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Abstract 

Workflows and service oriented computing (SOC) are an integral part of today’s business 

scenarios. The SimTech project aims to leverage these proven technologies in the context 

of scientific research. Yet, this field of eScience has different requirements on SOC than 

their business counterparts. One of these differences is, that services and resources 

needed by scientists are commonly only required for very specific amounts of time and 

do not need to follow the always-on principle of traditional SOC. Thus, a means is 

necessary to make services and resources available when required and also free them 

again as soon as they are no longer needed. As a solution to utilize SOC in eScience 

scenarios, SimTech promotes the use of Cloud Technologies to enable the on-demand 

provisioning of services and their necessary infrastructure. 

This diploma thesis is focused on describing different architectural concepts and designs 

that enable the on-demand provisioning of services and their underlying infrastructure 

and middleware. These designs and concepts aim to strike a middle ground between 

abstract high-level architectures and very low-level architectures that focus solely on 

software specifics. The concepts have been designed in context of a Scientific Workflow 

Management System. A prototypical implementation that demonstrates the developed 

concepts concludes this thesis. 
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1 Introduction 

In the cloud computing world the term “on-demand provisioning” or “dynamic on-

demand provisioning” is often not tied to the provisioning of services directly but rather 

to the underlying infrastructure and resources required to operate a service (see also 

chapter 3 “Related Work”). Although services may be deployed on-demand through 

means like TOSCA, the deployment process is still triggered by an individual user 

[TOS13]. This is not a problem in traditional Web Services-SOA, since services are 

designed to follow the always-on principle and are permanently available to clients after 

their initial deployment [Pap08]. The same aspect also applies to business processes or 

workflows, which again, are normally designed once and not altered very often. However 

when utilizing workflow technology to model an experiment in a scientific environment, 

processes are redesigned multiple times and services are infrequently used [GSK⁺11]. 

The scope of this thesis encompasses the conceptualization of a system to enable an 

automatic and on-demand provisioning and deprovisioning of services, as well as a 

prototypical implementation of such a system. 

1.1 Motivation 

On-demand provisioning of services facilitates the usage of web services by a grand 

margin. It is no longer necessary to deploy and manage services by hand. Instead, the 

dynamic binding functionality of a service bus is enhanced by also taking care of 

provisioning the service and its underlying infrastructure. In the field of eScience, where 

services are used infrequently in contrast to business scenarios, on-demand provisioning 

of services with subsequent deprovisioning enables the utilization of Cloud resources for 

a variety of application and computing scenarios. 

1.2 Outline 

 Chapter 1: General introduction, motivation and conventions. 

 Chapter 2: Introduction of various technologies, standards and 

software relevant to this thesis. 

 Chapter 3: Overview of other scientific works which are 

related to the general scope of on-demand provisioning of 

services in various settings and environments. 
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 Chapter 4: Previous work that forms the basis of this diploma 

thesis. 

 Chapter 5: Modifications and additions to previous work. 

 Chapter 6: Core concepts and designs for realizing on-demand 

provisioning of services. 

 Chapter 7: Overview of different aspects of the prototypical 

implementation. 

 Chapter 8: Summary and outlook on future works and subjects 

still requiring additional research. 

1.3 Conventions 

The following typographical conventions are used in this thesis: 

 Italic: Indicates new or important terms and/or terms directly 

related to a figure or listing in whose context these terms are 

used. 

 Constant width : Indicates some kind of source code. 
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2 Fundamentals 

In this chapter basic explanations about concepts and technologies are given that are 

relevant to this thesis and help to understand the later chapters. 

2.1 Cloud Computing 

The term Cloud Computing has been a buzzword for several years now. Companies are 

moving their applications and systems away from running on individual servers and into 

the Cloud. This enables application scenarios that would have previously required a large 

amount of resources and money, even for smaller businesses. Cloud service providers 

offer virtualized computing resources or services that may span over multiple physical 

machines. Services may be anything between single applications and whole 

infrastructures that are available over a network. The virtualization process is 

completely hidden from the client requesting the resources. This process also enables 

features like automatic scaling. If suddenly more resources are required, they can be 

allocated dynamically. The client is generally only billed for the actual resources he used, 

because in times of low resource consumption, these can be utilized by other clients. This 

results in a near perfectly efficient use of the Cloud provider’s infrastructure. 

The National Institute of Standards and Technology (NIST) defines Cloud Computing with 

the five “essential characteristics” [NIS11]. On-demand self-service, broad network access, 

resource pooling, rapid elasticity and measured service. On-demand self-service means that 

there is no human interaction required to use the provided capabilities of a service 

provider. Broad network access defines that all capabilities are available over a network 

and that these can be accessed through standard mechanisms. Resource pooling is the fact 

that the provided computing resources are pooled and served to a multitude of 

consumers. The required physical and virtual resources are dynamically assigned and 

reassigned depending on consumer demand. The consumer generally has no sense of the 

exact location of the actual used resources. These resources and capabilities appear to be 

unlimited to the consumer, since they can be elastically provisioned and released at any 

time and in some cases automatically. This is defined as rapid elasticity. The term 

measured service means that the resource use is automatically controlled and optimized. 

Additionally it can be monitored, controlled and reported to provide further information 

for both consumer and service provider [NIS11]. 

NIST also defines three fundamental service models, offering various degrees of 

abstraction and how much control a consumer has over the service: Infrastructure as a 

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). Today there 

exist many more types of service models that generally are a subclass of one of the 
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fundamental service models, e.g. a Network as a Service (NaaS) would be a kind of IaaS 

offering. 

The Infrastructure as a Service model is the most basic of the three models. This model 

most closely resembles a traditional server, where the consumer is able to run any kind 

of software, like operating systems and applications and configure them freely on the 

provided system but has no control over the underlying cloud infrastructure. For 

example, IaaS models include virtual machines or storage offerings. 

The next level of abstraction is the Platform as a Service model. On a PaaS the abstraction 

starts at an environment that is preconfigured by the provider. The consumer is still able 

to deploy its own applications, but has no longer control over the operating system or 

other dependencies like libraries and tools. Real world examples of PaaS offerings are 

Google App Engine1 and Microsoft Azure2, which offer runtime environments or 

middleware. 

A Software as a Service model offers the highest level of abstraction. In this model, a 

consumer directly uses applications offered by the provider, for example through a web 

browser or other thin client interface. The consumer has only limited control over the 

application settings and none over its underlying software stack or infrastructure. There 

are a variety of different SaaS offerings found on the web. For example Google services 

like Docs3 or Drive4. 

2.2 Service-Oriented Architecture 

Weerawarana et al. define that Service-Oriented Architecture (SOA) describes an abstract 

architectural concept that enables the interaction between different services that are 

based on the principles of loose coupling and dynamic binding [WCL⁺05]. It should be 

noted that SOA is not exclusive to a specific technology like web services. The basic 

principles of SOA are illustrated in the following Figure 2-1. 

 

Figure 2-1: The SOA Triangle 

                                                             
1 https://developers.google.com/appengine/ 
2 http://azure.microsoft.com 
3 https://docs.google.com 
4 https://drive.google.com/ 
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A Service Provider publishes a definition of his service to a central Service Registry. This 

definition includes functional and nonfunctional capabilities of the service and also 

information of how a consumer is able to bind to this service. A Service Requestor 

instructs the Service Registry to find a service that matches his requirements. The Service 

Registry then tries to match the provided requirements of the requestor with the 

capabilities of a service. After a service has been found, the Service Requestor now 

possesses all the required information to bind himself to the matched service and use it 

[WCL⁺05]. 

Figure 2-2 illustrates how this process can be facilitated, especially for the Service 

Requestor, by introducing a Service Bus. The Service Bus acts as a middleware between 

the Service Requestor on the one side and Service Provider and Registry on the other 

side. A requestor simply sends his data and description of the service he intends to use to 

the Service Bus. This description does not target a specific service. The requestor merely 

conveys information about his functional and non-functional requirements to the bus. 

The bus selects the appropriate service, transforms the original request message if 

necessary and passes the response from the service back to the Service Requestor 

[WCL⁺05]. 

 

Figure 2-2: SOA Triangle with Service Bus 

Chappell describes the Enterprise Service Bus as the “implementation backbone” for a 

SOA [Cha04]. This approach is followed in this thesis, as an Enterprise Service Bus is the 

key component of the overall architecture introduced later in this thesis in chapter 4 

“Previous Work”. 

2.3 Enterprise Service Bus 

Chappell in [Cha04] describes in detail different characteristics and features of an 

Enterprise Service Bus (ESB). An Enterprise Service Bus provides all necessary 
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mechanisms for loosely coupled interactions between different applications. All 

applications that are connected to the bus no longer need to worry about data 

transformation or losing messages. If an application wants to communicate with the 

service bus, only an adapter has to be used to let the application connect to the bus in its 

native way; meaning that the integration of an existing application does not need to be 

changed. This is illustrated in Figure 2-3 where different components are integrated by 

the ESB via adapters that allow various technologies to connect to the Service Bus. Both 

components on the bottom of Figure 2-3 may for example be Web Services that are 

communicating over HTTP. So they are both integrated by HTTP-adapters (marked with 

an X in Figure 2-3) whose endpoints are exposed by the ESB so the Web Services 

themselves are unaware that they are communicating through a Service Bus. The other 

component in the top half of Figure 2-3 may be a custom Java application that 

communicates via POJOs so the corresponding adapter (marked with a Y in Figure 2-3) 

has to receive the objects and transforms them into the bus. 

 

Figure 2-3: ESB integrating components based on different technologies 

An ESB both separates application and integration logic and provides a distributed 

integration. This is in contrast to other integration approaches like traditional EAI, using 

an Application Server or a Message Oriented Middleware (MOM). While a MOM also 

provides the ability to connect applications in a loosely coupled and asynchronous 

fashion in contrast to hub-and-spoke architectures, applications need low-level coding in 

order to be able to interact with the MOM. This means that the integration logic is 

hardwired with the application logic. An ESB allows for clear separation of integration 

and business logic. Furthermore an ESB architecture may span across multiple physical 

networks by interconnecting multiple buses [Cha04]. 
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Chappell sums up the characteristics of an ESB as being pervasive, meaning that an ESB 

can be used in a variety of integration situations and projects. Being a highly distributed 

and event-driven SOA and allowing for a selective deployment of integration 

components. All these components can take advantage of reliable messaging and other 

security and reliability features. The data on the bus is allowed to flow across any 

application or service that is connected to the ESB thus allowing for orchestration of 

process flows. An ESB has an autonomous yet federated managed environment and 

allows for incremental adoption even in smaller projects that may later transferred into a 

larger integration network. Finally an ESB uses XML as its native datatype and allows for 

real-time insight into live business data [Cha04]. 

2.4 OSGi 

Bartlett describes OSGi (Open Service Gateway initiative) as being “nothing more nor less 

than the way to build modular applications in Java” [Bar09]. OSGi is targeted towards a 

multitude of devices that are running Java applications; like set-top boxes, PCs, cars and 

mobile phones and which require a modular architecture. The standard is maintained by 

the OSGi Alliance5 and split into multiple specifications [OSG09]. The core of the OSGi 

Service Platform Specifications is formed by the framework. Its goal is to provide a 

general-purpose, secure and managed Java framework that supports the deployment of 

bundles, which are extensible and downloadable applications. A bundle is a Java Archive 

(JAR) that defines a unit of modularization. It contains Plain Old Java Objects (POJOs) and 

Plain Old Java Interfaces (POJIs) as well as additional meta-information about exported 

and imported packages. For example, an exported POJI provides a service interface to 

other bundles. These may then in turn provide a service implementation of that interface. 

The functionality of the framework is divided into multiple layers that are shown in 

Figure 2-4. 

 

Figure 2-4: OSGi Layer Architecture [OSG09] 

Each layer in Figure 2-4 is dependent on its subjacent layer. The lowest layer describes 

the Hardware and Operating System Layer on top of which an Execution Environment 

                                                             
5 http://www.osgi.org 
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runs, i.e. the Java Virtual Machine. To the right of Figure 2-4 is the Security Layer. It 

handles different security aspects of bundles. The Module Layer is tasked with the 

modularization of Java packages. This means that the Module Layer has a set of rules for 

sharing Java packages between bundles or hiding them from others. The Life Cycle Layer 

provides an API for life cycle management to bundles. This includes starting and stopping 

bundles, as well as updating, installing and uninstalling. Furthermore the Life Cycle Layer 

provides an event API. The Service Layer provides developers with a dynamic service 

selection model and loose coupling. Java interfaces are decoupled from their 

implementations, allowing a user to bind to services using only their corresponding 

interface. The whole selection process is handled by the runtime [OSG09]. 

2.5 Apache ServiceMix 

Apache ServiceMix6 is the realization of a lightweight open source Enterprise Service Bus. 

It is built on Apache Karaf7, an enhanced version of the Apache Felix8 Framework, and 

supports the Java Business Integration (JBI) standard [JBI05]. Apache Felix is an OSGi 

framework and compliant to version 4.2 of the OSGi specification [OSG09]. The version of 

ServiceMix is explicitly referenced, because newer versions of ServiceMix are bundled 

with different components and no longer support JBI. 

In Apache ServiceMix applications can be deployed in several ways and then operate in a 

loosely coupled manner. Apache Karaf provides the user with a command line tool to 

manage the ESB environment. It supports various lifecycle operations like deploying and 

configuring OSGi bundles or JBI components and Service Assemblies (SA). Service 

Assemblies are collections of deployment artifacts, so called Service Units (SU), and 

associated metadata. Additionally to deploying applications through the command line, 

ServiceMix provides a hot deployment directory. Users can simply deploy OSGi bundles 

or JBI Service Assemblies by adding them to this directory. If the file containing the 

bundle or assembly is deleted, ServiceMix will automatically undeploy the corresponding 

application. The core of ServiceMix is the Normalized Message Router (NMR) that resides 

inside the JBI container, see Figure 2-5. 

