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Abstract

The assumption that services should run continuously is no longer reasonable in science

oriented environments, where dynamic working approaches lead to fluctuating service utiliza-

tion. Making services available on-demand would be better suited in those situations. For

on-demand provisioning of services in cloud environments, suitable provisioning engines

have to be set up first. This diploma thesis presents the design for a 2-tiered bootware

component that deploys provisioning engines into remote environments that can then be

used to provision services on-demand. The bootware can be called by other components via

a web service interface and supports multiple provisioning engines and cloud environment

via plugins. The integration of the bootware into the SimTech SWfMS with an Eclipse plugin

is also described, the bootware however is designed to be generic and can be used together

with other systems.
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1 Introduction

Workflow technology and the service based computing paradigm were mostly used in a

business context until now. But slowly they are extended to be used in other fields, such as

eScience, where business centric assumptions that where previously true are not reasonable

anymore. One of these assumptions is that services should run continuously. This made

sense in large enterprises where those services are used every day. Science, on the other

hand, often takes a more dynamic approach, where certain services, for example for simu-

lation purposes, are only used at certain times. In those cases, it would make more sense

to dynamically provision services only when they are needed. To provision those service,

provisioning engines might be used, but these also have to be set up first. This creates the

need for a bootstrapping mechanism that can deploy provisioning engines when needed.

1.1 Task of this Diploma Thesis

The task of this diploma thesis is to design a small, independent bootstrapping system that

can deploy provisioning engines automatically and on-demand in cloud environments. It

should be able to provision various provisioning engines in different cloud environments.

The provisioning engines then handle the actual provisioning of required workflow systems

and services. A managing component that keeps track of provisioned environments is also

part of this system. Support for different cloud environments and provisioning engines

should be achieved through means of software engineering. A functioning prototype that

supports Amazon1 as cloud environment and OpenTOSCA2 [2] as provisioning engine should

be implemented.

1http://aws.amazon.com/
2http://www.iaas.uni-stuttgart.de/OpenTOSCA/indexE.php
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1 Introduction

1.2 Structure of this Document

We begin with an introduction to some fundamental topics in Chapter 2. First, we explain boot-

strapping, followed by a general overview of provisioning with some details on TOSCA3 [34]

and OpenTOSCA. We explain the concept of cloud computing and describe Amazon’s cloud

platform. We also present the basics of service oriented architecture, workflows, and work-

flow management systems. Finally, we describe the SimTech project as well as the SimTech

SWfMS.

In Chapter 3 we present previous work on the subject of this diploma thesis. First, we

summarize the paper that build the foundation of this diploma thesis. Then, we discuss a

previous diploma thesis that extended parts of this paper. In Chapter 4 we also present some

related work. We list the requirements that were given for this diploma thesis in Chapter 5.

We also explain some additional constraints that we introduced.

We present the design of the bootware in Chapter 6. First, we discuss component division,

followed by the integration into existing modeler applications. Next, we select an external

communication mechanism. We describe the extensibility mechanism, followed by the

different kinds of plugins. We also discuss the event system, the context object, the web

service interface, and the instance store. Then, we describe the execution flow and the use of

finite state machines, before the final bootware architecture is presented. We also present a

step by step description of the whole bootstrapping process in Chapter 7.

In Chapter 8 we present details on the implementation of the bootware. We describe the

integration into the SimTechModeler with an Eclipse plugin. We also explain the bootware core

library. Then, we select the plugin framework, publish subscribe library, and state machine

library that we will use for the implementation. We also describe the context object and the

web service operations. Then, we give an overview over some plugins we implemented. In

Chapter 9 we list some possibilities for future improvement. We summarize the previous

chapters in Chapter 10, before presenting a conclusion.

3https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
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2 Fundamentals

This chapter starts with a short description of bootstrapping, followed by an introduction

into provisioning. Then, we provide a short overview of the cloud landscape, with focus on

Amazon’s cloud offerings because these are used in this diploma thesis. We also introduce

service oriented architecture and explain workflows and workflow management systems. We

finish with an overview of the SimTech project1, of which this diploma thesis is a part of.

2.1 Bootstrapping

The term to bootstrap sth. appears to have originated in the early 19th century in the United

States, where phrases like “pulling oneself up over a fence by the straps of one’s boots” where

used as a figure for an impossible task [42]. In the early 20th century the metaphor’s sense

shifted to suggest a possible task, where one improves one’s situation by one’s own efforts

without help from others. An example of this can be found in James Joyce’s Ulysses from

1922, where he writes about “others who had forced their way to the top from the lowest

rung by the aid of their bootstraps” [21]. From there, the metaphor extended to the general

meaning it has today which is the act of starting a self-sustaining process that proceeds

without help from the outside.

An early reference to bootstrapping in the context of computing dates back to 1953, describing

the bootstrapping technique as follows: “Pushing the load button then causes one full word

to be loaded into a memory address [...], after which the program control is directed to that

memory address and the computer starts automatically. [This] full wordmay, however, consist

of two instructions of which one is a Copy instruction which can pull another full word [...], so

that one can rapidly build up a program loop which is capable of loading the actual operating

program” [8].

1http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/
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2 Fundamentals

The term bootstrapping is also used with a similar meaning in a business context, where it

refers to the process of starting and sustaining a company without outside funding2. The

company is started with money from the founders, which is used to develop a product that

can be sold to customers. Once the business reaches profitability it is self-sufficient and can

use the profits it generates to organically grow further.

In this diploma thesis, bootstrapping describes the process of starting a simple program

that, without further help, is able to start much more complex programs. These complex

programs might require additional middleware, databases, or other components. During the

bootstrapping process, all these dependencies will be set up automatically.

2.2 Provisioning

This section provides an overview of provisioning in the context of computing. First, we

present a general introduction and describe some of the provisioning solutions available

today. Then, we focus in particular on TOSCA and OpenTOSCA because those are used in the

prototypical implementation later on.

2.2.1 Overview

Setting up a complex distributed system with many different components scattered across

multiple environments is a time-consuming task if done by hand. For this reason, many

provisioning solutions have been created over the years to automate this process. They differ

in some areas, but their core functionality is basically identical: They prepare all necessary

resources for a certain task. This core functionality can be stated more precisely with the

following definition: Provisioning is, “in telecommunications, the setting in place and config-

uring of the hardware and software required to activate a telecommunications service for a

customer; in many cases the hardware and software may already be in place and provisioning

entails only configuration tasks” [12]. Because we are working in a cloud environment, we

will not have to deal with hardware directly, but rather with virtual machines (VMs). So for us,

provisioning means the creation and deletion of VMs in a cloud environment, as well as the

installation, configuration, monitoring, running and stopping of software on these VMs [23].

There are many benefits to using an automated provisioning solution instead of doing the

provisioning by hand. The manual approach is limited by how much work a single person can

2http://venturebeat.com/2008/11/20/the-art-of-the-bootstrap/
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2 Fundamentals

do at any time, whereas an automatic approach is able to do much more work, in less time,

and potentially in parallel. This makes it possible to manage huge infrastructures with very

little resources, which can save time and money compared to a manual approach. As every

step that needs to be done to provision a system has to be written down, a detailed description

of the whole provisioning process is created. This makes the whole process reproducible and

less error-prone, because the human factor is largely replaced by automation. Parts of such

a description can also be shared in a business or even between businesses, which makes the

process of creating such a description potentially much more efficient.

The general process of working with provisioning software is very similar with all the different

solutions. It can be described as a two step process. In step one, a description of the whole

provisioning process has to be created using the tools provided by the particular solution.

In general, this involves creating a textual description in a certain format that is understood

by the provisioning software that is to be used. In this description, we tell the software what

virtual resources we need, what software should be installed on them and how everything

should be configured. In step two, we pass this description to the provisioning software which

interprets and executes it.

Many different provisioning solutions exist today. Some cloud providers offer provisioning

solutions that are particularly tailored to their cloud offerings, for example AWS CloudFor-

mation3, which can only be used to provision resources in the Amazon cloud. Then, there

are more generally usable provisioning solutions that are not bound to any particular cloud

provider. A few popular examples include Ansible4, Chef5, Puppet6, and TOSCA7, which we

will discuss in detail later.

All these solutions differ in some form or another. A full feature comparison of different

solutions is out of scope for this diploma thesis, but what follows is a short overview of

some of the differences. As already mentioned, AWS CloudFormation is bound to Amazon’s

cloud platform, while the other solutions are not. Chef and Puppet both use a client server

architecture, where each node that should be configured by them has to run a client program

to communicate with a server node, whereas Ansible executes its command over Secure Shell

(SSH) and therefore does not require additional software on the nodes that are configured.

The solutions also differ in modularity and flexibility. While Ansible, Chef, Puppet, and TOSCA

are highly flexible and can be used in a fine grained modular fashion, this also makes them

more complex to use, for example compared to AWS CloudFormation.

3http://aws.amazon.com/cloudformation
4http://www.ansible.com
5http://www.getchef.com/chef
6http://puppetlabs.com/
7https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
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2 Fundamentals

2.2.2 TOSCA

Topology andOrchestration Specification for CloudApplications (TOSCA) is a standard created

by the Organization for the Advancement of Structured Information Standards (OASIS)8 [34].

Its development is also supported by various industry partners, which include IBM, Cisco,

SAP, HP and others. Its aim is to provide a language that can describe service components

and their relations in a cloud environment independent fashion. The following description is

based on version 1.0 of the specification [34].

TOSCA defines an XML syntax, which describes services and their relations in a so called

service template. All elements needed to define such a service template are provided in the

TOSCA definitions document. Figure 2.1 shows such a definitions document. Aside from the

actual service template, shown on the left, it also contains a number of type definitions and

some templates based on those definitions. These definitions and templates can also be

imported from a separate definitions document.

Figure 2.1: TOSCA definitions structure [based on 34].

The service template consists of two parts: A topology template and plans. Topology tem-

plates, as seen in the center of Figure 2.1, model the structure of a service and the middleware

and infrastructure supporting it as a directed graph. The vertices of the graph represent

8https://www.oasis-open.org/
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2 Fundamentals

nodes which are occurrences of a specific component, for example, an application server

or a database. These nodes are defined by node types or by other service templates. Node

types are reusable entities, as shown in the top right of Figure 2.1. They define the properties

of a component, as well as operations to manipulate a component, so called interfaces.

Additionally, node types can be annotated with requirements and capabilities. These, in turn,

are defined by requirement and capability types, which also belong to the group of reusable

entities. This allows for requirement and capability matching between different components.

The edges of the graph represent connections between nodes, which are defined by relation-

ship templates that specify the properties of the relation. An example for such a connection

would be a node A, representing a web service that is deployed on node B, an application

server. Relationship types are also used to connect requirements and capabilities.

Plans, shown on the left of Figure 2.1, are used to manage the service that is defined by the

service template. TOSCA distinguishes between three types of plans: Build plans, termination

plans, and modification plans. Build plans describe how instances of a service are created.

Termination plans describe how such a service is removed. Modification plans manage a

service during its runtime. These plans consist of one or more tasks, i.e. an operation on a

node (via an interface) or an external service call, and the order in which these tasks should

be performed. They can be written in a process description language like Business Process

Execution Language (BPEL)9 or Business Process Modeling Notation (BPMN)10.

The bottom right of Figure 2.1 shows artifact templates which represent artifacts. Artifacts

are things that can be executed directly (e.g.: scripts, archives) or indirectly (e.g.: URL, ports).

TOSCA further distinguishes between two types of artifacts, namely deployment and imple-

mentation artifacts. Deployment artifacts materialize instances of a node and are used by a

build plan to create a service. An example for this is an Amazon Machine Image (AMI) which

creates an Apache server once deployed in a VM. Implementation artifacts implement the

interfaces of components. Here, an example would be a node that has an interface for starting

the particular component described by the node. This interfaces could be implemented by an

implementation artifact like a .jar file.

The bottom right of Figure 2.1 also shows policy templates that refer to specific policy types.

A policy template can define concrete values for a policy specified in a policy type. A node

template can then reference a policy template to declare that it supports some non-functional

properties or a certain kind of quality-of-service. An example would be a node type for an

application server that expresses that it supports high availability by referencing a matching

policy template.

9http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
10http://www.bpmn.org/
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2 Fundamentals

One or more TOSCA definitions are packaged, together with some metadata and possibly

other files, into a Cloud Service Archive (CSAR), which is essentially a zip file that contains all

files necessary to create and manage a service. CSAR files can then be executed in a TOSCA

runtime environment, also called TOSCA container, to create the service described within.

2.2.3 OpenTOSCA

OpenTOSCA is a browser based open-source implementation of a TOSCA container, created

at the IAAS at the University of Stuttgart, which supports the execution of TOSCA CSAR

archives [2]. Figure 2.2 shows the architecture of OpenTOSCA. Its functionality is realized in

three main components, which are the Controller, the Implementation Artifact Engine, and the

Plan Engine. After a CSAR is uploaded to OpenTOSCA it can be deployed in three steps. In

the first step, the CSAR file is unpacked and its content is stored for further use. The TOSCA

XML files are then loaded and processed by the Controller. The Controller in turn calls the

Implementation Artifact Engine and the Plan Engine. The Implementation Artifact Engine

knows how to deploy and store the provided implementation artifacts via plugins. Plans

are then run by the Plan Engine, which also uses plugins to support different plan formats.

OpenTOSCA also offers two application programming interfaces (APIs), the Container API and

the Plan Portability API. The Container API can be used to access the functionality provided

by the container from outside and to provide additional interfaces to the container, like the

already existing admin UI, self-service portal, or modeling tool. The Plan Portability API is

used by plans to access topology and instance information [2].

Figure 2.2: OpenTOSCA architecture [based on 2].
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2 Fundamentals

2.3 Cloud Computing

Cloud computing emerged in recent years as an alternative to traditional IT. Compared to

traditional IT, it offers customers far more flexibility in terms of short term access to and

scalability of resources, such as servers, databases, communication services, etc. This

increased flexibility is the result of a combination of certain technologies and business

models that, although having been around for a while individually, where combined only in

recent years. Because cloud computing is a relatively new phenomenon, there are many

definitions of it scattered around. Vaquero et al. looked at over 20 of them and proposed the

following definition:

“Clouds are a large pool of easily usable and accessible virtualized resources

(such as hardware, development platforms and/or services). These resources can

be dynamically reconfigured to adjust to a variable load (scale), allowing also for

an optimum resource utilization. This pool of resources is typically exploited by a

pay-per-use model in which guarantees are offered by the Infrastructure Provider

by means of customized SLAs.”11 [35]

The National Institute of Standards and Technology (NIST) also proposes a definition:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction.” [25]

Cloud services can be categorized into different cloud service models, according to what

exactly each service encompasses [28]. Figure 2.3 shows the three most common service

models. Infrastructure as a Service (IaaS) is at the lowest level and provides a customer with

access to a virtualization environment on top of servers, storage, and networking. Here, the

customer has to manage the Operating System (OS), middleware stack, applications, and

data him self. Platform as a Service (PaaS) is the next higher tier, which offers a customer

access to a fully managed runtime environment in the cloud. Here, the customer only has

to manage the application they want to execute in the runtime environment and the data.

Finally, Software as a Service (SaaS) offers a customer access to a fully managed application

running in the cloud. In this case, the user has to manage neither the OS, nor any middleware,

application, or data.

11Service Level Agreement (SLA): “An agreement that sets the expectations between the service provider and the customer and de-

scribes the products or services to be delivered, the single point of contact for end-user problems and the metrics by which the

effectiveness of the process is monitored and approved.” [32]
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2 Fundamentals

Figure 2.3: Cloud service models [based on 16].

Today, there are many different cloud providers offering a huge selection of services. The

range of providers spans from large corporations like Amazon12, Google13, Microsoft14, and

IBM15 to small, focused providers like Heroku16 or Jelastic17 and even solutions to build own

clouds, like OpenStack18. The next section describes Amazon’s cloud services in more detail

because those will be used in this diploma thesis.

2.3.1 Amazon Web Services

In 2006, Amazon started offering cloud resource under the umbrella of Amazon Web Services

(AWS)12. Since then, their offerings steadily increased and do now comprise over 20 different

products and services for computing, data storage, content delivery, analytics, deployment,

management, and payment in the cloud.

The most relevant cloud offering for this diploma thesis is Elastic Compute Cloud (EC2)19,

Amazon’s IaaS offer. It allows customers to rent virtual server instances at an hourly rate.

These servers are freely configurable, so virtually any software can be installed, making EC2

very versatile. In addition to general purpose instances (M3), Amazon offers a wide selection

12http://aws.amazon.com
13https://cloud.google.com
14http://azure.microsoft.com
15http://www.ibm.com/cloud-computing
16https://www.heroku.com
17http://jelastic.com
18https://www.openstack.org
19http://aws.amazon.com/ec2
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of specialized instanceswhich are optimized for a specific purpose20. These include instances

optimized for computation performance (C3), memory-intensive applications (R3), or high

storage instances (I2). For this diploma thesis we will be using Amazon’s low cost micro

instances (T1).

Also of interest to this diploma thesis is Elastic Beanstalk21, Amazon’s PaaS offering. Cus-

tomers can upload an application and Elastic Beanstalk takes care of deployment and scaling.

This makes it easier and quicker to use than EC2, but also less flexible. It could be used

instead of a more manual approach with EC2.

Amazon offers multiple ways to interact with cloud resources. All AWS offerings can be

controlled using the AWS Management Console22, a web based management interface that

allows customers to start, stop, and manage cloud resources on-demand. It also provides

access to account and billing information. Additionally, Amazon provides a command line

interface, tools for Eclipse and Visual Studio, and Software Development Kits (SDKs) for

several programming languages, including Java, .Net, Python, Ruby, and the Android and

iOS platforms23. In this diploma thesis, we will use the AWS SDK for Java24 to interact with

Amazon’s cloud resources programmatically.

2.4 Service Oriented Architecture

In highly dynamic markets, companies must be flexible and adapt their business processes

quickly to changing environments. This often includes cooperating or merging with other

businesses, business process optimization, or outsourcing. There have been distributed

system technologies in the past that were created to support such dynamic processes on an

IT level, but their tight coupling and lack of interoperability resulted in islands of middleware

and corresponding application. The integration between those islands became a new problem

that was solved with message oriented middleware [40].

Message oriented middleware enables integration of applications by wrapping them in

adapters. These adapters are connected with channels which pass along messages. Chan-

nels can ensure a certain quality-of-service, such as exactly-once delivery. They also can

change the messages in other ways, for example by transforming them between different

formats. This allows for loosely coupled communication because format changes do not

20http://aws.amazon.com/ec2/instance-types/
21http://aws.amazon.com/elasticbeanstalk
22http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
23https://aws.amazon.com/tools/
24https://aws.amazon.com/sdkforjava
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affect the ability for two applications to integrate. The underlying integration middleware

can also offer more advanced message exchange patterns, such as asynchronous send and

receive or send-and-forget, which further helps with loosely coupled interaction [40].

Service Oriented Architecture (SOA) is an architecture paradigm that emerged as a result

from the lessons learned from the failure of other distributed systems and the success of

message-oriented middleware. It focuses on loose coupling and dynamic binding between

services [40]. In this case, a service is “a logical representation of a repeatable business

activity that has a specified outcome” [31]. Further characteristics of services are that they

are self-contained, that they are composable, i.e. new services can be build by combining

multiple other services, and that they are discoverable based onmetadata that describes their

various aspects. They also operate like black boxes to their consumers, i.e. no information of

how they are implemented or provided is needed to use them [40].

Figure 2.4: The SOA triangle [based on 40].

Figure 2.4 shows the basic principle behind SOA: The SOA triangle, made up of the bind/pub-

lish/find approach. First, a provider creates an abstract definition of a service that includes

enough information to allow others to bind to this service. The provider then publishes

metadata describing this service to a directory or registry. A requestor can then use the

discovery facility associated with this registry to find services that fulfills his functional and

non-functional requirements, based on the available metadata. After selecting a service, the

requestor then retrieves the corresponding binding information, binds to this service, and

starts sending requests to it [40].

