uncertainty of real-world behaviour, the provision of services which act automatically
on the users’ behalf is a critical issue. In particular, as proactive services are based on
assumptions about future context events, adaptations may also be experienced by users
as confusing and disruptive if forecasts do not match their actual behaviour. One of
the great challenges in context prediction research is therefore to design new prediction
algorithms which can deliver accurate forecasts to minimize the disruptions noticed by
users and guarantee a high level of unobtrusiveness.

Previous context prediction approaches rely on context histories as the only source of
information for prediction [BD99,SKJH04,KM09,AAH+09]. Context histories provide
insight into a user’s context transitions, e.g., sequences of visited locations, which can
be used to find patterns of re-occurring context changes. With this approach, context
transitions which are frequently observed in the history can be reliably predicted. This
way, often only the most popular context changes which dominate the context history
are captured. Context changes which deviate from the popular patterns are perceived
as abnormal behaviour. The weakness in the ability to understand different patterns of
context changes negatively impacts the prediction accuracy. However, context change
patterns share often a significant relation to the specific tasks and goals followed by users
which serve as a motivation for their behaviour. In many application domains in the

51

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

focus of current research such as pervasive health-care, information about the regular
activities performed by humans becomes available. Activity information can provide
important evidence about the occurrence of upcoming context changes for enabling more
predictions. For instance, consider a hospital scenario where workflow management
systems are used to schedule the tasks of nurses. If we could access the information
about the nurse’s activity from the workflow management system, e.g. exposing that
a specific patient needs to be visited next, we could use this information to forecast
her next location more accurately. However, this requires to combine two different
sources of information in a prediction model, enabling context predictions based on
correlation patterns. As most of the current approaches deal with single-dimensional
context only (e.g. a user’s locations) [BD99,SKJH04,KM09,AAH+09], dependencies on
a user’s activities cannot be modelled and exploited for prediction. In order to overcome
this problem, novel prediction algorithms are necessary which can take advantage and
integrate information from activity-based models of human behaviour.

Based on this motivation, we propose a new prediction scheme leveraging the concept of
Adaptable Pervasive Flows (APFs) that has been developed in the European research
project ALLOW [FHH10]. APFs are context-aware workflows which are situated in the
real world and expose the activities executed by human entities in various environments.
In order to improve the prediction accuracy over current prediction systems, we propose
an approach for exploiting flows as source of domain knowledge to provide context
predictors with rich activity information. Since current context predictors are only
devised for one-dimensional context data, we present a novel flow-based context predictor
that is able to correlate observed context changes with the activities performed by
humans. The predictor encodes this relation as a probabilistic state transition system
that models the evolution of a user’s behaviour based on a Markovian stochastic process.
The state transition system reveals the conditional probabilities of a user’s next context
change given his current activity and last context state. For predicting the user’s next
context states, we then propose an efficient algorithm to traverse the transition system
and compute paths of most likely context changes. In our evaluation, we show that our
approach can significantly increase the prediction accuracy compared to state-of-the-art
predictors, as conditional dependencies on the activities performed by humans are
incorporated into the context prediction process.

The rest of this chapter is structured as follows. First, we introduce Adaptable Pervasive
Flows in Section 4.2 as a model of context-aware human behaviour. We then present
our flow-based context prediction scheme in Section 4.3, proposing new learning and
prediction algorithms to exploit the flow-based knowledge. In Section 4.4 we perform
an evaluation study and compare classical context predictors with the flow-based
predictor we have developed. Subsequently, we discuss in Section 4.5 context prediction
approaches from related work and show that no prior approach is able to correlate
context changes with higher-level knowledge about a user’s activities. Finally, we
summarize and conclude this chapter in Section 4.6.

52

4.2. Adaptable Pervasive Flows

4.2. Adaptable Pervasive Flows

Workflows are inherent to human behaviour in the real world - either explicitly or
implicitly. Explicitly, workflows can be found in domains such as hospitals or logistics,
where humans follow common procedures in daily routines. In these domains, the
activities carried out by employees often obey best practices or obligations as specified
by an organisation’s rules and regulations. Implicitly, even in less obvious daily situations,
workflows are part of our everyday behaviour. For example, during sports, shopping
or when engaging in leisure activities, people often behave in a structured way based
on their routine behaviour. Consequently, workflows are widely available in various
environments of daily life, making flow-based computing models an ideal choice for
context-aware applications with a high intensity of human interaction.

Based on this motivation, Adaptable Pervasive Flows (also simply called flows hereafter)
[HRKD08] have been proposed in the European research project ALLOW as a model
for proactive applications. Flows are context-aware workflows situated in the real
world that are based on machine-processable representations of the activities executed
by humans. The overall idea behind this approach is that effective adaptations of
applications become possible when activity information is directly integrated into the
execution plan as a unified application model. In order to realize this idea, extensions
to classical workflow technologies have been developed in ALLOW, which allow flows
to adapt to changes in the activities of humans attached to them.

The basic flow-based computing system as described in [MPS+09, EFH+09] enables
flows to react to changes in the current context of humans. In this chapter, we show how
flows can also be exploited to enable proactive adaptations to future context changes.
For this purpose, we propose a new flow-based context prediction scheme that can
leverage on activity information as exposed by flows to increase the accuracy of context
prediction. Before presenting our novel context predictor, we first describe a formal
model of flows upon which our context prediction approach is based.

4.2.1. Flow Model

A flow model is a machine-processable description of a real-world process that involves
human activities. Essentially, a flow model encodes the structure of activity-dependent
processes under changing contextual conditions. This allows flows to model complex
behaviours where the execution of human activities is subject to constraints in the
execution order of these activities and dependencies on the execution context. For the
definition of flows, formal modelling languages can be used which are based on a set of
language-specific modelling constructs. In the following, we introduce a graph-based
flow model which is supported by state-of-the-art workflow technologies and has a
long tradition in workflow computing [BPE07]. Graph-based flow models are known

53

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

Start Sift
Wake Up
Patient

Serve
Lunch in
Patient
Room

Take
Patient To

Dining
Room

Give
Medi-
cation

Store
Blood

Sample

Flow
Activity

Running
Flow

Activity

Transition

Figure 4.1.: Adaptable Pervasive Flow attached to a nurse

as sophisticated models with a clear execution semantics that allow for composing
structures of various execution patterns in a generic and flexible way [Kop08].

Definition 1 (Flow Model): A Flow Model f is specified by a directed graph (A,E,C,
P (C), t), where

• A denotes the set of activities

• E ⊆ A× A defines a control flow

• C is the set of discrete user context

• P (C) is the set of predicates over the user’s context C

• t : E → P (C) associates each control link with a transition condition

The flow model describes a plan for the execution of activities based on a directed
graph. The execution order is implied by the graph structure which introduces a control
flow over the set of activities. For this purpose, each flow contains a start activity
from which there is a path to any other activity in the flow. An activity path in the
flow consists of sequences of activities which are linked through the graph edges, i.e.,
the path is defined by pairs (ai, ai+1) ∈ E of an activity ai and its direct successor
ai+1. In case an activity has more than one activity successor, the flow has a branched
structure and models alternative paths that can be executed. In order to decide for
one alternative, conditions are attached to the edges connecting an activity with its
successor. The conditions are evaluated as predicates over the context c ∈ C of a human
whose activities are described in the flow.

54

4.2. Adaptable Pervasive Flows

As an example, consider the flow attached to a nurse in a health care scenario shown
in Figure 4.1. The flow models various activities that a nurse needs to carry out for
a patient treatment. For this purpose, the flow specifies health care activities such as
”give medication” or ”serve lunch”. Also, the flow arranges the activities in a structure
to reflect their temporal dependencies, e.g., a blood sample can only be stored after the
medication has been given. As the required treatment activities may vary depending on
aspects such as legal health care regulations, the activities to be executed are linked to
conditions which are part of the nurse’s context. For example, depending on the health
conditions of the specific patient she is caring for, it may be decided where to serve the
patient’s lunch.

4.2.2. Flow Instance

Flow models serve as templates for executing flows at run-time. The run-time represent-
ation of a flow is referred to as flow instance. While flow models define a set of possible
behaviours, flow instances keep track of the progress of the flow and expose the current
state of the flow execution. Formally, we define a flow state as follows.

Definition 2 (Flow State): The state of a flow f at time t is formally specified as
st(f), and reveals the activity a ∈ A which is currently performed in the flow.

The state of a flow instance is synchronized with the real-world environment using
automatically collected context information in order to display which activity is under
execution. To achieve this, flows are coupled with context recognition technologies to
monitor a user’s actions that are executed in parallel to a flow [HWR11]. The flow
state evolves with the observed context and actions based on the following rules:

• When the flow instance is created, the state is set to the first activity described
in the flow. Every flow has a unique activity which has no predecessor that serves
as the flow’s start activity.

• The start of a new activity terminates the previous activity and causes the flow’s
state to be updated. The state then changes from the previous activity to its
successor. This signals a change in the execution of the current activity.

• Context conditions associated with the transitions are monitored to decide about
the completion of an activity. Such a condition evaluates the current context of
the user executing the flow. As long as the condition is not fulfilled, the current
activity remains valid. As soon as the condition is satisfied, the current activity is
terminated and the successor activity is started. Context conditions may evaluate
various sources of information such as manual user feedback or the actions sensed
by an activity recognition system.

55

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

• For activities with more than one successor, the next activity to be executed is
found via a matching context condition. The context conditions of all transitions
are evaluated to find an activity that is valid in the current execution context.
The first activity for which the condition holds is then selected for execution.

• A flow is completed as soon as the last activity has been executed. The state of
the flow is then retained as the activity which was executed last.

By following this model, flows are able to capture more expressive semantics than
activity sensing technologies alone could provide. The reason is that flows are able
to model sequential dependencies and integrate external contextual information (e.g.
patients’ health record) to describe a user’s specific activity. For instance, while the
user’s action as sensed by activity recognition technologies yields ”walking”, the flow
can assign the more expressive information ”take a patient to dining room” to it. This
allows flows to expose meaningful states about which activity a human is engaged in,
as the interpretation can leverage on the wider application context.

In this work, we leverage on flows as a conceptual model of process-oriented context-
aware applications. The implementation of the conceptual model with state-of-the-art
workflow technologies has been discussed elsewhere [MPS+09,EFH+09,HWR11]. For
the purpose of our work, flows are primarily interesting as a rich knowledge base to
inform the process of context prediction with activity information. As a consequence,
we do not focus on specific technological aspects in the following, but concentrate on a
generic model for a context prediction system which is enabled by the described flow
model.

4.3. Flow-Based Context Prediction

In this section, we introduce a new context predictor that is able to improve traditional
context predictors with flow knowledge. Traditional context predictors are based context
histories, which store information about the observed past context changes of a user.
However, these context histories contain only one-dimensional context data, e.g. location
changes, upon which a prediction is derived, but lack information about the user’s
higher-level activities which may help to improve the prediction.

In this following, we devise a new context prediction approach to combine both sources of
knowledge – context histories and flows – to leverage the additional activity information
present in flows. Key to this approach is a suitable representation of the relationship of
flows and context to give insight into the context changes that frequently occur when
executing specific activities. In order to realize this approach, we first propose a generic
model of a classical context predictor and then propose an extension which allow us
inject flow knowledge into these predictors to derive prediction which are conditionally
dependent on a user’s activity.

56

4.3. Flow-Based Context Prediction

4.3.1. Context Prediction Models

As human behaviour cannot be described deterministically, the most common approaches
for context prediction are based on stochastic principles. For this purpose, the occurrence
of context (e.g. location) is regarded as a random variable X, which can be assigned
values from a discrete set of context elements C = {c1, c2, .., cn}. For the purpose
of our work, we assume that each context ci ∈ C can be associated with a unique
symbolic identifier. For example, in terms of geographic information, symbolic names
such as ”office” or ”kitchen” can be used as location identifiers. A user’s context history
H = (ct1 , ct2 , ..., ctn) can then be represented as a sequence of context elements cti ∈ C,
which are ordered according to the time ti of their occurrence.

The occurrence of sequential changes in context can be considered as a stochastic
process χ that describes the evolution in user behaviour with distribution P (X1 =
ct1 , Xt2 = c2, ..., Xtn = cn). The properties of such a stochastic process allow for making
assumptions about the recurrence of a user’s behaviour in the future which can be
exploited for prediction. In the following, we introduce different predictors that leverage
on these properties. First, we present an abstraction of Markov predictors, a class of
stochastic models that are popular for dealing with processes of discrete states. Then,
we introduce a new predictor which extends the classical Markov predictors with a
bivariate state space to reflect conditional dependencies on a user’s activities.

4.3.1.1. History Predictor

The most widely employed predictors [BD99, GC07, SKJH04] are based on discrete
Markov processes. We refer to these approaches also as history predictors, since they
are designed to consider a limited window of past context observations for prediction.
Basically, there exist two different classes of history predictors - the fixed order 0(k)
Markov predictors and the predictors based on varying order Markov models. The
order k of 0(k) Markov predictors determines the number of last context changes
H(k) = (cn−k+1, ..., cn) from the history upon which the prediction is based. The
simplest one is the first order Markov predictor with k = 1. In this case, the prediction
of future context only depends on the last observation from the history. The restriction
of a fixed order is relaxed by so-called Markov models of varying orders. The most
popular varying order Markov predictors are based on the data compression algorithm
of Ziv and Lempel [ZL78]. These predictors adaptively decide on the number of past
context elements which are used for prediction: If the prediction benefits from more
historic information, a larger number of past context changes is considered. Otherwise,
shorter windows of past context elements are employed.

In order to devise a novel context prediction scheme which is compatible with any
history predictor, we propose a generic prediction model based on a probabilistic state
transitions system. This definition captures the common nature of history predictors:

57

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

History =
Room 2.42

History =
Room 2.45

History =
Room 1.46

History =
Room 2.23

Room 1.46

p = 0.3

Figure 4.2.: Representation of a Markov model as state transition system

A state is a sequence of one or more past context elements upon which predictions are
derived. We will then extend this generic model to combine it with knowledge about
user activities. A very important consequence of this technique is that it allows us to
apply our approach to the most important state-of-the-art context predictors.

Definition 3 (History Predictor): A history predictor P̂ is specified by a probabilistic
state transition system (S,C, δ, p), where

• C is the set of discrete context elements

• S denotes the set of history states

• δ : S × C → S denotes the transition function that describes possible context
changes

• p : S × C → [0, 1], indicates the probability for a specific context change with
∀s ∈ S :

∑
∀c∈C p(s, c) = 1

The transition function specifies how history states are built from sequences of observed
context changes. When observing a context c ∈ C in state s ∈ S, the history state
changes to s′ = δ(s, c). Thus, the history state evolves with new context observations.
The predictor encodes the probability of future context occurrences in transition
probabilities: p(s, c) indicates the probability for a change in context to c ∈ C given
the history state s.

In Figure 4.2, a history predictor is shown for a possible prediction scenario, where
a nurse’s next location shall be anticipated. The shown history predictor represents
a first order Markov model 0(1) as a state transition system. As the example shows,
three possibilities exist for changing from ”Room2.42” to other locations. However, all
of these locations are almost equally probable. Therefore, a prediction will be only of

58

4.3. Flow-Based Context Prediction

limited accuracy, since there is no clear preference to be made from the perspective of
the history predictor when relying on past location traces only. In the following, we
introduce a flow-based prediction scheme to alleviate this shortcoming.

4.3.1.2. Flow Predictor

In case of history predictors, only sequences of past context changes are used to
compute a prediction. However, flows provide access to higher-level activities which can
be exploited to further enrich context histories. By incorporating activity information,
we can analyse if certain patterns of context changes listed in the history frequently
occur in combination with certain user activities. This can reduce the prediction
uncertainty, since important semantic knowledge becomes available on which upcoming
context changes may depend.

Therefore, a novel prediction model is required which is able to reflect the evolution
of context changes with respect to the specific activities executed by humans. Based
on this model, those context changes can be predicted which are most likely happen
for observed user activities. We address this problem by proposing a novel flow-based
context predictor, which is able to express this relationship as a probabilistic state
transition system.

Definition 4 (Flow Predictor): A flow predictor P̂f is associated with a flow f and

represents an extension of a history predictor P̂ . P̂f is formally defined as probabilistic

state transition system (Ŝ, C, τ, p, f), where

• the states Ŝ = (S × A) are the Cartesian product of the states of the history
predictor P̂ and activities of flow f

• C is the set of discrete context elements

• τ ⊆ Ŝ × C × Ŝ denotes the transition relation

• p : τ → [0, 1] indicates the transition probability with ∀s ∈ Ŝ :
∑
∀c∈C,s′∈Ŝ:(s,c,s′)∈τ

p(s, c, s′) = 1

States are now defined as tuples of flow activities and history states. Thus, we establish
a relation among both. The flow activities in the flow predictor introduce a new
differentiating criterion for history states. We can now find the same history state in
different states of the flow predictor. Each of these history states may be associated
with distinct transition probabilities. This enables accurate predictions tailored to the
current user activity. In contrast, a history-based predictor represents each history state
only once.

Figure 4.3 illustrates this difference for the prediction of the nurse’s location. In contrast
to the history predictor (see Figure 4.2), the flow predictor links locations to activities.

59

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

Start Sift
Wake Up
Patient

Serve
Lunch in
Patient
Room

Take
Patient To

Dining
Room

Give
Medi-
cation

Store
Blood

Sample

Flow
Activity

Running
Flow

Activity

Transition

History =
Room
2.42

History =
Room
2.45

History =
Room
1.46

History =
Room
2.23

Room 1.46
p = 0.3

Activity =
Wake Up Patient

History =
Room 2.42

Activity =
Serve Lunch

History =
Room 2.45

Room 2.45

p = 1.0

Activity =
Give Medication

History =
Room 2.42

History =
Room 1.46

Activity =
Store Blood Sample

History =
Room 2.23

…

Flow

History Predictor Flow Predictor

Activity =
Store Blood Sample

Figure 4.3.: Flow-based context predictor (right) combining flow activities (left top)
and history states (left bottom)

Note that the state relating to ”Room 2.42” has been split in two states, each being
associated with a different activity (”Give Medication”) and (”Wake Up Patient”).
Using this activity information, the flow predictor can make a much more reliable
prediction: When the nurse is executing the activity ”Give Medication” in ”Room
2.42”, only two out of the three locations are likely to be visited, and the highest
probability associated with an outgoing transition has increased over the history-based
predictor. Moreover, if the nurse is executing ”Wake Up Patient” in the same location
”Room 2.42”, then only one possibility remains for the next location (”Room 2.45”).
Thus, by integrating activity information from flows, a single history state is split into
multiple states such that for each of the following states the probability for its associated
transitions may increase. Therefore, a higher accuracy can be expected for predictions
returned by the flow predictor.

4.3.2. Learning Algorithm

In order to apply the prediction scheme to a specific scenario, an instance of our flow
predictor is required where the underlying transition system reflects the user’s actual
behaviour. For this purpose, we propose an algorithm which is based on unsupervised
learning to construct the transition system, i.e., no explicit input is required by the

60

4.3. Flow-Based Context Prediction

Algorithm 1 Flow predictor: Learning algorithm

Require: Hf =< e1, . . . , en >
1: B← {}, h← ε, acur ← ε
2: for i = 1→ n do
3: if ei ∈ A then
4: if acur 6= ε then
5: B← B ∪ {acur}
6: end if
7: acur ← ei
8: end if
9: if ei ∈ C then

10: c← ei
11: h′ ← δ(h, c)
12: if h 6= ε then
13: Update Predictor(acurr, h, c, h

′,B)
14: end if
15: h← h′

16: B← {}
17: end if
18: end for

user to complete the learning phase. This allows the learning algorithm to run as
a background task unnoticed by the user for the provision of unobtrusive proactive
applications.

Basic input to our algorithm is information about the user’s executed activities and
context changes that could be observed. Formally, this information is made available
through the so-called flow-enhanced history Hf , which is defined as a sequence of events
Hf =< e0, e1, e1, e2, ..., en >, where each event ei ∈ C ∪ A can be either an activity
(ei ∈ A) or a context change (ei ∈ C) ordered according to the time of occurrence.
Note that the sequence of events can be arbitrary interleaved, i.e., there can be any
number of consecutive activity executions while the context remains the same (and
vice versa). The sequence of observed events contains important information about
activity-dependent patterns of context changes which is learned by our algorithm.

The learning process is split in two parts, where Algorithm 1 shows the main loop of
our algorithm. The algorithm sequentially iterates through the events from Hf (lines
2-18). Note that our predictor is trained in an on-line manner, i.e., the learning process
is continued as soon as Hf grows and new information becomes available at run-time.
Depending on whether the received event ei corresponds to an activity a or a context c
respectively, a specific action is chosen:

61

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

Algorithm 2 Flow predictor: Transition System Update

1: function Update Predictor(acurr, h, c, h
′,B)

2: if (h′, acur) /∈ Ŝ then
3: Ŝ ← Ŝ ∪ {(h′, acur)}
4: end if
5: if ((h, acur), c, (h

′, acur)) /∈ τ then
6: τ ← τ ∪ {((h, acur), c, (h′, acur))}
7: end if
8: count((h, acur), c, (h

′, acur))← count((h, acur), c, (h
′, acur)) + 1

9: for all apast ∈ B do

10: if (h′, apast) /∈ Ŝ then

11: Ŝ ← Ŝ ∪ {(h′, apast)}
12: end if
13: if ((h, apast), c, (h

′, acur)) /∈ τ then
14: τ ← τ ∪ {((h, apast), c, (h′, acur))}
15: end if
16: count((h, apast), c, (h

′, acur))← count((h, apast), c, (h
′, acur)) + 1

17: end for
18: end function

• In case the completion of an activity a is reported (lines 3-8), no update of the
transition system is made yet. Since our predictor encodes the probability for a
context change given a user’s activity, we wait for the next context c to learn this
relation. Since an arbitrary series of activity changes may happen in Hf before
c may occur, we store the last activity in a buffer B (line 5). The rationale is
that also for the previous activity a transition to the next context c should be
learned. The buffer is then used as soon as the context c has changed to update
the transition system as discussed next.

• For each received context update c (lines 9-16), we apply changes to the transition
system. First, since a context change implies a new history state h′, the previous
state h is evolved to h′ using c (line 11) (see also Section 4.3.1.1). Then, we
request an update of the transition system for which we incorporate: the context
change c, the old and the new history states h and h′, the current activity acurr
as well as all pending activities stored in buffer B (line 13). Once the update has
been completed, the buffer is emptied since the relation of all activities with c
has been learned now (line 16).

The actual update of the transition system relates to two information aspects - the
states of our predictor and the state transition probabilities. All required steps to
perform the update are outlined in Algorithm 2. First, we verify whether the state
transition system needs to be extended with new states. For this purpose, we test

62

4.3. Flow-Based Context Prediction

History =
Room 2.45

Hf={…, ei=“Wake Up Patient”, ei+1 =“Room 2.45”, ei+2=“Store Blood Sample”, ei+3=“Room 2.43” ,…}

History =
Room 2.45

History =
Room 2.45 History =
Room 2.43

Room 2.43
Activity =

Store Blood Sample

Activity =
Wake Up Patient

History =
Room 2.45 History =

Room 2.45

History =
Room 2.45 History =
Room 2.43

Activity =
Store Blood Sample Room 2.43

Increment count

Increment count

History =
Room 2.45 History =

Room 2.45

Activity =
Wake Up Patient

Activity =
Store Blood Sample

New state

New transitions

Figure 4.4.: Learning algorithm example for update of the transition system

whether the tuple (h′, acur) has already been learned before (line 2). If not, it is added
as a new flow predictor state to our transition system (line 3). The same is done for the
transition t = ((h, acur), c, (h

′, acur)) (lines 5-7), since even though the source and target
states of the transition might already exist, the transition may have never been taken
before. Then, we update the frequency statistics which are the basis for computing the
transition probabilities. For this purpose, every transition t = ((h, a), c, (h′, a′)) ∈ τ
is associated with a counter, denoted as count(t). If the transition is observed, its
frequency counter is incremented (line 8). Finally, the context changes must also be
associated with all activities buffered in B. Consequently, the same steps (i.e. update
to the predictor states and state transition probabilities) need to be performed for all
activities contained in B (lines 9-17).

For example, suppose that Hf is defined as in Figure 4.4, where a sequence of possible
events is shown which is processed by our algorithm. The states of our predictor
result from combinations of subsequent events of activity and context information. As
shown in the left part of the figure, a new predictor state s1=(”Room 2.45”,”Wake Up
Patient”) is learned in response to observing the events ”Wake Up Patient” and ”Room
2.45”. Since the next event from Hf is an activity change (”Store Blood Sample”), the
preceding activity (”Wake Up Patient”) is buffered until the next context change occurs.
Then, ”Room 2.43” (context change) is observed, which causes a new state s3=(”Room
2.43”,”Store Blood Sample”) to be inserted. Note that every activity should be linked
to the next following context change. This encodes expected changes in the user’s
context given a particular activity. For this purpose, we insert a transition to state s3

from both s1 and the state s2 = (”Room 2.45”, ”Wake Up Patient”) associated with the
previous activity. This is shown in the right part of the figure, where the two transitions

63

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

are illustrated.

The probability of a transition t = ((h, a), c, (h′, a′)) ∈ τ can be derived as a ratio over
the observed frequencies associated with the transition counters:

p((h, a), c, (h′, a′)) = count((h,a),c,(h′,a′))∑
c′∈C

∑
a′′∈A count((h,a),c′,(δ(h,c′),a′′))

For the calculation of p((h, a), c, (h′, a′)), we take all outgoing transitions from the state
(h, a) into account. The probability is derived from the transition frequencies whenever
a prediction has to be made. Note that the learning algorithm continually updates the
transition counters for every transition which is repeatedly observed.

Due to the representation of activity information, there is an increased cost in storage
associated with the flow predictor. The state space is of size O(|S| · |A|), since activities
are combined with the context elements. Consequently, also the encoding of transitions
requires more space and has complexity O(|S| · |C| · |A|2). However, for practical usage
the cost will be affordable, as we assume a limited set of activities to be of interest and
the real cost to be significantly below this worst case estimation, as activities are not
observable at each context so that the state space is reduced.

4.3.3. Prediction Algorithms

In the following, we describe two algorithms which are able to exploit flow knowledge
to compute context predictions. The novelty of our prediction algorithms is that they
perform stochastic inference over a transition system which combines activity and
context information. As we will see, this requires a novel approach where context
changes are predicted in relation to the activities performed by humans. To this end,
we describe algorithms to enable two cases of predictions - short-term and long-term
context prediction as described in in the following.

4.3.3.1. Short-term Context Prediction

For short-term context prediction, we are only interested in predicting the next context
change. Formally, let cn denote the last context observed from H. The goal of the
prediction is then to determine the context cn+1 that will most probably occur next.
For instance, such a prediction could aim at the next location visited by a nurse, in
order to prepare all electronic devices required for treatment procedures at this location
already before a nurse arrives (e.g. for turning on the power of a device and completing
the booting process).

In order to compute a short-term prediction, we explore the transition system for all
successor contexts that are reachable over a single transition from the current state.
However, we have to take into account that the same context c may occur in combination

64

4.3. Flow-Based Context Prediction

Activity =
Wake Up Patient

History =
Room 2.42

Activity =
Serve Lunch

History =
Room 2.45

History =
Room 2.45

Activity =
Give Medication

History =
Room 2.23

Activity =
Store Blood Sample

p = 0.4

p = 0.4

Room 2.45:

Prob(Room 2.45)
= 0.2 + 0.4 =0.6

Room 2.23:

Prob (Room 2.23)
= 0.4

Next Location Prediction

Prob (Room 2.45)

>
Prob (Room 2.23)

Next predicted
location:

Room 2.45

Room 2.45

Figure 4.5.: Example of short-term context prediction

with different activities. This is because we have two-dimensional states in our transition
system where a single context may be associated with different states as illustrated in
Figure 4.5. As can be seen in the given example, the context ”Room 2.45” is associated
with two activities, while ”Room 2.23” occurs only in combination with a single activity.
Therefore, in order to identify the most likely context change amongst all, we have to
compute the aggregated probability as the sum of all single transition probabilities
associated with the same context c.

Algorithm 3 shows the steps involved in the calculation of the most probable next
context. The starting point for short-term prediction is given by the current predictor
state (hcurr, acurr), from which the transition system is traversed. Then, we explore
all outgoing transitions that are labelled with the same context c for different user
activities a′ (lines 3-8). In order to compute the probability for a context change, we
accumulate the probabilities of all transitions linked to c (line 7). Finally, the context
with maximum probability is selected and returned as a prediction (line 8). For the
example shown in Figure 4.5, ”Room 2.45” is predicted as the next location visit since
the aggregated probability of 0.8 has the highest value among all probabilities.

In terms of computational overhead, the worst case time complexity is O(|A| · |C|) since
the next context may potentially occur in each of the flow activities. However, note
than in practice the search space is much more restricted by the flow structure, where
usually only a small subset of all activity-context combinations occur and thus a much
smaller overhead can be expected.

65

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

Algorithm 3 Flow Predictor: Short-Term Context Prediction

1: acurr ← st(f) current flow activity
2: hcurr ← current history state
3: for all c ∈ C do
4: Prob(c)← 0
5: for all a′ ∈ A do
6: h′ = δ(h, c)
7: Prob(c)← Prob(c) + p((hcurr, acurr, c, (h

′, a′))
8: end for
9: end for

10: cn+1 = arg maxc∈C Prob(c)
11: return cn+1

4.3.3.2. Long-term Context Prediction

For long-term prediction, we are interested in forecasting a sequence of successive
context changes, conditioned on the user’s flow of performed activities. More precisely,
we attempt to identify the h context changes cn+1, cn+2, ..., cn+h which are expected
to occur next. We also refer to this sequence as the most likely path, since it defines
the path in the transition system with the highest probability over the next context
changes. The length of the path is determined by parameter h, which is also referred to
as prediction horizon. For instance, for h = 3 this could be the sequence of the next
three locations visited by a nurse. This way, proactive applications are enabled that
can gain insight into a user’s behaviour which reaches far into the future.

However, in order to compute long-term predictions, the search space becomes more
complex since the transition system needs to be explored over a number of subsequent
state transitions. As the transition system exhibits a branched structure where a
state may be connected to any other state, the number of possible paths increases
exponentially with the given prediction horizon in the worst case. Hence, a naive search
strategy which explores all paths of length h in the transition system is prohibitively
expensive. Therefore, an approach is needed which is able to compute long-term
predictions in an efficient manner in order to keep the search cost at a reasonable level.

For reducing the search complexity, our prediction algorithm is based on an optimised
traversal strategy that avoids exploring all paths in the transition system. The optim-
isation takes advantage of the idea that certain paths can be ruled out at an early stage
of the search procedure without harming the accuracy of the prediction. Given the
goal of predicting the next most likely context changes, only paths need to be followed
which denote viable candidates to become a most likely path. In contrast, if paths are
encountered for which an alternative one exist with a higher occurrence probability,
these paths can be pruned from the search. This decision can be taken before a path
has been explored over its entire length as described in the following.

66

4.3. Flow-Based Context Prediction

Algorithm 4 Flow Predictor: Long-Term Context Prediction

1: acurr ← st(f) current flow activity, hcurr ← current history state
2: Prob0(hcurr, acurr)← 1
3: States(c)← {(h, a) ∈ Ŝ|h = (cn−k+1, . . . , cn) ∧ cn = c}
4: path← ε, global max← 0, last context← ε
5: for i = 1→ h do
6: for all c′ ∈ C do
7: max prob← 0
8: for all c ∈ C do
9: tmp← 0

10: for all (h, a) ∈ States(c) do
11: for all (h′, a′) ∈ Ŝ do
12: tmp = tmp+ Probi−1(h, a) · p((h, a), c′, (h′, a′))
13: end for
14: end for
15: if tmp > max prob then
16: max prob← tmp
17: context change← c
18: end if
19: end for
20: if (i > 1) then
21: pathi(c

′)← append context change
22: end if
23: if (i < h) then
24: for all (h, a) ∈ States(context change) do
25: for all (h′, a′) ∈ Ŝ do
26: Probi(h

′, a′) = Probi(h
′, a′) + Probi−1(h, a) · p((h, a), c′, (h′, a′))

27: end for
28: end for
29: else
30: if max prob > global max then
31: global max← max prob
32: last context← c′

33: end if
34: end if
35: end for
36: i← i+ 1
37: end for
38: path← pathi(last context)
39: path← append end state
40: return path

67

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

i =2

i =1

i =2

s0 s0

s1

s2

s3

s1

s2

s3

i =1

Prediction horizon

s0 s0

s1

s2

s3

s1

s2

s3

Prediction horizon

Figure 4.6.: Long-term context prediction exploiting a reduction of the search space

Formally, let p1 = (a1, h1), . . . , (ai, hi) be a path of length i where (ak, hk) is a state
that lies on the path. The probability that the path occurs is the product of the
transition probabilities over consecutive states on the path. This probability is denoted
as Prob(p1) = Πi−1

k=1p((ak, hk), ck, (ak+1, hk+1)) with hk+1 = δ(hk, ck). Given two paths
p1 and p2 = (a′1, h

′
1), . . . , (ai, hi) which terminate in the same state (ai, hi), it is possible

to decide whether a most likely path of length h > i is an extension of p1 or p2. This
is because any such extension would start with the same state (ai, hi), so that the
question of which extension would be more likely is determined solely by p1 or p2. In
case Prob(p1) > Prob(p2) only path p1 is worth to be extended while p2 can be dropped.
Otherwise, p1 is a candidate for a most likely path while p2 can be safely omitted.

