
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelor’s Thesis Nr. 184

Increasing the Bandwidth
Efficiency of Content-based
Routing in Software-defined

Networks

Jonas Grunert

Course of Study: Software Engineering

Examiner: Prof. Dr. rer. nat. Dr. h. c. Kurt Rother-
mel

Supervisor: Dr. rer. nat. M. Adnan Tariq

Commenced: 12 May, 2014

Completed: 11 November, 2014

CR-Classification: C.2.1,C.2.4

Abstract
Content-based routing systems such as publish/subscribe (pub/sub) have become an important
model for distributed systems with loosely coupled participants. Usually publish/subscribe
systems are realized by overlay networks where dissemination and filtering of information
is done in the application layer, which causes significant delay. The emergence of software-
defined networking (SDN), where switches with programmable TCAM memory allow dynamic
configuration of networks, has opened new opportunities in realizing dynamic logic inside the
network. Current publications have presented realizations of pub/sub systems based on SDN.
In these systems the information filtering is not done in the application layer but directly
inside the network by switches. This allows event filtering with low delay and line-rate per-
formance.

However, SDN-based pub/sub systems are limited by the available resources. The TCAM
memory of the switches, containing the forwarding rules, is very cost-intensive and hence the
maximum number of rules and their complexity is limited. In order to provide bandwidth-
efficient content-based routing it is necessary to use a large number of complex forwarding
rules. Therefore the limitation of resources causes a drop of the routing quality and less
bandwidth-efficient routing.

In this thesis, approaches to increase bandwidth-efficiency in the context of limited resources
are proposed. To achieve efficient routing, the precision of in-network filtering must be high
to avoid unnecessarily disseminated information, so-called false positives, which cause higher
network utilization.
This thesis proposes and evaluates two approaches to increase the efficiency of in-network
filtering: Selection of more important information to be used for filtering and improvement
of the filtering itself. Several algorithms to rate the importance of information are proposed
and evaluated. Furthermore, ways to combine the selection of information and the improved
filtering are shown.
Our results show that the developed approaches can strongly reduce the number of false posi-
tives. The combination of best performing approaches can reduce the number of false positives
by up to 75% and thereby increase the bandwidth efficiency significantly.

i

Kurzfassung
Content-based routing Systeme wie Publish/Subscribe (pub/sub) sind zu einem wichtigen Mod-
ell für verteilte Systeme mit lose gekoppelten Komponenten geworden. Üblicherweise werden
Publish/Subscribe-Systeme mittels Overlay-Netzwerken realisiert, in denen die Verteilung und
Filterung von Informationen auf Anwendungsebene durchgeführt wird, was eine signifikante
Verzögerung verursacht. Das Aufkommen von Software-Defined Networking (SDN), bei dem
Switches mit programmierbarem TCAM-Speicher eine dynamische Konfiguration des Netzw-
erks ermöglichen, hat neue Möglichkeiten für die Realisierung dynamischer Logik im Netzwerk
eröffnet. In aktuellen Veröffentlichungen wurden Implementierungen von SDN-basierten pub-
/sub Systemen präsentiert. Bei diesen Systemen wird die Filterung von Informationen nicht
auf Anwendungsebene sondern direkt im Netzwerk durch Switches durchgeführt.

Jedoch werden SDN-basierte Systeme durch die zur Verfügung stehenden Resourcen einge-
schränkt. Der TCAM-Speicher der Switches, welcher die Weiterleitungs-Regeln enthält, ist
sehr kostenintensiv und daher ist die maximale Anzahl von Regeln und deren Komplexität
eingeschränkt. Um bandbreiteneffizientes content-based Routing zu ermöglichen ist es jedoch
nötig viele komplexe Regeln zu verwenden. Daher verursachen die begrenzten Ressourcen
einen Abfall der Routingqualität und damit eine geringere bandbreiteneffizient.

In dieser Arbeit werden Ansätze zur Verbesserung der Bandbreiteneffizienz, im Kontext
beschränkter Ressourcen, vorgestellt. Um effizientes Routing zu erreichen muss die Präzi-
sion des in-network filtering hoch sein um unnötige Verteilung von Informationen, sog. false
positives, welche die Netzwerkauslastung erhöhen, zu vermeiden.
Diese Arbeit präsentiert und evaluiert zwei grundlegende Ansätze zur Erhöhung der Ef-
fizient der Filterung: Auswahl wichtigerer Informationen die für das Filtern verwendet werden
sollen und eine Verbesserung der Filterung selbst. Diverse Algorithmen zur Bewertung der
Wichtigkeit von Informationen werden vorgestellt und evaluiert. Außerdem werden Wege
gezeigt um die Auswahl wichtigerer Informationen und die verbesserte Filterung zu kom-
binieren.
Unsere Ergegnisse zeigen, dass die entwickelten Ansätze die Anzahl der false positives stark
verringern können. Die Kombination der besten Ansätze kann die Anzahl der false positives
um bis zu 75% verringern und dadurch die Bandbreiteneffizienz deutlich erhöhen.

ii

Contents
Abstract i

Kurzfassung ii

1 Introduction 1

2 PLEROMA Middleware 5
2.1 Middleware Overview . 5

2.1.1 Architecture . 5
2.1.2 Content-based model . 6

2.2 Content-based routing . 8
2.2.1 Maintenance of Spanning Trees . 8
2.2.2 Maintenance of Flow Tables . 10

2.3 Limitations of in-network Filtering . 10

3 Dimensions Selection 13
3.1 Event-based Selection . 13

3.1.1 Algorithm: Event-based Selection (EVS) 16
3.2 Subscription-based Selection . 18

3.2.1 Selectivity-based Selection . 19
3.2.2 Overlap-based Selection (SOS) . 20

3.3 Correlation-based Selection . 28
3.3.1 Principal Component Analysis based Selection (PCS) 31
3.3.2 Principal Feature Analysis based Selection (PFS) 33
3.3.3 Covariance Matrix from Events (CEV) 35
3.3.4 Covariance Matrix from Event Match Counts (CMM) 37
3.3.5 Covariance Matrix from False Event Matches (CFM) 38

3.4 Evaluation-based Selection . 39
3.4.1 Brute Force Selection Algorithm (BES) 39
3.4.2 Greedy Selection Algorithm (GES) . 41

3.5 Finding best Dimensions Count . 42
3.5.1 PCA-based Dimension Count . 42
3.5.2 Evaluation-based Dimension Count . 42

4 Event Space Partitioning 45
4.1 Improved Partitioning . 46
4.2 Combining with Dimension Selection . 48

iii

Contents

5 Evaluation of Algorithms 49
5.1 Experimental Setup . 49
5.2 Evaluation Measurements . 51

5.2.1 Event-based Selection . 51
5.2.2 Event and Subscription-based Selection 55
5.2.3 Correlation-based Selection . 57
5.2.4 Evaluation-based Selection . 60
5.2.5 Dimension Selection Comparison . 61
5.2.6 Best Dimension Count . 63
5.2.7 Dimension Selection and Improved Partitioning 66

6 Conclusion and Future Work 69

Bibliography 71

iv

List of Figures
2.1 PLEROMA middleware architecture . 6
2.2 Illustration of separation of two-dimensional event space into subspaces, repre-

sented by dz . 7
2.3 Indexing of a subspace from (50,0) to (100,50) with one dz 10 7
2.4 Indexing of a subspace from (50,0) to (75,100) with two dz 100 and 110 7
2.5 Indexing of a subscription and two events . 8

3.1 Spatial indexing, 4 bits, both dimensions . 14
3.2 Spatial indexing, 4 bits, only dimension 2 . 15
3.3 Variance of events and dimension importance different 18
3.4 Spatial indexing, 3 bits, dimension 2 . 18
3.5 Spatial indexing, 3 bits, dimension 1 . 19
3.6 Example for dimensions selectivity and overlap 21
3.7 Example for dimensions selectivity and overlap 21
3.8 Example for dimensions selectivity and overlap 24
3.9 Different scenarios of correlated dimensions . 28
3.10 Six dimensional scenario of different correlations and event variances 29

4.1 Normal Partitions . 45
4.2 Partitions event and subscriber based . 46

5.1 Architecture of Simulation Application . 50
5.2 Distribution of 200 subscriptions: Uniform distribution, random selectivity . . 52
5.3 False positive rate for: Uniform distribution, random selectivity 52
5.4 Distribution of 200 subscriptions: Zipfian distribution, random selectivity . . . 53
5.5 False positive rate for: Zipfian distribution, random selectivity 53
5.6 Distribution of 200 subscriptions: Uniform distribution, uniform selectivity . . 54
5.7 Distribution of 200 subscriptions: Zipfian distribution, uniform selectivity . . . 54
5.8 False positive rate for: Uniform distribution, uniform selectivity 54
5.9 False positive rate for: Zipfian distribution, uniform selectivity 55
5.10 Distribution of 200 subscriptions, constant event variance 56
5.11 Comparison of EVS, SOS and SMS for fixed event variance 56
5.12 False positive rate of SMS and SFS for: Uniform distribution, random selectivity 56
5.13 False positive rate of SMS and SFS for: Zipfian distribution, random selectivity 57
5.14 Distribution of 200 subscriptions, zipfian distribution, constant selectivity, cor-

relation 90% . 58
5.15 Comparison of subscription selectivity selection, PCS and PFS for correlation

90%, 1000 subscriptions . 58

v

List of Figures

5.16 Comparison of subscription selectivity selection, PCS and PFS for inverse cor-
relation 90%, 1000 subscriptions . 59

5.17 Distribution of 200 subscriptions, zipfian distribution, random selectivity, ran-
dom correlation . 59

5.18 Comparison of subscription selectivity selection, PCS and PFS for random
correlation, 1000 subscriptions . 60

5.19 Architecture of Simulation Application . 61
5.20 GES false positive rates for: Uniform and zipfian distribution, random selectivity 61
5.21 Comparison for: Uniform distribution, random selectivity 62
5.22 Comparison for: Zipfian distribution, random selectivity 62
5.23 Comparison for: Zipfian distribution, constant selectivity, 90 percent correlation 62
5.24 Comparison for: Zipfian distribution, random selectivity, random correlation . . 63
5.25 Results of automatic dimension count for: Uniform distribution, two selective

dimensions . 64
5.26 Results of automatic dimension count for: Uniform distribution, four selective

dimensions . 64
5.27 Results of automatic dimension count for: Uniform distribution, two selective

dimensions . 65
5.28 Results of automatic dimension count for: Uniform distribution, four selective

dimensions . 65
5.29 SFS with and without improved partitioning for zipfian distribution 66
5.30 GES with and without improved partitioning for zipfian distribution 67

vi

List of Algorithms
1 Select Dimensions based on Event Variances (EVS) 17
2 Selecting based on Subscription Selectivity . 20
3 Calculate Selectivity based on Subscription Overlap 22
4 Calculate Event Match Counts . 25
5 Calculate Event False Matches . 27
6 Select Dimensions based on Principal Component Analysis 32
7 Select Dimensions based on Principal Feature Analysis 33
8 KMeans Clustering to find the dimensions to select 34
9 Calculate Covariance Matrix from Event Variances (CEV) 36
10 Calculate Covariance Matrix based on Event Match Counts (CMM) 37
11 Calculate Covariance Matrix based on False Event Matches 38
12 Select Dimensions based on Brute Force Evaluations (BES) 40
13 Select Dimensions based on Greedy Evaluations (GES) 41
14 Algorithm to determine dimension count based on PCA 43
15 Select Dimensions based on Greedy Evaluations 44

16 Unoptimized algorithm to find median of event workloads between given borders 47

vii

Chapter 1

Introduction
In the last decades, the amount of data exchanged via computer networks has grown sig-
nificantly. There is a high demand for bandwidth efficient communication for loosely cou-
pled applications. Content-based networking strategies allow efficient data exchange between
loosely coupled applications. In content-based networks routing is not performed by sending
data to a specified address, as done by traditional routing protocols but instead based on the
information to be exchanged.
One paradigm of content-based networking is publish/subscribe (pub/sub) [BCM+99, CDNF01,
GSAA04, FCMB06, PRGK09, TKKR09, JCL+10, BFPB10, TKK+11, TKKR12, TKR13]. In
pub/sub systems publishers publish information, called events, into the network. All events
consist a set of values describing the event. Subscribers express their interest in events in a
certain range with a subscription filter. The function of the pub/sub system is to filter and
forward events, published by publishers, to all subscribers interested in this type of event.
The majority of content-based publish/subscribe is realized by overlay networks where servers,
called brokers, perform the forwarding of events [CRW01, Pie04, BBQV07, CJ11, TKKR12,
TKR13]. Brokers filter incoming events and forward them to adjacent brokers and clients
interested in this type of events. This type of system has two major drawbacks: Events are
not directly disseminated end-to-end and the filtering of events is performed on the brokers
by software in the application layer. Both causes a higher delay of events.

The emergence of Software-defined networking (SDN) [Com12] opens new possibilities for real-
izing dynamic logic inside the network. SDN networks consist of switches with programmable
TCAM memory. Using the TCAM memory, SDN switches can match incoming packets and
perform actions with this packet with low latency.
SDN networks are configured by installing forwarding rules, called flow rules, in the TCAM
memory of the switches. Each flow rule consists of two parts: The matching rules and the
actions to perform with the packet. Matching is done by comparing the header fields of in-
coming packets on the switch with the matching rules of the flow rules. If the header fields
of a packet entering the switch matches a flow rule, the actions of the rule are performed
with this packet. Possible actions are to send the packet to specified output ports and to
manipulate packet header fields.
OpenFlow [Fou] is the de-facto standard for SDN networks. In OpenFlow a so-called con-
troller can determine the network logic dynamically and configure the network by installing
flow rules on the SDN switches. OpenFlow allows matching and manipulating of various
packet header fields like target and destination IP, MAC and port.

1

1 Introduction

The controller has a centralized view over the whole network and therefore knows the network
topology, can react to topology changes, can install flow rules, and can measure metrics such
as network utilization. This centralized view and the possibility to configure the network
allows the controller to control and configure the network dynamically and realize complex
logic inside the network.
As the whole network logic can be implemented by configuring SDN switches no additional
components, such as brokers, are needed. All logic can be realized in the network. SDN
switches using TCAM memory to match the packets can do the routing in line-rate per-
formance which means packet filtering and forwarding with lowest latency and full network
bandwidth.

The PLEROMA middleware system [TKBR14, KDTR12, KDT13] is a publish/subscribe sys-
tem realizing content-based routing in software-defined networking. Instead of using brokers
for filtering events the filtering is performed by SDN switches. As the whole pub/sub logic
is realized by SDN flow rules matching packets all filtering is done in the network. This in-
network filtering does not have the disadvantages of broker-based pub/sub systems mentioned
above and offers line-rate performance. The event packets can be transmitted directly through
the network without using an overlay network of brokers and the filtering can be done on the
network-layer instead of the application layer.
Based on OpenFlow, PLEROMA configures the SDN network so that the network can per-
form all the event filtering. Publishers that disseminate events send event packets into the
network with the target IP field set to an index representing the event, called dz-expression
(dz) which is used for matching of flow rules on the SDN switches.

