
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3613

Extending a Multi-tenant Aware
ESB Solution with Evolution

Management

Penghao Tian

Course of Study: Computer Science

Examiner: Prof. Dr. Frank Leymann

Supervisor: Dr. Vasilios Andrikopoulos

Commenced: January 14, 2014

Completed: August 15, 2014

CR-Classification: D.2.7, D.2.12, H.4.0

Abstract

Services have been improved over time to meet the increasing demand of service consumers.
A service could be changed at any state in service life cycle. An inefficient service version
management with arbitrary decisions could lead to disconnections between service consumers
and service providers. A service version control management system is therefore necessary.

The goal of this thesis is to specify, design and implement a service evolution management
system for a multi-tenant aware ESB solution, so that the ESB could have the capabilities
to manage the changes of multiple service versions between service consumers and service
providers in a transparent manner. Furthermore, a function should be provided to check the
compatibility between service versions, and, moreover, the calculation of service identifiers
should be executed automatically, because service descriptions do not contain version-related
information.

3

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Problem definition . 10
1.3 Outline . 10
1.4 Abbreviation . 12

2 Background and Related Work 15
2.1 Cloud Computing . 15
2.2 Service-Oriented Architecture . 16
2.3 Enterprise Service Bus . 18
2.4 Java Business Integration . 19
2.5 OSGi (Open Service Gateway initiative) . 21
2.6 Apache ServiceMix . 21
2.7 ESBMT and JBIMulti2 . 22
2.8 Service Evolution . 25
2.9 The Extension of the JBIMulti2 management system for service version man-

agement . 30

3 Specification and Design 33
3.1 Requirements . 33
3.2 System Specification . 34
3.3 System Design . 39
3.4 Summary . 56

4 Implementation 57
4.1 Fundamental Technologies . 58
4.2 Implementation of Version Registry . 59
4.3 Compatibility Check . 61
4.4 Implementation of Service Version Control Management 62

5 Validation 67
5.1 Validation Environment . 67
5.2 Validation of CCF assessment . 68
5.3 Validation of Versioned Service Control Service 71

6 Conclusions 75

Bibliography 77

5

List of Figures

1.1 Flow diagram of chapters . 11

2.1 Publish, Find, Bind pattern . 17
2.2 Overview of JBI architecture (refers to Figure 1.1 in [Cor12]) 20
2.3 Overview of JBIMulti2 [Muh12] . 24
2.4 Horizontal and vertical compatibility [ABP12] 28
2.5 Service Version Control Management system by [Lie13] 30

3.1 Service version management . 33
3.2 Use Case Diagram extension based on JBIMulti2 (extending [Muh12]) 35
3.3 Overview of the service version control management system based on the system

design by [Lie13] . 39
3.4 ER-Diagram of the Version Registry . 41
3.5 ER-Diagram of the Service Registry . 42
3.6 Activity diagram of register new service use case 44
3.7 Activity diagram of replace service use case (compatible) 45
3.8 Activity diagram of replace service use case (incompatible) 46
3.9 Activity diagram of deploy service in parallel use case 47
3.10 Extending SE for dynamic routing . 50
3.11 Sequence Diagram in the case of "compatible" 53
3.12 Sequence Diagram in the case of "incompatible" 54
3.13 Sequence Diagram in the case of "identical" . 55
3.14 Sequence Diagram in the case of "not exist (anymore)" 56

4.1 Overview of the extended JBIMulti2 architecture 57
4.2 Relational data in Java to be mapped . 60
4.3 Service interface of System Admin . 65

5.1 The validation environment . 67
5.2 ASD structural representation of calculateService1 70
5.3 Result of CCF (calculateService1.0, calculateService1.1) 70
5.4 Result of CCF (calculateService1.2, calculateService2.0) 71
5.5 Register New Service Request executed by system administrator with soapUI 3.6 72
5.6 Replace Service Request executed by system administrator with soapUI 3.6 . . 73
5.7 Deploy Service in Parallel Request executed by system administrator with

soapUI 3.6 . 74

6

List of Tables

2.1 Guidelines for Backward Compatible Changes [ABP12] 27

3.1 Description of Use Case Register New Service 36
3.2 Description of Use Case Replace Service . 37
3.3 Description of Use Case Deploy Service in Parallel 38

5.1 calculateService1 . 68
5.2 calculateService2 . 69
5.3 calculateService3 . 69
5.4 calculateService4 . 69
5.5 calculateService5 . 69
5.6 Result of CCF (serviceA, serviceB) . 71

List of Listings

3.1 Business logic of a message interceptor . 51
3.2 Business logic of a transformer . 51

4.1 DDL of Version Registry . 59
4.2 Persistence unit of versionRegistry . 60
4.3 Implementation of CCF function . 61
4.4 The business method of registerNewService in SystemAdminFaçadeBean 63
4.5 The business method of replaceService in SystemAdminFaçadeBean 63
4.6 The business method of deployParallel in SystemAdminFaçadeBean 64
4.7 The algorithm of versionIdCalculate . 64

7

List of Algorithms

2.1 Compatibility Checking Function (CCF) algorithm [ABP12] 29

8

1 Introduction

This diploma thesis is aimed at extending a multi-tenant aware Enterprise Service Bus (ESB)
solution with service evolution management. In the following, the motivation and problem
definition for this research are described and discussed. Outline of this work is given at the
end of this chapter.

1.1 Motivation

Cloud computing is a new paradigm, which offers various computing resources to customers
on demand. However, each service provider has to face a problem, "How should an application
be designed to enable maximal sharing of resources among customers, so that the cost for
each individual customer could be reduced?" Therefore, the multi-tenancy solution has been
proposed in recent years to solve this problem. Making multi-tenant aware applications enables
the computing capabilities to be better utilized by reducing underutilization and by sharing
common code base and data, moreover, by automated sales and providing process.

Dominik Muhler has developed in his thesis [Muh12] a multi-tenant management and admin-
istration system based on the open source ESB solution Apache ServiceMix 4.3.0 for "Java
Business Integration (JBI) multi-tenant multi-container Support". It uses a role-based control
mechanism and two shared registries respectively for tenants and services to guarantee the
data isolation between tenants. Moreover, this system has been designed as one part of a
Software as a Service (SaaS) platform to ensure the elasticity characteristic of cloud computing
[Muh12].

Services have to be improved over time because of increasing challenges in the business
environment. A service could be changed at any state in service life cycle, by adding new
functionalities, or modifying its data types, messages and operations. Several possible evolution
paths of a service could be considered as follows. We assume that each service version is
represented in format Major#.Minor#.

• A service provider registers a service version 1.0 and a service consumer employs this
service version 1.0.

• The service provider might deploy a new compatible service version 1.1 to replace service
version 1.0, the service consumer could still use the service version 1.0 or update it to
1.1. If the service consumer does use the previous version 1.0, its request messages have
to be adapted for service version 1.1.

9

1 Introduction

• The service provider might offer a new service version 2.0 in parallel with version 1.1. If
the service version 2.0 is incompatible with 1.1, all consumers’ requests of the versions 1.0
and 1.1 have to be targeted on service version 1.1, while the new version 2.0 is provided
to new service consumers. If the version 1.1 is decommissioned by the service provider,
all service consumers which use the versions 1.0 and 1.1 are required to update their
services to the service version 2.0.

The service evolution could lead to the decommissioning of an existing service version or the
appearance of multiple service versions of a service, so that the interaction between service
consumer and service provider is possibly broken and unexpected effects can occur.