To simplify this process for the requestor, a middleware called service bus is introduced, as

shown in the middle of Figure 2.5. The requestor now sends the description of the service it

intends to use and the data it intends to send to the service to the service bus. The service

bus uses the description to find matching services with the discovery facility, selects one

of them, retrieves the binding information and binds to the services. Then, if necessary, it

transforms the data send by the requestor and sends a request to the service. The response

it receives is passed back to the requestor, which now no longer has to deal with any of the

above steps [40].
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Figure 2.5: The SOA triangle including a service bus [based on 40].

Web service technology is one implementation of a service oriented architecture. It uses

wrappers to hide implementation specific functionality and therefore allows applications

with different programming models to interact with each other. To describe these wrappers,

the standardized Web Service Description Language (WSDL) is used. WSDL describes the

interfaces of the wrappers, which allows a requestor to use any wrapper implementing a

particular interface, which creates technology abstraction. Additionally, quality-of-service

descriptions and business-relevant data allow service selection based on business criteria,

rather than IT criteria. This allows requestors to switch dynamically between providers

offering identical services with little or no changes to the application, which creates provider

abstraction. Universal Description, Discovery, and Integration (UDDI) can be used as a service

registry where WSDLs of web services can be published and found [40].

A service bus is also at the center of this implementation. It combines a number of SOA

capabilities, specified by numerousweb service specifications, to offer the discovery, selection,

and binding functionality described earlier. It can cope with various transport protocols and

deal with both XML and non-XML messages. Quality of service is supported via policies

and can include reliable messaging, security, and transaction capabilities. It also supports

atomic services and composed services and provides features for service discovery and

negotiation [40].

2.5 Workflows and Workflow Management Systems

Workflows and workflow management systems are another tool to increase the flexibility

of businesses in times of change. Hollingsworth defines a workflow as “the computerised

facilitation or automation of a business process, in whole or part” [19]. In other words, a
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workflow describes the tasks associated with a business process and the order in which

these tasks are to be executed in such a way that they can be automated with the help

of computers. Workflows are often visually represented as directed graphs, with vertices

representing the tasks and edges defining the order of these tasks. Figure 2.6 shows such a

graph that represents a simple business workflow. Note that the tasks can be a mixture of

human and automated tasks. In Figure 2.6 for example, the identify payment method, accept

cash, and prepare package tasks could be executed by humans, while the process credit card

task would be handled by a computer program. Moreover, in combination with SOA, the

process credit card task could be a call to an external service provided by an PCI25 compliant

business specialized in payment processing.

Figure 2.6: A simple workflow represented as a graph.

The automation of a workflow is handled by a workflow management system, which Holl-

ingsworth defines as “a system that completely defines, manages and executes workflows

through the execution of software whose order of execution is driven by a computer represen-

tation of the workflow logic” [19]. In other words, a workflow management system receives

a workflow as input and then executes the actions associated with each workflow task in

the particular order described by the workflow. For the example in Figure 2.6, this could

mean that the workflow management system presents an employee with a graphical user

interface, where they can select the payment method based on the choice of a customer. If

the customer chooses to pay cash, the workflow management system would then show a

dialog where the employee could enter this cash transaction. If the customer chooses to pay

with a credit card, the workflow management system would call an external service with the

credit card details to approve the transaction. In the final step, the workflow management

system could assist the employee with preparing the package by automatically printing a

label or displaying useful information.

In the past, workflows have been mainly applied in a business context, in particular for mod-

eling and re-engineering of business processes. This lead to the development of business-

25Payment Card Industry (PCI): The PCI Security Standards Council developed a data security standard (PCI DSS)26to enhance the

security of credit card information. Businesses handling credit card information are encouraged to comply with these requirements

to prevent security breaches and improve trust. Because this can be a complicated process, outsourcing credit card handling can

save resources.
26https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf
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centered standards like BPEL or BPMN to describe workflows, and corresponding workflow

management systems that can execute these workflows. One particular characteristic of

these business workflows is that they are fairly static, i.e. they will not change during a

workflow execution and only rarely in between due to business process re-engineering. This

also means that the existing business workflow infrastructure is geared towards these static

workflows [36].

In recent years however, new applications for the use of workflows have emerged, among

them scientific workflows. These scientific workflows differ from business workflows in that

they are much more dynamic and therefore require more flexibility in the tools supporting

them. The reason for this is that the processes involved in scientific workflows are rarely

completely know in advance. Exploration and trial and error often play a role, which can lead

to unpredictable changes in the processes [36]. Existing workflow technology often cannot

offer the required flexibility for scientific workflows, which is why modification of existing

technology or creation of new technology is required to fully support scientific workflows. For

this reason, scientific workflow management systems (SWfMSs) have been created, which

offer scientist adequate support throughout the experimentation process.

2.6 SimTech

Since 2005, the German federal and state government have been running the Excellence

Initiative27, which aims to promote cutting-edge research, thereby increasing the quality and

international competitiveness of German universities. In three rounds of funding, universi-

ties have competed with project proposals in three areas: Institutional Strategies, Graduate

Schools, and Clusters of Excellence. Simulation Technology (SimTech) is one of the Clusters

of Excellence that are funded by the Excellence Initiative. In a partnership between the Univer-

sity of Stuttgart, the German Aerospace Center, the Fraunhofer Institute for Manufacturing

Engineering and Automation, and theMax Planck Institute for Intelligent Systems, it combines

over 60 projects from researchers in Engineering, Natural Science, and the Life and Social

Sciences. The aim of SimTech is to improve existing simulation strategies and to create new

simulation solutions [15].

In the SimTech project, seven individual research areas collaborate in seven different project

networks, one of which is project network 6: Cyber Infrastructure and Beyond28. The goal of

this project network is to build an easy-to-use infrastructure that supports scientists in their

day to day work with simulations.

27http://www.dfg.de/en/research_funding/programmes/excellence_initiative/index.html
28http://www.simtech.uni-stuttgart.de/forschung/pn/PN6/index.en.html
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2.6.1 SimTech SWfMS

As part of this project, the SimTech SWfMS was developed. It is a system that enables

scientists to easily create, manage and execute simulation workflowswhich are a subcategory

of scientific workflows [17]. The SimTech SWfMS introduces extensions to the BPEL language

that add functionality to support the requirements of simulation workflows, such as passing

data by reference to support larger amounts of data often found in science [also see 41], or

shared context between workflows [26]. Other extension introduces by the SimTech SWfMS

to support simulation workflows include a service bus that supports late binding, rebinding,

and legacy simulation software, as well as the Simulation Data Management System (SIMPL)

that provides unified access methods for arbitrary external data [29]. Additionally, extension

where also made in the areas of flexibility to support a “model as you go” approach and in

human user involvement to support human tasks for decision making, data manipulation, or

workflow repair [17, 20].

The SimTech SWfMS consists of the SimTechWorkflowModeling &Monitoring Tool (SimTech

Modeler) and the workflow middleware. The SimTech Modeler is based on Eclipse JEE29

and extends its functionality with various plugins. Figure 2.7 shows the SimTech Modeler

user interface. It allows the user to create simulation workflows using a graph as visual

representation, where vertices represent simulation tasks and edges describe the progression

between those tasks.

Once the user is done modeling the simulation workflow, they click on a button to execute

the workflow on the workflow middleware. The middleware consists of various components,

some of which are shown in Figure 2.8. Most of them are executed by an application server,

in this case Apache Tomcat30. The workflow is deployed on the workflow engine, in this case

ODE Pluggable Framework (ODE-PGF)31, which executes the workflow step by step. If a step

involves the execution of a service, the ESB (Apache Service Mix32) is called, which resolves

the services and passes along the request and the response. Further components include

SimTech Auditing, which is used for auditing purposes. It is connected to the workflow engine

via a messaging middleware (Apache ActiveMQ33). It is also connected to a database where

it stores its data.

29http://www.eclipse.org/ide/
30http://tomcat.apache.org/
31http://www.iaas.uni-stuttgart.de/forschung/projects/ODE-PGF/
32http://servicemix.apache.org/
33http://activemq.apache.org/
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Figure 2.7: The SimTech Modeler user interface.

Figure 2.8: Some of the SimTech SWfMS components.
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This chapter summarizes previous work on the subject of this diploma thesis. First, we

present the paper that laid the foundation for this diploma thesis. Then, we take a look at

another diploma thesis which expanded some ideas presented in the first paper.

3.1 On-demand Provisioning for Simulation Workflows

Vukojevic-Haupt et al. identified requirements that need to be addressed to make the current

approach used for scientific workflows more suitable for scientific simulation work [37]. The

current approach used in the SimTech SWfMS is based on the assumption of service-oriented

computing that services are always running. This can make sense for business applications

with a large, steady stream of transactions. Scientific workflows however are executed

infrequently, but when they are executed they need a lot of resources. Keeping all those

resources running all the time is not efficient, so a more flexible way to allocate and use

those resources is needed. The following requirements where identified to be able to improve

this situation: Dynamic allocation as well as release of computing resources, on-demand

provisioning and deprovisioning of workflow middleware and infrastructure, and dynamic

deployment and undeployment of simulation services and their software stacks. To fulfill

these requirements, they proposed a new service binding strategy that supports dynamic

service deployment, an approach for dynamic provisioning and deprovisioning of workflow

middleware, an architecture that is capable of these dynamic deployment and provisioning

operations, and, as part of this architecture, the bootware - the subject of this diploma thesis -

that kicks of these dynamic processes [37].

The new service binding strategy is necessary because existing static and dynamic binding

strategies, as shown on the left and in the center of Figure 3.1, rely on services that are always

running, or, as in the case of dynamic binding with service deployment, only dynamically

deploy the service, but not itsmiddleware and infrastructure. The new service binding strategy,

shown on the right of Figure 3.1, called dynamic binding with software stack provisioning, is
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Figure 3.1: Simplified overview of service binding strategies [based on 37].

similar to the already existing dynamic binding with service deployment strategy, but adds

the dynamic provisioning of the middleware and infrastructure required by the service [37].

Their approach for dynamic provisioning and deprovisioning of workflow middleware and

simulation services is separated into six steps, as can be seen in Figure 3.2. The first step is

to model and start the execution of a simulation workflow using a local modeling tool like the

SimTech Modeler. In the second step, the middleware for executing the workflow, e.g. the

SimTech SWfMS, and its underlying infrastructure are provisioned in a cloud environment.

Now, the workflow can be deployed on this middleware, which is step three. In step four, an

instance of this workflow is executed. During this execution, a taskmight invoke some external

service that is not yet available. The ESB determines this by checking the service registry,

which stores information about available services. If the requested service is not available,

the ESB tells the provisioning engine to provision this service. The on-demand provisioning

of services is step five, during which the provisioning engine retrieves the artifacts needed
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Figure 3.2: Steps during the on-demand provisioning of workflow execution middleware and

simulation services [based on 37].

to provision the requested service from the service repository. The ESB then routes service

calls and responses between the invoking workflow activity and the service. The service is

also deprovisioned by the provisioning engine if it is no longer needed. The final step is to

deprovision the workflow model and the workflow execution middleware after the execution

of the workflow instance is finished [37].

The architecture they present, shown in Figure 3.3, can be separated into a local part at the

bottom and a cloud part at the top, as well as different phases. The bars at the bottom of

Figure 3.3 show, which components are active during which phase. Figure 3.3 shows that the

only local components are the modeler and the bootware, while all other components are

hosted in the cloud. In the modeling phase, a scientist uses local modeling and monitoring

tools in combination with cloud hosted repositories and registries to create a workflow. These

components are always running. When they start the execution of the workflow, the local

bootware component kicks of the on demand provisioning process and therefore the second

phase, called middleware runtime phase. In this phase, the bootware deploys a provisioning

engine in the cloud (step 1), which in turn deploys the workflow middleware (step 2). Once

the middleware is up and running, the workflow can be executed. During the execution, the

ESB receives service calls from the workflow engine. Services that are not running at this

time can then be provisioned by the provisioning engine (step 3). This takes place in the third

phase, the service runtime phase [37].
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Figure 3.3: Proposed architecture [based on 37].

3.2 Dynamic Provisioning of Web Services for Simulation

Workflows

Schneider found some problems with the architecture proposed in Section 3.1 [30]. The

original architecture assumes that only one provisioning engine is used at a time. It neglects

situations where services might require another (or multiple other) provisioning engines

because their provisioning descriptions are not available in a format that the currently used

provisioning engine understands. It also assumes that the ESB communicates directly with

this provisioning engine to deploy and undeploy other services. This implicates that the ESB

understands all manner of interfaces provided by various provisioning engines [30].

Furthermore, it assumes that every provisioning engine knows how to communicate with

the service repository to get the information and resources it needs to provision a service.

While this might be true for some provisioning engines, it is certainly not true for all of them.
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This problem is further amplified because there are no standards defined for such a service

repository [30].

Another assumption of the original architecture is that a provisioning engine always un-

derstands the format of the service packages provided by the service repository. Different

provisioning engines use different formats which are in general not compatible. If provisioning

engines would all use a standardized format (like CSAR), this would not be a problem, but

that is not the case [30].

Figure 3.4: Extended architecture with added provisioning manager [based on 38].

Schneider further refines the previously shownmiddleware architecture by adding a provision-

ing manager as intermediary between the ESB and the provisioning engines [30]. Figure 3.4

shows an excerpt of the extended architecture with the additional provisioning manager at

the center. This addition improves the original architecture in three aspects.

The ESB can now use the stable interface of the provisioning manager to trigger provisioning

engines instead of calling those provisioning engines directly. The provisioning manager

handles the differences between the provisioning engines. This makes it also possible to

use multiple different provisioning engines during one workflow execution. The provisioning

manager also handles the communication with the service repository or possibly multiple

service repositories for different provisioning engines. It can provide information to a particular

provisioning engine if it cannot get the information it needs from the service repository on its

own. The provisioning manager could also translate different service distribution formats so

that provisioning engines could be used with formats that they do not support [30].

28



4 Related Work

This chapter summarizes related work of other authors that is of interest to this diploma

thesis. In general, there seems to be little work that is closely related to ours. Bootstrapping

is a somewhat overloaded term that appears in many contexts, ranging from statistics

to communication hardware, which are not related to our work. Several approaches for

on-demandprovisioning of services have been presented in [9], [13], and [23] that are somewhat

related to our work. However, they do not rely on existing provisioning solutions and each

only use one provisioning mechanism tailored to their specific situation. The provisioning

mechanisms themselves are also not deployed on-demand, so they do not have the need for

a bootstrapping procedure.

Chrysoulas et al. presented a dynamic service deployment (DSD) architecture for grid comput-

ing [9]. It handles service code retrieval, selects the installation location based on the result of

a match making algorithm, and deploys the service at the selected location. Their approach

relies on already existing resources in the grid and does not have to provision additional

infrastructure or install middleware. It also does not use any existing provisioning solution for

the service deployment.

Dörnemann et al. describe a solution for on-demand resource provisioning for BPEL workflow

activities in Amazon’s EC2 [13]. They introduce a load balancer component that is called by

the workflow engine when a service call is made during a workflow execution. If there are

not enough resources available to run the requested service, it can start new EC2 instances

through an internal provisioner. The provisioner can also be extended to support other cloud

provider via the use of external configuration files. Their approach is limited to starting and

stopping preconfigured virtual machines that already contain all middleware necessary to

run a service. It is not able to create arbitrary infrastructure topologies. They also do not

handle the provisioning of the workflow middleware. They do not rely on already existing

provisioning solutions and their provisioner is a fixed part of the load balancer.

Kirschnick et al. present an extensible architecture for automatic provisioning of cloud in-

frastructure and services at different cloud providers [23]. For this process they designed a

so called service orchestrator which uses user defined service models, which describe the

topology of a cloud service, to provision new cloud services and to trigger reconfiguration
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and topology changes of existing services. It has an abstraction layer that provides abstract

methods to handle the management, installation, configuration, and starting of software via

infrastructure, packages, applications, configuration, and VM connection managers. Similar

to our work, their system is extensible to support different cloud providers, connection types,

and application. They do not rely on any existing provisioning solutions but rather present a

new one.

Regarding bootstrapping, Goehner et al. present the lightweight infrastructure-bootstrapping

infrastructure (LIBI), an API specification and a reference implementation that can bootstrap

processes in high-performance computing environments [18]. Here, it is necessary to start

processes on many nodes and supply them with the initial information needed so that they

can get into an execution ready state. LIBI delivers improved launch time over sequential

or parent-creates-children approaches, which suffer from serialization bottlenecks. Their

bootstrapping approach only has to work in an environment where all the infrastructure is

already running, so they do not have to provision VMs or middleware.

Another diploma thesis that is worked on in parallel to this diploma thesis is designing the

provisioningmanager thatwas described in Section 3.2 [22]. It is themain user of the bootware

system designed in this diploma thesis because it will deploy provisioning engines through

the bootware on behalf of the workflow middleware. It also uses plugins to communicate

with these provisioning engines. To avoid code duplication, libraries will be created that can

be used by both the plugin manager plugins and the bootware plugins.
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In this chapter we present the requirements and constraints that shape the development of

the bootware. We begin with the requirements, which were explicitly given at the beginning of

this diploma thesis. Then, we describe additional constraints which we added to limit the

scope of the work.

5.1 Requirements

The main goal of this diploma thesis is to lay a foundation by creating the core design of

the bootware. It was clear from the beginning that, because of the limited time available,

not every feature that might be necessary for the full operation can be fully implemented.

Instead, the foundation we develop here should keep future needs in mind and make it simple

to extend the bootware when needed. It is therefore a core requirement to keep the bootware

relatively generic and make it extensible where necessary.

It should be extensible in two key areas, namely the support for different cloud providers and

for different provisioning engines. For this diploma thesis, Amazon is the only cloud provider

that has to be supported, but it has to be possible to add others in the future. Concerning

provisioning engines, only OpenTOSCA has to be supported for now, but again with the

possibility to add more in the future.

It is also important that the bootware is easy to use. In fact, it should be practically invisible

whenever possible. It should hook into the already existing process of executing a workflow

without adding unnecessary interaction steps when possible. However, It cannot be hidden

completely, because the user has to specify a cloud provider and the corresponding log-in

credentials somewhere. The user should also get some feedback about the progress of

the deployment because this process might take some time and might seem unresponsive

without frequent status updates.
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A further requirement is that the bootware should be relatively lightweight and open standards

should be used where possible. In this case, lightweight means that the bootware should

be small, independent program that does not require a huge supporting infrastructure to be

executed. It should also be easy to distribute and setup and it has to be able to run on an

average personal computer.

5.2 Constraints

The bootware could theoretically be written in any major programming language but we limit

our selves to Java. The reason for this is that all the other SimTech components are written

in Java, so by also using Java we fit nicely into this already existing ecosystem. Additionally,

for things like Eclipse integration we would have to use Java anyway. We also have to keep in

mind that the bootware will not be finished with this diploma thesis. Other people will have

to extend it in the future and because Java is common in general, as well as in the SimTech

project, it makes sense to use it instead of another programming language. We can further

narrow our use of Java by limiting us to Java 1.6. This also has to do with the already existing

parts of the SimTech project, that are geared towards this version as well. Using another

version of Java could lead to unforeseen incompatibilities.

We also constrain the bootware usage to one bootware per user. We do not plan for multi-

tenancy, i.e. multiple users using the same bootware. Additionally, we assume that a provi-

sioning engine can be installed on a single computing resource, i.e. a single VM. If a particular

provisioning engine requires a more complicated infrastructure topology, it cannot be provi-

sioned by the bootware in its current form. In the next chapter we will also introduce additional

constraints that became necessary during the design process and will therefore be explained

at the appropriate times.
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In this chapter we will develop the design of the bootware. This design is held intentionally

abstract. Some specific implementation details will be described in Chapter 8. We will

describe the component division, modeler integration, external communication, extensibility,

and other aspects of the bootware system. We will also present a step by step description of

the internal process during a bootstrapping operation, before presenting the final bootware

architecture. But before we explain these details, we present a rough overview of what we

want to accomplish with the bootware and how we plan to do it. Figure 6.1 shows an overview

over the steps involved in the bootstrapping process.