However, SDN-based pub/sub systems cause new types of problems: The resources on SDN
switches are limited, the TCAM memory is very cost-intensive and therefore only a limited
number of flow rules can be installed. Furthermore only certain fields in the packet headers
can be matched which means that there is only a limited amount of information that can be
encoded in the packet header fields and matched by the switches. In case of PLEROMA this
limits the maximum length of the dz-expression to the number of available bits in the target
IP field.
As all filtering and routing decisions are based on flow rules matching the event dz-expression,
the precision of the dz is crucial for the filtering of events. For a high filtering precision many
flow rules and long dz-expressions are needed. Therefore the limited number of flow rules and
the limited number of available bits in the target IP field leads to a lower filtering precision.
A lower filtering precision leads to a higher number of unnecessarily disseminated events, so-
called false positives. This causes a higher network utilization which can lead in the worst
case to network overload and system failure.

The contribution of this thesis is to develop and evaluate ways to increase the bandwidth
efficiency of content-based routing in SDN for publish/subscribe systems like PLEROMA.
The contributions in detail are:

• Development of algorithms, improving the bandwidth efficiency by selecting event value
dimensions to generate more informative dz-expressions which allow better filtering.

2

Dimensions are definitions of event value ranges. In a system with n dimensions, all
events consist of n values and the range of each value is defined by the corresponding
dimension.

• Development of an approach to improve the in-network filtering by generating better dz-
expressions. The dz generation is improved by improving the partition of event spaces.
The event space is an n dimensional space for systems with n dimensions and represents
the value range of all dimensions.

• Evaluation of all proposed algorithms, including the combination of dimension selection
and improved partitioning.

In Chapter 2 the PLEROMA middleware system and the system model this thesis is based
on is presented. The chapter presents the architecture, the system model and problems of
PLEROMA.

In Chapter 3 various algorithms are proposed which improve the generation of dz-expressions
by selecting dimensions to use for dz generation.

In Chapter 4 a way to improve the dz generation itself will be presented. The proposed
algorithm improves the partitioning of the event space during spatial indexing which is used
to generate the dz-expressions.

In Chapter 5 all dimension selection algorithms and the improved partitioning will be eval-
uated. The algorithms will be evaluated under different circumstances to find out strengths
and weaknesses.

Finally Chapter 6 summarizes the thesis and gives an outlook towards future work.

3

Chapter 2

PLEROMA Middleware
The work presented in this thesis is based on the system model of the PLEROMA middleware
system, a SDN-based publish/subscribe system, presented in [TKBR14]. This chapter will
give an overview over the concepts of PLEROMA, the implementation of it and will point out
potential problems of the concepts. The Chapters 3 and 4 will present approaches to reduce
these problems.

2.1 Middleware Overview

2.1.1 Architecture

Figure 2.1 shows an overview of the architecture of the PLEROMA middleware system. The
main component of the system is the controller. It observes the network and configures the
SDN network by installing and deleting flow rules on the switches.
The hosts are connected to the SDN network through which the events are disseminated.
Hosts can be publishers or subscribers. Event filtering and forwarding between publishers
and subscribers is performed by the SDN switches according to the installed flow rules.
Control messages from hosts, like advertisements or subscriptions, can be sent from hosts to
the controller directly by using a fixed IP address IPfix. All packets with this destination
address are sent directly to the controller by any switch in the network. The address IPfix

is therefore reserved and may not be used for any other purpose. Network changes, such as
advertisements or a subscriptions, are recognized and handled by the controller. The handling
of network changes will be explained in detail in Section 2.2.

PLEROMA uses the OpenFlow standard which allows matching of packets header fields like
target and destination IP address, MAC and port. For every flow rule the matching rules
and a set of actions to perform can be defined, such as manipulating packet header fields,
redirecting a packet to a specific outgoing port or to multiple ports. The whole network logic
of PLEROMA is implemented by configuring SDN switches with flow rules determined by the
PLEROMA controller.

For SDN switches routing packets through the network, the packet header fields of event
packets need to be configured so that the packets can be matched by the switches. When ma-
nipulating header fields it has to be taken care of not conflicting with other network services.

5

2 PLEROMA Middleware

Figure 2.1: PLEROMA middleware architecture

Therefore PLEROMA uses IP-Multicast addresses to set the target IP fields for packet config-
uration and matching. Hosts send packets and set the target IP field to a constant multicast
prefix followed by an index representing the event information, called dz-expression.

2.1.2 Content-based model

PLEROMA follows the content-based subscription model. This means, that every event is
composed of dimensions value pairs. The range of all dimensions forms a multi-dimensional
space, called event space Ω.
Every event is represented by a point in Ω, every advertisement and subscription, for events
in a certain range, is represented by a multi-dimensional space. Based on the principle of
spatial indexing [KDTR12], the event space is divided into regular subspaces to approximate
events, advertisements and subscriptions. The subspaces are identified by binary strings called
dz-expressions (dz). These binary strings are later uses to identify and match event network
packets with installed flow rules.

Every bit, from left to right, identifies a subspace partition of the event space Ω. As il-
lustrated in figure 2.2 the space is divided along alternating dimensions. Every additional
bit specifies a more fine granular subspace, every bit halves the size of the subspace.

Figure 2.3 shows an example of a subspace that can be represented by two bits. The subspace
from (50,0) to (100,50) includes the both subspaces with the dz 100 and 101. These two
subspaces together form the subspace 10, from (50,0) to (100,50).

If necessary, a subspace can be represented by multiple dz. Figure 2.4 shows an example where
a subspace from (50,0) to (75,100) can not be represented by only one dz. In this case two dz
100 and 110 are used to represent the space. They don’t have a common parent-subspace so
it is necessary to use both dz to describe the space precisely.

All in all, the properties of Dz-expressions can be summarized by four major properties:

6

2.1 Middleware Overview

Figure 2.2: Illustration of separation of two-dimensional event space into subspaces, repre-
sented by dz

Figure 2.3: Indexing of a subspace from (50,0) to (100,50) with one dz 10

1. A shorter dz has a larger subspace. Longer dzs are more fine granular.

2. The corresponding subspace of dzi is covered by the subspace of dzj if dzj is a prefix
of dzi. The additional bits of dzi determine the more fine granular subspace of the
subspace dzj .

3. Two subspaces dzi and dzj are overlapping if dzi covers dzj or vice versa. The overlap
is the subspace of the longer dz.

4. In case of overlapping subspaces, where no space covers the other completely, the non
overlapping part must be identified by multiple subspaces.

Events are always represented by exactly one dz which specifies the location of a point in the
event space, representing the event. Advertisements and Subscriptions can be represented by
multiple dz, denoted as DZ to approximate the space of the advertisement/subscription.

An event e is sent in a packet with a dze, that represents the dimension values of e, as

Figure 2.4: Indexing of a subspace from (50,0) to (75,100) with two dz 100 and 110

7

2 PLEROMA Middleware

Figure 2.5: Indexing of a subscription and two events

index. The in-network filtering is based on the principle that a subscription s must receive e
if e is inside the subspace of s. The set of dz DZs represents the subspace of s. If dze is inside
a subspace dzs out of DZs, e is matched by the subscription s.

Figure 2.5 illustrates this. The subscription s1 is represented by the two dz 100 and 110.
The event e1, represented by dze1=10011..., is matched by the subscription s1 because it is
in the subspace 100, as 100 is a prefix of dze1.
In contrast, e2, represented by dze2=11110... is not matched by s1 because neither 100 nor
110 are a prefix of dze2.

PLEROMAs event delivery is based on this type of event filtering. The controller installs flow
rules matching packet header fields on the above explained indexes. Publishers emit events
with their corresponding dz encoded in the destination IP address. Flow rules on the switches
in the network match on dz for the following subscribers. An event is delivered to a subscriber
if there is a path of matching flows towards this subscriber.
As overlapping subscriptions can share common event delivery paths, thanks to the subspace
relationship of dz-expressions. This means that an event packet can be sent through the
network only once for multiple subscribers along the common path which reduces the network
traffic.

2.2 Content-based routing

This section explains the network reconfiguration, based on the above explained spatial in-
dexing. The controller reacts on changes in the network, calculates routing paths and updates
the switches flow tables.

2.2.1 Maintenance of Spanning Trees

Upon every advertisement/subscription and unadvertisement/unsubscription the controller
has to reconfigure the SDN network to implement the publish/subscribe functionalities. The
goal of the in-network filtering is to achieve bandwidth and latency efficient delivery of events
to all interested subscribers. Besides efficient in-network filtering one more constraint is effi-
cient network updating including calculation and installing/modifying flow rules.

8

2.2 Content-based routing

The easiest solution, with the lowest latency, for the network configuration would be to install
shortest paths between all publishers and subscribers. Though this strategy causes a high
number of flow rules to install, upon every network change a huge number of flows must be
installed/modified. Besides it is difficult to use common paths to reduce the network traffic
as it would be possible using spatial indexing.

Therefore PLEROMA uses dynamic sets of spanning trees connecting publishers and sub-
scribers. The creation and update of spanning trees is publisher driven, spanning trees are
updated upon advertisements and unadvertisements. Spanning trees represent routes on which
publishers can forward events.
Flow updating is subscriber driven. For all subscribers, flows along the spanning trees are
installed to deliver the event packets to the interested subscribers. Finally the events are
forwarded along spanning trees along paths specified by flow rules.

In order to manage the spanning trees, the controller holds a set T of spanning trees (short
trees). Each tree t ∈ T covers a set of subspaces represented by a set of dz-expressions DZ(t).
A tree is a spanning tree for all publishers with advertisements covered by DZ(t). All trees
are disjoint which means for all trees t and t′ DZ(t) ∩DZ(t′) = �. Resulting from this, an
event is never forwarded along more than one tree.

Upon every new publisher p advertising on DZ(p), the controller searches for every dzi ∈
DZ(p) if there is an overlap with an existing tree t ∈ T . The controller evaluates if the
publisher can join existing trees and if new trees have to be created. For every dzi ∈ DZ(p)
one out of three possible actions is performed:

1. If dzi is covered completely by the spaces of one ore more existing trees p joins all covering
trees.

2. If dzi is covered partially by the spaces of one ore more trees p joins all covering trees
and a new tree tn is created where DZ(tn) is the set of dz representing the uncovered
space.

3. If dzi is not covered by any tree a new tree tn is created with DZ(tn) = DZ(p).

The number of trees can quickly grow, especially when there are many advertisements with
different ranges. To avoid a large number of trees, the controller can merge trees when the
number of flows passes a threshold.

Along the spanning trees for the publishers, the flows rules to forward events to subscribers
are installed. On every subscriber s subscribing with a subscription on DZ(s) the controller
searches for a set of trees Ts out of T with trees overlapping with DZ(s).
If Ts is empty this means that there is no publisher publishing events for this subscription at
this time. In this case the subscription is stored and activated as soon there are publishers
relevant for this subscription.

9

2 PLEROMA Middleware

In case Ts is not empty the controller establishes paths between the subscriber s and all
publishers on all trees in Ts.

2.2.2 Maintenance of Flow Tables

For every publisher a route along the corresponding tree is calculated. A route is a path of
flows installed on SDN switches forming a path through the network. In a second step flow
rules are installed or modified to establish the path in the real network.

Every flow consists of matching fields and a set of out actions. As PLEROMA uses a fixed IP-
multicast range to avoid conflicts with other services, the flows are matching on IP-addresses
starting with the multicast prefix followed by the dz-expression.
For example for a subspace with the dzs = 101 IPv4 corresponding address might be 225.160.0.0/11
when using a prefix 225.0.0.0/8. An event with the dze = 101101 would have the IP
225.180.0.0/14.
SDN switches support wildcard/masking operations. A flow rule on a subspace represented by
the IP 225.160.0.0/11 matches packets with destination IP 225.180.0.0/14. This way flow rules
can match events for certain subspaces and paths along spanning trees can be programmed.

2.3 Limitations of in-network Filtering

The necessary index length representing events and their dimensions increases linearly with
the number of dimensions. As the number of available bits for the index is fixed, depending
on the number of IP bits, in case of many dimensions, the events can not be represented with
full precision. In this case the rate of falsely delivered event packets false positive rate (FPR)
rises.
To solve this scalability problem, in [TKBR14] the concept of Dimension Selection is intro-
duced. Every dimension is represented by a dimension in the index. The dimension selection
component reduces the dimension to a smaller subset of dimensions which are more relevant
for the in-network filtering and routing.

Using spatial indexing to generate dz-expressions, the dz length increases linearly with the
number of event dimensions. Furthermore the number of dz to represent subscriptions and
their routing paths also rises with the number of dimensions.
In a practical scenario both, the maximum length and the maximum number of dz is limited.
By using IPv4 or IPv6 the number of IP bits is limited which causes a limitation for the dz
length. The maximum IP range is 24 bits for IPv4 and 112 bits for IPv6. As the cost intensive
TCAM memory is limited, in order of 40.000 to 180.000 rules [DK], the number of flow rules
is limited too.
Both, IP bits and flow rule space can be lower if the network is shared with other services.
The available IP range might be lower than the full IP-multicast range and flow rule space
might be consumed by other services.
Consequently the precision of spatial index will decreases when the number of dimensions

10

2.3 Limitations of in-network Filtering

increases. When the precision of the index decreases the in-network filtering is less precise
and the number of events wrongly forwarded to subscriber, the false positive rate (FPR),
increases. With post filtering at the host side these events can be filtered out but a high FPR
increases the network bandwidth. A high FPR can cause unnecessary network overloading.

Dimension Selection reduces this problem by selecting only a subset of dimensions to be
used for spatial indexing. The goal is to find the set of dimensions that is most relevant to
create a good, accurate index for good filtering. When leaving out less important dimensions
more bits can be used to index the important dimensions more accurately. The best dimen-
sions are the dimensions with the lowest number of false positives when used to create the
index for in-network filtering.
The filtering effectiveness of dimensions mainly depends on three factors: distribution of
events, selectivity of subscriptions and correlation of dimensions.

In [TKBR14] a basic approach to select dimensions is presented and evaluated. Evalua-
tions show that a reduced set of dimensions can decrease the FPR.
The proposed algorithm which uses the set of active subscriptions and the set Et of last events
published. This data can be collected by the controller. The algorithm calculates a matrix
W where every field wi,j is the number of subscriptions matched by the event ej ∈ Et along
dimension i. In a next step the variance along each row is calculated. For each dimension,
the variance of the corresponding row can represent the importance of the dimension.
For handling correlated dimensions an algorithm is proposed calculating the covariance ma-
trix from the variances. The covariance matrix indicates the correlation between dimensions.
This covariance matrix is then eigendecomposed, the original dimension is transformed into a
orthogonal basis. Based on the method presented in [MG04], the eigenvector with the largest
eigenvalue represents the dimension which maximizes the variance. Finally those dimensions
are selected which are most relevant in the selected eigenvector. The relevance of a dimension
di is given by the absolute value of the ith coefficient in the eigenvector.