Although the system proposed by Dominik Muhler has provided simple functionalities to
execute service registration and unregistration, it is not capable enough to deal with service
evolution. Therefore, its capacities should be extended for this purpose.

1.2 Problem definition

In the first place, there is a need to investigate an approach to managing service evolution.
Currently, a guide-line based approach is wildly used. But the subjective deduction from
service developers and the lack of a solid theoretical foundation could result in errors. For
this purpose, [ABP12] has defined a theoretical framework to guarantee a correct service
versioning transition and service compatibility so that service changes can evolve consistently
and transparently.

Based on the possible service evolution paths and the mechanism of management of service evo-
lution, this thesis aims to develop a service version control management system for extending a
multi-tenant aware ESB solution namely JBI multi-tenant multi-container Support (JBIMulti2)
implemented by Dominik Muhler. The focus is on extending the version control capabilities of
the ESB and the tenant-based version management is out of scope for this work.

To achieve this goal, the works about the JBIMulti2 system and service evolution must be
deeply investigated. The requirements for the service version control management system could
be thereby acquired. Furthermore, to explain how the JBIMulti2 system can be extended for
service evolution management purposes, use cases based on service evolution paths should be
conceived. A Version Registry should be introduced as a database for storing all version-related
information. Finally, a dynamic routing mechanism is necessary to ensure correct routing
between compatible service versions, since the service could be replaced by a compatible (or
incompatible) version.

1.3 Outline

This thesis is divided into six chapters. They represent different research aspects which are
listed as follows. Figure 1.1 shows the flow diagram of these chapters.

10

1.3 Outline

Chapter 2 – Background and Related Work: This chapter provides an overview of var-
ious conceptual and technological fundamentals such as Cloud Computing, Service-
Oriented Architecture, Enterprise Service Bus, etc. and introduces the essential works
which are necessary for this thesis.

Chapter 3 – Specification and Design: After the requirements of the service version con-
trol management are discussed at the beginning of this chapter, the functionalities of
the system will be explained with three use cases. Some more topics, such as design of
the system, formal expression mechanism of service descriptions and design for dynamic
routing are also introduced in this chapter.

Chapter 4 – Implementation: The related technologies used to implement the extension of
the JBIMulti2 system are introduced. The Version Registry, the Compatibility Checking
Function (CCF) assessment function and the extended functionalities for managing
service evolution are implemented in this chapter.

Chapter 5 – Validation: Firstly, the environment for validation is built. Secondly, the CCF
assessment function is validated using a simple Web service use case which forms a simple
service evolution path. Finally, the functionalities provided by JBIMulti2 are validated
by means of the testing suite of soapUI.

Chapter 6 – Conclusions: This chapter summarizes the overall work and suggests possible
extensions to the system in the future.

Figure 1.1: Flow diagram of chapters

11

1 Introduction

1.4 Abbreviation

The following list contains abbreviations used throughout this document.

ESB Enterprise Service Bus

JBIMulti2 JBI multi-tenant multi-container Support

CCF Compatibility Checking Function

SOA Service-Oriented Architecture

NIST the National Institute of Standards and Technology

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

IT Information Technology

WSDL Web Service Description Language

HTTP HyperText Transfer Protocol

XML Extensible Markup Language

JMS Java Message Service

SMTP Simple Mail Transport Protocol

TCP Transmission Control Protocol

JBI Java Business Integration

JCP Java Community Process

JSR Java Specification Request

NMR Normalized message Router

SE Service Engine

BC Binding Component

CLOB Character Large Object

NM Normalized Message

OSGi Open Service Gateway initiative

JVM Java Virtual Machine

JAR Java Archive

ESBMT Multi-tenant aware Enterprise Service Bus

12

1.4 Abbreviation

UI User Interface

API Application Program/Programming Interface

UUID Universally Unique Identifier

SCM Software Configuration Management

VIDs Version Identifiers

URL Uniform Resource Locator

UUDI Universal Description Discovery and Integration standard

ASD Abstract Service Description

URI Universal Resources Identifier

Java EE Java Platform, Enterprise Edition

JAX-WS Java API for XML-based Web Services

JAXB Java Architecture for XML Binding

JSF JavaService Faces

JDK Java Development Kit

POM Project Object Model

DDL Data Definition Language

JPA Java Persistence API

13

2 Background and Related Work

This diploma thesis is based on various conceptual and technological fundamentals. In
this chapter we firstly provide an overview of these concepts and technologies for a better
understanding of the basis of our work. After that, we introduce some works which are
important foundations of this thesis, such as JBIMulti2, service evolution and the extension of
the multi-tenant ESB solution for service version management.

2.1 Cloud Computing

Due to the rapid development, cloud computing has become a hot issue in Information
Technology (IT) industry for many years. Various terms regarding cloud are everywhere, e.g.
Cloud Storage, Cloud Bridge, Cloud Enabler, etc., which make people confused about the
real meaning behind it. For better understanding of cloud computing, the National Institute
of Standards and Technology, namely NIST, has proposed the definition of cloud computing:
"cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g. networks, servers, storage, applications
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction" [MG11]. This definition has been widely recognized.

NIST proposed five key characteristics [MG11].

• On-demand self-service
Cloud users can easily access computing resources as needed. The service provider does
not need to interfere with the user.

• Broad network access
Cloud users can access services over the network through standard mechanisms.

• Resource pooling
Computing resources of a provider are pooled and use a multi-tenant model to serve
multiple consumers, so that the consumer generally has no sense of control and knowledge
over the exact location of provided resources but may specify location at a higher level
of abstraction.

• Rapid elasticity
The available resources can be rapidly increased and decreased as needed, so that the
consumer can provision them in any quantity at any time.

15

2 Background and Related Work

• Measured Service
According to specific demands for services, cloud system measures and prices the usage
of resources. Resource usage is transparent for both provider and consumer.

Among the five essential characteristics, the broad network access is the hardware foundation,
on-demand self-service is the goal and the others are the means for achieving the goal.

According to the definition of NIST, the cloud computing service models consist of SaaS, PaaS
and IaaS [MG11].

• Software as a service, or SaaS: where the consumer is able to employ applications that
are provided by provider and running on a cloud infrastructure. The consumer does
not need to manage the underlying infrastructure and platform where the applications
run. Because these applications are installed and running on the provider side, the
maintenance of the consumer side becomes easier.

• Platform as a Service, or PaaS: where the consumer is able to deploy own applications
applying programming language, libraries, services and tools provided by provider. The
consumer does not need to know the underlying infrastructure, where his own applications
run, in order to control the applications.

• Infrastructure as a Service, or IaaS: where the consumer is able to use fundamental
computing resources (e.g. network, storage) in addition to deploying own applications.
The consumer controls only the used computing resources but not the underlying cloud
infrastructure.

Finally, the NIST defines four deployment models [MG11]. The first model is private cloud. A
single organization comprises multiple consumers owns or provisions the cloud infrastructure
that is managed and operated by this organization. The second model is community cloud. It
provides the organizations where the consumers have shared concerns own or provisioned the
cloud infrastructure. The third one is public cloud. It works like an organization that provides
its cloud computing capabilities to public owns or provisions the cloud infrastructure. The
last model is hybrid cloud. This model combines two or more distinct deployment models as
mentioned above.

The cloud is leading the future trend. Its flexibility and scalability of cloud computing
resources and processing capabilities offer not only significant cost benefits, but also the
enhanced ability for connecting customers, partners and providers like never before. However,
without Service-Oriented Architecture, it is almost impossible to reach the cloud [RB14].