Figure 6.1: Overview over the steps involved in the bootstrapping process.

In the first step, a user creates a workflow in a modeler application. Now, they want to execute

the workflow, for which they need some workflow middleware (i.e. a SWfMS), but at the

moment, no workflow middleware is running. So first, the bootware is started to help with

setting up this middleware, as shown in step two. The bootware can load various plugins

that allow it to provision cloud resources and applications. In step three, it uses those plugins

to create a cloud resource, for example a VM, and to deploy a provisioning engine on this

resource. In the fourth step, the bootware tells this provisioning engine to provision the

workflow middleware that is needed to execute the workflow. Then, it sets up the connection

between the modeler and this middleware. Now that the workflow middleware is running and
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connected, the workflow can be deployed and executed on this middleware, which is shown

in step five. During this workflow execution, various services might be called. These services

might also not be available at this time, so the workflow middleware has to call provisioning

engines to provision those services. These provisioning engines might also not exist, so the

workflow middleware also calls the bootware to deploy the provisioning engines it needs to

provision the services. When the workflow execution is finished, all services, the workflow

middleware, the provisioning engines, the underlying cloud resources, and the bootware are

deprovisioned in the sixth and final step.

To summarize, the bootware has to be able to provision cloud resources, provisioning engines,

and the workflow middleware by using various plugins. It has to connect the local modeler

to the workflow middleware and support the workflow middleware by deploying additional

provisioning engines if needed. It also has to remove all resources once theworkflow execution

is finished. Now that we have a rough understanding of the bootware and the bootstrapping

process, we can begin describing the various parts of its design in more detail.

6.1 Component Division

As described in Section 3.1, the proposed architecture initially only envisioned one bootware

component. This architecture was expanded with the introduction of the provisioning man-

ager, as described in Section 3.2. At this stage, the provisioning manager included all the

functionality necessary to provision and deprovision provisioning engines in the cloud, in ad-

dition to the functionality already mentioned in Section 3.2. This was a somewhat convoluted

design where multiple responsibilities where mixed into one component. It was later decided

that the provisioning manager should be split into two parts. The actual provisioning manager

handles the communication with the service repository and the various provisioning engines,

as described before in Section 3.2. A separate bootware component handles the provisioning

and deprovisioning of the provisioning engines. At the moment, that leaves us with two

bootware components, one local and one remote, where the local bootware kick-starts the

remote bootware, which then handles the actual provisioning of provisioning engines. The

first question that has to be answered is whether this division is reasonable, or if another

alternative makes more sense. We will now discuss the viability of four such alternatives.

34



6 Design

Figure 6.2: Simplified overview of the single local component architecture.

6.1.1 Single Local Component

First, we consider the simplest case: A single local bootware component as shown in Fig-

ure 6.2. In this scenario, all provisioning processes are initiated from a bootware installed

locally on the users machine, alongside or as part of the workflow modeler.

The advantages of this architecture lie in its simplicity. Only one component has to be created

andmanaged. We would not have to deal with bringing the bootware into a cloud environment

and each user would have his own personal bootware instance, so multi-tenancy would not

be an issue. There is no possible overlap in functionality, as it would be the case in a 2-tier

architecture and communication between multiple bootware components does not have to

be considered.

The disadvantages are caused by the component being local. Because all the functionality is

concentrated in one component, it can become quite large and complicated, which is one

35



6 Design

thing that should be avoided according to the requirements. A much bigger problem however

is the remote communication happening in this scenario. As Figure 6.2 shows, all calls to the

bootware from the provisioning manager would leave the remote environment. Also, all calls

from the bootware to the provisioning engines would enter the remote environment. This

type of split communication can be costly and slow, as shown by Li et al. [24]. They compared

public cloud providers andmeasured that intra-datacenter communication can be two to three

times faster and also cheaper (often free) compared to inter-datacenter communication [24].

6.1.2 Single Remote Component

Figure 6.3: Simplified overview of the single remote component architecture.

The next obvious choice, as displayed in Figure 6.3, is to put the single bootware component

into a remote environment, where the disadvantages of local to remote communication would

disappear. However, this creates new problems.
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Because there are not any additional components in this scenario that could manage the

life-cycle of the remote bootware, the user would have to manage it by hand, which leads to

two possibilities. Either, the user provisions the bootware once in some cloud environment

and then keeps this one instance running, or they provision the bootware once they need it

and deprovisions it when they are done.

In the first case, the user would only have to provision the bootware once, but this creates

a new problem: The user does not know where exactly to put the bootware. Because one

requirement is that multiple cloud environments should be supported, it is possible that the

bootware is not located anywhere near the cloud environment where it should provision

further components. The communication problem of the single local bootware component

can still occur in these cases. While the other approaches presented here do not completely

eliminate this problem, they at least have the option tomove the bootware with each individual

bootware execution, while in this first case, the bootware would stay in one place for multiple,

possibly many bootware executions.

Another problem in this first case is that the bootware would be running all the time, even if

the user does not need it, which would increase costs. This problem could be reduced if this

bootware instance is shared with others to assure a more balanced load. But then the user

would have to manage some sort of load balancing and the bootware would have to support

multi-tenancy or be stateless to be able to cope with potential high usage spikes. This would

further complicate the design and implementation of the bootware and possibly increase the

running costs.

In the second case, the user would provision the bootware whenever they need it. Now the

user would be able to pick a cloud environment that is close to the other components that

they plan to provision later. This eliminates the two major problems of the first case but

increases the effort that the user has to put into a task that they should not have to do in the

first place. Life-cycle management of the bootware should be automated completely and

hidden away from the user. Therefor, this scenario is not appropriate for our case.

6.1.3 2-Tier Architecture

Next, we take a look at a 2-tier architecture, as shown in Figure 6.4, where the bootware is

divided into two components. On the local side we have a small and simple component which

has mainly one function: To provision the larger second part of the bootware in a remote

environment, near to the environment where other components will be provisioned later.
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Figure 6.4: Simplified overview of the 2-tier architecture.

This eliminates the problems of a single local or remote bootware component. The user no

longer has to be involved in the management of the remote bootware, because the local

bootware handles all that. Because we provision the remote bootware on demand, we

now also can position the remote bootware close to other remote components to minimize

local/remote communication and the problems resulting of it. We can now keep the local

part as simple as possible and make the remote part as complicated as it has to be.

But we also introduce new problems. For one, we now have duplicate functionality between

the two components. Both have to know how to provision a component into multiple cloud

environments. The local bootware has to be able to put its remote counterpart into any cloud

environment. The remote bootware has to be able to provision other components into the

same environment in which it runs (ideally, to minimize costs). Because it can be located in

any cloud environment, it has to be able to do this in any cloud environment. Independent

from this, it also has to be able to provision to any environment that the user or the service

package chooses. But this problem can be solved by using a plugin architecture, which allows
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both components to use the same plugins. We discuss plugins in detail in Section 6.4. A

second problem which we cannot avoid but can solve is the communication which is now

necessary between the different parts of the bootware. More on this in Section 6.3

6.1.4 Cloning

Figure 6.5: Simplified overview of the cloned component architecture.

This architecture can be seen as an alternative form of the 2-tier architecture described

in Subsection 6.1.3. In this case, there are also two bootwares working together and the

remote bootware does most of the work. However, the local and the remote bootware are

identical, as shown in Figure 6.5. Instead of provisioning a bigger bootware in a remote

environment, the local bootware clones itself. Compared to the 2-tier architecture described

before, this has the advantage that only one component has to be designed and implemented.

Duplication of any functionality would therefore not be an issue. The disadvantage would

be that the local bootware would be exactly as complex as the remote bootware and might
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contain functionality that it would not require for local operation and vice versa. However,

because we want to keep the whole bootware, including the remote part, fairly lightweight, it

is unlikely that the complexity of the remote bootware will reach such heights that it could not

be run on an average local machine. In this case, the advantage of only having to design and

implement one component seems to outweigh the disadvantage of a slightly more complex

local component (compared to the 2-tier variant). Of course, this architecture makes only

sense if the functionality of the two separate components in the 2-tier architecture turns out

to be mostly identical. Therefore, we cannot decide yet if this architecture should be used.

6.1.5 Decision

Of the four alternative presented here, alternative three - the 2-tier architecture - makes

the most sense. Therefore, it is selected as the alternative of choice and used for further

discussion. We do however retain the option to transform it into alternative four if we discover

that both components share much of same functionality.But this can only be judged at a later

stage, when we know exactly how the internal functionality of the bootware will work.

6.2 Modeler Integration

The first interaction with the bootware is the call from the Modeler to the local bootware,

which starts the bootstrapping process. So in this section we are going to take a look at

the integration between modeler and bootware in more detail. The first question we face is:

Why even divide the modeler and the local bootware? Why not integrate the local bootware

functionality into the modeler? We go this route because we want the bootware to be as

generic as possible. The modeler in Figure 6.4 is not a specific modeler and in theory it should

be possible to use the bootware with any modeler (and any workflowmiddleware) without too

much modification. So, by keeping the bootware as a separate generic component and only

implementing a small, modeler specific adapter, we are able to support different environments

without changing the core bootware components. We call this abstract concept the bootware

adapter, as shown in Figure 6.6.

In Chapter 5 we mentioned that the bootware should hook into the already existing deploy

process in the modeler. How this deployment process works depends on the actual modeler

that is used, so at the moment, we cannot say how exactly we can integrate in this process.

Specific integration details for the modeler used in this diploma thesis, the SimTech Modeler,
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will be discussed in Section 8.1. We know however what needs to happen in the bootware

adapter to get the bootstrapping process going.

Figure 6.6:Modeler integration with a plugin.

First, the bootware adapter has to start the local bootware so that it will be in a state where

it can receive and process requests. This is shown in Figure 6.6 as deployment operation

from the bootware adapter to the local bootware and involves starting an executable and

maybe passing along some sort of configuration file. Once the local bootware is running, the

bootware adapter has to set up the context for the following requests. This includes telling

the bootware configuration details, like the credentials for all cloud providers that will be used.

Once this is done, the modeler has to make one request to the local bootware, containing

information about the cloud provider and the provisioning engine that should be used, as

well as the service package reference for the workflow middleware. This request is shown

in Figure 6.6 as function call from the bootware adapter to the local bootware. The local

bootware will take this information and provision the remote bootware, which in turn will

deploy a provisioning engine in the specified cloud environment. This provisioning engine

will then provision the workflow middleware. If successful, it returns a list with information
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concerning the workflowmiddleware, like endpoint references and other details, to the remote

bootware, which passes it back to the local bootware. The local bootware passes it to the

bootware adapter, which then has to set up the modeler with this information for the actual

workflow deployment.

This is the minimal work the bootware adapter has to do to kick off the bootstrapping process.

Additional functionality can be implemented if desired, but is not necessary for the core

bootstrapping process. This additional functionality could include user interface integration,

additional bootware management functionality, etc. The function call from the bootware

adapter to the local bootware in Figure 6.6 assumes that there exists some interface in the

local bootware that is accessible from the outside. In the next section we will discuss how

this external communication mechanism will be implemented.

6.3 External Communication

In Section 6.2 we established that a bootware adapter in the modeler has to call the local

bootware. From Section 6.1 we also know that both the local bootware and the provisioning

manager have to call the remote bootware. We now have to decide, how this external com-

munication with the bootware will work. There are several factors that impact this decision.

Communication between the components should be as simple as possible, but has to support

some critical features. To keep it simple, it wouldmake sense to use the same communication

mechanism for communication between the bootware components as well as with other

external components, like the provisioning manager and the bootware adapter.

As the provisioning processes kicked off by the bootware can potentially take a long time to

finish (in the range of minutes to hours), we face possible timeouts when using synchronous

communication. As alternative we could use asynchronous communication with callbacks.

This would avoid timeouts but also creates a new problem. The callback message send

as response is separated from the original message and therefore appears as unsolicited

message to the client. If the client rejects unsolicited messages, for example because it is

located behind a firewall, the callback message might be blocked. This could be a problem

because in the environment where the bootware will most likely be used, i.e. at universities,

secure networks with firewalls are very common and asynchronous callbacks could therefore

be problematic. Another solution is to use polling, i.e. after a request was sent to the bootware,

the bootware is polled periodically for a response. This also avoids timeouts as well as the

firewall problematic. Disadvantages of polling, for example when many clients poll a server

at the same time and cause a bottleneck, will most likely not be a problem in our case,
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because we only have a very restricted number of clients for each bootware instance and no

multi-tenancy.

The communication with the bootware components will contain sensitive data, for example

login information for cloud providers. This information has to be provided from the outside

and should be transported securely to prevent malicious or fraudulent attacks. The selected

communication method therefore has to support some sort of security mechanism, ideally

end-to-end encryption. While these security mechanisms will not be used in this diploma

thesis due to time constraints, selecting the right communication method is still critical for

future development.

Java provides a package for Remote Method Invocation (RMI)1, which allows objects in one

Java VM to invokemethods on objects in another Java VM. Depending on the implementation,

it can be used with polling or asynchronous callbacks. But because RMI is limited to Java

and we might want to communicate with the bootware from a component written in another

programming language, RMI does not seem like a good fit. For communication between

programs written in different languages we could use the Common Object Request Broker

Architecture (CORBA), a standard defined by the ObjectManagement Group (OMG). It supports

mappings for common programming languages, like Java, C++, Python, and others. CORBA

also supports polling and asynchronous method invocation via callbacks [1], as well as

transport layer encryption and other security features [10].

As a second alternative, we could communicate with messages by using message-oriented

middleware. As explained earlier in Section 2.4, it supports communication between different

components using adapters and channels. Asynchronous communication is supported by

using message queues for temporary storage. The middleware can also provide additional

persistent storage and backups for high availability [11]. It may also support security features

like encryption. Another alternative are web services via Simple Object Access Protocol

(SOAP) or Representational State Transfer (REST). Like CORBA, web services also support

polling and asynchronous invocation, as well as security mechanisms [39].

As the whole SimTech SWfMS already uses SOAP based web services, it would make sense to

also use SOAP based web services as external communication mechanism for the bootware.

The technology and knowledge is already in place and introducing a second mechanism

like CORBA would unnecessarily increase the complexity of the project, especially because

CORBA does not offer any significant advantages over SOAP based web services. Using a

message-oriented middleware would also be an option but introducing another component

seems to complicated, especially because we do not need most of the features that it offers

(e.g.: transactions, persistence, etc.). Figure 6.7 shows the addition of web service call and

1http://docs.oracle.com/javase/7/docs/api/java/rmi/package-summary.html#package_description
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Figure 6.7: Simplified overview of the 2-tier architecture with web service communication.

return communication between the bootware adapter and the local bootware, and between

the remote bootware and the local bootware, as well as the provisioning manager. With

polling, long running provisioning processes will not pose a problem. We do however still

need information during those long running processes to give the user some feedback. For

this, a secondary communication mechanism which supports sending multiple feedback

messages has to be used.

This secondary communication channel could take any form, but a natural choice for publish-

ing the intermediary state of the bootware would be a message queue system. In this case,

the remote bootware pushes messages to a message queue to which the local bootware (and

other components if needs be) can subscribe to receive future messages. Figure 6.8 shows

the proposed architecture with an additional (and optional) message queue that allows the

local bootware or other components to listen to status updates from the remote bootware.

Because it is not necessary for the successful use of the bootware, it would make sense to

implement this secondary communication mechanism as an extension to the bootware. This
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Figure 6.8: Simplified overview of the 2-tier architecture with web service and messaging

queue communication.

extension would not be part of the core bootware, but rather an additional component that

could be used when needed. This would allow us to add arbitrary communication extensions

to the bootware depending on future needs. How this can be done will be discussed in the

next section.

6.4 Extensibility

The requirements for the bootware state that support for different cloud environments and

provisioning engines should be achieved through means of software engineering. These

requirements are intentionally vague to allow for the selection of a fitting extensionmechanism

during the design process. In this sectionwewill take a look at different extensionmechanisms

for Java and pick the one that suits our needs best.
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6.4.1 Extension Mechanisms

The simplest way to fulfill the extensibility requirement would be to create a set of interfaces

and abstract classes to define the interfaces and basic functionality that are necessary to

work with different cloud environments and provisioning engines. These interfaces and

abstract classes would then be implemented separately to support different scenarios and

would be compiled, together with the rest of the application, into one executable. At runtime,

a suitable implementation would be selected and used to execute the specific functionality

required at this time.

This extension mechanism is simple, but restricted by its static nature. The entire executable

has to be recompiled if any extensions are changed or added. This may not be a problem

if the set of possible extensions that have to be supported is limited and known at the time

of implementation or if it changes rarely. If the set of necessary extensions is unknown

or changing from time to time, implementing new or changing existing extensions can get

cumbersome because a new version of the whole software has to be released each time. It

would be far better if extensions could be implemented separately from the core bootware

components and added and removed at will.

A more flexible architecture is needed, for example a plugin architecture. Interfaces for

the extension points still exist, but the extensions are no longer part of the main bootware

components. They are compiled separately into plugins that can be loaded into the main

bootware components on the fly. Managing the plugins is the responsibility of a plugin

manager, which encapsulates all functionality to load and unload plugins. It is described in

more detail in the next section.

There are several possibilities to realize such a plugin architecture. It is certainly possible to

implement a plugin framework from scratch. An advantage of this approach would be that

the design of the plugin architecture could be tailored to our use case and would be as simple

or complex as needed. But there are also several disadvantages. For one, we would reinvent

the wheel because multiple such frameworks already exist. It would also shift resources away

from the actual goal of this diploma thesis, which is designing the bootware. Furthermore,

it would require a deep understanding of the language used for the implementation (in this

case Java), which is not necessarily given. Therefore, it seems more reasonable to use one

of the already existing plugin frameworks. Which one exactly will be determined later in

Subsection 8.3.1.

46



6 Design

6.4.2 Plugin Manager

The plugin manager is a component of the bootware core that encapsulates all functionality

for managing plugins, such as loading and unloading specific plugins. At the least, it should

support two operations: The loadPlugin operation and the unloadPlugin operation. The

loadPlugin operation would be called by the bootware when it needs to load a specific plugin.

It would supply the path to the plugin as input parameter to the loadPlugin operation, which

will use this information to load and return an instance of this specific plugin. This plugin

instance can then be used by the bootware until it decides to unload this instance by calling

the unloadPlugin operation of the plugin manager. The plugin manager might also support

various other utility operations for convenience, such as an unloadAllPlugins operation, which

would unload all loaded plugins at once. The pluginmanager implementation will be described

in more detail in Section 8.7, after we have selected a plugin framework.

Figure 6.9: Simplified overview of the 2-tier architecture with plugins.
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6.4.3 Plugin Repository

Now that we have introduced plugins we face new problems. Figure 6.9 shows the current

architecture, where both bootware components use their own plugins. If a plugin is added

or updated, the user has to manually copy this plugin to the right folder of one or both of

the bootware components. Furthermore, if both components use the same plugins, which

they will (for example plugins for different cloud providers), we will have duplicate plugins

scattered around. This is inefficient, probably annoying for the user and can cause errors if

plugin versions get out of sync.

Figure 6.10: Simplified overview of the 2-tier architecture with a plugin repository.

To remedy this situation we introduce a central plugin repository, as shown in Figure 6.10.