This principle is illustrated in Figure 4.6, where the left part shows the complete search
space for the prediction of a most likely path. Searching through every state combination
leads to a large number of different paths which needs to be considered. For increasing
prediction horizons this becomes prohibitively expensive. The right part of the figure
shows the result of applying our strategy for reducing the search space. Only a single
path exists for each state in the transition system that is a candidate for a most likely
path for a given path length. All other possible paths can be eliminated since they
are of equal or less probability. By pruning the search space for candidates of most
likely paths while exploring paths of increasing length, the search becomes much more
efficient.

68

4.4. Evaluation

In order to implement this strategy, the algorithm follows a dynamic programming
approach that incrementally calculates the most likely path of length h (prediction
horizon) based on an iterative procedure. We leverage on dynamic programming as
a technique to compose longer paths based on preceding calculations from shorter
path lengths. In each iteration, paths are extended with one additional state until the
prediction horizon is reached. The paths are then analysed for the probability that
sequences of context elements occur, where paths with the same context elements but
different activity information are merged. This approach is described in Algorithm 4
which consists of the following steps:

• The algorithm iterates through i = 1, . . . , h to compute path probabilities for
increasing prediction horizons. In each iteration step, we determine the probability
of a path comprising a context change c′ at step i and context change c at preceding
step i− 1 (line 12).

• In each iteration, the path associated with the highest probability is selected
(lines 15-17), and the previous context change c is appended as next element
to pathi(c

′)(line 21). Note that pathi(c
′) is gradually extended and stores the

sequence of i− 1 context changes from the previous iterations of the algorithm.

• In each iteration, we update the probabilities Probi(h
′, a′) to reach a context state

(h′, a′) via a most likely path of length i (lines 24-28). For this purpose, we use the
probabilities Probi−1(h, a) that we inferred in the previous iteration for a path
length of i− 1 and factor in the aggregated probabilities for extending the path
with one further transition.

• As soon as the final prediction horizon h is reached, we select the most probable
path of length h (lines 30 -33). The path is then extended with the final context
change c′ that marks the last element on the path (line 39), which is then returned
as the prediction (line 40). Note that the prediction contains a path which stores
the sequence of context changes cn+1, cn+2, ..., cn+h that are predicted to happen
next.

Due to the dynamic programming approach, our prediction algorithm has a time
complexity of O(h ∗ (|A| · |S|)2). In contrast, the complexity of the naive exhaustive
search algorithm has exponential overhead (O(h ∗ (|A| · |S|)h)), as all paths of length h
need to be evaluated with this approach. Hence, the intelligent traversal strategy which
we proposed, requiring states to be visited only once in each iteration, substantially
improves the performance of the prediction algorithm. This guarantees a reasonable
overhead of context predictions even for larger prediction horizons.

4.4. Evaluation

We have performed an extensive evaluation of our context prediction approach, analysing
the extent to which flow-based knowledge can help to improve the resulting context

69

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

prediction accuracy. In the following, we first discuss our evaluation setup and then
analyse the prediction accuracy that we gained for different evaluation scenarios.

4.4.1. Evaluation Setup

We have implemented a simulation environment in order to evaluate the effectiveness
of flow knowledge for improving context predictions. This way, we could investigate
the impact of different classes of user behaviour on the context prediction accuracy. In
our evaluation, we contrasted our flow-based predictor with classical context prediction
algorithms that rely on one-dimensional context histories. For the case of history
predictors (see Section 4.3.1.1), we used the 0(k) family of Markov predictors which
condition predictions on the k last observed context changes. In contrast, our flow-based
predictors are extensions of the Markov predictors which are able to incorporate activity
information into the prediction process as discussed in Section 4.3.1.2. Although our
approach is applicable to any form of discrete context, we focus in our evaluation on
a location prediction scenario. In order to have fine-grained control over all aspects
in the user’s behaviour which can impact the context prediction accuracy, we use
an activity-based mobility model that links a user’s activities with location visits, as
explained in the following.

In order to simulate a user’s behaviour, we generated traces of a) the sequence of
activities performed by users at b) the locations where these activities have been
executed. For the task of a) we built flow models of different structure and size to
consider a range of possible user behaviours. Specifically, we used two basic workflow
patterns [BPE07], i.e., sequences and branches, to form flow models that allow for
variable sequences of executed activities. For the task of b) we associated each flow
activity with locations from the domain L = {l1, l2, ..., ln} where an activity could be
executed. As reported in a large-scale empirical study of user behaviour [NSMP11], the
relationship of user activities and location visits in the real world follows a power law
distribution. In order to account for this, we derived location visits based on a Zipf
distribution, a power law distribution for discrete data. The probability to visit the
i-th location during an activity is given by P (X = i) = i−s∑|L|

n=1 n
−s

, and the choice of the

exponent s allows us to vary the density of the visit probabilities at different locations.
Based on this activity-based model of user mobility, we then generate sequences of
activities (as obtained from paths in the flow model) and associated location visits (as
obtained from the Zipf distribution). The sequence of activity and location information
is then used to feed our context predictors and evaluate our context prediction approach.

We compare the different predictors based on an accuracy metrics which is defined as
the ratio of the number of correct predictions over all predictions made. If a prediction
is not possible due to the fact that the current context has not been learned before,
we count it as incorrect prediction. Predictions are determined simultaneously to the
learning phase, i.e., after each predictor update we compute a prediction and validate

70

4.4. Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

P
re

di
ct

io
n

A
cc

ur
ac

y

Zipf Exponent s

History Predictor (Markov 0(1))
History Predictor (Markov 0(2))
History Predictor (Markov 0(3))

Flow Predictor (Markov 0(1))
Flow Predictor (Markov 0(2))

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 4 5 6 7 8 9 10

P
re

di
ct

io
n

A
cc

ur
ac

y

Size of Location Domain

History Predictor (Markov 0(1))
History Predictor (Markov 0(2))
History Predictor (Markov 0(3))

Flow Predictor (Markov 0(1))
Flow Predictor (Markov 0(2))

(b)

Figure 4.7.: Flow predictor vs. history predictor: short-term prediction

it. The results discussed in the following represent the average of 50000 predictions for
each evaluation scenario.

4.4.2. Evaluation Results

First, we analyse the effects of varying Zipf exponents s on the accuracy of predicting a
user’s next visited location (short-term prediction). For this evaluation, we assume a
location domain of |L| = 7. As Figure 4.8 a) shows, the prediction accuracy improves
for all predictors with increasing exponents s. Since the location visit probabilities
are more densely concentrated on single locations for higher values of s, all predictors
are able to deduce a higher fraction of correct predictions. Among the history-based
Markov predictors 0(k), higher orders of k are more effective for larger exponents s.
This is because with more information from the user’s context history, typical sequences
of location visits can be learned which allow for predicting the next location more
accurately. However, as our evaluation shows, the flow predictors, being able to capture
activity-based patterns of a user’s behaviour, significantly outperform the history-based
predictors. More precisely, since the flow predictors can learn typical activity sequences
and activity-to-location relations, unlikely locations can be ruled out and those locations
visits can be predicted which are relevant to the user’s activity. As our evaluation
shows, the prediction accuracy is increased by 39% on average compared to the best
history-based predictor given by Markov 0(2).

Figure 4.7 b) shows the short-term prediction accuracies for increasing sizes of the
location domain given a fixed Zipf exponent s = 2. Due to the higher uncertainty
associated with larger location domains, the absolute prediction accuracy is negatively
affected for more distinct locations that can be visited. While this trends also holds for
the flow-based predictors, they outperform the history-based predictors for all evaluated

71

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5

P
re

di
ct

io
n

A
cc

ur
ac

y

Prediction Horizon

History Predictor (Markov(1))
History Predictor (Markov(2))
History Predictor (Markov(3))

Flow Predictor (Markov(1))
Flow Predictor (Markov(2))

(a) Long-term prediction

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

di
ct

io
n

A
cc

ur
ac

y

Weight α

History Predictor (Markov 0(1))
History Predictor (Markov 0(2))
History Predictor (Markov 0(3))

Flow Predictor (Markov 0(1))
Flow Predictor (Markov 0(2))

(b) Hybrid prediction model

Figure 4.8.: Flow predictor vs. history predictor: further evaluations

location set sizes. For an increasing size of L, the relative improvement rises from 18%
(|L| = 3) to 56% (|L| = 10) since the occurrence of more varied sequences of location
visits can be better resolved when conditioning the prediction on the user’s activities.
We can further observe that the accuracy of the flow-enhanced predictors does not
increase with higher orders k of the Markov model in our evaluation scenarios. As
more context states have to be learned with higher orders, the learning process takes
more time to converge so that prediction misses are caused. The flow predictor is
designed to extract the required knowledge from the activity sequence information and
the activity-to-location relations.

Figure 4.8 a) depicts the prediction accuracies for the case of long-term prediction, using
a location set of size |L| = 7 and a Zipf exponent of s = 2. According to the definition of
our accuracy metric, long-term predictions are only considered to be correct if the entire
sequence of next visited locations holds. Hence, if only a single location visit does not
hold that is part of the predicted location sequence, the prediction fails. For this reason,
the prediction accuracies are exponentially decreasing with longer prediction horizons
for both the history- and flow-based predictors as shown in the figure. While the
absolute prediction accuracies fall to a low level, the relative improvement in accuracy
of the flow-based predictor compared to the best history predictor increases from 57 %
for horizon 1 to considerable 331 % for horizon 5. Consequently, longer-term predictions
can benefit from our enhanced context prediction approach. This is because when each
single prediction is improved due to the inclusion of activity information, the accuracy
of the prediction of the entire sequence can significantly gain.

Finally, we analysed how our context prediction approach would perform if the de-
pendency of the user’s context changes on his activities is weakened. For this purpose,
we introduce the parameter α that allows to vary between two modes of simulated
user behaviour models, the activity-based model as discussed previously as well as a

72

4.5. Related Work

history-based model. For the case of the history-based simulation model, we generate
location changes from a 0(2) Markov source, i.e., the next location visit is chosen based
on the 2 previous visited locations (and thus a user’s activities are not relevant in the
simulated behaviour). α can be chosen as a value in [0, 1], indicating the portion of
a user’s behaviour which is generated by the Markov source and the portion (1− α)
which adheres to the activity-based model. In Figure 4.8 b), we can see the impact
of increasing values of α on the prediction accuracy of the various predictors. As the
history-based predictors are not able to capture activity information, their accuracy
remains unaffected for any value of α. In contrast, the flow-based predictors show a
monotonic decrease of the prediction accuracies for increasing values of α. As with
higher values of α the relevance of activity information vanishes, the flow predictor
gradually loses its capability to compute more reliable predictions. Nevertheless, still a
higher prediction accuracy can be achieved for the majority of the cases even when the
user activities become less important. Only for α ≥ 0.8 the history-based prediction
approach slightly outperforms the flow-based predictors, since due to the correlation
with user activities more context states are captured which causes the learning process
to converge slower compared to the pure history-based predictors. However, the loss
of prediction accuracy is marginal in this extreme case that can only occur when
activities are not relevant to a user’s mobility at all. Actually, it has been already
empirically demonstrated that location visits depend on a user’s activities [NSMP11].
As a conclusion, we can there observe that the flow predictor is able to effectively
adapt to different scenarios and exploit activity information whenever it is available to
improve the prediction accuracy.

4.5. Related Work

In the past, a number of different context predictors have been proposed to forecast
discrete context data. While all these predictors rely on context histories as primary
source of data, they differ in the algorithms used to perform the prediction. In the
following, we compare the most well-known context predictors prevailing in current
literature with the proposed flow-based context prediction scheme.

A general architecture for context prediction has been introduced by Mayrhofer [May04].
The architecture focuses on how to derive high-level user context (context classes such as
”in a meeting”) from low-level sensor data (e.g. location, noise, etc.) to populate context
histories with meaningful data. As part of this work, different prediction approaches
from continuous time series analysis (e.g. ARMA) as well as categorical prediction
(e.g. Markov models) have been discussed. In order to overcome the limits in the
achieved prediction accuracy, the author concludes that the inclusion of domain-specific
knowledge would represent a promising solution. However, a concrete approach to
accomplish this has not been proposed. In this chapter, we have addressed this issue

73

4. Improving Context Prediction Accuracy with Adaptable Pervasive Flows

and showed how a context prediction can exploit the available activity information from
flows to enhance the prediction accuracy.

Sigg argues that context prediction should directly take place on the level of low-level
sensor data, since higher level context may introduce a loss of information that may
negatively influence the prediction accuracy [Sig08]. For this purpose, an alignment
predictor is proposed that can extrapolate a given time series of low-level numeric sensor
data such as measurements of weather information. However, by focusing on low-level
sensor data, meaningful changes in the user’s context, e.g. a change in location from
office to home, cannot be predicted which may involve several hours of measurements
of low-level sensor data. Further, the proposed approach does not consider possible
correlations among high-level context states that may give important evidence for the
occurrence of future context. In contrast to the author, we argue that these correlations
often appear on a higher level, such as the activities typically performed by users.

Furthermore, different algorithms have been proposed to allow for the prediction of
specific categories of context. Most of the work in this area focuses on the prediction
of user mobility from location histories [BD99, SKJH04, KM09, AAH+09]. The idea
of these predictors is to find characteristic patterns in the sequences of past location
visits that can be used as a basis for predicting a user’s next location. For this
purpose, often Markov models are used to represent a user’s behaviour as a stochastic
process [SKJH04,BD99]. Beyond pure location traces, however, these approaches do
not consider any further information for prediction. In contrast to these approaches,
we argue that higher-level information about the behaviour of humans can help to
better understand and foresee a user’s mobility patterns, and should be reflected in a
prediction model. Therefore, by means of integrating user activities and traditional
context such as location data, our work can be considered as an extension of these
approaches.

Moreover, the prediction of low-level user activities such as key pressings to improve
the interaction with user interfaces has been studied [HS07,DH98,GC07]. Similar to
location prediction, future user activities are derived from histories of past sequences.
Generally, the algorithms used are founded on different variants of Markov models. Thus,
the prediction is determined based on the last seen symbols from the input sequence.
In our approach, activities are the constituent parts of context-aware workflows that
synchronize with the behaviour of humans in the real world. The difference is that
we use the knowledge provided by the workflows to predict additional context that
evolves with the activities performed by users, assuming an inherent relation between
user activity and classical context such as location.

An efficient approach for the calculation of most likely paths in state-based transition
systems is known from Hidden Markov Models (HMMs) [Rab89], where the Viterbi
algorithm is used to discover paths of so-called hidden states for given observations.
However, HMMs are based on a different probabilistic model that includes observation
and transition probabilities. This model is not transferable to our problem, since there

74

4.6. Summary

is no such notion of hidden and observed states in the prediction of context data. In
contrast, we deal with a transition system that consists of composite states defining a
multi-dimensional search space. Therefore, in order to allow for long-terms predictions
about a user’s context changes, we have presented a new approach to compute most
likely paths of states in a two-dimensional transition system.

The idea of exploiting knowledge about a domain of discourse to increase the accuracy
of inference processes has been studied in other domains than context prediction.
Specifically, in syntactic pattern recognition, the pattern structure of a phenomena is
formalized and exploited to guide the classification process. For instance, based on a
model that describes typical sequences of body movements, it has been shown that
patterns such as gestures [BI98] can be accurately recognized. In this work, we argue
along a similar line of argumentation, proposing an novel context prediction approach
which can benefit from a structured model of human behaviour that can be found in
relevant fields of pervasive computing such as pervasive health-care. To this end, we
use flows as a source of domain knowledge to inform context predictions with activity
information and identify activity-dependent context changes of the user more accurately.

4.6. Summary

In this chapter, we have presented a new context prediction scheme that is able to
provide classical predictors with domain-specific knowledge inherent to flow-oriented
computing environments. The domain-specific knowledge arises from a model of human-
centric applications that describes the activities of mobile users as context-aware
workflows. In order to improve the accuracy of context predictions, we have proposed
an enhanced context predictor that is able to learn and exploit the relationship of flow
activities with context changes observed in the real world. Our predictor is based on
a probabilistic state transition system which encodes this relationship as transitions
among two-dimensional states which include both activity and context information.
For context prediction, we have then presented a novel algorithm to traverse the state
space of paths over activity-dependent context transitions in an efficient manner.

In our evaluation, we have shown that the inclusion of knowledge about user activities
in the prediction model significantly improves the prediction accuracy, as classical
predictors are limited by their agnostic view on the application domain. Consequently,
we have solved the first fundamental question of this thesis and demonstrated how
further sources of information can be exploited to design novel prediction algorithms
which are able increase the accuracy of context predictions.

75

Chapter 5
Expressive Context Prediction using
Stochastic Model Checking

5.1. Introduction

In this chapter, we address the second fundamental problem that we have identified for
increasing the practical relevance of context prediction systems. We argue that not only
prediction accuracy, by also query expressiveness in context prediction is a critical factor
for the proliferation of proactive computing systems. With query expressiveness, we
refer to the variety and range of possible predictions that can be processed to support
applications with knowledge about user’s future context. In existing research, the focus
has been mainly on enabling accurate predictions [AAH+09], while context prediction
expressiveness has only received little attention. However, different applications may
have a broad range of interests in future context information which cannot be fulfilled
with a single type of query. Therefore, a powerful query interface should be provided
which is based on rich semantics and allows for more varied predictions.

Unfortunately, previous context prediction approaches [SKJH04,KM09,HS07,GC07,
DH98] are based on simple statistical models, which only allow for predicting the next
context change of a user, e.g. the user’s next visited location. More sophisticated
context predictions that incorporate temporal restrictions and allow for reasoning over
more complex expressions of possible behaviours are not feasible with these approaches.
In particular, existing context prediction system are not able to provide support for
a) temporal query constraints (restricting the time of when a context change should
occur) b) logic-based expressions (allowing for predicting logical relationships such that
location x should be visited but not y) and c) clear formal semantics (unambiguously
clarifying under which condition a prediction holds). The lack of suitable methods
to support these features represents a major restriction of current context prediction
systems in supporting more sophisticated scenarios.

77

5. Expressive Context Prediction using Stochastic Model Checking

In order to overcome this shortcoming, we present in the following PreCon [FHR11], a
novel context prediction method offering expressive prediction power. PreCon applies
well-known methods of stochastic model checking [BK08], traditionally used for the
verification of formal systems, to the analysis and prediction of human context. While
classical model checking relies on hand-crafted models of computer systems, we extend
its scope to domains where human behaviour shall be studied, and therefore an a-priori
system specification is lacking. In order render these tools useful for the prediction of
human context, we combine classical model checking tools with methods of statistical
learning to form a novel powerful context prediction system. In doing so, we enable
support for time-dependent predictions based on real-time constraints for the occurrence
of future context events (e.g. “Will the user be at location x within the next 10
minutes?”), expressive query semantics using temporal-logic expressions (e.g. “Will
the user be executing activity y at location x within the next 10 minutes?”) and a
clear prediction semantics based on the rules of formal model checking. None of these
aspects are implemented in prevailing context prediction approaches. PreCon is the
first approach to explore the integrated usage of logic-based prediction semantics and
statistical methods for the prediction of a user’s context.

For the design and implementation of PreCon, we propose a number of extensions to
our context prediction system that we have introduced in Chapter 4. In order to allow
for more expressive context predictions, we use Semi-Markov Models, a generalization
of classical Markov models, to encode a user’s time-dependent behavioural aspects.
Moreover, PreCon is built on temporal stochastic logics, a probabilistic derivative of
classical temporal logics, to enable predictions which are based on expressive temporal
properties on future context. For answering a prediction, PreCon reasons over the
Semi-Markov Model and verifies with what probability a temporal-logic expression
holds. As prior model checking systems have been devised to support off-line analysis
only, we propose extensions required for context predictions related to the run-time
state in human behaviour. To this end, we adapt existing model checking algorithms
to incorporate the user’s running dwell time behaviour into the calculation of these
probabilities. In our evaluation, we measure the performance of our approach for a
real-world health-care scenario based on well-known metrics from information retrieval
(precision, recall, and F-score) and demonstrate that PreCon can effectively support
proactive applications with expressive context predictions.

The rest of the chapter is organized as follows. First, a basic overview of our approach
is given in Section 5.2. Then, we introduce Semi-Markov Models as a prediction model
in Section 5.3. Subsequently, we describe in Section 5.4 our context prediction query
language which is based on temporal stochastic logics. The prediction algorithms behind
our system are discussed in Section 5.5. In Section 5.6, we perform an evaluation of our
approach using a real-world case study from the health-care domain. Then, in Section
5.7 we discuss the related work from both the field of context prediction and model
checking. Finally, we summarize and conclude this chapter in Section 5.8.

78

5.2. Overview of the PreCon Approach

Universität Stuttgart

IPVS

Research Group

“Distributed Systems” 7

Semi

Markov

Model

Stochastic

Model

Checking

Temporal

Stochastic

Logics

Occurrence

Probability

Output

Probability

threshold

Boolean

Result

Input

Figure 5.1.: Overview of the PreCon approach: context prediction using stochastic
model checking

5.2. Overview of the PreCon Approach

We have designed PreCon as an extension of our context prediction system previously
described in Chapter 4. In order to increase the expressive prediction power, PreCon
introduces a number of new components which are shown in Figure 5.1. The key
components of our extended prediction approach are a time-dependent stochastic user
model, an expressive query semantics based on temporal-logical formalisms and novel
context prediction algorithms given by stochastic model checking tools. In the following,
we give an overview of these components that are specific to PreCon:

• Semi-Markov Model: A Semi-Markov Model (SMM) is an extension of classical
Markov model capable of representing temporal aspects in a user’s behaviour.
Analogous to a Markov model, a SMM is a probabilistic state transition system that
exposes the discrete states of a user’s behaviour and the probabilities associated
with state transitions. Furthermore, the temporal characteristics of state changes
(the so-called dwell times) are modelled by the SMM. A dwell time is represented
as a probability distribution over the time between two consecutive state changes
and is associated with each state transition in the SMM. This is key to PreCon’s
concept of time-dependent predictions.

• Temporal-stochastic Logics: Applications can specify context prediction quer-
ies using temporal stochastic logic. Temporal stochastic logic is a derivate of
classical temporal logic, which allows to query for temporal properties of systems
which are characterized by uncertain behaviour. For the purpose of context pre-
diction, we exploit this logic formalism to forecast whether a certain behaviour is
expected to hold in the future. Due to the expressive power of temporal logic, the

79

5. Expressive Context Prediction using Stochastic Model Checking

query language provides well-defined semantics to express reachability properties
(e.g. will the user arrive at a certain location) and invariant properties (e.g. will
the user stay at a certain location) of a user’s behaviour.

• Stochastic Model Checking: Model checking refers to an inference algorithm,
which is used to verify formal properties of systems. For the sake of our problem, we
exploit model checking as a context prediction framework. The input to the model
checking process is the SMM representing a user’s typical behaviour as well as the
context prediction query expressed in temporal logics. A context prediction query
is then evaluated on an SMM to calculate the occurrence probability with which
the specified properties hold. A querying application can specify a probability
threshold with which the resulting probability is compared, and a boolean result
(true or false) is returned depending on the outcome. The querying application
can take advantage of this knowledge to trigger proactive actions for enhancing the
user’s experience, e.g. adaptations of user interfaces and context-aware services.

As can be seen, the novelty of the PreCon approach lies in three different aspects -
how user behaviour is represented, how predictions can be expressed and formalized,
and how algorithms can be designed to infer expressive predictions. In the following
sections, we will investigate each of these aspects in more detail.

5.3. Time-dependent Stochastic User Model

In the following, we give a precise formal definition of PreCon’s time-dependent model
of a user’s behaviour. In this context, we also present our approach for learning such a
model from observations recorded in real-world context traces.

5.3.1. Semi-Markov Model

We represent user behaviour as a Semi-Markov Model (SMM) [How71b]∗. Markov
models are a popular means for describing stochastic processes with discrete state
spaces. In addition to classical Markov models, SMMs specify a so-called state dwell
time – an arbitrary probability distribution that is associated with every state transition
specifying the amount of time spent in a given state.

Definition 5 (Semi-Markov Model): A Semi-Markov Model (SMM) M is a 3-tuple
defined as:

M = (S, p, h)

∗Please note that the terms Semi-Markov Model and Semi-Markov Chain are often used inter-
changeable in literature

80

5.3. Time-dependent Stochastic User Model

where S is the state space, p : S × S → [0, 1] with ∀s ∈ S :
∑

s′∈S p (s, s′) = 1 is
the transition probability function, and h : (s, s′, t) 7→ [0, 1] with t ∈ R+ represents
the distribution of dwell times associated with a state transition (s, s′) ∈ S × S. For
h : (s, s′, t), we will also write hs,s′ (t) for brevity reasons.

The SMM allows us to describe a user’s behaviour in the following manner: At each
point in time, a user is in a state s ∈ S that is identified by his current context (cf.
Section 5.3.2.1). While the user acts in the real world, his context changes and the SMM
moves to a new state s′ ∈ S representing the new context. s′ is called the successor
state of s, and s′ is visited with a certain probability p(s, s′). Before leaving the current
state s, s is active for a limited amount of time (the dwell time represented by hs,s′ (t)).
During this time period the user’s context does not change.

5.3.2. Learning Approach

In contrast to classical model checking, we do not expect a designer of the system to
define the SMM underlying the real world behaviour. Instead, we apply a learning
approach and derive the SMM from the observations of a context recognition system.
In the following, we describe the basic elements of an SMM as well as the procedure of
how to process context observations for learning.

5.3.2.1. User States

In order to represent a user’s context, a state s = (c1, ..., cn) ∈ S in the SMM is an n-
dimensional vector of context information. Each component ci of s is of a specific context
type Ci with domain Dom(Ci). E.g. ci may be an integer value from Dom(Ci) ⊂ N+,
and Ci may be the ambient temperature type. Other types could be location and
activity, and the corresponding domains could be enumerations of possible activities and
symbolic location identifiers respectively. Thus, the state space S is multi-dimensional
and composed of all context types C1, ..., Cn known to the system with associated
domains Dom(C1), ..., Dom(Cn). For example, the state s = (”meeting room”, ”give
presentation”) ∈ S with S = (Dom(Location) ×Dom(Activity)) describes the fact
that the user executes the activity give presentation in a location referred to as meeting
room. Whenever a combination of context information (c1, ..., cn) is detected that has
not already been encountered for the specific user, a new user state s = (c1, ..., cn) is
added to the SMM.

5.3.2.2. Transition Probabilities

A concrete series of consecutive user states is represented as a stochastic process of
random variables X1, X2, X3, ..., where Xi refers to the state occupied after the i-th

81

5. Expressive Context Prediction using Stochastic Model Checking

s

p(s,s’)

s’

…

…

Figure 5.2.: Semi-Markov Model consisting of state transition probabilities (left) and
dwell time distribution (right)

state transition. In order to learn the state transition probabilities, we assume the
Markov property: The probability p(s, s′) for the state s′ to be visited next only depends
on the current state s, and is independent of all previous state changes. This assumption
can be extended such that p(s, s′) depends on the k last visited states (k-order Markov
models [SKJH04]) if needed, and PreCon operates on these more general k-order models.
However, for simplicity, we assume k = 1 here. The math is essentially the same.

Assuming an underlying stationary probability distribution, the probabilities p(s, s′) can
be estimated from the history of past state transitions: Let ws,s′ be the transition weight,
which denotes the number of transitions from s to s′ as observed in the history. The
transition probability p(s, s′) is defined as p(s, s′) = P (Xn+1 = s′|Xn = s) =

ws,s′∑
s′′∈S ws,s′′

.

Thus, the probability is the ratio of the number of observed state transitions from s to
s′ to the number of all observed transitions from s.

5.3.2.3. Dwell Time Distribution

The user’s dwell time behaviour is modelled as a random variable Dn and denotes
the period of time during which a user rests after the n-th state transition. For this
purpose, we observe the time periods that pass between consecutive state transitions to
learn the distribution of Dn. In order to account for specific dwell time behaviours in
different states, we associate an individual distribution with every transitions from s
to s′, s 6= s′ ∈ S in the transition system. Formally, this distribution is represented as
hs,s′ (t) = P (Dn = t|Xn+1 = s′, Xn = s).

In order to limit the storage and computation overhead, we apply a discretization and
divide time into intervals of equal size ∆t, such that the i-th time interval is defined

82

5.4. Prediction Query Language

as Ii = [i ·∆t, (i+ 1) ·∆t) . The distribution hs,s′ can then be derived as follows: Let
wis,s′ be the number of transitions (s, s′) that occurred in the interval Ii such that
ws,s′ =

∑
iw

i
s,s′ is the total number of observed transitions (s, s′). Then, the probability

for spending exactly time t in state s before leaving to successor state s′ is calculated as

hs,s′ : t 7→
w
b t

∆tc
s,s′

∆t · ws,s′
. (5.1)

In equation 5.1, we use ∆t as a normalization factor to ensure that the sum of prob-
abilities over all intervals is 1. This is required to establish hs,s′ as a valid probability
function. Figure 5.2 shows a example of such a dwell time distribution hs,s′ , where the
time has been discretized into intervals of 5 time units. In this example, the distribution
is concentrated on dwell times with a duration between 20 and 25 time units.

The cumulative distribution of hs,s′ is given as
∫ b

0
hs,s′ (t) dt and can be computed

as the sum of of probabilities associated with intervals up to a desired upper time
bound b. This expresses the probability for a state transition from s to s′ to occur
within the next b time units once s has been entered. The probability for a dwell
time to lie in interval a and b can be derived from the cumulative distribution as∫ b
a
hs,s′ (t) dt =

∫ b
0
hs,s′ (t) dt −

∫ a
0
hs,s′ (t) dt. As a and b may fall into discretization

intervals, we interpolate the probability associated with the fraction of the covered
intervals based on a linear function. The distribution

∫ b
a
hs,s′ (t) dt is later used in

Section 5.5 for the inference process to answer time-bounded queries.

5.4. Prediction Query Language

PreCon’s prediction query language is based on Continuous Stochastic Logic (CSL)
[BHHK03], a probabilistic derivative of branching-time temporal logics as known from
classical model checking. CSL provides operators for verifying temporal properties of
probabilistic state transition systems. We leverage on the expressive power of CSL to
allow applications for composing temporal expression and submit them to PreCon for
prediction. The operators are then evaluated on the learnt SMM to verify the specified
properties on the user’s possible future behaviour.

Consequently, context prediction strictly follows the formal semantics of model checking
for state-based transition systems. According to this semantics, the state space S
is traversed by going from one state to the next as the transitions among the states
permit. The resulting series of visited states (called a path) models one possible temporal
behaviour of the user. For a context prediction, PreCon starts at the state s ∈ S the user
currently occupies in the real world and evaluates the given query from there, possibly
considering all possible paths starting at s (depending on the temporal operators in the
query).

83

5. Expressive Context Prediction using Stochastic Model Checking

The concrete prediction semantics is based on the query language. For this purpose,
let p ∈ [0, 1] be a probability threshold, let / ∈ {≤,≥} be a comparison operator, let
t ∈ R+ be a time bound, and let (Ci, c ∈ Dom(Ci)) be a contextual value c of type Ci.
Queries can be composed from CSL using the following grammar [BK08]:

A query is a temporal-logic formula Φ with

Φ = true | (Ci, c) | Φ ∧ Φ | ¬Φ | P/p(ϕ),

where ϕ is a path formula defined as

ϕ = X≤tΦ | F≤tΦ | G≤tΦ | Φ1U≤tΦ2

The semantics of CSL is based on the classical operators provided by temporal logics to
express reachability properties (using operators X and F) and invariant properties (using
operators G and U) [BHHK03]. We leverage on these operators for the analysis of future
user behaviour. X is the Next operator. It evaluates a condition Φ on all immediate
successor states of the current user state s. Φ is expressed as a name-value pair (Ci, c)
consisting of the name of a context type Ci (e.g. location) and a specific context value
c (e.g. office). The query “Will the next location be the office?” can be expressed by
applying the Next operator to Φ = (location, office), resulting in X(location, office).
F is the Eventually operator and can be used to verify if a condition Φ holds in any
state reachable from s through paths in the SMM. G is the Globally operator and can
be used to check if the condition Φ holds in every state on all paths starting in s. U is
the Until operator and expresses that eventually Φ2 must hold and Φ1 must hold on all
paths starting at the current state until Φ2 holds.

Time is a first order construct of the prediction query language. All operators are
associated with a time constraint t, defining an upper bound on the time, which may pass
until the desired property holds. This enables applications to formulate time-dependent
queries and set bounds on the time when predictions should occur.