                                                             
6 http://servicemix.apache.org/ 
7 http://karaf.apache.org/ 
8 http://felix.apache.org/ 
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Figure 2-5: Architecture of the JBI System, based on [NMR08] 

The NMR provides the necessary message exchange infrastructure for components that 

are connected to it. Components come in two categories: As a Service Engine (SE) or 

Binding Component (BC). A Service Engine provides business logic and transformation 

services to other components that are connected to the NMR. SEs are shown above the 

NMR in Figure 2-5. Binding Components are displayed below the NMR. BCs provide 

connectivity to services that are external to the JBI environment. BCs offer support for 

many different protocols and transform messages accordingly which are going in and out 

of the JBI environment. Both SEs and BCs can act as a service provider, service consumer 

or both. A service provider consumes the functionality of an internal JBI service and 

exposes it through an external endpoint. A service consumer works in the other 

direction, as it provides the functionality of an external service to other components on 

the NMR. The JMX (Java Management eXtensions) based Management Application 

provides different maintenance functionalities for the JBI environment. The application 

follows the JMX standard defined in [JMX00]. 

The ServiceMix distribution entails several components that are pre-deployed in OSGi or 

JBI respectively. Of these components the Apache ODE9 and Apache Camel10 are of high 

relevance to this thesis. Apache ODE is introduced in the following chapter 2.7 and 

Apache Camel in chapter 2.9. 

2.6 ESBMT 

Strauch et al. describe in [SAL⁺12] and [SAG⁺13] how to enable multi-tenancy in 

Enterprise Service Buses. Multi-tenancy means that a single instance of a software 

application serves multiple clients (tenants). This, together with virtualization, is an 

important feature in Cloud Computing as it enables Cloud providers to utilize their 

infrastructures to their full extent. The abbreviation ESBMT therefore stands for multi-

                                                             
9 http://ode.apache.org/ 
10 https://camel.apache.org/ 
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tenant aware Enterprise Service Bus. Strauch et al. identify and analyze different 

requirements a multi-tenant aware ESB has to fulfill, describe an ESB architecture that 

meets these requirements and realize a prototype implementation of the proposed 

architecture, called ESBMT [SAL⁺12]. ESBMT is an ongoing research project at IAAS11. The 

implementation is based on Apache ServiceMix 4.3.0 and its JBI environment. ESBMT is 

used in the implementation part of this thesis. 

2.7 WS-BPEL 

The Web Services Business Process Execution Language (WS-BPEL or just BPEL) is an 

extensible workflow-based language that enables choreographing and aggregating 

service interactions. BPEL is defined in [WSB07]. It is XML based and was created to 

address the requirements of composition in a service-oriented computing environment 

without being locked into static environments with proprietary tools and languages 

[WCL⁺05]. 

BPEL was designed to layer on top of other WS-* specifications so that it can use WSDL 

interfaces to define the functionality a process provides as well as the requirements of 

services that are part of the composition and the interactions between them. Since BPEL 

is XML based, data access and manipulation is possible via using XPath expressions 

[XPA99] [WCL⁺05]. 

The standard was designed to meet the following requirements that have been identified 

for a composition model in such a SOA environment: Flexible integration, recursive 

composition, separation and composeability of concerns, stateful conversations and lifecycle 

management, and recoverability. Flexible integration defines, that the model must be able 

to express business scenarios that different partners might exchange. Additionally, the 

model must be able to adapt rapidly to possible changes to the services of the 

composition. Recursive composition is the ability of the model to provide different views 

on a composition. Interaction between multiple workflows as well as scalability and 

reuse is met by offering a process as a standard Web Service. In using the Web Services 

Framework, the specific business logic should be decoupled from the underlying or 

supporting stack, like protocols, messaging frameworks or quality of service. This is 

called separation and composeability of concerns. Stateful conversations and lifecycle 

management means, that a lifecycle model of a workflow should be clearly defined and 

able to support multiple long running conversations with interacting services. Especially 

long running business processes have to provide fault handling and compensation 

mechanisms in order to deal with expected errors that might appear during process 

execution time. This is summarized under the term recoverability [WCL⁺05]. 

BPEL is used in this thesis to implement certain parts of the ESB Control Flow (see also 

chapters 5.7.2 and 5.7.4), e.g. commissioning the Provisioning Manager with provisioning 

or deprovisioning of services. 

                                                             
11 http://www.iaas.uni-stuttgart.de/esbmt/ 
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2.8 Apache ODE 

The Apache Orchestration Director Engine (ODE) is an open source WS-BPEL Process 

Engine and Business Process Management System (BPMS). It executes business 

processes that are following the WS-BPEL standard [WSB07]. ODE handles all web 

service calls, message sending and receiving, as well as data manipulation and error 

recovery that are defined in a business process. It supports both synchronous and 

asynchronous processes and is thus able to cope with long running process executions. 

The ability of managing long running business processes as well as providing a reliable, 

compact and embeddable component, were key goals in the development of Apache ODE 

[ODA13]. 

 

Figure 2-6: Apache ODE Architecture [ODA13], simplified 

In Figure 2-6 a simplified view on the high-level architecture of Apache ODE is shown. On 

top is the ODE BPEL Compiler which is responsible for converting source BPEL artifacts, 

like BPEL process documents and WSDLs, into a compiled format that is ready for 

processing by the ODE BPEL Runtime. The runtime executes the compiled processes and 

creates new instances of processes as necessary. The ODE BPEL Runtime is also able to 

determine to which instance an incoming message should be delivered and implements a 

Process Management API that can be used to interact with the engine. 

Data Access Objects (DAOs) are used for the interaction between the runtime and a 

Database Management System (DBMS) acting as a data store to achieve persistence. 

Normally the DBMS is a JDBC relational database. The DAOs include active instances, 

message routing information, variables, partner links and information about the process 

execution state. 

The ODE BPEL Runtime is unable to exist on its own, because the runtime itself lacks the 

ability of interacting with the outside world. Thus it relies on an ODE Integration Layer 

(IL). An Integration Layer embeds the runtime in an execution environment and provides 

channels to communicate with external components. Apache ODE is available with an 

Axis2 IL or a JBI IL; both variations are of relevance to this thesis. The Axis212 Integration 

Layer allows ODE to communicate through Web Service interactions, while the JBI IL 

connects ODE to the Normalized Message Router of JBI. 

                                                             
12 http://axis.apache.org/axis2/java/core/ 
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2.9 Enterprise Integration Patterns 

Hohpe and Woolf noticed that many integration problems and their respective solutions 

are quite similar. They organized and cataloged them as patterns which are published in 

[HoW10]. Patterns are best practices that have been developed over time. They offer 

solutions that have been proven and validated in numerous real-world scenarios. Each 

pattern has a unique icon and is presented in the form of a problem statement, possible 

solutions, which may have some kind of drawback, and the proposed solution. The 

following Table 2-1 illustrates various EAI patterns by Hohpe and Woolf that are also 

used in the different architectural concepts introduced in chapter 6. On the left side the 

icon that is associated with this pattern is depicted and on the right the name of the 

pattern including a problem statement and proposed solution are shown. A summary and 

further information about Enterprise Integration Patterns is also available under [EIP12]. 

 

 

Aggregator 
How do you combine the results of individual, but related messages so 
that they can be processed as a whole? 
 
Use a stateful filter, an Aggregator, to collect and store individual 
messages until a complete set of related messages has been received. 
Then, the Aggregator publishes a single message distilled from the 
individual messages.. 

 

 

Channel Adapter 
How can you connect an application to the messaging system so that it 
can send and receive messages? 
 
Use a Channel Adapter that can access the application’s API or data and 
publish messages on a channel based on this data, and that likewise can 
receive messages and invoke functionality inside the application. 

 

 

Content Enricher 
How do you communicate with another system if the message originator 
does not have all the required data items available? 
 
Use a specialized transformer, a Content Enricher, to access an external 
data source in order to augment a message with missing information. 

 

 

Content Filter 
How do you simplify dealing with a large message, when you are 
interested only in a few data items? 
 
Use a Content Filter to remove unimportant data items from a message 
leaving only important items. 
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Envelope Wrapper 
How can existing system participate in a messaging exchange that places 
specific requirements on the message format, such as message header 
fields or encryption? 
 
Use a Envelope Wrapper to wrap application data inside an envelope 
that is compliant with the messaging infrastructure. Unwrap the 
message when it arrives at the destination. 

 

 

Message Endpoint 
How does an application connect to a messaging channel to send and 
receive messages? 
 
Connect an application to a messaging channel using a Message 
Endpoint, a client of the messaging system that the application can then 
use to send or receive messages. 

 

 

Message Router 
How do you decouple individual processing steps so that messages can 
be passed to different filters depending on a set of conditions? 
 
Insert a special filter, a Message Router, which consumes a Message from 
one Message Channel and republishes it to a different Message Channel 
depending on a set of conditions. 

 

 

Message Store 
How can you report against message information without disturbing the 
loosely coupled and transient nature of a messaging system? 
 
Use a Message Store to capture information about each message in a 
central location. 

 

 

Messaging Gateway 
How do you encapsulate access to the messaging system from the rest of 
the application? 
 
Use a Messaging Gateway, a class that wraps messaging-specific method 
calls and exposes domain specific methods to the application. 
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Multicast13 14 
How can you route a message to a number of endpoints at the same 
time? 
 
Use a Multicast that allows you to route the message to a number of 
endpoints and process it in different ways. 

 

 

Service Activator 
How can an application design a service to be invoked both via various 
messaging technologies and via non-messaging techniques? 
 
Design a Service Activator that connects the messages on the channel to 
the service being accessed. 

 

Table 2-1: EAI Patterns [HoW10] 

2.10 Apache Camel 

Ibsen and Anstey describe Apache Camel as a tool that has been created to ease 

integration for users [IbA11]. Camel allows a user to specify routes between different 

endpoints and how messages are processed along those routes. Apache Camel is 

available as a standalone application as well as part of Apache ServiceMix, as it is used in 

this thesis. Camel is a lightweight open-source integration framework that has been in 

active development since 2007 and focuses on simplifying application integration 

[IbA11]. 

Its core component is a routing-engine builder that allows the user to define his own 

routing rules as well as how to process, accept and send messages. These can be 

described via a Domain Specific Language (DSL) in Java, Spring15, Scala16 or others. It is 

also possible to use a combination of the DSL in multiple languages. Therefore Camel 

offers high-level abstractions to interact with different systems by using a simple API. 

Camel makes no assumption about the data format of the messages, thus there is no need 

to convert your messages for routing. Even though it already has a set of built in 

converters and allows the configuration of custom converters if a message has to be 

transformed between endpoints. Although Camel supports message routing, 

transformation and orchestration, Camel in itself is not an Enterprise Service Bus 

because it lacks ESB specific features like a container or a reliable message bus. But 

Camel can be deployed inside an ESB. The following example (Listing 2-1) illustrates a 

simple Camel Route implemented via the Java DSL [IbA11]. 

                                                             
13 Multicast is a pattern defined by Apache Camel and not part of the Enterprise Integration 
Patterns published by Hohpe and Woolf. In the context of this thesis Multicast is symbolized by 
the Recipient List icon, because of its similarity. 
14 http://camel.apache.org/multicast.html 
15 http://spring.io/ 
16 http://www.scala-lang.org/ 
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1 from("direct:d") 

2    .choice() 

3       .when(header("grilled").isEqualTo("potato")) 

4          .to("jms:queue:potato")) 

5       .when(header("grilled").isEqualTo("cheese")) 

6          .to("jms:queue:cheese")) 

7       .otherwise() 

8          .to("file:grill/other"); 

Listing 2-1: Example Camel Route in Java DSL 

The example routes incoming messages depending on a specific header value to different 

Java Messaging System (JMS) queues. This route defines an endpoint (line 1) which in 

this case is a Camel internal endpoint that may be targeted by another route. The lines 2 

to 8 describe a conditional expression with three cases. In line 3 and 5 the value of the 

header field grilled is evaluated and the message is either routed to the potato JMS queue 

or the cheese queue depending on the header value. If the header evaluates neither to 

potato nor to cheese the message is saved as a file at the location specified in line 8. This 

example also illustrates the Content Based Router Pattern of the Enterprise Integration 

Patterns (EIP) by Hohpe and Woolf integrated through Camel. The Camel framework is 

heavily based on EIPs and all of them can be easily implemented with Camel [IbA11]. 

Moreover Camel has defined some additional patterns, like the Multicast17 or the 

Delayer18 Pattern. 

2.11 TOSCA 

The Topology and Orchestration Specification for Cloud Applications (TOSCA) standard 

defines a metamodel for defining services [TOS13]. TOSCA provides a standardized 

description model of how to manage a service and the service’s structure. Management 

tasks of a service include, e.g. deployment, operation and termination. The structure of a 

service is called topology. In TOSCA a topology is a graph of typed nodes and directed 

typed edges. Nodes define individual components of the service and edges describe 

relationships between these nodes. An example of a TOSCA application topology is shown 

in Figure 2-7. 