This repository holds all plugins of both components so it eliminates duplicate plugins. If

plugins are added or modified it has only to be done in one place. Plugin synchronization can

happen automatically when the bootware components start, so that the user is no longer

involved in plugin management. The repository also enables easy plugin sharing, which was

cumbersome earlier. While a central plugin repository is a sensible addition to the proposed

48



6 Design

bootware architecture, its design and implementation are out of scope of this diploma thesis.

This work is left for the future and the plugin repository will not be mentioned in any other

figures apart from Figure 6.10.

6.5 Plugin Types

We can already tell from the requirements that we must at least support two different plugin

types, one for different cloud providers and one for different provisioning engines. The former

are required because we may want to provision into different cloud environments. The latter

are required because we might want to use different provisioning engines to do so.

The cloud provider plugins will be responsible for creating and removing resources in cloud

environments and making them available for the user to configure and use. This could be

bare bone VMs (like AWS EC2 instances), or PaaS environments (like AWS Beanstalk). We

do not even have to constrain these plugins to cloud resources and can make them more

generic, as long as we can run the plugin and get an IP address to a computing resource

that we can use. For example, we could also provide a plugin that starts and stops a VM on

our local machine, which could be useful for quick and inexpensive local testing. So a better

name for these plugins would be resource plugins.

The same line of thinking can be used on the provisioning engine plugins. All that we care

about is that we can get some software running on a given resource and that we get back

an URL where we can find this software once it is up and running. A better name for these

plugins would therefore be application plugins.

Now that we have resource plugins and application plugins, we should be able to provision the

resource we need and use application plugins to install and run any software on it. But there

is a step in between provisioning the resource and installing the software that we are glancing

over: We have to somehow communicate with the resource to be able to install something

on it. The communication functionality could be part of either the resource plugins or the

application plugins, or it could be separated into independent communication plugins. For

the sake of efficiency and extensibility it would be best to use independent communication

plugins. For example, if a user wanted to add a new communication type that should be used

to install x applications in y environments, they could do so by writing one new communication

plugin, instead of adding the functionality x-times to all application plugins, or y-times to all

resource plugins. This would also reduce code duplication. Therefore, a third plugin type is

necessary: The communication plugins.
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The remote bootware also has to handle the initial provisioning of the workflow middleware,

which involves calling a provisioning engine to tell it to start the provisioning process. Because

this has to be done differently for all provisioning engines, it wouldmake sense to also package

this functionality into plugins that can be interchanged. We therefore introduce a fourth plugin

type: The provision workflow middleware plugins. In Section 6.3 we also introduced the notion

of secondary communication channels realized by plugins. We can generalize this into a

more versatile fifth plugin type: The event plugins. These plugins are a bit less specific than

the four other types. They are not a part of the core bootware process but allow us to add

functionality that reacts to (or creates) events inside the bootware for other purposes like, for

example, logging. How the actual event system used by these plugins will be implemented

will be discussed in Section 6.10.

With this fifth plugin type we have now covered all plugin types we will need. Next, we present

some examples of how the different plugin types will work together. Then, we will describe

each plugin type in more detail, starting with the common operations that all plugin types

have to implement.

6.5.1 Examples

Figure 6.11 shows an overview over the basic process involving the plugins. The event plugins

were omitted because they are not an essential part of this process. In step one, the bootware

calls a resource plugin to create a new resource instance, for example a VM. Then, in step

two, it creates a communication channel to this instance using a communication plugin.

This communication channel is then used in step three by an application plugin to install

an application on the instance. The fourth step is only executed when the remote bootware

provisions the workflow middleware. Here, a provision workflow middleware plugin can

call this application, in this case a provisioning engine, to provision a workflow middleware.

How the bootware knows which plugins it should call is determined by the context which is

explained in Section 6.6.

Figure 6.12 shows the same process but with an exemplary selection of specific plugin

instances. In this case, an Amazon plugin is used in step one to create an EC2 instance. In

step two, a SSH plugin creates a connection to this EC2 instance. Over this SSH connection,

an OpenTOSCA plugin installs OpenTOSCA on the EC2 instance, as shown in step three.

Finally, in step four, a call OpenTOSCA plugin calls the just deployed OpenTOSCA container to

provision the workflow middleware. For another combination of plugins, the process might

look like Figure 6.13. Here, a Chef server is installed on an Azure VM over a remote desktop

connection (RDC). The Chef server is then used to provision the workflow middleware.
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Figure 6.11: Simplified overview of the plugin process.

Figure 6.12: Exemplary plugin process for Amazon and OpenTOSCA.

Figure 6.13: Exemplary plugin process for Azure and Chef.
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6.5.2 Common Operations

Table 6.1 shows the two common operations that all plugin types must implement. The

initialize operation is called by the plugin manager when it loads a plugin. This operation can

be used by plugin authors to initialize the plugin, for example by creating internal objects that

will be used by other plugin operations later on. It takes a configuration object as parameter,

which is taken from the request context. This allows the plugins to be configured from the

outside if necessary. The shutdown operation is called by the plugin manager when it unloads

a plugin. It can be useful to clean up plugin resources before the plugin is removed, for

example by deleting temporary files or closing a communication channel.

Operation Input Output Description

initialize Configuration - Is called by the plugin manager when the

plugin is loaded

shutdown - - Is called by the plugin manager when the

plugin is unloaded

Table 6.1: Common operations to be implemented by all plugin types.

6.5.3 Resource Plugins

Resource plugins are responsible for provisioning a computing resources that the user wants

to use during the bootware process. This could be a VM on a local machine, or an IaaS or

PaaS environment in the cloud. To be able to do this, a resource plugin has to implement a

range of functions using some API or SDK provided by the virtualization software or cloud

provider.

Operation Input Output Description

deploy - Instance Deploys a communication ready

instance of some resource and returns

an instance object

undeploy Instance - Completely removes a given instance

Table 6.2: Interface to be implemented by resource plugins.
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Table 6.2 shows the operations a plugins of this type should implement. The deploy operation

is responsible for deploying a resource and getting it to a state, where a connection to the

resource can be established using a communication plugin. It takes no input parameters, but

relies on the configuration passed to the initialize operation to get the configuration details it

needs, like login credentials. If the deployment was successful, it returns an instance object,

which contains information about the created instance, such as its IP address and login

information.

The undeploy operation removes a resource that was previously deployed using the deploy

operation. In case of a local VM this could mean that it stops the running VM. In case of a

cloud resource this could mean that it completely removes the resource so that no further

costs are incurred. As input it takes an instance object created earlier by the deploy operation.

6.5.4 Communication Plugins

Communication plugins are responsible for creating a communication channel to a previously

deployed resource that can later be used by application plugins to execute their operations on

the resource. The connection could bemade by using SSH, RDC, virtual private network (VPN),

Telnet, or other communication mechanisms supported by the resource. The communication

plugins should be implemented generically, so that they can be used for all kinds of resources.

Table 6.3 shows the operations that this type of plugin has to implement. The connect

operation establishes a connection to a specific resource. The resource is specified by the

instance object that is passed as input to the connect operation. If the connection was

established successfully, the operation returns a connection object that can be used later by

application plugins to execute operations through this connection. The disconnect operation

closes a connection that was previously established by the connect operation. As input, it

takes a connection object that was previously created by the connect operation.

Operation Input Output Description

connect Instance Connection Establishes a connection to the given

instance

disconnect Connection - Disconnects a given connection

Table 6.3: Interface to be implemented by communication plugins.
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6.5.5 Application Plugins

Application plugins are responsible for installing, uninstalling, starting, and stopping software

on a resource instance. This process can include the uploading of files and the execution of

remote commands on an instance.

Table 6.4 shows the operations that plugins of this type should implement. The deploy

operation installs an application on an instance. This can include uploading files from the local

machine or downloading files from other machines. To execute this operation, a connection

to the instance is necessary, which is supplied as input with the connection object. The

undeploy operation removes an application from an instance. In most cases this will not

be necessary, because the instance will be destroyed in the undeploy phase and with it all

the application data (assuming it was not stored in some other persistent storage). This

method is provided for completeness and for special cases. The start operation starts an

application which previously was installed with the deploy operation. If the application was

started successfully, it returns the URL to the running application. The stop operation stops

the execution of a previously started application. In most cases this will not be necessary,

because the application will be removed together with the instance in the undeploy phase.

This method is provided for completeness and for special cases.

Operation Input Output Description

deploy Connection - Deploys the application over the given

connection

undeploy Connection - Undeploys the application over the given

connection

start Connection URL Starts the application over the given

connection

stop Connection - Stops the application over the given

connection

Table 6.4: Interface to be implemented by application plugins.

6.5.6 Provision Workflow Middleware Plugins

Provision workflow middleware plugins provide the bootware with a unified way to call pro-

visioning engines and trigger provisioning and deprovisioning operations. Table 6.5 shows

54



6 Design

the operations that these plugins should implement. The provision operation calls a pro-

visioning engine and triggers the provisioning process. It takes two inputs: An endpoint

reference, which points to the provisioning engine that should be used, and a service package

reference, which points to the workflow middleware package that the provisioning engine

should provision. When completed successfully, the provisioning operation returns a list with

information about the just provisioned workflow middleware. This list can contain arbitrary

information, such as endpoint references pointing to the various components of the workflow

middleware, or any other information that might be necessary to connect the modeler to the

workflow middleware. The deprovision operation calls a provisioning engine and triggers the

deprovisioning process. It takes the same inputs as the provisioning operation, an endpoint

reference to the provisioning engine and a package reference.

Operation Input Output Description

provision Provisioning Engine

Endpoint Reference,

Service Package Reference

Information

List

Tells the provisioning

engine to provision the

given workflow

middleware package

deprovision Provisioning Engine

Endpoint Reference,

Service Package Reference

- Tells the provisioning

engine to deprovision the

given workflow

middleware package

Table 6.5: Interface to be implemented by provision workflow middleware plugins.

In parallel to this diploma thesis, another diploma thesis is being written about the provisioning

manager, which will also use plugins to call provisioning engines [22]. Because these plugins

are similar in functionality, it makes sense to create libraries for particular provisioning engines

that can then be used by both the provisioning manager plugins and the bootware plugins.

This would reduce overall code duplication. We will not describe those libraries in more

detail in this thesis. We assume that such libraries will exist and that we can use them for

implementing our plugins.

6.5.7 Event Plugins

Apart from the initialize and shutdown operations described in Table 6.1, event plugins only

implement the handle operation, as shown in Table 6.6. It takes an event type as input. Every

time an event of this type is triggered, all handle operation associated with this event type will
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be called and can execute some code, for example logging the event. Note that each event

plugin can declare more than one handle function to be able to react to multiple events.

Operation Input Output Description

handle Event Type - Is called every time an event of the given

type is triggered

Table 6.6: Interface to be implemented by event plugins.

6.6 Context

During the bootstrapping process, the bootware has to know certain things to be able do its

job. For example, it has to know which plugins it should use to process a request or which

login credentials it should use to authenticate itself with a cloud provider. This information

can be combined in one central object, which defines the nature of the current request: The

context. The bootware will read the information provided in the context at various stages of

the bootstrapping process to load plugins or to supply them with a particular configuration

set required for a request. In this section we will take a closer look at this context object and

its content. How exactly the context is implemented is shown in Section 8.4.

Figure 6.14: Content of the context object.
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Figure 6.14 shows the context object and its content. As we can see in the upper half, it

defines the plugin instances to be used for the current request. The resource plugin instance

defines, which resource plugin should be used to provision the requested resource. The

communication plugin instance selects, which communication plugin the bootware should

use to connect to this resource. The application plugin instance defines the application that

should be provisioned on this resource, which will be a provisioning engine in our case. Finally,

the provision workflow middleware plugin instance defines the plugin that should be used

to call this provisioning engine to provision the workflow middleware. It will use the service

package reference of the workflow middleware, which is also defined in the context, as input

to start the provisioning of the workflow middleware.

In the bottom half of Figure 6.14 we can see that the context can also contain configuration

for different plugins. This is necessary because various plugins might need to be configured

properly to be able to fulfill their task. For example, most resource plugins will need some kind

of login credentials to authenticate with the resource provider. As another example, when

creating a EC2 instance in the Amazon cloud, the user also has to select in which region this

instance should be created and which ports should be opened. These and other configuration

details can be supplied from the outside with the context. In the future, the context might

be extended to hold additional information, but for this diploma thesis, this context will be

sufficient.

Figure 6.15: Information send with a request.

This context has to somehow be generated from the information the bootware receives with

each request. However, components outside of the bootware should not know anything

about the inner workings of the bootware, i.e. which plugins are used to fulfill a request. All

information that might be supplied with a request can be seen in Figure 6.15. The resource

provider parameter specifies, which resource provider should be used (e.g. a specific cloud

provider). The application parameter specifies the application that should be deployed on this
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resource (e.g. a specific provisioning engine). The service package reference of the workflow

middleware is used by the bootware to retrieve the service package to provision the workflow

middleware. In the configuration list, configuration values that have to be supplied from the

outside can be specified, such as login credentials for a cloud provider.

Based on this information the bootware has to decide which specific plugin instances should

be used to process the request. In the future, this could be done by querying a registry with

this information, which would then return a set of specific plugins and settings. Figure 6.16

shows an exemplary mapping of the parameters supplied in a request context to the specific

plugins instances and configuration sets. In this example, the request wants OpenTOSCA

in an Amazon cloud. The registry would then look up, if a registry entry exists for this set of

parameters. In this case, the registry contains applications as primary keys and resources as

secondary keys. The entry returned for a specific parameter combination contains the specific

plugin instances and additional configuration parameters that are necessary to provision the

requested application on the requested resource.

Figure 6.16:Mapping of the request parameters to specific plugins.

The bootware has to combine the information received in a request context with the informa-

tion that it received from the registry by merging the two sets into the final context. However,

there is one caveat in this scenario. Right now, other components making a request to the

bootware would have to supply configuration parameters like login credentials with each

request. Unlike the other request parameters, the configuration might not change between

requests. Additionally, the other components calling the bootware, may not know (and maybe

should not know) anything about some content of the configuration, like login credentials.

While this might change in the future, it would make sense to be able to set the configuration

once when starting the bootware, so that it does not have to be delivered with each request
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and so that other components can still use the bootware without also sending a configuration.

It should however still be possible to override or update the configuration at a later point.

Overriding would allow any request to temporarily use other configuration values if necessary.

Updating the configuration at a later point could be useful, for example if the user acciden-

tally provided the wrong credentials at the beginning. Without this functionality, the whole

bootware process could fail (even while provisioning the very last service) and would have to

be started again from the beginning. This could be avoided by providing the functionality to

change the configuration even during the bootstrapping process.

For setting the configuration at the beginning and for updating it later during the process, a

setConfigurationmethod will be added to the bootware web service. The configuration set

by this method will be treated as the default configuration by the bootware. It will be used

during the process if no other configuration is provided. If however a request is sent with a

configuration that also contains values already set in the default configuration, these values

will override already existing default values temporarily for this request. This behavior could

also be extended to other parts of the context in the future if necessary.

Figure 6.17: Building the final context through merging.

Figure 6.17 shows the merging process which now merges the default configuration, the

request context, and the response from the registry. In step one, at the beginning of the

bootware execution, the default configuration is set using the setConfiguration operation.

A deploy request is received in step two, which contains the request context as shown in

Figure 6.15. In step three, the parameters from the request context are mapped to specific

plugin instances and additional configuration set using the registry, as shown in Figure 6.16.

In step four, the default Configuration, the request context, and the registry response are

merged into the final context object. This context object is then used to fulfill the request.

While we have planned to use a registry for mapping request parameters to concrete values,

due to time constrains we were not able to specify this registry in more detail or implement it

in our prototype. For our implementation we use a local mechanism for mapping the request

parameters. The registry is left for future work and will not be covered further in this diploma

thesis.

59



6 Design

6.7 Web Service Interface

By now, we know that we will use a web service interface for remote communication. Table 6.7

shows the web service operations provided by the local and remote bootware. To trigger

the basic functionality of the bootware, two operations have to be made public via the web

service interface: The deploy and the undeploy operation. In Section 6.6 we alsomentioned the

setConfiguration operation for setting or updating configuration values. We add two additional

operations that we also need, the getActiveApplications operation and the shutdown operation.

Both the local and the remote bootware will have to implement all of these operations, except

the getActiveApplications operation, which is only needed in the remote bootware.

Operation Input Success Response

deploy Context Information List

undeploy Endpoint References -

setConfiguration Configuration List -

getActiveApplications2 - Application List

shutdown - Confirmation Message

Table 6.7:Web service operations provided by the local and remote bootware.

6.7.1 Deploy

The deploy operation is called whenever a new application (e.g.: a provisioning engine, or

initially, the remote bootware) should be deployed. As input it takes a request context object

as described in Section 6.6. If it was able to successfully deploy the requested application, it

responds with a list of information concerning the application. This list can contain endpoint

references, ports, or any other information that might be needed later. If the deployment

failed, it responds with an error message.

2only in remote bootware
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6.7.2 Undeploy

The undeploy operation is essentially the reversal of the deploy operation. As input it takes an

endpoint reference to an application that should be undeploy. If the undeployment succeeds,

it responds with a success message. If it fails, it responds with an error message. Unlike the

deploy operation it does not take a context object as input, but the context is still needed for

the undeploy operation because it contains the information about which plugins have to be

used. This means that we have to store the context object used during each deploy operation

so that we can retrieve it later during the corresponding undeploy operation. This design is

intentional and will be described in more detail in Section 6.8.

6.7.3 Set Configuration

The setConfiguration operation is used to transmit or update the default configuration used by

plugins. As input it takes a list of configurations that should be saved. If the list provided is

empty, the default configuration list saved in the bootware will be emptied. If the list provided

is not empty, the default configuration list saved in the bootware will be overwritten by this

list. The configuration can still be overwritten on a per request basis if the context send with

the request also contains a configuration. If the configuration was updated successfully, it

responds with a success message. If the configuration could not be updated, it responds

with an error message.

6.7.4 Get Active Applications

The getActiveApplications operation is used by the provisioning manager to check if a provi-

sioning engine it needs already exist. This operation just returns a list of all active application.

There is no reason for this operation to be called on the local bootware, so this operation will

be implemented in the remote bootware only.

6.7.5 Shutdown

This operation triggers the shutdown of sequence of the bootware. It behaves a little differently

in the local and remote bootware. In the local bootware it first calls the shutdown operation

of the remote bootware. When the confirmation response from the remote bootware is

received, it deprovisions all active applications that the local bootware deployed (i.e. the
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remote bootware). In the remote bootware, the shutdown operation first calls a provisioning

engine to deprovision the workflow middleware. Once this is done, it deprovisions all active

applications that the remote deployed (i.e. the various provisioning engines), before returning

a response.

6.8 Instance Store

The instance store stores information about applications that were deployed by the bootware

in the past and are still active. In Section 6.7 we already mentioned that we need to store

some information about active applications, but we did not explain why. There are several

reasons why this is useful.

One big reason is that we cannot guarantee that an undeploy operation will be called for

every application deployed by the bootware, because we might not have control over all

components that ultimately call the bootware. We could require that for each deploy call there

must eventually be an undeploy call so that everything will be cleaned up in the end, but errors

can be made and it is better to have a failsafe in place. In the worst case scenario, failing to

call the undeploy operation for some applications could lead to rogue applications remaining

active after a bootware execution has stopped, without the user realizing it, which could

get expensive. Storing enough information allows us to undeploy remaining applications

before shutting down the bootware even if they were never explicitly undeployed. Additionally,

a warning could be return by the bootware to inform the user that some non-bootware

component should be modified to explicitly undeploy all services it deployed.

Another reason to store some information about deployed applications is to simplify the

interaction with other components. If we would not store any information and make the

bootware stateless, each component using the bootware (e.g.: the bootware adapter, the local

bootware, and the provisioning manager) would be required to keep track of all applications

it deployed using the bootware, so that this information can be supplied when it is time

to undeploy. This places an extra burden on these components and scatters around the

information about deployed applications. By storing this information in the bootware we

simplify the usage of the bootware for other components and concentrate this information in

one place. With the getActiveApplications operation introduced in Section 6.7 and offered by

the remote bootware, other components can always get a list of all active applications if they

need it. This operation also uses the information stored in the instance store.