The raw predictions are always probabilistic in nature when a query is evaluated. So
the answer of the model checking algorithm is of the form “The user enters his office
within the next 10 minutes with probability 0.74”. A querying application, however,
usually expects a true or false as an answer. Therefore, the calculated probabilities
are compared to a probability threshold p, which is expressed in the subscript of a
query formula (P/p(ϕ)). The querying application specifies this probability and gets a
boolean result depending on whether the outcome of the query evaluation exceeds the
threshold or not. This is an abstraction implemented by the query interface provided to
interested parties. If necessary, however, applications can also access the raw prediction
results in case they require more complex threshold comparisons.

84

5.5. Model Checking Algorithms

Query Explanation

P≥0.8(X≤10min(location, office))
Will the user go next to his office within 10

minutes with a probability of ≥ 0.8?

P≥1.0 (location, home) ∧
P≥0.8F

≤30min(¬(location, home))

Is the user currently at home and will he
eventually leave it within 30 minutes with a

probability ≥ 0.8 ?

P≥0.6 G≤30min (activity, walking)
Will the user be walking within the next 30

minutes with a probability ≥ 0.6?

P≥0.2 ((location, stuttgart) U≤60min

(location, home))

Will the user be in Stuttgart with a probability
≥ 0.2 and then go home next within the next

hour ?

P≥1.0(activity, biking) ∧ P≥0.8(F≤60min

(location, home) ∧ (activity, sitting))

Is the user currently biking (anywhere) and will
eventually relax (activity = sitting) at his home
within the next hour with a probability ≥ 0.2 ?

Table 5.1.: Examples of temporal-logic prediction queries

In Table 5.1, we give some examples for behavioural properties which can be expressed
as CSL formulas. The examples demonstrate the range of feasible context predictions
PreCon offers, including queries with different semantics and context types.

The probability threshold p is an application-dependent value to influence the trade-
off between false positives (queries that evaluate to true but prove to be false) and
false negatives (queries that evaluate to false but actually become true in reality): A
higher threshold reduces the number of false positives, but increases the number of
false negatives. A lower threshold has the opposite effect. Consequently, the concrete
threshold defines the ratio of false negative and false positives that the application is
willing to accept. The choice for the threshold is dependent on the application semantics.
For example, in scenarios where users want to be warned about service disruptions at
train stations where they check-in next, user might be willing to accept false predictions
to stay well-informed. Hence, such applications may tolerate a higher number of false
positives rather than false negatives. On the contrary, a large number of false positives
may negatively impact the satisfaction of a user. For instance, an advertising application
which uses predictions of the locations visited by users to disseminate content should
not obstruct the users with too many false predictions. In this case, a higher probability
threshold would be beneficial to prevent the user from being spammed with irrelevant
advertisements.

5.5. Model Checking Algorithms

Classical model checking algorithms assume static state transition systems, where the
system is analysed at design-time and behavioural properties are only studied at state

85

5. Expressive Context Prediction using Stochastic Model Checking

entry times. In the case of human behaviour, the transition system that is subject to
the verification is dynamic. In particular, the probability resulting from the evaluation
of a query is depending on the time ∆d that has passed since the current state s was
entered. For instance, assume a situation where a worker has spent 8 hours at his current
location office. The probability to finish work and leave the office soon is typically high
in this situation considering typical work day schedules, and significantly different from
the case where the work day has just started. Since model checking algorithms have
not been designed to predict a user’s real-world behaviour, both situations cannot be
distinguished in classical model checking scenarios. More precisely, the existing methods
do not consider the dwell time d as part of the model checking process.

In the following, we therefore extend the standard model checking approach to account
for given values of ∆d (referred to as the running dwell time in the following) by devising
new ways of evaluating the temporal operators X and U . Since all other operators can
be implicitly defined as expressions over X and U [BK08], extending the model checking
algorithm for these two operators is sufficient. For example, the reachability property
F≤tΦ can be transformed to the equivalent expression (trueU≤tΦ). We therefore refer
to X and U as the basic operators in the following. Arbitrarily complex temporal-logic
formula can be evaluated in a bottom-up manner based on a tree representation [BK08]
using only the basic operators.

Thus, evaluating a query requires two aspects:

1. We need to be able to determine whether a given state s satisfies a basic
context constraint Φ = (Cj, c). The basic satisfaction relation is defined as
(s = (c1, ...cj, ..., cn) |= Φ)⇔ cj = c.

2. We need the ability to calculate the probability of X≤tΦ1 and Φ2U
≤tΦ1 for some

basic context constraints Φ1,Φ2. Intuitively speaking, this involves calculating
the probabilities of reaching a state s with s |= Φ1 and of traveling a path where
si |= Φ2 holds for every state si.

Our model checking problem can be solved by evaluating a satisfaction relation |= for
the path formula ϕ enclosed by the probabilistic operator P/p(ϕ) as follows:

(s,∆d) |= P/p(ϕ)⇔ P (s,∆d |= ϕ) / p

In other words, the path formula ϕ is satisfied after ∆d time units have passed in state s
iff the probability P (s,∆d |= ϕ) for the occurrence of ϕ satisfies the threshold condition
/p.

In the following, we will present the evaluation approach for the two basic operators
in detail. Let i be the index of the last state transition that was observed, such that
Xi = s denotes the current state occupied by the user. Further, let Di = ∆d denote the
the running dwell time (cf. Section 5.3.2.3). As a common basis for the computations,
we determine the probability for moving from state s to a successor state s′ within time

86

5.5. Model Checking Algorithms

t after a time ∆d has passed since s was entered. This probability can be determined
using the information carried in stochastic user model as follows:

P (Xi+1 = s′, Di ≤ ∆d+ t|Xi = s,Di > ∆d) (5.2)

=
P (Xi+1 = s′,∆d < Di ≤ ∆d+ t|Xi = s)∑

s′∈S P (Xi+1 = s′, Di > ∆d|Xi = s)
(5.3)

=

p(s, s′) ·
∫ ∆d+t

∆d

hs,s′ (x) dx∑
s′∈S p(s, s

′) ·
∫ ∞

∆d

hs,s′ (x) dx

(5.4)

We use Bayes’ rule to transform formula (5.2) into (5.3). As a result, the dwell time ∆d
is eliminated from the conditional part of the probability formula. Since the transformed
formula matches the information stored in our SMM, it can be computed using the
state transition probabilities and the dwell time distribution associated with the SMM
(Equation 5.4). As the formula shows, the probability for a time-dependent state change
from s to s′ is composed of two parts: the transition probability p(s, s′) as well as the
probability for the transition to occur within the next t time units as exposed by the
dwell time distribution hs,s′ . Based on this probability, we can derive the predictions
for the basic operators of CSL given by the next operator X and the until operator U
as explained in the following subsections.

5.5.1. Next Operator

The predictions semantics of the Next operator X can be described as follows. Given
a query X≤t∆d(φ), the probability P (X≤t∆d (φ)) that the property φ holds in any state
successor s′ of the current state s is required. The subscript ∆d in X≤t∆d(φ) refers to
the current dwell time, on which the prediction needs to be conditioned. Since X≤t∆d(φ)
is associated with a time constraint t, the probability of reaching s′ within time ≤ t
needs to be accounted for. Note that since our context prediction approach is generic
in terms of the supported context types, φ may refer to any discrete context, e.g. a
user’s location in case of a location prediction scenario.

Lopez et al. have proposed in [LHK01] a model checking approach for SMMs which
is able to process X≤t(φ) and compute the probability P (X≤t (φ)). Their approach is
sufficient for static systems where the evolution of the system over the period of time
when a state is occupied is of no relevance. However, the current dwell time ∆d which
can be observed at the time a query is issued changes the probability of a prediction. In
order to adopt model checking as a context prediction technique, we therefore extend
the model checking approach described in [LHK01] to process X≤t∆d(φ) as follows.

87

5. Expressive Context Prediction using Stochastic Model Checking

Universität Stuttgart

IPVS

Research Group

“Distributed Systems” 9

Δ d=15 t=10

 x > Δd=15 Δd=15 < x ≤ Δd+t=25

 ℎ𝑠,𝑠′(𝑥)
∆𝑑+𝑡=25

∆𝑑=15

 ℎ𝑠,𝑠′(𝑥)
∞

∆𝑑=15

≈ 0.68 s

p(s,s’)=0.7

s’

…

…
Φ=(location,office) Δ d=15

 t=10

Figure 5.3.: Next Operator prediction inference based on state transition probabilities
(left) and time-dependent transition probabilities (right)

P (X≤t∆d (φ)) (5.5)

=
∑

s′∈S∧s′|=φ

P (Xi+1 = s′, Di ≤ ∆d+ t|Xi = s,Di > ∆d) (5.6)

=

∑
s′∈S∧s′|=φ p(s, s

′) ·
∫ ∆d+t

∆d

hs,s′ (x) dx∑
s′∈S p(s, s

′) ·
∫ ∞

∆d

hs,s′ (x) dx

(5.7)

Equation 5.6 directly follows from the probabilistic formula given in [LHK01]. In
contrast to the formula described by Lopez et al., we include the dwell time ∆d as
an additional evidence about the user’ current behaviour in the conditional part of
the formula. The formula then expresses the desired probability of reaching any state
s′ where φ holds (i.e. s′ |= φ) within the next t time units, given an observed dwell
time of ∆d. Note that, as φ may hold in more than one successor state s′ due to
the multi-dimensional state space S, this probability is computed as the sum over all
time-dependent transition probabilities where φ can be reached in the next state.

We then transform this formula using Equation 5.4 to eliminate ∆d as a condition
event so that the formula can be computed using p(s, s′) and hs,s′ from the SMM. This
results in Equation 5.7, where the denominator is the probability of reaching arbitrary
next states in greater than ∆d time units, and the nominator limits this probability to

88

5.5. Model Checking Algorithms

states where φ holds. The ratio represents the probability for a transition occurring
within t time units given evidence that dwell time ∆d has passed in s.

Let us consider the example shown in Figure 5.3, where φ = (location, office) is
satisfied in s′ and the transition probability is given as p(s, s′) = 0.7. Further, we
assume a current dwell time ∆d = 15 and a time constraint t = 10. In order to resolve
a prediction P (X≤t=10

∆d=15(φ)), we determine
∫∞

15
hs,s′ (x) dx = 0.95 as the probability for a

state transition occurring at any time > ∆d. Similarity, we compute
∫ 15+10

15
hs,s′ (x) dx =

0.65 as the probability of a state transition occurring at any time in between ∆d = 15
and ∆d + t = 25. Based on this information, we can infer P

(
X≤t=10

∆d=15(φ)
)

= p(s, s′) ·∫ 25
15 hs,s′ (x)dx∫∞
15 hs,s′ (x)dx

= 0.7 · 0.6842 = 0.4789 as the occurrence probability of φ to occur in any

next state based on the given time constraints.

5.5.2. Until Operator

The Until operator U has more expressive prediction semantics, which makes a more
complex model checking process necessary. In contrast to the X operator discussed
in the previous section, the U operator predicts context changes which may occur at
any state which can be reached within the given time constraints, not only at the
immediate state successors. The exploration of the state space therefore extends to
paths of subsequent state transitions. More precisely, according to the semantics of
CSL [BK08], for a query Φ1U≤tΦ2 all paths should be considered which end in states
where Φ2 is satisfied, while at all intermediate state Φ1 holds.

In order to clarify this, consider a location prediction scenario, where the query
trueU≤t=10

∆d=15(location, office) is given, i.e. we are interested in the probability of the
user reaching his office within a time constraint of t = 10, given a current dwell time
of ∆d = 15. This scenario is illustrated in Figure 5.4, where the current state is s1

and the context Φ2 = (location, office) holds in state s3. As can be seen, there is
no direct transition between s1 and s3, and a path over a further state s2 needs to
be taken to reach s3 from s1. However, the time-dependent transition probability for
transitions over several states is not directly encoded in the SMM. All we know is solely
the transition probabilities p(s1, s2) and p(s2, s3), as well as the specific dwell time
distributions hs1,s2 and hs2,s3 associated with each state transition. Consequently, an
approach is required to combine the SMM information attached to single transition for
calculating the probability for the user’s behaviour over multiple state transitions. Note
that while our example involves two subsequent transitions only, a generic solution
is needed which can be applied to paths that may involve an arbitrary number of
transitions.

In current literature, model checking algorithms exist which are able to reason over
transient behaviours of Semi-Markov Models. In particular, the model checking ap-
proach of Lopez et al. [LHK01] is based on the following formula:

89

5. Expressive Context Prediction using Stochastic Model Checking

Φ2=(location,office) s1
p(s1,s2)=0.7

s2 s3
p(s2,s3)=0.4 Δ d=15

hs1,s2 hs2,s3

 t =10

Figure 5.4.: Until Operator prediction inference requiring exploration of the transition
system over paths of time-dependent state transitions

P (Φ1U≤tΦ2) = Fa(s, t) (5.8)

Fa(s, t) =

1, if s |= Φ2∑

s′∈S

∫ t

0

p(s, s′) · hs,s′ (x) · Fa(s′, t− x)dx

, if s |= Φ1 ∧ ¬Φ2

0, otherwise

(5.9)

With this approach, P (Φ1U≤tΦ2) is computed using a stochastic inference function.
The idea behind this approach is to consider the evolution of the transition system over
paths of arbitrary state transitions starting from s that may happen within time bound
t. As soon as a state s is entered where Φ2 holds (upper case), a valid path has been
found where the prediction holds, and the probability of reaching this state adds to
P (Φ1U≤tΦ2). For discovering paths where Φ1 ∧ ¬Φ2 holds (middle case), i.e., all states
on the path are valid but no terminating state has been encountered yet which satisfies
the prediction. Therefore, the path is further expanded with a subsequent transition for
which the time bound is updated. The idea is that if a transition from s to s′ happens
at time x, there is t − x left for moving to a terminating state given an initial time
bound t. Since we need to consider arbitrary times of when a transition may occur, the
integral over the entire time interval is computed. In all other cases, the visited state is
considered to be invalid since neither Φ2 holds nor Φ1 ∧ ¬Φ2 (lower case).

PreCon’s Until operator to support context prediction scenarios is defined as U≤t∆d and
requires an extension to the above method. We additionally need to incorporate the

90

5.5. Model Checking Algorithms

Φ2=(location,office)

p(s2,s3)=0.5 Δ d=15 t =10

hs1,s2(20)=0.5 hs2,s3 (5)=0.8

p(s1,s2) * * p(s2,s3)* hs2,s3 (5)

ℎ𝑠1,𝑠2(20)

 ℎ𝑠1,𝑠2 (𝑥)
∞

∆𝑑=15

s1
p(s1,s2)=0.7

s2 s3

Figure 5.5.: Calculation of time-dependent transition probability for a path of two state
transitions

dwell time ∆d, expressed using a subscript in U≤t∆d, as part of the inference process.
This can be accomplished using this method:

P (Φ1U≤t∆dΦ2) = Fb(s, t,∆d) (5.10)

Fb(s, t,∆d) =

1, if s |= Φ2∑

s′∈S
∫ ∆d+t

∆d
p(s, s′)

· hs,s′ (x)∫∞
∆d hs,s′ (x)dt

· Fa(s, s′, t− x)dx, if s |= Φ1 ∧ ¬Φ2

0, otherwise

(5.11)

(5.12)

Our prediction function Fb (Equation 5.9) introduces some required extensions to the
original method Fa (5.11). First, the probability for the initial station transition needs
to be conditioned on the dwell time ∆d. Therefore, the integral borders are adapted so
that ∆d is set as the lower bound of when a transition can potentially happen. Second,
the calculation of the state transition probabilities needs to be modified, since this
probability is also dependent on ∆d. In order to account for this, we compute the

fraction
hs,s′ (x)∫∞
∆d hs,s′

following the same rationale underlying Equation 5.4. In essence, since

time ∆d has already passed in the current state, we need to adjust the probability
calculation for all possibilities which can happen from this point in time on. This means

91

5. Expressive Context Prediction using Stochastic Model Checking

that the probability for state transitions at any time prior to ∆d needs to be eliminated
from the calculation as done in Equation 5.9.

Figure 5.5 illustrates how to calculate time-depended transition probabilities on a path
involving two state transitions. For the example, we assume that the first transition
from s1 to s2 takes place at time ∆d + 5 = 20, and the second transition from s2 to
s3 is triggered at time ∆d + 10 = 25. The probability for the first transition is then

given as p(s1, s2) · hs1,s2 (20)∫∞
∆d=15 hs1,s2 (x)dt

, whereas the probability for the second transition can

be determined as p(s2, s3) · hs2,s3(5) . Together this yields p(s1, s2) ·
hs1,s2 (20)∫∞

∆d=15 hs1,s2 (x)dx
·

p(s2, s3) · hs2,s3(5) = 0.7 ∗ 0.4
0.95
∗ 0.5 ∗ 0.8 = 0.1179 for the path from s1 to s3. Note that

the probability decreases with increasing path length, since more uncertainty is involved
in terms of user behaviour variances (due to the branched structure of the transition
system and the spread in the distribution of the state dwell times). However, there may
be multiple paths at various transition times which contribute altogether to the final
occurrence probability as specified in Fb (Equation 5.9).

Note that Fb as developed in this thesis represents a generalization of Fa as proposed
in [LHK01]. More precisely, in case of ∆d = 0 where no dwell time has passed yet in
a state, Fb falls back to Fa since

∫∞
∆d=0

hs,s′ (t) dx = 1 applies. Consequently, we have
designed a generic approach that enables existing model checking systems to deal with
run-time semantics. As we have done this for both the Next and the Until operator,
PreCon enables the entire expressiveness of temporal logics in more dynamic scenarios
where human behaviour needs to analysed and predicted at run-time.

5.6. Evaluation

We have evaluated PreCon using real-world context traces from a case study in a
German geriatric nursing home. The nursing home is a health care facility where
nurses care for elderly people suffering from dementia and other old-age diseases. As an
application of an integrated context prediction system, PreCon has been employed to
predict the future context of the nurses in order to optimize the tasks scheduled by an
intelligent workflow management system. Incorporating context predictions into the
scheduling decisions of workflow management systems is part of the European research
project ALLOW [HRKD08].

In order to obtain the ground truth of a nurses’ behaviour, the nurses were accompanied
over the course of 25 days during 3-5 hours in the morning shift where they visited
patients in different rooms to perform specific treatment activities (e.g., the patient
morning hygiene). The observations of the nurses’ behaviour were recorded in context
traces which form the basis of our evaluation study. Each context trace consists of
time-stamped entries of various context information including the activities performed
by nurses, the locations of their visits and the ids of the visited patients. Thus, the

92

5.6. Evaluation

Predicted
True False

Real
True TP FN
False FP TN

Table 5.2.: Classification matrix of prediction results

context traces define a time series of multi-dimensional context, where each entry
denotes a discrete change of context associated with a nurse.

Given a context trace, PreCon learns a SMM to represent the behaviour of a nurse
as a probabilistic state transition system with explicit dwell time characteristics
(cf. Section 5.3). In our evaluation, we used variations of SMMs given three dif-
ferent state spaces comprising location, activity and patient information, i.e., s ∈
Dom(Location), s ∈ Dom(Location) × Dom(Activity) and s ∈ Dom(Location) ×
Dom(Activity)×Dom(Patient). By varying the amount of information which is en-
compassed in a state, we can investigate the relevance of various context types for
obtaining accurate predictions. For assessing the prediction performance of PreCon,
we apply metrics from the area of information retrieval [MRS08]. These metrics are
well suited to analyse prediction problems with binary outcomes as explained in the
following.

5.6.1. Evaluation Metrics

PreCon offers a probability threshold to control the behaviour of the prediction system.
Based on a given thresh configuration, we can distinguish between different classes
of predicted and actual behaviour for analysing the performance of our system. If a
prediction exceeds the probability threshold, then it will be delivered to the querying
application. In this case, we count it as either true positive (TP) or false positive (FP),
depending on whether the prediction matches the real-world context (TP) or turns out
to be wrong (FP). In contrast, in case the prediction remains below the probability
threshold, the querying application is not informed about the prediction. In that
case, we distinguish between true negative (TN) or false negative (FN), depending on
whether the suppressed prediction correctly did not occur (TN) or the actual behaviour
occurred, but was not reported (FN). An overview of the different classes is given
in the classification matrix shown in Table 5.2, were the rows represent the boolean
outcomes of the real behaviour, and the columns show the outcomes of the predicted
behaviour.

We count the occurrences of (TP), (FP), (TN), and (FN) over all predictions in order
to assess the metrics precision, recall and F-score, which originate from the area of
information retrieval [MRS08]. These metrics give insight into various performance

93

5. Expressive Context Prediction using Stochastic Model Checking

characteristics by building ratios over the frequency of the different classes of prediction
results.

Precision is a measure of the exactness of the predictions, indicating the fraction of
correct prediction out of all predictions returned to the application. Formally, it is
defined as follows:

precision =
TPs

TPs+ FPs
(5.13)

Recall is a measure of the completeness of the predictions, and specifies the fraction of
correct predictions out of all occurrences of the predicted behaviour (including those
not seen by the application). Formally, it is defined as:

recall =
TPs

TPs+ FNs
(5.14)

The exact configuration of the prediction system is subject to a trade-off between
precision and recall. Precision measures the accuracy of the predictions returned to
the application. Therefore, configuring the prediction system with a high probability
threshold such that only the most reliable predictions are returned will naturally lead
to a high precision. In contrast, recall measures the extent to which predictions were
missed in which applications have shown interest. Therefore, recall gains from making
more risky predictions which are elicited for low probability thresholds. A good choice
of the probability threshold guarantees an effective trade-off decision and is therefore
important for the performance of proactive applications.

In order to measure this trade-off, F-score is a known method to combine precision and
recall into a single metrics [MRS08]. Formally, F-score has the following definition:

F -score = 2 · precision · recall

precision + recall
(5.15)

i.e. it is defined as the harmonic mean over precision and recall. This metric makes the
consequences of the trade-off decision explicit and measurable. A high F-score indicates
a good trade-off between precision and recall.

5.6.2. Evaluation Results

In our evaluation, we investigate how the performance of PreCon is influenced by a
varying probability threshold for different queries. Using precision, recall and F-score
as evaluation metrics, the goal is to recommend probability thresholds which should be
chosen in order to achieve the best prediction results.

Based on the real-world data from the previously described health-care scenario, we
have evaluated queries which involve the prediction of the future location of a nurse.

94

5.6. Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

probability threshold

location,activity
location

location,activity,patient

(a) precision

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
ca

ll

probability threshold

location,activity
location

location,activity,patient

(b) recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-s

co
re

probability threshold

location,activity
location

location,activity,patient

(c) F-score

Figure 5.6.: Prediction results for the Next operator: a) precision (top left) b) recall
(top right) and c) F-Score (bottom)

For this, we defined two different queries P/p(X≤tf (ϕ)) and P/p(F≤tϕ) = P/p(trueU≤tϕ)
using the basic temporal operators provided by our query language (cf. Section 5.4).
Based on these queries, we verify whether a future location is reachable in the next state
(using the Next operator X≤tf (ϕ)) or at some state in the future (using the Eventually

operator (F≤tϕ)). The time constraint t associated with these queries is set to 10
minutes, and we defined instances of ϕ for each location in the nursing ward. We
evaluated the queries repeatedly, i.e., predictions were computed upon a state change
and periodically after ∆E = 10 seconds have passed in a state. The results discussed in
the following show the average of 2000 predictions. Depending on the given probability
threshold, each prediction has been assigned to the different result classes as required
by our metrics.

First, we study the results for the Next operator X≤tf (ϕ) based on the different metrics
as shown in Figures 5.6 a) - c). As expected, the precision gains from an increase of the

95

5. Expressive Context Prediction using Stochastic Model Checking

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

pr
ec

is
io

n

probability threshold

location,activity
location

location,activity,patient

(a) precision

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

re
ca

ll

probability threshold

location,activity
location
location,activity,patient

(b) recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F
-s

co
re

probability threshold

location,activity
location
location,activity,patient

(c) F-score

Figure 5.7.: Prediction results for the Until operator: a) precision (top left) b) recall
(top right) and c) F-Score (bottom)

probability threshold as shown in Figure 5.6 a). The reason is that the number of FP de-
creases for higher thresholds because a larger portion of predictions with a low occurrence
probability is discarded. The highest precision can be observed for predictions which in-
corporate all recorded context (S = Dom(Location)×Dom(Activity)×Dom(Patient)).
In contrast, using only location information (S = Dom(Location)), the precision stays
significantly below. Hence, the evaluation results show that additional context is relev-
ant to discriminate user states such that more accurate predictions can be expected.
Figure 5.6 b) shows the recall as a function of the probability threshold. The results are
reciprocal to the precision results: For an increasing probability threshold the number
of FN increases, as more and more predictions are discarded that actually occur but
do not reach the required occurrence probability. This result illustrates the trade-off
between precision and recall for different values of the probability threshold: If the
threshold is increased to guarantee more reliable predictions, the risk of discarding

96

5.7. Related Work

correct predictions with a low probability rises. Figure 5.6 c) shows the F-score and
reveals the characteristics of this trade-off: The F-score rises as the threshold increases
from 0 to 0.4. Up to this threshold, the gain from a higher precision outweighs the
loss in recall. However, for a threshold higher than 0.4, the loss in recall becomes more
severe, so that the score is negatively affected. The best trade-off performance can be
achieved when choosing p = 0.4 as a probability threshold. In this case, a F-score of
0.86 can be achieved which guarantees the best trade-off decision.

The evaluation results for the Eventually operator (F≤tϕ)) are plotted in Figures 5.7 a)
- c). We can see that the precision significantly gains already for lower thresholds p > 0
as demonstrated in Figure 5.7 a). This is due to the special prediction semantics of
the F operator, which predicts location visits at any state reachable within the given
time constraint over multiple possible state transitions. Thus, a location visit may be
found also in further states (not only in the next states), so that the chance to satisfy
a prediction overall increases. As a result, there is a positive effect on the precision
when granting more freedom about the states where predictions may become true. At
the same time, the recall is strongly reduced by an increasing threshold as shown in
Figure 5.7 b). Since future location visits at states further away are incorporated, a
significant amount of predictions has only a minor probability. The reason is that the
occurrence probability usually degrades with each additional transition taken, as the
transition probability is distributed among several transition at a state. This causes
a lot of FNs in total, so that a significant amount of correct predictions is discarded.
This observation is also reflected in Figure 5.7 c), which shows the F-score for different
probability thresholds. For thresholds p > 0.2 the high loss in recall dominates the gain
in precision. Due to this, the Eventually operator is more sensitive to the choice of the
probability threshold compared to the Next operator. The best configuration is found
for p = 0.2. For this threshold, a F-score of 0.87 can be achieved which exhibits the
best trade-off characteristic over all configurations.

5.7. Related Work

Over the past years, there has been active research to improve the capabilities and
performance of context prediction systems [BZ10]. However, while context prediction
accuracy has received a lot of attention, the expressiveness of context prediction has
not been in the focus of this research. In the following, we give an overview of existing
prediction systems in terms of the type of predictions that they can compute to point
to their limited power of expressiveness. Then, we discuss methods from the area of
model checking as a powerful tool to fill this gap, which has not been considered so far
in prior context prediction research.

The context prediction system of Maryhofer [May04] includes layers of context recog-
nition and prediction in order to learn about current and future context states of a

97

5. Expressive Context Prediction using Stochastic Model Checking

user. For this purpose, context prediction is defined as a problem of extrapolating
a time series into the future, i.e. given a series of previous context states the next
context occurrence shall be predicted. In contrast, PreCon allows for queries which
target context changes beyond the next state. Further, since PreCon’s predictions may
involve powerful logic-based expressions, our approach is superior in terms of query
expressiveness.

Similarly, further prediction schemes have been proposed to infer a user’s next context
state. Common to Markov models [KM09, SKJH04, DH98], compression algorithms
[SKJH04, GC07], or n-gram tries [HS07] is a statistical approach to learn patterns
from a series of past context occurrences that reveal typical context transitions. All
these approaches represent predictors which can be used to anticipate the next context
state of a user. For instance, fixed order Markov models rely on a limited number of
preceding state transitions. In contrast, compression algorithms derive the prediction
from a varying number of preceding transitions. Nonetheless, these approaches can only
be used to predict the next most probable context and queries of higher expressiveness
are not foreseen.

Machine learning is traditionally used to address classification problems. In essence,
classification can be applied as a generic method when the problem is to find a fitting
category for a given observation. Anagnostopoulos et al. have shown how to adopt these
methods to predict the future location of users, training a classification model from
sequences of past location visits [AAH+09]. The classification task is then to assign
a next location visit based on the last user movements. For this purpose, they have
evaluated different classifiers such as the Bayesian classifier or Decision Trees in terms
of the resulting prediction accuracies. However, only the most probable next context in
a single-dimensional context space of locations can be predicted. In particular, queries
for temporal relations in a multi-dimensional context space are not supported.

Lee and Hou study the mobility characteristics of users across the Dartmouth campus
network [LH06]. In order to describe the users’ typical movements pattern, a Semi-
Markov Model is used to represent temporal aspects in the mobility behaviour, i.e. the
typical durations of associations of user devices with wireless access points deployed at
the campus. Moreover, an approach is developed to estimate the access point to which
a user is connected at a future time, for which the temporal association patterns are
used as a basis for the prediction. However, beyond the specific prediction in the focus
of their work, a sophisticated query language that allows for formulating predictions
with arbitrary temporal relations and logic-based expression is not considered. PreCon
is the first system to investigate the application of temporal logics as a powerful and
expressive query language for context predictions.

The algorithms for the prediction of context information used in PreCon originate from
the field of stochastic model checking [KNP07]. Stochastic model checking algorithms
for Continuous Time Markov Chains have been initially studied by Baier et al. [BKH99].
In later years, Lopez et al. have proposed extensions of these algorithms for Semi-

98

5.8. Summary

Markov Models [LHK01]. While we leverage on these algorithms as a basic statistical
framework for the design of PreCon, prior model checking approaches have been devised
to support the off-line analysis of static software systems. For the purpose of context
prediction, algorithmic extensions are required to consider run-time semantics and
answer predictions related to the current state in human behaviour. To this end, we
have developed an approach to condition the predictions on the user’s running state
dwell times. This allows for more accurate real-time predictions since the dwell time
significantly influences the probability of a state change as time elapses. While model
checking systems are usually applied to study critical system properties (e.g. the safety
guarantees of traffic light circuits), we have used the metrics precision and recall from the
area of information retrieval to gain insight into the predictability of human behaviour.
This shows that, by applying model checking for context prediction tasks, novel research
questions arise which have not been addressed by any prior model checking system.

5.8. Summary

In this chapter, we have presented PreCon, an novel context prediction approach
that combines stochastic model checking techniques with statistical learning to allow
for more powerful and expressive forecasts. The key components of PreCon are a
time-dependent stochastic user model, an expressive temporal-logical query interface
and novel context prediction algorithms. More precisely, PreCon uses a Semi-Markov
Model (SMM) to incorporate an explicit model of the temporal aspects in a user’s
behaviour. Further, PreCon is based on temporal logics as a query language which
facilitates predictions with logical expressions and rich temporal semantics (e.g. will
the user be at location x within the next 10 minutes). For prediction inference, we have
extended well-known model-checking techniques to deal with the special requirements
of predicting human context where forecasts need to be conditioned on information
about the user’s current state and dwell time. We conclude that the combination of
SMMs, a query language based on temporal logic, and the online learning approach
significantly increase the expressiveness of context prediction system and therefore
represents a significant contribution to the state-of-the-art in this area.

We have evaluated PreCon based on a real-world case study from the area of health-
care using metrics from information retrieval. In our evaluation, we have shown that
expressive temporal predictions can be made with high precision-recall characteristics,
enabling applications to access future context information with effective trade-off
decisions.

99

Part III.

Context Prediction in Mobile Systems

101

Chapter 6
Mobile Sensing Applications

In this chapter, we propose and study tailored context prediction approaches to improve
the performance of context-aware mobile systems. We focus on a new class of mobile
systems known as mobile sensing applications, which have recently emerged as a result
from the versatile sensing capabilities of powerful human-carried devices [CEL+08,
LML+10]. In mobile sensing applications, streams of context updates are captured
on the users’ mobile devices and shared with remote parties to enable new forms of
collective context-aware services. This has led to a paradigm change, where mobile users
are no longer mere consumers, but represent active producers of context data. However,
mobile sensing applications are facing severe resource constraints of mobile devices,
which makes their development a significant challenge. As a result, the provision of
suitable methods to improve upon the resource usage of these applications, especially
in terms of the underlying energy consumption, has moved in the focus of current
research [RMM+11,BDR12b].

In the following, we will delve into the specifics of mobile sensing applications to lay
the foundation for novel context prediction methods approaches which are tightly
integrated with the operation of these applications. First, we start by discussing
mobile social networking as a possible application scenario which is attractive to a
large user basis [MLF+08]. This discussion will reveal that a significant overhead
of energy consumption is caused by these applications in real environments which is
critical for practical deployments. Then, we present a generic model of mobile sensing
applications which allows us to abstract their general behaviour in terms of basic
operations for sensing and distributing context data. Subsequently, we analyse the
energy characteristics of mobile data communication to motivate the need for more
sophisticated protocols tailored to the requirements of mobile sensing applications.