                                                             
17 http://camel.apache.org/multicast.html 
18 http://camel.apache.org/delayer.html 
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Figure 2-7: TOSCA Example Topology 

The example shows a topology consisting of different nodes with three different kinds of 

relationships. At the bottom level are two virtual machine (VM) nodes representing two 

different virtual machines, VmApp and VmDb. An operating system is hosted on both 

machines (see OsApp and OsDB nodes). On the right, a Databank Management System 

(DBMS) is running on which in turn a database is hosted. On the left, a web server 

(WebServerApp) is installed on which a Framework is configured that the main 

application (App) depends on. This means that even though both the framework and the 

application are hosted on the web server, the framework has to be installed first. As the 

last step, the application has to be configured to connect to the database. 

Additionally TOSCA defines an archive format for Cloud applications in which all 

necessary artifacts and information of a service are bundled together. This archive 

format is called Cloud Service Archive Format (CSAR). A CSAR is a container and usually a 

zip file with a specified directory structure and defined location of metainformation 

about the service [TOS13]. 

2.12 OpenTOSCA 

Binz et al. introduce OpenTOSCA19 in [BBH⁺13]. OpenTOSCA is an open source TOSCA 

runtime environment that has been developed at IAAS. OpenTOSCA supports imperative 

processing of CSARs. This means, that the deployment and management logic of 

applications has to be provided by plans. Plans are workflow models, for example defined 

via BPEL. Plan processing is supported by the Plan Engine. The Plan Engine is a modular 

component, that follows a plugin architecture. This ensures that additional workflow 

languages can be supported by providing additional plugins to the Plan Engine. Different 

management operations for nodes and relationships are provided in either one of two 

ways. The Cloud provider, to which the application is being deployed, offers web services 

that provide management functionality which can be used in a plan. The other possibility 

                                                             
19 http://www.iaas.uni-stuttgart.de/OpenTOSCA/indexE.php 
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is using Implementation Artifacts (IAs) contained in the CSAR. In this case the 

Implementation Artifact Engine runs these artifacts. The Implementation Artifact 

Engine’s architecture is similar to that of the Plan Engine, as its functionality can be 

extended by providing additional plugins. For example, an IA can be a web service 

packaged as a Java Web Application Archive (WAR) that provides certain management 

functions. To deploy this web service and utilize its functions, a plugin is required that 

understands where and how to deploy WAR files [BBH⁺13]. 
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3 Related Work 

In contrast to the business world, there is no widespread adoption of cloud computing 

platforms for scientific computing applications, as Vecchiola et al. point out in [VCK⁺12]. 

They recognize that the introduction of grid computing was the first step away from 

using local computing infrastructure of research institutions and provide a solution to 

the ever growing demand for higher computational power. However the resources 

provided by a grid may be not enough at certain peak times and be hardly even used at 

other times. Vecchiola et al. also raise attention to another problem that arises in grid 

computing and scientific applications. After running for some time the initially reserved 

resources for an application might prove insufficient to achieve its deadline. To counter 

this, the authors propose the additional on-demand acquisition of cloud based resources. 

They envision a hybrid cloud setting in which an application uses both grid and cloud 

based resources. To achieve this Vecchiola et al. introduce Aneka [VCB09], a software 

platform for constructing and managing distributed systems. Yet, their focus lies only 

within the dynamic and on-demand provisioning of resources and not the services 

themselves. 

On-demand provisioning has a very broad interpretation in SOA. In [VKL13] the authors 

introduce new binding strategies on which this thesis is primarily based (more on this in 

chapter 4.1). These binding strategies explicitly target a Scientific Workflow 

Environment in which the necessary software stack and services have yet to be 

provisioned in a cloud environment. 

Albeit not in a Scientific Workflow Environment, [GTS⁺09] and [GTK⁺10] introduce an 

architecture to enable automatic discovery and provisioning of real-world services. Such 

services are often found in small embedded devices which, in contrast to traditional SOA, 

might not always be available or disappear regularly and reappear later on. 

In [CBC⁺05] the authors see on-demand SOA as a means to achieve responsiveness and a 

high degree of flexibility for business processes, where the required services are already 

deployed, so a business can react quickly and accordingly to new situations that may 

arise. Thus the authors focus more on a high level view on how to achieve this goal. 
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4 Previous Work 

This chapter introduces the different concepts and strategies published by Vukojevic-

Haupt et al. in [VKL13] on which this thesis is primarily based on. In that paper the focus 

lays on the various requirements eScience applications and scientific workflows have at a 

SOA in contrast to traditional business applications. Namely these are the on-demand 

provisioning of services including the provisioning of the underlying software stack 

required by the service. The authors’ approach includes a middleware architecture 

providing the necessary ecosystem. Additionally different binding strategies have been 

classified; one of which has been newly developed. The authors show how a generic 

Workflow Management System (WfMS) can be extended to support the on-demand 

provisioning and deprovisioning of services and their infrastructure. Vukojevic-Haupt et 

al. demonstrate their approach via a Scientific Workflow Management System – the 

SimTech SWfMS20 [VKL13]. 

4.1 Binding Strategies 

In this chapter different binding strategies are explained. The binding strategies are: 

Static Binding, Dynamic Binding, Dynamic Binding with Service Deployment and Dynamic 

Binding with Software Stack Provisioning. These strategies need to be integrated with the 

middleware, i.e. the ESB, to allow for correct service discovery and selection, and 

subsequent provisioning and deprovisioning of services. 

A Static Binding occurs if the endpoint of the desired service is already known by the 

caller. The concrete endpoint is provided to the ESB which in turn directly invokes the 

specified service and returns its response. 

In the case of a Dynamic Binding the requestor provides the desired operation including 

potential parameters but no specific endpoint. Additionally the requestor specifies 

Quality of Service (QoS) which are functional and non-functional requirements the 

service must fulfill. Here, the ESB performs a service discovery and selection by 

consulting a service registry to find and select a service matching the required 

capabilities specified by the requestor. Afterwards the ESB invokes the service and 

returns its response to the requestor. 

Dynamic Binding with Service Deployment means that the service has to be deployed in 

addition to the dynamic binding processing steps the ESB needs to perform. From the 

requestor’s point of view it is still a normal dynamic binding strategy. 

                                                             
20 http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/ 
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The Dynamic Binding with Software Stack Provisioning strategy involves the provisioning 

of the infrastructure, middleware and other applications required by the selected service. 

The ESB has to trigger the provisioning logic and provide a reference to a service package 

containing the service topology, among other artifacts required by the service. After the 

necessary middleware has been provisioned, the service can be deployed and 

subsequently invoked by the ESB. 

4.2 Overall Architecture 

Figure 4-1 shows the general architecture of the middleware, its components and 

services. This architecture is following the SOA concept introduced in chapter 2.2 

including a central Enterprise Service Bus. Components in the lower half run locally on 

the user’s machine while components in the top half run in a cloud. As illustrated on the 

bottom of the figure the architecture is separated into three lifecycle phases: the 

Modeling Time phase, the Middleware Runtime phase and the Service Runtime phase. 

 

Figure 4-1: Overall System Architecture [VKL13] 

During the Modeling Time phase a scientist develops his workflow model using the local 

Modeling and Monitoring Tool. During the execution of his workflow the scientist can use 

this tool to also monitor the status of running workflow instances. When the scientist 

triggers the execution of his workflow model, the Bootware is started which initiates the 
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Middleware Runtime phase. This phase includes the on-demand provisioning of the 

WfMS and its underlying infrastructure. If the ESB detects that a service call from the 

Workflow Engine targets a not-provisioned service, the Service Runtime phase is 

triggered. During this phase, the required service is provisioned on-demand along with 

its underlying infrastructure and middleware. The Service Runtime phase ends with the 

deprovisioning of the service. After the scientist’s workflow model has finished 

executing, the Middleware Runtime phase ends and the WfMS is deprovisioned. 

The Service Package Repository stores service packages. A service packages contains all 

artifacts needed to provision a service, e.g. information about its topology, underlying 

middleware and infrastructure. This information is used by the Provisioning Engine on 

how to provision, deploy and run the service in a cloud environment. A Service Provider 

publishes his service packages to the Service Package Repository, for example as a CSAR 

and also registers the service at the Service Registry. 

The Service Registry holds information about all available services including functional 

and nonfunctional properties of services that are available through the Service Package 

Repository as well as of those that are made available and provided by a third party. 

The Bootware is software responsible for deploying a Provisioning Engine on a cloud so 

that this engine may in turn provision the rest of the workflow execution middleware 

and its underlying cloud infrastructure. More details about the Bootware component are 

provided in [Rei14]. 

The authors distinguish between two kinds of services. Provisioned services are classic 

web services in terms of being always up and ready to use and that their implementation, 

underlying middleware and infrastructure are a black box to the user. For these types of 

services a static or dynamic binding is used. Not provisioned services are those that are 

available through the Service Package Repository and have to be provisioned before they 

may be utilized. A dynamic binding with software stack provisioning has to be used here. 

In addition, a not provisioned service can be one of two variants, dedicated or shared. 

If a service is a dedicated service, only one service call may be active at the same time. 

Even if multiple service calls originate from the same user, each call has to have its own 

separate instance that needs to be provisioned with its underlying middleware and 

infrastructure. This is due to dedicated services not providing any form of elasticity, 

which is in contrast to shared services that do provide elasticity functionality. A shared 

service instance can handle multiple service calls from the same user. Thus a new 

instance with underlying middleware and infrastructure is only provisioned if the calling 

user does not already have an active instance of this service. 

During the Middleware Runtime phase the ESB and the Provisioning Engine interact with 

the components used in the previous Modeling Time phase and the remaining Simtech 

SWfMS components depicted in Figure 4-1. The Workflow Engine forwards the service 

calls to the ESB to invoke the services requested by workflow activities. If the ESB detects 

that a not provisioned service is called it triggers the Provisioning Engine which gathers 

all necessary artifacts, e.g. the service package from the Service Package Repository and 
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provisions the service including its underlying middleware and infrastructure. After the 

provisioning has completed, the ESB sends the request to the newly provisioned service. 

The Service Runtime phase is the part in which a service has received a request and 

performs its functionality. All components shown in Figure 4-1 have been provisioned 

and are running. When the service has finished its computation, it sends its result back to 

the ESB which forwards the response back to the Workflow Engine. 

Since the service has performed the specific task and reported back the result, the ESB 

can now trigger the deprovisioning of the service, as the resources required to operate 

the service are no longer needed. The ESB issues the Provisioning Engine with the 

deprovisioning of a particular service. If the service is a shared service it is first checked 

if this service is still processing other requests. Only if this is not the case, the service will 

be deprovisioned. The remaining parts of the SWfMS are deprovisioned by the 

Provisioning Engine as soon as all running workflows have finished. The Provisioning 

Engine is in turn deprovisioned by the Bootware. 

In [Sch13] it is suggested to add an additional component, the Provisioning Manager, 

which is used to hide the complexity of interacting with multiple Provisioning Engines 

from the ESB and therefore to provide a stable interface. This idea has been adopted and 

incorporated into the different concepts developed in the scope of this thesis (see also 

chapters 5.1 and 5.2 for more details). 
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4.3 ESB Control Flow 

In Figure 4-2 below it is described how the ESB should manage and coordinate the on-

demand provisioning and de-provisioning of services. 

 

Figure 4-2: ESB Control Flow [VKL13] 

The ESB Control Flow is only triggered if a dynamic binding strategy has to be used. If the 

ESB receives a service call that uses a static binding, the call is directly forwarded to the 

service and the ESB Control Flow is not activated. 

In case the ESB detects that the required service is a provisioned service, the service call 

is sent to the specific service and its response returned to the Workflow Engine. 
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If the service call concerns a not provisioned service, the ESB has to distinguish between 

a dedicated or shared service. In case of a dedicated service, the ESB issues the 

Provisioning Engine with the provisioning of a new service instance. For this, the ESB 

passes a reference to the specific service package from the Service Package Repository to 

the Provisioning Engine. The Provisioning Engine uses this reference to get the actual 

service package, provisions the service including its underlying middleware and 

infrastructure and returns the endpoint of the service back to the ESB. Afterwards the 

ESB registers the newly provisioned service in the Service Registry and forwards the 

original service call to the service. Once the service has finished processing the service 

call it reports the result to the ESB, which passes it on to the Workflow Engine. 

Afterwards the ESB removes the service instance from the Service Registry and orders 

the Provisioning Engine to deprovision the service with its underlying middleware and 

infrastructure. 

In case of addressing a shared service, the ESB consults the Service Registry if an instance 

of this service is already running for this user. If not, a new instance is provisioned and 

the ESB proceeds as described in the previous case. When the ESB identifies that a shared 

service instance has no more active service calls it triggers the service’s deprovisioning. 
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5 Extending the Current Architecture 

In this chapter, along with chapter 6 “Architectural Concepts and Designs”, the core work 

of this diploma thesis is described. It is analyzed which components of the architecture 

from chapter 4.2 “Overall Architecture” have been extended or altered and which have 

been newly added. This includes components that have been developed as part of this 

thesis, as well as components that fall in the scope of related parallel work at IAAS. It is 

also discussed how this parallel work influenced different design decisions made in this 

thesis. 

This forms the basis for a more detailed view on the architecture, which is necessary to 

enable the development of different approaches for the realization of on-demand 

provisioning of services and their underlying infrastructure. These approaches are 

discussed in chapter 6 “Architectural Concepts and Designs”. 

5.1 Provisioning Manager as an Internal/External Component 

To hide the idiosyncrasies of different Provisioning Engines, the Provisioning Manager 

(PM) was introduced to the architecture. As mentioned at the end of chapter 4.2, this 

component has previously been proposed by Schneider in [Sch13]. Schneider suggests 

two possibilities. One being, that the PM is placed inside the Enterprise Service Bus. The 

other possibility is placing the Provisioning Manager outside of the ESB as an external 

service. Yet, Schneider did not explicitly endorse one of his propositions. In this chapter 

both ideas are introduced and their different advantages and disadvantages are 

explained in depth. Based on these, one of the propositions is chosen and incorporated in 

the different overall architectural concepts of the system that are the subject of chapter 6 

“Architectural Concepts and Designs”. 