We should also think about how such a storage mechanism might be different for the local

and remote bootware. The local bootware only ever deploys the remote bootware, so here we

62



6 Design

have to keep track of only one thing. The remote bootware on the other hand might deploy

many provisioning engines during an execution. For the local bootware it might be sufficient

to store this information in a text file on the local machine where it is executed, whereas the

remote bootware might use some sort of persistent storage in the cloud. This would allow it

to retrieve this information even after a crash. However, for this diploma thesis we will be

using simple in memory storage for both the local and remote bootware. Changing that to a

more sophisticated storage solution is a possible option for future improvement.

Now that we know why it makes sense to store information about active applications, we

need to discuss what exactly we need to store. We need to store enough information to be

able to undeploy an active application without any further input. For this we need to know:

The resource plugin that was used to provision the resource, the connection plugin that was

used to connect to it, the application plugin that was used to deploy the active application,

and login credentials for the remote environment if necessary. This is all contained in the

context object that we used in the first place to deploy the application, so we will just store

the whole context object. Because we also use this storage for the undeploy operation, where

we get an endpoint reference as input, we have to store it in such a way that we can map a

particular context object to the provided endpoint reference.

6.9 Shutdown Trigger

One thing that we have not mentioned yet is how the bootware will be shut down. The

bootware can not just stop. It has to make sure that all applications and all the resources it

has provisioned are removed before it shuts down itself. But how does the bootware know

when it is time to start this procedure? After all, this depends on the workflowmiddleware. The

shutdown process should start when the workflow middleware is finished with the workflow

execution, so the bootware has to be informed of this somehow.

One possibility is to trigger the shutdown procedure from the bootware plugin in the modeler.

If the bootware adapter can access this information through the modeler, it can call the

shutdown operation of the local bootware, which will in turn call the shutdown operation of

the remote bootware, which will eventually lead to the removal of all remote components.

If this is possible using a particular modeler depends on the modeler and the integration

possibilities for the bootware adapter.

There is a second method that can be used instead. We already introduced the event plugin

type, which can also trigger events in the bootware, in particular the shutdown event. An

event plugin could be created that somehow communicates with the workflow middleware
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to receive notice when the execution is finish. For example, in the SimTech SWfMS, the

workflow engine publishes events into a message queue. An event plugin could be created

that subscribes to this messages queue and reacts to a particular event by triggering the

shutdown event inside the bootware. This plugin would then be loaded into the local bootware

and would trigger the shutdown procedure, which would in turn call the shutdown operation

of the remote bootware as before.

6.10 Event System

In Section 6.3 we mentioned that we need a way to provide the user with updates during

the long running bootstrapping process. In order to do this, we introduced event plugins in

Section 6.5 that would allow us to react to events in the bootware. Now, we will describe

the event system that will be used to distribute these events. Note that this event system is

not a core part of the bootware functionality and that the bootware can function completely

without it. It just allows us to access state information of the bootware core and the plugins

in a more fine grained way if we need it.

Ideally, we want a central location where we can access all events generated throughout the

bootstrapping process. These events could include events generated by the bootware core,

as well as by plugins. For example, we might like to receive an event when the process of

deploying a new provisioning engine is started. This would be an event generated by the

bootware core when it receives a corresponding deploy request. During this request execution,

multiple plugins would be called to deploy the provisioning engine. We might also like to

receive events during the execution of those plugins. For example, when a resource plugin

creates a cloud resource, it could generate an event when it successfully authenticated with

the cloud provider, another event when it started the creation of a VM, and a final event when

the VM is ready for use. We could consume all these events with an event plugin and use

them to inform the user of the bootstrapping progress, or log them to a text file.

These events could be triggered by the bootware core or by any plugin, but plugins should

be completely independent from each other. Because an event plugin does not know about

other plugins, it cannot listen for events at other plugins directly. The only known constant to

an event plugin is the bootware core. Therefore, we need an event system which allows for

loosely coupled communication between the bootware core and the plugins, where plugins

can register their interest for certain events with the core and also publish their own events

to the core for other plugins to consume. This essentially describes the publish-subscribe

pattern [14].
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6.10.1 Publish Subscribe Pattern

The publish-subscribe pattern (PubSub) is a messaging pattern that consists of three types

of participant: An event bus (or message broker), publishers, and subscribers. The event

bus sits at the center of the communication. It receives messages from publishers and

distributes them to all subscribers that have voiced their interest in messages of a certain

type by subscribing at the event bus [14]. Using this pattern, we would create an event bus

at the bootware core, and plugins, as well as other parts of the core, could subscribe at this

event bus and also publish messages through this event bus.

Figure 6.18: Bootware internal communication with PubSub pattern.

6.10.2 Event Types

When using PubSub and events to communicate, it is usually a good idea to not only use one

type of event, but many different types. Using different kinds of event allows us to subscribe

only to specific events or react differently based on the event type. But what if we want to

react to each event type in the same way, for example for logging purposes? Now, many

different event types complicate things more. This is where event hierarchies become useful.

At the core of an event hierarchy is a single base event. By extending and refining this base

event, other, more specific event types can be created, which again can be used as base type

for even more specific events. This allows us to create a fine grained hierarchy of events

and also enables us to subscribe to particular sub sets of this hierarchy. This makes event

handling much easier because we can now just react to the parent event if we do not need to

distinguish between different event types for a particular task.

A second mechanism to differentiate between events is some sort of severity value that each

event contains. Many events will be published in an event system, but not all of them might

65



6 Design

be of the same importance. The majority might be of low value while a few events might be

very important. For example, for logging purposes we might not be interested in every event,

but only warnings and errors. By adding a severity attribute to the base event type, all events

could be categorized in different severity groups and filtered accordingly if needed. As we

can see, we might benefit from a well thought-out event hierarchy.

BaseEvent on which all other events are based

CoreEvent published by the bootware core

PluginManagerEvent for loading and unloading plugins

PluginLoadEvent could be info, success, warning, or error

PluginUnloadEvent could be info, success, warning, or error

…

…

PluginEvent published by a plugin

ResourcePluginEvent contains further child events defined by plugin

CommunicationPluginEvent contains further child events defined by plugin

ApplicationPluginEvent contains further child events defined by plugin

EventPluginEvent contains further child events defined by plugin

…

Figure 6.19: Exemplary event hierarchy.

Figure 6.19 shows an exemplary event hierarchy for the bootware. As we can see, every event

is based on the BaseEvent, shown at the top. Events can be further divided into core events

that are published by the bootware core and plugin events that are published by plugins.

Core events contain events from the various core components of the bootware, for example

the plugin manager. The plugin manager events are further divided into events for certain

operations that can also have different severity values (e.g.: info, success, warning, and error).

Plugin events are divided by plugin types. Different plugins can also add further child events

to these event types.

6.11 Execution Flow

Until now, we have established how the bootware can be called from outside components

using a web service interface to start the bootstrapping process. We also established that
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big parts of this process will be implemented as plugins. Now, it is time to take a look at the

actual internal structure of the bootware. What follows is a step by step description of the

internal process during a bootstrapping operation.

Figure 6.20: Execution flow in the local bootware.
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Figure 6.20 shows a graph that represents the major steps during the bootware execution in

the local bootware as flow diagram. The bootstrapping process is started when the bootware

adapter starts the local bootware, which is represented by the start activity in the top left

corner of Figure 6.20. From there, the bootware first does some initializations. If those fail for

some reason, the cleanup code will be executed before the local bootware execution is ended,

as can be seen on the top right corner of Figure 6.20. In most cases however, the initialization

should succeed. Then, the local bootware will execute the next activity, where it tries to load

the event plugins.

The event plugins are loaded once at the beginning of the local bootware execution because

they will not change at a per request basis (like the other plugins). Any events generated by

the bootware core or by plugins after this point can now be handled by the event plugins. If

loading one of these plugins fails, the local bootware will try to unload already loaded plugins

before continuing with the cleanup activity. If the plugins are loaded successfully, the local

bootware transitions into the wait activity, shown in the top center of Figure 6.20.

The local bootware is now ready and waits for requests from the outside. A deploy request

will be send to the local bootware when the bootware adapter calls it to provision the workflow

middleware. A setConfiguration request might also be send by the bootware adapter to

set the default configuration. The undeploy and shutdown request will be triggered by the

local bootware itself, when it is time to deprovision the workflow middleware and the remote

bootware.

If a shutdown event is received, the local bootware will first tell the remote bootware to

undeploy all active applications. Next, the local bootwarewill undeploy the remote bootware by

running through the undeploy process fragment shown on the bottom left with the appropriate

plugins. Then, it will shut itself down by first unloading the event plugins and then running

the cleanup code. This is the only normal way to shut down the bootware. We only hint at

the setConfiguration request here, since it just replaces the saved configuration with the one

sent in the request. Deploy and undeploy requests however are more complicated. If such a

request is received, the local bootware transitions to the next activity, where it evaluates the

request context.

In the evaluate context activity, the information send with the request is used to generate the

full context, which contains all the information necessary to fulfill the request, as described in

Section 6.6. If this cannot be done for some reason, the local bootware returns a response

containing an error message before returning to the wait activity. If the context is created

successfully, the local bootware tries to send the request on to the remote bootware, as

shown in the middle of Figure 6.20. For this to work, the remote bootware has to exist in

the requested remote environment, which will not be the case during the first execution.
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Therefore, the local bootware first has to provision the remote bootware in the requested

remote environment and so it transitions to the load request plugins activity. In the load request

plugins activity the plugins specified in the context are loaded. If this fails, the local bootware

tries to unload already loaded plugins before returning an error response and returns to the

wait activity. If the plugins are loaded successfully, the local bootware now starts either the

deploy process fragment at the bottom left, or the undeploy process fragment shown at the

bottom right of Figure 6.20, depending on the type of the request.

If the request was a deploy request, the local bootware will now execute the steps shown in

the bottom left of Figure 6.20 one after another. In the provision resource activity, the deploy

operation of the resource plugin will be called. Then, in the connect activity, a connection

with this resource will be established by the communication plugin. Over this connection,

the requested application is provisioned in the provision application activity, and started in the

start application activity, using the application plugin. If one of these activities fails, the local

bootware transitions over to the corresponding undeploy activities on the right and works its

way backwards to undo all operations that where already executed. This process fragment

is the same as the undeploy process, shown on the bottom right of Figure 6.20, which is

triggered by an undeploy request.

If the stop application, deprovision application, or disconnect activities fail, the local bootware just

continues with the next undeploy activity because these operations are not considered critical.

However, if the deprovision resource activity fails, the local bootware transitions to a fatal

error activity, shown at the right of Figure 6.20, because this step is considered critical. This

activity failing could mean that resources are still active in the cloud and human interaction

is necessary to remove them to stop further costs from incurring. The fatal error activity is

responsible for taking special actions to remedy this situation. The successful, as well as

the unsuccessful execution of either the deploy or the undeploy process all finish with the

unload request plugins activity, where the plugins that where needed for this particular request

are unloaded. If everything went as planned, a remote bootware should now be running in

the desired cloud environment and the local bootware can now pass on the request to this

remote bootware, as shown in the center of Figure 6.20 with the send to remote activity. The

local bootware will wait here until it receives a response from the remote bootware.

Now, we move our attention to the remote bootware, where the requests continues to be

processed. Figure 6.21 shows the execution flow of the remote bootware. As we can see, it

is largely identical to the local bootware. The send to remote activity is gone because it is not

needed in the remote bootware. Instead, as the bottom of Figure 6.21 shows, the provision

middleware and deprovision middleware activities were added. The remote bootware also

supports the getActiveApplications request. Other than that, the local and remote processes

are the same.
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Figure 6.21: Execution flow in the remote bootware.
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Like the local bootware, the remote bootware went through the initialization steps shown

at the top of Figure 6.21 when it was started by the local bootware. It then waited in the

wait activity for a request. Now, it receives the request from the local bootware, creates the

context, loads the request plugins and executes the deploy operation. This should result in a

provisioning engine being started by the application plugin. After that, the remote bootware

executes the new provision middleware activity at the bottom left of Figure 6.21, which will

use the just started provisioning engine to deploy the workflow middleware by executing the

provision workflow middleware plugin. Once the middleware is running, the remote bootware

is finished with this request and returns the information list containing the endpoint references

of the middleware in the response to the local bootware, before returning to the wait activity.

This brings us back to Figure 6.20, where the local bootware has now received the answer

from the remote bootware in the send to remote activity. Now, the local bootware can finish

its request by sending back a response to the bootware adapter, before returning to the wait

activity. The local bootware is now done until it is time to undeploy the remote bootware.

Meanwhile, the bootware adapter starts the workflow execution on the middleware, during

which multiple calls from the provisioning manager to the remote bootware will occur, which

will each time trigger the deploy or undeploy process fragments shown at the bottom, or the

getActiveApplications operation only hinted at in Figure 6.21.

As Figure 6.20, Figure 6.21 and the description above show, this is quite a complicated process

with many conditional transition. Using traditional programming methods like if/else blocks

to implement this process would lead to a rather unwieldy and complicated construct with

lots of nested if/else blocks. Therefore, it could be advantageous to use other methods that

are more fitting for this process. As we already described the process as a directed graph, it

would be ideal if we could take this whole graph and use it in the bootware. Fortunately, this

is possible by implementing the process using a finite state machine.

6.11.1 Finite State Machine

In theoretical computer science, a Finite State Machine (FSM) is a formal, abstract model of

computation “consisting of a set of states, a start state, an input alphabet, and a transition

function that maps input symbols and current states to a next state. Computation begins

in the start state with an input string. It changes to new states depending on the transition

function” [5]. In this context, a state is the “condition of a finite state machine [...] at a certain

time. Informally, the content of memory” [6]. The start state is therefore the initial condition

of a FSM. The alphabet is a “set of all possible symbols in an application. For instance,

input characters used by a finite state machine, letters making up strings in a language, or
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symbols in a pattern element. In some cases, an alphabet may be infinite” [3]. The transition

function is a “function of the current state and input giving the next state of a finite state

machine” [7]. FSMs can further be distinguished in deterministic and non-deterministic

FSMs. A deterministic FSM has at most one transition for each symbol and state, whereas a

non-deterministic FSM can have non, one, or more transitions per symbol and state [4].

Aside from its uses in theoretical computer science, FSMs also have practical applications

in digital circuits, software applications, or as lexers in programming language compilers.

We are only interested in the use of FSMs for building software, so we can redefine what

a FSM means for our case. We want to use a FSM as an abstract machine that is defined

by a finite list of states and some conditions that trigger transitions between those states.

Unlike a traditional FSM, we will not consume symbols from a set alphabet that will trigger

state transitions. We want the state transitions to be triggered by events that we can emit

at any time, so we want an event-driven FSM. The machine is in only one state at a time, its

current state. At the start of the machine execution, it will be in the start state. From there,

it can transition from one state to another when certain events are triggered, until it finally

reaches an end state. The states map directly onto the activities described in Figure 6.20

and Figure 6.21. When The FSM enters a state, it executes a function associated with this

state, which would be the implementation of said activities. The result of the execution of

this function determines to which state the FSM will transition next. We will talk more about

the actual implementation with FSMs in Chapter 8.

6.12 Final Bootware Architecture

In Figure 6.22 we present the final architecture of the bootware in context with a SWfMS. New

components are marked black and include the local and remote bootware, their plugins, and

the bootware adapter. Old components that existed previously are shown in white.

Figure 6.23 and Figure 6.24 show the final architecture of the local and remote bootware.

They only differ in some small details, but this might change in the future. At the bottom we

can see some exemplary event plugins. These are loaded at the beginning of the bootware

execution by the plugin manager, shown on the left of both figures. For demonstrations

purposes, both figures show a wider range of possible event plugins. All these plugins provide

some sort of input and/or output mechanism for the bootware. A command-line interface

(CLI) plugin, as shown in Figure 6.23, could be used to make the local bootware operations

accessible via a command-line interface. An event logger plugin could be used to write all

bootware events to a log file. We can also imagine an event queue plugin that pushes all

bootware events into some message queue at the remote bootware, so that they can be
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Figure 6.22: The final architecture of the bootware.

consumed by other components, like the local bootware. Finally, an undeploy trigger plugin in

the local bootware, as shown in Figure 6.23, could trigger the undeployment of the bootware

and all running applications by listening for a specific message at the workflow middleware.

Besides the event plugins there is always the web service interface, shown at the bottom

right of both figures, which provides the standard way to interact with the bootware.

All event plugins work by implementing event handlers for certain events published at the

event bus, or by publishing events to the event bus themselves. As we can see in the center

of both figures, the event bus and the state machine form the core of the bootware. The event

bus is responsible for distributing events between the various plugins and the state machine.

The state machine implements the entire bootstrapping process, as described earlier in

Section 6.11. At certain points during the bootstrapping process, operations are delegated

to the plugin manager to load plugins, and to the resource, communication, application, and

provision workflow middleware plugins, shown at the top of both figures.
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Figure 6.23: The final architecture of the local bootware component.

The resource, communication, and application plugins implement the actual bootstrapping

operations. At the top, both figures show an exemplary result of these bootstrapping opera-

tions. In this particular case, the resource plugin started a VM, to which the communication

plugin set up a communication channel. The application plugin then used this communi-

cation channel to provision the application inside the VM. The provisioning engine plugin

is only available in the remote bootware and allows it to call a provisioning engine with the

details necessary to provision the workflow middleware. This is shown in Figure 6.24 as

an additional function call from the provision workflow middleware plugin to the previously

deployed application. During the bootstrapping procedure, events are sent from all these

plugins back to the event bus to be delivered to the loaded event plugins. As we can now see,

the local and the remote bootware are quite similar, but differ in enough ways that a cloned

architecture, as described in Section 6.1, might not be the best choice, especially because

both components might drift further apart in their functionality in the future. Therefore, we

decide to not alter our original decision to got with a 2-tiered architecture.
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Figure 6.24: The final architecture of the remote bootware component.
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This chapter describes the bootstrapping process in its entirety. The entire process can be

divided into three phases. During the bootstrapping phase, the local and remote bootware

components are started and deploy a provisioning engine, which in turn provisions the work-

flow middleware. Once the workflow middleware is ready, the second phase starts, which

is the workflow execution phase. During this phase, the remote bootware might be called

multiple times to deploy or undeploy new provisioning engines. The third and final phase, the

shutdown phase, begins when the workflow execution is finished. In this phase, all remaining

services, provisioning engines, the workflow middleware, the remote and the local bootware,

as well as all the underlying resources are deprovisioned. In Figure 7.1 we can see the whole

process with numerated steps. We will go through Figure 7.1 step by step in the following

paragraphs to get a better understanding of the whole bootstrapping process.

At the beginning, a user starts the Modeler, which includes the bootware adapter, as seen on

the bottom left of Figure 7.1. If they have not done so already, they configure the bootware

adapter with their cloud login credentials to be used during the bootware process and other

parameters that might be needed. They might also configure other aspects of the bootware

through graphical user interfaces provided by the bootware adapter. They then use the

Modeler to create a workflow as usual. Once the workflow is finished and ready to be executed,

they click the start button as usual. This marks the beginning of the bootstrapping phase.

The bootware adapter has hooked into the start process and takes over by starting the local

bootware (step 1).

Once the local bootware is up and running, the bootware adapter calls it with the context

the user provided (step 2). The local bootware first checks, if a remote bootware already

exists in the requested remote environment. If not, the local bootware provisions a remote

bootware using the information provided in the context (step 3). Once the remote bootware is

deployed, it is called by the local bootware with a deploy request for the provisioning engine

that will be used to deploy the workflow middleware (step 4). The remote bootware deploys

the requested provisioning engine using the information provided in the context (step 5).