The focus of this thesis is on improving the result of filtering by improving spatial index-
ing. Therefore two approaches are research - the dimension selection presented in Chapter 3
and the improved partitioning presented in Chapter 4.
Various algorithms to select dimensions are proposed, improving and extending the principle
of dimension selection as presented in [TKBR14]. Different metrics and selection strategies
are presented to improve the results of dimension selection.

11

Chapter 3

Dimensions Selection
As explained in Section 2.3, the false positive rate (FPR) can be reduced by selecting a
subset of most promising dimensions to generate better dz-expressions with spatial indexing.
When leaving out less promising dimensions, more bits can be used to index the information
of the better dimensions more accurate. The basic idea of dimension selection was originally
introduced in [TKBR14].

In this chapter various metrics for rating the relevance of dimensions and algorithms to select
dimensions are presented. The proposed metrics try to predict how much a dimension can
reduce the FPR when used to generate the dz-expressions. Based on these metrics the algo-
rithms select the most promising dimensions.
Besides algorithms to select the best dimensions, algorithms to detect the best number of
dimensions are proposed. The combination of detecting the best number of dimensions and
the rating and selection of the most promising dimensions allows it to find the best set of
dimensions to use for generating dz-expressions with spatial indexing.

There are a lot of different scenarios for dimensions with different distributions of events
and subscribers. A good algorithm has to be universal - it should select the best dimen-
sions in any possible scenario. This chapter will present different kinds possible scenarios
for dimension selection and will improve the algorithms step by step to find more universal
algorithms.

3.1 Event-based Selection

The two following figures show how the filtering can be improved by using only one dimension
for the spatial indexing. Black rectangles represent subscriptions, every point represents an
event.
In general, the goal of filtering is to decide if an event is inside a subscription or not. Wrongly
classifications of events belonging to a subscription are false positives. The false positive rate
represents the quality of the filtering.
Every red rectangle represents one index area. The filter decides that an event belongs to a
subscription if the subscription contains or intersects the rectangle the event is in. If an event
is in the same rectangle as a subscription but not inside the subscription it will be assigned
to a subscription wrongly, it is then a false positive.

13

3 Dimensions Selection

Figure 3.1 shows spatial indexing with four index bits with both dimensions, figure 3.2
shows indexing which leaves out the dimension with less variance. As you can see in Figure
3.1, filtering with an index with both dimension would have many false positives in the index
areas 0110, 1100, 0011 and 1001. In these areas events that are inside the index area can not
always be assigned to the right subscription.
This would be improved by indexing only with Dimension 2. Dimension 1 is less relevant for
filtering and when leaving it out the indexing precision along dimension 2 would be better.
Figure 3.2 shows that the events can be assigned to subscriptions much more precisely. The
false positive rate would be much better.

Figure 3.1: Spatial indexing, 4 bits, both dimensions

14

3.1 Event-based Selection

Figure 3.2: Spatial indexing, 4 bits, only dimension 2

15

3 Dimensions Selection

3.1.1 Algorithm: Event-based Selection (EVS)

As explained in Section 3.1 the variance of events along dimensions is an important factor for
the filtering effectiveness of a dimension. In this section an algorithm will be introduced that
reduces the number of dimensions by selecting dimensions with higher variance of events. We
call this algorithm event variance-based dimension selection (EVS)

The algorithm calculates for every dimension the variance of the events along this dimen-
sion. For this the mean of all event values in one dimension is calculated and the sum of the
distances of all event values to the mean value is calculated. The square root of this value is
the variance of event values along this dimension.
As input, parameter, the number of dimensions to select is given. For n dimensions to select
for 0 < n < originalDimCount the algorithm selects the n dimensions with the highest vari-
ance.
Algorithm 3.1 shows the pseudocode of this algorithm. The function CalcEvtVariances calcu-
lates the event variances along the dimensions. Based on this the given number of dimensions
with the highest variances is selected.

The advantage of this approach is the low calculation overhead. This algorithms time com-
plexity is O(nd∗ne) when nd is the number of dimensions and ne is the number of events. The
complexity is linear dependent on the number of events and dimensions because the variance
has to be calculated for all dimensions for all event values.
The disadvantage of this algorithm is that it is not universal. It can only analyze the event
variances. It does not take into account the subscriptions and the relations between subscrip-
tions and events. Subscription can also have an influence on the importance of a dimension
but this algorithm only analyzes the events. In a scenario where the characteristics of sub-
scriptions along dimensions is different from the characteristics of the events, this algorithm
will not be able to find the best dimensions.

In the following sections new scenarios this algorithm can not deal with will be presented.
Based on this algorithm, new algorithms will be proposed to solve theses problems.

16

3.1 Event-based Selection

Algorithm 1 Select Dimensions based on Event Variances (EVS)
1: function SelectDimensions(origDims[], selDimCount, events[])
2: selDims[selDimCount] . Array for selected dimensions
3: variances[]← CalcEvtVariances(origDims.length, events)
4: for iSel = 0 to selDimCount do
5: . Index of n-highest event variance
6: dim← GetNHighestValueIndex(iSel, variances)
7: selDims[iSel]← origDims[dim]
8: end for
9: return selDims

10: end function
11:
12: function CalcEvtVariances(dimCount, events[]) . Calculate event variance along

dimensions
13: variances[dimCount] . Array with all event event variances along dimensions
14: for iDim = 0 to dimCount do
15: sum← 0
16: for iEvt = 0 to events.length do
17: sum← sum + events[iEvt].values[iDim]
18: end for
19: mean← sum/events.length . Mean of all event values for this dimension
20: var ← 0
21: for iEvt = 0 to events.length do
22: var ← (events[iEvt].values[iDim]−mean)2

23: end for
24: variances[iDim]←

√
var . Variance of events along this dimension

25: end for
26: return variances
27: end function

17

3 Dimensions Selection

3.2 Subscription-based Selection

The last presented algorithm does not take into account subscriptions but it is obvious that
subscriptions can have an influence on the dimension importance, independently of the event
variance. This means that it is possible that the importance of a dimension can be different
from the variance events.
Figure 3.3 shows a scenario where the importance of the dimensions is different from the
variance of the events.

Figure 3.3: Variance of events and dimension importance different

In this scenario the algorithm based on event variance would choose dimension 2 because of
the high event variance along this dimension. However dimension 2 is less important, the
algorithm would choose the wrong dimension.
To illustrate this, figure 3.4 shows that an index based on dimension 2 would not be good for
filtering the events. When indexing and filtering with dimension 2, events would be assigned
to all subscription but they only belong to one subscription. In this case false positive rate
would be very high.

Figure 3.4: Spatial indexing, 3 bits, dimension 2

18

3.2 Subscription-based Selection

Figure 3.5 shows that an index based on dimension 1 would be very good in filtering events.
The events would only be assigned to the middle subscription. The false positive rate would
be much lower compared to filtering with dimension 2.
A good selection algorithm should choose dimension 1 in this scenario. This shows, that
only analyzing the variance of events is not sufficient and that events, subscriptions and the
relation between subscriptions and events has to be analyzed.

Figure 3.5: Spatial indexing, 3 bits, dimension 1

For developing improved algorithms new metrics to analyze subscriptions and event-subscription
relations are needed. Those subscription metrics analyze how the subscriptions are distributed
and how good the events can be correctly assigned to subscriptions correctly. Therefore we
call those metrics subscription selectivity of the dimensions. Algorithms to calculate the sub-
scription selectivity will be introduced
In section 3.2.1 an algorithm to select dimensions based on the Subscription Selectivity metric
is presented. Sections 3.2.2, 3.2.2 and 3.2.2 present three different ways to calculate the
subscription selectivity.

3.2.1 Selectivity-based Selection

Based on the Subscription Selectivity the dimensions can be rated and selected. For this an
algorithm similar to the variance-based selection EVS can be used. Equivalent to the cal-
culation of the variance, the subscription metrics will also be calculated for each dimension
separately. The Subscription Selectivity based dimensions Selection (SSS) is illustrated in Al-
gorithm 2.
Based on events and subscriptions the algorithm calculates for every dimension the Subscrip-
tion Selectivity. The parameter selDimCount specifies the desired number of dimensions. The
algorithm selects the desired number of dimensions with the highest Subscription Selectivity.

The time complexity of this algorithm depends on the complexity of the algorithm calculating
the Subscription Selectivity. This is O(nd ∗ ne ∗ n2

s) for SOS or O(nd ∗ ne ∗ ns) for SMS and
SFS when nd is the number of dimensions, ne the number of events and ns the number of
subscriptions.

Subscription Selectivity is not only a metric analyzing the subscription behavior. It also

19

3 Dimensions Selection

Algorithm 2 Selecting based on Subscription Selectivity
1: function SelectDimensions(origDims[], selDimCount, events[], subscriptions[])
2: selDims[selDimCount] . Array for selected dimensions
3: subSels[]← CalcSubSelectivity(origDims.length, events, subscriptions)
4: for iSel = 0 to selDimCount do
5: . Index of n-highest dimension weight
6: dim← GetNHighestValueIndex(iSel, subSels)
7: selDims[iSel]← origDims[dim]
8: end for
9: return selDims

10: end function

considers the relations between subscriptions and events e.g. events matched by multiple
subscriptions.

The following three sections present different approaches for calculating the Subscription
Selectivity. For all those approaches this algorithm is used to select the dimensions, the
calculation of the Subscription Selectivity is used by this algorithm through the call of the
method CalcSubSelectivity.

3.2.2 Overlap-based Selection (SOS)

In this section an approach for calculating the subscription selectivity based on subscription
overlaps will be presented. The calculated subscription selectivity is used to select dimensions
with the algorithm presented in the last section. We call the dimension selection based on
this metric subscription overlap based selection (SOS) Subscription overlap in a dimension
means that subscriptions match the same area along a dimension. The subscription overlap
influences the selectivity, the filtering effectiveness of a dimension

Dimensions where subscriptions have a lot of overlap are less important for filtering. Figure
3.6 illustrates this. The majority of events are matched by all subscriptions on Dimension 2
while only a few events are matched by more than one subscription on Dimension 1. Darker
colors show areas on dimensions with higher overlap.

Filtering with Dimension 1 would have a low false positive rate. The events can be assigned
to the correct subscriptions because most of the events are matched by only one subscription.
In contrast when filtering with Dimension 2, the false positive rate would be very high. Many
events are matched by multiple subscription on Dimension 2 and many of these subscriptions
don’t match the event on Dimension 1. This means that many events would be assigned to
subscriptions they are not matched by on all dimensions. These events are false positives
because an event is only inside a subscription if it is matched by it on all dimensions.

Even when analyzing the variance of events and the overlap of subscriptions there are still sce-
narios that are not matched. The subscription coverage can be low and the variance of events

20

3.2 Subscription-based Selection

(a) Both dimensions with
subscriptions, events and
overlap

(b) Spatial Indexing with
Dimension 1

(c) Spatial Indexing with Di-
mension 2

Figure 3.6: Example for dimensions selectivity and overlap

can be high but if the events are not matching all subscriptions the effect of the subscription
overlap can be eliminated. In the end the overlap of events matched by subscriptions is what
influences the dimension selectivity.
Figure 3.7 shows such a scenario. In Dimension 1 the variance of events is high and the
overlap of subscriptions is low while the variance in Dimension 2 is low and the overlap high.
However Dimension 2 is good for filtering and Dimension 1 is not.
The reason is that the majority of events is matched by only one subscription in Dimension 2
but matched by more than one subscription in Dimension 1. Therefore Dimension 2 is better
for filtering because the events can be better assigned to a single subscription.

(a) Both dimensions with
subscriptions, events and
overlap

(b) Spatial Indexing with
Dimension 1

(c) Spatial Indexing with Di-
mension 2

Figure 3.7: Example for dimensions selectivity and overlap

The proposed algorithm, illustrated in Algorithm 3 calculates the Subscription Selectivity
based on the overlap of subscriptions matching events. A value between 0.0 and 1.0 represents
the degree of inverse overlap. High degree of overlap means bad filtering effectiveness so the
Subscription Selectivity is the inverse of the degree of subscription overlap.

21

3 Dimensions Selection

Algorithm 3 Calculate Selectivity based on Subscription Overlap
1: function CalcSubSelectivity(dimCount, events[], subscriptions[])
2: . Array with all subscription selectivities of the dimensions
3: subSels[dimCount]
4: for iDim = 0 to dimCount do
5: . Set of events matched by at least one subscription at this dimension
6: Set <> evtsCovAny
7: for all evt ∈ events do
8: for all sub ∈ subscriptions do
9: if sub.matchsAtDim(evt, iDim) then

10: evtsCovAny.add(evt) break
11: end if
12: end for
13: end for
14:
15: subOverlapSum← 0
16: for all subs ∈ subscriptions do
17: . Set of events matched by this subscription at this dimension
18: Set <> evtsCovThis
19: for all evt ∈ evtsCovAny do
20: if sub.matchsAtDim(evt, iDim) then
21: evtsCovThis.add(evt) break
22: end if
23: end for
24: . Set of events matched by this and other subscriptions at this dimension
25: Set <> evtsCovOverl
26: for all sub2 ∈ subscriptions \ sub do
27: for all evt ∈ events do
28: if evtsCovThis.contains(evt) & sub2.matchsAtDim(evt, iDim) then
29: evtsCovOverl.add(evt)
30: end if
31: end for
32: end for
33: . Subscription Overlap - fraction of events matched not only by this subscription
34: subOverlap← evtsCovOverl.size/evtsCovThis.size
35: . Subscription Selectivity is mean of inverse Subscription Overlaps
36: subOverlapSum← subOverlapSum + subOverlap
37: end for
38: subSels[iDim]← 1.0− (subOverlapSum/subscriptions.length)
39: end for
40: return subSels
41: end function

22

3.2 Subscription-based Selection

For determining the relevant subscription overlap the algorithm, the algorithm calculates for
each dimension for each subscription the number of events that are only matched by one sub-
scription on a dimension. The fraction of all events matched by a subscription, that are also
matched by other subscriptions, is the overlap factor of this subscription (between 0.0 and
1.0). Inverting this value gives the subscription selectivity of this subscription. The inverse of
the average of all subscription overlaps on one dimension results the Subscription Selectivity
of this dimension.

The major disadvantage of this algorithm is the time complexity. It is O(nd ∗ne ∗n2
s) when nd

is the number of dimensions, ne the number of events and ns the number of subscriptions. For
every subscription and every event all other subscriptions have to be evaluated. This causes
the quadratic dependency of the number of subscriptions.
One more disadvantage is the handling of overlap of many subscriptions. The number of
overlapping can have an influence on the importance of a dimension and this algorithm can
not analyze the number of overlaps. This algorithm can analyze the overlap of subscriptions
but it does not analyze the number of overlapping subscriptions. If a subscription overlaps
only with one other subscription the Subscription Selectivity would be the same as for many
overlaps.
All in all this algorithm is a way to analyze events and subscriptions but there are problems
with larger amounts of subscriptions.