Figure 5-1 shows a section of the overall architecture, which is depicted in Figure 4-1, 

with new, modified and extended components. The figure only depicts components that 

are relevant for the on-demand provisioning of services and their underlying 

infrastructure. 
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Figure 5-1: Provisioning Manager as an Internal Component 

On the left part of Figure 5-1 the Service Package Repository and the Service Registry are 

shown. Both components were already part of the overall architecture that was 

previously introduced in chapter 4.2. To allow for a prototypical implementation (see 

chapter 7), the Service Package Repository and the Service Registry have been designed 

and implemented as mockups, providing only a very basic functionality. The following 

chapters 5.3 and 5.4 give a more detailed view on the design of the Service Registry and 

Service Package Repository mockups. 

To the right, Figure 5-1 depicts multiple Provisioning Engines. This is in contrast to the 

previous architecture shown in Figure 4-1 “Overall System Architecture [VKL13]” in 

which only a single Provisioning Engine was shown. Having multiple Provisioning 

Engines is expected since the various service packages from the Service Package 

Repository might be of different formats. The overall architecture was designed with the 

goal to be as generic as possible; this implies that an exact format for a service package 

has not been specified and is not intended [VHK⁺14]. Thus, a service package may be 

available in a repository in many different formats such as TOSCA, Puppet21 or Chef22; 

and each format has to have its own matching Provisioning Engine that can deal with the 

corresponding format specifics. Figure 5-2 shows an example of a Service Package 

Repository containing multiple service packages in different formats. 

                                                             
21 http://puppetlabs.com/ 
22 http://www.getchef.com/ 
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Figure 5-2: Service Package Repository with different service packages [VHK⁺14] 

Interface X is only supported by one service package in TOSCA format; while interface Y 

is supported by both a Puppet and a Chef service package. If, for example, a workflow 

requires two services, one implementing interface X and one implementing interface Y, 

two different Provisioning Engines are needed. A closer look on this matter is provided in 

[VHK⁺14]. 

As shown in Figure 5-1 the Provisioning Manager is placed inside the Enterprise Service 

Bus. From there it communicates with a potential multitude of Provisioning Engines and 

the Bootware Remote (BWR) component. The internal ESB Control Flow is decoupled 

from dealing directly with different Provisioning Engines. The Provisioning Manager 

realizes an additional layer of abstraction by providing the ESB Control Flow with a 

stable interface to trigger the on-demand provisioning of services and their underlying 

infrastructure. The ESB Control Flow can initiate the provisioning by passing a reference 

of the desired service package to the Provisioning Manager, which then takes care of the 

actual provisioning and sends a response back to the ESB Control Flow as soon as the 

desired service is up and running. When the Provisioning Manager gets called to 

provision a service, the format of the referenced service package might require a 

Provisioning Engine that is not yet available to the Provisioning Manager. In this case, the 

Provisioning Manager first needs to instruct the BWR component to provision the 

required Engine. 

The Bootware Remote component is the result of parallel work at IAAS by Reinfurt 

[Rei14]. As already mentioned, the Provisioning Manager needs a means to deploy 

Provisioning Engines. To allow this, the PM can acquire a list of all running Provisioning 

Engines from the BWR. If no appropriate engine is running, the Provisioning Manager 

passes a reference to the format of the required Provisioning Engine to the BWR, which 

in turn replies with the endpoint address of the newly provisioned engine after it is done 

processing the request. Furthermore the BWR takes care of starting the initial 

provisioning of the ESB and other components of the Scientific Workflow Management 

System. In-depth information and details on the BWR and its other components can be 

found in [Rei14]. 
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The Workflow Engine component has been modified slightly, partially because of specific 

software idiosyncrasies. However the main issue was, how to route the messages from 

the Workflow Engine to the ESB. Since these messages are originally either targeted at a 

specific service endpoint or have no specific destination at all. More details and a solution 

are given in chapter 5.5 “Routing Messages to the ESB” and chapter 5.5.3 “Using Handlers 

to Reroute and Mediate Messages in Axis2”. 

The preceding Figure 5-1 shows the architecture in case the Provisioning Manager is 

located inside the ESB environment. As was mentioned previously, the other possibility is 

placing the Provisioning Manager outside the ESB as an external service. This approach is 

depicted in Figure 5-3 below. 

 

Figure 5-3: Provisioning Manager as an External Component 

The internal architecture of the Provisioning Manager and its application logic remain 

the same in both approaches, see also chapter 5.2 “Provisioning Manager”. The 

Provisioning Manager still provides a stable interface for the provisioning of services and 

their underlying infrastructure and interacts with the BWR when an additional 

Provisioning Engine is required. Yet there are certain advantages and disadvantages in 

both architectural approaches. 

It is possible to combine the logic of both the Provisioning Manager and the Bootware 

Remote into one component, see also chapter 8 “Summary and Future Work”. This would 

require that this new combined component is separated from the ESB, since otherwise 
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the bootstrapping process of the entire system would not be possible. The BWR has to be 

available and operational before provisioning the ESB. 

From an architectural point of view of the overall architecture, it might seem that having 

the Provisioning Manager inside the ESB violates a traditional SOA approach. In a classic 

Service-Oriented Architecture the Bus takes care of service selection, by interacting with 

a service registry, and routing messages to their correct destinations. A service package 

repository and provisioning of services are not part of a traditional SOA. 

The Provisioning Manager and the BWR are based on a plug-in architecture, see also 

chapter 5.2 “Provisioning Manager”. Thus OSGi, as a well-established standard for a 

modularization-framework, was used as a base for the Provisioning Manager and the 

Bootware Remote. As was already mentioned in chapter 2.5 “Apache ServiceMix”, 

ServiceMix is built on Apache Karaf which supports Apache Felix as an OSGi 

implementation. Therefore the Provisioning Manager can be easily integrated and use 

the OSGi environment provided by the ESB. If the Provisioning Manager was to be 

realized as an external component, this component would need to provide the OSGi 

framework implementation for the Provisioning Manager. The BWR realizes this 

approach, since it has to be a separate component due to how the bootstrapping process 

of the system works. The Bootware Remote wraps the Apache Felix OSGi framework and 

the application logic as a web service. This means that the approach shown in Figure 5-3, 

where the Provisioning Manager is realized as an external component, would lead to the 

deployment of three separate OSGi frameworks in total: One in the ESB, one in the 

Provisioning Manager and one in the BWR component. Moreover, additional routing logic 

would be required to connect ESB and PM. 

Thus it was decided to focus on the approach having the Provisioning Manager as an 

internal component of the ESB. If in future Provisioning Manager and Bootware Remote 

are consolidated into one component, no modification of the internal application logics 

should be required, since both components operate in a loosely coupled manner and do 

already exist as OSGi services. 

5.2 Provisioning Manager 

The Provisioning Manager was designed as having a plug-in architecture, similar to the 

architecture of the Bootware Remote component. This was a joint decision, since both 

components offer the provisioning of certain entities, i.e. services and engines 

respectively, and have to support multiple platforms. The Provisioning Manager has to 

support a variety of Provisioning Engines whose quantity is unknown. Thus supporting 

modularity was a key requirement. It was decided to use the OSGi framework for both 

the Provisioning Engine and the BWR. Figure 5-4 shows the plugin architecture of the 

Provisioning Manager. 
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Figure 5-4: Provisioning Manager Architecture 

The Provisioning Manager and Provisioning Engine Plugins reside inside an OSGi 

container. The PM provides a General Provisioning Interface that can be utilized to 

provision arbitrary services by referencing a service package and providing the address 

to a running Provisioning Engine. After receiving a call, the Provisioning Manager selects 

a suitable plugin. When a new plugin registers itself to the OSGi container, the 

Provisioning Manager is notified about its availability. Likewise the Provisioning 

Manager is informed if a plugin gets undeployed. This architecture implies that the 

Provisioning Manger can operate with any number of plugins; even without any plugin at 

all, which would albeit limit its functionality severely. 

All plugins implement the same interface that is specified by the Provisioning Manager. A 

plugin provides the necessary logic to provision a service via a specific Provisioning 

Engine. 

To determine whether a Provisioning Engine that matches the referenced service 

packages is available, the Provisioning Engine consults the Bootware Remote. The BWR 

holds information about all its deployed Provisioning Engines. If no suitable engine is 

available, the Provisioning Manager instructs the BWR to deploy such an engine. 

5.3 Service Registry 

A thorough design and implementation of the Service Registry was out of scope of this 

thesis and thus it was only designed and implemented as a mockup that would provide 

sufficient functionality for the on-demand provisioning of services, see also chapter 8 

“Summary and Future Work” on how this component will be extended in the future. 

Figure 5-5 below shows the metamodel of the Service Registry mockup as an ER-Diagram 

in Chen’s notation. 
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Figure 5-5: ER-Diagram of Service Registry Mockup, based on [VHK⁺14] 

The Service Registry holds multiple Service Offers. As only functional requirements are 

taken into account for a service discovery, a Service Offer has exactly one PortType and 

an attributed ID. The port type is the only functional property that is used for service 

discovery in this thesis. Each Service Offer is one of two types: Provisioned Service or Not 

Provisioned Service. A Provisioned Service has only one attribute, the Endpoint at which 

this service is available. In case of a Not Provisioned Service, a Service Package ID is 

specified that identifies the service’s corresponding service package in the Service 

Package Repository. A not provisioned service can either be a Dedicated Service or a 

Shared Service. A dedicated service may have multiple Dedicated Instances of this service. 

Each instance has an attributed Endpoint and User. The endpoint attribute stores the URL 

of this particular service instance. Shared services may have any number of Shared 

Instances. A shared service instance has three attributes: Endpoint, No. of active service 

calls and User. The endpoint attributes points to the service’s location. The difference 

between dedicated and shared services is that a shared service instance can have 

multiple concurrent calls from the same user, while a dedicated service instance only 

serves one call. This is why the total number of active service calls, this shared service 

instance has, is stored. 

5.4 Service Package Repository 

As was the case with the Service Registry, the Service Package Repository was only 

designed as a mockup to provide very basic functionality to dependent components. The 

metamodel, as an ER-Diagram in Chen’s notation, of the Service Package Repository 

mockup is described in Figure 5-6. 
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Figure 5-6: ER-Diagram of Repository Mockup 

The Service Repository holds information about multiple service packages. Each Service 

Package has four attributes: ID identifies the service package by a unique identifier. URL 

stores the URL which points to the actual location of the service package archive. Name 

holds a non-unique name that has been given to this service package. The last property 

describes this service package’s Format. For example, the format of a service package can 

be TOSCA. A Service Package has Requirements. Requirements are a set of technical 

requirements that must be met to deploy a particular service package. These should not 

be confused with functional requirements of a service which are stored in the Service 

Registry, see chapter 5.3. Since this is only a mockup, Requirements only includes one or 

more Supported Clouds. A Supported Cloud is attributed with an ID and Name. For 

example, a service package may be geared towards being deployable on Windows Azure 

or Google App Engine only. 

5.5 Routing Messages to the ESB 

As previously shown in Figure 4-1 all message-interactions should be run through the 

ESB. Thus all service calls from the Workflow Engine need to be routed to the Bus. To 

achieve this, the target endpoint of a message sent from the Workflow Engine has to be 

changed. In chapter 5.5.1 it is first discussed what possibilities do already exist to route 

messages from the Workflow Engine to the ESB. In chapter 5.5.2 the messaging 

architecture of Axis2 is introduced. This is relevant as ODE-PGF23 is later used for the 

Workflow Engine component. ODE-PGF is based on Apache ODE, which runs inside an 

Axis2 Integration Layer (IL). A concept that enhances the messaging capabilities of ODE-

PGF’s Axis 2 IL is introduced in chapter 5.5.3. 

                                                             
23 http://www.iaas.uni-stuttgart.de/forschung/projects/ODE-PGF/ 
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5.5.1 Using existing Technologies 

Apache ODE allows a user to configure property files to alter the behavior of a deployed 

process [ODE13]. With these files it is possible to overwrite the original target endpoint 

of a service. Unfortunately this method was not an option, since with each deployed 

process a matching property file would have needed to be deployed to reroute the 

requests to the called services. Additionally these files would have been needed to be 

generated and deployed automatically because the scientist executing the process cannot 

be bothered to place these files inside the corresponding directory on the server running 

ODE-PGF; apart from the fact that the scientist would probably not have access to it. 

Furthermore Apache ODE only checks roughly every 30 seconds if a property file has 

been changed, meaning that after updating the property file the corresponding process 

needs to be stalled for at least that amount of time. Additionally the message needs to be 

enriched with information about functional requirements that a service must fulfill so 

that the ESB may perform a proper service discovery. These functional requirements are 

the port type that is specified in a WSDL and the actual address of a desired service in 

case a static binding should be used. 

The first approach was to utilize the WS-Addressing [WSA07] standard to convey all 

information necessary for on-demand provisioning to the ESB. WS-Addressing defines 

multiple additional SOAP headers which are especially useful in asynchronous message 

exchanges [WAC06]. These headers are: 

 To: An absolute IRI defining the address of the intended 

receiver of this message. 

 From: An Endpoint Reference (EPR) from where this message 

originated. 

 ReplyTo: An EPR defining the receiver of replies to this 

message. 

 FaultTo: An EPR defining the receiver of faults that are related 

to this message. 

 Action: An absolute IRI uniquely identifying the semantics 

implied by this message. 