2.2 Service-Oriented Architecture

With the rise of the Internet, more and more enterprises attempt to transfer their businesses
into independent, high scalable Internet-based services. The concept "Web Services" was
proposed. The Service Oriented Architecture (SOA) and Web Services concepts are mutually
influential: Web Services momentum will bring SOA to mainstream users and the best-practice
architecture of SOA will help make Web Services successful.

16

2.2 Service-Oriented Architecture

SOA is a popular architectural paradigm for applications. It advocates that the functionality
of a software component can be provided as a service and reused by other software components
or services. The existing systems, applications and users thus can be integrated into a flexible
architecture and the existing IT investments can be reused to adapt to changing needs and
challenges. Cost reduction, delivering IT solution faster and smarter, and maximizing return on
investments, these three drivers urge the widely utilization of the SOA approach nowadays.

There are different definitions about SOA, such as:

• The Service-Oriented Architecture was defined by the Open Group as "an architectural
style that supports service orientation. Service orientation is a way of thinking in terms
of services and service-based development and the outcomes of services" [Gro].

• Another definition is given by Service-Architecture.com: "a service-oriented architecture
is essentially a collection of services. These services communicate with each other. The
communication can involve either simple data passing or it cloud involve two or more
services coordinating some activity" [Arc].

Obviously, service is the key concept of SOA. A Service is a well-defined, self-contained and
reusable function. It does not depend on the context or state of other services. A service is
available to other applications or Web Services through standard network and application
interfaces and protocols [PTDL07]. With loose coupling, interoperability, efficiency and
standardization, SOA provide flexibility and agility to organizations, so that these organizations
are able to response to the rapid and unpredictable changes.

Figure 2.1: Publish, Find, Bind pattern

The Publish, Find, Bind pattern of SOA defines the operations among the requester, provider
and broker. First, a description of a service has to be registered to a discovery facility (broker)
by the service provider. A service requester accesses the discovery facility to inquire the
information about the service what he wants and get the response with a concrete service
endpoint. The requester can thus use the endpoint to bind his expected service and execute a
business activity [WCL+05].

17

2 Background and Related Work

A large-scale system is almost a heterogeneous system, in which each application has its own
business processes using various technologies and protocols. These enterprise applications need
a practical middleware to simplify and unify their interaction with each other. SOA enables
reusing applications and services, and connecting resources. An Enterprise Service Bus reduces
the complexity for integration of applications and services, and forms a foundation of SOA
[PTDL07].

2.3 Enterprise Service Bus

Initially, enterprises have integrated their applications manually by point-to-point topology.
This point-to-point approach delivers less flexibility and scalability, and becomes brittle and
hard to manage over time. Thus, the Enterprise Application Integration (EAI) approach has
emerged. Instead of directly passing messages to other applications, applications send messages
to EAI. The EAI then has to forward the messages correctly to other applications. The
centralized approach might have the problem of a single point failure. To avoid this weakness
and realize the SOA, the Enterprise Service Bus approach has been introduced [Ort07].

Similar to EAI, an ESB is also considered as a mediation service for connecting enterprise
applications and services. However, there are still two main differences between them. First,
ESB products change the hub-and-spoke model in EAI products to a bus-based model. As a
centralized architecture, a hub-and-spoke model employs a hub or broker to exchange data.
The bus model uses a distributed architecture to implement its functionalities. Second, while
EAI products are mainly based on proprietary technologies, ESB products are based on
open standards to implement messaging functionality and transformation logic [Cha04]. An
Enterprise Service Bus integrates numerous applications together over a bus-like infrastructure
and enables applications using a multi-protocol message bus to communicate with each other. It
incorporates the features required to implement a Service-Oriented Architecture and supports
hiding complexity, simplifying access, allowing developer to use generic, canonical forms of
query, access and interaction, handling the complex details in the background. An ESB should
provide at least seven core functionalities, as following [RD08] and [Cha04]:

• Location transparent
The ESB decouples the service consumer from the service provider. This means that
a service consumer communicates with a service provider (or an application) without
awareness of actual location of the service provider, even if there is a change in the
location.

• Transport protocol conversion
A service consumer and a service provider usually use different transport protocols. This
leads to conflicts during their communications. An ESB should have the capability
to convert incoming transport protocols to different outgoing transport protocols, like
HTTP(S) to JMS or SMTP to TCP.

18

2.4 Java Business Integration

• Message transformation
An ESB should be able to adapt the incoming messages into the format that the target
application can actually accept.

• Message routing
Almost all integration implementations should have message routing functionality. An
ESB has to determine the ultimate destination of a particular incoming message, especially
in the case that the message must be sent to multiple target applications.

• Message enhancement
The destination applications may need more data other than the data provided by their
incoming message. An ESB should enrich the incoming message with additional data
that are retrieved from (external) data resources. Message enhancement is closely related
to message transformation. The main difference is whether the existing data in the
incoming message are enough to produce the correct outgoing message.

• Security
A business-critical logic often involves a mass of applications. An ESB must provide
authentication, authorization and encryption mechanisms to prevent malicious use of
the ESB and satisfy the security requirements of service provider.

• Monitoring and management
In order to ensure high performance and reliability of an ESB and to monitor the runtime
execution of the message flows, a monitoring and management environment is necessary.

This is not a complete list of the functionalities of an ESB. Other functionalities, e.g.
orchestration and transaction handing, are not mentioned. Here we present these seven
important functionalities just to give a preliminary impression about ESB.

2.4 Java Business Integration

An Enterprise Service Bus acts as an integration middleware for Service-Oriented Architecture.
However, implementation of an ESB is vendor-specific. Each vendor could use various protocols
and technologies to design his own service container and interfaces for connecting and integrating
services.

Java Business Integration (JBI) is a Java Specification Request 208 (JSR 208) that was
developed under the Java Community Process (JCP). It defines an integration solution based
on SOA concepts. All applications considered as loosely coupled function units are deployed
into JBI components in the JBI environment. The JBI environment is responsible to route
message exchange among the JBI components [Cor12]. JBI constructs a service container
as a part of an ESB to provide a standardized, plug-in architecture for services integration.
Several open-source projects have employed this approach, such as Open ESB [Bus], Apache
ServiceMix [Fouc], Mule ESB [Com] and Fuse ESB [Cor12]. The JBI Runtime Environment
manages JBI components and a Normalized Message Router (NMR).

19

2 Background and Related Work

Figure 2.2: Overview of JBI architecture (refers to Figure 1.1 in [Cor12])

In order to understand the JBI environment black-box, we should firstly understand how a
component interacts with it (see Figure 2.2). There are two kinds of components that can
be plugged into a JBI environment [Cor12] and [THW05]. The first one is Service Engine
(SE). It provides business logic to other components, for example: message transformation,
orchestration, advanced message routing. A Service Engine is seen as a container of an ESB
to deploy functional units and can communicate only with the components locating inside
the JBI component. The other one is Binding Component (BC). It acts as a connector
using various communication protocols (SOAP, HTTP, File . . .) to access services which are
outside the JBI environment. The messages from external sources should be normalized by the
Binding Components, after they enter the JBI environment and before they are passed to the
Normalized Message Router. The BCs are also responsible for transforming these Normalized
Messages (NM) into the appropriate format of the destination services. These two components
enable that business logic and integration logic are explicitly decoupled.