Event Match Count-based Selection (SMS)

The next algorithm solves the two major problems of the SOS algorithm presented in Section
3.2.2 - the quadratic time complexity for subscriptions and the handling of multiple overlaps.
We call the dimension selection based on this algorithm subscription event match count-based
selection (SMS)
Figure 3.8 shows a two-dimensional scenario with multiple overlaps in both dimensions. Along
all dimensions the majority of events is matched by more than one subscription. Therefore
the last overlap calculation algorithm would calculate subscription selectivities close to zero
for all dimensions.

To avoid this problem the proposed algorithm calculates the Subscription Selectivity based
on the number of multiple subscriptions matching events along a dimension. The algorithm
calculates for each dimension how many times events are matched by more than one sub-
scription. Every time an event is matched by more than one subscription there is an overlap.
Multiple matched subscriptions are taken into account by counting all matches instead of only
one match like in the last algorithm.

The algorithm pseudocode of this algorithm is illustrated Algorithm 4. First all events
matched by any subscription are collected. For all of these events the count of subscriptions
match this event are counted. If the count is higher than one there is an overlap. In this
case the number of overlaps, the number of matching subscriptions minus one, is added to the
match sum.

23

3 Dimensions Selection

(a) Both dimensions with
subscriptions, events and
overlap

(b) Spatial Indexing with
Dimension 1

(c) Spatial Indexing with Di-
mension 2

Figure 3.8: Example for dimensions selectivity and overlap

Lastly the sum of matches is divided by the maximum number of possible overlaps to get a
value between 0.0 and 1.0. The inverse of this is the final Subscription Selectivity.

Besides the fact that this algorithm is better in handling multiple overlaps its time com-
plexity is better. It is O(nd ∗ ne ∗ ns) when nd is the number of dimensions, ne the number of
events and ns the number of subscriptions. The improvement over the last algorithm is, that
the time complexity is linear dependent on the number of subscriptions instead of quadratic.

24

3.2 Subscription-based Selection

Algorithm 4 Calculate Event Match Counts
1: function CalcSubSelectivity(dimCount, events[], subscriptions[])
2: . Array with all subscription selectivities of the dimensions
3: subSels[dimCount]
4: for iDim = 0 to dimCount do
5: . Set of events matched by at least one subscription at this dimension
6: Set <> evtsMatchAny
7: for all evt ∈ events do
8: for all sub ∈ subscriptions do
9: if sub.matchsAtDim(evt, iDim) then

10: evtsMatchAny.add(evt) break
11: end if
12: end for
13: end for
14: . Calculate how many times an event is matched by more than one subscription
15: sumEvtOverl← 0
16: for all evt ∈ evtsMatchAny do
17: evtMatch← 0
18: for all sub ∈ subscriptions do
19: if sub.matchsAtDim(evt, iDim) then
20: evtMatch← evtMatch + 1
21: end if
22: end for
23: if evtMatch ≥ 1 then
24: sumEvtOverl← sumEvtMatch + (evtMatch− 1)
25: end if
26: end for
27: maxOverl← evtsCovAny.length ∗ (subscriptions.length− 1)
28: . Match Factor represents the fraction of events overlapping subscriptions
29: matchFactor ← sumEvtOverl/maxOverl
30: . Subscription Selectivity is the inverse Match Factor
31: subSels[iDim]← 1.0−matchFactor
32: end for
33:
34: return subSels
35: end function

25

3 Dimensions Selection

False Event Match-based Selection (SFS)

This section shows an alternative metric for the Subscription Selectivity. Instead of analyzing
overlaps of subscriptions matching events like the SMS selection, this algorithm counts how
often an event is matched by a subscription on a dimension but not on all dimensions. We
call a subscription match on a dimension but not on all dimensions a False Match and the
selection based on this metric subscription event false match-based selection (SFS).
The algorithm, illustrated in Algorithm 5, counts for every dimension how often events are
matched by a subscription at this dimension. It also counts how often events matched by a
subscription at this dimension are not matched by the subscription completely. An event is
matched by a subscription completely when it is matched at all dimensions by it. An event
subscription match at a dimension is a False Match if the event is not matched completely
by the subscription. For every dimension the fraction of False Matches of the total count of
matches is the False Match Factor. The inverse of the False Match Factor is the Subscription
Selectivity of a dimension.

Like the algorithm presented in Section 3.2.2, this algorithm can deal with multiple sub-
scription overlaps. The behavior of both subscriptions is very similar but in some scenarios
this algorithm has better results. The time complexity of this algorithm is also O(nd ∗ne ∗ns)
when nd is the number of dimensions, ne number of events and ns number of subscriptions.

26

3.2 Subscription-based Selection

Algorithm 5 Calculate Event False Matches
1: function CalcSubSelectivity(dimCount, events[], subscriptions[])
2: . Array with all subscription selectities of the dimensions
3: subSels[dimCount]
4: . Calculate count of false subscription matches along this dimension
5: matchCount← 0
6: falseMatchCount← 0
7: for iDim = 0 to dimCount do
8: for all evt ∈ events do
9: for all sub ∈ subscriptions do

10: if sub.matchsAtDim(evt, iDim) then
11: matchCount← matchCount + 1
12: if !sub.matches(evt) then
13: falseMatchCount← falseMatchCount + 1
14: end if
15: end if
16: end for
17: end for
18: . False Match Factor represents the fraction of false event subscription matches
19: falseMatchFactor ← falseMatchCount/matchCount
20: . Subscription Selectivity is the inverse False Match Factor of this dimension
21: subSels[iDim]← 1.0− falseMatchFactor
22: end for
23: return subSels
24: end function

27

3 Dimensions Selection

3.3 Correlation-based Selection

The last sections introduced approaches to detect dimensions with high selectivity and ways
to select dimensions based on the characteristics of events and subscriptions along dimensions.
The metrics were calculated individually for every dimension.
A completely different factor for the importance of dimensions are correlations between di-
mensions. Correlation means that the behavior of dimensions is similar. A dimension can be
represented by an other dimension if it is completely correlated with the other dimension, if
its behavior is exactly the same.

Correlation of events between dimensions meas: When an event has a low/high value in
dimension one it also has a low/high value in an other dimension. The value in one dimension
can represent the value in the other dimension too. Figure 3.9(a) illustrates this case.
Another variant of correlation is the inverse correlation as shown in Figure 3.9(b). An event
having a low/high value in Dimension 1 has a high/low value in Dimension 2. In realistic
scenarios there is usually no pure correlation between dimensions. Figure 3.9(c) shows partial
correlation of dimensions.

(a) Positive correlation of di-
mensions

(b) Negative correlation of
dimensions

(c) Partial correlation of di-
mensions

Figure 3.9: Different scenarios of correlated dimensions

Correlation influences the importance of dimensions. A dimension that can be represented
by an other dimension is redundant. Leaving out one of two correlated dimensions means no
loss of information but more bits for more precise indexing for the other dimensions.
In case of completely correlated dimensions the importance of selecting both dimensions is
zero, for partially correlated dimensions the importance is lower but not zero. Then, the
dimension selection must be decided based on other factors like variance of events and overlap
of subscriptions.
Dimension importance rating based on a combination of rating the individual importance of
dimensions and correlation with other dimension will be more universal.

Figure 3.10 shows a scenario of six dimensions with different variances of events, subscription
overlaps and correlations. Considering not all three factors will not lead to the best results.

28

3.3 Correlation-based Selection

The dimensions 1 and 2 are highly correlated so only one of them should be selected. The
event variance of both dimensions is similar. When looking at the subscription overlap, the
overlap of dimension 2 is lower so dimension 2 is more important.
Dimension 3 and 4 are partially correlated but the event variance of Dimension 4 is higher.
Therefore Dimension 4 should be selected out of the two correlated dimensions.
The dimensions 5 and 6 are not correlated but the event variance of dimension 5 is very low.
Dimension 5 should not be selected.
All in all the dimensions 2, 4 and 6 should be selected for the best results. The challenge for
the algorithm is not only to rate correlation, variance and overlap but also combining these
metrics.

(a) Dimensions highly corre-
lated, both high variance

(b) Dimensions partially
correlated, Dimension 3
low variance, Dimension
4 high variance

(c) No correlation, Dimen-
sion 5 low variance, Di-
mension 6 high variance

Figure 3.10: Six dimensional scenario of different correlations and event variances

The following sections will present approaches to combine the algorithms for selecting di-
mensions based on their individual importance, presented in the last sections, together with
algorithms detecting correlations between dimensions. Instead of only calculating for each
dimension the selectivity, we combine the selectivities of dimension pairs together to measure
the correlation between these dimensions. The combinations of selectivities between dimen-
sions are put into a matrix, called covariance matrix, which can be used to detect dimension
correlations.

The covariance matrix is a matrix of covariances measuring the relation of two random vari-
ables. In our case the random variables are the dimensions. The matrix is a nd ∗ nd matrix
when nd is the number of dimensions. The element at the position i,j is the covariance of the
ith and the jth dimension.
Covariance matrices contain two types information: The relation between dimensions and the
amount of variance in the dimensions. Both information are useful for our use case. The
variance along the dimensions is an important factor for the selectivity of a dimension and
the relation is important to find correlated dimensions.

In the following two subsections different ways to use covariance matrices for selecting di-

29

3 Dimensions Selection

mensions will be presented.
Afterwards three different ways to calculate covariance matrices will be presented. The first
way is based on the variance of events while the other two ways are no conventional covariance
matrix
All three covariance calculation algorithms can be combined with both covariance based se-
lection algorithms so there are six possible algorithm combinations to select dimensions.

30

3.3 Correlation-based Selection

3.3.1 Principal Component Analysis based Selection (PCS)

This algorithm selects the dimensions based on the Covariance Matrix and the Principal com-
ponent analysis (PCA). PCA is a mathematical method in the area of multivariate statistics
to structure and simplify datasets by finding unimportant components that can be removed.

In [MG04] a scheme for selecting features with PCA is presented. The presented algorithm,
illustrated in Algorithm 6 is based on this scheme. Features in our context means dimen-
sions. The algorithm tries to find the set of principal features which is the set of principal
dimensions.
PCA projects a set of vectors into an orthogonal space with minimal redundancies between
the vectors. For this Eigendecomposition is used. In a first step the Covariance Matrix is
calculated. Then the Eigenvectors ant their corresponding Eigenvalues are calculated. The
principal components are Eigenvectors of the Covariance Matrix, sorted by their correspond-
ing Eigenvalues. A higher Eigenvalue means higher importance of a component.
The approach from [MG04] then uses the most important component, the Eigenvector with
the highest Eigenvalues, to find the most important dimensions. As the Covariance Matrix
is a nd ∗ nd matrix when nd is the number of dimensions, the Eigenvector has nd elements.
The ith element of the component eigenvector represents the importance of the ith dimension
in this component.

For a given number of dimension the algorithm will return the dimensions with the high-
est values in the Eigenvector of the principal component. This way the algorithm tries to
select a set of dimensions with high variances and low correlation.

31

3 Dimensions Selection

Algorithm 6 Select Dimensions based on Principal Component Analysis
1: function SelectDimensions(origDims[], selDimCount, events[], subscriptions[])
2: covMat[][]←CalculateCovarianceMatrix(origDims.length, events, subscriptions)
3: . Calculate eigenvalues and eigenvectors of covariance matrix
4: covEigenV ecs[][]← GetEigenVectors(covMat)
5: covEigenV als[]← GetEigenValues(covMat)
6: . Orthognal components are eigenvectors sorted by their corresponding eigenvalues

(highest first)
7: components[][]← SortByEigenValues(covEigenV ecs, covEigenV als)
8: . Principal component is the eigenvector with the highest eigenvalue
9: princComp[]← components[0]

10: . Select dimensions with highest value in principal component
11: selDims[selDimCount]
12: for iSel = 0 to selDimCount do
13: dim← GetNHighestValueIndex(iSel, princComp) . Index of n-highest

event variance
14: selDims[iSel]← origDims[dim]
15: end for
16: return selDims
17: end function

32

3.3 Correlation-based Selection

3.3.2 Principal Feature Analysis based Selection (PFS)

An alternative algorithm to select features based on PCA is presented in [LCZT07]. Instead
of using only one principle component multiple components are used. With clustering the
algorithm tries to detect similar dimensions.

Like the PCS algorithm, this algorithm is based on Principal Component Analysis. Algo-
rithm 7 shows the pseudocode of the algorithm.
First the principal components are calculated in the same way. Then instead of analyzing only
the component with the highest eigenvalue, a set of most important components are used.
The number of components to use is the same number as the number of dimensions to select.
When selecting q dimensions from nd dimensions, the most important components form the
matrix Aq, a q ∗ nd matrix with the most important components in the rows.
The column vectors of Aq then represent the values of the dimensions. Those column vectors
are then clustered to q clusters using the K-Means algorithm as shown in Algorithm 8. From
each of the q cluster the vector nearest to the clusters mean is chosen. This vector represents
the cluster which is a group of potentially correlated dimensions.

For every chosen ith vector the ith dimension is selected. All q selected dimensions are returned
as set of selected dimensions. By clustering the dimensions the algorithm is good in finding
correlated dimensions but it can not analyze the variance of dimensions. This information is
lost because the clusters are created by similarities of dimensions. The absolute values are
not analyzed.

Algorithm 7 Select Dimensions based on Principal Feature Analysis
1: function SelectDimensions(origDims[], selDimCount, events[], subscriptions[])
2: covMat[][]←CalculateCovarianceMatrix(origDims.length, events, subscriptions)
3: . Calculate eigenvalues and eigenvectors of covariance matrix
4: covEigenV ecs[][]← GetEigenVectors(covMat)
5: covEigenV als[]← GetEigenValues(covMat)
6: . Orthognal components are eigenvectors sorted by their corresponding eigenvalues

(highest first)
7: components[][]← SortByEigenValues(covEigenV ecs, covEigenV als)
8: . Get dominant components (number is selDimCount), forming Matrix Aq

9: aq[][]← SortByEigenValues(covEigenV ecs, covEigenV als)
10: . Do clustering, output is indices of chosen features
11: List <> selDimIndices←DoClustering (origDims.length, selDimCount, domComps)
12: . Get dimensions from dimension indices
13: for iSel = 0 to selDimCount do
14: dim← selDimIndices[iSel]
15: selDims[iSel]← origDims[dim]
16: end for
17: return selDims
18: end function

33

3 Dimensions Selection

Algorithm 8 KMeans Clustering to find the dimensions to select
1: function DoClustering(origDimsCount, selDimCount, components[][])
2: . Points to cluster are rows from the components
3: points[origDimsCount]
4: for iRow = 0 to origDimsCount do
5: clusterPoint
6: for iComp = 0 to components.length do
7: clusterPoint.values[iComp]←abs(components[iComp][iRow])
8: end for
9: end for

10: . Do KMeans clustering with selDimCount clusters
11: clusters[]← KMeansCluster(points, selDimCount)
12: List <> selDimIndices
13: for all clus ∈ clusters do
14: . Choose point next to cluster center
15: clusPoint← GetNearestPoint(points, clus.mean)
16: . Index of chosen cluster point is index of dimension
17: clusPointIndex← IndexOf(points, clusPoint)
18: selDims.add(selDimIndices)
19: end for
20: end function

34

3.3 Correlation-based Selection

3.3.3 Covariance Matrix from Events (CEV)

In the Section 3.1.1 an algorithm was presented that selects dimensions with the highest vari-
ance of events. This algorithm, calculating the covariance matrix for a PCA based selection,
is a two-dimensional generalization of the variance calculation.