103

6. Mobile Sensing Applications

Figure 6.1.: Online Mobile Social Network comprising a mobile context producer
(middle) and four context consumers in his social circle

6.1. Application Scenario

The area of mobile sensing has spawned a range of innovative applications that allow
mobile users to contribute sensor data from their mobile phones [CEL+08, LML+10,
RH10]. One such application relates to online social networking, where platforms such
as Facebook or Google+ have attracted millions of users over the past years, allowing
people to connect with their friends in order to improve their social experiences. In the
future, it is envisioned that online social networks can become even more seamlessly
integrated into everyday life by effectively exploiting mobile sensing technology to
design new ways of engaging in social communication (cf. Figure 6.1). In particular,
while current social network systems rely on manual updates of the users, mobile
sensor-enabled devices allow for extracting the users’ context in an automatic manner
to share context updates with their friends in real-time. This will further improve the
flow of information among users and allow friends to receive constant updates about
the activities of their social links as soon as they occur (where they are and what they
are doing). As the updates are triggered automatically by changes in the users’ context,
social network users are thus able to share their activities without spending time and
laborious effort to enter this information explicitly.

Driven by this vision of future online social networks, researchers have developed first
prototypes to detect the users’ presence information and push this information to a user’s
social friends [MLF+08]. Based on experiments with a real-world deployment of the
application prototype, the performance of the application could be monitored and the
experience of users could be surveyed [MLF+08]. While the users’ feedback confirmed
the high value of the application to provide novel social experiences, significant technical

104

6.2. System Model

limitations have been encountered that hamper a wider adoption of this technology.
Specifically, it has been reported that the battery of standard mobile devices is already
fully drained within six hours, caused by the frequent updates of the users’ context over
mobile communication networks [MLF+08]. Hence, there is a significant gap between the
potential value of mobile sensing applications and limitations in terms of the underlying
energy overhead. In the remainder of this thesis, we look at this problem in detail and
propose tailored context prediction methods to allow these applications to be executed
in an energy-efficient manner, while preserving the usability of the application as much
as possible.

While the idea of mobile social networking perfectly illustrates the technical challenges
associated with mobile sensing applications due to the high interest of a large user
basis and the always-on mode of operation, other mobile systems (e.g. mobile health
guides) are similar in nature and also suffer from critical constraints in terms of limited
energy resources. In order to account for this, we develop in the next section a more
general model of mobile sensing applications that allow us to apply our concepts and
algorithms to a wide spectrum of different scenarios.

6.2. System Model

Nowadays, humans carry powerful mobile devices such as smartphones which provide
rich opportunities for context-aware applications. Such devices are equipped with a
set of versatile on-board sensors (e.g. GPS, camera, acceleration, compass, etc.) for
detecting context data in real-time. The sensors can be used to continuously capture
time series of low-level sensor data such as sound, acceleration or Wi-Fi signals. Based
on the physical sensor readings, information about the high-level context of the user can
be inferred (e.g. activity or symbolic location). For instance, it has been shown that the
user’s mode of locomotion (e.g. sitting or standing) can be recognized from acceleration
samples using statistical frameworks such as the Naive Bayesian classifier [BI04].

By classifying raw sensor data into context states, the sensing process yields high-level
context of discrete nature, representing the different states in which a user can be.
Context states are associated with labels (e.g. ”sitting” or ”walking”) and thus provide
intuitive information that is easy to interpret for applications and users. Formally, a
context state is denoted by si ∈ S, where S is the state space. Context states can
be multi-dimensional, in which case they represent tuples of different context types.
For instance, si = (”office”, ”sitting”) ∈ S describes a state, where the user is sitting
(classifying his activity) in his office (classifying his location).

For detecting the current context state of a user, the sensors are sampled with sensing
interval ∆ts. Due to this time-discrete sensing scheme, each context si is assumed to
be valid for the interval [t, t+ ∆ts), starting from its time of sensing t and ending at
the next sensing cycle t+ ∆ts. Continuous sensing results in a sequence of user context

105

6. Mobile Sensing Applications

states {st1 , st2 , . . . , stn}, where st1 denotes the first and stn the last sensed context and
sti refers to the context available at time ti = i ·∆ts for 1 ≤ i ≤ n. Please note that two
consecutive context states sti and sti+1

may be equal (sti = sti+1
), if the user context

has not changed in the meantime.

Additionally, the devices are equipped with a cellular wireless communication interface
(e.g. UMTS or GPRS) for mobile Internet access. The communication interface is used
to disseminate information about the changing context of mobile users. Mobile devices
can take different roles in the dissemination process. We distinguish between a producer,
whose context is locally monitored on the device, and remote consumers, which are
interested in context changes of the producer. Formally, let the producer context at any
time t ∈ T = {t1, . . . , tn} be denoted as p(t) ∈ S, while the producer’s context known
to the consumer is referred to as c(t) ∈ S. In order to synchronize a consumer with a
producer (so that p(t) = c(t) is guaranteed), information about the producer’s local
context state must be forwarded to the consumer. For this purpose, update protocols
are employed which decide about when the next update message should be triggered.
We will study various update protocols to accomplish this task in the next chapter.

As mobile devices are equipped with batteries that have only limited capacities, energy
consumption is a critical factor for the usability of the devices. The lifetimes of
the devices’ batteries therefore strongly depends on the overhead of energy-intensive
operations. Unfortunately, mobile sensing applications require costly sensing and
communication operations. Especially, frequent updates of context information over
cellular radio networks may substantially drain a device’s battery [MPF+10]. To
elaborate on this aspect more in detail, the cellular power management characteristics
of mobile devices are analysed in the next section.

6.3. Energy Characteristics of Mobile Data Communication

The cellular power management of mobile devices reveals important implications for the
design of mobile sensing applications. In the following, we analyse the relation between
the inherent requirements of mobile sensing applications and the energy overhead
incurred by mobile communication. This analysis reveals a problematic mismatch
with a negative impact on the energy overhead: while mobile sensing applications are
characterized by frequent small transmissions to distribute observed context changes,
cellular network interfaces are based on a power management strategy which favours
sporadic transfers of large chunks of data.

More precisely, the total energy spent on mobile devices for transmissions over cellular
networks originates from different sources of energy consumption [BBV09]. In order
to facilitate the physical data transfer, transmission energy is required which depends
on the amount of data exchanged over the wireless channel. Consequently, transfers
of small chunks of data do not consume a significant amount of transmission energy.

106

6.3. Energy Characteristics of Mobile Data Communication

Tail energy

Transmission energy

Figure 6.2.: Energy consumption characteristics for mobile data communication over
cellular networks [MPF+10]

However, once the data transfer has been completed, the interface remains in a high
power state for an additional period of time which is referred to as tail time. This is
done to keep the interface powered up in expectation of additional transmissions which
may occur subsequently. For this reason, as part of the total energy consumed for a
data transfer, the so-called tail energy is included that is spent in the tail time. As an
example, Figure 6.2 plots the energy profile for a data transfer of 100 bytes on a Nokia
N95 smartphone over a GPRS network. As the sampled power usage shows, there is a
significant period of time during which the wireless interface remains active after the
completion of the data transmission during which additional energy is consumed.

As the above discussion implies, the design of current cellular network technologies
is optimized for high-volume data transfers. For transferring high volumes of data,
the tail energy is insignificant compared to the energy consumed by the actual data
transfer. However, mobile sensing applications require frequent updates of small data
items, which invalidates this assumption. For instance, in case of GPRS the tail time is
6s during which 0.025J/s is spent [BBV09], resulting in a tail energy of 1.5J. Assuming
a small message size of 1KB which is enough to store the context update information
(i.e. a context state), the total energy amounts to 3.2J that is consumed per message.
In such a scenario, the tail energy takes up a significant proportion of the required
energy (47%), so that transferring small-sized messages causes considerable energy
overhead. For instance, sending 200 update messages per hour would result in 640
J/h for transferring only 200KB of data∗. As this discussion shows, mobile sensing
applications are highly susceptible to a high energy consumption due to sending frequent

∗For this calculation, we assume that every message causes the complete tail energy to be consumed,
which occurs each time the next context state is not sent until the complete tail time has elapsed. This
assumption is met by current context sensing approaches and their underlying sampling frequencies
[MPF+10]

107

6. Mobile Sensing Applications

update messages which challenges the practical usability of mobile phones. Therefore,
new approaches are required for rendering this update process more efficiently. In the
following chapter, we will explore how context prediction methods can help to design
update protocols for mobile sensing application with improved energy consumption
characteristics.

108

Chapter 7
Energy-efficient Context Update Protocols
using Context Prediction

7.1. Introduction

In this chapter, we present an approach for the integration of context prediction
methods into update protocols for distributing discrete context data. Update protocols
have a long tradition in mobile computing to control the quality of context data and
message overhead of distributed applications [BD99,LR01]. Given the limited resource
constraints of mobile devices, the design of efficient update protocols is an important
research question. In prior work, prediction-based update protocols have been devised
which can improve the protocol efficiency. For instance, location-based applications
can employ dead-reckoning techniques to track the geographic positions of mobile
objects under given spatial deviation bounds [WSCY99]. With dead-reckoning, a spatial
movement prediction function is used to estimate the future trajectory of a mobile
user for reducing the number of updates caused by changes in the user’s position.
While update protocols for tracking user positions are well-understood, an in-depth
investigation of prediction-based methods for the distribution of discrete context data
is lacking in current research.

Compared to geographic position information, discrete context can be associated with
arbitrary labels to describe the semantics of a user’s behaviour, e.g. for the classification
of a user activities [MLF+08]. As a consequence, discrete context states can encode
arbitrary meanings, for which assumption about user mobility in geographic space do
no hold as exploited by existing location-based update protocols [LR01]. Therefore,
new models and techniques are required to implement prediction-based methods for
update protocols aiming at discrete context. In particular, the properties of the discrete
context model need to be closely reflected in the update protocol. First, a prediction
model is needed which can represent the evolution of a user’s behaviour as a description

109

7. Energy-efficient Context Update Protocols using Context Prediction

of context state dynamics. Second, an accuracy metric is required which is able to
express the correctness of state-based context data. Third, relevant decision criteria
and deviation thresholds need to be established, where the state of predicted and actual
context occurrences are compared for triggering update messages.

As a response to this challenge, we propose in this chapter protocols for delivering
energy-efficient updates of discrete mobile user context using context predictions. The
protocols are designed for allowing applications to trade-off the energy consumption on
a mobile device against the context accuracy observed by remote consumers. While the
energy consumption results from the overhead of message updates sent by a producer,
context accuracy is based on a boolean metrics which measures the fraction of time
over which context states at a producer and consumer match. In order to improve the
trade-off characteristics, we propose an approach for maintaining a high level of context
accuracy without the overhead for a large number of update messages. To this end, we
propose four different context predictors that can be embedded into update protocols
to forecast evolutions of context changes. Using the predictions, a producer’s current
context can be estimated at a consumer from an outdated context update which was
received in a prior update message. We present different variants of Markov predictors
which apply specific strategies for computing a prediction, exploiting the state transition
probabilities and dwell time characteristics encoded in the Markov model. To integrate
the context predictions into the update process, two basic update protocols are devised,
a time-based and a deviation-based protocol, which allow for controlling the update
triggers to determine when the next update has to be sent.

In our evaluation, we analyse the inherent trade-off between energy consumption and
context accuracy of our protocol variants for a real-world user trace. The results gained
from our evaluations are twofold: in scenarios where the real-world behaviour matches
the statistical assumptions made by Markov statistics, the trade-off can be significantly
improved by exploiting successful predictions of the future context changes. In contrast,
in case the real-world behaviour does not obey these assumptions, the protocols are
susceptible to predictions inaccuracies. By further analysing this problem in detail, we
gain valuable insights for the design of a more robust prediction-based update protocol
that is presented in the next chapter as a follow-up approach.

The rest of the chapter is organized as follows. In Section 7.2, we give a formal
description of the problem targeted by our approach. Then, we give a basic overview
of the prediction-based update process in Section 7.3. In Section 7.4, we propose two
different protocol variants to control the transmission of context updates. Based on our
prediction model which we introduce in Section 7.5, we then present in Section 7.6 four
novel context predictors. Thereafter, we present our evaluation results in Section 7.7
and discuss previous update protocols from related work in Section 7.8. Finally, we
conclude with a summary in Section 7.9.

110

7.2. Problem Statement

7.2. Problem Statement

In this chapter, we study a fundamental problem in the design of mobile sensing
applications. The goal is to devise energy-efficient update protocols for transferring
steams of context data from mobile devices to interested consumers. For the design of
such protocols, we focus on the trade-off between the energy costs for sending context
updates and the context accuracy which can be observed by interested consumers. In
the following, we further elaborate on this problem in more detail.

As discussed in Section 6.2, mobile devices can be either producers or consumers of
context data. At a producer, the current context state is provided at periodic sampling
intervals ∆ts. For instance, recognizing an activity requires collecting sufficient evidence
about variations of the sensor signals over an interval ∆ts = 4s [MPF+10]. Consequently,
we assume that the context state at a producer evolves as a time-discrete process with
steps T = {i · ∆ts|1 ≤ i ≤ n}. Formally, the context state of producer at any time
t ∈ T is defined as p(t).

In contrast, the consumer resides at a remote site and has no direct access to the
producer’s context updates. Therefore, a consumer needs to be informed about relevant
context changes via wireless communication. The context of which the consumer is
aware of at any time t ∈ T is denoted as c(t). In order to influence c(t), update protocols
are applied that elicit update messages to report about context changes. Applying a
specific update protocol has important implications in terms of the energy consumption
at both parties and the context accuracy at the consumer.

Context accuracy rates the exactness of the context data seen by a consumer. Depending
on the underlying update protocol, certain context updates may be suppressed so that
the context c(t) experienced by a consumer may differ from the real context p(t) at a
producer. Formally, this can be measured as

λ(t) =

{
1, if p(t) = c(t)
0, else

(7.1)

, where λ(t) yields whether the producer and consumer states match at time t. While
λ(t) is a measure of the instantaneous context accuracy at time t, we can use it for
deriving a complete view on the context accuracy. Normalizing (7.1) over the application
lifetime of |T | samples of context states, results in the average accuracy

ac =

∑|T |
t=1 λ(t)

|T |
(7.2)

as a basic measure for the consumer-side context accuracy. Thus, ac indicates the
fraction of time for which the consumer is in the correct state as a value in [0, 1]. In
this regard, it gives insight about the extent to which the consumer experiences a loss
of information.

111

7. Energy-efficient Context Update Protocols using Context Prediction

At the same time, achieving a high context accuracy requires frequent context updates
via wireless cellular radio channels (e.g. GPRS). Each time an update is sent, we
pay eu amount of energy for its transmission. To study the overhead of wireless data
communication, let the set of all updates made be denoted as U ⊆ T . The energy
consumed for wireless communication at any time t is thus dependent on the update
decisions taken and can be expressed as:

µ(t) =

{
eu, if t ∈ U
0, else

(7.3)

Based on the instantaneous energy consumed at a certain time t ∈ T , this leads to an
energy consumption rate of

ec =

∑|T |
t=1 µ(t)

|T | ·∆ts
, (7.4)

which reflects the energy consumed per time (J/h) over the complete application lifetime.

There exists an inherent trade-off between the required energy consumption ec and
the resulting context accuracy ac. On the one hand, with energy being a strictly
limited resource on mobile devices, a high rate of context updates may over-stress the
devices’ batteries. On the other hand, not sending an update message impedes the
context accuracy at a consumer who expects accurate knowledge of a producer’s context.
Therefore, the goal of our work is to design energy-efficient update protocol which are
able to improve this trade-off in an effective manner. Specifically, these protocols should
achieve a reduction in energy consumption ec, while mitigating the negative impact
on context accuracy ac at the same time. In the following, we propose and evaluate
different strategies to achieve this goal.

7.3. Approach Overview

We propose different prediction-based protocols to allow for energy-efficient context
updates. A taxonomy of our protocols is shown in Figure 7.1. Fundamental to our
approach are two basic update protocols, a time-based and a deviation-based protocol,
that can be used to control the overhead of sending update messages. With these
protocols, the set of context updates which are delivered to consumers can be selectively
chosen. By a suitable configuration of these protocols and their update decisions, it is
feasible to effectively influence the energy/accuracy trade-off which is critical to mobile
sensing applications.

Supplementary to the basic update protocols, we have developed four different predictors
which can be integrated into these protocols. Using these predictors, both producer
and consumer independently determine the producer’s most recent context change in
periods of ∆ts. The context predictors are designed to use the latest information from

112

7.3. Approach Overview

Update Protocol

Time-based

Deviation-based

Next-Step-

Predictor (NS)

Multi-Step-

Predictor (MS)

Last-Transmitted-

Predictor (LT)

Protocol

Variant

Prediction

Approach

Expected-Dwell-

Time-Predictor (ED)

Figure 7.1.: Overview of energy-efficient update protocols

the last update message to estimate a producer’s current context state. However, as
this last update message may have been sent some time ago, the producer’s context
state needs to be predicted over several intervals.

Consumers exploit these predictions to approximate the current context of a producer.
This way, producers do not have to send every context change, since consumers are
empowered to infer these updates on their own. In contrast, producers use the predictions
to monitor the update process and verify what context state is currently suspected by a
consumer. If a deviation is recognized which cannot be tolerated, the producer triggers
a transmission to update the consumer with the most recent context change that was
observed. The strictness of how much synchronization is necessary and the extent to
which deviations are tolerated is controlled by the underlying update protocol.

Hence, accurate predictions amplify the efficiency of a prediction-based update protocol:
On the one hand, the context accuracy is preserved at a consumer due to the ability of
knowing about the producer’s context in spite of missing updates. On the other hand,
whenever the predictions match, a lower number of context updates is transmitted by
the producer, so that less energy is consumed for distributing the updates over the
wireless communication channel.

In order to anticipate context changes, a prediction model is required which describes
typical patterns inherent to the producer’s context. This model is learned by the
producer and shared with the consumer, initially when starting the application for the
first time and in case of radical changes in the user’s behaviour (e.g. when leaving
university and starting a job which may introduce new context states). Note that in
contrast to prediction-based update protocols for geographic user positions [WSCY99],

113

7. Energy-efficient Context Update Protocols using Context Prediction

there is no need to update the prediction model with every context update. In case of a
discrete context model, the dynamics of user behaviour can be encoded with states and
state transitions. The prediction model therefore does not only enable forecasts related
to the last known user context, but is also valid for inferring new predictions whenever
the context is updated. Since in current research no longitudinal data is available to
explore long-term changes in user behaviour, we focus in this work on the required
techniques to make prediction-based update protocol for discrete context generally
possible. The proposed techniques are valid in any scenario where prediction-based
updates shall be applied irrespective of the strategies chosen to refresh the prediction
model.

7.4. Basic Update Protocols

In this section, we present two different update protocols, a time-based and deviation-
based protocol, for controlling the update process on a mobile device. Both update
protocols are designed in a way to allow for the integration of context predictions to
reduce the number of context updates. As the protocols are agnostic to the prediction
inference algorithm, they can be flexibly combined with any predictors we introduce
in Section 7.6. Instances of the protocols run on both the producer and consumer.
However, since the update decision is enforced by a producer, we focus on this part
subsequently since it involves more decision-making logic. The consumer part essentially
consists of the prediction task, which is discussed in detail later.

7.4.1. Time-based Update Protocol

The time-based update protocol follows a simple idea to control the update message
overhead. The protocol is executed regularly in constant update periods ∆tp. Each
time the update period elapses, the current context of the producer is reported to the
consumer. In between two consecutive updates, the producer’s context may evolve while
no update message is sent to the consumer. In order to compensate for any suppressed
update, the consumer attempts to predict the correct context state of a producer. A
formal description of the protocol is given in Algorithm 5. The protocol starts with an
initial context update (lines 1-2). Then, the producer waits for the begin of the next
update cycle. In each cycle, the current producer context is compared to the predicted
consumer context (lines 4- 6). An update message is sent only if the consumer gains
new information. Hence, if the producer’s context is different from the prediction, a
context update is triggered that is delivered to the consumer (lines 7-9).

The benefit of the update protocol is the simple control of the expected overhead of
context updates. Using an update period of ∆tp, the frequency of updates is limited to
at most 1

∆tp
in the worst case. As redundant context updates are suppressed, the number

114

7.4. Basic Update Protocols

Algorithm 5 Time-based Update Protocol

1: sP ← sense producer context
2: send update message(sP)
3: while true do
4: sleep(∆tp)
5: sP ← sense producer context
6: sC ← predict consumer context
7: if sC 6= sP then
8: send update message(sC)
9: end if

10: end while

of context updates may be even lower. Consequently, the elapsed period between two
updates may be any multiple of ∆tp (k · ∆tp with k ∈ N). At the same time, the
protocol limits the duration that the consumer spends in the wrong context state. Due
to the constant update period, the consumer knows at least every ∆tp about the real
context, i.e., ∀t ∈ {t1 + (i ·∆tp)|i ∈ N0} : p(t) = c(t) holds. However, at the same time,
context changes between the context updates may be missed if they are not correctly
predicted by the consumer.

Next, we present another update protocol that acts on a series of context occurrences
instead on single time instants. For this protocol variant, the divergence of the consumer
context from the real producer context is employed as underlying update criterion.

7.4.2. Deviation-based Update Protocol

This protocol is based on a tolerance towards the duration for which a consumer may
miss the real context. The consumer’s tolerance is specified as a time bound ∆td ∈
{i ·∆s|i ≥ 0}, which indicates the maximum time span for which the current context
assumed by the consumer may diverge from the real context at the producer. Formally,
this bound guarantees that ∀t ∈ [t1, tn] : (p(t) 6= c(t) → ∃δ ≤ ∆td : p(t+ δ) = c(t+ δ)),
i.e., the period of inaccuracy is strictly limited by duration ∆td.

The protocol that satisfies this criterion is described in Algorithm 6. Initially, a context
update is triggered when the application starts (line 1-2). Then, in each sensing interval,
the producer obtains the currently valid context (line 6) and makes a prediction about
this context (line 7) to share the same view as the consumer. The duration for which the
producer and consumer context diverges is recorded in terror. Each time the producer
context (sP) is different from the context predicted by the consumer (sC), terror is
increased to reflect the grown time of divergence (lines 7-8). terror is reset to zero, as
soon as the two context states become equal (sP = sC) (line 11). Whenever terror would
exceed the time bound ∆td, a context update is sent. Afterwards, the producer and

115

7. Energy-efficient Context Update Protocols using Context Prediction

Algorithm 6 Deviation-based Update Protocol

1: sP ← sense producer context
2: send update message(sP)
3: terror ← 0
4: while true do
5: sleep(∆ts)
6: sP ← sense producer context
7: sC ← predict consumer context
8: if sP 6= sC then
9: terror ← terror + ∆ts

10: else
11: terror ← 0
12: end if
13: if terror > ∆td then
14: terror ← 0
15: send update message(sP)
16: end if
17: end while

consumer states are synchronized again so that terror can be set to zero (lines 13-16).
Note that if sP 6= sC holds for less than ∆td time units, no update will be sent. This
means that the context may change for a short period of time and then return to its
previous state without the consumer being notified about this. In the most restrictive
case of td = 0, no deviation is tolerated. In this case, terror would exceed td once a single
deviating context state is sampled which could not be successfully predicted. Therefore,
terror > td is applied as an update criterion to enforce that an update is sent if the
decision to suppress an update would violate the deviation bound.

Similar to the time-based protocol, the protocol provides an efficient way to control the
message overhead. Due to the bound on the maximum duration of inconsistency, the
update frequency does not exceed a rate of 1

∆td
. However, this represents a worst case

estimation which assumes that the consumer continuously makes wrong predictions. If a
more effective prediction accuracy is achieved, the update rate will be significantly lower
as a consequence from the correct alignment of the producer and the consumer. In every
case, the protocol guarantees that ∀t ∈ [t1, tn],∃ti ∈ [t, t+ ∆td] : p(ti) = c(ti) holds, i.e.,
that the consumer is aware of the correct context state at least every ∆td time units.
In contrast to the time-based protocol, where the updates are triggered in periodic
intervals, the deviation-based protocols reasons over a series of context occurrences
for measuring the alignment of producer and consumer. As a consequence, the time
interval between two updates is variable. The particular effects on the energy/accuracy
trade-off of this protocol and the difference of the time-based and the deviation-based
protocols become visible as part of our evaluation which is discussed in Section 7.7.

116

7.5. Stochastic User Model

7.5. Stochastic User Model

The context predictors which are used to enhance the update protocols in this work are
based on a common model of the user’s behaviour. Before going into detail about the
different prediction algorithms, we introduce this model first. For the representation of
the user behaviour dynamics, we rely on a discrete Markov model [How71a]. According
to this model, the user is in a discrete state at each point in time. The evolution of user
states is considered as a stochastic process, where the state of a user at time tn is captured
by a random variable Xtn . The Markov model encodes the user behaviour as a transition
matrix M with entries pij ∈ [0, 1]. The entry pij = p(Xtn+1 = sj|Xtn = si) denotes the
probability for a transition from state si to sj and ∀si ∈ S :

∑
sj∈S pij = 1. Based on

M , not only the probability for a single transition, but also for several transition over
multiple time steps can be derived. Specifically, pkij = p(Xtn+k

= sj|Xtn = si) defines
the probability for reaching the state sj from state si in exactly k steps for k > 0. This
probability can be computed as the k-th power of M . For this purpose, we inductively
define pk = pk−1 · p and p1 = p. The entries pkij thus denote the transition probabilities
for a k-step transition from si to sj.

We explicitly allow self-transitions in M , i.e., ∀si ∈ S : pii ≥ 0. Thus, the user may
either be in the same or in a different state after a transition is taken. Self-transitions
are required to express the fact that a user may dwell in his state, e.g. when executing
an activity such as sitting. Moreover, let the stationary probability distribution of the
Markov model be denoted as π : S → [0, 1] [How71a]. Then, π(si) (also denoted as
πi) encodes the stationary probability of state si, i.e., the probability with which si
occurs in an infinite time series of context occurrences. The stationary distribution
gives valuable insight into the long-term behaviour of users, i.e., the extent to which
particular states are occupied if the transition system is followed infinitely. Further,
the Markov model reveals the dwell time distribution dw(si), which expresses the
probability of the time that a user spends in a particular state si. The dwell time
distribution can be derived from the self-transition probabilities associated with a state.
The probability to stay for a number of n ≥ 1 times in the same state si is indicated by
the geometric distribution P (dw(si) = n) = (1− pii) · pn−1

ii , and its expected value is
given by E[dw(si)] = 1

1−pii [How71a].

We consider a classical discrete Markov model as an effective means for predicting
future user behaviour. This model is based on the assumption that the probability for
entering a future state only depends on the current state. Such a Markov model can be
learned from traces of past user behaviour, containing records of sequences of context
occurrences. Due to the periodic sensing scheme, a context is recoded every ∆ts times
in a context trace. The transition probabilities of the Markov model can be derived by
counting the frequencies of pairs of context states (i.e. of a state and its successor) in
the trace. pij then represents the probability for a transition from si to sj to occur in
the next sampling period ∆ts. Analogously, the k-step transition probability pkij refers

117

7. Energy-efficient Context Update Protocols using Context Prediction

to a transition from si to sj to happen after k sampling periods (i.e. a time duration of
k ·∆ts). As we have shown in Section 4.2.1, also higher-order Markov models, which
consider a longer history of previously visited states (beyond the current state), can be
represented with the same approach. For this purpose, a sequence of n context elements
can be abstracted as a single context state in the model. Thus, our stochastic user
model is able to encode a range of statistical properties underlying different Markov
models that we can exploit for prediction.

7.6. Context Predictors

In this section, we present four different context predictors that can be integrated into
our update protocols to improve the energy/accuracy trade-off. All these predictors
are devised to address the same prediction task, i.e., forecasting the producer’s current
context using a Markov model as an underlying prediction model. However, each
predictor has a unique way of exploiting the specific properties of the Markov model
to make a prediction. Hence, the predictors are basically competitors, and in our
evaluation (see Section 7.7) we quantitatively compare the predictors’ performance to
support energy-efficient updates.

As described in Section 7.4, our update protocols rely on a prediction of the producer’s
current context state to lower the update rate. The prediction task can be formally
stated as follows. The goal of the prediction is to forecast the current context state f(tn)
valid at time tn based on the most recent context state stn−k

that has been supplied to
the consumer at time tn−k, where k > 0. Note that depending on the value of k there
may be a significant time gap in between tn and tn−k, where no additional update has
been sent to the consumer. Consequently, the prediction has to estimate successive
state transitions over several sampling intervals to fill the gap in knowledge about what
changes happened to the producer’s context. We also call k the prediction horizon
to stress the number of successive forecasts which have to be made. In the following,
we present four different predictors that take a specific approach to compute such a
prediction.

7.6.1. Next-Step-Predictor (NS)

The NS predictor is a simple predictor which exploits the information stored in a
Markov model to implement a greedy search strategy. The idea is to avoid complex
computations by identifying a single path through context states over several transitions
which is followed with a high probability. Initially, the prediction of the next missing
context state can take advantage of the knowledge of the last transmitted context stn−k

.
For this purpose, let idx(stn−k

) be a function that returns the index of a given state
stn−k

as it is stored in the Markov model. The prediction for the next transition is then
defined as

118

7.6. Context Predictors

s1

Time

s2

s1

s2

tn-3 tn-2 tn-1 tn

s1

s2

2.08.0

6.04.0
p

Figure 7.2.: Example of the Next-Step-Predictor (NS)

f(tn−k+1) = sr with r = arg max
j∈{1,...,n}

{pidx(stn−k
),j}

i.e., the prediction f(tn−k+1) at time tn−k+1 is given by the one which can be reached
over the transition with the highest probability from the last known state stn−k

. While
for k = 1 the algorithm terminates here, for cases of k > 1 predictions over several
sample intervals need to be computed. For this purpose, the NS predictor relies on
the last prediction to extrapolate the user’s behaviour further into the future. The
prediction at time tn+i−1 for 2 < i ≤ k is then defined as

f(tn−k+i) = sr with r = arg max
j∈{1,...,n}

{pidx(f(tn−k+i−1)),j}

i.e., the prediction for f(tn−k+i) is given by the state which is reachable over a transition
with the highest probability from the last prediction f(tn+k+i−1). Since such a prediction
depends on a prior prediction in turn, the uncertainty further increases with missing
context updates and longer prediction horizons.

The principle of this prediction algorithm is illustrated in Figure 7.2. In the given
example, we assume two different states s0 and s1. The last known context state is s1,
which has been sent three intervals ago. Since, for both states, the transition matrix p
has higher state change probabilities than self-transition probabilities, an alternating
state change behaviour is predicted in every step. This is because the NS predictor
selects the transition with the highest probability for prediction. As a consequence, the
prediction at time tn is given by state s2.

Note that for each sampling interval only a single prediction needs to be computed,
which can be based on either the last transferred context state or the last prediction
(depending on whether an update has been received or not). This leads to a time
complexity of O(|S|) for the calculation. However, as the predictor only considers a

119

7. Energy-efficient Context Update Protocols using Context Prediction

single transition path, the inferred predictions may become inaccurate. For instance, in
case the self-transition has the highest probability among all possible transitions for a
state si (i.e., ∀sj ∈ S, sj 6= si : p(si, si) > p(si, sj)), the NS predictor is trapped. In this
case, f(tn−k+i) = si is always returned as prediction, i.e., the same state si is predicted
over and over again, although in the real world a user will change his current state
eventually again. This problem can be solved by the following predictor that we are
proposing.

7.6.2. Multi-Step-Predictor (MS)

In contrast to the NS predictor, the MS predictor is designed to perform a more
exhaustive search in order to avoid the problems mentioned above. For this, the MS
predictor explores all paths of subsequent transitions for a given prediction horizon, not
only the one with the highest probability. More precisely, to predict the context state
at time tn, the predictor determines the conditional probability

p(Xtn = stn|Xtn−k
= stn−k

)

which is given by the k - step transition probability of reaching a state stn in exactly
k-steps from state stn−k

. For the calculation of this probability, all possible transitions
are considered that start in stn−k

such that the state is predicted which has the highest
probability to be entered over any series of subsequent transitions.

The k-step transition probabilities pkij can be computed as the k-th power of pij (see
Section 7.5). The entries pkij denote the probabilities for reaching state sj after taking
k steps when starting from state si. Based on this information, the prediction can be
determined as

f(tn) = sr with r = arg max
j∈{1,...,n}

{pkidx(stn−k
),j}

i.e., the predicted state is given by the one with the highest k-step transition probability
associated with it.

In order to minimize the overhead in calculating such a prediction, the required matrix
multiplications for determining pkij do not have to be computed all at once. Since
the prediction horizon is incrementally expanded, f(tn−k+i) is always preceded by the
prediction of f(tn−k+i−1) for 2 < i ≤ k. For this purpose, the transition matrix pk−1

ij

can be buffered once it has been calculated, so that pkij can be inferred from pk−1
ij by

requiring only one additional matrix multiplication at any time, i.e., pkij = pk−1
ij · pij.