 MessageID: An absolute IRI that uniquely identifies this 

message. 

 RelatesTo: A pair of values. Each value is an absolute IRI. One 

value of a pair defines the relationship; the other identifies the 

corresponding message by its MessageID. 
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 ReferenceParameters: Any kind of information represented as 

any type that is provided for the intended receiver. 

An Endpoint Reference is an element that carries additional information like parameters 

and/or metadata besides the actual address of the endpoint. Unfortunately To is not an 

EPR but only a URI or IRI. This means that additional information about the destination 

of the message must be provided either through the ReferenceParameters or the Action 

element. ReferenceParameters is an optional element and may already hold information 

for the desired service when it leaves the Workflow Engine. Additionally the information 

held by the ReferenceParameters property is not intended for some intermediary, like 

the ESB, but rather for the intended receiver. So inserting additional information for 

service discovery that are of no interest to the originally intended receiver contradicts 

the intended purpose of this element. The other interesting property, Action, is 

mandatory and may or may not convey information that is suitable for a service 

discovery. It is recommended by the W3C “that the value of the [action] property is an IRI 

identifying an input, output, or fault message within a WSDL interface or port type.” 

[WAC06]. As this is only a recommendation by the W3C, the Action element cannot safely 

be used for a service discovery process. 

This does not mean that WS-Addressing is not utilized in the context of this thesis. In fact, 

WS-Addressing is required for correctly routing response messages from a called service 

back to the Workflow Engine. A detailed explanation about this matter is given in chapter 

6.4 “Routing Response Messages”. 

Figure 5-7 shows how an additional SOAP header block was introduced that carries the 

necessary functional requirements to enable dynamic binding and service discovery by 

the ESB. 

 

Figure 5-7: DynamicBinding header block in SOAP message 
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The DynamicBinding header block includes two fields: Endpoint and PortType. The 

Endpoint field indicates to the ESB which binding to use. If it is empty no endpoint is 

specified and thus a dynamic binding has to be used. In case of a static binding the ESB 

needs to know which destination the message needs to be routed to. Thus the already 

known endpoint of the service needs to be specified in the SOAP request message. The 

PortType field refers to the actual port type from the WSDL of the desired service, since 

this information is not part of a normal SOAP request message. This information is 

required to provide the ESB with the functional requirement needed to find a matching 

service. 

Due to these circumstances an alternative way to using ODE property files had to be 

found to reroute messages. As will be described in chapter 5.5.2, handlers in Axis2 are 

well suited for such a task. 

5.5.2 Message Flows inside Apache Axis2 

Figure 5-8 shows a simplified message flow inside Apache Axis2. Omitted are Fault-

Flows, security related phases. Potential user defined phases are summarized and 

symbolized by the dashed “User Defined” phase. 

 

Figure 5-8: Axis2 Message Flows with predefined phases [AAG12] [IBM05], simplified 
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When a message is received by Axis2 it travels along the In Flow (or In Pipe) until it can 

be consumed by the application logic. Likewise when the application logic dispatches an 

outgoing message it will travel through the Out Flow (or Out Pipe). To allow for 

mediation of messages along the message path, Apache Axis2 supports the use of so 

called handlers which act as intermediaries and intercept messages going in and out of 

the Axis2 Engine. Each handler is associated with a specific phase which marks the point 

on the message path at which it processes a message. Additionally to the predefined 

phases by Axis2, being Transport, PreDispatch, Dispatch, PostDispatch, Message 

Validation, Message Processing, Message Initialization and MessageOut, one may define 

own phases after the PostDispatch or Message Initialization phase. 

Thus an incoming message is first processed by a so called Transport Listener which 

detects the message. It is then passed on through the different phases along which the 

message may be processed by different handlers. For example, if the message is based on 

WS-Security [WSS06] a handler may be used to decrypt the message. Such a handler may 

for example be placed in a user defined phase that is associated with dealing with 

security aspects. All handlers are organized in modules which can be plugged into an 

Axis2 system and its phases. After the message has passed the PreDispatch phase the 

dispatchers take care of finding the matching service and operation for the message. If 

they are unable to find a service, a “service not found” error will be thrown. The Message 

Validation Phase ensures that the message has been processed correctly and hands it 

over to the Message Processing Phase. There the message flow always ends with the 

Message Receiver passing the message to the application (i.e. Application Logic in Figure 

5-8). 

An outgoing message follows the Out Flow whose composition is much simpler than the 

In Flow. This is due to the fact that, in contrast to processing an inbound message, there 

is no need to find a service and operation matching the information given in the message, 

since these are already known when the application initiates the Out Flow. The message 

first passes the Message Initialization phase before engaging potential custom phases and 

the final Message Out phase. This phase marks the end of the Out Flow and passes the 

message to the Transport Sender, dispatching the message to its target endpoint 

[AAG12]. 
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5.5.3 Using Handlers to Reroute and Mediate Messages in Axis2 

Figure 5-9 shows a custom Mediator Module inside the Apache Axis2 Integration Layer of 

ODE-PGF. 

 

Figure 5-9: Custom handler in Axis2 Integration Layer of ODE-PGF 

The handler is placed in the Message Out Phase and intercepts every message ODE-PGF 

dispatches. The handler has to distinguish between two cases of messages. A service call 

that has to be forwarded to the ESB (route ①) and secondly a response message back to 

the scientist’s client which must not be rerouted (route ②). 

Additionally in case ① the SOAP header block of the message has to be extended with 

information about the service’s endpoint and port type to enable for a dynamic service 

selection by the ESB (see also Figure 5-7). This information is part of the message context 

created by ODE-PGF that is passed through the pipe. The ESB’s endpoint that is used as 

the new target endpoint for these messages could, for example, be acquired from a 

configuration file. 

5.6 Message Store 

A message store is part of the different architectural concepts introduced in later 

chapters; namely 6.1, 6.2 and 6.3. This message store fulfills multiple purposes, 

depending on the different architectures. Yet, first and foremost its task is to provide a 

central and persistent storage location for all messages the ESB receives from the 

Workflow Engine. As was the case with the Service Registry and Service Repository, the 
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Message Store is only meant as a mockup in the scope of this thesis and may be heavily 

modified or stripped and replaced entirely in future works. Figure 5-10 shows the 

metamodel of the Message Store. 

 

Figure 5-10: ER-Diagram of Message Store Mockup 

Two entities are defined in this model: Message and SOAPHeader. Message has the 

following attributes: 

 SOAPAction: SOAPAction indicates the general purpose of the 

message to the intended receiver. In case of a SOAP-over-

HTTP binding, SOAPAction is part of the HTTP header of the 

message. This attribute is needed as it is part of the service 

call that has to be forwarded to a service, later. 

 SOAPBody: This attribute stores the complete body of the 

SOAP envelope. This is the main payload that has to be 

conveyed to the service. 

 MessageID: This is the ID that gets automatically assigned to 

every message that is received by the ESB and uniquely 

identifies it. 

One Message entity relates to, i.e. has, exactly one SOAPHeader entity which has the 

following attributes. Attributes with a WS-A prefix refer to attributes that are part of the 

WS-Addressing specification [WAC06]. 

 WS-A FaultTo: Holds the EPR to which fault messages should 

be sent. 
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 WS-A ReplyTo: The callback EPR to which the intended 

receiver of this message should send its reply. 

 WS-A Action: Contains the WS-Addressing Action property IRI. 

 WS-A MessageID: Holds the WS-Addressing Message ID that 

was assigned by the caller. 

 PortType: The port type that is specified in the dynamic 

binding header block. See also chapter 5.5. 

 Endpoint: The endpoint this message should be sent to. Either 

already specified in case of a static binding or dynamically 

resolved by the ESB. 

As may have been noticed, not all possible WS-Addressing attributes are part of this 

model. This is due to them not being relevant in the context of this thesis. Yet in future, it 

might be useful to store other attributes as well, for example Reference Parameters. 

  



 
47 

 

5.7 Partitioning the ESB Control Flow 

While it would have been possible to realize the entire ESB Control Flow (shown in 

Figure 4-2) as a single workflow model, this is not desirable. Several parts of the ESB 

Control Flow are more suited for a realization as workflow models, while others are 

better fit for routing via EIPs. Consequently the ESB Control Flow has been split up in 

multiple parts to facilitate the processing of requests, some parts being workflow models 

and others routing models. In Figure 5-11 it is shown how the ESB Control flow has been 

divided in different parts. 

 

Figure 5-11: Partitioned ESB Control Flow 
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Each colored section represents a separate model; chained together they form the 

complete ESB Control Flow. The purple and orange parts are responsible for routing the 

original service call to a service, which might need to be provisioned first. They are the 

subject of chapters 5.7.1 and 5.7.2. The blue and green parts are subjects of chapters 5.7.3 

and 5.7.4. They are required to receive and forward service responses, as well as to 

update the Service Registry and if required, initiate the deprovisioning of a service. 

5.7.1 Determination of Binding Type - Routing Model 

As seen in the overall ESB Control Flow in Figure 4-2, it has first to be determined 

whether a static binding or a variation of dynamic binding has to be used. To do this, it 

has to be checked whether a static or dynamic binding has to be used. As this is a 

procedure that is not very complex, it has been realized via a routing model. How this 

routing model is then transformed into a more detailed concept is shown in the chapters 

6.1, 6.2 and 6.3 when EIPs are applied. Nevertheless the coarse process is the one 

depicted as a BPMN model in Figure 5-12 below. 

 

Figure 5-12: Routing Model: Determine Binding Type & Call Service 

The incoming request message from the Workflow Engine is received and it is 

determined whether a static binding can be used or not. If it can be used, the request is 

directly forwarded to the service. Otherwise a dynamic binding has to be used and the 

next part of the overall ESB Control Flow is initiated. As shown in Figure 5-11 this is a 
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workflow model whose task is to provision a service if need be. Upon receiving the new 

endpoint of the service, the original request is then forwarded to the service. 
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5.7.2 Dynamic Binding of Services - Workflow Model 

Figure 5-13 below shows in BPMN notation the provisioning workflow model that is part 

of the ESB Control Flow. 

 

Figure 5-13: Workflow Model: Dynamic Binding 
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The instance of the workflow model receives a request to perform a dynamic binding and 

find a service that matches the supplied functional properties. Afterwards the Service 

Registry is consulted whether such a service is available. If not, the workflow replies with 

an error. After this point the process differs depending on the type of service. First it is 

determined whether the specific service is a provisioned or not-provisioned service. In 

case of a provisioned service, the corresponding endpoint is already known and fetched 

from the registry. 

If a service is found, but it is not-provisioned and a dedicated service the Provisioning 

Manager is called with a reference ID to the selected service. This differs from the 

original ESB Control Flow in Figure 4-2. There, the Provisioning Engine is called directly 

since that architecture lacks the Provisioning Manager component. After receiving a 

response from the Provisioning Manager that the specific service has successfully been 

provisioned, the Service Registry is updated with a new active instance of this service 

which contains the new endpoint. 

In case of a shared service it is first checked whether it has already been instantiated. If it 

is, the Service Registry is updated that this service instance has now an additional active 

service call. Otherwise, if the service has not yet been instantiated, the same process as if 

the service would have been a dedicated one applies. The Provisioning Manager is called, 

its response received and a new service instance is registered in the Service Registry. 

A new active service call is registered for any not-provisioned service. In the original ESB 

Control Flow, service calls were only tracked for shared services. By registering service 

calls for every not-provisioned service instance, the deprovisioning logic is simplified 

(see also Figure 5-15 “Workflow Model: Unregister and Deprovision Service Instance”). 

In all cases, whether it is a provisioned, dedicated or shared service, a response message 

containing the endpoint of the service is sent back to the route depicted in Figure 5-12 

before this process completes. 

5.7.3 Routing Service Replies and initiating Deprovisioning of Services 

As was the case in the provisioning part of the ESB Control Flow, the deprovisioning part 

also first begins with a route, see Figure 5-14 below. The model shows the coarse process 

while the workflow model in Figure 5-15 depicts the concrete steps necessary for the 

deprovisioning of a service. 
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Figure 5-14: Routing Model: Routing Service Replies 

In the first step, the route receives a response from a previously called service. 

Afterwards this response message is forwarded to the Workflow Engine and as the final 

step the workflow process is called, which is responsible for dealing with the possible 

deprovisioning of the specific service. Further details about the forwarding of response 

messages are provided in chapter 6.4 “Routing Response Messages”. 
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5.7.4 Deprovisioning of Services - Workflow Model 

Whether a service actually needs to be deprovisioned, is decided in a workflow model. 

There are several cases in which a service is not deprovisioned. The metamodel of this 

process is shown in Figure 5-15. 

 

Figure 5-15: Workflow Model: Unregister and Deprovision Service Instance 

After receiving the deprovisioning request from the route shown in Figure 5-14, the 

corresponding service is looked up in the service registry. If it is a provisioned service, no 

further processing is required. If it is a not-provisioned service, the number of active 

service calls is reduced by one. It then depends on the number of active service calls 

whether the service is going to be deprovisioned or not. A shared service instance might 

have additional active service calls and is thus not deprovisioned. Otherwise the shared 
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service instance will be deprovisioned. If it is a dedicated service, it will have no more 

active service calls, since a dedicated service can at most have one active service call. 

Thus, it will be deprovisioned. 
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6 Architectural Concepts and Designs 

In this chapter three different architectural concepts are introduced in chapters 6.1, 6.2 

and 6.3. Each concept formulates a different approach for the realization of on-demand 

provisioning of services and their underlying infrastructure. Every concept is discussed 

in-depth with its different advantages and disadvantages. Based on these, one concept 

has been chosen that is then prototypically implemented, which is the topic of chapter 7. 