Input of this algorithm is an array with all event values. As shown in Algorithm 9, first
the dataset is converted into an other dataformat, the evtSamples matrix a ne ∗ nd matrix
where field i, j contains the ith value of the jth event.
For every column the mean is calculated and later used to calculate the variance. The covari-
ance matrix is a quadratic nd ∗ nd matrix. Every field i, j is calculated from the variance of
the column i of the evtSamples matrix multiplied with the variance of the column j, divided
by nd − 1. A Diagonal value of the matrix i, i is the variance of column i

The resulting covariance matrices can be used for the selection algorithms PCS or PFS. It
contains information about variances of dimensions and similarities of event behaviors along
dimensions.
The time complexity of this algorithm is O(n2

d ∗ ne) when nd is the number of dimensions
and ne is the number of events. The complexity is quadratic dependent on the number of
dimensions because the covariance is a nd ∗ nd matrix. For every field the variance of events
along two dimensions has to be calculated.

35

3 Dimensions Selection

Algorithm 9 Calculate Covariance Matrix from Event Variances (CEV)
1: function CalculateCovarianceMatrix(dimCount, events[])
2: . Array of event value samples, events in rows, dimension in columns
3: evtSamples[][]←CalculateEventSamples(dimCount, events)
4: sampleCount← events.length
5: . Calculate Means of all samples on all dimensions
6: means[dimCount]
7: for iDim = 0 to dimCount do
8: dimSum← 0
9: for iEvt = 0 to sampleCount do

10: dimSum← dimSum + evtSamples[iDim][iEvt]
11: end for
12: means[iDim]← dimSum/events.length
13: end for
14: . Calculate covariance matrix
15: covMat[dimCount][dimCount]
16: for i = 0 to dimCount do
17: for j = 0 to dimCount do
18: covMat[i][j]←CalculateCovariance(evtSamples[i], evtSamples[j], means[i],
19: means[j], sampleCount)
20: end for
21: end for
22: . Return calculated covariance matrix
23: return (covSum/(n− 1))
24: end function
25: . Copy sample values from events into sample format
26: function CalculateEventSamples(dimCount, events[])
27: evtSamples[dimCount][events]
28: for iEvt = 0 to events.length do
29: evt← events[iEvt]
30: for iDim = 0 to dimCount do
31: evtSamples[iDim][iEvt]← evt.values[iDim]
32: end for
33: end for
34: return evtSamples
35: end function
36:
37: . Calculate covariance of two dimensions
38: function CalculateCovariance(samples1[], samples2[], mean1, mean2, n)
39: covSum← 0
40: for i = 0 to samples1.length do
41: v1← (samples1[i]−mean1)
42: v2← (samples2[i]−mean2)
43: covSum← covSum + (v1 ∗ v2)
44: end for
45: return (covSum/(n− 1))
46: end function
36

3.3 Correlation-based Selection

3.3.4 Covariance Matrix from Event Match Counts (CMM)

As an improvement of the event variance based dimension selection, in Section 3.2 algorithms
analyzing the selectivity of subscriptions were introduced. The advantage of these algorithms
is, that they can also take into account the subscriptions and the relations between subscrip-
tions and events.

The Covariance Matrix from Event Match counts (CMM) is a two-dimensional generaliza-
tion of the SMS algorithm presented in 3.2.2. Instead of variances as the CEV calculation
uses, this algorithm uses event subscription match counts, a metric for subscription overlap
and selectivity. Algorithm 10 shows how the covariance matrix is calculated. A field i, j of
the nd ∗ nd matrix is the sum of all events matched by subscriptions at the dimensions i and
j. Every time an event is matched by a subscription at the dimensions i and j the evtMatches
sum is incremented.

This algorithms time complexity is O(n2
d ∗ ne ∗ ns) when nd is the number of dimensions

and ne is the event count and ns the subscription count. For every field of the nd ∗ nd

covariance matrix the matches of all events and subscriptions have to be counted.

Algorithm 10 Calculate Covariance Matrix based on Event Match Counts (CMM)
1: function CalcCovarianceMatrix(dimCount, events[], subscriptions[])
2: covMatrix[dimCount][dimCount] . Two-dimensional array for Covariance Matrix
3: for i = 0 to dimCount do
4: for j = 0 to dimCount do
5: . Calculate Fraction of all event subscription pairs that cover at the dimensions i and j
6: evtMatchSum← 0.0
7: for all evt ∈ events do
8: evtMatches← 0
9: . Calculate Fraction of all subscriptions that cover evt at the dimensions i and j

10: for all sub ∈ subscriptions do
11: if sub.matchsAtDim(evt, i) & sub.matchsAtDim(evt, j) then
12: evtMatches← evtMatches + 1
13: end if
14: end for
15: evtMatchRate← evtMatches/subscriptions.length
16: evtMatchSum← evtMatchSum + evtMatchRate
17: end for
18: evtMatchAvg ← evtMatchSum/events.length
19: . Matrix value is inverse of the fraction of event subscription pairs covering at i and j
20: covMatrix[i][j]← 1.0− evtMatchAvg
21: end for
22: end for
23: return covMatrix
24: end function

37

3 Dimensions Selection

3.3.5 Covariance Matrix from False Event Matches (CFM)

An alternative subscription selectivity metric was the SFM introduced in Section 3.2.1.
Instead of only counting how often events are matched, it is counted how often events are
matched at a dimension but not on all dimension.
The algorithm, shown in 11, counts the number of events matched by subscriptions and the
false matches. For every field i, j of the nd∗nd covariance matrix the sum of all events matched
by subscriptions at the dimensions i and j is counted. It is also is counted how many matches
are false matches. This means that an event is matched by a subscription at the dimensions
i and j but not on all dimensions. The fraction of events that are false matched out of the
sum of all events is the false match rate. The inverse of the total false match rate of two
dimensions i and j is the value of the covariance matrix.
This algorithm also has a time complexity of O(n2

d ∗ ne ∗ ns) when nd is the number of
dimensions and ne is the event count and ns the subscription count.

Algorithm 11 Calculate Covariance Matrix based on False Event Matches
1: function CalcCovarianceMatrix(dimCount, events[], subscriptions[])
2: covMatrix[dimCount][dimCount] . Two-dimensional array for Covariance Matrix
3: for i = 0 to dimCount do
4: for j = 0 to dimCount do
5: . Calculate Fraction of false matched events at the dimensions i and j
6: evtFMSum← 0.0
7: for all evt ∈ events do
8: evtMatches← 0
9: evtFalseMatches← 0

10: . Calculate Fraction of all subscriptions that cover evt at the dimensions i and j
11: for all sub ∈ subscriptions do
12: if sub.matchsAtDim(evt, i) & sub.matchsAtDim(evt, j) then
13: evtMatches← evtMatches + 1
14: if Not sub.matchsAtDim(evt) then
15: evtFalseMatches← evtFalseMatches + 1
16: end if
17: end if
18: end for
19: falseMatchRate← evtFalseMatches/evtMatches
20: evtFMSum← evtFMSum + falseMatchRate
21: end for
22: evtFMAvg ← evtFMSum/events.length
23: . Matrix value is inverse of the fraction of false matches
24: covMatrix[i][j]← 1.0− evtFMAvg
25: end for
26: end for
27: return covMatrix
28: end function

38

3.4 Evaluation-based Selection

3.4 Evaluation-based Selection

Evaluation-based selection means that the algorithm directly finds the best scenario by trying
out all possible sets of selected dimensions and choosing the best. Although the last algo-
rithms have good results in many scenarios. all previously presented algorithms can’t find the
perfect set of dimensions in all possible kinds of scenarios.

The evaluation based algorithms try out all possible combinations of dimensions by simu-
lating the event filtering and evaluating the false positive rate and choosing the combination
with the lowest false positive rate.
On one hand those algorithms are very universal but on the other hand simulating the event
filtering is very slow. Therefore the algorithms are much slower than the other algorithms
based on mathematical models.

3.4.1 Brute Force Selection Algorithm (BES)

The Brute force Evaluation-based dimension Selection (BES) tries out all possible combi-
nations of dimensions for a given number of dimensions and chooses the best combination.
Algorithm 12 shows the basic structure of the algorithm.
Trying out means a complete simulation of the filtering of all events. With the set of di-
mensions to simulate the filtering with the dz-expressions for all events and subscriptions are
generated. Then the filtering of the event dzs for the subscription dzs is performed. Events
dedicated to wrong subscriptions are false positives. The rate of false positives is then used
to evaluate the filtering quality that can be achieved with the given set of dimensions for the
given scenario.
Finally the set of dimensions with the lowest false positive rate is returned.

This algorithm will always find out the best solution for the dimension selection problem,
finding out the set of dimension with the best filtering effectiveness for the given dataset of
subscriptions and events.
The disadvantage of this algorithm is, like for all brute force algorithms, that it is very slow, it
has exponential time complexity. For every simulation run for ne events and ns subscription
the complexity is e ∗ s because every event has to be filtered for every subscription. For every
count of dimensions the algorithm must evaluate all possible combinations. This means for
nd dimensions the algorithm must evaluate for all n possible counts of dimensions all possible
combinations.
Evaluating out all possible combinations has exponential runtime - for the dimension count
m with nd > m > 0 there are nd

m combinations. All in all the time complexity of the brute
force approach is O(ne ∗ ns ∗ nd ∗ nd

nd)

39

3 Dimensions Selection

Algorithm 12 Select Dimensions based on Brute Force Evaluations (BES)
1: List <> selectedDims . Temporary storage for reduced dimensions
2: dimIndicesTmp[origDims.length] . Temporary storage of selected dimension indices
3: bestFpRate← 1.0 . Temporary storage for best false positive value
4:
5: function SelectDimensions(origDims[], selDimCount, events[], subscriptions[])
6: selectedDims← origDims
7: . Start brute force recursion
8: BruteForceSelect(origDims, selDimCount, events, subscriptions,0)
9: . Return selected dimensions

10: return selectedDims
11: end function
12:
13: . Recursive function for brute force finding the best dimension combination
14: procedure BruteForceSelect(origDims[], selDimCount, events[], subscriptions[],

depth)
15: for iDim = 0 to origDims.length do
16: dimIndicesTmp[depth]← iDim;
17: if depth < (selDimCount− 1) then
18: . Go deeper in recursion
19: BruteForceSelect(origDims, selDimCount, events, subscription, depth + 1)
20: else
21: . Reached max recursion depth, evaluate selected dimensions
22: List <> selectedDimsTmp
23: for iSel = 0 to selDimCount do
24: selectedDimsTmp.add(dimIndicesTmp[iSel])
25: . Simulate and measure false positive rate with this set of dimensions
26: simuFpRate← Simulate (selectedDimsTmp, events, subscriptions)
27: if simuFpRate < bestFpRate then
28: bestFpRate← simuFpRate
29: selectedDims← selectedDimsTmp
30: end if
31: end for
32: end if
33: end for
34: end procedure

40

3.4 Evaluation-based Selection

3.4.2 Greedy Selection Algorithm (GES)

The Greedy Evaluation-based dimension Selection (GES) algorithm is also based on evalua-
tions of dimension sets and very similar to the brute force strategy - it also evaluates different
combinations of dimensions but instead of trying out every permutation the runtime is im-
proved significantly by using a greedy strategy.
Instead of trying out all permutations the algorithm removes step by step one dimension.
First, for nd dimensions, the setting with all nd dimensions is evaluated. Then all settings
with a different dimension removed are evaluated. The setting with the best evaluation result
is chosen and one dimension is removed finally.
This way incrementally all dimensions are removed step by step until only one dimension is
left. All dimension counts are evaluated and the best count is chosen.
Evaluations comparing the GES algorithm with the brute force algorithm show that the re-
sults are nearly as good as the result of the BES approach.
The time complexity of the greedy algorithm is O(ne ∗ ns ∗ nd

2). For all dimension counts m
with nd > m > 0 there are m combinations for removing the next dimension. Time complex-
ity of the algorithm is quadratic depending on the number of dimensions but not exponential
like as for the BES algorithm.

Algorithm 13 Select Dimensions based on Greedy Evaluations (GES)
1: function SelectDimensions(origDims[], selDimCount, events[], subscriptions[])
2: List <> selectedDims . Temporary List for reducing dimensions
3: selectedDims.addAll(origDims)
4: . Reduce dimensions step by step greedily
5: while selectedDimsims.size > selDimCount do
6: bestDimIndex← 0
7: bestDimFp← 1.0
8: . Find Dimension whichs absence improves false positive rate most
9: for iDim = 0 to selectedDims do

10: List <> selectedDimsTmp← copy(selectedDims)
11: selectedDimsTmp.removeAt(iDim)
12: . Simulate and measure false positive rate with this set of dimensions
13: simuFpRate← Simulate (selectedDimsTmp, events, subscriptions)
14: . Remember this dimension if its absence improves false positive rate
15: if simuFpRate < bestDimFp then
16: bestDimIndex← iDim
17: bestDimFp← simuFpRate
18: end if
19: end for
20: . Remove Dimension whichs absence improves false positive rate most
21: selectedDimsTmp.removeAt(bestDimIndex)
22: end while
23: return selectedDims
24: end function

41

3 Dimensions Selection

3.5 Finding best Dimensions Count

All algorithms presented up to now can only find the best dimensions for a fixed number of
dimensions. However the best number of dimensions can vary, depending on the number of
IP bits and the selectivity of the individual dimensions. In a scenario with many dimensions
with high selectivity the best number of dimensions is higher than in a scenario with less
dimensions with high selectivity. The number and distribution of events and subscriptions
can also influence the best number of dimensions. This section will show two different ways
to find out the best number of dimensions based on the presented algorithms. One way is
based on the Principal Components Analysis (PCA) and another way is a modified version of
the greedy GES algorithm.