In Figure 7.3, we illustrate the principle behind this predictor for the same example as
discussed previously. As the figure shows, every possibility sequence of state transitions
is considered for the prediction (visually expressed by the grey transition arrows). For
a prediction over three time steps, these probabilities can be retrieved from p3, where

120

7.6. Context Predictors

s1

Time

s2

s1

s2

tn-3 tn-2 tn-1 tn

s1

s2

2.08.0

6.04.0
p

s1

s2

s1

0.3920.608

0.4560.544
p3

Figure 7.3.: Example of the Multi-Step-Predictor (MS)

the first row in the matrix encodes the probabilities for transitions starting in state s1

(the last context state received by the consumer). Since according to p3 the probability
to be in s1 (0.544) after three time steps is higher than the probability to move to s2

(0.456), s1 is the result of the prediction. Note that this leads to a different prediction
result compared to the NS predictor, where state s2 has been forecasted.

Due to the incremental approach in calculating pk, a time complexity of O(|S|3) is
required for the prediction inference based on the overhead to compute a single matrix
multiplication. Compared to the NS predictor, we expect an increased prediction
accuracy as the predictor performs a complete search and evaluates all possible state
transitions. Also, the prediction cannot be trapped in the same state since the probability
to enter a different state may change again with increasing prediction horizons. This
eliminates a weakness of the NS predictor in dealing with high self-transition probabilities
for predicting a state change.

7.6.3. Expected-Dwell-Time-Predictor (ED)

The ED predictor analyses and predicts the user’s dwell time behaviour. The basic
idea is that a user spends some limited amount of time in a state before a transition to
another state occurs. In order adopt this idea for prediction, two components of a user’s
behaviour need to be predicted: the time instant at which the next state transition
is expected to happen as well as the specific state that will be visited next. Then, a
change to the next state is predicted as soon as the estimated dwell time has elapsed,
while the previous state is returned until then.

For the prediction of the state that we will be visited next, the transition probabilities
are analysed in terms of all other states that can be reached. That is, only states which
are different from the last known state stn−k

are considered as possible candidates, since

121

7. Energy-efficient Context Update Protocols using Context Prediction

a proper state change should be predicted. Among these states sj ∈ S\{stn−k
}, the one

with the highest transition probability is selected. Hence, the prediction is defined as

sr with r = arg max
j∈{1,...idx(stn−k

)−1,idx(stn−k
)+1,...,n}

{pidx(stn−k
),j}

i.e., the predicted state is given by the one with the highest transition probability
which is reachable from stn−k

excluding the self-transition. Note that as a state change
is enforced, the prediction cannot be trapped in a single state in contrast to the NS
predictor.

Yet, the time at which the transition to sr will most probably occur is not known. We
calculate this time using the dwell time distribution dw(stn−k

) associated with state
stn−k

that reveals information about the typical duration that a user spends in this
state (see Section 7.5). More precisely, we calculate the remaining expected dwell time
in state si as

Er[dw(stn−k
)] =

{
b 1

1−pii c − 1, if pii < 1

+∞, if pii = 1
(7.5)

which indicates the time that is left until the next transition is expected to happen,
measured in units of sampling periods. For instance, Er[dw(stn−k

)]=2 means that
the user is assumed to enter a new state after two sampling intervals, i.e., while the
current state persists for one more sampling cycle, the occurrence of a state transition
is expected afterwards. The calculation of the expected dwell time is known from the
theory of Markov models and depends on the self-transition probabilities based on the
formula E[dw(tn−k)] = 1

1−pii (see Section 7.5). A high self-transition probability implies
that the user spends longer time in a state, since there is only a low chance to leave
the state in each cycle. In contrast, a low self-transition suggests that a state change is
about to occur soon which leads to short dwell times in turn. In order to compute the
remaining expected dwell time, we decrease it by one sampling cycle to account for the
fact that the occurrence of a state means that a user has already sojourned in it for
one sampling period. Also, we cast the dwell time to an integer value to consider that
the predictions needs to be updated in periods of constant sampling periods.

The predictor then uses both predicted information aspects (i.e. predicted state change
and expected remaining dwell time) to yield the final prediction, which is defined as:

f(tn) =

{
stn−k

, if tn < tn−k+1+E[dw(stn−k
)]

sr, if tn = tn−k+1+E[dw(stn−k
)]

As long as the remaining expected dwell time has not elapsed (upper case), the last
known state stn−k

is assumed to be still valid. However, as soon as this time is exceeded

122

7.6. Context Predictors

s1

Time

s2

s1

s2

tn-3 tn-2 tn-1 tn

s1

s2

2.08.0

6.04.0
p

0)]([E 1r sdw

0)]([E 2r sdw

0)]([E 2r sdw

Figure 7.4.: Example of the Expected-Dwell-Time-Predictor (ED)

and the context change is assumed to occur, the transition to the next state sr is
enforced (lower case). The ED predictor applies this scheme continuously as long as no
new context update has been received: once sr has been predicted, the expected dwell
time Er[dw(stn)] is then calculated for sr to determine the next state transition and
predict the user’s behaviour. The complexity for computing the prediction is bound by
O(|S|), as it is dominated by the search for the state successor. The computation of
the expected dwell can be done in constant time, since it is linked to the self-transition
probability only (see Equation 7.5).

In Figure 7.4, we illustrate the principle behind the ED predictor for our running
example. Since we have only two states, the prediction depends on the calculation
of the state dwell times, after which a state change is expected to occur. The state
dwell times can be derived from the given transition matrix p: Given self-transition
probabilities of p11 = 0.4 and p22 = 0.2 for states s1 and s2, it holds that Er[dw(s)] = 0
for both states (see Equation 7.5) so that a state occurrence is expected to last for one
interval only. This results in predictions of alternating state changes, where s2 occurs
at prediction horizon tn. While this is similar to the NS predictor for our example,
there are scenarios where the self-transition probabilities in p cause different predictions.
In particular, for self-transition probabilities pii > 0.5, the states are occupied over
subsequent time steps as then Er[dw(s)] > 0 holds. These temporal patterns in the
user’s behaviour cannot be captured by the NS predictor.

7.6.4. Last-Transmitted-Predictor (LT)

Last, we propose the LT predictor that implements a straight-forward prediction scheme.
In this case, it is simply assumed that the user constantly remains in the same state
which has been reported by the producer. Consequently, no state change has to be
considered and the last known state stn−k

is always returned, i.e.,

123

7. Energy-efficient Context Update Protocols using Context Prediction

f(tn) = stn−k

Since no information from the prediction model is required for this approach, the
overhead for the calculation of the prediction is low. The time complexity for its
computation is constant O(1). In our evaluation, this predictor is used for the sake of
comparison with the more sophisticated predictors. In particular, it allows us to analyse
whether knowledge about the state transition dynamics is beneficial for inferring better
predictions.

7.7. Evaluation

We have evaluated our approach using real-world data from the CenceMe project
[MLF+08], which is available at the Dartmouth database [KH05]. CenceMe is a social
networking application that is able to recognize four different activities (S={sitting,
standing, walking, running}) of mobile users. The activities have been detected on the
users’ mobile devices as part of a real-world trial. For the detection of the activities,
acceleration data was sensed and classified with a period ∆ts = 8s. In our evaluation,
we have leveraged on the collected traces of user activities to feed a simulator which
allows for running update protocols to test mobile sensing scenarios. The simulator is
based on a discrete event model to drive a user’s behaviour where a new context state
is published on the producer in every sensing cycle as recorded in a user’s activity trace.
The activity traces are also used to train a Markov model which we use as a prediction
model for our context predictors as explained in Section 7.5.

In our evaluation, we analysed the performance of the time-based and deviation-based
update protocols (cf. Section 7.4), in combination with the four different context
predictors that we developed (cf. Section 7.6). The LT predictor serves as a reference
in our evaluation, since it does not require any knowledge from the Markov model to
perform the prediction. We have evaluated context accuracy and energy consumption as
basic evaluation metrics to reveal the trade-off characteristics of our protocols. Context
accuracy is measured as defined in Equation (7.2), revealing the fraction of time the
consumer has accurate knowledge about the producer’s context state. For quantifying
the energy overhead caused by wireless data communication, we rely on an empirical
study of GPRS communication on mobile phones [BBV09]. According to the energy
model proposed in this study, eu = 3.2J is consumed for a single update operation given
update messages of minor size (we assume that context states can be encoded with less
overhead so that the message size does not exceed 1KB). This amount of consumed
energy arises from the so-called ramp and tail energy to operate the wireless interface
in high power mode for data transmission (also see Section 6.3).

In order to allow for a fine-grained performance analysis of our approach, we studied
two different evaluation scenarios, where we evaluated the efficiency of our protocols

124

7.7. Evaluation

against synthetic or real traces. For the synthetic traces we learned the activity change
patterns inherent to the real trace, but generated new sequences of user activities which
adhere to the Markov property. To do this, we sampled from the trained Markov model
using a Monte Carlo method, generating random state transitions that are distributed
according to the state transition probabilities encoded in the model. As a consequence,
the same stochastic process is used for learning and validating the predictions. Moreover,
we also validated our protocols against the real traces from the CenceMe data set.
By considering both scenarios, we can perform a detailed analysis of possible sources
of prediction inaccuracies. On the one hand, we can analyse the theoretical gain
of our approach based on the synthetic traces under an accurate prediction model,
where prediction errors may only occur as a result from behavioural uncertainties. On
the other hand, we can use the real traces to assess the prediction performance in
practical settings, where further prediction errors may be caused due to limitations of
Markov models in representing real-world behaviour characteristics. This is because a
Markov model requires the state dwell times to obey a geometric distribution [How71a].
However, in real traces an arbitrary distribution might appear which may differ from
the geometric distribution. Therefore, prediction inaccuracies may arise which are based
on the limitation of the stochastic properties of Markov models, rather than the design
of the context predictors that we have proposed. A study of these effects allows us to
precisely explain the results on which we report in the following.

7.7.1. Synthetic Traces

First, we analysed the time-based update protocols in combination with the four
context prediction that we developed. For this analysis, we increased the update
period ∆td as multiples of the sensing interval ∆ts. As Figure 7.5 a) shows, the energy
consumption strongly decreases with increasing update intervals. In case of the LT
predictor, energy costs of 150J/h are produced for the lowest update interval, while the
energy consumption is reduced to approximately 50J/h for the highest update intervals.
Hence, the time-based update mechanism turns out to be an effective means of adjusting
the energy overhead. For all update intervals, the NS predictor produces exactly the
same results as the LT predictor. This is because, in our scenario, we have the highest
transition probabilities associated with self-transitions in the Markov model. As a
consequence, the NS predictor returns the last transmitted state as prediction. Since by
definition the LT predictor always predicts the last transmitted state, both predictors
coincide and yield exactly the same forecasts. The MS predictor further improves the
performance of the time-based update protocol. On average, the energy consumption is
reduced by 18% compared to the NS and LT predictor. The reason is that, in contrast
to the NS predictor, the MS predictor performs a complete search over all possible state
transitions which enables more accurate predictions. As a consequence, less updates
are required to synchronize the states of the producer and consumer. This prediction
approach pays off especially for longer prediction horizons (i.e. in case of higher update

125

7. Energy-efficient Context Update Protocols using Context Prediction

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

E
ne

rg
y

C
on

su
m

pt
io

n
[J

/h
]

Update Period ∆ tp

LT Predictor
MS Predictor
NS Predictor
ED Predictor

(a) Energy Consumption

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
on

te
xt

 A
cc

ur
ac

y

Update Period ∆ tp

LT Predictor
MS Predictor
NS Predictor
ED Predictor

(b) Context Accuracy

Figure 7.5.: Synthetic traces: time-based update protocol

intervals), where often a change in the user’ activity needs to be predicted. While the
NS predictor always forecasts the last transmitted state in this case, the MS predictor
is able to determine the user’s new activity so that no update message is required for
the consumer to obtain this information. The ED predictor shows a weak performance
for update intervals ∆tp < 4 · ts. In our evaluation, we observed that there is a high
variance in the state dwell times, which makes an accurate estimate of the remaining
dwell time in a state hard to predict. In particular, if a state change is predicted to
happen earlier than it actually occurs, additional updates are necessary to correct the
false predictions which negatively affects the performance. This is especially critical
for lower update intervals, where already small errors in the predicted dwell times can
cause additional updates. Therefore, we conclude that the ED predictor is efficient for
higher update intervals only.

The impact on the context accuracy is plotted in Figure 7.5 b). As can be seen, the
context accuracy does not significantly suffer from higher update intervals where the
update message rate is reduced. We can observe that the context accuracy drops from 1
for the lowest update interval to approximately 0.8 for the highest update interval. This
behaviour is similar across all protocol variants independent of the specific prediction
approach due to the time-based update decision. The time-based update mechanism
ensures that context changes with a high occurrence probability are updated regularly.
These are exactly the updates which create the most positive effect on the context
accuracy. While short changes in user context may remain unnoticed with higher update
intervals, states which are occupied over a longer time are transmitted when the next
update is scheduled. The LS predictor and the NS predictor achieve exactly the same
accuracy since they are based on the same predictions in our scenario, as explained
before. The MS predictor is able to achieve a slightly better accuracy since the context
states of producer and consumer match more often due to the more sophisticated
prediction strategy. The performance of the ED predictor is slightly worse as state

126

7.7. Evaluation

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8 9

E
ne

rg
y

C
on

su
m

pt
io

n
[J

/h
]

Bounded Deviation ∆ td

LT Predictor
MS Predictor
NS Predictor
ED Predictor

(a) Energy Consumption

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9

C
on

te
xt

 A
cc

ur
ac

y

Bounded Deviation ∆ td

LT Predictor
MS Predictor
NS Predictor
ED Predictor

(b) Context Accuracy

Figure 7.6.: Synthetic traces: deviation-based update protocol

changes are often predicted too early or too late due to the high variance in state dwell
times. We conclude that the context accuracy can be preserved very well despite of
the strongly reduced energy consumption. For instance, in case of the MS predictor, a
significant accuracy of 0.85 can be achieved if only 35% of the energy is spent that is
required to achieve perfect accuracy.

In Figure 7.6 a), we analyse the energy consumption for the deviation-based protocol,
where the deviation period ∆td is increased as multiples of ∆ts. In qualitative terms,
the results confirm our measurements that we gained for the time-based protocol. The
MS predictor is superior to all other predictors and achieves a significant reduction in
energy consumption by 23% on average. The ED predictor provides improvements for
higher deviation bounds only, as variances in predicted dwell times can be much better
compensated in this case. The NS predictor and LT predictor behave exactly in the
same way due to the high self-transition probabilities. In quantitative terms, however,
higher energy savings can be achieved by the deviation-based protocol compared to
the time-based protocol. This is because a less strict update criterion is used, which
tolerates short-time deviations of context changes that are not reported to a consumer.

The effect of the deviation-based protocol on the context accuracy is illustrated in
Figure 7.6 b). Compared to the time-based protocol, the context accuracy is slightly
worse. This is because less updates are sent with the deviation-based protocol so
that consumers have less accurate knowledge of the user’s actual context state. As a
consequence, the uncertainty at the consumer further increases and also the predictions
become less accurate since they need to be based on updates which have been sent
quite some time ago. However, the trade-off between energy consumption and context
accuracy is better with this approach: For instance, using the MS predictor, a significant
accuracy level of 0.85 can be achieved when consuming only 32% of the total energy
that is required for transferring every context change.

127

7. Energy-efficient Context Update Protocols using Context Prediction

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10

E
ne

rg
y

C
on

su
m

pt
io

n
[J

/h
]

Update Period ∆ tp

LT Predictor
MS Predictor
NS Predictor
ED Predictor

(a) Energy Consumption

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
on

te
xt

 A
cc

ur
ac

y

Update Period ∆ tp

LT Predictor
MS Predictor
NS Predictor
ED Predictor

(b) Context Accuracy

Figure 7.7.: Real traces: time-based update protocol

7.7.2. Real Traces

In the following, we report on the evaluation results we have gained for the real traces.
As we will see, the evaluation reveals some inherent limitations in modeling real-world
user behaviour with Markov models. Subsequently, we will analyse these problems in
detail, and then design a new prediction-based update protocol that circumvents the
found drawbacks in the next chapter.

First, we analyse the energy consumption required by the different approaches. As
shown in Figures 7.7 a) and 7.8 a), the MS and the ED predictor consume more energy
than the NS and LT predictor. This is in contrast to the results gained from the
synthetic traces reported in the last section, for which especially the MS predictor
exhibited a good performance. Due to the high-self transition probabilities in the given
user trace, the NS and LT predictors result in forecasts which assume the user to remain
in the state that has been reported last. In contrast, the MS and the ED predictor
denote more sophisticated predictors which reason over longer-term user behaviour
to anticipate actual state changes. For the real trace, predicting actual state changes
seems to be aggravated, producing inaccurate context state information at a consumer
which causes an increased message overhead for synchronization. The reason is that,
even though we train our Markov model with the real-world context traces, the user’s
behaviour in the given scenario does not satisfy certain statistical assumptions that
are required for a discrete Markov model to be an effective predictor. More precisely,
a Markov model, as a representation of a user’s behaviour, models state dwell times
implicitly using transition probabilities and therefore requires the dwell times to be
distributed according to a geometric distribution [How71a](see also Section 7.5).

However, for the studied real-world traces this assumption is not given. This is
demonstrated in Figure 7.9 which plots the distribution of dwell times in the user state
’running’. On the one hand, the figure shows the actual distribution of dwell times as

128

7.7. Evaluation

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8 9

E
ne

rg
y

C
on

su
m

pt
io

n
[J

/h
]

Bounded Deviation ∆ td

LT Predictor
MS Predictor
NS Predictor
ED Predictor

(a) Energy Consumption

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9

C
on

te
xt

 A
cc

ur
ac

y

Bounded Deviation ∆ td

LT Predictor
MS Predictor
NS Predictor
ED Predictor

(b) Context Accuracy

Figure 7.8.: Real traces: deviation-based update protocol

found in the real trace. On other hand, a geometric distribution is plotted which is
assumed by the Markov model and can be analytically determined using the transition
probabilities (cf. Section 7.5). If the real-world behaviour would be reflected accurately
in the Markov model, both distributions should closely match. However, as can be
seen, the geometric distribution assumed by the Markov model significantly deviates
form the real-world user behaviour characteristics. As a consequence, the transition
probabilities stored in the Markov model imply sequences of context changes which do
not occur with the same distribution in the traces of the user’s behaviour.

Note that this problem is caused by the fundamental statistical properties of a Markov
model, and not the learning and prediction method underlying our approach. As
a consequence, the predicted context changes are often inaccurate and need to be
corrected, consuming a substantial amount of energy for required additional update
messages on the producer. The same observation can also be made for the context
accuracy shown in Figures 7.7 b) and 7.8 b). The best accuracy is provided by the
NS and LT predictors, while the MS and the ED predictors yield worse results. This
demonstrates that frequently context state transitions are predicted (MS and ED
predictor) while the user has remained in his previous state (NS and LT predictor).
Consequently, the sophisticated predictors MS and ED cannot be effectively applied to
our scenario as they are susceptible to inaccurate patterns stored in the Markov model.
Actually, they are outperformed by the simple predictors which are able to achieve
excellent energy/accuracy trade-off characteristics. In case of the time-based protocol,
89% accuracy can be achieved with only 22% of the energy which would be required
for providing perfect accuracy. Even better, in case of the deviation-based protocol,
for the same accuracy level only 7% of the energy is required. Since in the real-world
user trace a state is occupied only for very short time (see Figure 7.9), a substantial
amount of energy can be saved with relaxed update criteria (i.e. higher update interval
or deviation threshold) while the context accuracy remains at a high level.

129

7. Energy-efficient Context Update Protocols using Context Prediction

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 3 5 7 9 11 13 15

P
ro

ba
bi

lit
y

Dwell Time ∆ ts

Real-world distribution
Geometric distribution

Figure 7.9.: Dwell time distribution

7.7.3. Discussion

Having designed update protocols to improve the trade-off between energy consumption
and context accuracy, we could analyse in our evaluation the extent to which context
predictions can help to increase the effectiveness of the protocols. The evaluation over
synthetic and real-world traces has further revealed issues related to the statistical
properties of Markov models which affect our predictors. Altogether, the following
factors have been encountered:

1. In order to reduce the message overhead for context updates, context state
transitions need to be predictable with a high accuracy. Due to the natural
variances in human behaviour, accurate predictions of the exact transition times
are hard to achieve especially for low deviation bounds or update intervals.

2. In addition, we have seen that the Markov model based prediction scheme is
vulnerable to statistical deviations in the state dwell times. While a Markov
model requires the state dwell times to be distributed according to a geometric
distribution, they may follow an arbitrary distribution in real traces.

3. While our protocols aim at improving the energy/accuracy trade-off, they are not
optimised towards a maximum allowance of energy which can be afforded by the
application. In order to make optimal usage of the energy available on a device,
update protocols would have to adapt to the rate of context changes in the user
trace instead of applying fixed thresholds or update times.

The insights gained from our evaluation require us to revisit our approach in how
context predictions should be exploited best to enhance update protocols for discrete
user context. To this end, we present an enhanced protocol in the next chapter which
is based on a more effective prediction strategy. Instead of aiming at a best-effort
improvement of the energy/accuracy trade-off, the goal of the update protocol is to the

130

7.8. Related Work

maximize the context accuracy at a consumer under a given energy budget (formulated
as a constrained optimization problem). The design of a protocol which addresses this
problem allow us tackle the three issues discussed above that are key for a good protocol
behaviour.

First, our revised prediction strategy does not require strictly accurate forecasts of
context state transitions to reduce the number of updates. Instead, we predict which
updates would be most effective to maximize the context accuracy at a consumer
for a given energy limit. As context predictions are used to inform the prioritization
of updates only, no additional update messages are required to correct inaccurate
predictions. Second, with our revised strategy, state dwell times are used to compare
dwell behaviours among different states. An exact prediction of the time when a context
transition is supposed to occur is not relevant for this approach. As a consequence,
the prediction strategy is more robust towards deviations of the Markov model from
real-world behaviour patterns. Third, the optimisation takes a limit on the consumable
energy as an input parameter. The rate of expected changes is predicted and used to
decide if sending updates would exceed the energy budget. By adapting the update
decisions to the patterns inherent to a user’s context changes, the available energy can
be used optimally. Hence, the insights gained in this chapter can be leveraged to inform
the design of an enhanced prediction-based update protocol which is more robust and
has more practical relevance for real-world scenarios.

7.8. Related Work

The design of efficient update protocols has received a lot of attention in the field
of mobile computing in the past. Over the last decades, update protocols have been
developed that are tailored towards the specific purposes of mobile systems.

In the first generation, the focus has been on update strategies for cellular wireless
networks [BD99]. In order to establish mobile phone calls, the cell-based user locations
have to be known to the cellular network provider. Basically, two different approaches
can be used to learn about the users’ locations in the cellular network: querying for the
current network cell in which a user is located using paging messages, and reporting
about changes in the location of a user using update messages [RMD07]. In terms of
the overhead imposed on the cellular network, there is an inherent trade-off between
update and paging messages, since the number of required paging messages depends on
the uncertainty about a user’s location. In order to find a good balance between both,
three strategies have been analysed in terms of their trade-off characteristics [BNKS94]:
a time-based, a movement-based, as well as a distance-based strategy. For reasoning
over the characteristics of these protocols, the cell-based layout of the wireless network
must be considered: As long as the mobile device could not be found at the cell that
was reported last, the search needs to be gradually expanded along the neighbourhood

131

7. Energy-efficient Context Update Protocols using Context Prediction

of adjacent cells. Hence, the proposed protocols are designed to locate users in cellular
wireless networks, where the cell-based distance of the user’s current location from the
last reported location has a big impact on the resulting paging cost. As a consequence,
these protocols do not translate to the purpose of our mobile systems where context
states can represent any form of semantic information about the users and the context
accuracy at interested consumers is of primary interest.

With the proliferation of position technology on mobile devices, the second generation of
update protocols focused on tracking of users’ fine-grained locations. These locations are
described as geographic positions relative to a reference coordinate system, such as the
World Geodetic System 1984 (WGS84) [WGS94] used by the Global Positioning System
(GPS). In order to achieve scalable location data management, the users’ positions
are stored at location servers according to a spatial accuracy bound. The accuracy
bound is a configuration parameter which guarantees that the positions published
by the location servers do not deviate from the true positions by more than a given
maximum distance. Leonhardi et al. have presented a comprehensive overview of update
protocols for transferring position data from mobile devices to location servers [LR01].
Specifically, time-based and distance-based update protocols are discussed that make
use of characteristic properties of moving objects such as their maximum speed to
defer update messages by a maximum delay that is guaranteed to satisfy the accuracy
requirements. Moreover, a prediction-based update protocol has been presented by
Wolfson et al. [WSCY99] using the concept of dead-reckoning. With dead-reckoning, a
prediction function is reported to the location server so that updates are only required
for positions which deviate too far from the predictions. The most simple prediction is
a linear function given by the future velocity and direction of movement. In contrast to
geographic positions, we focus on discrete context data (e.g. activity information such
as running) in our work, where assumptions about user mobility in the geographic space
do not hold. In order to support context updates under a discrete context model, new
approaches are required for measuring context accuracy and making context predictions.
For instance, a linear function cannot be applied to implement a prediction-based
update mechanism for context states. Instead, an approach is required which reasons
over the probabilities of transitioning among different context states. Furthermore, a
discrete context model requires a specific measure of context accuracy, which needs
to be reflected in the update criteria on which update protocols are based. In our
approach, we measure context accuracy as the deviation of two context states using a
boolean metric. Hence, the underlying context model has far-reaching implications on
the protocol-specific measures and prediction techniques that can be employed.

Discrete context is in the focus of new mobile applications, which continuously sense
context states on mobile devices and share them with back-end servers in real-time. In
order to help this emerging field to proliferate, new update protocols are required to
deal with the trade-off between message overhead and context accuracy. Musolesi et al.
have presented various protocols to deliver an efficient uploading process for discrete

132

7.9. Summary

context states [MPF+10]. The key idea of these protocols is to report only context
changes that remain valid over a significant period of time. However, this approach
does not allow for a fine-grained control of the message overhead and its impact on the
context accuracy for a wide range of different scenarios. In the worst case, the context
accuracy may be even near zero in scenarios where persistent context changes do not
frequently occur so that no update message is triggered. In contrast, we allow with our
protocols to limit the deviation of the information at a consumer from the real context.
Both the time-based and the deviation-based protocol can be configured with time
intervals to control the trade-off between message overhead and context accuracy in an
effective manner. Further, we use predictions to support the uploading process in an
online-modus, where updates shall be received in real-time. For this purpose, we have
designed various predictors that can infer accurate predictions of future context states at
distant times. The development of sophisticated context predictors for discrete context
data which can be integrated into context update protocols has not been considered by
previous work. Also, our evaluation gives insight in the energy consumption caused
by context updates, which has not been studied in [MPF+10]. Consequently, we can
conclude that we have performed a comprehensive study of prediction-based protocols
for efficient updates of context states which has not be seen in previous research.

7.9. Summary

In this chapter, we have investigated strategies for the energy-efficient distribution of
discrete context data (e.g. user activities) in mobile sensing applications. In these
applications, the users’ context is captured on their mobile devices for delivering context
updates in real-time to a large number of interested consumers (e.g. friends in an online
social network). Since frequently sending updates messages over wireless communication
channels is energy intensive and can quickly drain the batteries of mobile devices, we
have proposed a set of prediction-based update protocols that are characterized by
an inherent trade-off between energy consumption and context accuracy. For this
purpose, we have presented two basic update protocols, a time-based and a deviation-
based update protocol, and four different context predictors that can be exploited to
predict missing context updates. The proposed context predictors reason over the
state transition probabilities recorded in Markov models to infer suppressed context
updates on a consumer based on the last received update message. By integrating the
context prediction scheme into our update protocols, we can avoid the transmission of
costly update messages and achieve an effective control of the trade-off between energy
consumption and context accuracy for various scenarios.

In our evaluation, we have analysed the performance of our approach based on a
real-world case study. We have found that in case the user behaviour obeys the Markov
property, our protocols can achieve significant improvements of the energy/accuracy
trade-off. However, our evaluations have also shown that the protocols are susceptible

133

7. Energy-efficient Context Update Protocols using Context Prediction

to non-Markovian real-world behaviour where the statistical assumptions about the
dwell time distribution are violated. Having further analysed this problem in detail, we
have elicited requirements for an improvement of our approach towards a more robust
protocol. Specifically, the idea of using context predictions to select the most important
context updates under strict energy bounds has been discussed to yield a more effective
protocol. These findings are incorporated into a new prediction-based update protocol
which is presented in the next chapter.

134

Chapter 8
Predictive Context Update Protocols with
Hard Energy Constraints

8.1. Introduction

In this chapter, we present a rigorous approach to support the energy-efficient execution
of mobile sensing applications. For this purpose, we revisit and expand our approach
presented in the last chapter to optimise the context update process on mobile devices.
The underlying rationale is that mobile sensing applications should be strictly controlled
in terms of their maximum energy rate to give hard guarantees about the usability of
mobile devices. Recent studies have shown that a significant amount of background
energy is consumed on mobile devices in everyday scenarios caused by active screens,
voice calls, etc. [FMK+10]. Since users are not willing to give up services such as
telephony or video playback that have become indispensable in their daily lives, a
fundamental energy bottleneck is created which limits the amount of available energy
to further applications. Novel mobile sensing systems will therefore only be tolerated by
end users if they do not impede the everyday usage of their mobile devices. Since mobile
sensing applications rely on frequent sensing and communication operations that cause
a substantial energy overhead [RZ07], hard guarantees about the energy consumption
are required to enable a wide acceptance of these applications among users.

In prior research, various approaches have been proposed to reduce the energy consump-
tion on mobile devices both in terms of sensing a user’s context as well as communicating
the context information to remote parties [MPF+10,KLGT09]. For instance, in order
to lower the wireless communication overhead, it has been shown that not uploading
short-term context changes can yield substantial energy savings [MPF+10]. Similarly,
it has been proposed to suspend the location sensing process on a mobile device in
situations where the user is detected to be not moving [KLGT09]. However, these
approaches are based on heuristics which can be applied opportunistically only and

135

8. Predictive Context Update Protocols with Hard Energy Constraints

the extent to which these conditions hold cannot be controlled. As a consequence, the
devices’ batteries may be drained in an unforeseen manner and an upper bound on the
energy usage cannot be provided. Therefore, we propose to take a more rigid approach
by restricting the energy usage of a mobile applications by means of contractual design.
As part of this contract, a limited energy budget is made available to mobile sensing
applications that provides the amount of energy that may be consumed for sensing and
communication of context data. Given hard bounds on the allowed energy consump-
tion, a particular research challenge which arises in this context is how to exploit the
available energy to achieve the best quality of service delivered by these applications.
In particular, since constantly reporting about context updates is prohibited due to the
high energy costs of sensing and communication operations, the available energy should
be dedicated to those operations which can maximize the context accuracy experienced
by interested consumers.

In order to address this challenge, we propose in this chapter novel context update
protocols that exploit knowledge of the user’s future behaviour to decide for the most
effective context updates under a given a limited energy budget. For the development
of these protocols, we present an optimization approach which is based on a stochastic
decision process (Constrained Markov Decision Processes) to find the optimal protocol
configuration. The decision process is employed to model the energy costs and expected
accuracy which would result from enforcing context updates in different user states with
a certain probability (i.e. whether to sense and transmit a context state). Predictions
of the future user context are incorporated into this process to provide accurate cost
and accuracy estimations incorporating the user’s prospective behaviour. Solving the
decision process for a specific user yields the optimal configuration with the maximum
context accuracy that can be achieved under a given energy budget.

We show how to leverage on this approach to design update protocols for two differ-
ent scenarios. First, we only consider communication costs and derive the optimal
uploading policy for transmitting context updates given energy bounds on the wireless
communication overhead. Then, we additionally consider sensing costs and extend
our approach to infer an effective sensing and communication schedule which respects
bounds on the total energy consumption on a mobile device. In our evaluation, we
demonstrate for a real-world context trace from a mobile social networking application
that our predictive protocols are far more effective than protocols that ignore knowledge
of future user behaviour. As a result, we have developed a generic solution which can
be used whenever streams of discrete context data need to distributed under a given
energy budget, supporting the development of effective mobile sensing applications for
a wide range of scenarios.

The rest of this chapter is organized as follows. In Section 8.2, we develop novel context
update protocols to report context changes over wireless networks with hard energy
bounds. In Section, 8.3, we then describe an extension of this approach and propose a
sensing-and-update protocol which is able to respect bounds on both the sensing and

136

8.2. Predictive Update Protocol with Hard Energy Bounds

communication costs. In Section 8.4, we present a comprehensive evaluation of our
update protocols for real-word context traces where we compare the performance of
our optimizations with two baseline protocols. Finally, we conclude this chapter with a
summary in Section 8.6.

8.2. Predictive Update Protocol with Hard Energy Bounds

In this section, we present a predictive update protocol that respects hard bounds for
the energy consumed by context updates sent over wireless communication channels.
First, we formalize the problem of maximizing the context accuracy under a given
energy budget as a constrained optimization problem. Based on this formal problem
statement, we then describe different strategies and algorithms for solving this problem.