Once the provisioning engine is up and running, the remote bootware calls the provisioning

engine (step 6) and tells it to deploy the workflow middleware (step 7). Once the workflow
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Figure 7.1: The step-by-step bootware process.

middleware is up and running, the provisioning engine returns the information about the

workflow middleware, such as endpoint references, to the remote bootware, which in turn

returns it to the local bootware, which returns it to the bootware adapter. The bootware

adapter uses this information to link the modeler to the workflow middleware. This is the end

of the bootstrapping phase. Now begins the workflow execution phase.

Once linked, themodeler deploys theworkflow on theworkflowmiddleware as usual and starts

its execution (step 8). The workflow middleware now executes the workflow, during which it

might encounter a point where it has to call a remote service. The remote service call is passed

on to the ESB (step 9), which checks if the service is already reachable. If it is, execution

continues as usual. If not, the ESB tells the provisioning manager to provision the requested

service (step 10). The provisioning manager checks if the provisioning engine needed to

provision the requested service is already available. If it is not, the provisioning manager calls

the remote bootwarewith a request to provision the required provisioning engine (step 11). The

remote bootware provisions the provisioning engine using the information from the request
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and the user context (step 5). Once the provisioning engine is up and running, the remote

bootware returns information about the provisioning engine, such as endpoint references,

to the provisioning manager. The provisioning manager now calls the provisioning engine

(step 12) and tells it to provision the required service (step 13). Once the service is available,

the provisioning engine returns its endpoint reference to the provisioning manager, which

in turn returns it to the ESB. The ESB can now call the service (step 14) and use the service

response to continue with the workflow execution. The workflow execution now continues

in this fashion, spawning new provisioning engines and services through the provisioning

manager and the remote bootware along the way (repeating steps 9, 10, 11, 5, 12, 13 and 14).

At some point, the workflow will be finished. This marks the end of the workflow execution

phase and the start of the shutdown phase.

If it has not done so already, the provisioning manager calls all relevant provisioning engines

to undeploy any services that might still be running (step 12, 13). Once all services are

undeployed, the work of the workflow middleware is finished. The bootware is listening at the

workflow middleware for this event and triggers the undeploy process once it happens. First,

the remote bootware calls the provisioning engine that was used to provision the workflow

middleware (step 6) and tells it to undeploy theworkflowmiddleware (step 7). The provisioning

engine returns the success to the remote bootware. Next, the remote bootware undeploys all

provisioning engines that might still be running (step 5). Once all provisioning engines are

gone, the remote bootware returns the success to the local bootware. The local bootware

removes the remote bootware (step 3) and returns the success to the bootware adapter. At

this point, no remote components should be running anymore. The local bootware now shuts

down itself, which completes the whole process.

Figure 7.2 shows the bootstrapping phase as sequence diagram, which displays the inter-

action between the components arranged by time from top to bottom. The lifetime of a

particular component is represented by a dashed line running from the top to the bottom.

If an activity box is displayed over the line, the component is active at this moment in time.

Activity is usually triggered by receiving a call from another component and ended by returning

a response to this call. Calls are represented by arrows between activity boxes. The can be

further distinguished between synchronous and asynchronous calls, depending on the form

of the arrow head. A response is displayed as a dashed arrow between activity boxes. The

end of the lifetime of a component (i.e. when it is shutdown) is marked by a cross that ends

the lifetime line.

In Figure 7.2 we can clearly see how one component triggers the next one during the boot-

strapping phase. Starting at the top left, the deploy action starts an escalating process, where

one component starts the next, beginning with the modeler starting the bootware adapter.

The bootware adapter then starts the local bootware and sends a deploy requests. The local
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Figure 7.2: Sequence diagram of the bootstrapping phase.

bootware deploys and starts the remote bootware and forwards the deploy request. The

remote bootware deploys and starts a provisioning engine, which it then calls to provision the

workflow middleware. Once the workflow middleware is running, every component returns a

response to the component which called it, which ends when the bootware adapter receives

a response from the local bootware. This response contains endpoint references and other

information about the workflow middleware, which the bootware adapter uses to configure
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the connection between the modeler and the workflow middleware. The modeler can now de-

ploy and start the workflow on the workflow middleware, which concludes the bootstrapping

phase.

Figure 7.3: Sequence diagram of the workflow execution phase.

In the workflow execution phase, which is also depicted as a sequence diagram in Figure 7.3,

the workflow middleware might now call external services. If these services do not exist

already, the workflow middleware has to provision them first (via the provisioning manager).

To provision a service, a particular provisioning engine is needed, which also might not exist

yet. In this case, a deploy request is sent from the workflow middleware (i.e. the provisioning

manager) to the remote bootware, which then deploys and starts the requested provisioning

engine. Once the particular provisioning engine exists, the workflow middleware calls it to

deploy the service it wants to execute. This process might be repeated multiple times during

the whole workflow execution.

The shutdown phase begins once the workflow execution is finished. As we can see in

Figure 7.4, the workflow engine might need to stop and undeploy remaining services by
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Figure 7.4: Sequence diagram of the shutdown phase.

calling the particular provisioning engines via the provisioning manager. Once all services are

removed, the workflow execution is truly finished and an event marking this state is emitted.

The local bootware has been listening for this event through one of its event plugins and

triggers the removal of the remaining components by first calling the shutdown operation of

the remote bootware. The remote bootware calls a provisioning engine to deprovision the

workflow middleware, before deprovisioning all remaining provisioning engines itself. Once

this is done, a response is sent to the local bootware, which can now deprovision the remote

bootware, before shutting down itself. This concludes the shutdown phase.
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Until now we have described the bootware in a generic context because it should work with

various different SWfMSs. But for the implementation we will have to work with a specific

system, which in our case is the SimTech SWfMS. Figure 8.1 shows the bootware being used

together with the SimTech SWfMS. It also shows the components as one of three types:

specific, generic, and adapted.

Figure 8.1: Specific and generic components and adapters.
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The specific components, shown in black, are those components that belong to a specific

SWfMS. In our case these are the SimTech Modeler at the bottom left and the SimTech ODE

(and other components that were omitted in this figure) in the center. On the other hand we

have the generic components, shown in white. These are components that are build to be

generic and can be used in all kinds of environments. In our case these are the local and

remote bootwares and their plugins, as well as the provisioning manager and the ESB (here

Apache Service Mix) and various repositories and registries. The specific and the generic

components have to work together, but there should be no need to make huge modifications

to either one to do so. Therefore, we need adapter components in some places, which are

shown in gray in Figure 8.1. They are responsible for gluing together specific and generic

components where necessary and should be the only components that have to be modified or

created from scratch to fit to a specific environment. In our case this is the bootware plugin,

an implementation of the bootware adapter described in Section 6.2, loaded in the SimTech

Modeler on the bottom left. There also is an adapter component between the SimTech ODE

and Apache Service Mix, which is not shown here.

For the implementation of this diploma thesis we will have to create the generic local and

remote bootware components and their plugins, as well as the bootware plugin, which will

be specific to the SimTech Modeler. In the rest of the chapter we present details on the

implementation of the bootware components. First, we describe the implementation of the

bootware plugin. Next, we select specific frameworks and libraries that allow us to implement

the architecture we developed in Chapter 6. Then, we present detailed descriptions of the

implementation of some parts of the local and remote bootware and some plugins.

8.1 Modeler Integration

In this section we describe the integration between the SimTech SWfMS and the bootware.

Currently, what happens is that if a workflow is ready and should be executed, the user clicks

on a button in the SimTechModeler and the workflow is deployed and executed on the already

running SimTech SWfMS. The bootware has to be integrated into this process. We described

this as a generic bootware adapter in Section 6.2, but now we need an actual implementation

of this adapter, which will be specific to the SimTech Modeler. The button is realized by

an Eclipse plugin that adds SimTech specific functionality to the Modeler (which is based

on Eclipse). We therefore also have to create some kind of Eclipse plugin to hook into this

process. We call it the bootware plugin. There are two scenarios how we could go about this.

We could extend the existing plugin with the functionality that we need for the bootware. In

this case, we would always load the bootware extensions in the Modeler, even if we do not
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use the bootware at all. We could also use a feature called extension points. Eclipse plugins

can declare extensions points, which allow other plugins to extend or customize parts of

the plugin1. We could define an extension point in the already existing Eclipse plugin and

create a second plugin which implements this extension point. This way we can separate

the bootware functionality from the other SimTech extensions and keep the changes to the

existing plugin to a minimum. If a user does not need the bootware functionality, they do not

have to load the bootware plugin and the SimTech plugin will continue to function as before.

plugin.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <?eclipse version="3.0"?>

3 <plugin>

4

5 <extension-point id="hoverHelpers"

6 name="%HOVERHELP_HELPER_NAME"

7 schema="schema/hoverHelpers.exsd"/>

8 <extension-point id="expressionEditors"

9 name="%EXPRESSION_LANGUAGE_EDITORS"

10 schema="schemas/expressionEditors.exsd"/>

11 <extension-point id="actions"

12 name="%ACTIONS_NAME"

13 schema="schemas/actions.exsd"/>

14 <extension-point id="modelListener"

15 name="Model Listener"

16 schema="schemas/modelListener.exsd"/>

17 <extension-point id="uiObjectFactories"

18 name="UIObjectFactories"

19 schema="schemas/uiObjectFactories.exsd"/>

20 <extension-point id="bootware"

21 name="Bootware"

22 schema="schema/bootware.exsd"/>

23

24 ...

Listing 8.1: Extension points defined by the org.eclipse.bpel.ui plugin.

The second scenario looks preferable to the first one, so this is what we are going to do.

We modify the already existing Eclipse plugin with an extension point that is triggered at

the beginning of the existing deployment process. If the bootware plugin is loaded into the

Modeler, it will implement this extension point and set up the SimTech SWfMS before the

1http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F
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already existing deployment code continues. If it is not loaded, nothing new will happen and

the existing deployment code will be executed like before. The bootware plugin can also add

additional extension to the modeler, for example a configuration dialog for setting up the

context or a view that shows progress messages from the bootstrapping process.

The existing Eclipse plugin that has to be modified is the org.eclipse.bpel.ui plugin. In its

plugin.xml, it has already defined some extension points, as can be seen in Listing 8.1 in line

5-19. We add another extension point for the bootware, as shown in line 20-22. Now, we have

to integrate this extension point into the already existing deploy process that is executed

when the user click the start button in the SimTech Modeler. This button and the class that

implements its functionality are defined further down in the plugin.xml, as shown in Listing 8.2.

plugin.xml

1185 ...

1186

1187 <action

1188 class="org.eclipse.bpel.ui.agora.actions.StartAction"

1189 disabledIcon="icons/elcl16/resume_co.gif"

1190 enablesFor="*"

1191 icon="icons/elcl16/resume_co.gif"

1192 id="org.eclipse.bpel.ui.agora.start.action"

1193 label="Start"

1194 menubarPath="simTech/process/action"

1195 style="push"

1196 toolbarPath="simTech/process/action"

1197 tooltip="Starts the process instance execution">

1198 </action>

1199

1200 ...

Listing 8.2: Definition of the action button.

As we can see in line 1188, the class that implements the button functionality is the StartAction

class. Wemodify its runmethod to load and execute any plugin that implements the bootware

extension point, before the original deploy code continues. As shown in Listing 8.3, we have

to get all extensions that implement the bootware extension point from the extension registry

(line 50-52) and create an object of the IBootwarePlugin type (line 55-56). Now, we are able to

call any method defined by this object, in this case the executemethod (line 57). After this

method has finished, the original code continues its execution (line 60).
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StartAction.java

44 ...

45

46 public void run(IAction arg0) {

47

48 fEditor.refreshEditor();

49

50 IExtensionRegistry reg = Platform.getExtensionRegistry();

51 IConfigurationElement[] extensions =

52 reg.getConfigurationElementsFor("org.eclipse.bpel.ui.bootware");

53 for (int i = 0; i < extensions.length; i++) {

54 IConfigurationElement element = extensions[i];

55 IBootwarePlugin plugin =

56 (IBootwarePlugin) element.createExecutableExtension("class");

57 plugin.execute(); // Can be any method defined in IBootwarePlugin

58 }

59

60 // continue with original code

61 ...

Listing 8.3: The modified run method in the StartAction class.2

Now that we have all code in place to execute the bootware extension, all we have to do is

to create a bootware plugin that implements the bootware extension point and the execute

method. Like the Eclipse plugin we just modified, the bootware plugin has a plugin.xml, shown

in Listing 8.4. Here, we just declare an extension in line 8-13 that implements the bootware

extension point (line 9) with the org.simtech.bootware.eclipse.BootwarePlugin class (line 11).

This is also the place where other integration functionality could be implemented in the future,

for example by adding new menus for configuring the context object, or new views that show

the bootstrapping process.

The BootwarePlugin class, shown in Listing 8.5, implements the execute method called by the

extension point. In this method we do everything we need to do to integrate the bootware

into the start process. Due to limited space we cannot present the actual code here, but

the process is roughly as follows: First, the local bootware has to be started by calling the

executable. Once it is running, a deploy request is sent to it, containing a context object

with all necessary configuration parameters. Now, the bootware plugin has to wait for the

deploy request to be executed. Once the request is finished, the endpoint references to

2Note: The code shown here was shortened for presentation and is not complete. The main elements are however present.

86



8 Implementation

plugin.xml

1 <?xml version="1.0" encoding="UTF-8"?>

2 <?eclipse version="3.2"?>

3 <plugin

4 name="SimTech Bootware Eclipse Plugin"

5 id="org.simtech.bootware.eclipse"

6 version="1.0.0">

7

8 <extension

9 point="org.eclipse.bpel.ui.bootware">

10 <execute

11 class="org.simtech.bootware.eclipse.BootwarePlugin">

12 </execute>

13 </extension>

14

15 </plugin>

Listing 8.4: The bootware plugin plugin.xml.

various workflow middleware components and other information returned in the response

message are used to set up the connection from the SimTech modeler to the middleware.

The bootstrapping process is now finished and the original deploy code continues.

BootwarePlugin.java

1 public class BootwarePlugin implements IBootwarePlugin {

2

3 public final void execute() {

4 // Start local bootware.

5 // Get context.

6 // Send deploy request with context.

7 // Wait for request to finish.

8 // Set up URLs to workflow middleware.

9 }

10

11 }

Listing 8.5: The bootware plugin implementation.
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8.2 Bootware Core Library

We have seen in Section 6.11 and Section 6.12 that the local and remote bootware have some

common functionality. It would make sense to implement these components in such a way

that they can share this common functionality. This would avoid code duplication and make

changes to common functionality easier. Therefore, we introduce the bootware core library,

which will encapsulate the common functionality of both bootware components.

Figure 8.2: The bootware core library and exemplary usage.

Because we are using Java for the implementation, the core library will be a .jar file containing

common classes that will be imported by the local and remote bootware implementations

and also by plugin implementations. Figure 8.2 shows a schematic view of the bootware

core library and how its classes are used by various components. We can see that the library

includes an abstract FSM class, which is used by both the local and the remote bootware

implementation. The abstract FSM class defines common state machine functionality that

is used by both bootware components. This includes function definitions for the shared

activities shown in Figure 6.20 and Figure 6.21. This way, the local and remote bootware can

import shared activities from the library and only have to define their custom activities (e.g.

88



8 Implementation

the provision middleware activity in the remote bootware or the send to remote activity in the

local bootware) and the transitions. They can also overwrite the activities imported from the

library if this is necessary.

The library also includes an abstract base plugin class, which implements some functionality

that is common to all plugin. Actual plugin implementations can extend this base plugin class

to inherit this common functionality. They also have to implement one of the plugin interfaces

defined in the bootware core library, so for example, a resource plugin has to implement the

resource plugin interface. Aside from the code imported from the bootware core library, the

components using the library are free to add various other code to their implementation. This

way, the remote bootware could implement some extra functionality not needed in the local

bootware, or a plugin could define its own event types.

8.3 Selecting Frameworks and Libraries

Before we can begin with the actual implementation of the local and remote bootware, we

have to decide on which frameworks and libraries we will use to implement the requested

functionality. In this section we present the frameworks and libraries we chose and the

reasoning behind it. We begin with plugin frameworks, followed by PubSub and FSM libraries.

8.3.1 Plugin Frameworks

All the frameworks that we compare here offer the basic functionality that we need to ex-

tend the core bootware components, i.e. the developer defines interfaces that are then

implemented by one or more plugins. These plugins are compiled separately from the main

component and are then packaged in .jar files for distribution. These packages are loaded dur-

ing runtime and provide the implementation for the specific interface they implement. There

are however some advanced functional differences and some non-functional differences that

will be considered here.

Dynamic loading allows us to load and replace plugins during runtime, without completely

restarting the application. This is an important feature because it is possible that the bootware

has to use many different plugins during its lifetime. For example, this would be the case

when several services have to be provisioned, each with different provisioning engines. In

this case, the bootware has to load the appropriate plugins for every provisioning engine to

be able to fulfill its task. We could just load every plugin at startup, switch between them
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internally when necessary, and never unload them. However, this could become a problem if

the number of available plugins increases in the future. Then, loading all plugins could take

some time and slow down the entire bootware process. In many cases, some or most of the

plugins would never be used and loading them would not be necessary at all. Therefore, it

seems far more reasonable to load and unload plugins dynamically when needed.

Security is also a must have feature. For example, we can imagine the following scenario:

The bootware component is used by multiple separate users who can share plugins using a

plugin repository. A malicious user could create a new plugin and upload it to the repository.

This plugin can contain virtually any code. For example, it could erase all files or open a back

door in the system when it is executed. Other users might trust the plugin author and try

the plugin without checking its code first. Proper security feature might be able to prevent

harm in such situations. Due to time restrictions, plugin security will not be discussed further

in this diploma thesis, but it is still vital to select the right framework now, so that security

features can be implemented in the future.

We also consider some non-functional features that might influence the selection. There

is already a plugin framework in use in the SimTech project, so it could be beneficial to

choose the same framework because the necessary knowledge and experience already exists.

The requirements section also mentioned that using software based on open standards is

encouraged. If possible, the complexity should be low while still providing all the necessary

functional properties. Frameworkswith high popularity and an active development community

might be more mature or provide more documentation and support.

Plugin Frameworks

S
P
I3

J
S
P
F
4

J
P
F
5

O
S
G
i6

functional
Dynamic Loading 7 7 3 3

Security 7 7 7 3

non-functional

Used in SimTech 7 7 7 3

Standard (3) 7 7 3

Complexity low low medium high

Popularity medium low medium high

Active Development 3 7 7 3

Table 8.1: Feature comparison of Java plugin frameworks.

3http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
4https://code.google.com/p/jspf
5http://jpf.sourceforge.net
6http://www.osgi.org
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Table 8.1 shows a comparison of four Java plugin frameworks, the first of which is the Service

Provider Interface (SPI)7. It is an extensionmechanism integrated in Java which is a little more

advanced than the manual extension mechanism described in Section 6.4. It is also based

on a set of interfaces and abstract classes that have to be implemented by an extension.

In the case of SPI, these interfaces and abstract classes are called services and a specific

implementation of such a service is called service provider. However, unlike in the manual

approach, specific implementations are loaded from .jar files in specific directories or in the

class path. These .jar files also include metadata to identify the different service providers.

SPI is easy to use, does not depend on any external libraries, is well documented, and mature

because it is used in the Java Runtime Environment (JRE). One could also say that it is

somewhat standardized because it is a part of Java. But as we can see in Table 8.1 on the

left, it neither supports dynamic loading, nor security features and is therefore not a good fit

for our needs.

The next contender is the Java Simple Plugin Framework (JSPF)4, an open-source plugin

framework build for small to medium sized projects. Its focus is simplicity and the author

explicitly states that it is not intended to replace JPF or OSGi8. As a result it is lightweight and

easy to use but does not support advanced features like dynamic loading or security. Java

Plugin Framework (JPF)5 is another open-source plugin framework. Compared to JSPF it is a

little more complex and popular. As we can see in Table 8.1, it also supports dynamic loading.