3.5.1 PCA-based Dimension Count

This approach is based on the principal component analysis which transforms an n-dimensional
space, specified by the covariance matrix, into an orthogonal space of eigenvectors. The
principal components are eigenvectors of the covariance matrix, sorted by their corresponding
eigenvalues.
The basic idea of this approach is that the most relevant components can represent the system
with very accurately. The eigenvalue of a component represents, broadly speaking, the amount
of importance of a dimension. In scenarios with more selective dimensions the number of
important components will be higher. The higher the number of important components with
higher eigenvalues, the more components are needed so that the sum of their eigenvalues is
above a certain threshold. To determine the best number of dimensions it is calculated how
much of the most important components together have a sum of eigenvalues which have a
ratio of the sum of all eigenvalues above a specified threshold.
Algorithm 14 shows the algorithm to determine the number of dimensions. Input for the
algorithm is are the eigenvalues of the principal components in descending order and the
threshold, a value between 0.0 and 1.0. First the sum of all eigenvalues is calculated. In a
second step the minimum number of most important components with the necessary a sum
of eigenvalues is returned.

3.5.2 Evaluation-based Dimension Count

The greedy algorithm GES can easily modified to find the best dimension count. For that it
is useful that this algorithm reduces the number of dimension step by step.
In Algorithm 15 the algorithm is illustrated. As the original GES algorithm for every count
every dimension is removed and the set of remaining dimensions is evaluated. The difference
is that the algorithm remembers the count and set of dimensions with the best false positive
rate. After all counts of dimensions were evaluated the best set of dimensions of all possible
dimension counts is returned.
The amortized time complexity of this algorithm is also O(ne∗ns∗nd

2), like for the unmodified
greedy algorithm.

42

3.5 Finding best Dimensions Count

Algorithm 14 Algorithm to determine dimension count based on PCA
1: function DetermineDimCount(sortedEigenV als[], threshold)
2: . Calculate sum of eigenvalues
3: eigenV alSum← 0
4: for i = 0 to sortedEigenVals.length do
5: eigenV alSum← eigenV alSum + sortedEigenV als[i]
6: end for
7: eigenV alThr ← eigenV alSum ∗ threshold
8: eigenV alSumTmp← 0
9: . Determine components to get over threshold

10: for i = 0 to sortedEigenVals.length do
11: eigenV alSumTmp← eigenV alSum + sortedEigenV als[i]
12: if eigenV alSumTmp ≥ eigenV alThr then
13: . Return number of components return i + 1
14: end if
15: end for
16: end function

43

3 Dimensions Selection

Algorithm 15 Select Dimensions based on Greedy Evaluations
1: function SelectDimensions(origDims[], events[], subscriptions[])
2: List <> selectedDims . Temporary List for reducing dimensions
3: selectedDims.addAll(origDims)
4: . Variable for false positive rate for all dimension counts
5: bestFpTotal← Simulate (selectedDims, events, subscriptions)
6: . Reduce dimensions step by step greedily
7: while selectedDims.size > 1 do
8: bestDimIndex← 0
9: bestDimFp← bestFpTotal

10: . Find Dimension whichs absence improves false positive rate most
11: for iDim = 0 to selectedDims do
12: List <> selectedDimsTmp← copy(selectedDims)
13: selectedDimsTmp.removeAt(iDim)
14: . Simulate and measure false positive rate with this set of dimensions
15: simuFpRate← Simulate (selectedDimsTmp, events, subscriptions)
16: . Remember this dimension if its absence improves false positive rate
17: if simuFpRate < bestDimFp then
18: bestDimIndex← iDim
19: bestDimFp← simuFpRate
20: end if
21: end for
22: . Only remove dimension if this improves false positive rate
23: if bestDimFp < bestFpTotal then
24: . Remove dimension whichs absence improves false positive rate most
25: selectedDimsTmp.removeAt(bestDimIndex)
26: bestFpTotal← bestDimFp
27: end if
28: end while
29: . Return List of reduced dimensions
30: return selectedDims
31: end function

44

Chapter 4

Event Space Partitioning
The last chapter explained how the results of spatial indexing can be improved with better
input data, by selecting the most relevant dimension. This chapter will show a way to improve
the spatial indexing itself.
As explained in section 2.1.2, the spatial index is created by partitioning the event space Ω
step by step in the middle. This works well as long as the events are distributed equally over
the event space and the subspace partitions are balanced regarding the number of events in
each partition.

However if the events are not equally distributed, the events are not balanced across the
partitions. Figure 4.1 shows such a scenario. Recall that event filtering is done by checking
if an event is in the same partition as a subscription. If a subscription covers/intersects the
same partition as an event, the event is forwarded to the subscriber.
In the illustrated scenario, even with a 4-bit index it is not possible to do accurate event
filtering. While the partitions in the upper right are mostly useless for filtering, as there are
only few events that can be filtered with these partitions, the partitions in the lower left are
overloaded. In the lower right there are many events too but not many subscriptions to filter
the events for. As a result of the poor filtering effectiveness the false positive rate would be
high which leads to a higher network traffic.

(a) Normal Parti-
tion 1-bit dz

(b) Normal Parti-
tion 2-bit dz

(c) Normal Parti-
tion 3-bit dz

(d) Normal Parti-
tion 4-bit dz

Figure 4.1: Normal Partitions

To solve this problem, to improve the indexing results, it is desirable to improve the partition-
ing so that the partitions are more balanced, so that there is more filtering granularity where
it is needed. This chapter will present an approach for spatial indexing based on balanced
partitioning taking into accounts events and subscriptions.

45

4 Event Space Partitioning

4.1 Improved Partitioning

In [CS04] an approach to improve the content space partition of the presented system Kyra
is proposed. This approach was simplified and mapped to be used in a system like PLEROMA.

The algorithm from Kyra uses a simple methodology: Partitioning into non-overlapping bal-
anced zones. Instead of always partitioning the event space in the middle, as presented in
Section 2.1.2, partitioning is always done at the position of the workload median.
For determining the workload median a metric to calculate the workload of events is needed.
The workload of an event subspace is calculated as the sum of all numbers of matching sub-
scriptions of all events with the following formula:
workloadsubspace = Σ(matchese)

Figure 4.2 shows an example for improved partitioning. Instead of partitioning always in
the midpoint every partition is done at the median of event loads which depends on the num-
ber of events and subscriptions matching events. This case demonstrates how the indexing
can be improved this way. In the important lower left of the diagram the subspaces are much
more granular than in the upper right. This way the in-network filtering would be much more
efficient which reduces the false positive rate (FPR).

Figure 4.2: Partitions event and subscriber based

Algorithm 16 shows a simplified, unoptimized implementation of the event load median
calculation. In a system like PLEROMA the calculation of the partition positions based on
the medians can be done at the controller.
A list of all partition positions can then used to generate the dz-expressions. This list can be
distributed from the controller to all hosts. All dz for forwarding flow rules and for all event
packet headers must be generated consistently using the same partition list.

46

4.1 Improved Partitioning

Algorithm 16 Unoptimized algorithm to find median of event workloads between given
borders

1: function FindEventMedian(origDims[], events[], subscriptions[], dimIndex, low, up)
2: List <> sortedEvtLoads . List with event workloads, sorted by event value
3: sumLoads← 0
4: . Calculate event workloads
5: for all evt ∈ events do
6: . Add event load (number of matching subs) together with event value
7: if evt.values[dimIndex] ≥ low & evt.values[dimIndex] ≤ up then
8: subMatches← 0
9: for all sub ∈ subscriptions do

10: if sub.matchs(evt) then
11: subMatches← subMatches + 1
12: sumLoads← subMatches + 1
13: end if
14: end for
15: . Add event load (number of matching subs) together with event value
16: sortedEvtLoads.add(newEvtLoad(subMatches, evt.values[dimIndex]))
17: end if
18: end for
19: . Sort event loads by event value
20: sortedEvtLoads.sortByEvtV alues()
21: . Sum up event loads until workload median is reached
22: medianPos← low
23: sumLoadsTmp← 0
24: for all evtLoad ∈ events do
25: sumLoadsTmp← sumLoadsTmp + evtLoad.Load
26: if sumLoadsTmp > (sumLoads/2) then
27: medianPos← evtLoad.EvtV alue
28: break
29: end if
30: end for
31: return medianPos
32: end function

47

4 Event Space Partitioning

4.2 Combining with Dimension Selection

Both, dimension selection and improved partitioning can improve spatial indexing and reduce
the FPR. It would be desirable to combine them both with an even lower FPR as a result.
Indeed both techniques can be combined very good and evaluations show that a combination
of both reduces the FPR more than the single techniques.

In chapter 3 two main algorithm types were presented: Selection algorithms-based on math-
ematical models and evaluation-based selection. The combination with the improved parti-
tioning is slightly different for both types of algorithms.

When combining the improved indexing with an algorithm-based on a mathematical model
such as correlation-based selection, both approaches work completely independent. In a first
step the dimension selection algorithm reduces the number of dimensions. Then in a second
step the partitions for the reduced dimension subset is generated. All dz-expressions in the
system are then generated with the reduced set of dimensions and the pre-calculated partitions.

The combination with evaluation-based dimension selection algorithms allows optionally to
use the improved partitioning during the dimension selection. As the evaluation-based al-
gorithms simulate the in-network filtering for every combination of reduced dimensions, the
improved partitioning can be used in every evaluation step.
In this case the algorithm can be find the very best dimension set taking into account the
improved partitioning. However the disadvantage of this combination is, that every evaluation
step becomes slower because for every evaluation step the partitioning has to be calculated.
Alternatively the evaluation-based algorithm can be used independently from the improved
partitioning and combined in the same way as described for the mathematical model-based
algorithms.

All in all both approaches can be combined easily with good results. They can even us
collected data together. Both use active subscriptions and events collected in a certain time-
frame and as both modify the dz generation, both must update the whole system, which
includes redeployment of all flows.
When both algorithms work synchronously the can use the same data and update the system
together at the same time.

48

Chapter 5

Evaluation of Algorithms
In this chapter the evaluations of all proposed algorithms will be presented. Recall the goal
of this thesis is to improve spatial indexing for publish/subscribe systems like PLEROMA to
reduce the false positive rate (FPR) and therewith the network traffic.
The algorithms will be evaluated how good they can reduce the FPR. Furthermore the per-
formance of the algorithms will be evaluated because there is always a tradeoff between FPR
reduction and run time of the algorithms.

All evaluations are performed in a test application simulating the filtering of pub/sub system
like PLEROMA. This application will be described in the first section of this chapter. In the
second section the results of the evaluations will be presented.

5.1 Experimental Setup

The evaluation application consists of four main components: The data generator compo-
nent, the dimension selector component, the pub/sub simulator component and the evaluator
component.

In a first step, the data generator generates subscriptions and events randomly. For simulat-
ing the in-network filtering, publishers are not necessary, the simulation only simulates how
events are filtered to subscribers. All data is randomly generated, a fixed initial seed for better
comparability of results can be specified.
Events are always generated inside subscriptions. The reason for this is on the one hand,
that only events that are matched by at least one subscription are relevant for the simulation,
on the other hand, that in cases with many dimensions, the chance that an event is inside a
subscription is very low. Events are randomly generated by picking a random location inside
a random subscription.
Subscriptions can be generated with two different basic patterns: Uniform distribution and
zipfian distribution. When using uniform distribution, the events are generated uniformly
over the event space, when using zipfian distribution they are generated in so-called buckets.
The behavior of dimensions can be configured in various ways. Depending on the type of
experiments, the variance of subscriptions and events, the selectivity of subscriptions and the
correlation between dimensions can be configured. Average size and distribution of subscrip-
tions is also configurable.

49

5 Evaluation of Algorithms

Figure 5.1: Architecture of Simulation Application

All in all it is possible to generate various scenarios for simulating different scenarios showing
the behavior of the algorithms under different circumstances.

Based on the events and subscriptions, the dimension selector selects a subset of dimensions.
As selection algorithm any algorithm presented in Chapter 3 are available. For different
experiments the desired algorithm can be configured.

The pub/sub simulator simulates the in-network filtering based on the selected dimensions and
the generated events and subscriptions. For every event and subscription, the dz-expressions
are generated. As described in Chapter 2, in-network filtering is performed by looking for
every event, for every subscription, if one of the subscription dz matches the event dz. A
dz-expression dzs matches dze if dzs is equal to dze or a prefix of dze.
For all events the in-network filtering is performed, for every event is filtered to all subscrip-
tions. The result of the pub/sub simulator is the filtering result, for every event to which
subscription they were forwarded by the filter, based on the dz-expressions.
If selected dimensions allow better spatial indexing, the simulated event filtering is more ac-
curate.

In a final step, the filtering result is evaluated. Therefore, the evaluator checks for all events
every subscription the filter would forward them to. Besides the filtering input, the second
input data for the evaluator are the events and subscriptions. By testing if all event values
are inside the bounds of a subscription it can be checked if a subscription is really interested
in an event.
Every event that is filtered to a subscription correctly is a true positive. Events that are
wrongly filtered to a subscription, that is not interested in this event, is a false positives.
Events that are not filtered to a subscription that would be interested in the event, so-called
false negatives, are impossible by design.

50

5.2 Evaluation Measurements

The evaluation result we are interested in most is the false positive rate. It is calculated as
the rate of filtered events that are falsely filtered:

fprate = |falsepos|
|falsepos|+|truepos|

For the following evaluation measurements, for every evaluation run, the dimension selector
will reduce the number of dimensions step by step. Every dimension count will be evaluated.
For a evaluation with n dimensions all numbers of dimensions from n,n− 1...1 will be evalu-
ated, including n dimensions which means the unreduced data. This way the effectiveness of
the algorithms and the best number of dimensions to select can be found out.

The evaluations are done with different numbers of subscribers. To show a wide range of
scenarios, most of the scenarios are evaluated with 200, 400, 1000, 2000, 4000 and 10,000
subscribers. The number of events is 10,000 for all experiments.
The event space range, the range of event values and subscription bounds, is from 0 to 10,000
for every dimension. For all experiments the maximum length of dz-expressions is 24. This is
aligned to the number of available bits when using IPv4-multicast ranges and IP fields in the
packet header to filter events.

5.2 Evaluation Measurements

This section will present the evaluation results of all presented algorithms. Every type of
algorithm is evaluated in a separate subsection.
For the algorithms different scenarios will be evaluated to show the strengths and weaknesses of
the algorithm. The description of a evaluation consists of the description of the scenario/data
generation and the evaluation of the false positive rate and other metrics.
The data generation will be illustrated with graphics showing the distribution of subscriptions
and events over the event space. Every diagram shows the distributions over two dimensions.
In these the subscriptions are plotted as rectangles and events plotted as green.
False positive rates will be shown in diagrams showing how the FPR increases or decreases
with the number of selected dimensions.

5.2.1 Event-based Selection

The first introduced algorithm was the Event Variance-based dimension Selection (EVS). EVS
selects dimensions with a higher variance of events and removes dimensions with lower vari-
ance.

As a first evaluation, to show the effect of EVS, a scenario of eight dimensions with uni-
formly distributed subscriptions and random dimensions selectivity is chosen. The selectivity
of dimensions is modified by changing the distribution of subscriptions. A dimension with
widely distributed subscriptions is more selective as a dimension where all events have the
same value. Events are randomly generated inside the subscriptions. Figure 5.2 shows this

51

5 Evaluation of Algorithms

type of scenario for 200 subscriptions.
Every graphic shows two dimensions, all four graphics together show all dimensions. The
distribution of subscriptions and therewith the selectivity is random. Dimensions 1, 2, 3, 4
and 8 have a higher selectivity while the dimensions 5, 6 and 7 have a lower selectivity.