The Normalized Message Router is responsible for the message exchange between JBI compo-
nents. It routes the Normalized Messages (normalized by Binding Components) from source
JBI components to the correct destination JBI components. This enables fully decoupling the
components and functionalities they expose.

JBI defines a common packaging model for deploying artifacts into the JBI environment. The
two most often used types are Service Units and Service Assemblies. Service unit contains the
functionality to be deployed into a JBI component. Service assembly is a collection of service
units. Both are packaged as ZIP archives.

20

2.5 OSGi (Open Service Gateway initiative)

In general, JBI is salable and extensible. It facilitates integration of services and communication
of service provider and consumers.

2.5 OSGi (Open Service Gateway initiative)

An OGSi framework [Bar09] specifies a modular system for Java. It enables applications to
be modularized and resources to be shared between components within a single Java Virtual
Machine (JVM). The central idea of OGSi is that each module owns its classpath separated
from the classpath of all other modules to avoid the global, flat classpath which could cause
many problems in traditional Java. Meanwhile, OSGi provides well-defined rules with a
mechanism of explicit imports and exports to share classes across modules [Bar09]. In OSGi,
modules are called bundles and packaged as JAR files. In addition to Java class files, metadata
is placed in the MANIFEST.MF file inside the JAR file. Metadata explains what kinds of Java
packages it provides (capabilities) and what kinds of Java packages it requires (requirements).
After a bundle is installed, the requirements of the bundle would be first resolved and it would
search for the matching capabilities offered by other installed bundles. Therefore, a bundle
can either provide classes and services for others or implement its functionalities.

OSGi has defined a life cycle of a bundle that includes installed, resolved, starting, active,
stopping, and uninstalled [All11]. The framework enforces the transitions between states. The
first state is "installing". Having a bundle installed to an OSGi framework, its requirements as
well as dependencies have to be immediately "resolved" instead of directly being started. If
all the dependencies of this bundle are met, the bundle is ready to be started. "Starting" is a
temporary state. The resolved bundle goes quickly into a running "active" state; meanwhile
it provides or consumes services in the OSGi environment. Through transitory "stopping"
state, the bundle is stopped and its state is transferred from "active" state to "resolved" state.
Finally, the bundle could be removed namely "uninstalled" from OSGi framework.

2.6 Apache ServiceMix

Apache Software Foundation has proposed an open-source Enterprise Service Bus named
Apache ServiceMix. Apache ServiceMix combines the functionality provided by a SOA model
and the modularity provided by OSGi framework to decouple the applications and reduce
their dependencies. It was built on the JBI specification JSR 208 allowing components and
services to be integrated in a vendor independent way [Fouc].

Specifically, Apache ServiceMix unifies a number of existing solutions like Apache Karaf, Apache
ActiveMQ, Apache Camel, etc. to provide a runtime platform for building integration solutions.
Apache Karaf is the kernel layer of ServiceMix. It is an OSGi-based runtime and provides a
container to manage the lifecycle of components, such as OSGi bundles, JBI components or
service assemblies. Users can copy the JAR files of OSGi bundles into $home/deploy directory
for deployment and delete them from the directory for undeployment. This feature is called
hot-deployment [Fou11b]. Apache ActiveMQ embedded in ServiceMix is a JMS message broker.

21

2 Background and Related Work

It cooperates with Apache Camel to provide easy-to-use message persistence and reliable
messaging [Foua]. ServiceMix employs ActiveMQ as foundation of the NMR that is responsible
for routing the messages between the endpoints. The message routing among BCs, SEs and
NMR has been explained in Section 2.4 (see Figure 2.2). The Apache Camel is a powerful
open-source integration framework based on known Enterprise Integration Patterns. It enables
routes to be built for integration of components quickly and efficiently [Fou11a]. The logic
endpoints between Binding Components and the routing paths between the endpoints can be
configured by deploying their configurations in service assemblies. The Apache Maven plugins
simplifies the development process of JBI components and service assemblies [Foub].

2.7 ESBMT and JBIMulti2

Multi-tenancy is an essential property of Cloud computing. It enables a single system instance
to serve multiple customers by sharing computational resources between them. Therefore,
Cloud service providers are able to best utilize their resources and reduce their servicing costs
for each customer in order to maximize the profits. However, multi-tenancy transparency has
to be guaranteed. That means Cloud service consumers should have the impression that they
are the only one who uses the applications. The resource sharing must have no impact on
application performance.

[SAL+12] has defined multi-tenancy as "the sharing of the whole technological stack (hardware,
operating system, middleware and application instances) at same time by different tenants and
their corresponding users". Tenants and users are two types of consumers for multi-tenancy.
Tenants are the consumers that are considered as groups like companies, organizations or
departments. Users are the consumers that potentially belong to more than one tenant.

[SAL+12] and [SAGSL13] focused on the PaaS model and investigated how its key component
like the ESB could be multi-tenant aware, without caring about the particular implementation
technology that the ESB uses. Based on the case study of 4CaaSt project [4Ca], a set
of functional and non-functional requirements for multi-tenant ESBs have been identified
[SAL+12]. A multi-tenant ESB must offer the following functionalities. Firstly, an ESB must
support managing and identifying multiple tenants. Secondly, the components of ESBs and
the services for a certain tenant should be deployed, configured and managed in a transparent
manner. Thirdly, each tenant could employ own interface for administration and management
of tenants or users. Fourthly, a shared registry of tenants/users and a shared registry of
services must be provided for the ESB and other PaaS components. Lastly, the ESB must
be backward compatible with non multi-tenant services and applications. Apart from the
required functionalities, several non-functional properties must be considered, such as tenant
isolation, security, reusability and extensibility. Data isolation and performance isolation
must be ensured between tenants. The ESB should provide authorization, authentication,
integrity and confidentiality mechanism for security. The multi-tenant ESB should not be
solution-specific and based on certain technologies, its components could be extensible and
reusable by other PaaS’s components when required.

22

2.7 ESBMT and JBIMulti2

Tenant awareness is a critical functional requirement. The concept Tenant Context has
been introduced to enable multi-tenant aware messaging [SAGSL13]. A Tenant Context is
represented in a structured format and contains two parts namely a mandatory part and an
optional part. The combination of tenantID and userID which construct the mandatory part
uniquely identifies a Tenant Context. The optional part consists of additional information
like the name of the tenant and is represented as key-value pair to guarantee its extensibility.
Furthermore, the Tenant Context should support both messaging protocols that integrate
structure information into messages metadata, as well as ones that do not support such
structured metadata through adding the Tenant Context in Extensible Markup Language
(XML) format as string in the message metadata. Therefore, the Tenant Context could support
various communication protocols and enable multi-tenant aware messaging to be independent
of the technologies or protocols uses.

A message processing cycles of ESBs consists of Receive Message phase, Demarshalling phase,
Process Message phase, Marshalling phase and Send Message phase [SAGSL13]. In the
Receive Message phase, the ESB receives a communication protocol-specific message. In the
Demarshalling phase, the message is mapped and transformed into an internal Normalized
Message (NM). The NM thus contains the information of the Tenant Context which is
integrated into the metadata of the original message. Then, the internal business logic of
the ESB could access the required information from the multi-tenant aware NM. After the
processing there is the Marshalling phase in which the NM that contains the results could be
mapped and transformed into a format that the recipient of the message needs. In the final
Send Message phase, the resulting message is sent to its target.

A generic multi-tenant ESB architecture (ESBMT) has three layers: a Presentation layer, a
Business layer and a Resource layer [SAL+12]. It will be introduced in a bottom-up fashion
and referred to the work of Dominik Muhler [Muh12].