Subject of chapter 6.4 is the forwarding of response messages from services back to the 

Workflow Engine. This includes both synchronous and asynchronous response messages. 

All concepts and designs that have been developed as part of this thesis try to be as 

general and uncoupled as possible from concrete implementations of certain 

technologies. Nevertheless these concepts and designs are not as high-level as the 

architecture of the overall system described in chapter 4.2. Thus they have to take into 

account certain limitations, features and idiosyncrasies of software that is used to realize 

the on-demand provisioning of services and their underlying infrastructure in the 

context of the Simtech SWfMS. The following software has been used for the different 

components: For the ESB component Apache ServiceMix 4.3.0 is used, which utilizes 

Apache Camel 2.6 and Apache ODE 1.3.5 that are packaged as part of ServiceMix. ODE-

PGF is used for the Workflow Engine. ODE-PGF is an enhanced open-source version of 

Apache ODE that runs inside an Axis2 Integration Layer on an Apache Tomcat Server. 

6.1 Concept I: Using an Apache Camel Aggregator 

In this chapter the first of three concepts that have been developed in the context of this 

thesis is explained. The concept that is introduced in this chapter relies heavily on 

different EIPs that are already integrated in Apache Camel. This chapter is split in two 

parts, chapter 6.1.1 “Architectural Overview” and chapter 6.1.2 “Routing Logic”. In 

chapter 6.1.1 a general overview of the different components that enable the on-demand 

provisioning of services is given. This also includes the interaction between the different 

components. In chapter 6.1.2 the routing logic that controls the internal message flow of 

the ESB is explained in detail. 

6.1.1 Architectural Overview 

Figure 6-1 provides an overview of the architecture that has been developed as part of 

this concept.  
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This figure only depicts the message flow and components involved for routing a service 

call from ODE-PGF to a specific service. How to return reply messages is subject of 

chapter 6.4. 

 

Figure 6-1: Concept I – Architectural Overview 

The figure shows the ESB, i.e. Apache ServiceMix, along with its internal components. 

OSGi and JBI are the two frameworks that are running inside ServiceMix. A Jetty HTTP 

Server24, various Provisioning Engine Plugins and the Provisioning Manager are running 

inside the OSGi environment of ServiceMix. The Normalized Message Router, Apache ODE, 

and a HTTP Binding Component, that connects the external Service Registry with the NMR, 

are part of the JBI environment. Apache ODE is the internal workflow engine of 

ServiceMix and runs as a service engine that is connected to the NMR. Different workflow 

models are deployed on ODE that implement certain aspects of the ESB Control Flow (see 

also the previous chapters 5.7.2 and 5.7.4). 

                                                             
24 http://www.eclipse.org/jetty/ 
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Depicted above and below ServiceMix are several external components, namely ODE-PGF, 

multiple Provisioning Engines, Service Package Repository, Service Registry, Message Store 

and Bootware Remote that interact with the ESB and its internal components. Service 

Registry, Service Package Repository and Bootware Remote all offer web service 

interfaces that are accessible via SOAP over HTTP. The way of communicating between a 

Provisioning Engine Plugin and its corresponding engine is dependent on the particular 

implementation of the Provisioning Engine. Thus, Figure 6-1 does not show a particular 

protocol for this interaction. Furthermore two Services are displayed. One is an already 

provisioned Service, while the other one is not-provisioned and needs to be deployed by 

a Provisioning Engine. The Message Store is designed as an external database hosted on a 

DBMS. Apache Camel routes are used to connect the different components that are split 

over JBI, OSGi and external platforms. Camel routes are shown as dashed lines. Each color 

represents a different Camel route. There are four different routes that are colored in 

green, red, blue and black. More details and explanations about the different Camel 

routes are provided in chapter 6.1.2 “Routing Logic”. 

An incoming service call from ODE-PGF is received by the internal Jetty Server. From 

there, different Camel Routes control the internal message flow. The incoming message is 

also saved in the Message Store. Depending on the required type of binding, the message 

is routed directly to the specified service or through a series of intermediaries that take 

care of different dynamic binding strategies (green and red route in Figure 6-1). This 

includes ODE and the Service Registry that are connected to the NMR; and the 

Provisioning Manager if a service has to be provisioned (black route in Figure 6-1). 

When ODE receives a message through the NMR it starts an instance of the workflow 

model that is responsible for triggering the registration and provisioning of a service (see 

also Figure 5-13). Once the Service Registry has to be called to determine whether a 

service matching the functional requirements is available, ODE sends a service call into 

the NMR. The NMR routes this service call to the Service Registry’s matching binding 

component that is registered on the Normalized Message Router. This binding 

component forwards the service call from ODE to the Service Registry and subsequently 

returns its response back to the NMR. If a service has to be provisioned, a Camel route 

(black route in Figure 6-1) receives the call from the workflow model instance on the 

NMR and invokes the Provisioning Manager. 

The architecture of the Provisioning Manager was previously shown in Figure 5-4. The 

Provisioning Manager consults the Bootware Remote about available Provisioning 

Engines and chooses a matching Provisioning Engine Plugin that is registered on the OSGi 

framework. The Provisioning Manager acquires a reference to the service package from 

the Service Package Repository, which is then passed on to the chosen plugin along with 

the address of the Provisioning Engine. The plugin orders a Provisioning Engine with the 

provisioning of a service instance, including its underlying middleware and 

infrastructure. After the provisioning is complete, the result containing the endpoint of 

the newly provisioned service is passed back to the NMR through a Camel route (black 

route in Figure 6-1). From there, the NMR forwards the response to ODE and its 

workflow model instance that commissioned the provisioning of this service. Now that 
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the endpoint is known, ODE publishes a result message containing the new service 

endpoint to the NMR. This message is received by the blue route on the NMR for further 

processing. This processing is explained in the following chapter 6.1.2. As soon as the 

original service call has been enriched with the service’s endpoint, the Jetty server is used 

again to forward the message to the specified service. 
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6.1.2 Routing Logic 

Figure 6-2 shows the routing model in this approach which is comprised of different 

EIPs, message flows and the NMR. The different colors correspond to the Camel routes 

shown in Figure 6-1. 

 

Figure 6-2: Concept I – Routing EIP Diagram 

Incoming messages from the Workflow Engine are received by the Resolve Binding Type 

route (green) through a Message Gateway (see upper left part of Figure 6-2), which is an 
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endpoint on a Jetty HTTP Server. This endpoint is exposed by Camel under a specified 

URL and port. The first step after receiving the message is to store it persistently. A 

Multicast sends a copy of the message to a Message Store where the message is saved. 

Additionally the message is forwarded to the next step. A Content Based Router 

determines whether a static binding or a dynamic binding has to be used for this specific 

service call. This means that the Content Based Router checks whether an endpoint has 

been specified in the message to which it should be sent. If an endpoint is specified, a 

static binding is used. The Content Based Router then uses the Jetty Server as a Channel 

Adapter and forwards the service call directly to the service. If no endpoint has been 

specified, a dynamic binding has to be used because the URL of the service is unknown. 

Thus, the message is forwarded to another Multicast, sending a copy of the message to 

the endpoint of the Aggregator route and another copy to a Content Filter. This 

component is necessary because the message has to be mediated in order to activate a 

workflow model instance on Apache ODE. This workflow model implements a part of the 

ESB Control Flow that deals with dynamic binding strategies (see also Figure 5-13). 

Unimportant parts are stripped from the message, leaving only information that is 

necessary for a service discovery in the message. These are the functional properties that 

the service has to provide. Afterwards the Envelope Wrapper wraps necessary parts of 

the original service call as a new message that is used to invoke the dynamic binding 

workflow model that is running on ODE. This is done by having this route’s endpoint 

registered on the NMR. The format of this message is defined by the workflow model’s 

WSDL. The NMR picks up the message and finds a suitable recipient, i.e. the workflow 

model running on Apache ODE. This concludes the Resolve Binding Type route that 

corresponds to Figure 5-12 which showed this section of the overall ESB Control Flow. 

The message flow continues on the Normalized Message Router. If a service needs to be 

provisioned the Provision Service route (black) is activated. This route has an endpoint on 

the NMR from where it receives calls from the workflow model instances (see also Figure 

6-1). Afterwards the Provisioning Manager is invoked and its result returned to the NMR. 

The result containing the new endpoint of a service is routed via the Deliver Endpoint 

route (blue) from the NMR to the Aggregator route. 

The Aggregator route (red) shows a separate route containing an Apache Camel 

aggregator. The route has a Camel specific endpoint that can be targeted by other routes. 

Apache Camel comes with its own aggregator component25. The aggregator in Apache 

Camel provides persistence support for messages with an integrated HawtDB26 acting as 

a message store. HawtDB is a lightweight key value database. This aggregator combines 

different messages and sends out a new message, when certain criteria are met. After the 

aggregator receives the message containing the endpoint of the service from the Deliver 

Endpoint route it combines the message of the original service call with the message 

containing the new service endpoint. To allow this, a correlation property has to be 

specified so that the aggregator has a means to know which messages relate to one 

another. In this scenario the message ID of the original service call is used to identify 

                                                             
25 http://camel.apache.org/aggregator2.html 
26 http://hawtdb.fusesource.org/ 
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which messages belong together. The message containing the endpoint of the newly 

provisioned service also encloses the original service call’s message ID. The aggregator 

can then look up the corresponding original service call and combine the information of 

both messages. This means that the aggregator builds a new message containing the 

original service call and the new endpoint of the service, so the destination of the service 

call is now explicitly defined. This is followed up by a Content Based Router. This router 

analyzes the message, and routes it depending on the specified destination endpoint. 

Again Jetty serves as a Channel Adapter that sends the message to the specified service. 

The main disadvantage that this concept has lies within the Apache Camel aggregator 

component. In general, Apache Camel components can be configured to work with 

different message exchange patterns (MEP). Namely Request-Reply and Event Message, 

which are also part of the EAI patterns defined by Hohpe and Wolf in [HoW10]. The 

Request-Reply message exchange is a two way communication, meaning that the sender 

of a message expects a more or less immediate reply to his request. In Camel this MEP is 

also defined as an InOut exchange. There are the following two approaches to a Request-

Reply pattern [HoW10]: 

 Synchronous Block: The requestor sends his request message 

and blocks this thread until he receives a reply and then 

processes it. 

 Asynchronous Callback: The requestor waits on a callback for 

the reply message to his request and is thus non-blocking. This 

means the requestor is able to continue other processing 

while waiting for the reply. The callback is specified in the 

request message so the called entity knows where to send its 

reply. 

In contrast, an Event Message exchange is only a one way communication. For example, a 

sender only informs a recipient about some incident without expecting any reply 

message in return. This one way communication is also called InOnly in Apache Camel. 

Unfortunately the Camel aggregator only functions in an InOnly manner. This means that 

it always treats any incoming message exchanges in an asynchronous manner. Yet the 

original service call from the Workflow Engine might be targeted at a synchronous or an 

asynchronous web service. Hence in case of a synchronous service call the aggregator, 

upon obtaining the message through the routes, would receive the message and the 

exchange would end. Camel would reply that it has successfully delivered the message 

and this reply would then be passed back to ODE-PGF. But since it expects a synchronous 

reply message that contains the result to the initial request message, ODE-PGF would 

throw an error. This is unacceptable as the ESB has to support service discovery for both 

synchronous and asynchronous service calls without limitations. 
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6.2 Concept II: Using a Custom Message Processor 

The second of the three concepts tries to eliminate the problem faced with in Concept I 

(chapter 6.1). The Camel aggregator of Concept I cannot be used, due to its lack of 

supporting synchronous message exchanges. This concept introduces a custom processor 

to enable the correct processing of synchronous service calls. 

6.2.1 Architectural Overview 

Figure 6-3 provides an overview of the architecture that has been developed as part of 

this concept. It slightly deviates from the architecture of Concept I that was shown in 

Figure 6-1. As was the case in Concept I, this figure only depicts the message flow and 

components involved for routing a service call from the Workflow Engine to a specific 

service. How to return reply messages is subject of chapter 6.4. 

 

Figure 6-3: Concept II – Architectural Overview 
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In comparison to Concept I all components remain the same, as well as their locations. 

Figure 6-3 introduces only one new component, a Custom Message Processor (CMP). In 

addition the routing logic has changed. Further details about this subject are given in 

chapter 6.2.2. The focus in this chapter lies on describing the differences between 

Concept I and Concept II in context of the architectural overview. 

A message from ODE-PGF is received through the Jetty HTTP Server on which a Camel 

route (green) has published an endpoint. As was the case in Concept I, this route is 

responsible for saving the message in a Message Store, determining the binding type, and 

triggering further processing, i.e. service discovery. The new Custom Message Processor 

also resides on this route. 

The CMP, which is the centerpiece of this architectural concept, is a blocking component. 

This means that as soon as the CMP receives a message, it will prevent any further 

processing on that route until it unblocks the route. The CMP takes advantage of the 

automatically generated ID that gets assigned to every message that is received by 

ServiceMix and that was previously stored in the Message Store. When a message is 

received by the CMP, it will periodically check if the database entry corresponding to this 

message has been updated with information about the endpoint. When the service 

discovery, and possible provisioning, process has finished, a Camel route (blue) updates 

the original service call in the Message Store. After the Custom Message Processor notices 

that the corresponding entry in the Message Store has been updated, it extends the 

service call message it held back with the new endpoint and forwards it to the correct 

service through the Jetty Server. 