8.2.1. Problem Statement

In order to inform consumers about sensed context changes, context updates over
wireless cellular radio channels (e.g. GPRS) are required. As defined in Section 7.2, let
eu denote the energy required for a single update message. To control the communication
overhead on a mobile device, we make only a limited amount of energy available which
constrains the number of update messages that can be sent. Formally, this energy
budget is denoted as E, which should be carefully chosen to guarantee a sufficient
lifetime of the device’s batteries. Therefore, a protocol is required that guarantees that
the energy consumption on a mobile device does not exceed E.

To avoid exceeding E and ensure the usability of the device, certain context updates
may have to be suppressed. The challenge is to select the most effective updates U ⊆ T
for transmission, while the remaining updates T \ U are omitted. The choice of U ⊆ T
has a major impact on the accuracy of the context perceived by a consumer. The
context c(t) known to the consumer at time t ∈ T is given by the most recent update
from the producer, i.e., c(t) = p(t′) with t′ = max{u ∈ U |u ≤ t}. If a context change
is not transmitted, then the consumer and producer context may differ (c(ti) 6= p(ti)),
resulting in inaccurate context information at the consumer. Therefore, the effect of
suppressing context updates has to be minimized and the most effective updates have
to be found.

The accuracy of the context at a consumer is measured by a basic accuracy function.
This function is defined as

λ(t) =

{
1, if p(t) = c(t)
0, else

(8.1)

that yields whether the producer and consumer states match at time t. Specific
applications may have distinct interests in certain context states, i.e., certain states

137

8. Predictive Context Update Protocols with Hard Energy Constraints

may be considered as highly relevant, while other may be not as important. Therefore,
the accuracy measure should reflect how well the interests of a consumer are satisfied.
Taking this into account, we define the accuracy as

λw(t) = w(p(t)) · λ(t) (8.2)

where w(si) ∈ [0, 1] (or wi in short) denotes an application-specific state weight for
si ∈ S. Thus, we include a measure of state relevance in the basic accuracy function.
Normalizing (8.2) over the application lifetime |T | results in

ac =

∑n
t=1 λw(t)

|T |
(8.3)

as a basic measure for the consumer-side context accuracy, indicating the fraction of
time for which the consumer is in the correct state as a value in [0, 1], weighted by the
state relevance factor. Hence, to provide consumers an accurate view on the producer’s
context, high values of ac are essential.

Formally, the goal is to find the optimal set of updates times U such that the following
constrained optimization problem is solved:

maximize

∑
t∈T λw(t)

|T |
(8.4)

subject to

∑
t∈T µ(t)

|T | ·∆ts
≤ E (8.5)

The optimization goal (8.4) is to achieve the maximum accuracy ac of the context
perceived by the consumer. The optimization constraint (8.5) limits the energy con-
sumption ec of the communication overhead by E (cf. Equation (7.4) where ec has
been introduced). In the following sections, we present a novel approach to address this
problem. Since the maximization of the context accuracy depends on the chosen context
updates, the prospective user behaviour will have a major impact on the effectiveness
of a context update. Therefore, a prediction-based approach will be taken to forecast
the future user behaviour and estimate the expected energy costs to decide whether the
energy budget permits a context update to be sent or not.

8.2.2. Approach Overview

An overview of our approach is shown in Figure 8.1. First, we learn a stochastic model
of a user’s context changes. The model is based on a discrete Markov model and gives
important insight into the future user behaviour (e.g. the expected time to stay in a
particular context state) (cf. Section 7.5). Then, we apply a stochastic optimization

138

8.2. Predictive Update Protocol with Hard Energy Bounds

Stochastic Context
Stochastic

Optimization
input

learnt
from

User Model
Co te t
Traces

produces

Optimization
Framework

produces
creates

Update Policy

applied on

GPRS
UMTS

updates context

producerconsumer

updates context

Figure 8.1.: Approach for configuring our predictive update protocol based on a
stochastic optimization framework

framework to derive an update policy for a given energy budget. Note that this marks
an important difference to the approach presented in the last chapter, where the energy
budget has not been taken into account a priori to the configuration of the update
protocol. As we consider the energy budget as part of the optimization, our update
protocols are now targeted towards a maximum energy utilization. The optimization
framework uses the Markov model to find an update policy which guarantees the best
selection of U .

The stochastic update policy gained from the optimization framework is used to control
the update process on a mobile device based on probabilistic decisions. More precisely,
each update is taken with a probability which is related to the predicted gain in
consumer-side context accuracy. With high probability, we prioritize updates of relevant
context states, in which the user is often found after the update (as a result of staying
in the state or caused by re-visiting the state). The rationale behind this is that
transmitting such a state results in the consumer having accurate context information
of a relevant state for a longer time on average, resulting in a high accuracy measure
(cf. Equation 8.2). This means that an update is particularly effective if it matches the
prospective behaviour of the user for most of the time, until the next update is made.
Consequently, by means of the update probabilities, the energy overhead as well as the
impact on the context accuracy can be effectively controlled.

While the update policy is applied on the mobile device, our approach is flexible as to
where the stochastic optimization framework is executed for computing the policy. Since
on the mobile device only the result of the stochastic optimization process is required,
the inference can be done a priori on a server which can easily deal with the underlying

139

8. Predictive Context Update Protocols with Hard Energy Constraints

computational overhead. We investigate two alternatives of stochastic optimization,
which differ in their complexity and exactness of modeling our problem. We consider a
memory-less update protocol where only the current context change of the producer is
relevant for the update decision, and a so-called update protocol with memory which
also incorporates the last context state that was reported to the consumer before. Both
variants are explained in detail in Sections 8.2.3.1 and 8.2.3.2. The update policies
may then be recomputed regularly to compensate for changing user behaviour. In the
following sections, our focus is on how to compute the update policies.

8.2.3. Update Protocols

In the following, we propose a prediction-based update strategy to optimize the update
decisions. For this purpose, we present two different protocol variants to exploit the
knowledge from the Markov model for computing predictions, as explained subsequently.

8.2.3.1. Memory-less Update Protocol

The memory-less predictive update protocol (PreUP-Memless) follows a simple idea
to restrict the number of updates messages on a device. For each context change
that is observed locally, a selective update decision is taken to trigger or deny a
transmission. Formally, the update decision is given by a policy u : S → [0, 1] that
returns the probability u(si) (or more compactly ui) for sending an update once a
context change to state si ∈ S has been observed. The policy is then used as the basis
for a probabilistic experiment with binary outcome, where a context change is only
transferred to a consumer if the experiment results in a positive update decision. The
update protocol is applied over the entire application lifetime tmax to control the update
process. We assume that tmax refers to the duration of a typical recharge cycle. Due to
the probabilistic update decision ui, an update of state si can happen at any time over
the application lifetime.

The policy u is applied on the mobile device of the producer using Algorithm 7.
Periodically, the producer samples the current context sC (line 3). If the application has
just started, no transmission has yet taken place (line 4). Therefore, we send an initial
context update (lines 5-7). Further context updates are only triggered by observed
context changes. If such a context change occurs (line 8), the update policy is used
to enforce the update decision. For this purpose, a probabilistic decision is made that
is dependent on the update probability u(sC) associated with state sC (line 9). If the
update policy triggers an update (line 10), sC is transferred to the consumer, and the
remaining energy budget shrinks by eu (lines 11-12). Finally, we store the current
context in sL to discover a possible context change in the next cycle (line 14). Even
though the update policy has been chosen to limit the energy consumption rate by E,
the available energy budget may be drained at some point in time due to deviations

140

8.2. Predictive Update Protocol with Hard Energy Bounds

Algorithm 7 Memory-less Update Protocol

1: sL ← null
2: while E · tmax ≥ 2 · eu do
3: sC ← retrieve current context
4: if sL = null then
5: send update message(sC)
6: E ← E − eu
7: sL ← sC
8: else if sC 6= sL then
9: r ← rnd()

10: if r ≤ u(sC) then
11: send update message(sC)
12: E ← E − eu
13: end if
14: sL ← sC
15: end if
16: sleep(∆ts)
17: end while
18: sM ← sr with r = arg maxi∈{1,...,n}{πi}
19: send update message(sM)

of the predicted from the actual behaviour. Therefore, the energy consumption is
continuously monitored and in case only energy for a single update message is left,
we transfer the most likely state in a final update message. This is the context state
with the highest stationary probability (see Section 7.5), so as to maximize the context
accuracy for the rest of the application’s lifetime (line 18).

In order to find an efficient update policy u, we apply an optimization technique
where we model the effects of the update decisions as functions which depend on the
assignment of update probabilities ui, ∀si ∈ S. Specifically, we propose two functions
to estimate the expected energy costs and the expected context accuracy for a policy u.
Beyond the update probabilities which need to be chosen, no further unknown variables
exist since we can rely on the Markov model as an expectation of the user’s future
behaviour. As a result, we can provide our functions as input to a problem solver,
which can use the knowledge about a user’s context change patterns to maximize the
context accuracy under a given energy constraint. As we will see, we can use Linear
Programming as optimization technique since both functions are linear dependent on
the update probabilities ui.

For estimating the expected accuracy Ea(u), we try to determine the gain in accuracy
by predicting how long a context state will be valid after an update. For this purpose,
we use the expected dwell time as available from the Markov model to forecast how long

141

8. Predictive Context Update Protocols with Hard Energy Constraints

a user will remain in a state before leaving it again. Therefore, the expected accuracy
Ea(u) of the consumer can be expressed as follows:

Ea(u) =
∑
si∈S

πi ·
(∑
sj∈S:sj 6=si

pij · uj ·
1

(1− pjj)
· wj
)

(8.6)

Ea(u) is composed of different predictions. First, we determine the joint probability of
the occurrence of context state si and a subsequent transition from si to sj (si 6= sj).
This probability is given by πi · pij, where πi denotes the stationary probability of
state si and pij is the transition probability (see Section 7.5). This probability needs
to be multiplied by u(sj) to determine the likelihood that an update is sent when a
transition from si to sj occurs. The gain we receive from sending an update depends
on the expected dwell time (given by (1

(1−pjj)
) as discussed in Section 7.5), which is

an estimation of the time that the producer stays in the updated state before the
next change occurs. For each context state, we also have to take the associated state
relevance weight wj into account. Ea(u) is thus the prediction of the consumer-side
accuracy λw (cf. Equation 8.3), expressed as the expected probability of knowing the
correct context state for a given update policy u.

The expected energy cost Ec(u) which result from a specific assignment of update
probabilities can be computed in a similar way. It is given by:

Ec(u) =
(∑
si∈S

πi ·
(∑
sj∈S:sj 6=si

pij · uj
))
· eu

∆ts
(8.7)

To quantify the expected energy demand, eu (the energy required to transmit a single
context update) is multiplied by the probability that an update message is sent. Since
such an update may happen only in periods of sampling intervals, we divide the
amount of required energy by ∆ts to compute the average energy consumption per
time. Consequently, Ec(u) is the energy consumed per time for transmitting all context
updates (cf. ec as defined in Equation 7.4) under the policy u.

We can observe that both Ec(u) and Ea(u) are linearly dependent on u. Therefore, we
apply Linear Programming (LP) as an optimization method to find the best assignment
of update probabilities which can maximize the resulting context accuracy, while not
exceeding the available energy budget. The LP representation of our problem is given
by:

maximize
∑
si∈S

∑
sj∈S:sj 6=si

πj · pji · u(si) ·
1

1− pii
(8.8)

subject to
∑
si∈S

∑
sj∈S:sj 6=si

πj · pji · u(si) ·
eu
∆ts

≤ E (8.9)

and 0 ≤ u(si) ≤ 1,∀si ∈ S (8.10)

142

8.2. Predictive Update Protocol with Hard Energy Bounds

s0 s1 s1 s1 s0 s0

Time

s0 s0 s0 s0 s0 s0

Time

Producer

Consumer

…

…

Suppressed

Update

Suppressed

Update

Δ ts

Figure 8.2.: Example of an accurate context despite of missed updates

Equations (8.8) and (8.9) are transformations of (8.6) and (8.7), such that each unknown
variable u(si) appears once in the equation. The constraint in (8.10) is necessary to
arrive at a valid probability measure for the update policy, so that all update probabilities
satisfy 0 ≤ u(si) ≤ 1. Solving the LP problem then yields the solution for our memory-
less update protocol. We have used a state-of-the-art problem solver for this purpose
which is available in MATLAB.

8.2.3.2. Update Protocol with Memory

The memory-less approach presented in the previous section assumes that the context
accuracy at a consumer is degraded with each suppressed context update. However, we
can observe that the producer and consumer context might match even when no update
is sent. This may happen if consecutive updates are suppressed, and the producer’s
current context returns to the state of the last update. An example is given in Figure 8.2,
where the producer’s context first changes from s0 to s1. As the update is suppressed,
the consumer will assume an incorrect context as a result. However, because the
producer enters s0 again later, both states match again. In this situation, an explicit
update for the change from s1 to s0 is not required to increase the context accuracy.
This observation can be exploited to further improve our update protocol by allocating
energy only to those updates that create a positive impact on the context accuracy.

Therefore, we propose the predictive update protocol with memory (PreUP-Mem) that
is able to incorporate the most recently transmitted context into the update decision.
This will avoid situations where an update is sent that is already known to the consumer
to further increase the effectiveness of our protocol. Formally, we apply an update
policy r, which is defined as a function r : (S × S) → [0, 1]. The policy returns the
probability r(sj, si) (in short rj,i) for sending an update of the current context state
si given the last transmitted context state sj. We use r to control the transmission of

143

8. Predictive Context Update Protocols with Hard Energy Constraints

Algorithm 8 Update Protocol With Memory

1: sU ← null
2: while E · tmax ≥ 2 · eu do
3: sC ← retrieve current context
4: if sU = null then
5: send update message(sC)
6: E ← E − eu
7: sU ← sC
8: else
9: r ← rnd()

10: if r ≤ r(sU , sC) then
11: send update message(sC)
12: E ← E − eu
13: sU ← sC
14: end if
15: end if
16: sleep(∆ts)
17: end while
18: sM ← sr with r = arg maxi∈{1,...,n}{πi}
19: send update message(sM)

context updates as shown in Algorithm 8. The algorithm requires to store the most
recently transmitted update in variable sU . We initialize sU on application start-up (line
7) and each time an update is sent (line 13). In our protocol, each context occurrence
may potentially trigger an update message, i.e., even if two sensed consecutive context
states are equal (sti = sti+1

), the update policy is evaluated to make a decision whether
an update should be sent (lines 9-14). This is done to consider the fact that due to
low update probabilities the state sti+1

may have not been transferred yet previously at
time ti. However, the update probabilities are chosen in a way to guarantee that no
redundant update is triggered (∀sj, si ∈ S, sj = si : r(sj, si) = 0), i.e., the same context
state is not retransmitted twice in a row.

The properties of the update policy with memory are too complex to be described
with a single function. The reason is that we additionally need to express the fact that
updating the same context repeatedly is a wasted operation. Therefore, we use the
framework of a Constrained Markov Decision Process (CMDP) to model our problem.
CMPDs are discrete time stochastic decision processes for describing systems, in which
actions are taken on Markovian state transition systems. As an effect of taking an
action, the system evolves from one state to another according to given transition
probabilities. Moreover, changing a state leads to certain costs as well as rewards, which
both depend on the particular action chosen. A solution of the CMDP is given by the
probability of taking a specific action, such that the reward is maximized while costs

144

8.2. Predictive Update Protocol with Hard Energy Bounds

are limited by a configurable threshold.

In the following, we develop a representation of a CMDP that fits our problem de-
scription. For the purpose of our problem, reward corresponds to the gain in context
accuracy and costs represent the energy consumption caused by the updates. The
following are the components of our CMDP:

• States: The set of states known to the system is denoted as X = (S × S) and
represents tuples of context states. The first element sU of a tuple (sU , sC) ∈ X
refers to the last context transmitted to the consumer, while the second element
sC denotes the current context of a producer.

• Actions: The set of actions A = {update, no update} reflects the update de-
cisions we have to make. If action update is taken, an update message is sent to
the consumer which contains the current context state of the producer, whereas
no update is triggered when action no update is chosen.

• Transition Probabilities: The transition probabilities in a CMDP are given as
p(i, a, j), defining the probability of moving from state si ∈ X to state sj ∈ X
when action a ∈ A is taken. It holds that ∀si ∈ X, a ∈ A :

∑
sj∈S p(i, a, j) = 1. We

derive the CMDP transition probabilities from the Markov model that describes
the evolution of the user’s behaviour:

p((sU1 , sC1), a, (sU2 , sC2)) =
p(sC1 , sC2), if (a = update ∧ sU2 = sC1)

∨(a = no update ∧ sU2 = sU1)
0, else

The transitions are defined in a way to reflect the result of the update decisions
taken. Each time an context update is forwarded (a = update), the consumer
acquires a new context state (sU2 = sC1). Otherwise, if no update is taken
(a = no update), the consumer still assumes the last received context state to be
valid (sU2 = sU1).

• Costs: The costs arise from the number of sent update messages and thus depend
on the action a ∈ A taken in the current system state (sU , sC) ∈ X:

c((sU , sC), a) ={
0, if (a = no update)
eu

∆ts
, else

Each time an update is taken we impose as cost the energy eu required for a single
update message, averaged over the sampling interval ∆ts . In contrast, sending no

145

8. Predictive Context Update Protocols with Hard Energy Constraints

(s1,s1)

update

no_update

(s1,s0)

(s0,s1)

(s0,s0)
0.4

Figure 8.3.: Example of the CMDP for the update policy with memory

updates does not produce any cost.

• Reward: The reward measures the increase in accuracy depending on the action
a ∈ A applied to the current system state (sU , sC) ∈ X. The reward is defined as
a function

ac((sU , sC), a) =
w(sC), if ((a = update ∧ sU 6= sC)

∨(a = no update ∧ sU = sC))
0, else

The increase in accuracy is related to the relevance weight w(sC) of the current
producer state sC . Such an increase may happen in two cases. If the current
context state equals the last transmitted state (i.e. sC = sU), the consumer
context is accurate even if no update is sent. Further, the accuracy is increased if
we send an explicit update after a context change has been observed (i.e. sU 6= sC).
Note that we give no reward to unnecessary updates which would not benefit the
accuracy at the consumer. This may occur when an update is triggered, although
the consumer is already aware of this state (i.e. sU = sC). Since such an update
would increase the cost without increasing the accuracy, it will be avoided by the
optimization algorithm.

An example of a CMDP based on our definitions is shown in Figure 8.3. Given states
S = {s0, s1}, the figure shows the evolution of the decision process starting from
(s0, s1) ∈ X. This CMDP state encodes that the last update was sent for state s0, and
now a decision is required whether an update should be sent for state s1. Depending
on the decision made, a specific state transition will be triggered (associated with a
defined probability). If the chosen action is update, the last updated context is now s1.
In contrast, if no update is made, the last transmitted context remains s0 and only the
current context evolves.

Based on the CMDP defined above, the goal is to find the probability for taking an

146

8.3. Predictive Sensing and Update Protocol with Hard Energy Bounds

action (update or no update) in each state of the decision process. It has been shown
that the solution of the CMDP can be determined with LP [Alt99]. For this purpose, a
translation of the CMDP into an LP problem is required as follows:

minimize
∑
x∈X

∑
a∈A

ρ(x, a) · ac(x, a) (8.11)

subject to
∑
x∈X

∑
a∈A

ρ(x, a)[δy(x)− p(x, a, y)] = 0, ∀y ∈ X (8.12)

and
∑
x∈X

∑
a∈A

ρ(x, a) = 1 (8.13)

and ρ(x, a) ≥ 0 ∀x ∈ X, a ∈ A (8.14)

and
∑
x∈X

∑
a∈A

ρ(x, a) · c(x, a) ≤ E (8.15)

In equation (8.11), we state our optimization function. The unknown variables are of
the form ρ(x, a), which indicate the joint probability distribution of taking action a in
state x, i.e. the probability that such a combination exists in the decision process. As
the resulting solution needs to be ergodic (i.e. all states are reachable), the constraint
in (8.12) is required such that the outgoing and incoming rates are equal [Alt99].
Additionally, the constraints in (8.13) and (8.14) are necessary to define ρ(x, a) as a
consistent probability measure. Finally, the constraint in (8.15) refers to the expected
energy cost, which results from the probabilities of taking action update in all possible
CMDP states. These costs may not exceed the given energy budget E.

Based on the solution of the CMDP, the parameters of the update policy can be
derived in a subsequent step. Formally, we are interested in the conditional probability
for applying action update in each state x = (sU , sC) ∈ X. This probability can be
computed using the following equation:

r(sU , sC) =
ρ((sU , sC), update)∑
a∈A ρ((sU , sC), a)

(8.16)

According to Bayes’ rule, we can derive r(sU , sC) as the conditional probability from
the joint probability returned by the solution of the CDMP. This way, we can define
the policy r over all state pairs (sU , sC), where sU represents the last updated state at
a consumer and sC denotes the current state at the producer.

8.3. Predictive Sensing and Update Protocol with Hard Energy
Bounds

In this section, we extend our work to account for a another critical source of energy
consumption. For the previous approach, we have assumed to have no explicit control

147

8. Predictive Context Update Protocols with Hard Energy Constraints

over the context sensing process. Therefore, context sensing has been performed as a
continuous process running in the background with constant sensing interval ∆ts. In
our extended problem statement, we relax this assumption and address the problem of
controlling sensing and communication operations in an integrated way.

8.3.1. Extended Problem Statement

In order to recognize a context state at a specific time, a sensing operation is required
on the device. We assume that every sensing operation consumes es amount of energy.
Hence, sampling a new context with minimum sensing interval ∆ts yields the highest
energy cost. In order to save energy, the mobile device may decide to selectively increase
the sensing interval and introduce duty cycles, so that less sensing operations are
required on average. Formally, let T ′ ⊆ T denote the sensing schedule given by the
times of when a sensing operation shall be performed. Given a particular schedule T ′,
the instantaneous sensing cost ω(t) at a specific time t ∈ T are then defined as:

ω(t) =

{
es, if t ∈ T ′
0, else

(8.17)

Each time a new context state becomes available, the producer has to decide whether
this information should be forwarded to a consumer. This introduces additional energy
costs caused by update messages for transferring the context information over the
wireless channel (see Section 8.2.1). Hence, since both sensing and communication
operations are required to enable those updates, the total energy cost is given by

ec =

∑
t∈T ω(t) + µ(t)

|T | ·∆ts

which sums the energy overhead (measured as J/h) required for sensing ω(t) and
communicating µ(t) context information on a user’s mobile device.

In terms of the context accuracy ac, further uncertainty is introduced through the
selective sensing process. Due to the scheduled duty cycles, context sensing operations
are suppressed so that time gaps occur where knowledge about possible context changes
is missing. During these gaps, no fresh context information becomes available, so that
consumers have to assume that the last seen context state is still valid. However,
if the actual user state has changed in the meantime, this information is inaccurate
and the true context state remains unnoticed. Hence, the selection of appropriate
sampling intervals has a major impact on the resulting context accuracy. In particular,
since the probability for state transitions may significantly differ among various user
states, sensing intervals should be chosen which consider the underlying user behaviour
characteristics to minimize the loss of accuracy. For measuring the context accuracy we
refer to Equation 8.3, where we compare the context information that is available at

148

8.3. Predictive Sensing and Update Protocol with Hard Energy Bounds

the consumer with the producer’s actual context state over all time slots (see Section
8.2.1).

The fundamental problem addressed in this section is to control the sensing and
communications operations on a mobile device to respect a given energy budget E.
Formally, the goal is to determine the optimal set of samples at times T ′ and upload at
times U such that the following constrained optimization problem is solved:

maximize

∑
t∈T λw(t)

|T |
(8.18)

subject to

∑
t∈T µ(t) + ω(t)

|T | ·∆ts
≤ E (8.19)

The optimization goal (8.18) strives for the maximization of the context accuracy ac
at the consumer. The optimization constraint (8.19) limits the total energy cost ec at
the producer by E. Note that in contrast to the problem addressed in Section 8.2.1,
we additionally need to decide for suitable sensor duty cycles in order to restrict the
energy consumption on the device. Previously, only communication operations have
been considered. In the next sections, we present a new sensing-and-update protocol
that makes use of the knowledge about the prospective user behaviour to solve this
optimization problem.

8.3.2. Approach Overview

We propose a novel predictive sensing-and-update protocol (PreSUP) to address the
problem stated above. For this purpose, we apply a stochastic optimization framework
which is based on a similar methodology as previously introduced in Figure 8.1. Key
to our approach is a prediction-based approach to find an effective sensor sampling
strategy which exploits the information from a Markov model to assign specific sensor
duty cycles to different user states. The idea of this approach is that the sensor duty
cycles should be conditioned on the specific characteristics of a user’s behaviour (i.e.
the probabilities with which a user transitions among different user states) in order
to minimize the resulting loss of accuracy. At the same time, based on the selection
of suitable duty cycles, we can control the costs of sensing and, implicitly, also the
communication costs as explained in the following.

More precisely, given a particular context state, PreSUP preferably delays the next
context sensing operation in situations where we expect the prospective user behaviour
to persist, i.e., no changes to the current user state are expected over upcoming sensing
intervals. In contrast, if the user is expected to leave his current state soon with a
high probability, a low sampling interval will be chosen to capture forthcoming state
transitions so as to preserve the context accuracy as much as possible. To implement
this strategy, let A = {∆ts, 2 ·∆ts, ..., n ·∆ts} denote the set of all possible duty cycles

149

8. Predictive Context Update Protocols with Hard Energy Constraints

s0 s0 s0 s0 s1 s1

Time

s0 s0 s0 s0 s1 s0

Time

Producer

Consumer

…

…

duty cycle of length 4 * Δ ts

update

s0 s0 s0 s1 s1 s1 …

real

sensed

sensing sensing

Δ ts

delivered

update

Figure 8.4.: Overview of our Predictive Sensing and Update Protocol (PreSUP)

among which we can choose. Then, PreSUP relies on a sensing policy formally defined as
s : (S×A)→ [0, 1] to select duty cycles based on a probabilistic decision. More precisely,
s(sC , a) indicates the probability of duty cycling the on-board sensors for a period
a = i ·∆ts once state sC ∈ S has been observed. Note that s(sC , i) is associated with
a specific state sC , since distinct transition probabilities may be observed in different
states which renders state-dependent schedules more effective. The best policy s is
inferred through our optimization framework, which processes a user’s Markov model
to find the duty cycles that best matches a user’s context patterns. While longer duty
cycles are chosen in states where the Markov model suggests persistent behaviour, short
duty cycles are employed when context changes are more likely. Hence, our approach is
explicitly designed to automatically adapt to given user behaviour characteristics to
find the optimal solution.

Consider the example in Figure 8.4, where a duty cycle of 4 · ∆ts is applied on the
producer to suspend the next sensing operation. The impact of the duty cycle on the
context accuracy depends on the sequence of context states which have been missed. As
over the next two sensing intervals the last sensed context state (s0) remains valid, no
accuracy is lost even though a new sensing operation has not been performed. Then, in
the next interval, the producer’s context state changes from s0 to s1. Due to the paused
sensing process, this context change remains unnoticed until another interval elapses
after which the duty cycle ends where s1 is sensed and sent to the consumer. Hence,
while just an inaccuracy for the length of ∆ts is introduced, the required energy only
takes up for a fraction of es+eu

4·es+eu
over this period. For typical values of es and eu (see our

evaluation in Section 8.4.1), this corresponds to savings of 54%, which demonstrates the
great potential for reducing the on-device energy costs when knowledge about a user’s
future behaviour is exploited for suspending sensing and communication operations.

Note that PreSUP does not consider separate sensing and update decisions. This means
that context updates will be transmitted once a context change has been sensed. We

150

8.3. Predictive Sensing and Update Protocol with Hard Energy Bounds

thus avoid useless sensing operations for acquiring context states which would then
not be forwarded. Nevertheless, the communication cost which are consumed for every
update message restrict the selection of possible sensor duty cycles. In particular, for
every context change that has been sensed, a context update needs to be forwarded
which consumes energy for its transmission over the wireless network. The selection of
sensor duty cycles therefore has to consider both cost factors to satisfy the given energy
budget. In the following, we present our approach of how to derive such a policy in an
automatic manner.

8.3.3. Sensing and Update Algorithm

In this section, we first explain how PreSUP is applied on a mobile device to control
the sensing and update process. Subsequently, we describe how to derive the sampling
policy s using a stochastic optimization method which is based on a tailored CMDP
model.

Algorithm 9 describes the on-device sensing and update process. First, the current
state sC is sampled for retrieving an up-to-date view on the producer’s context (line 4).
This causes the available energy budget to shrink by the amount of energy required
for performing a single sensing operation (line 5). If a context change can be observed
(SC 6= SL) or initially when the application has been launched (SL = null), sC is
transmitted to the consumer. In either case, the energy budget is decreased by the
amount of energy that is required for a single communication operation (lines 6-9). Then,
a sensor duty cycle tsleep is chosen from the sensing policy s (lines 10-18) by sampling
from the distribution s(sC , i) associated with sC . Afterwards, the sensor sampling
process is suspended for the duty cycle of tsleep to reduce the energy consumption
(line 20). This whole process is repeated continuously: as soon as the duty cycle
has elapsed, a new duty cycle is chosen which is specific to the sensed state sC and
any observed context change is transmitted over the network. To cater for inaccurate
predictions which would result in energy overspending, we constantly monitor the energy
consumption. If the energy budget is drained up to the point where only energy for one
update message is remaining, we publish the context state with the highest stationary
distribution (see Section 7.5) in a final update to maximize the consumer-side context
accuracy for the rest of the application lifetime (line 22-23).

We model the properties of our sensing-and-update protocol as a CMDP. The CMDP
allows us to reason over the effect a specific distribution of s would have on the resulting
energy cost and context accuracy. To achieve this, we develop a tailored CMDP model
with the following specification:

• States: The CMDP only deals with the known set of context states S. We do
not further distinguish between producer and consumer states, since both share

151

8. Predictive Context Update Protocols with Hard Energy Constraints

Algorithm 9 Sensing and Update Protocol

1: sL ← null
2: tsleep ← null
3: while E · tmax ≥ 2 · eu + es do
4: sC ← sample context
5: E ← E − es
6: if sL = null ∨ sC 6= sL then
7: send update message(sC)
8: E ← E − eu
9: end if

10: r ← rnd()
11: for i = 1 to l do
12: if r ≤ s(sC , i) then
13: tsleep ← i ·∆ts
14: break loop
15: else
16: r ← r − s(sC , i)
17: end if
18: end for
19: sL ← sC
20: sleep(tsleep)
21: end while
22: sM ← sr with r = arg maxi∈{1,...,n}{πi}
23: send update message(sM)

the same view on the evolution of the system according to our sensing-and-update
protocol.

• Actions: The set of actions A = {∆ts, 2 ·∆ts, ..., n ·∆ts} comprises the different
sensing duty cycles among which we can choose. The communication operation is
not explicitly part of this set, as every recognized context change will be implicitly
updated.

• Transition Probabilities: The transition probability p(i, a, j) indicates the
probability for moving from si to sj after the chosen duty cycle a = k ·∆ts ∈ A
has elapsed. p(i, a, j) is based on the underlying transition probability of the
Markov model and the chosen duty cycle. It can be derived as:

p(si, k ·∆ts, sj) = pkij

where pkij denotes the k-step transition probability (cf. Section 7.5) to estimate
the probability for the user to be in sj after the sensor has stayed idle for a time

152

8.3. Predictive Sensing and Update Protocol with Hard Energy Bounds

of k ·∆ts. Hence, p(i, a, j) expresses the probability for a state transition when
the sensing process has been suspended for the chosen duty cycle a.

• Costs: To define the costs related to the sensing and communication overhead,
we define two utility cost functions. Both cost functions will be later integrated
to account for the total energy costs.

With respect to the sampling costs, we define the function

dur(si, k ·∆ts) = k ·∆ts

that gives us access to the scheduled duty cycle associated with an action. The
sensing cost incurred by this action are inversely proportional to the length of the
duty cycle. More precisely, since an amount es of energy is consumed per sensing
operation and exactly one sensing operation is executed for each sensing interval,
an average energy consumption es

k·∆ts is incurred for the entire duty cycle. As can
be seen, the longer the duty cycle, the more energy can be saved.

In addition, update messages are sent to inform remote consumers about the
user’s context. However, updates are only triggered for actual state changes.
Therefore, the resulting average communication costs depend on the expected
state change probability and can be specified as

cupdate(si, k ·∆ts) = (1− pkii) · eu

Given a state si, the probability for a state change can be derived from its self-
transition probability. More precisely, the probability to be in si after an idle time
of k ·∆ts (involving k time slots) is given by pkii. This probability pkii needs to be
subtracted from 1 to derive the probability for an actual state change to any sj
with j 6= i. Each time such a state change occurs, it is reported to the consumer
via an update message, requiring an amount eu of energy for its transmission.

• Reward: The reward indicates the expected gain in context accuracy, which
depends on the chosen duty cycle a ∈ A in state si ∈ S. This accuracy gain is
defined as

ac(si, k ·∆ts) = w(si) · (1 +
k−1∑
t=1

ptii)

As discussed before, the context accuracy depends on whether a sensed context
state si remains valid over the duration of a duty cycle. We therefore compute for
each missed context sample the probability of being in state si. For this purpose,
the k-step self-transition probabilities pkii can be used. We add a probability of 1
to this sum, since sensing state si initially at the start of a cycle guarantees true
knowledge. Also, we factor in the state relevance weight w(si) to consider the
application’s interest in not missing the specific state si.