Dominik Muhler has developed a system named JBIMulti2 which is the abbreviation of "JBI
multi-tenant multi-container Support". It supports a multi-tenant management application to
control a set of databases and clusters of multiple JBI containers, which ensure the elasticity
characteristic of cloud computing [Muh12]. This system is based on Apache ServiceMix 4.3.0
that implements the JBI specification.

It can be indicated from Figure 2.3, that the Resource layer located at the bottom consists of an
ESB Instance Cluster and a set of registries. Each ESB Instance executes the functionalities of
a traditional ESB solution, which were discussed in Section 2.3. In order to fulfill the functional
and non-functional requirements introduced previously, an ESB should be extended to be
multi-tenant aware. For example, all components can process messages that include tenant
and user information. The ESB could route messages between endpoints according to the
tenant information in the messages. The ESB must prevent tenants and users from accessing
the messages of other tenants and users. Furthermore, all components of the ESB have to
be tenant- and user-specific configurable. This means that each tenant could have its own
endpoint for communication. The backward compatibility for non multi-tenant components
must be ensured.

23

2 Background and Related Work

Figure 2.3: Overview of JBIMulti2 [Muh12]

Additionally, there are three types of registries in the Resource layer namely Tenant Registry,
Service Registry and Configuration Registry. They were implemented using platform-wide
PostgreSQL 9.1.1 databases [SAL+12].

• The Tenant Registry keeps tenant context for tenant users and their roles inside cor-
responding tenant. Tenant users belong only to one tenant. Every tenant and tenant
user is identified by a Universally Unique Identifier (UUID) and can have associated
properties as key-value pair.

• The Service Registry stores service assemblies and service descriptions in a tenant-isolated
manner for each tenant. Service assemblies are saved as ZIP files, while services are
saved as the WSDL description in XML documents.

• The Configuration Registry stores all other non-tenant related and tenant related data.

In the Business Logic layer, the functionality for tenant awareness and security is encapsulated
in an Access Layer component. Access Layer acts as a multi-tenancy enablement layer and
implements role-based access control function using interceptors [Muh12]. The roles are
classified into system administrators, tenant administrators and tenant operators. A system
administrator does not belong to any tenant. He configures the system and assigns quotas
resources usages to the tenants. This administrator has unlimited permissions and can interfere
in the actions of the tenant users. Tenant administrators define roles and assign permissions to
them. A tenant administrator can manage contingents of service units and service registrations.
He continuously partitions the quota of resource usage assigned by the system administrator.

24

2.8 Service Evolution

Tenant operators can access the resources using a resource contingent assigned by the tenant
administrator. Before an execution of a business method, such interceptors are called to check,
if the caller is authenticated and has permission to execute the current business method that
is annotated with the required permission type. The interceptor can check the authentication
via comparison of this extracted information with the information retrieved from the Tenant
Registry and the Configuration Registry.

Furthermore, Tenant Registry, Configuration Registry and Service Registry Managers in
the Business Logic layer are responsible for managing and executing the business logic to
respective registries in the Resources layer (see Figure 2.3). All operations to underlying data
resources must ensure consistency by distributed transactions. JBIMulti2 web applications
use container-managed transaction demarcation for this purpose. Management operations to
JBI containers are sent by JBIContainerManager to a messaging topic. All JBI containers are
selective, transactional and durable subscribers. JMSManagementService on container side
receives the subscribed messages. This Publish-Subscribe pattern guarantees reliable messaging.
Additionally, JBIMulti2 uses JMSManagementService to extend the JBI components on each
ServiceMix instance by adding the tenant context as XML documents to each service unit
contained in a service assembly. Once they are deployed on ServiceMix instances, they do not
interfere with service units of other tenants.

The Presentation layer is built on the top of the Business Logic layer. It consists of the Web
UI and the Web Service API, in order to customize, manage and interact with a multi-tenant
aware ESB.

[Muh12] has developed a multi-tenant enterprise application that allows tenant users to
deploy JBI service assemblies to JBI containers of Apache ServiceMix. Based on the role-
based access control, system administrators, tenant administrators and tenant operators are
distinguished in their permissions. [Muh12] has extended additionally the Apache ServiceMix
for communication with enterprise application and ensuring the data isolation of deployed JBI
artifacts. To gain a deep understanding of JBIMulti2 was the first task, because our work is
based on this system.

2.8 Service Evolution

Services have to be continuously evolved to fulfill the increasing requirements for competition
and innovation. Service evolution has been defined as "the continuous process of development
of a service through a series of consistent and unambiguous changes" [Pap08]. Each service
developer should know why a change was made, which implications it has, and whether it is
consistent, so that the service evolution could be carried out smoothly and steadily.

Service changes could be classified as shallow changes or deep changes [PAB11]. Shallow
changes are small-scale incremental changes. They are normally localized to a service and/or
restricted to the clients of that service. Shallow changes typically contain structural changes
(like service types, messages, interfaces, and operations) and business protocol changes. On
the other hand, deep changes are large-scale transformational changes which extend beyond

25

2 Background and Related Work

the consumers of a service, possibly to all consumers of an entire end-to-end service chain.
Deep changes are operational behavior changes, non-functional changes, and policy induced
changes.

We will further focus on shallow changes and discuss service versioning and compatibility
based on the structural service changes.

2.8.1 Service Versioning

Versioning is a concept for software maintenance and evolution which originates from the
Software Configuration Management (SCM) field [BR00]. Once software artifacts have changes,
a historical record has to be kept. Service versioning has two dimensions: interface versioning
which supports the service description, and implementation versioning which supports the
code, resources, configuration files and documentation of a service. In follows only interface
versioning will be handled.

Service version is usually named as Major#.Minor#, a naming scheme which consists of
a major release version number and a minor release version number. Major release means
breaking changes, while Minor release represents non-breaking changes [JD08]. For instance a
service with version number "3.2" denotes the second minor version of the third major release.
As for another naming approach, date stamp is used to identify each service version [PAS04].

XML Schema provides the mechanisms for versioning of Web Service [ABP12]. Introducing
new XML namespaces to either service itself or its data types could cause breaking the binding
to the service on the consumer side. Therefore, this method is only used to create a major
version of a service. Moreover, as attributes in the elements document or as part of the URL,
Version Identifiers (VIDs) could be used to unambiguously name a service version. Both
methods are based on the naming scheme Major#.Minor# and can be combined for version
control. As alternative or complementary to XML-based approaches, service registries like
UUDI or custom registries which store and control the version information could be used for
service interface versioning. For this purpose, the versioning data need to be added into service
description model where the registry works.

A common strategy for versioning is compatibility-oriented [ABP12]. The developers maintain
multiple active service versions for major releases at same time. Despite the grouping of all
minor releases into the latest major release for reducing maintenance costs, the cost still varies
in proportion to the number of active versions. The creation of a major version could therefore
result in breaks of existing consumers as well as an increase in maintain cost.

2.8.2 Service Version Compatibility

Service version compatibility is an essential concept in service evolution and is closely referred
to service versioning. It guarantees that a newly emerging service version of either provider or
consumer of service messages cannot impact on each other. It has usually two cases [PAB11].

26

2.8 Service Evolution

• Backward compatibility
The introduction of a new version on the message consumer side cannot affect the message
providers. The new service version should continuous support the old versions.

• Forward compatibility
A new version of a message provider is introduced without the impact on the message
consumers. The new service version should continuous support the old versions.