However, the last version was released in 2007 and development seems to have stopped.

This is not necessarily bad but might show that there will be no future development of this

framework.

This leaves us with the final contender, which is Open Service Gateway initiative (OSGi)6, a

plugin framework standard developed by the OSGi Alliance. It provides a general-purpose

Java framework that supports the deployment of extensible bundles [27]. The right column

of Table 8.1 shows, that it supports dynamic loading, as well as security. OSGi is under active

development, fairly popular, and has also been used in the SimTech project. Compared to

the other alternatives, it is pretty complex, but considering the other factors, it is the only real

alternative. Therefore, we will use OSGi to provide the extensibility required for the bootware.

As OSGi by itself is only a standard, we still have to select an OSGi implementation. As with

all other libraries and frameworks we use, we are looking for an open-source implementation,

so we will ignore commercial OSGi implementations. There are three open-source OSGi

implementations to choose from: Apache Felix9, Eclipse Equinox10, and Knopflerfish11. All of

7http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
8https://code.google.com/p/jspf/wiki/FAQ
9http://felix.apache.org

10http://eclipse.org/equinox
11http://www.knopflerfish.org
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them are under active development and implement the OSGi core framework specification,

as well as the OSGi security specification (among others). We will be using Apache Felix

because it is already being used in the SimTech project. But it should be straight forward to

change to another implementation in the future if necessary because they all implement the

same specification and should therefore be - at least in theory - completely interchangeable.

8.3.2 PubSub Libraries

Many of the well know messaging middlewares offer support for PubSub, for example Ac-

tiveMQ12, RabbitMQ13, and ZeroMQ14. But, because we are looking for an internal communi-

cation mechanism only, all of these solutions are somewhat overpowered. We do not have to

worry about network problems, so we do not need guaranteed delivery or message queuing

capabilities. We also do not need persistence or transactional capabilities We do not have to

handle millions of subscribers or events, so high scalability is not a concern. We do not even

necessarily need asynchronous communication. Instead, we need a lightweight in-memory

solution. Therefor we will ignore the middleware heavyweights and look for smaller PubSub

libraries.

We have a few functional requirements that a library has to support for our use case. These

can be seen on the left-hand side of Table 8.2. Weak references are an important feature

because we have a lot of plugins that will register as listeners to the event bus. These plugins

can be removed at any time and weak references allow us to remove them without explicitly

unregistering them from the event bus. Instead of crashing, the event bus will just ignore

references to listeners that do not exist anymore. Even if we explicitly unregister all our

plugins, weak references give us a safety net if we forget it at some point.

We also need support for an event hierarchy. This allows us to model our events in a very fine

grained modular fashion and organize them into logical groups. It also allows listeners to

react to a whole group of specific events or only to a small subset of such a group. A filtering

feature gives us even more control over what events a listener will react to. It allows us to

filter out specific events, for example by their content, to handle them differently, or to ignore

them. We also want event handlers to be invoked synchronously. If an event is published,

all event handlers for this event should be executed one after another until they are finished.

Only then should the program continue execution. But asynchronous invocation might still

be useful in some cases, so we also add it here.

12http://activemq.apache.org
13http://www.rabbitmq.com
14http://zeromq.org
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PubSub Libraries
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functional

Weak References 3 7 3 3 3

Event Hierarchy ? 3 ? 3 3

Filtering 3 7 3 3 7

Sync. Invocation 3 3 3 3 3

Async. Invocation 3 3 3 3 3

non-functional

Popularity high medium low medium low

Maturity high medium medium medium medium

Documentation high low low medium medium

Table 8.2: Feature comparison of Java PubSub libraries.

The first library we look at is EventBus. As can be seen in Table 8.2 on the left, EventBus

supports most of the functionality we need. From the libraries presented here it is also the

oldest one, so it is mature, fairly popular and well documented. However, outdated coding

practices and many features also make it fairly heavyweight. Guava Event Bus on the other

hand is a rather simple PubSub library. It is part of the Google core libraries for Java 1.6+

and is therefore fairly popular, but it lacks in documentation. It also does not support weak

references and filtering, which does not make it a good fit for our use case.

Simple Java Event Bus is a simpler alternative to EventBus. It lacks some of the advanced

features of EventBus but is also easier to use. Compared to the other libraries it is not

that popular and lacks in documentation. MBassador is a light-weight and performance

minded PubSub library. As we can see in Table 8.2, it supports all functional features that

we need and some more. It is also relatively mature, has good enough documentation and

is somewhat popular. Finally, we have Mycila PubSub, a modern replacement for EventBus.

It supports all the functional features we need, except filtering. Its documentation is good

15http://eventbus.org/ (Site was offline when last checked.)
16https://code.google.com/p/guava-libraries/wiki/EventBusExplained
17https://code.google.com/p/simpleeventbus/
18https://github.com/bennidi/mbassador
19https://github.com/mycila/pubsub
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enough, but because it is relatively new, it is not very popular yet and may lack in maturity.

From the alternatives presented here, MBassador seems to be the only one that offers all

the functionality we need combined with relative maturity and good documentation. We will

therefore use it for our implementation.

8.3.3 State Machine Libraries

Because we want to implement the bootware process with a FSM, we must now decide

how we will do it. It would certainly be possible to go with a hand made state machine

implementation, but the time for this diploma thesis is limited and we should use it for the

actual design of the bootware. Therefore, it would be better to use an existing state machine

library. In general, we are looking for an event-driven FSM, which allows us to define a set

of states and transition between those states when specific events occur. Ideally we would

prefer a standardized way to define the FSM and avoid proprietary formats. But we also

do not want the FSM to be overly complex to use and want to avoid introducing additional

conversion or compilation steps. Table 8.3 shows six state machine libraries available for

Java.

Apache Commons SCXML21 aims to be a java state machine engine that is capable of

executing state machines defined in State Chart XML (SCXML). SCXML is a working draft

specification for a general-purpose event-based state machine language that is currently

being developed by the World Wide Web Consortium (W3C) [33]. Apache Commons SCXML

looks like a good match for our needs because it is event-based and also uses a (soon to

be) standard. But the current state of the implementation seems to be lacking because the

SCXML specification has changed a lot. The most recent release is version 0.9, which was

released in late 2008. It is about to be replaced by version 2.0 that is currently being worked

on and includes major changes, but a release date is not yet in sight20.

EasyFlow22 is a simple and lightweight FSM for Java. It is event-driven, but only supports

describing the FSM directly in Java code. Compared to the other alternatives, it is not very

well documented and not very popular. There also is State Machine Compiler (SMC)23, a state

machine compiler that targets fifteen different programming languages, including Java. It

generates FSMs from a definition in .sm files. SMC is mature and has good documentation,

but the use of an extra definition language and the extra step of compiling it into a Java

representation seem to be to complicated for our needs.

20http://commons.apache.org/proper/commons-scxml/roadmap.html
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State Machine Libraries
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Popularity med. low med. low med. med.

Maturity low med. high med. med. high

Documentation med. low high low high high

Table 8.3: Feature comparison of Java state machine libraries.

Stateless4j24 is a lightweight library for creating FSMs directly in Java code. Compared

to the other alternatives, it lacks in documentation and does bot seem to be very popular.

Squirrel-foundation25 is a lightweight, flexible, and extensible FSM library for Java. Although

relatively new, it is feature rich, well documented and relatively popular. It also supports some

advanced features that might be useful. For example, it supports SCXML import and export.

Finally, there is Unimod26, a project that can create FSMs from UML descriptions created by

an Eclipse plugin. Unlike the other alternative, Unimod aims to create a unified methodology

for application development and not just a library. This seems to be too complex for our

needs.

From the alternatives presented here, Apache Commons SCXML would be our first choice

if the standard and the implementation were more mature. However, at this point in time

this is not the case. For this diploma thesis we will use squirrel-foundation to implement the

state machine. If Apache Commons SCXML becomes a viable option in the future, replacing

squirrel-foundation could be considered. As it supports exporting the state machine as

SCXML, this could be used to ease a possible transition.

21http://commons.apache.org/proper/commons-scxml/
22https://github.com/Beh01der/EasyFlow
23http://smc.sourceforge.net/
24https://github.com/oxo42/stateless4j/
25https://github.com/hekailiang/squirrel
26http://unimod.sourceforge.net/
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8.4 Context

context.xml

1 <context>

2 <resourcePlugin>aws-ec2.jar</resourcePlugin>

3 <communicationPlugin>ssh.jar</communicationPlugin>

4 <applicationPlugin>opentosca.jar</applicationPlugin>

5 <!--Optional:-->

6 <provisionWorkflowMiddlewarePlugin>

7 call_opentosca.jar

8 </provisionWorkflowMiddlewarePlugin>

9 <!--Optional:-->

10 <servicePackageReference>

11 ../opentosca.csar

12 </servicePackageReference>

13 <!--Optional:-->

14 <configurationList>

15 <entry>

16 <key>aws</key>

17 <value>

18 <configuration>

19 <entry>

20 <key>secretKey</key>

21 <value>874w5zhpswe98tzhg0w87ser049tadsiph</value>

22 </entry>

23 <entry>

24 <key>accessKey</key>

25 <value>g9w276og9746gw5</value>

26 </entry>

27 <entry>

28 <key>instanceType</key>

29 <value>t2.medium</value>

30 </entry>

31 ...

32 </configuration>

33 </value>

34 </entry>

35 </configurationList>

36 </context>

Listing 8.6: Sample context represented in XML.
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Listing 8.6 shows an exemplary context generated by the bootware in XML form. As we can

see in line 2-4, it defines the resource, connection, and application plugins that should be used

during the bootstrapping process by supplying the name of the plugin .jar. It can also contain

a provision workflow middleware plugin, as can be seen in line 6-8. This is optional and will

only be used on the first request, when the remote bootware will also call a provisioning engine

to provision the workflow middleware. This is also where the service package reference in

line 10-12 will be used, which points to the workflow middleware package that should be

provisioned by the provisioning engine called by the provision workflow middleware plugin. In

line 14-35 we can also see the optional configuration list. It contains configuration values that

are passed to plugins if required. In this case, it contains login credentials for Amazon’s cloud,

shown in line 19-26, which are used by the aws-ec2.jar plugin to authenticate its requests

made to Amazon. In line 27-30 we can also see an instance type parameter. This and other

parameters will also be read by the aws-ec2.jar plugin.

8.5 Web Service Interface

In Section 6.3 we decided to use web service calls and returns as external communication

mechanism. Now, we need to the define the interface that will be made available by the web

service to the outside. We obviously need the two main operations, deploy and undeploy, to be

available from the outside. In Section 6.6 we also described the setConfiguration operation

that has to be supported. Additionally, the getActiveApplications and shutdown operations are

needed.

8.5.1 Deploy

The deploy operation will be called by at least two different components. Once by the bootware

modeler plugin to deploy the remote bootware and the workflow middleware, and then each

time the provisioning manager needs to provision a new service during a workflow execution.

Listing 8.7 shows an exemplary deploy request as SOAP message. In line 6 we can see that

the deploy method is called with a request context provided as argument in line 7-11, which

will be used by the bootware to generate a full context like the one shown in Listing 8.6. In

this particular example, only the resourceProvider and application parameters are specified,

which could be a call from the provisioning manager.
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deploy-request.xml

1 <soapenv:Envelope

2 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

3 xmlns:rem="http://remote.bootware.simtech.org/">

4 <soapenv:Header/>

5 <soapenv:Body>

6 <rem:deploy>

7 <context>

8 <resourceProvider>aws</resourceProvider>

9 <application>opentosca</application>

10 </context>

11 </rem:deploy>

12 </soapenv:Body>

13 </soapenv:Envelope>

Listing 8.7: Sample deploy request in a SOAP message.

The response that is returned once the request has been executed successfully is shown

in Listing 8.8. It contains an information list in line 5-10, which contains a reference to the

application that was deployed during the request, in this case OpenTOSCA.

deploy-response.xml

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <ns2:deployResponse xmlns:ns2="http://remote.bootware.simtech.org/">

4 <return>

5 <informationList>

6 <entry>

7 <key>opentosca</key>

8 <value>http://aws.com:8080/</value>

9 </entry>

10 </informationList>

11 </return>

12 </ns2:deployResponse>

13 </S:Body>

14 </S:Envelope>

Listing 8.8: Sample deploy response in a SOAP message.
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If the deploy request somehow failed, a SOAP message containing a SOAP fault will be

returned, which is shown in Listing 8.9. It contains a fault string with an error description in

line 5, as well as the original DeployException that was thrown by the deploy operation in line

7-10.

deploy-error.xml

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">

4 <faultcode>S:Server</faultcode>

5 <faultstring>resourceProvider cannot be empty</faultstring>

6 <detail>

7 <ns2:DeployException

8 xmlns:ns2="http://remote.bootware.simtech.org/">

9 <message>resourceProvider cannot be empty</message>

10 </ns2:DeployException>

11 </detail>

12 </S:Fault>

13 </S:Body>

14 </S:Envelope>

Listing 8.9: Sample deploy error in a SOAP message.

8.5.2 Undeploy

The undeploy operation will be called by multiple components to reverse the actions that

where previously made by deploy operations. Listing 8.11 shows an exemplary undeploy

request in a SOAP message. As argument it contains one or more endpoint references to

already deployed applications, as can be seen in line 7-12.

undeploy-response.xml

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <ns2:undeployResponse

4 xmlns:ns2="http://remote.bootware.simtech.org/"/>

5 </S:Body>

6 </S:Envelope>

Listing 8.10: Sample undeploy response in a SOAP message.
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undeploy-request.xml

1 <soapenv:Envelope

2 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

3 xmlns:rem="http://remote.bootware.simtech.org/">

4 <soapenv:Header/>

5 <soapenv:Body>

6 <rem:undeploy>

7 <endpoints>

8 <entry>

9 <key>opentosca</key>

10 <value>http://aws.com:8080/</value>

11 </entry>

12 </endpoints>

13 </rem:undeploy>

14 </soapenv:Body>

15 </soapenv:Envelope>

Listing 8.11: Sample undeploy request in a SOAP message.

When all applications have been undeployed successfully, a response will be send, as shown

in Listing 8.10. The response is empty because there is nothing interesting to return.

undeploy-error.xml

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">

4 <faultcode>S:Server</faultcode>

5 <faultstring>Undeploy operation failed</faultstring>

6 <detail>

7 <ns2:UndeployException

8 xmlns:ns2="http://remote.bootware.simtech.org/">

9 <message>Undeploy operation failed</message>

10 </ns2:UndeployException>

11 </detail>

12 </S:Fault>

13 </S:Body>

14 </S:Envelope>

Listing 8.12: Sample undeploy error in a SOAP message.
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In case of a failure, an error will be return. As can be seen in Listing 8.12, it has the same

layout as the error returned by the deploy operation. It contains a SOAP fault string in line 5

and the original UndeployException thrown by the undeploy operation in line 7-10.

8.5.3 Set Configuration

In addition to themain deploy and undeploy operations, the bootwareweb service also supports

the setConfiguration operation. Using this operation, the configuration can be set independently

from deploy requests if necessary. Listing 8.14 shows an exemplary setConfiguration request.

In line 7-23, it contains a configuration list, which can contain one or more configuration sets.

Each configuration set is made up of one or more configuration entries, which are key value

pairs, where the key describes the configuration type and the value the actual configuration

value. What content a particular key has to contain depends on what the plugins are looking

for when they read the configuration. In the example code in line 9, we send one configuration

set for AWS, which consists of two credentials, a secretKey in line 12-15 and an accessKey

in line 16-19. Configuration content like this is the reason why the communication with the

bootware should be encrypted.

setConfiguration-error.xml

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">

4 <faultcode>S:Server</faultcode>

5 <faultstring>Configuration could not be set</faultstring>

6 <detail>

7 <ns2:SetConfigurationException

8 xmlns:ns2="http://remote.bootware.simtech.org/">

9 <message>Configuration could not be set</message>

10 </ns2:SetConfigurationException>

11 </detail>

12 </S:Fault>

13 </S:Body>

14 </S:Envelope>

Listing 8.13: Sample setConfiguration error in a SOAP message.
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setConfiguration-request.xml

1 <soapenv:Envelope

2 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

3 xmlns:rem="http://remote.bootware.simtech.org/">

4 <soapenv:Header/>

5 <soapenv:Body>

6 <rem:setConfiguration>

7 <configurationList>

8 <entry>

9 <key>aws</key>

10 <value>

11 <configuration>

12 <entry>

13 <key>secretKey</key>

14 <value>874w5zhpswe98tzhg0w87ser049tadsiph</value>

15 </entry>

16 <entry>

17 <key>accessKey</key>

18 <value>g9w276og9746gw5</value>

19 </entry>

20 </configuration>

21 </value>

22 </entry>

23 </configurationList>

24 </rem:setConfiguration>

25 </soapenv:Body>

26 </soapenv:Envelope>

Listing 8.14: Sample setConfiguration request in a SOAP message.

setConfiguration-response.xml

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <ns2:setConfigurationResponse

4 xmlns:ns2="http://remote.bootware.simtech.org/"/>

5 </S:Body>

6 </S:Envelope>

Listing 8.15: Sample setConfiguration response in a SOAP message.
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If the setConfiguration operation was successful, the response in Listing 8.15 will be returned.

Again, it is empty because there is nothing interesting to return. Like the deploy and undeploy

operations, the setConfiguration operation also returns an error message if the operation failed.

As can be seen in Listing 8.13, it also contains a SOAP fault string in line 5 and the original

SetConfigurationException thrown by the setConfiguration operation in line 7-10.

8.5.4 Get Active Applications

The getActiveApplications operation is called by the provisioning manager to retrieve already

deployed provisioning engines. If a provisioning engine it needs is already active, it does not

have to call the bootware to provision a new one. As already explained in Section 6.7 this is

only needed in the remote bootware and therefore we only implement it there. Listing 8.16

shows a getActiveApplications request in a SOAP message. No parameters are required.

getActiveApplications-request.xml

1 <soapenv:Envelope

2 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

3 xmlns:rem="http://remote.bootware.simtech.org/">

4 <soapenv:Header/>

5 <soapenv:Body>

6 <rem:getActiveApplications/>

7 </soapenv:Body>

8 </soapenv:Envelope>

Listing 8.16: Sample getActiveApplications request in a SOAP message.

The response that is returned contains a list of all applications that where active when the

request was made. As we can see in Listing 8.17 lines 6-11, it contains an applications list

with zero or more entries. Each entry consists of a key value pair, where the key identifies the

application and the value contains a URL to the application. In this example, the entry points to

an OpenTOSCA container instance. If the getActiveApplications request failed for some reason,

an error message is returned. As can be seen in Listing 8.18, it contains a SOAP fault string

in line 5 and the original GetActiveApplicationsException thrown by the getActiveApplications

operation in line 7-10.
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getActiveApplications-response.xml

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <ns2:getActiveApplicationsResponse

4 xmlns:ns2="http://remote.bootware.simtech.org/">

5 <return>

6 <applications>

7 <entry>

8 <key>opentosca</key>

9 <value>http://aws.com:8080/</value>

10 </entry>

11 </applications>

12 </return>

13 </ns2:getActiveApplicationsResponse>

14 </S:Body>

15 </S:Envelope>

Listing 8.17: Sample getActiveApplications response in a SOAP message.

getActiveApplications-error.xml

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">

4 <faultcode>S:Server</faultcode>

5 <faultstring>Error retrieving active applications</faultstring>

6 <detail>

7 <ns2:GetActiveApplicationsException

8 xmlns:ns2="http://remote.bootware.simtech.org/">

9 <message>Error retrieving active applications</message>

10 </ns2:GetActiveApplicationsException>

11 </detail>

12 </S:Fault>

13 </S:Body>

14 </S:Envelope>

Listing 8.18: Sample getActiveApplications error in a SOAP message.