The route (black) that connects the Provisioning Manager with the NMR is identical to 

that of Concept I (see also Figure 6-1). It receives calls from ODE on the NMR, forwards 

them to the Provisioning Manager and subsequently transfers the reply back to the NMR. 
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6.2.2 Routing Logic 

Figure 6-4 shows the routing model of Concept II which is comprised of different EIPs, 

message flows, the NMR and a Custom Message Processor. The different colors 

correspond to the Camel routes shown in Figure 6-3. 

 

Figure 6-4: Concept II – Routing EIP Diagram 

Incoming messages from the Workflow Engine are received by the Resolve Binding Type 

and Deliver Service Call route through a Message Gateway on Jetty (see top left corner of 

Figure 6-4). The following steps of saving the message to a Message Store and directly 

routing the service call to a service in case of a static binding are identical to Concept I.  
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The difference in this route is that it also encompasses the logic for routing service calls 

for which a dynamic binding is required. In Figure 6-2 of Concept I another route that 

contained an aggregator was activated. This was explained in the previous “Architectural 

Overview” chapter, as the CMP blocks the route until it has acquired information about 

the message’s endpoint. If a dynamic binding strategy has been detected, the message is 

send to the CMP as well as through several intermediaries to start the necessary 

workflow model in ODE which is connected to the NMR. The Provision Service route is 

identical to the one in Concept I. 

The Deliver Endpoint route differs from the one in Concept I. A Camel endpoint on the 

NMR receives the messages from ODE. These messages contain the endpoint of a service 

and are sent out by an instance of a workflow model that implements the dynamic 

binding part of the ESB Control Flow, see also Figure 5-13. Afterwards this route updates 

the database entry that contains the previously stored original service call with the new 

endpoint, so that this service call is now ready to be forwarded to its intended receiver. 

This change is registered by the CMP, it unblocks the route and the message is forwarded 

to the service via a Content Based Router and Jetty serving as a Channel Adapter. 

By introducing a blocking component to the architecture it is ensured that in the event of 

a synchronous request from ODE-PGF the routing of the service call stays synchronous 

while other parts of the ESB Control Flow can still interact in an asynchronous manner. 

This approach is also the base of the implementation that is the subject of chapter 7. 

6.3 Concept III: Leveraging the power of the NMR 

This third concept follows a different approach than the previous two concepts. It focuses 

on JBI with the Normalized Message Router and their capabilities and less on Apache 

Camel routes. The NMR is a powerful component that can automatically route messages 

to an endpoint that provides the necessary capabilities required by a message. The 

architectural approach is depicted in Figure 6-5. As was the case in the previous 

discussed concepts, Figure 6-5 only shows how to route a service call to a matching 

service. Additionally this concept requires a different kind of realization of the ESB 

Control Flow than the previous two concepts. The most part of the ESB Control Flow 

would need to be implemented via workflow models, as Camel routes play only a very 

little role in this concept. This is because this concept relies heavily on the routing 

capabilities of the NMR. 
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Figure 6-5: Concept III – Architectural Overview 

As in the previous concepts, ServiceMix as the implementation of an ESB is the central 

component along with its OSGi and JBI environment. ODE-PGF, Provisioning Engines, 

Service Package Repository and Bootware Remote are shown above ServiceMix, while 

Message Store, a not-provisioned and provisioned Service and Service Registry are 

displayed below ServiceMix. A key difference to the previous approaches is that services 

are connected to the NMR via binding components (BC). 

A Camel route receives the service calls from ODE-PGF via a Jetty HTTP Server, saves the 

message in a Message Store and delivers it to the NMR (green route). ODE, i.e. a deployed 

workflow model, receives the message. If a static binding is used ODE sends the message 
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back on the NMR which then routes the message to a matching BC that connects the 

service to the NMR. If some kind of dynamic binding is required, ODE consults the Service 

Registry about available services and, if necessary, orders the Provisioning Manager to 

provision this service (black route). 

Since a service must be connected to the NMR, its binding component has to be created 

and deployed dynamically when a service gets provisioned. In Figure 6-5 a Provisioning 

Engine Plugin supports this functionality. The binding component has to be deployed 

after the service is provisioned, because otherwise the endpoint of the service might be 

unknown. 

After both the service and its corresponding binding component are provisioned, ODE 

sends the service call back into the NMR which then takes care of delivering the message 

to the right BC and service. 

The great advantage this approach provides is that by using binding components 

protocol independence is achieved. For example, a service might be only available via 

JMS. This service cannot be engaged through either the approach of Concept I or II, as 

both require a service to be available over HTTP. Binding components provide a means 

to easily connect external services with the NMR, independent of specific protocols. A 

disadvantage is that additional provisioning logic is required to deploy BCs dynamically 

on the NMR. 

6.4 Routing Response Messages 

The previously discussed architectural concepts were about how to forward the original 

service call to the actual service. The subject of this chapter is how to route replies that 

the ESB receives from called services back to the Workflow Engine. There are two 

scenarios which have to be taken into account; an asynchronous callback and a 

synchronous reply from the service. 

The approach introduced in this chapter is heavily dependent on WS-Addressing 

[WAC06]. As was already mentioned in chapter 5.5 “Routing Messages to the ESB”, WS-

Addressing defines multiple SOAP headers that are useful for defining a message’s origin, 

destination, intent and more. This makes it mandatory that the Workflow Engine 

implements WS-Addressing and uses it on all outgoing messages. Services that provide 

asynchronous message exchanges also must support WS-Addressing. To identify the type 

of message exchange that should be used to communicate with a service, the ReplyTo 

header field of WS-Addressing is used. The ReplyTo header field indicates the intended 

receiver of replies to this request. In an asynchronous message exchange this would be 

an endpoint reference, identifying the address of the intended receiver of replies. In 

Listing 6-1 a snippet of the SOAP headers of a request message is shown that is part of a 

synchronous message exchange. 
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1 <soapenv:Header> 

2 ... 

3 <wsa:ReplyTo> 

4    <wsa:Address> 

5       http://www.w3.org/2005/08/addressing/anonymous 

6    </wsa:Address> 

7 </wsa:ReplyTo> 

8 ... 

9 </soapenv:Header> 

Listing 6-1: WS-Addressing – Synchronous Message Exchange 

As can be seen in line 5 of Listing 6-1, the value of the Address property in ReplyTo is not 

an endpoint. If no explicit endpoint has been specified for the response message, the 

predefined URI “http://www.w3.org/2005/08/addressing/anonymous” is used as a 

value for the Address property [WAC06]. This is the case in synchronous message 

exchanges as the initial requestor is also the intended receiver of the reply message. Thus 

this property is used to identify the kind of MEP a request message is part of. 

6.4.1 Forwarding Synchronous Replies 

A synchronous message exchange is of blocking nature. At the requestor’s side the same 

thread that sent out the initial request waits until it receives a reply from the service. In 

case of a synchronous service call, a route is established that links the Workflow Engine, 

i.e. ODE-PGF, with the synchronous service and the ESB as an intermediary. Figure 6-6 

illustrates this approach. 

 

Figure 6-6: Bridging Connection between Workflow Engine and Service 

A Message Processor is part of a route that connects the Workflow Engine via the ESB with 

a Service. Every message that travels along this route passes the Message Processor. This 

component is used to detect an incoming response message in a synchronous message 

exchange. When the called service sends its response through the route, the Message 

http://www.w3.org/2005/08/addressing/anonymous
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Processor initiates the deprovisioning workflow model (see Figure 5-15), which deals 

with the possible unregistration and deprovisioning of the service instance. 

6.4.2 Forwarding Asynchronous Callbacks 

In case of an asynchronous callback the service sends its reply message to an endpoint 

provided by the ESB. In Figure 6-7 it is shown how to make this endpoint known to the 

service. 

 

Figure 6-7: Informing a Service about a Callback Endpoint 

This endpoint needs to have been specified in the request message, the ESB sent to the 

service. This is done by setting the WS-Addressing ReplyTo header’s value of the request 

message to target this endpoint on the ESB. 

After the callback has been received by the ESB it needs to be forwarded to the original 

callback address that was specified by the Workflow Engine. The metamodel of 

forwarding the callback message of a service from the ESB to the Workflow Engine is 

shown in Figure 6-8 below. This model is a more detailed version of Figure 5-14 “Routing 

Model: Routing Service Replies” of chapter 5.7 “Partitioning the ESB Control Flow”. 
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Figure 6-8: Forwarding callbacks to the Workflow Engine 

After the callback message has been received, the original request message that preceded 

this callback has to be looked up in the message store. This is done by utilizing WS-

Addressing properties. In Listing 6-2 a snippet from a request message is shown that 

includes the message’s unique identifier (see line 4). 

1 <soapenv:Header> 

2 ... 

3 <wsa:MessageID> 

4    uuid:hqejbhcnphr98b8gtx7b79 

5 </wsa:MessageID> 

6 ... 

7 </soapenv:Header> 

Listing 6-2: WS-Addressing – Request Message 

MessageID is an optional attribute, but it is required in the context of this thesis that the 

Workflow Engine specifies a unique value for this attribute in every message it sends out. 

An example reply message is shown in Listing 6-3. WS-Addressing defines that a reply 

message must reference the related message’s ID [WAC06]. This means that every 

response must contain a reference to its preceding request message. 
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1 <soapenv:Header> 

2 ... 

3 <wsa:RelatesTo> 

4    uuid:hqejbhcnphr98b8gtx7b79 

5 </wsa:RelatesTo> 

6 ... 

7 </soapenv:Header> 

Listing 6-3: WS-Addressing – Reply Message 

This message would indicate that it is the reply to the message of Listing 6-2. This means 

that the original request message can be easily identified in the message store. The next 

step in Figure 6-8 is to acquire the callback address defined in the original request 

message. After this information has been obtained, the callback can be forwarded to the 

intended location. As was shown in Figure 5-15 “Workflow Model: Unregister and 

Deprovision Service Instance” the Service Registry must be updated and the service 

potentially deprovisioned. In Figure 6-9 an architectural overview of this process is 

given. The process consists of receiving asynchronous callback messages from services 

and subsequently routing them back to the Workflow Engine, i.e. ODE-PGF, as well as 

deprovisioning these services. 
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Figure 6-9: Returning Asynchronous Replies – Architectural Overview 

All components are identical to the architecture of Concept II (see also chapter 6.2.1). In 

the center ServiceMix, an implementation of an ESB, along with its OSGi and JBI 

environments is shown. Around the edges of ServiceMix are various external components 

that communicate with different internal components of ServicMix. Camel Routes are 

displayed as colored dashed lines. The difference to the architecture of Concept II is that 

in Figure 6-9 only routes are shown that are relevant in the context of returning 

callbacks. In Figure 6-3 “Concept II – Architectural Overview” only routes that are 

necessary for a successful on-demand provisioning of a service and its infrastructure 

along with its subsequent invocation were depicted. 

Central point for in and outgoing messages is the Jetty HTTP Server. The blue Camel route 

is responsible for saving incoming callbacks persistently in the Message Store, forwarding 

the callback back to ODE-PGF, and invoking a workflow model instance on ODE that is 



 
73 

 

tasked with unregistering the service call from the Service Registry and possibly ordering 

the deprovisioning of the service (see also Figure 5-15). The Content Enricher extends the 

result message from the service with the correct callback address that was specified in 

the initial request message from ODE-PGF. 

If the service needs to be deprovisioned, the Provisioning Manager is ordered to undeploy 

the service along with its underlying infrastructure and middleware (black route). The 

Provisioning Manager selects a suitable Provisioning Engine Plugin, which in turn 

commissions a Provisioning Engine to undeploy the service and its infrastructure. 

In Figure 6-10 a model of the internal logic of the different Camel routes is shown. The 

routing model consists of different EIPs, message flows, and the NMR. The different 

colors correspond to the Camel routes shown in Figure 6-9. 

 

Figure 6-10: Returning Asynchronous Replies – EIP Diagram 
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The blue Receive & Forward Callback route receives a message on a Message Gateway 

through Jetty. This is a HTTP-endpoint that is defined as the callback address for all of the 

ESB’s outgoing request messages. Afterwards a Multicast sends a copy of the message to 

the Message Store, as well as to a Content Filter and Content Enricher. 

The Content Enricher looks up the matching request message to this callback in the 

message store and extends the callback message with the correct callback address that 

was specified in the initial request message. Then the callback is forwarded via a Content 

Based Router and a Channel Adapter on Jetty. 

The Content Filter, along with the following Message Wrapper, prepares the message to 

invoke a workflow model instance on ODE in the JBI environment that takes care of 

updating the Service Registry and potentially issuing a deprovisioning of the service. 

The Deprovision Service route is similar to the Provision Service route in Figure 6-4 of 

Concept II. An endpoint on the NMR receives a request from a workflow model instance 

and invokes the deprovisioning logic of the Provisioning Manager. The result from the 

Provisioning Manager is returned back on the NMR. 
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7 Implementation 

For the implementation part of this thesis the concept introduced in chapter 6.2 “Concept 

II: Using a Custom Message Processor” was used. This is due to the fact that concept 

“Concept I: Using an Apache Camel Aggregator” is unable to handle synchronous service 

calls and “Concept III: Leveraging the power of the NMR” was out of scope of this thesis. 

The following software and technologies were used for the implementation. Here, only a 

quick overview is given as most of them have already been introduced in chapter 2 

“Fundamentals”. 

 ESBMT: A multi-tenant enabled open source implementation of 

an ESB. Based on Apache ServiceMix 4.3.0. 

 Apache Camel 2.6: A Routing engine and bundled with 

ServiceMix. 

 Apache Karaf with Apache Felix OSGi Framework and bundled 

with ServiceMix. 

 ODE-PGF inside an Axis2 Integration Layer. 