• Full compatibility
If a new service version fulfills both conditions of backward compatibility and forward
compatibility, it is fully compatible.

In practice, the factor that distinguishes a minor release from a major release is backward
compatibility [ABP12]. A new service version is regarded as a minor release if its changes are
backward compatible; otherwise, if the changes are backward incompatible, it is called major
release.

Change Backwards Compatible
Add (Optional) Message Data Types
Add (New) Operation
Modify Service Implementationa

Yes (input only)
Yes
Yes

Remove Operation
Modify Operationb

Modify Message Data Types

No
No
No

a: As long as it has no effect on the service interfaces.
b: Includes renaming, changing parameters, parameter order, and message exchange
pattern.

Table 2.1: Guidelines for Backward Compatible Changes [ABP12]

Table 2.1 lists guidelines for compatibility assessment. All changes are represented as changes
to WSDL and XML schema elements. Obviously, the addition of elements related to input
data types or operations, or the modification of service implementation which has not effects
on the WSDL document is backward compatible changes. The removal or modification of an
operation can lead to breaking the message providers and is therefore strictly prohibited. The
compatibility assessment approach based on these guidelines is widely accepted because of its
usability and minimum demand for infrastructure.

Although widely used, the guideline-based approach has obvious disadvantages. For example,
the compatibility between two services is deduced by service developers. This subjective deduc-
tion and the lack of a solid theoretical foundation could lead to errors. Thus, a Compatibility
Checking Function has been proposed by [ABP12] for objective checking the compatibility
of service versions. The implementation of the CCF algorithm is another main task of this
thesis.

27

2 Background and Related Work

Previously, the service version compatibility has been classified into backward compatibility,
forward compatibility and full compatibility. From another aspect it can be classified into
horizontal compatibility and vertical compatibility [And10].

• Horizontal compatibility or interoperability
Two services can successfully interact with each other, either as service providers or
service consumers.

• Vertical compatibility or substitutability (from the provider’s perspective) or replacement
(from the consumer’s perspective)
One service version could replace another service version in a given context.

Figure 2.4: Horizontal and vertical compatibility [ABP12]

These two dimensions of service version compatibility construct a notation of T-shaped changes.
The compatible service versions are represented by the overlapping parts of the hexagons.
The Figure 2.4 shows that service S1 is horizontally compatible with service S2, and S2 is
horizontally compatible with S3. Service S2 has additionally two versions S′2 and S′′2 that
are vertically compatible with each other. The gap between two services stands for the
incompatibility of them, such as S2 and S′2. In other words, if S2 is a major release, then S′2
will be another major release (because their interoperability is broken). Service S′′2 will be a
minor release of S′2 and it can therefore replace Service S′2.

In order to formally define the service compatibility between any two services, the Abstract
Service Description (ASD) meta-model is introduced. The ASD meta-model has three layers.
The structural layer includes an Operation and a Message concept which respectively relate to
the WSDL operation and message constructs. The behavioral layer describes the how services
perform once a connection between service consumer and service provider is established. The
non-functional layer uses e.g. a set of policy constraints of assertions to ensure Quality of
Service. In this thesis, only the structural layer will be considered.

28

2.8 Service Evolution

A description schema S expresses a service version and consists of a set of records s that
describe the structural dependence inside the service description using elements and their
relationships [ABP08]. Besides, a subtyping relation is introduced to (partially) order records
for determining the compatibility. If a record s is a subtype of a record s′, it can be represented
as s ≤ s′.

S is able to be divided into two subsets Spro and Sreq. Spro consists of output-type records of a
service description, while Sreq consist of input-type records. The compatibility between two
service versions S and S′ can be formally defined as follows [ABP12].

• Forward compatibility
S <f S′ ⇔ ∀s ∈ Spro, ∃s′ ∈ S′pro, s′ ≤ s (covariance of output).

• Backward compatibility
S <b S′ ⇔ ∀s′ ∈ S′req, ∃s ∈ Sreq, s ≤ s′ (contravariance of input).

• Full compatibility
S <c S′ ⇔ S <f S′ ∧ S <b S′.

The term T-shaped change relates to the horizontal and vertical compatibilities. A change
set 4S which will take place at a service description S, is a T-shaped if and only if it leads
to a fully compatible service description S′ (formally, S′ = S ◦ 4S and S <c S′). Using the
type theory for the structural layer of an ASD and subtyping relation of ASD records, the
assessment for compatibility of service versions becomes possible. A Compatibility Checking
Function algorithm has been proposed by [ABP12].

Algorithm 2.1 Compatibility Checking Function (CCF) algorithm [ABP12]
for all s′ ∈ S′req do
if @s ∈ Sreq, s ≤ s′ then
return false

end if
end for
for all s ∈ Spro do
if @s′ ∈ S′pro, s ≤ s′ then
return false

end if
end for
return true

Algorithm 2.1 shows the CCF algorithm for checking the compatibility between service
descriptions S and S′. In this case, the service description S is divided into Spro and Sreq as well
as S′ into S′pro and S′req. Records s belongs to service description S, while s′ belongs to S′. The
first iteration (from line 1 to line 5) and the second iteration (from line 6 to line 10) evaluate
the backward compatibility for S′req and the forward compatibility for S′pro, respectively. If
both iterations return true, that indicates the new service version S′ is fully compatible with
the previous service version S.

29

2 Background and Related Work

2.8.3 Identification Model of Service Change

Three main models have been summarized by [ABP12] to perceive and identify service changes
for service consumers. The first model is called client model [BE04], [JD08] and [JSBR09]
in which a new service version caused by both nonbreaking and breaking changes has to be
recognized directly by service consumers. This can be achieved for example by checking the
service registry regularly. The second model is notification model [FLF+07] in which a service
consumer will receive a notification once a new service version is released. The last one is
transparent model. A new service version with nonbreaking changes does not need to be
identified by consumers. These consumers could continuously use the existing service without
any problems [NS07].

2.9 The Extension of the JBIMulti2 management system for service
version management

Figure 2.5: Service Version Control Management system by [Lie13]

30

2.9 The Extension of the JBIMulti2 management system for service version management

The previous work from Sumadi Lie has extended the JBIMulti2 system with a service version
control management system which manages all service interface description registered by
service providers [Lie13]. This system consists of three main components, namely the Version
Registry, the Version Control Manager and the multi-tenant aware ESB (see Figure 2.5).

The Version Registry has been designed to keep all service versioning-related information and
history. The Version Control Manager enables the Version Registry to communicate with the
JBIMuiti2 system as well as executing operations on the Version Registry.

The Version Control Manager has three main components: the Version Registry Manager, the
CCF (Compatibility Checking Function) Engine and the Transformer. The Version Registry
Manager listens to the events of operations on the Service Registry and then calls on the CCF
Engine to run a compatibility assessment between the new service version and the old service
version if necessary, so that the Version Registry can be updated in time. The Transformer is
responsible to transform an incoming request message to a corresponding outgoing message and
vice versa, if the incoming message is compatible with the service version which is implemented
by the service endpoint.

Sumadi Lie has attempted to make Binding Components service version aware by embedding
unique service version identifiers into endpoint names, so that incoming messages targeted
at these endpoints could be routed by the ESB. Additionally, he has proposed integrating
Message Interceptors into Service Engines which have routing capability. These Interceptors
listen to the communication channel. When a message is compatible with the Service Engine,
the Interceptor in the SE will trigger the Transformer.