(a) Dimensions 1, 2 (b) Dimensions 3, 4 (c) Dimensions 5, 6 (d) Dimensions 7, 8

Figure 5.2: Distribution of 200 subscriptions: Uniform distribution, random selectivity

This scenario now is evaluated. The goal of the algorithm is to find the more selective dimen-
sions. Figure 5.3 shows the false positive rate (FPR) resulting from the dimension reduction.
On the x-axis the dimension count is plotted. 8 means no dimension reduction, the other
counts down to 1 are for the dimensions selected by the algorithm.
For comparison and to show that the algorithm is really selecting the right dimensions and
not random dimensions, the figure also shows the evaluation of an algorithm selecting random
dimensions.
As you can see the EVS algorithm can reduce the FPR significantly while the random al-
gorithm does not. For higher subscription numbers the FPR is in general higher but the
algorithm can always reduce the FPR. All in all, in this scenario the EVS algorithm is an
improvement for the event filtering.

(a) EVS (b) Random dimension selection

Figure 5.3: False positive rate for: Uniform distribution, random selectivity

52

5.2 Evaluation Measurements

The next scenario uses zipfian distribution of subscriptions instead of uniform distribution.
Subscriptions are generated in so-called buckets to generate the hotspot like behavior. Every
bucket is an area where the subscriptions are generated in. For our scenario we use five
buckets.
Figure 5.4 shows the zipfian distributed subscriptions with random selectivity of dimensions.
This distribution is an attempt to generate more realistic data than uniformly distributed
subscriptions.

Figure 5.4: Distribution of 200 subscriptions: Zipfian distribution, random selectivity

The selectivity for zipfian distribution is modified by changing the distribution inside the
buckets. In a dimension with lower selectivity the subscriptions are generated more close to
the bucket center, for high selectivity they are distributed all over the buckets.
Figure 5.5 shows that the EVS algorithm is not able to deal with this type of selectivity.
As it measures the variance of events over the whole dimension its metric can not detect the
subscription distribution inside the buckets.
The selection accuracy of EVS in this scenario is very similar to the accuracy of the random
selection algorithm. For this scenario the dimension selection can reduce the FPR but not as
good as for uniform distribution.

(a) EVS (b) Random dimension selection

Figure 5.5: False positive rate for: Zipfian distribution, random selectivity

The last two scenarios showed how EVS can reduce dimensions for scenarios with varying
dimension selectivity, with uniform and zipfian distribution. Both scenarios are extreme cases
because they include dimensions with very high and very low variance.
An other extreme case are scenarios with no varying selectivity of dimensions. In the following

53

5 Evaluation of Algorithms

Figure 5.6: Distribution of 200 subscriptions: Uniform distribution, uniform selectivity

Figure 5.7: Distribution of 200 subscriptions: Zipfian distribution, uniform selectivity

two scenarios with no varying selectivity are evaluated, with uniform and zipfian distribution.
The Figures 5.6 and 5.7 show these scenarios. In both the subscriptions are distributed over
the full range, there is no difference in selectivity between the dimensions.

As the Figures 5.8 and 5.9 show, in these scenarios the results of EVS are very similar to
the results of the random selection.
The reason for this is obvious. As there is no measurable difference in variance between the
dimensions, EVS can not decide which dimensions to select.

(a) EVS (b) Random dimension selection

Figure 5.8: False positive rate for: Uniform distribution, uniform selectivity

All in all the EVS algorithm can reduce the false positive rate by selecting dimensions but
there are scenarios where it has problems to detect the right dimensions to select.

54

5.2 Evaluation Measurements

(a) EVS (b) Random dimension selection

Figure 5.9: False positive rate for: Zipfian distribution, uniform selectivity

An advantage of EVS is its run time. For processing 1000 subscriptions and 20,000 events
for eight dimensions it needs < 0.01 seconds to select the dimensions and its time complexity
depends linearly on the number of subscriptions and events.

5.2.2 Event and Subscription-based Selection

To avoid the problems of EVS, in Section 3.2, algorithms based on the selectivity of subscrip-
tions were introduced.
Three algorithms were presented, the subscription overlap-based selection (SOS), the subscrip-
tion event match count-based Selection (SMS) and the subscription false event match based
selection (SFS).
Performance measurements showed that SOS is much more resource intensive than the other
algorithms. Its time complexity depends quadratically on the number of subscriptions. For
processing 1000 subscriptions and 20,000 events for eight dimensions SOS needs ∼ 800 sec-
onds. SMS and SFS have run time depending linearly on the number of subscriptions and
events, SMS needs ∼ 1.5 seconds and SFM ∼ 2.5 seconds to process the same amount of data.

The following scenario shows a weakness of EVS: When the subscription selectivity is in-
dependent from the event variance, it is not able to detect the dimensions to select with
its metric. Figure 5.10 shows this scenarios. The dimensions selectivity of subscriptions is
random but the event variance is more or less constant.

Figure 5.11 shows a comparison of the dimension selection results for EVS, SOS and SMS.
EVS fails in this scenario. It is not able to detect the dimensions that should be selected.
SOS is an improvement over EVS but it is also not able to deal with this scenario very good
and due to the time complexity it was not possible to evaluate SOS with higher number of
subscriptions than 400.
SMS is definitively much better in selecting the best dimensions in this scenario. It can reduce
the number of false positives significantly.

55

5 Evaluation of Algorithms

Figure 5.10: Distribution of 200 subscriptions, constant event variance

(a) EVS false positive rate (b) SOS false positive rate (c) SMS false positive rate

Figure 5.11: Comparison of EVS, SOS and SMS for fixed event variance

As the results of SOS are worse than of SMS and it is very slow we will not continue evaluating
it.
The Figures 5.12 and 5.13 show the results of the dimension selections of the algorithms
SMS and SFS. The scenarios are equal to the scenarios used in the last section - uniform and
zipfian distribution with random dimension selectivity.
Both algorithms have nearly the same results, the false positive rate with SFS is a little
lower.

(a) False positive rate of SMS (b) False positive rate of SFS

Figure 5.12: False positive rate of SMS and SFS for: Uniform distribution, random selectivity

56

5.2 Evaluation Measurements

(a) False positive rate of SMS (b) False positive rate of SFS

Figure 5.13: False positive rate of SMS and SFS for: Zipfian distribution, random selectivity

All in all the algorithms SMS and SFS have very similar and good results. SMS is a little
faster while SFS is a slightly more accurate. Both algorithms can deal with a wide range of
scenarios and achieve a good reduction of the false positive rate by selecting dimensions.

5.2.3 Correlation-based Selection

Besides selecting dimensions with higher individual selectivity there is one more factor to
consider: Correlations between dimensions. Correlation of dimensions a and b means that
subscriptions and events with high/low values in dimension a will also have high/low values
on dimension b. When two or more dimensions are correlated it is enough to select only
one of these because the behavior of one dimension can reflect the behavior of all correlated
dimensions.
Therefore in Section 3.3 algorithms were introduced to detect correlated dimensions. Two
different algorithms to select features, in our context dimensions, were introduced: Selection-
based on Principal Component Analysis (PCS) and Selection based on Principal Feature Anal-
ysis (PFS).
Both algorithms do their calculations based on a covariance matrix. To calculate the covari-
ance three algorithms were introduced: Covariance matrix from events (CEV), Covariance
matrix from event match counts (CMM) and Covariance matrix from false matches (CFM).
All three algorithms are based on previously presented algorithms. CEV is based on the event
based EVS algorithm and CMM and CFM are based on the subscription selectivity metrics
SMS and SFS.

The time complexity of PCS and PFS itself is constant for a constant number of dimen-
sions and can be ignored. Mainly the algorithm run time is caused by the calculation of the
covariance matrix calculation. Like EVS on which is based, CEV is very fast, for processing
1000 subscriptions and 20,000 events for eight dimensions it needs only < 0.1 and scales linear
with the number of subscriptions, events and dimensions. CMM needs for the same input data
∼ 7.5 seconds and CFM needs ∼ 9.5 seconds. Both are scaling linearly too.

57

5 Evaluation of Algorithms

In this section we evaluate how good the algorithms can select dimensions in scenarios with
correlated dimensions. The results of the algorithms are compared to algorithms that do not
analyze the correlations of dimensions.

First a scenario with dimensions with pairwise 90 percent correlation between each others
is evaluated. This means that the values of four pairs of random dimensions are in average 90
percent equal. The distribution is zipfian based and the selectivity of dimensions is constant.
Figure 5.14 shows such a scenario for 200 subscriptions. In the figure is shown that fore
example the dimensions 1 and 2 are one of four correlation pairs.

(a) Dimensions 1, 2 (b) Dimensions 3, 4 (c) Dimensions 5, 6 (d) Dimensions 7, 8

Figure 5.14: Distribution of 200 subscriptions, zipfian distribution, constant selectivity, corre-
lation 90%

The results for this type of scenario, with 1000 subscriptions, are shown in Figure 5.15. Three
figures show the results of event variance based, match count based and false match based
selections. In each figure the results of the PCS and PFS algorithms, for each of the three
covariance calculation algorithms, are shown. For comparison in every figure also the results
of an algorithm not handling correlations between dimensions is shown.
Two algorithm combinations are the best in this scenario: PFS selection with a covariance
matrix calculated from CEV and the combination of PCS with CFM.

(a) Event variance based se-
lection (EVS and CEV)

(b) Match count based selec-
tion (SMS and CMM)

(c) False match based selec-
tion (SFS and CFM)

Figure 5.15: Comparison of subscription selectivity selection, PCS and PFS for correlation
90%, 1000 subscriptions

An other type of correlation is inverse correlation. Correlation of dimensions a and b means
that subscriptions and events with high/low values in dimension a will have low/high values
on dimension b. Figure 5.16 shows the results of the same algorithms for a scenario with

58

5.2 Evaluation Measurements

zipfian distribution, constant dimension selectivity and 90 percent inverse correlation.
For this inverse correlation scenario all PFS algorithms have good results but also the combi-
nation of PCS and CFM.

(a) Event variance based se-
lection (EVS and CEV)

(b) Match count based selec-
tion (SMS and CMM)

(c) False match based selec-
tion (SFS and CFM)

Figure 5.16: Comparison of subscription selectivity selection, PCS and PFS for inverse corre-
lation 90%, 1000 subscriptions

Both scenarios are extreme cases as there is very high correlation between dimensions and
the selectivity of dimensions is constant. Therefore the next scenario has random selectivity
between dimensions and random correlation. Random correlation means that still pairs of
dimensions are correlated but with a random amount of correlation instead of constant 90
percent. This scenario is illustrated in Figure 5.17.

Figure 5.17: Distribution of 200 subscriptions, zipfian distribution, random selectivity, random
correlation

In Figure 5.18 the results of the algorithms for random correlation are plotted. All event
variance based algorithms, shown in (a), are not good in this scenario. The main reason for
this might be that they can not analyze the selectivity of dimensions with zipfian distribution,
as shown in Section 5.2.1. PFS selection is worse for this type of scenario, only SMS, SFS
and the combination of PCS with CMM or CFM is good for this scenario.

In summary, the combination of the selection algorithm PCS together with the covariance
calculation CFM is most universal. This combination had good results in all three scenarios:
Constant correlation, constant inverse correlation and inverse correlation. PFS based selection
is good in detecting correlated dimensions but it cannot analyze the selectivity of dimensions
and therefore is only useful for extreme cases with highly correlated dimensions.

59

5 Evaluation of Algorithms

(a) Event variance based se-
lection (EVS and CEV)

(b) Match count based selec-
tion (SMS and CMM)

(c) False match based selec-
tion (SFS and CFM)

Figure 5.18: Comparison of subscription selectivity selection, PCS and PFS for random cor-
relation, 1000 subscriptions

5.2.4 Evaluation-based Selection

In Section 3.4 algorithms that are based on evaluating and finding the best dimension set
instead of selecting based on a mathematical model.
Two algorithms were presented: The brute force evaluation based selection (BES) and the
greedy evaluation based selection (GES).

Both algorithms evaluate possible sets of dimensions and are therefore very resource con-
suming. For processing 1000 subscriptions and 20,000 events for eight dimensions BES would
need about ∼ 8 hours. GES is much faster as its time complexity is linear depending on the
number of dimensions instead of exponentially. The GES algorithm needs only ∼ 400 seconds
for the same data set.

As the BES algorithm is very slow, it is only possible to evaluate it in a smaller scenario.
The following Figure 5.20 shows that the results of BES and GES are very similar. Brute
force based selection trying all possible combinations is less than one percent better as greedy
dimension selection. However as GES is much faster than BES it is the better alternative.

Figure 5.20 shows the results of the dimension selection using the GES algorithm in the
scenarios with random dimension selectivity with uniform and zipfian distribution, as intro-
duced in Section 5.2.1.
As you can see GES is better than all mathematical model based algorithms. As it is based on
evaluations and not on al model it is very universal, it can be used for any type of scenario.

All in all the evaluation based methods can reduce the false positive rate more than the other
algorithms but their disadvantage is the runtime. The BES algorithm can not be used in a
practical scenario as it is very slow but the GES algorithm is much faster and is nearly as
good as the BES.

60

5.2 Evaluation Measurements

Figure 5.19: Architecture of Simulation Application

(a) GES for uniform distribution (b) GES for zipfian distribution

Figure 5.20: GES false positive rates for: Uniform and zipfian distribution, random selectivity

5.2.5 Dimension Selection Comparison

In this section a comparison of four representative algorithms is presented:

1. EVS - the fastest selection algorithm

2. SFS - the most accurate subscription selectivity based algorithm

3. PCS-CFM - the most universal correlation based algorithm

4. GES - the faster evaluation based algorithm

These algorithms are compared for four different scenarios for 400 and 1000 subscriptions:
Uniform and zipfian with random selectivity, zipfian with 90 percent correlation and zipfian
with random selectivity and random correlation.

The first comparison is for uniform distribution

61

5 Evaluation of Algorithms

(a) 400 Subscriptions (b) 1000 Subscriptions

Figure 5.21: Comparison for: Uniform distribution, random selectivity

(a) 400 Subscriptions (b) 1000 Subscriptions

Figure 5.22: Comparison for: Zipfian distribution, random selectivity

(a) 400 Subscriptions (b) 1000 Subscriptions

Figure 5.23: Comparison for: Zipfian distribution, constant selectivity, 90 percent correlation

In summary the GES algorithm is the most universal algorithm. For all four comparison
scenarios it had the best results. Anyway the PCS selection algorithm with a covariance from
the CFM algorithm is also very universal and accurate, for correlated and for uncorrelated

62

5.2 Evaluation Measurements

(a) 400 Subscriptions (b) 1000 Subscriptions

Figure 5.24: Comparison for: Zipfian distribution, random selectivity, random correlation

data. For uniformly distributed subscriptions without correlation all algorithms, including
EVS, had similarly good results.