The implementation very closely follows the proposed architecture in Figure 6-3 and 

Figure 6-4 of chapter 6.2 “Concept II: Using a Custom Message Processor”. In this chapter 

an overview over different interesting aspects of the implementation is given. 

Additionally to the implementation of the concept, a plugin for the OpenTOSCA 

Provisioning Engine has also been developed as part of this thesis. This enables a 

complete demonstration of the on-demand provisioning of a service and its underlying 

infrastructure and middleware; starting from the ESB receiving the original service call, 

to provisioning the service, forwarding the service call and returning its reply back to the 

Workflow Engine, and the subsequent deprovisioning of the service. 

All classes shown in class diagrams of this chapter only depict methods. Additionally, to 

increase readability all methods are displayed without their respective parameters. 

7.1 Bug Fixing and Workarounds 

Apache ServiceMix 4.3.0 was released in March 2011 which was at the date of this 

writing more than three years ago. This means that a lot of bug fixes that have been 

introduced in the meantime are missing in the version that is used in this thesis. 
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The internal ODE of Apache ServiceMix has a bug that results in ODE being unable to 

connect to its internal database after a restart of ServiceMix27. This prevents the 

execution of any workflow on ODE. It is possible to reinstall ODE in ServiceMix after the 

restart and subsequently redeploy all workflow models. But this cumbersome procedure 

would need to be repeated after every restart. As this is unacceptable, this bug had to be 

fixed by hand, as newer versions of ODE would not run on ServiceMix 4.3.0. Another 

solution is to configure an external database to be used with ODE, as this bug only 

manifests when using ODE’s internal database. 

A bug in Apache Camel in ServiceMix 4.3.0 prevents the establishment of routes between 

the NMR of JBI and services in OSGi28. In this thesis a simple workaround is used to 

establish routes between JBI and OSGi (see Listing 7-1 and Listing 7-2). 

1 from("jbi:endpoint:http://localhost/osgi/input") 

2 .to("vm:osgi"); 

Listing 7-1: Apache Camel – JBI to OSGi Workaround Example 

In Listing 7-1 an example route is shown that connects a Camel endpoint in JBI with a 

Camel VM endpoint. This type of Camel endpoint has the ability to communicate across 

different CamelContext instances, amongst other features [CVM14]. The route is defined 

via the Java DSL of Apache Camel. The above example would be packaged as a Service 

Unit inside a Service Assembly which is then deployed in the JBI container of ServiceMix. 

In Listing 7-2 an example Camel route is defined via OSGi blueprint which is specified in 

[OSE10]. Blueprint allows a developer to define OSGi services by means of an XML 

configuration file. Apache Camel supports this notation and thus it is possible to define 

routes through Blueprint. The XML file can then be simply dropped into the hot-

deployment directory of ServiceMix. 

1 <blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"> 

2 <camelContext xmlns="http://camel.apache.org/schema/blueprint"> 

3    <route> 

4       <from uri="vm:osgi" /> 

5          <setBody> 

6             <method ref="localhost.MyService" method="echo"/> 

7          </setBody> 

8       <to uri="vm:foo" /> 

9    </route> 

10 </camelContext> 
11 </blueprint> 

Listing 7-2: Apache Camel – OSGi Blueprint Route 

                                                             
27 https://issues.apache.org/jira/browse/ODE-302 
28 https://issues.apache.org/jira/browse/SMXCOMP-877 
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The route in Listing 7-2 receives messages on the vm:osgi endpoint (line 4). Afterwards it 

calls a method of a service with the message body as a parameter (line 6) and passes the 

result to another endpoint (line 8). Both example routes of Listing 7-1 and Listing 7-2 are 

now able to work together. Thus messages can be passed from the JBI endpoint defined 

in Listing 7-1 (line 1) to the service referenced in line 6 of Listing 7-2. This creates a 

bridge for messages between the JBI and the OSGi container of ServiceMix. 

7.2 Provisioning Manager and Plugins 

In chapter 5.2 the plugin architecture of the Provisioning Manager was discussed. Its 

main feature is to provide a stable interface for provisioning and deprovisioning of 

services. Due to its modular architecture the Provisioning Manager along with its plugins 

is realized as an OSGi service. 

In Figure 7-1 a UML class diagram of the Provisioning Manager bundle and its plugin 

bundles are shown. 

 

Figure 7-1: Provisioning Manager and Plugins – Class Diagram 

The diagram shows important interfaces and classes of the Provisioning Manager and 

Plugins for Provisioning Engines. The OSGi service the Provisioning Manager offers, is 

defined via the ProvisioningManager interface which has two public methods, 

provisionService and deprovisionService. This interface is implemented by the 
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ProvisioningManagerImpl class. The main application logic of the PM resides in this class, 

including communication with the Bootware Remote and the selection process to find a 

matching plugin for a provision/deprovision request. To enable this selection process, 

the Provisioning Manager uses the Listener class. Listener implements the 

ServiceListener29 interface, which is defined by the OSGi framework. The Listener class 

registers itself with the OSGi framework and is configured in such a way, that it is notified 

whenever a service implementing the PEPlugin interface changes its state. These state 

changes include the registration of new plugins and the unregistration of plugins that will 

be no longer available. By this means the Provisioning Manager has an always up to date 

list of all available Provisioning Engine Plugins. 

PEPlugin is an interface, the Provisioning Manager provides, which needs to be 

implemented by Provisioning Engine Plugins. The interface defines two methods deploy 

and undeploy. Plugin developers than provide different implementations of this interface 

as separate bundles (PEPlugin). By providing this interface with the Provisioning 

Manager, it is ensured that all plugins have to conform to this stable interface. 

7.3 OpenTOSCA Plugin 

The OpenTOSCA plugin is a Provisioning Engine Plugin that enables the Provisioning 

Manager to deploy suitable CSAR service packages via OpenTOSCA. A class diagram 

displaying important aspects of the plugin is shown in Figure 7-2. 

 

Figure 7-2: OpenTOSCA Plugin – Class Diagram 

The PEPluginImpl class implements the mandatory service interface provided by the 

Provisioning Manager. Methods that are specific to OpenTOSCA are bundled in the 

OpenToscaConnector class. OpenTOSCA requires that a CSAR is uploaded to its system 

prior to starting the actual deployment. This is realized by the uploadCSAR method. The 

                                                             
29 http://www.osgi.org/javadoc/r4v43/core/org/osgi/framework/ServiceListener.html 
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method uses the URL to the referenced service package, which is provided by the 

Provisioning Manager when calling the plugin, to upload the CSAR to OpenTOSCA. 

Afterwards the runBuildPlan method starts the build plan execution of the CSAR in 

OpenTOSCA (see also chapter 2.12 “OpenTOSCA”). 

7.4 Dynamic Binding Axis2 Module 

In Figure 7-3 the class diagram of the Axis2 module is shown, that is used to route 

messages from ODE-PGF to ServiceMix. 

 

Figure 7-3: DynamicBinding Module – Class Diagram 

The module follows the architecture proposed in chapter 5.5.3. It needs to be able to 

route messages to the ESB, but not interfere with messages that are sent back to the 

client from ODE-PGF. Every Axis2 module must provide an implementation of the 

Module30 interface. This implementation is provided by the DynamicBindingModule class. 

The methods defined by the interface can be used to further define the processing of 

messages in this module, e.g. depending on policies. OutgoingMessageHandler extends the 

AbstractHandler31 class of Axis2. It provides only one method, invoke, which is called on 

every message that passes through this handler. The logic of this method determines if 

the message should be rerouted or not and extends the SOAP header bock of the message 

with additional headers that are required to perform a successful dynamic binding by the 

ESB (see also chapter 5.5 “Routing Messages to the ESB”). 

                                                             
30 http://axis.apache.org/axis2/java/core/api/org/apache/axis2/modules/Module.html 
31 http://axis.apache.org/axis2/java/core/api/org/apache/axis2/handlers/AbstractHandler.html 
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Furthermore a module must provide metainformation in form of an XML configuration 

file (module.xml). In Listing 7-3 the module.xml file of the Dynamic Binding module is 

shown. 

1 <module name="DynamicBindingModule" 

2         class="org.simtech.axismodule.DynBindingModule"> 

3    <Description> 

4       Module that inserts Dynamic Binding specific headers. 

5    </Description> 

6    <OutFlow> 

7       <handler name="OutgoingMessageHandler" 

8               class="org.simtech.axismodule.MessageOutHandler"> 

9          <order phase="MessageOut"/> 

10       </handler> 
11    </OutFlow> 
12 </module> 

Listing 7-3: Axis2 Module – module.xml 

The content of line 1 and 2 defines a name for this module and point to the class 

implementing the Module interface. In line 3 a general description about this module is 

provided. This information is later displayed in the web admin console of Axis2. 

Afterwards the specific flow and order of each handler contained in this module is 

defined (lines 6-11). In this case the Dynamic Binding module encompasses only one 

handler, MessageOutHandler, which is referenced in line 8. 

This module is then embedded into the Axis2 Integration Layer of ODE-PGF. This 

provides a loosely coupled solution, as the module can be easily deployed inside other 

Axis2 environments. 
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8 Summary and Future Work 

In chapter 2 of this thesis an overview of various technologies and their implementations 

that are useful in the context of on-demand provisioning of services was given. Mostly 

these are software that is used in this thesis, e.g. Apache ServiceMix, Apache Camel and 

OpenTOSCA. Previous work in the scope of SimTech has been analyzed in chapter 4that 

formed the basis of this thesis. This included an overall architecture of a SWfMS and what 

binding strategies are used for the on-demand provisioning of services and their 

underlying infrastructure and middleware. In chapter 5 different architectural and 

design decisions were introduced and analyzed. This included an overview of which 

components of the overall architecture have been modified and a closer look on each of 

these components. Afterwards it was explained how the internal control logic of the ESB 

has been divided into several models. Different architectural approaches were the 

subjects of chapters 6.1, 6.2 and 6.3. Each approach has had its own notion and 

drawbacks. Based on these, one concept has been chosen that forms the basis of the 

prototypical implementation. Furthermore the difference and handling of synchronous 

replies and asynchronous callbacks has been addressed in chapter 6.4. An overview of 

the prototypical implementation was given in chapter 7. 

Currently services are deprovisioned as soon as they return their result. This may cause 

unnecessary re-provisioning and deprovisioning if a service is called multiple times 

throughout a workflow. In the future it may be possible to analyze the entire workflow 

first and then pass all requirements to the ESB. The ESB can then analyze after which 

service call a service may be deprovisioned since it will be no longer needed in the 

current workflow. 

There are multiple other possible subjects that make for interesting future work. In 

particular how the architectural concept introduced in chapter 6.3 “Concept III: 

Leveraging the power of the NMR” may be further refined and prototypically 

implemented. As this would loosen the current coupling to the HTTP protocol on which 

all service interactions are based. It would provide a more protocol independent 

approach and subsequent higher powerfulness of the system. Additionally it may be 

researched how the introduction of messaging queues may help with providing 

persistency and stability to the overall system, e.g. via Apache ActiveMQ32 which is 

bundled with ServiceMix. 

The concepts developed in this thesis only focus on a simple service discovery via 

functional properties. Yet, service discovery is only one part of a full service selection 

process. In such a process non-functional properties have also to be taken into account. 

Non-functional properties may, for example, be specified via the use of WS-Policy 

[WSP07]. The Service Registry, which was only treated as a mockup in this thesis since it 

                                                             
32 http://activemq.apache.org/ 
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was a necessity to the overall system, is also part of future works. In [VHK⁺14] a possible 

future metamodel is described that is crucial for a proper service selection process. An 

extended architecture for service selection is also introduced. Additionally [VHK⁺14] 

talks about a service package selection process which follows the previous service 

selection to match provisioning requirements with provisioning capabilities. 

The metamodel of the Service Package Repository, which was introduced in chapter 5.4, 

has a Requirements entity which holds additional technical information about a service 

package. It has to be evaluated if further metainformation about a service package has to 

be stored in the Service Package Repository. 

In chapter 5.1 “Provisioning Manager as an Internal/External Component” it was 

mentioned that the Provisioning Manager and the Bootware Remote might be 

consolidated into one component. This idea was discarded for this thesis and the parallel 

thesis of Reinfurt [Rei14]. It would have introduced additional complexity to both works 

and be out of scope of the theses. Nevertheless it has to be evaluated if this idea is viable. 

Both components are based on the OSGi framework and as such provide modularity and 

loose coupling. They are even both using the same implementation of an OSGi 

framework, Apache Felix. This should ease the integration of both components into a 

joint component. Possible advantages are the reduction of the overall complexity of the 

system and a more convenient routing logic. 

Another idea is to introduce a Plugin Repository to the architecture. This would be 

especially useful if Provisioning Manager and Bootware Remote were forged into one 

component. A plugin repository would store different plugins, which for example enable 

the provisioning of services via different Provisioning Engines. In contrast to the current 

design where plugins for the Provisioning Manager have to be run on the ESB’s OSGi 

framework, they could be hosted remotely and be loaded dynamically if required. This 

would decouple the creation and development of Provisioning Engine Plugins from the 

core SWfMS system and allow third parties to create plugins for the Provisioning 

Manager and Bootware Remote. The Service Package Repository follows the same 

concept, where service packages can be created and uploaded independently from the 

rest of the SWfMS. Thus, a Plugin Repository would be a reasonable step towards 

increased modularity and loose coupling. As the Provisioning Manager, the Bootware 

Remote and their respective plugins run on the Apache Felix OSGi framework, it may be a 

good start to look at the Apache Felix OSGi Bundle Repository33 which also supports the 

OSGi Repository Specification defined in [OSG12]. 

                                                             
33 http://felix.apache.org/site/apache-felix-osgi-bundle-repository.html 
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