Although [Lie13] has conceived a service version management system, its implementation has
remained partial. The CCF assessment has also not been realized. Moreover, in [Lie13], the
author has assumed that the replacement operation would be a sequential execution of an
unregistration operation and a registration operation, and a new service interface for this new
service would be created. In practice however, instead of creating a new service interface,
the old service interface will be retained and assigned to the new service version. Therefore,
the extension of JBIMulti2 with service version management should be further improved and
implemented in this work. The reasonable suggestions from [Lie13] would help us to achieve
our goals.

31

3 Specification and Design

In this chapter the specification of the service version control management system is described
and the concept of the system design is explained. In the first section, we will discuss the
requirements for this system. In the second section, three use cases are constructed to describe
the functionalities of the service version control management system. In the third section the
concrete design will be expounded. Finally, we summarize this chapter briefly.

3.1 Requirements

Services have to be continuously evolved (see Section 2.8). This might result in existence
of multiple versions of a service. Either compatible or incompatible versions are probably
provided to various consumers at the same time (see Figure 3.1). Thus a system for managing
multiple versions of a service is necessary. Although the JBIMulti2 system implements simple
functionalities for service management, like service registration and unregistration, it cannot
deal with multiple versions for a particular service. Therefore the JBIMulti2 system is required
to be extended for service version management.

Figure 3.1: Service version management

33

3 Specification and Design

This service version control management system will be designed only for maintaining all
service interface descriptions. In order to completely understand the functionalities of this
system, several questions related to service versioning must be considered.

• Which service interface descriptions will be managed and versioned?
In general, all service descriptions should be managed and versioned. They should be
registered within a system and exposed as service endpoints.

• When service compatibility between service versions will be checked?
Typically, the compatibility assessment is executed after a new service has been registered
and at least two services have been available. It happens, for instance, when a service is
replaced by another.

• Where the service interface versioning information is stored?
The service versioning information is registered by a Version Registry.

• How the service versions are uniquely identified?
Service providers are not in charge of service version numbering. In addition, the service
description does not contain any version-related information. The version number could
be determined based on the result of compatibility assessment and the related service
version.

3.2 System Specification

All operations of JBIMulti2 management system are based on role-based control [SCFY96].
Each role has to access the system and data resources with appropriate permissions. An
operation beyond its privileges is forbidden. There are three main roles in the JBIMulti2
system, namely, system administrator, tenant administrator and tenant operator, as discussed
in Section 2.7.

In order to show how the JBIMulti2 management system for service version control management
is extended, three use cases are introduced: to register a new service, to replace service and
to deploy service in parallel as a system administrator. The extended use case diagram of
the JBIMulti2 system is shown in Figure 3.2 by which the new use cases are sketched as gray
ovals. Detailed descriptions for these use cases can be found in Table 3.1, Table 3.2 and Table
3.3, respectively.

34

3.2 System Specification

Figure 3.2: Use Case Diagram extension based on JBIMulti2 (extending [Muh12])

35

3 Specification and Design

Name Register New Service

Goal The system administrator wants to register a new service with version
number 1.0.

Actor System Administrator

Pre-Condition There is no an active service version in the Version Registry which has
the same service name with the new service.

Post-
Condition

The new service is registered in Service Registry and the version-related
information is stored in the Version Registry.

Post-
Condition
in Special Case

The new service is not registered.
No versioning information is added into the Version Registry.

Normal Case

1. The system administrator commands the system to register the new
12 service.
2. The new service is registered by adding versionedServiceName (namely
12 serviceName#1.0) and WSDL document into the Service Registry.
3. The service versioning information including setting the serviceStatus
12 as active is stored in the Version Registry.
4. The system finishes the transactions.

Special Cases

1. An active service version has already existed in the Version Registry
12 which has the same service name with this new service.
12 - The system shows a notification: "This service has existed already,
12 please try replaceService or deployParallel operation!" and aborts.
2. The system cannot finish the transaction with the Service Registry.
12 - The system rolls back the transaction and shows an error message.
3. The system cannot finish the transaction with the Version Registry.
12 - The system rolls back the transaction and shows an error message.
4. The service description document is not a valid WSDL file.
12 - The system shows an error message and aborts.

Table 3.1: Description of Use Case Register New Service

36

3.2 System Specification

Name Replace Service

Goal The system administrator wants to replace an old service version with a
new service version.

Actor System Administrator

Pre-Condition This old service does exist in the Service Registry.
The new service version has to be compatible with the old service version.

Post-
Condition

The old service version is unregistered from the Service Registry.
The service versioning information about the old version is updated.
The new service version is registered into the Service Registry.
The service versioning information of the new version is added into the
Version Registry.

Post-
Condition
in Special Case

The old service version is not unregistered and the new service version is
not registered.
The respective service versioning information cannot be updated.

Normal Case

1. The system administrator instructs the system to replace an old ser-
12 vice version with a new service version.
2. CCF checks the compatibility between these two services and calcu-
12 lates the serviceVersionId of this new service.
3. The old service version is unregistered from the Service Registry, but
12 its interface cannot be deleted.
4. Its service versioning information in the Version Registry is updated,
12 such as serviceStatus is set as decommissioned.
5. The new service version is registered by adding the WSDL document
12 and adding versionedServiceName (namely serviceName#serviceVer-
12 sionId) into the Service Registry. Additionally, it reuses the interface
12 of the old service version.
6. The service versioning information including setting the serviceStatus
12 as active is stored in the Version Registry.
7. The compatibility status about of two services is set as "compatible".
8. The system finishes the transactions.

Special Cases

1. The old service does not exist in the Service Registry.
12 - The system shows a notification: "This service to be replaced does
12 not exist, please try registerNewService operation!" and aborts.
2. The new service version is incompatible with the old service version.
12 - The system shows a notification: "This service is an incompatible
12 version, please try unregisterService and registerNewService, or dep-
12 loyParallel operations!" and aborts.
3. The system cannot finish the transaction with the Service Registry.
12 - The system rolls back the transaction and shows an error message.
4. The system cannot finish the transaction with the Version Registry.
12 - The system rolls back the transaction and shows an error message.
5. The service description document is not a valid WSDL file.
12 - The system shows an error message and aborts.

Table 3.2: Description of Use Case Replace Service

37

3 Specification and Design

Name Deploy Service in Parallel

Goal The system administrator wants to deploy a new service in parallel with
an existing service version.

Actor System Administrator
Pre-Condition The existing service does exist in the Service Registry.

Post-
Condition

The new service version is registered and deployed in parallel with the
old version.
The service versioning information about this new service version is
added into the Version Registry.

Post-
Condition
in Special Case

The new service version is not registered into the Service Registry.
The Version Registry is not updated.

Normal Case

1. The System Administrator commands the system to deploy this new
12 service version in parallel with an existing service version.
2. CCF checks the compatibility between these two services and calcu-
12 lates the serviceVersionId of this new service.
3. The new service version is registered by adding the WSDL document
12 and adding versionedServiceName (namely serviceName#serviceVer-
12 sionId) into the Service Registry.
4. The service versioning information including setting the serviceStatus
12 as active is stored in the Version Registry.
5. The compatibility status of these two services is set as the result of
12 the CCF assessment.
6. The system finishes the transactions.

Special Cases

1. The old service does not exist in Service Registry.
12 - The system shows a notification: "This service version does not exi-
12 st, please try registerNewService operation!" and aborts.
2. The system cannot finish the transaction with the Service Registry.
12 - The system rolls back the transaction and shows an error message.
3. The system cannot finish the transaction with the Version Registry.
12 - The system rolls back the transaction and shows an error message.
4. The service description document is not a valid WSDL file.
12 - The system shows an error message and aborts.