153

8. Predictive Context Update Protocols with Hard Energy Constraints

The CMDP components describe the basic characteristics of our sensing-and-update
protocol, modelled as a stochastic control process. The solution of the CMDP problem
yields the probability of selecting a sensing interval a ∈ A in a given state si ∈ S.
For this purpose, the CMDP needs to be translated to a representation which can
be understood by a suitable problem solver. This representation is satisfied by the
following system of functions and equations [Alt99]:

maximize

∑
x∈X

∑
a∈A ρ(x, a) · ac(x, a)∑

x∈X
∑

a∈A ρ(x, a) · csense(x, a)
(8.20)

subject to
∑
x∈X

∑
a∈A

ρ(x, a)[δy(x)− p(x, a, y)] = 0, ∀y ∈ X (8.21)

and
∑
x∈X

∑
a∈A

ρ(x, a) = 1 (8.22)

and ρ(x, a) ≥ 0 ∀x ∈ X, a ∈ A (8.23)

and
es +

∑
x∈X

∑
a∈A ρ(x, a) · cupdate(x, a)∑

x∈X
∑

a∈A ρ(x, a) · dur(x, a)
≤ E (8.24)

In contrast to the previous LP formulation in Section 8.2.3.2, the underlying optimization
function (8.20) for our problem is non-linear. The reason is that the consumer-side
accuracy to be maximized is measured as a function per time. However, as the elapsed
time between two sampling operations depends on the chosen duty cycles, the expected
sensing interval needs to be considered in the denominator of the function. This results
in a non-linear optimization function. We therefore apply Non-Linear Programming
(NLP) to find the optimal solution. The constraints in (8.21), (8.22), (8.23) ensure
that the resulting solution defines a valid probability measure. The constraint in (8.24)
estimates the sampling and energy cost that result from applying the policy which may
not exceed the given energy budget E.

Solving the NLP problem yields the probabilities ρ(x, a), ∀x ∈ S, a ∈ A, which define
the joint probability that a state x occurs and the corresponding action a is executed.
However, as expressed by our policy s, the probability of choosing a specific update
interval is required. This can be derived as the conditional probability

s(sC , i) =
ρ(sC , i ·∆ts)∑
a∈A ρ(sC , a)

(8.25)

from the joint probabilities by means of marginalization. We thus obtain the optimal
assignment of probabilities s(sC , i) for choosing a duty cycle of length i ·∆ts in state
sC . Note that the NLP solving has to be computed only once and can be offloaded to a
computer with more computational power and unlimited energy supply, if required. On
the mobile device, only the resulting update policy is needed to drive the sensing-and-
update process as explained previously.

154

8.4. Evaluation

8.4. Evaluation

In this section, we present a comprehensive analysis of the protocols developed in this
chapter. For this analysis, we evaluate both classes of our protocols, the update-only
protocol and the sensing-and-update protocol. In the following, we first we introduce
our underlying evaluation methodology and then discuss the results gained from our
evaluation study.

8.4.1. Evaluation Methodology

For the evaluation of the update protocols proposed in this chapter, we followed a similar
setup as described in Section 7.7. Analogous to our previous evaluation method, we used
real-world traces of human activities from the CenceMe project [MLF+08] to validate
our protocols against realistic sequences of context changes. However, in contrast to our
previous evaluation strategy, hard bounds on the amount of available energy E were
given. Given a specific energy budget E, we analysed the protocol in terms of their
ability to maximize the context accuracy. Context accuracy is measured as defined
in Equation 8.3, quantifying the correctness of the context information perceived by
a consumer. As we assumed all context states to be equally important, we defined a
uniform relevance weight for the states, i.e., ∀si ∈ S : w(si) = 1. Analogous to the
approach followed in Section 7.7, we performed our evaluation based on two different
scenarios. One the one hand, we used a Monte Carlo approach to generate synthetic
activity traces based on a Markov model that we learnt from the real traces. On the
other hand, we performed the measurements directly against the actual sequence of
context states from the real traces. By considering these two different scenarios, we
analysed the vulnerability of our approach to violations of the Markov property which
is critical for the exactness of our prediction model (see Section 7.7).

To quantify the energy usage of our protocols, we rely on assumptions about the energy
overhead of sensing and communication operations. In terms of the sensing costs, we
leverage on the profiled energy usage of the CenceMe mobile application [MLF+08].
According to this study, es = 1.28J is consumed on average for a sensing operation that
classifies a user’s activity based on collected acceleration samples. As the CenceMe trace
records activities in constant periods of ∆ts = 8s, this time defines the minimum sensing
interval which can be adapted by our algorithms. In terms of wireless communication
costs, according to the empirical energy model prosed in [BBV09], eu = 3.2J is consumed
to transmit a context update in an isolated update message over GPRS networks (cf.
Section 6.3). Since the encoding of context states requires little overhead, our update
messages are of minor size so that most of the consumed energy results from the GPRS
tail energy. In the following, we give insights into our evaluation results for the protocols
developed in this chapter - first, we focus on the update-only protocols which merely
consider network transmissions, and then we analyse our sensing-and-update protocol

155

8. Predictive Context Update Protocols with Hard Energy Constraints

walking

running

standing

sitting 0.89 0.68

0.28 0.04

0.66

0.28
0.57

0.24

0.19

0.04

0.09

0.02

0.02

Figure 8.5.: Learnt Markov model of user activities based on the CenceMe trace

that additionally addresses the problem of sensor scheduling. Since our protocols are
based on stochastic update decisions, we repeatedly execute the experiments and plot
the context accuracy averaged over 100 runs for the same energy budget.

8.4.2. Stochastic User Model

For the explanation of our evaluation results, an analysis of the degree of user behaviour
dynamics is important. Figure 8.5 depicts the Markov model that was learnt from the
context transitions found in the CenceMe trace. For the sake of clarity, only transitions
with a significant probability are included in the figure. The self-transitions serve as a
good indicator for the degree of user behaviour dynamics in different states. The state
’sitting’ exhibits the highest self-transition probability, i.e., the user tends to remain
in this state for a number of subsequent samples with high probability. Consequently,
this behaviour offers great potential for saving sensing and update cost, since, having
sensed this state, the probability to assume a correct state in the following time slots
is high even if no new sample is obtained. The states ’running’ and ’walking’ have
lower self-transition probabilities, since these activities are performed for a shorter
duration by the user. The lowest self-transition probability is associated with the
state ’sitting’. In this state, the chance to miss any state transition during subsequent
samples is more significant and may affect the context accuracy much stronger. This
discussion reveals that the distribution of transition probabilities has a great impact on
the performance of our protocols. Therefore, no general solution can be proposed for
arbitrary application scenarios, since each scenario may have different user behaviour
characteristics. Therefore, our update protocols are aligned to the specific behaviour
of the user as exposed by the Markov model. While we have used the self-transition
probabilities in the discussion above as a heuristic to explain feasible optimizations, an
analysis over all transition probabilities is performed by the CMDP to find the optimal
solution.

156

8.4. Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350

C
on

te
xt

 A
cc

ur
ac

y

Energy Budget [J/h]

 Optimal
PreUP-Mem

PreUP-Memless
SUP

(a) Synthetic traces

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350

C
on

te
xt

 A
cc

ur
ac

y

Energy Budget [J/h]

 Optimal
PreUP-Mem

PreUP-Memless
SUP

(b) Real traces

Figure 8.6.: Context accuracy of update protocols with hard energy bounds

8.4.3. Update Protocols

In the following, we discuss the experimental results for our predictive update protocols
(PreUP-Memless and PreUP-Mem) across various energy budgets. In our evaluation, we
compared our protocols with two alternative approaches. As one alternative, we used a
deterministic state-triggered update protocol (SUP). SUP transmits each occurring state
change until the allocated energy budget is completely drained. However, no further
knowledge about user behaviour is exploited to influence the update decision. Therefore,
this protocol serves as a baseline to study the benefits of our prediction-based protocols.
Additionally, we have determined the optimal solution (i.e. highest achievable accuracy
for a given energy budget) using a Dynamic Programming (DP) algorithm that selects
the best updates. In contrast to the online approaches we have developed, this approach
is based on a complete view on the entire sequence of user behaviour which can only be
performed offline. As the offline algorithm requires more knowledge than is available at
runtime, it is used as a reference only to study the theoretically best possible solution.

The results for applying our update protocols to the synthetic context trace are shown in
Figure 8.6 a). As expected, the accuracy generally increases with higher energy budgets.
However, SUP shows alternating increases and decreases in context accuracy for rising
energy budgets. This is counter-intuitive, since a higher energy budget allows for more
updates to be sent, which should increase the context accuracy. This observation can
be explained by the fact that, in case of a drained energy budget, the last update
made has a major effect on the context accuracy for the remaining run-time of the
application. Since SUP transfers all context changes as soon as they are observed, it
tends to quickly drain the given energy budget. As a result, since the last updated
context state may not frequently occur afterwards and no further update can be sent,
the context accuracy at the consumer may suffer from this approach. Our predictive
update protocols (both PreUP-Memless and PreUP-Mem) circumvent this effect, since

157

8. Predictive Context Update Protocols with Hard Energy Constraints

the frequency of updates is adapted to the amount of available energy. Instead of simply
transmitting every context change as soon as it occurs, the more effective updates
are preferred over the less relevant ones based on the analysis of the user’s future
behaviour. Also, the last update is chosen to be the state with the highest stationary
distribution, thus maximizing the context accuracy for the remaining run-time. As a
result, PreUP-Memless improves SUP by 12% on average across all energy budgets, and
PreUP-Mem outperforms it even by 24%. Compared to PreUP-Memless, PreUP-Mem
achieves a higher context accuracy at a consumer, since redundant updates are avoided
so that the context accuracy increases for every update message (cf. Section 8.2.3.2).
The theoretically optimal solution is on average 10% better compared to PreUP-Mem.
The reason is that the offline approach can take benefit from perfect knowledge about
the actual sequence of a user’s context states, so that no prediction error can occur
that would cause suboptimal update decisions. This is especially beneficial for lower
energy budgets where only few update messages may be sent and accurate predictions
are required to identify effective updates. However, even though the global knowledge
required to determine the optimal result is not available at run-time, PreUP-Mem
achieves a good approximation of the optimum. This demonstrates that the predictions
are reliable most of the time, so that effective updates are chosen.

Figure 8.6 b) illustrates the results for the real context trace. As can be seen, our
protocols are able to achieve even better accuracy improvements over the different
energy budgets in this case. While the performance of our update protocols are similar
to the experiments with the synthetic trace, the results for SUP are much worse. This
stems from the fact that a lot of context changes can be observed in the real trace
that only last for a short duration. Since SUP transmits these context changes without
further analysis of their effectiveness, the given energy budget is quickly exhausted
and the transferred context updates become invalid soon. On average, PreUP-Memless
improves the context accuracy by 63% compared to SUP, and PreUP-Mem even by
considerable 84%. The gain is particularly high for lower energy budgets, where only
few update messages can be afforded that need to be carefully chosen to guarantee
accurate context information at the consumer. In this case, PreUP-Memless and PreUP-
Mem select context changes which are much more useful to maximize the context
accuracy. As expected, PreUP-Mem shows a better performance than PreUP-Memless
through making more accurate predictions, resulting in more effective updates. It can
be seen that a substantial amount of energy is required to reach a perfect accuracy at
the consumer, which can only be achieved when every context change is transferred.
Nevertheless, our update protocols are able to achieve a high context accuracy already
for lower energy bounds. For instance, using PreUP-Mem we can achieve 85% accuracy
for energy budgets that are assigned 60% of the maximum energy required to deliver
perfect context accuracy. In contrast, 95% of the energy are required by the SUP
protocol to reach the same 85% accuracy level. The optimal solution computed by
our DP offline algorithm is on average 14% better in context accuracy compared to
PreUP-Mem. Considering the fact that the optimal solution serves only as a theoretical

158

8.4. Evaluation

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900

C
on

te
xt

 A
cc

ur
ac

y

Energy Budget [J/h]

 Optimal
PreSUP
Periodic

(a) Synthetic traces

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900

C
on

te
xt

 A
cc

ur
ac

y

Energy Budget [J/h]

 Optimal
PreSUP
Periodic

(b) Real traces

Figure 8.7.: Context accuracy of sensing-and-update protocol with hard energy bounds

reference, we can conclude that PreUP-Mem achieves close-to-optimal performance. As
a consequence, our evaluations demonstrate that we can gain significant improvements
when adapting the update protocols to the predicted behaviour of the user. This even
holds for the real trace, in which predictions are much more susceptible to deviations
from the user’s actual behaviour.

8.4.4. Sensing and Update Protocol

We compare our predictive sensing-and-update protocol (PreSUP) with a periodic
time-based protocol (Periodic), which performs a sensing operation in constant time
intervals and reports the sampled context to the consumer. The time interval ∆tp is
chosen as the minimum period which can afford both a sensing and communication
operation to be executed for a given energy budget E, i.e., ∆tp = E

es+eu
. We also include

the theoretical optimum as a reference, that is calculated by an offline algorithm using
a Dynamic Programming (DP) approach which determines the best duty cycles for a
sequence of context states considering both the sensing and communication cost. Note
that we cannot compare PreSUP with the update protocols evaluated in the previous
section (PreUP-Memless and PreUP-Mem), which have been designed to optimise the
wireless communication overhead, but not the sensing process. Since these protocols
require a new context state to be continuously sampled, full sensing cost arise so that
we cannot meet the limitations on the total energy consumption for all energy budgets
E subject to this evaluation.

First, we look at the results for the synthetic trace shown in Figure 8.7 a). As can be seen,
PreSUP increases the context accuracy at the consumer by 18% on average compared
to Periodic. The increase is almost constant over all energy budgets. This demonstrates
that PreSUP is able to exploit a constant fraction of the available energy much more

159

8. Predictive Context Update Protocols with Hard Energy Constraints

effectively. The reason is that updates executed in constant periods do not account for
the fact that the different states exhibit heterogeneous transition probabilities. This
makes particular states with more persistent behaviour much more suitable for longer
duty cycles. In contrast, PreSUP is based upon this rationale, assigning longer duty
cycles to states in which the user remains, while shorter duty cycles are preferred in
states where state changes are much more likely. For our given scenario, especially the
state ’sitting’ is identified to be the most persistent one where longer duty cycles can be
applied to save energy and retain a high context accuracy level despite of missed context
samples. The theoretically best possible accuracy computed by the DP algorithm is
on average 13% better compared to PreSUP. This is because global knowledge of the
entire sequence helps identifying the very best sensing and update intervals. In contrast,
PreSUP must rely on predictions that may cause sub-optimal sensing intervals to be
chosen. For instance, in case the user stays spends more time in a given state than
predicted, a longer duty cycle would have been more effective for saving energy and
preserving the accuracy. Being close-to-optimal, though, the results suggest that our
approach can effectively compensate the lack of global knowledge that is exploited by
the offline approach.

Figure 8.7 b) illustrates the results we gained for the real-world trace, where the same
ranking can be observed among the different protocols in terms of their performance.
Specifically, PreSUP is superior to Periodic by achieving a relative improvement in
context accuracy of 10% over all energy budgets on average. We can notice that, in
contrast to the synthetic trace, the Periodic approach shows a better performance
since long sequences of context states occur in the real trace where the user constantly
remains in the same state. As a consequence, under the Periodic scheme often a context
state is sensed with a significant occurrence probability that re-occurs over the period
of a duty cycle. Note that in statistical terms the divergence of the real trace from the
synthetic trace is caused by violations of the Markov property, i.e., the fact that the
distribution of the state dwell times does not strictly follow a geometric distribution.
Nonetheless, even though this Markov assumption does not strictly hold, PreSUP
is able to find more effective duty cycles when adapting the sensing intervals to the
state transition dynamics as encoded in the Markov model. In particular, PreSUP
significantly improves the context accuracy compared to Periodic for increasing energy
budgets. Even with more available energy, Periodic often senses the same state again
with each consecutive sample. In contrast, PreSUP selectively allocates the available
energy to recognize state changes, and therefore takes better advantage from more
available energy. Since PreSUP can achieve this despite the fact that the dwell times
do not strictly obey the Markov assumption, we can conclude that our approach is
very robust in the presence of uncertainties and variances in the real-world data. On
average, the theoretical optimum is 10% better compared to PreSUP. This performance
gain is only possible using global knowledge about the entire sequence of all context
occurrences. As the evaluation shows, PreSUP is able to infer this knowledge from the
user’s typical behaviour so that a high level of context accuracy can be achieved.

160

8.5. Related Work

8.5. Related Work

The design of efficient approaches for acquiring and distributing context data has
received a lot of attention in the field of mobile computing. Two major directions have
been pursued in the recent literature, which will be discussed in the following: update
protocols to communicate context data over wireless networks as well as approaches for
energy-efficient sensing on mobile devices.

In terms of update protocols, the idea of considering a strict upper limit on the energy
consumption is a novel research problem which has not been explicitly addressed in
prior research. Instead of maximum energy consumption, earlier update protocols have
been tailored towards other optimization criteria, which are relevant in their context of
usage. For efficiently tracking users in cellular wireless networks, update protocols have
been proposed which are able to achieve a good trade-off between update and paging
costs [BD99, RMD07]. Noy et al. have analysed time-based, movement-based and
distance-based protocols in terms of their trade-off characteristics [BNKS94]. However,
the optimization of the update process has been primarily addressed from the perspective
of a mobile network provider. For reasons of scalability, mobile network providers are
interested in a minimum load on the cellular network. As mobile devices are only seen
as the periphery of the network in these scenarios, their energy consumption has not
been explicitly investigated.

For tracking the geographic positions of mobile objects with integrated GPS receivers,
update protocols have been developed to transfer position data from mobile devices to
remote location servers [WSCY99]. The updates adhere to spatial inaccuracy bounds,
guaranteeing that the positions stored by the location servers deviate from the true
user positions by a maximum distance only. Leonhardi et al. have adopted time-based
and distance-based update protocols as known from cellular networks to the specific
properties of moving objects whose geographic positions shall be tracked [LR01]. Since
updates messages are sent whenever the inaccuracy conditions is about to be violated,
a strict limit on the resulting energy consumption is not the primary goal of these
protocols. Moreover, in our work, we focus on generic discrete context such as user
activity or symbolic locations, where spatial distance metrics and assumptions about
the movement of mobile users such as their maximum speed do not hold.

As an extension of the location-based update protocols, recently update protocols
have emerged for the distribution of discrete context data [MPF+10]. These protocols
allow for reducing the number of update messages by tolerating periods where inter-
ested consumers have inaccurate context information. However, it remains unclear
how to configure these protocols to restrict the energy consumption to a given limit.
Consequently, these protocols only work in a best-effort manner and may consume
an arbitrary amount of energy. In contrast, we have shown how to derive a protocol
configuration for transferring streams of discrete context data under hard energy bounds.
The protocol we have proposed is not only designed to keep a given energy limit, but

161

8. Predictive Context Update Protocols with Hard Energy Constraints

also to maximize the quality of the context data reported to consumers.

Besides updates to remote receivers of context data, also the sensing process on a mobile
device has attracted tremendous research interests [MLF+08,LPL+09,RMM+10]. As
continuously sampling sensors heavily drains the batteries of mobile devices, a more
selective control of the sensing process has been advocated. Key to save energy on the
mobile device are approaches to suppress redundant or irrelevant sensor readings. More
precisely, it has been shown that a substantial amount of energy can be saved when
turning the sensors off opportunistically, e.g., while the users dwells at the same location
[KLGT09], or during movements away from points-of-interest [BDR12b, WDR10].
However, these algorithms have been designed as best-effort approaches where the
goal is to reduce the sensing costs without creating a loss in context accuracy for
applications. To achieve this, opportunistic optimization strategies are used, which can
only be applied in special occasions only depending on the user’s behaviour. As it is
not feasible to anticipate the occurrences of these occasions a priori, hard guarantees
with respect to the consumed energy cannot be provided.

In contrast, energy bounds on the sampling process are considered by Constandache et
al. [CGS+09], who propose a sensing scheme that uses only a limited number of position
readings to estimate the locations of mobile users, considering the characteristics
of different positioning technologies. For this purpose, the sensing operations are
distributed over points in times at which the user is expected to change his location,
thus avoiding redundant position readings to decrease the localization error as much as
possible. A similar proposal has been made by Wang et al. [WKZA10] for a discrete
model of context data to sense the user’s activity. A Markov-optimal sensing plan is
derived to schedule sensor readings at times so as to minimize the loss of accuracy.
However, in contrast to our work, these approaches neglect the aspect of communication
completely. As mobile sensing applications are meant to forward sampled context data
over wireless data channels, the overhead of communicating context updates is an
integral part of the total energy costs on the device. Therefore, an integrated approach
is required which incorporates both cost factors into the optimization of the update
process on a mobile device.

Based on this analysis, we conclude that we propose the first comprehensive approach
for optimising update protocols suitable for discrete context data with respect to the
total energy costs resulting from sensing and communication. This enables applications
to be executed in a way that satisfies the energy constraints of mobile devices much
more accurately, while maximizing the quality of the context delivery.

8.6. Summary

In this chapter, we have proposed novel update protocols for dealing with state-based
context data on energy-constrained mobile devices. We have addressed the problem of

162

8.6. Summary

maximizing the accuracy of context perceived by a consumer under a given energy budget
and presented update protocols that are able to exploit predictions of a user’s behaviour
to give priority to the most valuable context updates. For this purpose, we have modelled
the distributed update process between context producer and consumer as a stochastic
decision problem, and proposed algorithms that exploit context predictions to implement
effective update strategies. We have studied this problem in two variants: First, we
proposed an update protocol to identify the optimal sequence of update messages to
inform consumers about context changes, and then we presented a sensing-and-update
protocol which is also able to control the duty cycles of the on-device sensors. For both
problems we have developed a representation as a Constrained Markov Decision Problem,
which allowed us to leverage on Linear Programming (LP)/Non-Linear Programming
(NLP) to solve the optimization problem and find the best update decisions which
match given user behaviour characteristics.

In our evaluation, we have demonstrated for a real-world context trace from a mobile
social networking application that our predictive protocols are much more effective than
protocols that ignore knowledge of future user behaviour. Hence, our work contributes
important techniques to support the growing field of mobile sensing applications with
energy-aware design principles which are required to gain more practical relevance and
achieve high acceptance among end users.

163

Part IV.

Summary and Outlook

165

Chapter 9
Summary

Deep knowledge about a user’s context is key to the idea of context-aware computing.
In the past, mainly the current context of users has been accessible to context-aware
systems, e.g., the user’s location at present. To increase the degree of proactiveness
in these systems, not only awareness of the current context, but also of the user’s
future context is vital to develop novel predictive applications, e.g., mobile guide
systems able to generate recommendations according to the user’s next location visits.
However, as this information is encoded in the daily routines of mobile users and not
directly accessible to applications, context prediction is a non-trivial task which requires
sophisticated methodologies to discover patterns of context changes from observation of
the user’s behaviour. Developing context prediction techniques that are able to support
the idea of proactive computing in an effective manner is an open research problem
which is not sufficiently addressed by previous approaches.

In this thesis, we have addressed open questions in the field of context prediction along
two major lines of research. First, we have proposed new context prediction models
for increasing the expressiveness and accuracy of predictions compared to existing
prediction systems. The focus of this research has been on comprehensive stochastic
models that allow for representing patterns of context changes in the user’s behaviour
in a machine-processable way. Based on these models, we have developed algorithms for
performing stochastic inference over these models to compute reliable and expressive
predictions. Second, we have shown that context prediction methods can be exploited
to increase the efficiency of mobile sensing applications, a new class of mobile systems
in the focus of current research. Since these applications are affected by high costs for
sensing and communicating context data, we have presented algorithms to optimize
their operation in terms of the trade-off between energy consumption and the accuracy
of context information which is reported to interested consumers. In the remainder of
this chapter, we present a summary of the contributions of this thesis.

167

9. Summary

9.1. Context Prediction Models

In the first part of this thesis, we have addressed the challenge of improving context
prediction systems in terms of both prediction accuracy and prediction expressiveness.
Prediction accuracy is one of the most crucial performance criteria of context prediction
systems. Therefore, developing methods for increasing the accuracy of predictions is a
major goal addressed by researchers. Previous context prediction system do not consider
additional available domain knowledge that can be used to improve the predictions. In
these systems, only single-dimensional context is assumed, while the interdependencies
among different context types are neglected as further source of information. However,
such interdependencies can make predictions much more accurate, since the occurrence
of future context states may be conditionally dependent on this information.

To address this issue, we have proposed a context prediction scheme that is able to
exploit domain knowledge from pervasive flow systems, which reveal the activities
performed by humans in process-oriented applications, e.g., health-care scenarios. For
this scheme, we have developed a new context predictor, which is able to encode the
evolution of the user’s context in relation to his executed flow activities, and algorithms
to infer future context trajectories in a transition system of two-dimensional states. In
summary, our core contributions are:

• We have proposed a new context predictor, the flow predictor, which is able to
reflect the conditional dependency of context changes on flow activities as well as
the past context history. The flow predictor is an extension of a classical Markov
model with the flow activity as an additional random variable.

• A learning algorithm has been presented that automatically constructs a flow pre-
dictor from a context history and associated activity information. The algorithm
determines the transition probabilities among two-dimensional context states to
encode the probability of an activity-dependent context change.

• We have developed a prediction algorithm to determine the series of future context
states that is most likely to occur. Since high computational overhead is involved
in exploring the transition system, an efficient inference strategy has been proposed
to reduce the search space.

• In our evaluation, we have shown that our context prediction scheme can exploit
dependencies on activity information to significantly improve the accuracy in
predicting future context changes. In case this dependency is not fully given, our
predictor does not perform worse than a classical prediction approach.

In addition to high prediction accuracy, also rich prediction expressiveness is a desired
feature to support a wide range of proactive applications. Prior prediction systems only
determine the most probable next context as prediction and therefore suffer from a
rudimentary degree of prediction power. In particular, any relation to real-time (i.e.

168

9.2. Context Prediction in Mobile Systems

the time period within which a future context should occur) and further, more flexible
prediction semantics are not supported. This severely restricts the kind of predictions
which applications can leverage on.

We have proposed a new context prediction approach using methods of stochastic model
checking to allow for time-dependent, semantic queries. While model checking is known
as an effective means of verifying formal system, we have adopted and extended these
techniques to render them usable for the prediction of human context. As a result, we
have presented the first approach that combines probabilistic reasoning and logic-based
querying semantics to allow for more expressive context predictions. Our contributions
can be summarized as follows:

• We have proposed a machine-processable model of the user’s real-world temporal
behaviour. The model is based on a Semi-Markov Model and has an explicit
representation of the dwell time behaviour in different user states.

• Temporal logics has been proposed as a formal query language for formulating
context predictions. The query language provides various temporal operators with
well-defined semantics for achieving a high degree of expressiveness.

• Novel context prediction algorithms have been developed based on stochastic
model checking techniques. For this purpose, existing model checking algorithms
have been extended with run-time semantics required to predict human context
with dynamically evolving state dwell times

• In our evaluation, we have validated our approach for a real-world scenario from
the domain of health-care using metrics from information retrieval. The results
have shown that we can achieve a high trade-off between precision and recall
for a suitable threshold configuration of the probability which determines when
predictions should be delivered to applications.

9.2. Context Prediction in Mobile Systems

In the second part of this thesis, the benefits of context prediction in conjunction
with mobile systems has been explored. To this end, we have studied mobile sensing
applications, a class of mobile systems that has recently emerged from the wide availab-
ility of sensor-enabled mobile phones. In these applications, the sensor capabilities of
mobile phones are exploited to constantly distribute information about the dynamic
context of users to interested parties over cellular networks. Since these applications are
affected by a high overhead of sensing and communication operations, we have concluded
that the incurred energy consumption is critical for the limited battery capacities of
mobile devices which can negatively impact the user’s experience. Therefore, we have
investigated new strategies for optimising mobile sensing applications in terms of the
energy consumption required for delivering context updates to interested consumers.

169

9. Summary

To address this challenge, we have proposed new prediction-based update protocols for
energy-efficient context updates among producers and consumers of context data. The
protocols are based on the idea that, by predicting context changes locally at the con-
sumer, the energy consumption on a mobile can be significantly reduced, avoiding costly
transmissions over the cellular network to forward context updates. Our contributions
can be summarized as follows:

• We have proposed a prediction-based update mechanisms that relies upon a shared
prediction model that is known both to the producer and consumer of mobile
user context. The prediction model is based on a discrete Markov model, which
can be learnt from the user’s past context changes.

• Four different prediction algorithms have been developed to exploit a Markov
model for predicting missing context updates. Given a future time, each prediction
algorithm estimates the context state in which the user is expected to be at that
time based on the last known update.

• Two basic update protocols, a time-based and a deviation-based protocol, have
been proposed to manage the energy/accuracy trade-off on the mobile device.
With these update protocols, the degree to which the predicted context at the
consumer deviates from the actual context of the producer can be effectively
controlled.

• Our evaluation has shown that the prediction-based update mechanism can achieve
improved trade-off characteristics in case the real-world behaviour adheres to the
Markov property, whereas violations of this property cause inefficiencies due the
inherent restrictions of Markov model statistics. The lessons learned from the
evaluation study has inspired a more robust prediction-based update strategy,
which we then introduced in the following chapter.

Drawing on the results from this research, we introduced an improved approach that is
able to provide hard guarantees about the energy consumption on mobile devices. To this
end, we have developed novel predictive update protocols for mobile sensing application,
addressing the following optimization problem: given a limited energy budget for update
operations, an optimal update schedule has to be found that maximizes the context
accuracy at a consumer. To solve this problem, we have developed a model of a stochastic
decision process which exploits knowledge about the future behaviour of mobile users
to anticipate the effectiveness of various update decisions and infer the optimal protocol
configuration. In more detail, we have made the following contributions:

• Two variants of a constrained optimization problem have been formalized to
describe the tasks of informing a remote party about a user’s context changes
under a given energy budget. The variants differ in their assumption about
whether the on-device sensors can be duty-cycled or not.

• A mathematical model of the update process between producer and consumer has
been proposed. The model is based on a Constrained Markov Decision Process

170

9.2. Context Prediction in Mobile Systems

(CDMP) and describes the energy costs and accuracy gains with respect to the
different update decisions which can be made.

• In order to solve the optimization problem, a translation of the CMDP into a
Linear Programming (LP)/ Non-Linear Programming (NLP) problem has been
described. The solution reveals a probabilistic update schedule to control the
context update process on a mobile device and achieves maximal context accuracy
within the given hard energy bounds.

• In our evaluation, we have demonstrated for a real-world context trace from a
mobile social networking application that our predictive protocols are far more
effective than protocols that ignore knowledge of future user behaviour to deal
with limited energy budgets.

In conclusion, the concepts and results of this thesis represent major contributions
to the field of context prediction for the development of more intelligent proactive
mobile systems. The context prediction models and prediction algorithms we have
developed fill the gap of existing approaches in forecasting state-based context data
with high accuracy and expressiveness. This will strongly help to advance the capability
of context-aware systems to become much more intelligent in responding to the future
needs of mobile users. Moreover, we have demonstrated that predictions about a user’s
future behaviour can be also fed back to mobile systems to vastly improve their energy
efficiency in sensing and reporting a user’s context changes. Since our algorithms are
applicable to any forms of discrete context such as location or activity information,
we can thus guarantee a wide exploitation of our contributions in current and future
generations of context-aware mobile systems.

171

Chapter 10
Outlook

In this final chapter, we discuss directions for future research in the area of context
prediction. Interesting opportunities for research activities are discussed which build on
the results of our work, but have been beyond the scope of this thesis.

Life-long learning. In current research, only context data sets of limited temporal
scope are available. The opportunities to study user behaviour over longer time periods
are thus severely limited. In the future, the scale of available context data sets will
be further growing with widely deployed context recognition technologies. As a result,
the activities of humans are soon recorded over extensive periods of time, spanning
not only a couple of days, but several months and most probably entire years. With
respect to such extended time scales, humans usually go through different stages in
their life which might involve significant behavioural changes. For instance, as soon
as a student graduates from university, he will change his routine behaviour, possibly
move to another city to find a job and travel on new ways during his everyday life.

These changed habits and routines must be taken into account for providing accurate
context predictions. Therefore, it is vital to recognize behavioural drifts in a user’s
context and design learning algorithms which are able to discover and remove outdated
data. Different techniques have been used in computer science to deal with the ageing
phenomena of data, i.e., data where the past behaviour should be incorporated to a
lesser degree than fresh data. For instance, the exponential moving average is a popular
technique for smoothing historical data which exhibits changes over time. In future work,
it should be explored how suitable these tools are for implementing life-long learning
techniques in the field of context prediction. Based on the availability of large-scale
data sets, realistic evaluation studies will be possible to compare the performance of
different learning algorithms that may be used to solve this problem.