104



8 Implementation

8.5.5 Shutdown

The shutdown operation triggers the shutdown procedure. During this procedure, all active

applications will be undeployed. The local bootware will also forward this request to the

remote bootware and wait for a response so that it can deprovision the remote bootware

before shutting down itself. Listing 8.19 shows a shutdown request in a SOAP message. No

parameters are required.

shutdown-request.xml

1 <soapenv:Envelope

2 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

3 xmlns:rem="http://remote.bootware.simtech.org/">

4 <soapenv:Header/>

5 <soapenv:Body>

6 <rem:shutdown/>

7 </soapenv:Body>

8 </soapenv:Envelope>

Listing 8.19: Sample shutdown request in a SOAP message.

If the additional processes executed during shutdown (i.e. undeploy applications or middle-

ware) were successful, the response in Listing 8.20 will be returned.

shutdown-response.xml

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <ns2:shutdownResponse

4 xmlns:ns2="http://remote.bootware.simtech.org/"/>

5 </S:Body>

6 </S:Envelope>

Listing 8.20: Sample shutdown response in a SOAP message.

If the additional processes failed for some reason, an error response like the one showed

in Listing 8.21 will be returned. It contains a SOAP fault string in line 5 and the original

ShutdownException thrown by the shutdown operation in line 7-10.
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shutdown-error.xml

1 <S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

2 <S:Body>

3 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">

4 <faultcode>S:Server</faultcode>

5 <faultstring>Shutdown operation failed</faultstring>

6 <detail>

7 <ns2:ShutdownException

8 xmlns:ns2="http://remote.bootware.simtech.org/">

9 <message>Shutdown operation failed</message>

10 </ns2:ShutdownException>

11 </detail>

12 </S:Fault>

13 </S:Body>

14 </S:Envelope>

Listing 8.21: Sample shutdown error in a SOAP message.

8.6 State Machine

The state machine we use to implement the bootware execution flow is divided into two parts.

We have a generic part that is shared by both the local and remote bootware. This part is

defined in the AbstractStateMachine class that is part of the bootware core library. The second

part, which is specific to either the local or remote bootware, is defined in their respective

implementations.

The AbstractStateMachine class defines some utility functions for starting and stopping

the state machine. It also contains the buildDefaultTransitionmethod, which simplifies the

definition of most of the transitions in Figure 6.20 and Figure 6.21. As we can see when

looking at these two figures, many of the activities have a success and a failure transition.

With the buildDefaultTransitionmethod, states and transitions associated with these activities

can be defined with less code.

However, the most important part of the AbstractStateMachine is the abstract class Abstract-

Machine. This class defines all the functions that are called in states that are shared by the

local and remote bootware, so that we avoid code duplication. For example, as we can see

when looking at Figure 6.20 and Figure 6.21, both bootwares share the connect activity at the

bottom left. Listing 8.22 shows how the function associated with this activity is defined in

the AbstractStateMachine class. We can see in line 198 that the connect method of a commu-

nication plugin is called and the resulting connection is stored in a variable for later use. If
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this succeeds, a success event is fired in the state machine (line 203), which would trigger a

transition to the next state, which in this case is the provision application state. However, if

for some reason no connection can be established by the communication plugin’s connect

method, a ConnectConnectionException is thrown. This would trigger a failure event in the

state machine (line 201), which would lead to a transition to the disconnect state. We can see

how the result of some code execution can influence the transitions in the state machine.

The functions for other shared states are implemented in a similar fashion.

AbstractMachine.java

192 ...

193

194 protected void connect(final String from,

195 final String to,

196 final String fsmEvent) {

197 try {

198 connection = communicationPlugin.connect(instance);

199 }

200 catch (ConnectConnectionException e) {

201 stateMachine.fire(StateMachineEvents.FAILURE);

202 }

203 stateMachine.fire(StateMachineEvents.SUCCESS);

204 }

205

206 ...

Listing 8.22: An excerpt showing the connect function in the AbstractMachine class.

Both the local and the remote bootware extend the AbstractStateMachine and AbstractMachine

classes in their implementations. If they define other states for which no functions are

defined in the AbstractMachine class, they can just add these new functions. They can

also override existing functions if they need to. For example, the local bootware adds the

sendToRemote function to its implementation of the AbstractMachine class because the send

remote activity is unique to the local bootware. To complete the implementation of their

particular state machines, the local and remote bootware also have to define their states and

transitions. They can use the already mentioned buildDefaultTransition function defined in the

AbstractStateMachine for the common success-failure transitions, or the original syntax for

other transitions.
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8.7 Plugin Manager

The plugin manager is a thin wrapper class around the Apache Felix OSGi framework. It

encapsulates all the functionality required for loading and unloading OSGi plugins. Table 8.4

lists all operations offered by the plugin manager.

Operation Input Output Description

PluginManager - PluginManager

Instance

Initializes, configures, and

starts the OSGi framework

registerShared-

Object

Object - Register an object that

should be shared with

plugins

loadPlugin Path Plugin Instance Loads the plugin at the

given path

unloadPlugin Path - Unloads the plugin at the

given path

unloadAllPlugins - - Unloads all loaded plugins

stop - - Unloads all plugins and

stops the OSGi framework

Table 8.4: Operations offered by the plugin manager.

The constructor (PluginManager) creates a new plugin manager instance. In the background,

it initializes the OSGi framework. Part of this initialization is telling the framework which extra

packages it should export. This is necessary so that plugins can resolve their dependencies

on packages that are part of the bootware core library. Listing 8.23 shows an excerpt of the

plugin manager class where we can see the extra packages that are exported in line 42-48.

Plugins have dependencies on various bootware core packages shown here, such as the

exceptions and plugins package. They also depend on some packages from the PubSub

library we use, MBassador. All these dependencies are resolved by configuring the OSGi

framework to export these packages.

The registerSharedObjects operation allows us to register any object that is part of the bootware

core with the OSGi framework, so that plugins are also able to access it. We use this to share

the EventBus instance with all plugins, so that they are able to subscribe to, and also publish,
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events. The loadPlugin operation loads the plugin at the given path into the OSGi framework

and returns an instance of this plugin. The unloadPlugin operation unloads an already loaded

plugin. The plugin manager also offers an unloadAllPlugins operation that unloads all loaded

plugins at once. This operation is also called during the plugin manager’s stop operation,

which stops the OSGi framework, which is necessary for an orderly shutdown.

PluginManager.java

39 ...

40

41 final String extraPackages =

42 "org.simtech.bootware.core;version=1.0.0,"

43 + "org.simtech.bootware.core.events;version=1.0.0,"

44 + "org.simtech.bootware.core.exceptions;version=1.0.0,"

45 + "org.simtech.bootware.core.filters;version=1.0.0,"

46 + "org.simtech.bootware.core.plugins;version=1.0.0,"

47 + "net.engio.mbassy.listener;version=1.1.2,"

48 + "net.engio.mbassy.common;version=1.1.2";

49 config.put(Constants.FRAMEWORK_SYSTEMPACKAGES_EXTRA, extraPackages);

50

51 ...

Listing 8.23: Extra packages exported by the plugin manager.

All these operations are called at specific points during the state machine execution to load

and unload the needed plugins. For example, once the state machine enters the unload

event plugins state, associated with the activities shown in the top right of Figure 6.20 and

Figure 6.21, it executes the unloadEventPlugins method, shown in Listing 8.24. As we can

see in line 293, it just calls the plugin manager’s unloadAllPlugins operation, which will unload

all remaining plugins (which should be only event plugins at this point). We can also see

that exceptions are used to control the state machine transitions. If all plugins are unloaded

successfully and no exception is thrown, a success event is fired (line 298), which will cause

a transition in the state machine, in this case to the cleanup state. However, if somehow

the unloadAllPlugins operation fails, it throws a UnloadPluginsException, which is caught and

triggers a failure event (line 296). In this way, the result of the plugin manager operations can

influence the execution flow of the bootware.
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AbstractStateMachine.java

287 ...

288

289 protected void unloadEventPlugins(final String from,

290 final String to,

291 final String fsmEvent) {

292 try {

293 pluginManager.unloadAllPlugins();

294 }

295 catch (UnloadPluginException e) {

296 stateMachine.fire(StateMachineEvents.FAILURE);

297 }

298 stateMachine.fire(StateMachineEvents.SUCCESS);

299 }

300

301 ...

Listing 8.24: The unloadEventPluginsmethod defined in the AbstractStateMachine class.

8.8 Plugins

Now, we will describe the implementation of a few plugins. We implemented a resource plugin

that can create and remove EC2 instances in Amazon’s cloud. We created a communication

plugin that allows the bootware to connect to a remote system via SSH and then execute

commands on, or upload files to this system. We also implemented two application plugin,

one for the remote bootware itself and one for OpenTOSCA. Additionally, we created event

plugins, for example a file logger plugin that logs bootware events into a text file.

8.8.1 AWS EC2 Plugin

This resource plugin allows the bootware to create and remove EC2 instances in Amazon’s

cloud. It uses the AWS SDK for Java27 to implement this functionality. This SDK specifies a

specific set of action that have to be taken to start an EC2 instance, which we map onto the

operations defined by each resource plugin (i.e.: initialize, shutdown, deploy, and undeploy, as

described in Section 6.5). Figure 8.3 shows a simplified overview of these actions and how

they map onto the resource plugin operations.

27http://aws.amazon.com/sdkforjava/
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Figure 8.3: The operations implemented by the AWS EC2 plugin.

The initialize operation, shown on the left of Figure 8.3, which is called once when the plugin

is loaded, creates a client instance, which is an object on which all the following actions

will be called. The client instance is bound to a specific AWS region, which is read from

the configuration object that is passed into the initialize operation. As we can see in the

deploy operation in Figure 8.3, we first have to create a security group28. Security groups are

essentially virtual firewalls that allow or deny traffic to and from all EC2 instances associated

with it. EC2 instances have to be associated with a security group, so we have to create

one. In the next step we open all ports in this security group that we later want to use for

communication. Which ports we open is determined by reading the configuration object. We

also have to create a SSH key pair and retrieve the private key, which we later use when we

connect to this EC2 instance via SSH. In the last step we create the actual EC2 instance. Once

it is up and running, the deploy operation is finished and returns an instance object which

contains the URL where the EC2 instance can be reached, as well as the private key for SSH

access. The undeploy operation reverses the deploy operation. First, it terminates the EC2

instance. Once the instance is stopped, the key pair and the security group that were created

earlier are removed. We do not have to close the ports we opened, because they are part

of the security group and do not exist anymore once the security group is removed. After

this, the EC2 instance created earlier is successfully removed. There are no further actions

necessary during the shutdown operation, but for safety we call the undeploy operation, in

case it was not called earlier.

28http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
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8.8.2 SSH Plugin

This communication plugin allows the bootware to connect to a remote system via SSH. It

uses the Ganymed SSH-2 library29, which implements the SSH-2 protocol in Java. Figure 8.4

shows a simplified overview of the actions necessary to create a SSH connection and how

they map onto the communication plugin operations.

Figure 8.4: The operations implemented by the SSH plugin.

No actions are taken in the initialize operation. During the connect operation, we first have to

create a connection object, which is bound to a certain host name, i.e. the IP address of the

remote system that we want to connect to. We get this address from the instance object

passed into the connect operation. Then, we have to authenticate this connection. Multiple

authentication methods are supported by SSH-2 protocol, including password and public key

authentication. The necessary values for these authentication methods are read from the

instance object passed into the connect operation. Once the connection is authenticated, a

connection object is returned, which supports the execute and upload operation that other

components can use.

The disconnect operation simply closes the connection associated with the connection object

that is passed into it. The disconnect operation is also called by the shutdown operation at the

end of the plugin life cycle to close any connection that might still be open.

29https://code.google.com/p/ganymed-ssh-2/
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8.8.3 Remote Bootware Plugin

This application plugin allows the local bootware to install the remote bootware on a remote

system. Figure 8.5 shows a simplified overview of the steps involved in the installation of the

remote bootware and how they map onto the application plugin operations. The undeploy

and stop operations where omitted because they are not really required in this case.

Figure 8.5: The operations implemented by the remote bootware plugin.

In this plugin, the initialize operation does not take any actions. The deploy operation first uses

the operations provided by the connection object it receives as input to upload the remote

bootware files from the local to the remote machine. Then, it checks if the Java version

required to execute the remote bootware is present. If not, it installs the required Java version.

The remote bootware should now be ready to start. In the start operation a command to

execute the remote bootware is sent to the remote machine. Then, the port for the remote

bootware web interface is polled until a response is received, which means that the remote

bootware should now be ready. Finally, the URL to the remote bootware is returned.

8.8.4 OpenTOSCA Plugin

This application plugin allows the bootware to install an OpenTOSCA container on an EC2

instance. It executes the installation steps described in the OpenTOSCA manual over a

connection provided by a communication plugin. Figure 8.6 shows a simplified overview of

the steps involved in the installation of OpenTOSCA and how they map onto the application

plugin operations. The undeploy and stop operations where omitted because they are not

really required in this case.
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Figure 8.6: The operations implemented by the OpenTOSCA plugin.

The setup procedure for OpenTOSCA is very simply. Only one command has to be executed

over SSH, which will automatically download and install all necessary components. After

that, port 8080 on the EC2 instance is polled periodically until a connection is possible, which

means that the installation process is finished. The start operation only has to return the

URL pointing to the OpenTOSCA instance because OpenTOSCA was already started by the

installation script.

8.8.5 OpenTOSCA Workflow Middleware Plugin

This provision workflow middleware plugin allows the bootware to provision a workflow

middleware using the OpenTOSCA container. Figure 8.7 shows a simplified overview of the

steps involved in provisioning and deprovisioning the workflow middleware with OpenTOSCA

and how they map onto the provision workflow middleware plugin operations.

The initialization and shutdown operations are not used in this plugin. The provision operation

first has to get the actual CSAR URL from the service package repository, for which it uses

the service package reference that was passed in as parameter. The CSAR URL is then used

to upload the CSAR to the OpenTOSCA container. Once the CSAR is uploaded, the build plan

contained inside it can be executed. The information it returns after its completion is passed

back as Map<String, String> (i.e. the implementation of the information list). The deprovision

operation just executes the termination plan contained in the CSAR.
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Figure 8.7: The operations implemented by the OpenTOSCA workflow middleware plugin.

8.8.6 File Logger Plugin

This event plugin logs all events generated by the bootware to a text file. Figure 8.8 shows

a simplified overview of the implementation of this plugin. The initialize operation creates

a writer object. The two event handlers shown in the middle use it to write the events they

receive into a text file. The event handler shown on the left reacts to all events of the type

BaseEvent, which is the parent event of all events generated by the bootware. Therefore, it

logs any event generated by the bootware into the text file. The event handler shown on the

right reacts to a special DeadMessage event type generated by the PubSub library we use,

MBassador. This event is generated each time an event is published to the event bus to which

no one subscribed. Those events are not received by any listener and are therefore dead. We

log them here for debugging purposes. The shutdown operation just closes the write object

that was created by the initialize operation.

Figure 8.8: The operations implemented by the file logger plugin.
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9 Future Work

With this diploma thesis we created a foundation which, while usable right now, might still

need more work to become fully functional and useful in real working environment. In this

chapter we present some opportunities for future improvements. This list is by no means

exhaustive and other possibilities for improvements might become evident in the future.

9.1 More Plugins and a Plugin Repository

For this diploma thesis we only implemented a few plugins. The plugin selection will certainly

have to be extended in the future to cover a wider range of cloud providers (or other resource

types), communication mechanisms, and applications. Along with a greater variety of plugins,

a plugin repository, as described in Subsection 6.4.3 would be beneficial. It would further

decrease code duplication and facilitate plugin sharing. For this, a fitting repository format

would have to be found and various other questions, such as security, need to be answered.

On the implementation side, the integration of a plugin repository should be fairly straight

forward. A mechanism to synchronize the local plugin directory with the repository has to be

implemented and executed before the plugins are loaded. The code for loading plugins that

is in place now does not necessarily need to be changed for this.

9.2 Secure Communication and Secure Plugins

As we already mentioned in Section 6.3, it is necessary to secure the communication with

the bootware because it contains sensitive login information that should not be publicly

accessible. For this, the communication has to be encrypted, which can be done by using the

WS-Security1 SOAP extension for the web service communication. In Subsection 8.3.1 we also

mentioned that security for plugins could be a problem. OSGi provides an optional security

1https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
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layer based on Java permissions2 that can be used to apply permission based security. For

example, it should be possible to only allow plugins to access specific files or folders with

Java file permissions3. As part of this work, it could also make sense to investigate other

possible security enhancements to the bootware.

9.3 Better SimTech Modeler Integration

The integration of the bootware with the SimTech Modeler using the bootware plugin can

also be extended in the future. The current integration is fairly minimal and only supports

the most basic functionality. Improvements could be made to give the user more feedback

on the provisioning progress. Additionally, a more intuitive way to configure the bootware

could be implemented, for example with a graphical configuration interface that allows for

the selection of plugins and configuration values.

9.4 Better Failure Management

Currently, the bootware will fail in many cases where it could continue, if the user could

influence error recovery. For example, if for some reason a connection cannot be established

with a cloud provider, the bootware will abort and undeploy already provisioned applications.

This could happen in themiddle of a workflow execution, wheremultiple services are deployed

in different clouds. In this scenario, the ability for the user to select an alternative cloud

provider for this one service could enable the bootware to continue instead of aborting, which

would in turn allow the workflow execution to finish, instead of failing. Failure management

mechanisms such as this would improve the usability of the bootware.

9.5 Crash Recovery

In Section 6.8 we mentioned that we store active instances in-memory. Right now, if the

bootware crashes during the bootstrapping process with instances still active, there is no

way to continue the process after a restart or at least undeploy remaining instances. These

remaining instances will have to be removed by hand, which is not ideal. This could be

improved by storing active instances in some sort of persistent storage, so that they can still

be retrieved after a crash for recovery purposes.

2http://docs.oracle.com/javase/7/docs/api/java/security/Permission.html
3http://docs.oracle.com/javase/7/docs/api/java/io/FilePermission.html
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10 Summary and Conclusion

In this diploma thesis we presented a design for a bootware system that is able to deploy

various provisioning engines as well as a workflow middleware into remote environments,

on-demand and fully automatic. Starting from previous work, we compared possible architec-

ture alternatives and selected a 2-tiered architecture consisting of generic local and remote

bootware components. We also introduced the notion of a bootware adapter to connect the

local bootware component to a specific modeler. We described a web service interface to

allow various components to communicate with the bootware. We made this architecture

extensible via plugins and described five different plugin types. We also added an event

bus to allow plugin to create and react to events. We described the execution flow that was

implemented with a finite state machine.

Then, we presented details of the implementation of the bootware components and the

integration into the SimTech SWfMS. We described a specific implementation of the bootware

adapter, the bootware plugin, an Eclipse plugin that integrates the bootware into the existing

SimTech Modeler environment. We explained the bootware core library that is used as

foundation for both the local and remote bootware implementation. We also selected Apache

Felix to implement the plugins, MBassador for the internal event bus, and squirrel-foundation

for the state machine implementation. We described the content of the context object and

the various web service requests and responses. Finally, we gave an overview over various

plugins, including a resource plugin for Amazon EC2 instances, a SSH communication plugin,

an application plugin for the remote bootware, and an event plugin for file logging.

There were some aspects that we did not further elaborate on. A plugin repository has to be

created for the bootware to reach its full potential. Communication with the bootware has

to be made secure before it can be used in a real life environment. Other improvements like

better modeler integration and failure management should be considered. These tasks are

left for future work to explore. In conclusion, there is still work to be done, but the work we

presented here should have build a foundation for a part of a system that allows the SimTech

SWfMS and other simulation workflow management systems to be used in a fashion that is

more in line with scientific work principles.
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