5.2.6 Best Dimension Count

All presented algorithms need the number of dimensions to select as input. However this
number can vary depending on the number of selective dimensions and other factors.
Therefore in Section 3.5 two approaches were presented to select the best number of dimen-
sions. In this section we evaluate the PCA-based dimension count, presented in Section 3.5.1
together with the SFS dimension selection algorithm and the GES algorithm detecting the
dimension count, presented in Section 3.5.2.
The PCA-based dimension count determination uses a fixed threshold to determine the prin-
cipal components with highest accuracy. For this evaluation we chose 0.85 for best results.
The following diagrams show the evaluation results of the algorithms for all dimension counts
and with a constant, automatically selected dimension count. The solid line shows the se-
lection results for all dimension counts, the dashed line shows the results for a automatically
chosen dimension count.

Figure 5.25 shows a scenario with two selective dimensions and uniformly distributed sub-
scriptions. The automatically determined dimension count is clearly very accurate, it always
has the same result as the best dimension count.
In Figure 5.26 a scenario with four selective dimensions and uniformly distributed subscrip-
tions is evaluated. In this case the PCA-based dimension count with SFS does not always
find the best dimension count. GES with automatic dimension count always finds the best
dimension count by design.

The Figures 5.27 and 5.28 show the results for zipfian distribution with two and four selective
dimensions. Same as for the last figures GES always finds the best dimension count and the
PCA based dimension count only for the scenario with two selective dimensions.

63

5 Evaluation of Algorithms

(a) SFS and SFS with automatic dimen-
sion count

(b) GES and GES with automatic di-
mension count

Figure 5.25: Results of automatic dimension count for: Uniform distribution, two selective
dimensions

(a) SFS and SFS with automatic dimen-
sion count

(b) GES and GES with automatic di-
mension count

Figure 5.26: Results of automatic dimension count for: Uniform distribution, four selective
dimensions

All in all the PCA based dimension count determination can not find the best dimension
count for all scenarios. To achieve this more intelligent strategies than a fixed threshold are
needed. Anyway this approach was able to find the best dimension count ±1.
The GES algorithm for automatic dimension count always finds the best number of dimen-
sions.

64

5.2 Evaluation Measurements

(a) SFS and SFS with automatic dimen-
sion count

(b) GES and GES with automatic di-
mension count

Figure 5.27: Results of automatic dimension count for: Uniform distribution, two selective
dimensions

(a) SFS and SFS with automatic dimen-
sion count

(b) GES and GES with automatic di-
mension count

Figure 5.28: Results of automatic dimension count for: Uniform distribution, four selective
dimensions

65

5 Evaluation of Algorithms

5.2.7 Dimension Selection and Improved Partitioning

An additional approach to increase the bandwidth efficiency by reducing the false positive
rate (FPR) is the improved partitioning of the event space, presented in Chapter 4. This
approach optimizes the generation of the spatial index for scenarios with unevenly distributed
subscriptions.

The figures show the combination of this approach with the two algorithms SFS and GES, as
described in Section 4.2. The evaluation scenario is again zipfian distribution with random
dimension selectivity, for 400 and 1000 subscriptions.
For both algorithms, SFS and GES, the combination with the improved partitioning decreases
the false positive rate significantly again. The combination of both algorithms can reduce for
400 subscriptions the original FPR from 88% to 23% with SFS and 24% with GES. The
FPR of 95% for 1000 subscriptions can be reduced to 39% with SFS and to 42% with GES.
This means a reduction of false positives of ∼ 75% for 400 subscriptions and ∼ 60% for 1000
subscriptions.

(a) SFS with improved partitioning, 400
subscriptions

(b) SFS with improved partitioning,
1000 subscriptions

Figure 5.29: SFS with and without improved partitioning for zipfian distribution

66

5.2 Evaluation Measurements

(a) GES with improved partitioning, 400
subscriptions

(b) GES with improved partitioning,
1000 subscriptions

Figure 5.30: GES with and without improved partitioning for zipfian distribution

67

Chapter 6

Conclusion and Future Work
While SDN allows content-based routing with line-rate performance, the limited filtering re-
sources available on switches decrease the efficiency of the in-network filtering and thereby
decrease the bandwidth efficiency.

In this thesis ways to increase the bandwidth-efficiency by using the available filtering re-
sources more efficiently were presented. In the system model, this thesis is based on, for
each transmitted information packet an index is generated, called dz-expression (dz). The
dz is stored in the packet header and used for routing decisions on the SDN switches. Thus
its accuracy is crucial for the precision of the in-network filtering. The maximum length of
this index depends on the network protocol and the number of filtering rules depends on the
available TCAM memory on the switch. Both limits the precision of the in-network filtering.
Therefore this thesis addressed the problem of bandwidth-efficient routing by improving the
generation of dz-expressions. For best filtering results a dz must contain as much filtering
relevant information as possible and the dz must represent the information to filter as good
as possible. Two approaches to generate more representative dz-expressions were presented:
Better selection of information event dimensions that should be used to generate the dz and
an improvement of the dz generation itself.

For selecting the most relevant dimensions to generate the index various different strate-
gies were developed. Two main factors were considered: Selectivity of dimensions, which
means how good an dimension can be used for filtering and correlation of dimensions, if it is
possible that an dimension can be represented by an other and therefore left out. Taking into
account these factors, the strategies were developed and evaluated. Two dimension selection
algorithms stand out: The greedy evaluation based selection (GES) which is most universal
but slower and the principal component based selection using covariance from false matches
(PCS-CFM) which is not as universal as GES but faster.
In addition approaches to detect the best number of dimensions to select for indexing were
developed. Depending on the scenario the best number of dimensions to select can vary. Eval-
uations have shown that one of the two proposed algorithms can always find the best number
and the other at least the best number ±1. With a combination of the determination of the
best number of dimensions to select and the selection of the best dimensions, the best set of
dimensions can be selected.

Furthermore an approach to improve the generation of dz-expressions itself was presented

69

6 Conclusion and Future Work

and evaluated. This approach improves the partitioning of the n-dimensional event space of
dimensions, done by the spatial indexing. The approach improves the filtering accuracy which
was proven by evaluations.

Both approaches, the improved selection of dimensions and improving the event space par-
titioning can be combined. The evaluation of both approaches combined showed that the
combination leads to even higher filtering precision. In summary the proposed strategies can
determine the ideal number of dimensions, select the dimensions best for filtering and improve
the generation of the dz-expressions used for filtering. A combination of the strategies pre-
sented in this thesis can increase the bandwidth efficiency of content-based pub/sub systems
in SDN networks significantly. The number of false positives can be reduced by up to 75%,
depending on the scenario.

The best of the presented dimension selection algorithms need a significant amount of time to
process the input data and select the best dimensions. As their processing time scales scales
linearly with the size of the input data, such as events and subscriptions, the processing time
could be problematic for large scale systems. A possible approach to improve the algorithm
run time is to reduce the amount of input data. Strategies to reduce the amount of input
data without loosing relevant information are needed.
Moreover the evaluations showed that higher numbers of subscriptions increase the number
of false positives. Strategies to deal with many subscriptions should be developed or existing
approaches could be adapted.

70

Bibliography
[BBQV07] R. Baldoni, R. Beraldi, L. Querzoni, A. Virgillito. Efficient Publish/Subscribe

Through a Self-Organizing Broker Overlay and its Application to SIENA. The
Computer Journal, 50:444–459, 2007.

[BCM+99] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, D. C.
Sturman. An Efficient Multicast Protocol for Content-Based Publish-Subscribe
Systems. In Proceedings of the 19th IEEE international conference on distributed
computing systems (ICDCS). 1999.

[BFPB10] S. Bianchi, P. Felber, M. G. Potop-Butucaru. Stabilizing Distributed R-Trees for
Peer-to-Peer Content Routing. IEEE Transactions on Parallel and Distributed
Systems, 21:1175–1187, 2010.

[CDNF01] G. Cugola, E. Di Nitto, A. Fuggetta. The JEDI Event-Based Infrastructure and
Its Application to the Development of the OPSS WFMS. IEEE Transactions on
Software Engineering, 27:827–850, 2001.

[CJ11] A. K. Y. Cheung, H.-A. Jacobsen. Green Resource Allocation Algorithms for
Publish/Subscribe Systems. In Proceedings of the 31st international conference
on distributed computing systems (ICDCS). 2011.

[Com12] O. M. E. Committee. Software-defined Networking: The New Norm for Networks.
Open Networking Foundation, 2012.

[CRW01] A. Carzaniga, D. S. Rosenblum, A. L. Wolf. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems, 19:332–383,
2001.

[CS04] F. Cao, J. P. Singh. Efficient Event Routing in Content-based Publish-Subscribe
Service Networks. In Proceedings of IEEE INFOCOM 2004. IEEE, Hong Kong,
China, 2004.

[DK] F. Dürr, T. Kohler. Comparing the Forwarding Latency of OpenFlow Hardware
and Software Switches. Tecnical report 2014/04. Universität Stuttgart, Fakultät
Informatik, Elektrotechnik und Informationstechnik, Germany.

[FCMB06] L. Fiege, M. Cilia, G. Muhl, A. Buchmann. Publish/Subscribe Grows Up: Support
for Management, Visibility Control, and Heterogeneity. IEEE Internet Computing,
10:48–55, 2006.

[Fou] O. N. Foundation. OpenFlow Switch Specification.

71

Bibliography

[GSAA04] A. Gupta, O. D. Sahin, D. Agrawal, A. E. Abbadi. Meghdoot: Content-Based Pub-
lish/Subscribe over P2P Networks. In Proceedings of the 5th ACM/IFIP/USENIX
international conference on middleware, pp. 254–273. Springer-Verlag New York,
Inc., 2004.

[JCL+10] H.-A. Jacobsen, A. K. Y. Cheung, G. Li, B. Maniymaran, V. Muthusamy, R. S.
Kazemzadeh. The PADRES Publish/Subscribe System. In Principles and Appli-
cations of Distributed Event-Based Systems. IGI Global, 2010.

[KDT13] B. Koldehofe, F. Dürr, M. A. Tariq. Event-based systems meet software-defined
networking. In Proceedings of the 7th ACM International Conference on Dis-
tributed Event-Based Systems (DEBS). 2013.

[KDTR12] B. Koldehofe, F. Dürr, M. A. Tariq, K. Rothermel. The Power of
Software-defined Networking: Line-rate Content-based Routing Using Open-
Flow. In Proceedings of the 7th MW4NG Workshop of the 13th Interna-
tional Middleware Conference, pp. 1–6. ACM, 2012. doi:10.1145/2405178.
2405181. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=INPROC-2012-41&engl=0.

[LCZT07] Y. Lu, I. Cohen, X. S. Zhou, Q. Tian. Feature selection using principal fea-
ture analysis. In R. Lienhart, A. R. Prasad, A. Hanjalic, S. Choi, B. P.
Bailey, N. Sebe, editors, ACM Multimedia, pp. 301–304. ACM, 2007. URL
http://dblp.uni-trier.de/db/conf/mm/mm2007.html#LuCZT07.

[MG04] A. Malhi, R. X. Gao. PCA-based feature selection scheme for machine defect
classification. IEEE T. Instrumentation and Measurement, 53(6):1517–1525, 2004.
URL http://dblp.uni-trier.de/db/journals/tim/tim53.html#MalhiG04.

[Pie04] P. Pietzuch. Hermes: A Scalable Event-Based Middleware. Ph.D. thesis, Univer-
sity of Cambridge, 2004.

[PRGK09] J. A. Patel, E. Rivière, I. Gupta, A.-M. Kermarrec. Rappel: Exploiting interest
and network locality to improve fairness in publish-subscribe systems. Computer
Networks: The International Journal of Computer and Telecommunications Net-
working, 53:2304–2320, 2009.

[TKBR14] M. A. Tariq, B. Koldehofe, S. Bhowmik, K. Rothermel. PLEROMA: A SDN-
based High Performance Publish/Subscribe Middleware. In In Proceedings of the
ACM/IFIP/USENIX Middleware Conference. ACM press., 2014. doi:10.1145/
2663165.2663338. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=INPROC-2014-67&engl=0.

[TKK+11] M. A. Tariq, B. Koldehofe, G. G. Koch, I. Khan, K. Rothermel. Meeting
subscriber-defined QoS constraints in publish/subscribe systems. Concurrency
and Computation: Practice and Experience, 23:2140–2153, 2011.

72

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-41&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2012-41&engl=0
http://dblp.uni-trier.de/db/conf/mm/mm2007.html#LuCZT07
http://dblp.uni-trier.de/db/journals/tim/tim53.html#MalhiG04
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-67&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2014-67&engl=0

Bibliography

[TKKR09] M. A. Tariq, B. Koldehofe, G. Koch, K. Rothermel. Providing Probabilistic La-
tency Bounds for Dynamic Publish/Subscribe Systems. In Proceedings of the 16th
ITG/GI conference on kommunikation in verteilten systemen (KiVS). Springer,
2009.

[TKKR12] M. A. Tariq, B. Koldehofe, G. G. Koch, K. Rothermel. Distributed Spectral Clus-
ter Management: A Method For Building Dynamic Publish/Subscribe Systems.
In Proceedings of the 6th ACM international conference on distributed event-based
systems (DEBS). 2012.

[TKR13] M. A. Tariq, B. Koldehofe, K. Rothermel. Efficient content-based routing with net-
work topology inference. In Proceedings of the 7th ACM International Conference
on Distributed Event-Based Systems (DEBS). 2013.

73

	Abstract
	Kurzfassung
	Introduction
	PLEROMA Middleware
	Middleware Overview
	Architecture
	Content-based model

	Content-based routing
	Maintenance of Spanning Trees
	Maintenance of Flow Tables

	Limitations of in-network Filtering

	Dimensions Selection
	Event-based Selection
	Algorithm: Event-based Selection (EVS)

	Subscription-based Selection
	Selectivity-based Selection
	Overlap-based Selection (SOS)

	Correlation-based Selection
	Principal Component Analysis based Selection (PCS)
	Principal Feature Analysis based Selection (PFS)
	Covariance Matrix from Events (CEV)
	Covariance Matrix from Event Match Counts (CMM)
	Covariance Matrix from False Event Matches (CFM)

	Evaluation-based Selection
	Brute Force Selection Algorithm (BES)
	Greedy Selection Algorithm (GES)

	Finding best Dimensions Count
	PCA-based Dimension Count
	Evaluation-based Dimension Count

	Event Space Partitioning
	Improved Partitioning
	Combining with Dimension Selection

	Evaluation of Algorithms
	Experimental Setup
	Evaluation Measurements
	Event-based Selection
	Event and Subscription-based Selection
	Correlation-based Selection
	Evaluation-based Selection
	Dimension Selection Comparison
	Best Dimension Count
	Dimension Selection and Improved Partitioning

	Conclusion and Future Work
	Bibliography