173

10. Outlook

Large-scale context prediction. With our context prediction system, we have
explored new ways of forecasting the behaviour of single persons. As a possible
extension to this approach, the behaviour of groups could be predicted. For instance,
proactive applications could be interested in knowing which group of people might
execute a certain activity at a particular place in the future time. This prediction could
be used for various purposes, e.g., for delivering traffic jam warnings to all car drivers
for which the prediction holds. Even though such a prediction is in principle feasible
with our approach, this raises fundamental challenges in terms of the scalability of the
system, since not only a single user’s prediction model, but those of all registered users
would have to be evaluated.

Therefore, a system architecture is required that scales with the number of users for
answering queries that involve entire groups of users. To accomplish this, new indexing
techniques are to be developed that help restricting the number of evaluations that have
to be made. The novelty of these methods would be that the index is not based on past
or current data, but on assumptions about the users’ future behaviour. For instance,
in case of location prediction, the index could encode the future locations that can be
potentially reached by certain users. Given such an index, those users who satisfy a
prediction could be identified in an efficient manner. However, in order to accomplish
this, an approach to continuously update and validate the index of predictions would
have to be developed.

Hybrid context prediction models. In the previous chapters, we have concentrated
on the prediction of discrete context data. With a discrete context model, meaningful
changes in the user’s context can be predicted, e.g., transitions between places such as
home or work. However, in some cases the discrete context model cannot be effectively
applied to capture the user’s current situation. For instance, while travelling on the
road network when driving a car, discrete context information cannot reflect the user’s
dynamic position. Instead, geographic positions such as GPS coordinates are often
employed in this case, so that various prediction techniques are required, either for
discrete or continuous context data, to make useful forecasts.

Existing research has proposed methods for both data categories: While the approach
presented in this thesis can be used for the prediction of discrete context, techniques
such as dead-reckoning have been applied to predict the positions of moving object.
However, in current research, those prediction models are always considered independent
from each other. For a universally applicable prediction system, both approaches have
to be integrated into a powerful hybrid prediction model. Also, the hybrid prediction
model could exploit inherent interdependencies among both approaches to improve the
prediction accuracy. For instance, assuming that a user is driving to his office, the
dead-reckoning techniques could be enhanced by including the knowledge about the
predicted trip destination. This can help to further increase the prediction accuracy, as
the future movement trajectory computed by the dead-reckoning algorithm is able to
incorporate the most probable destinations targeted by the user.

174

List of Figures

1.1. Venn diagram of thesis contributions 21

2.1. Layered architecture of a proactive context-aware system 31

3.1. Context prediction system architecture 45

4.1. Adaptable Pervasive Flow attached to a nurse 54
4.2. Representation of a Markov model as state transition system 58
4.3. Flow-based context predictor . 60
4.4. Learning algorithm example for update of the transition system 63
4.5. Example of short-term context prediction 65
4.6. Long-term context prediction exploiting a reduction of the search space 68
4.7. Flow predictor vs. history predictor: short-term prediction 71
4.8. Flow predictor vs. history predictor: further evaluations 72

5.1. Overview of the PreCon approach . 79
5.2. Semi-Markov Model . 82
5.3. Next Operator prediction inference . 88
5.4. Until Operator prediction inference . 90
5.5. Calculation of time-dependent transition probability 91
5.6. Prediction results for the Next operator 95
5.7. Prediction results for the Until operator 96

6.1. Online Mobile Social Network . 104
6.2. Energy consumption characteristics for mobile data communication over

cellular networks . 107

7.1. Overview of energy-efficient update protocols 113
7.2. Example of the Next-Step-Predictor (NS) 119
7.3. Example of the Multi-Step-Predictor (MS) 121
7.4. Example of the Expected-Dwell-Time-Predictor (ED) 123

175

List of Figures

7.5. Synthetic traces: time-based update protocol 126
7.6. Synthetic traces: deviation-based update protocol 127
7.7. Real traces: time-based update protocol 128
7.8. Real traces: deviation-based update protocol 129
7.9. Dwell time distribution . 130

8.1. Approach for configuring our predictive update protocol 139
8.2. Example of an accurate context despite of missed updates 143
8.3. Example of the CMDP for the update policy with memory 146
8.4. Overview of our Predictive Sensing and Update Protocol (PreSUP) . . 150
8.5. Learnt Markov model of user activities 156
8.6. Context accuracy of update protocols with hard energy bounds 157
8.7. Context accuracy of sensing-and-update protocol with hard energy bounds159

176

List of Tables

2.1. Overview of prevailing prediction methods and their characteristic features 35

5.1. Examples of temporal-logic prediction queries 85
5.2. Classification matrix of prediction results 93

177

List of Algorithms

1. Flow predictor: Learning algorithm . 61
2. Flow predictor: Transition System Update 62
3. Flow Predictor: Short-Term Context Prediction 66
4. Flow Predictor: Long-Term Context Prediction 67

5. Time-based Update Protocol . 115
6. Deviation-based Update Protocol . 116

7. Memory-less Update Protocol . 141
8. Update Protocol With Memory . 144
9. Sensing and Update Protocol . 152

179

List of Abbreviations

AR Autoregressive Model
ARMA Autoregressive Moving Average Model

BN Bayesian Network
DBN Dynamic Bayesian Network

CMDP Constrained Markov Decision Process
CSL Continuous Stochastic Logic
CTL Computational Tree Logic

DP Dynamic Programming
GPS Global Positioning System

GPRS General Packet Radio Service
HMM Hidden Markov Model

LP Linear Programming
MA Moving Average Model

MDP Markov Decision Process
NLP Non-Linear Programming

SMM Semi-Markov Model
UMTS Universal Mobile Telecommunications System

WGS84 World Geodetic System 1984

181

Bibliography

[AAH+09] Theodoros Anagnostopoulos, Christos Anagnostopoulos, Stathes Hadjief-
thymiades, Miltos Kyriakakos, and Alexandros Kalousis. Predicting the
Location of Mobile Users: A Machine Learning Approach. In Proceedings
of the 6th International Conference on Pervasive Services (ICPS), 2009.

[AG02] U-Blox AG. GPS Navigation Performance of TIM GPS Receivers.
http://www.u-blox.com, April 2002.

[Alt99] Eitan Altman. Constrained Markov Decision Process. Chapman &
Hall/CRC, 1999.

[Ama11] Amatriain, Xavier and Jaimes, Alejandro and Oliver, Nuria and Pujol, Josep
M. Data Mining Methods for Recommender Systems. In Recommender
Systems Handbook. Springer, 2011.

[AR11] J.K. Aggarwal and M.S. Ryoo. Human activity analysis: A Review. ACM
Computing Surveys (CSUR), 43:1–43, 2011.

[AS02] D. Ashbrook and T. Starner. Learning Significant Locations and Predict-
ing User Movement with GPS. In Proceedings of the Sixth International
Symposium on Wearable Computers (ISWC), 2002.

[Bas00] Basilio Sierra and Iñaki Inza and Pedro Larrañaga. Medical bayes networks.
In First International Symposium on Medical Data Analysis (ISMDA),
2000.

[BBHS03] Martin Bauer, Christian Becker, Jörg Hähner, and Gregor Schiele. Con-
textCube - Providing Context Information Ubiquitously. In Proceedings
of the 23rd International Conference on Distributed Computing Systems
Workshops (ICDCS 2003 Workshops), 2003.

[BBV09] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkatar-
amani. Energy Consumption in Mobile Phones: A Measurement Study
and Implications for Network Applications. In Proceedings of the 9th ACM
SIGCOMM Internet Measurement Conference (IMC), 2009.

183

Bibliography

[BD99] Amiya Bhattacharya and Sajal K. Das. LeZi-Update: An Information-
theoretic Approach to Track Mobile Users in PCS networks. In Proceedings
of the 5th Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking (MobiCom), 1999.

[BDR12a] Patrick Baier, Frank Duerr, and Kurt Rothermel. TOMP: Opportunistic
Traffic Offloading Using Movement Predictions. In Proceedings of the 37th
IEEE Conference on Local Computer Networks (LCN), 2012.

[BDR12b] Patrick Baier, Frank Dürr, and Kurt Rothermel. PSense: Reducing En-
ergy Consumption in Public Sensing Systems. In Proceedings of the 26th
IEEE International Conference on Advanced Information Networking and
Applications (AINA), 2012.

[Bel57] Richard Bellmann. A Markovian Decision Process. Journal of Mathematics
and Mechanics, 6:679–684, 1957.

[BHHK03] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter
Katoen. Model-Checking Algorithms for Continuous-Time Markov Chains.
IEEE Transactions on Software Engineering, 29:524–541, 2003.

[BI98] A. F. Bobick and Y. A. Ivanov. Action Recognition Using Probabilistic
Parsing. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 1998.

[BI04] Ling Bao and Stephen S. Intille. Activity Recognition from User-Annotated
Acceleration Data. Pervasive Computing, 3001:1–17, 2004.

[BJR08] George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time
Series Analysis: Forecasting and Control. John Wiley & Sons, 2008.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008.

[BKH99] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approxim-
ate Symbolic Model Checking of Continuous-Time Markov Chains. In
Proceedings of the 10th International Conference on Concurrency Theory
(CONCUR), 1999.

[BKVR10] Andreas Benzing, Boris Koldehofe, Marco Völz, and Kurt Rothermel. Multi-
level Predictions for the Aggregation of Data in Global Sensor Networks. In
Proceedings of the 14th IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications, 2010.

[BMR04] Suanne Bürklen, Pedro José Marrón, and Kurt Rothermel. An Enhanced
Hoarding Approach Based on Graph Analysis. In Proceedings of the IEEE
International Conference on Mobile Data Management (MDM), 2004.

[BNKS94] Amotz Bar-Noy, Ilan Kessler, and Moshe Sidi. Mobile Users: to Update or
not to Update? In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), 1994.

184

Bibliography

[BNSW94] Norman Adams Bill N. Schilit and Roy Want. Context-aware Computing
Applications. In Proceedings of IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA), 1994.

[BPE07] Web Services Business Process Execution Language Version 2.0, March
2007.

[BZ10] Andrey Boytsov and Arkady B. Zaslavsky. Context Prediction in Pervasive
Computing Systems: Achievements and Challenges. In Supporting Real
Time Decision-Making, Annals of Information Systems. Springer, 2010.

[CEL+08] Andrew T. Campbell, Shane B. Eisenman, Nicholas D. Lane, Emiliano
Miluzzo, Ronald A. Peterson, Hong Lu, Xiao Zheng, Mirco Musolesi, Kristóf
Fodor, and Gahng-Seop Ahn. The Rise of People-Centric Sensing. IEEE
Internet Computing, 12:12–21, 2008.

[CGS+09] Ionut Constandache, Shravan Gaonkar, Matt Sayler, Romit Roy Choudhury,
and Landon Cox. Energy-efficient Localization Via Personal Mobility
Profiling. In In Proceedings of the the First Annual International Conference
on Mobile Computing, Applications, and Services (MobiCase), 2009.

[Dey00] Anind K. Dey. Providing Architetcural Support for Building Context-aware
Applications. PhD thesis, Georgia Institute of Technology, Atlanta, GA,
USA, November 2000.

[DH98] Brian D. Davison and Haym Hirsh. Predicting Sequences of User Actions.
In Workshop on Predicting the Future: AI Approaches to Time Series
Analysis, 1998.

[DH07] Elizabeth M. Daly and Mads Haahr. Social Network Analysis for Routing
in Disconnected Delay-tolerant MANETs. In Proceedings of the 8th ACM
international Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), 2007.

[DR03] Frank Dürr and Kurt Rothermel. On a Location Model for Fine-Grained
Geocast. In Proceedings of the Fifth International. Conference on Ubiquitous
Computing (UbiComp), 2003.

[DS98] Norman R. Draper and Harry Smith. Applied Regression Analysis. Wiley-
Blackwell, 1998.

[EFH+09] Hanna Eberle, Stefan Föll, Klaus Herrmann, Frank Leymann, Annapaola
Marconi, Tobias Unger, and Hannes Wolf. Enforcement from the Inside:
Improving Quality of Business in Process Management. In Proceedings of
the IEEE International Conference on Web Services (ICWS), 2009.

[EPT+06] Antti J. Eronen, Vesa T. Peltonen, Juha T. Tuomi, Anssi P. Klapuri, Seppo
Fagerlund, Timo Sorsa, Gaëtan Lorho, and Jyri Huopaniemi. Audio-based
Context Recognition. IEEE Transactions on Audio, Speech, and Language
Processing, 14:321–329, 2006.

185

Bibliography

[FBHR12] Stefan Föll, Florian Berg, Klaus Herrmann, and Kurt Rothermel. A Pre-
dictive Protocol for Mobile Context Updates with Hard Energy Constraints.
In Proceedings of the 13th International Conference on Mobile Data Man-
agement (MDM), 2012.

[FHH10] Stefan Föll, Klaus Herrmann, and Chistian Hiesinger. Flow-Based Context
Prediction. In Proceedings of the 7th International Conference on Pervasive
Services (ICPS), 2010.

[FHR11] Stefan Föll, Klaus Herrmann, and Kurt Rothermel. PreCon - Expressive
Context Prediction using Stochastic Model Checking. In Proceedings of
the 8th International Conference on Ubiquitous Intelligence and Computing
(UIC), 2011.

[FHR12] Stefan Föll, Klaus Herrmann, and Kurt Rothermel. Energy-efficient Update
Protocols for Mobile User Context. In Proceedings of the 26th IEEE Intl.
Conf. on Advanced Information Networking and Applications (AINA), 2012.

[FMK+10] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymbero-
poulos, Ramesh Govindan, and Deborah Estrin. Diversity in Smartphone
Usage. In Proceedings of the 8th International Conference on Mobile systems,
Applications, and Services (MobiSys), 2010.

[GC07] Karthik Gopalratnam and Diane J. Cook. Online Sequential Prediction
via Incremental Parsing: The Active LeZi Algorithm. IEEE Intelligent
Systems, 22:52–58, 2007.

[HCY08] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble Rap: Social-based
Forwarding in Delay Tolerant Networks. In Proceedings of the 9th ACM
international symposium on Mobile ad hoc networking and computing (Mo-
biHoc), 2008.

[HHK+10] Bo Han, Pan Hui, V.S. Anil Kumar, Madhav V. Marathe, Guanhong Pei,
and Aravind Srinivasan. Cellular Traffic Offloading Through Opportunistic
Communications: a Case Study. In Proceedings of the 5th ACM workshop
on challenged networks (CHANTS), 2010.

[HLA+04] Lonnie Harvel, Ling Liu, Gregory D. Abowd, Yu xi Lim, Chris Scheibe,
and Chris Chatham. Context Cube: Flexible and Effective Manipulation of
Sensed Context Data. In Proceedings of the Second International Conference
on Pervasive Computing (Pervasive), 2004.

[How71a] Ronald A. Howard. Dynamic Probabilistic Systems: Markov Models. John
Wiley & Sons, 1971.

[How71b] Ronald A. Howard. Dynamic Probabilistic Systems: Semi-Markov and
Decision Processes. John Wiley & Sons, 1971.

186

Bibliography

[HRKD08] Klaus Herrmann, Kurt Rothermel, Gerd Kortuem, and Naranker Dulay.
Adaptable Pervasive Flows - An Emerging Technology for Pervasive Ad-
aptation. In Proceedings of the Workshop on Pervasive Adaptation at the
2nd International Conference on Self-Adaptive and Self-Organizing Systems,
2008.

[HS07] M. Hartmann and D. Schreiber. Prediction Algorithms for User Actions. In
In Proceedings of International Conference on Adaptive Business Informa-
tion Systems (BIS), 2007.

[HWR11] Klaus Herrmann Hannes Wolf and Kurt Rothermel. FlexCon: Robust
Context Handling in Human-Oriented Pervasive Flows. In Poceedings of the
19th International Conference on Confederated International Conferences
(CoopIS), 2011.

[KH05] David Kotz and Tristan Henderson. CRAWDAD: A Community Resource
for Archiving Wireless Data at Dartmouth. IEEE Pervasive Computing,
4(4):12–14, oct 2005.

[KLGT09] Mikkel Baun Kjaergaard, Jakob Langdal, Torben Godsk, and Thomas
Toftkjaer. EnTracked: Energy-efficient Robust Position Tracking for Mobile
Devices. In Proceedings of the 7th International Conference on Mobile
systems, Applications, and Services (MobiSys), 2009.

[KM09] Dimitrios Katsaros and Yannis Manolopoulos. Prediction in Wireless
Networks by Markov Chains. IEEE Wireless Communications, 16:56–63,
2009.

[KNP07] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic Model Checking.
Formal Methods for the Design of Computer, Communication and Software
Systems: Performance Evaluation, 4486:220–270, 2007.

[Kop08] Daniel; Wutke Daniel; Leymann Frank Kopp, Oliver; Martin. On the Choice
Between Graph-Based and Block-Structured Business Process Modeling
Languages. In Modellierung betrieblicher Informationssysteme (MobIS
2008), 2008.

[KR01a] Uwe Kubach and Kurt Rothermel. A Map-Based Hoarding Mechanism for
Location-Dependent Information. In Proceedings of the Second International
Conference on Mobile Data Management (MDM), 2001.

[KR01b] Uwe Kubach and Kurt Rothermel. Exploiting Location Information for
Infostation-based Hoarding. In Proceedings of the 7th Annual International
Conference on Mobile computing and Networking (MobiCom), 2001.

[KR02] Uwe Kubach and Kurt Rothermel. Estimating the Benefit of Location-
Awareness for Mobile Data Management Mechanisms. In Proceedings of
the International Conference on Pervasive Computing (Pervasive), 2002.

187

Bibliography

[Kru11] John Krumm. Ubiquitous Advertising: The Killer Application for the 21st
Century. Pervasive Computing, 10(1):66–73, 2011.

[KWK+09] Kai Kunze, Florian Wagner, Ersun Kartal, Ernesto Morales Kluge, and
Paul Lukowicz. Does Context Matter? A Quantitative Evaluation in a
Real World Maintenance Scenario. In Proceedings of the 7th International
Conference on Pervasive Computing (Pervasive), 2009.

[KWM10] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. Activity
Recognition using Cell Phone Accelerometers. ACM SIGKDD Explorations
Newsletter, 12:74–82, 2010.

[LDR08] Ralph Lange, Frank Dürr, and Kurt Rothermel. Scalable Processing of
Trajectory-Based Queries in Space-Partitioned Moving Objects Databases.
In Proceedings of the 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 2008.

[LFC06] Jérémie Leguay, Timur Friedman, and Vania Conan. Evaluating Mobility
Pattern Space Routing for DTNs. In Proceedings of the 25th IEEE Inter-
national Conference on Computer Communications (INFOCOM), 2006.

[LH06] Jong-Known Lee and Jennifer C. Hou. Modeling Steady-state and Transient
Behaviours of User Mobility: Formulation, Analysis, and Application. In
Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), 2006.

[LHK01] Gabriel G. Infante Lopez, Holger Hermanns, and Joost-Pieter Katoen.
Beyond Memoryless Distributions: Model Checking Semi-Markov Chains.
In Process Algebra and Probabilistic Methods. Performance Modeling and
Verification, 2001.

[LML+10] Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem
Choudhury, and Andrew T. Campbell. A Survey of Mobile Phone Sensing.
IEEE Communications Magazine, 48:140–150, 2010.

[LPL+09] Hong Lu, Wei Pan, Nicholas D. Lane, Tanzeem Choudhury, and Andrew T.
Campbell. SoundSense: Scalable Sound Sensing for People-centric Applica-
tions on Mobile Phones. In Proceedings of the 7th international conference
on Mobile systems, applications, and services (MobiSys), 2009.

[LR01] Alexander Leonhardi and Kurt Rothermel. A Comparison of Protocols for
Updating Location Information. Cluster Computing, 4(4):355–367, October
2001.

[LRC+12] Hong Lu, Mashfiqui Rabbi, Gokul T. Chittaranjan, Denise Frauendorfer,
Marianne Schmid Mast, Andrew T. Campbell, Daniel Gatica-Perez, and
Tanzeem Choudhury. StressSense: Detecting Stress in Unconstrained
Acoustic Environments using Smartphones. In Proceedings of the 14th
International Conference on Ubiquitous Computing (Ubicomp 2012), 2012.

188

Bibliography

[Mac67] James B. MacQueen. Some Methods for Classiffcation and Analysis of
Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, 1967.

[May04] Rene Michael Mayrhofer. An Architecture for Context Prediction. PhD
thesis, Johannes Kepler University of Linz, 2004.

[May05] Rene Mayrhofer. Context Prediction based on Context Histories: Ex-
pected Benefits, Issues and Current State-of-the-Art. In Proceedings of
the 1st International Workshop on Exploiting Context Histories in Smart
Environments, 2005.

[Men02] Scott W. Menard. Applied Logistic Regression. Sage Publications, 2002.

[MLF+08] Emiliano Miluzzo, Nicholas D. Lane, Kristof Fodor, Ronald A. Peterson,
Hong Lu, Mirco Musolesi, Shane B. Eisenman, Xiao Zheng, and Andrew T.
Campbell. Sensing Meets Mobile Social Networks: The Design, Implement-
ation and Evaluation of the CenceMe Application. In Proceedings of 6th
ACM Conference on Embedded Networked Sensor Systems (SenSys), 2008.

[MM07] Justin Muncaster and Yunqian Ma. Activity Recognition using Dynamic
Bayesian Networks with Automatic State Selection . In Proceedings of the
IEEE Workshop on Motion and Video Computing (WMVC), 2007.

[MPF+10] Mirco Musolesi, Mattia Piraccini, Kristof Fodor, Antonio Corradi, and
Andrew T. Campbell. Supporting Energy-Efficient Uploading Strategies for
Continuous Sensing Applications on Mobile Phones. In Proceedings of the
8th International Conference on Pervasive Computing (Pervasive), 2010.

[MPS+09] Annapaola Marconi, Marco Pistore, Adina Sirbu, Hanna Eberle, Frank
Leymann, and Tobias Unger. Enabling Adaptation of Pervasive Flows:
Built-in Contextual Adaptation. In Proceedings of the 7th International
Joint Conference ICSOC-Service Wave, 2009.

[MPV01] Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining. In-
troduction to Linear Regression Analysis. Wiley, 2001.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. In-
troduction to Information Retrieval. Cambridge University Press, 2008.

[MSA03] Arunesh Mishra, Minho Shin, and William Arbaugh. An Empirical Ana-
lysis of the IEEE 802.11 MAC Layer Handoff Process. ACM SIGCOMM
Computer Communication Review, 33:93 – 102, 2003.

[MSA04] Arunesh Mishra, Minho Shin, and William Arbaugh. Context Caching using
Neighbor Graphs for Fast Handoffs in a Wireless Network. In 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), 2004.

189

Bibliography

[Mur02] Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference
and Learning. PhD thesis, University of California, Berkeley, 2002.

[Nee12] Neelamadhab Padhy and Pragnyaban Mishra and Rasmita Panigrahi. The
Survey of Data Mining Applications And Feature Scope. Asian Journal of
Computer Science & Information Technology, 2:68–77, 2012.

[NSMP11] Anastasios Noulas, Salvatore Scellato, Cecilia Mascolo, and Massimiliano
Pontil. An Empirical Study of Geographic User Activity Patterns in
Foursquare. In Proceedings of Fifth International AAAI Conference on
Weblogs and Social Media (ICWSM 2011), 2011.

[Pea85] Judea Pearl. Bayesian Networks: A Model of Self-Activated Memory for
Evidential Reasoning. In Proceedings of the 7th Conference of the Cognitive
Science Society, 1985.

[PNF05] M. Martin P. Nurmi and J. A. Flanagan. Enabling Proactiveness through
Context Prediction. In In Proceedings of the 2nd Workshop on Context
Awareness for Proactive Systems, 2005.

[PP09] Kurt Partridge and Bob Price. Enhancing Mobile Recommender Systems
with Activity Inference. In Proceedings of the 17th International Conference
on User Modeling, Adaptation, and Personalization (UMAP), 2009.

[Qui86] J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1:81–106,
1986.

[Rab89] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proceedings of the IEEE, 77:257–286,
1989.

[RBB+03] Abhishek Roy, Soumya K. Das Bhaumik, Amiya Bhattacharya, Kalyan Basu,
Diane J. Cook, and Sajal K. Das. Location Aware Resource Management in
Smart Homes. In Proceedings of the First IEEE International Conference
on Pervasive Computing and Communications (PERCOM), 2003.

[RDB07] Abhishek Roy, Sajal K. Das, and Kalyan Basu. A Predictive Framework for
Location-Aware Resource Management in Smart Homes. IEEE Transactions
on Mobile Computing, 6:1270–1283, 2007.

[RH10] Parisa Rashidi and Lawrence B. Holder. Discovering Activities to Recognize
and Track in a Smart Environment. IEEE Transactions on Knowledge and
Data Engineering, 23(4):527–539, 2010.

[RLFC11] Daniel Roggen, Paul Lukowicz, Alois Ferscha, and Ricardo Chavarriaga.
The OPPORTUNITY Framework and Data Processing Ecosystem for
Opportunistic Activity and Context Recognition. International Journal of
Sensors, Wireless Communications and Control, Special Issue on Autonomic
and Opportunistic Communications, 2011.

190

Bibliography

[RMD07] A. Roy, A. Misra, and S.K. Das. Location update versus paging trade-off
in cellular networks: An approach based on vector quantization. IEEE
Transactions on Mobile Computing, 6:1426–1440, 2007.

[RMM+10] Kiran K. Rachuri, Mirco Musolesi, Cecilia Mascolo, Peter J. Rentfrow,
Chris Longworth, and Andrius Aucinas. EmotionSense: a Mobile Phones
based Adaptive Platform for Experimental Social Psychology Research.
In Proceedings of the 12th ACM International Conference on Ubiquitous
computing (Ubicomp), 2010.

[RMM+11] Kiran K. Rachuri, Cecilia Mascolo, Mirco Musolesi, , and Peter J. Rent-
frow. SociableSense: Exploring the Trade-offs of Adaptive sampling and
Computation Offloading for Social Sensing. In Proceedings of the 17th
Annual International Conference on Mobile Computing and Networking
(MobiCom), 2011.

[RN09] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson, 2009.

[RRD06] Nirmalya Roy, Abhishek Roy, and Soumya K. Das. Context-Aware Re-
source Management in Multi-Inhabitant Smart Homes: A Nash H-Learning
based Approach. In Proceedings of the Fourth Annual IEEE International
Conference on Pervasive Computing and Communications (PERCOM),
2006.

[RZ07] Ahmad Rahmati and Lin Zhong. Context-for-wireless: Context-sensitive
energy-efficient wireless data transfer. In Proceedings of the 5th international
Conference on Mobile Systems, Applications and Services (MobiSys), 2007.

[SARK09] Marjorie Skubic, Gregory Alexander, Mihail Popescu Marilyn Rantz, and
James Keller. A Smart Home Application to Eldercare: Current status
and Lessons Learned. Technology and Health Care - Smart Environments:
Technology to Support Healthcare, 17:183–201, 2009.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-Werner Gellersen. There is More
to Context Than Location. Computers & Graphics Journal, 23:893–902,
1999.

[SG05] Pete Steggles and Stephan Gschwind. The Ubisense Smart Space Plat-
form. In Proceedings of the Third International Conference on Pervasive
Computing (Pervasive), 2005.

[SGP+05] W. Schwinger, Ch. Grün, B. Pröll, W. Retschitzegger, and A. Schauerhuber.
Context-Awareness in Mobile Tourism Guides - A Comprehensive Survey.
2005.

[Sha05] Shaw, James W. and Horrace, William C. and Vogel, Ronald J. The
Determinants of Life Expectancy: An Analysis of the OECD Health Data.
Southern Economic Journal, 71:768–783, 2005.

191

Bibliography

[Sig08] Stephan Sigg. Development of a Novel Context Prediction Algorithm and
Analysis of Context Prediction Schemes. PhD thesis, University of Kassel,
2008.

[SKJH04] Libo Song, David Kotz, Ravi Jain, and Xiaoning He. Evaluating Next-Cell
Predictors with Extensive Wi-Fi Mobility Data. IEEE Transactions on
Mobile Computing, 5:1633–1649, 2004.

[ST94] Bill N. Schilit and Marvin T. Theimer. Disseminating Active Map Informa-
tion to Mobile Hosts. IEEE Network, 8:22–32, 1994.

[TF08] M. Tentori and J. Favela. Activity-Aware Computing for Healthcare. IEEE
Pervasive Computing Magazine, 7:51–57, 2008.

[TIL04] E. Munguia Tapia, S. S. Intille, and K. Larson. Activity Recognition in the
Home Setting Using Simple and Ubiquitous Sensors. In Proceedings of the
2nd International Conference on Pervasive Computing, 2004.

[Tsa02] Ruey S. Tsay. Analysis of Financial Time Series. Wiley, 2002.

[WDR10] Harald Weinschrott, Frank Dürr, and Kurt Rothermel. StreamShaper:
Coordination Algorithms for Participatory Mobile Urban Sensing. In
Proceedings of the 7th IEEE International Conference on Mobile Ad-hoc
and Sensor Systems (MASS), 2010.

[Wei05] William W. S. Wei. Time Series Analysis: Univariate and Multivariate
Methods. Addison Wesley, 2005.

[WFH11] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kaufmann, 2011.

[WGS94] WGS84 Military Standard, 1994.

[WHFG92] Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons. The
Active Badge Location System. ACM Transactions on Information Systems
(TOIS), 10:91–102, 1992.

[WKZA10] Yi Wang, Bhaskar Krishnamachari, Qing Zhao, and Murali Annavaram.
Markov-optimal Sensing Policy for User State Estimation in Mobile Devices.
In Proceedings of the 9th ACM/IEEE International Conference on Inform-
ation Processing in Sensor Networks (IPSN), 2010.

[WLTS06] Jamie A. Ward, Paul Lukowicz, Gerhard Tröster, and Thad Starner. Activ-
ity Recognition of Assembly Tasks using Body-worn Microphones and
Accelerometers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28:1553–1567, 2006.

[WMH60] B. Widrow and Jr M.E. Hoff. Adaptive Switching Circuits. In IRE WESCON
Convention Record, 1960.

192

Bibliography

[WSCY99] Ouri Wolfson, A. Prasad Sistla, Sam Chamberlain, and Yelena Yesha.
Updating and Querying Databases that Track Mobile Units. Distributed
and Parallel Databases, 7(3):257–287, July 1999.

[ZL78] Jacob Ziv and Abraham Lempel. Compression of Individual Sequences via
Variable-rate Coding. IEEE Transactions on Information Theory, 24:530–
536, 1978.

193

	Abstract
	Zusammenfassung
	Introduction and Background
	Introduction
	Motivation
	Contributions
	The ALLOW Project
	Structure of Thesis

	Background
	Trends in Context-aware Computing
	Applications of Context Prediction
	Architecture of a Proactive Context-Aware System
	Context Prediction Methods
	ARMA
	Regression Analysis
	Classification
	Bayesian Networks
	Markov Models

	Summary

	Context Prediction Models
	System Architecture
	Requirements
	System Components
	Context History
	Stochastic User Model
	Learning Algorithm
	Context Prediction Query
	Prediction Algorithm
	System Component Instances

	Improving Context Prediction Accuracy with Adaptable Pervasive Flows
	Introduction
	Adaptable Pervasive Flows
	Flow Model
	Flow Instance

	Flow-Based Context Prediction
	Context Prediction Models
	History Predictor
	Flow Predictor

	Learning Algorithm
	Prediction Algorithms
	Short-term Context Prediction
	Long-term Context Prediction

	Evaluation
	Evaluation Setup
	Evaluation Results

	Related Work
	Summary

	Expressive Context Prediction using Stochastic Model Checking
	Introduction
	Overview of the PreCon Approach
	Time-dependent Stochastic User Model
	Semi-Markov Model
	Learning Approach
	User States
	Transition Probabilities
	Dwell Time Distribution

	Prediction Query Language
	Model Checking Algorithms
	Next Operator
	Until Operator

	Evaluation
	Evaluation Metrics
	Evaluation Results

	Related Work
	Summary

	Context Prediction in Mobile Systems
	Mobile Sensing Applications
	Application Scenario
	System Model
	Energy Characteristics of Mobile Data Communication

	Energy-efficient Context Update Protocols using Context Prediction
	Introduction
	Problem Statement
	Approach Overview
	Basic Update Protocols
	Time-based Update Protocol
	Deviation-based Update Protocol

	Stochastic User Model
	Context Predictors
	Next-Step-Predictor (NS)
	Multi-Step-Predictor (MS)
	Expected-Dwell-Time-Predictor (ED)
	Last-Transmitted-Predictor (LT)

	Evaluation
	Synthetic Traces
	Real Traces
	Discussion

	Related Work
	Summary

	Predictive Context Update Protocols with Hard Energy Constraints
	Introduction
	Predictive Update Protocol with Hard Energy Bounds
	Problem Statement
	Approach Overview
	Update Protocols
	Memory-less Update Protocol
	Update Protocol with Memory

	Predictive Sensing and Update Protocol with Hard Energy Bounds
	Extended Problem Statement
	Approach Overview
	Sensing and Update Algorithm

	Evaluation
	Evaluation Methodology
	Stochastic User Model
	Update Protocols
	Sensing and Update Protocol

	Related Work
	Summary

	Summary and Outlook
	Summary
	Context Prediction Models
	Context Prediction in Mobile Systems

	Outlook
	Bibliography