Table 3.3: Description of Use Case Deploy Service in Parallel

38

3.3 System Design

3.3 System Design

This section explains the extension of the JBIMulti2 management system for managing service
evolution in detail, which is the main subject of this diploma thesis. After a brief review, it is
mainly discussed how the JBIMulti2 system is extended for service evolution management.

[Muh12] has designed and implemented a multi-tenant management and administration system
based on Apache ServiceMix 4.3.0 that implements the JBI specification. This system has
supported a cluster of instances of Apache ServiceMix for ensuing the elasticity characteristic
of cloud computing. The most important is the data isolation between tenants, whether it
relates to message flows inside the Enterprise Service Bus or service assemblies (see details in
Section 2.7).

Figure 3.3: Overview of the service version control management system based on the system
design by [Lie13]

39

3 Specification and Design

The JBIMulti2 system has employed the following components for tenants and services to
ensure the data isolation between tenants. A Service Registry is responsible for storing Service
Assemblies and active services. A Tenant Registry stores information related to all tenants
and their corresponding users. A Configuration Registry keeps configuration data. A Service
Registry Manager registers service assemblies and services into the Service Registry. A Tenant
Registry Manager stores and retrieves the tenants’ information if needed. A Configuration
Registry Manager performs storing configuration data into the Configuration Registry, which
are created by system administrators or tenants. The Tenant Context can be added into each
service unit inside a service assembly by a Service Assembly Manager, in order to make ESBs
multi-tenant aware. A JBI Container Manager is used to interact with underlying multi-tenant
aware ESB implementation.

Figure 3.3 sketches the extension of the JBIMulti2 system for service evolution management.
The details of this extension will be explained in the following sections.

3.3.1 Modification and extension of JBIMulti2 components

In previous section we have introduced three use cases with the system administrator permission.
These use cases combine with the CCF assessment to ensure the managing of service evolution.
In order to achieve this goal, we extend the JBIMulti2 management system as follows:

• Access Layer
The SystemAdminFacadeBean is enriched by adding the three functions registerNewSer-
vice, replaceService and deployParallel. They provide the JBIMulti2 system with the
capability to manage the service evolution.
The CCF assessment is embedded into replaceService and deployParallel.
In addition, a service description does not contain any versioning information. The
serviceVersionId needed by the Version Registry has to be extra calculated based on the
result of CCF assessment.

• Checking Compatibility Function (CCF)
CCF is used to check the compatibility of services. Its algorithm has been discussed in
Section 2.8.2. The implementation of CCF algorithm is another important task of this
thesis.
The result of CCF assessment could be considered either the value of compatibility status
or the basis for calculating serviceVersionId.

• The Service Registry Manager
ReplaceService and deployParallel are added as new functionalities of the Service Registry
Manager.

• The Service Registry
Because there are services which have identical service name, but different service version
identifiers, the attribute serviceName of service entity in the Service Registry will be
modified as versionedServiceName which consists of service name and service version
identifier to uniquely define a service name.

40

3.3 System Design

• The Version Registry Manager
It connects JBIMulti2 system and the Version Registry, and is responsible for updating
the Version Registry, when a new service is registered, a service is replaced by a new
service, or a service is deployed in parallel with an existing service.

• The Version Registry
A Version Registry is used as a database to maintain service versioning information.

• A extended Service Engine
A message interceptor is added into the Service Engine which is responsible for routing
messages. A transformer could be added into the Service Engine or considered as a
functionality of the service version control management system to adapt the message
payloads into what the compatible service needs. These new components could ensure a
dynamic routing of messages.

3.3.2 Database schema

3.3.2.1 The Version Registry

The JBIMulti2 management system does not have any databases to store the version-related
information. Here a Version Registry is proposed for the managing of service interface
versioning.

Figure 3.4: ER-Diagram of the Version Registry

Figure 3.4 is an Entity Relationship Diagram of the Version Registry which has two entities.

• Service version (service_version)
Service version entity stores all versioning information for a service description. It
contains the following attributes.

– Service name (serviceName): the name of the service in WSDL.

41

3 Specification and Design

– Service version identifier (serviceVersionId): consists of a major release number and
a minor release number, such as version 3.2.

– Service status (serviceStatus): it would be set as active, if a service is successfully
registered, while it would be set as decommissioned, if a service is unregistered.

– Start time (startTime): indicates the time a service is set as active.

– End time (endTime): denotes the time a service is decommissioned.

– Service description (wsdlFile): the WSDL file of this service version.

• Service compatibility
It represents a recursive relationship between service versions.

– Compatibility status: describes whether two service versions are compatible. It
could be set as "compatible" or "incompatible".

The service name combines with the service version identifier to uniquely identify a service
version.

3.3.2.2 The Service Registry

The main parts of the Service Registry are not changed. Only the attribute service name
(serviceName) of the service entity is replaced by a service name with its version number (ver-
sionedServiceName), so that a service could be distinguished from other services with the same
service name by its version identifiers. The value of the versionedServiceName is in the form
of serviceName#Major.Minor. For example, WeatherService#1.1 and WeatherService#1.2
could exist in the Service Registry simultaneously.

Figure 3.5: ER-Diagram of the Service Registry

42

3.3 System Design

Furthermore, when a new service is registered or a new service is deployed in parallel with an
existing service, a new service interface will be assigned to this new service. However, when an
old service version is replaced by a new service version, the service interface of the old service
will be reused by the new service.

3.3.3 The Service Version Control Management

In Section 3.2, we have discussed three new use cases which allow system administrators
to register new service, to replace an old service version with a new service version and to
deploy a new service in parallel with an old service version. The implementation of these
operations indicates that the extension of the JBIMulti2 system could provide version control
capability. We will use several activity diagrams about use cases to show procedural executions
and flows related to system components. Moreover it should be noted that the JBIMulti2
system has already provided the capabilities to register a service into the Service Registry by
registerService and unregister a service from the Service Registry by unregisterService. But
both of them cannot deal with the data in the Version Registry.

The first use case is sketched by Figure 3.6. The system administrator wants to register a
new service as the first version 1.0. In this case, it has to be checked whether the Version
Registry has already stored an active service version which has an identical service name. If
such a service does exist, the system will show a notification "This service has existed already,
please try replaceService or deployParallel operation!" and abort all transactions. If such a
service does not exist, the new service could be registered into the Service Registry and its
version-related information will be stored in the Version Registry. The service status is then
set as active, means that this service version is the most actual version at that time. After the
JBIMulti2 system has received an acknowledgment, all transactions of registerNewService are
done.

Another use case is the replacement of an old service with a new service (see Figure 3.7). First
of all, the existence of this old service has to be checked. If such service does not exist in the
Service Registry, the system will display "This service to be replaced does not exist, please
try registerNewService operation!" and abort all transactions. If such service does exist, the
process could be continued. A service could be replaced only by a compatible service. Thus,
CCF has to be executed to exam the compatibility of these two services. Furthermore, the
version identifier should be determined based on the version of the old service and the result
of CCF assessment. If all pre-conditions are fulfilled, the replacement can be performed. The
JBIMulti2 system will first unregister the old service by removing it from the Service Registry
and register the new one. Then the status of the old service in the Version Registry is set as
decommissioned. All versioning information about the new service is added into the Version
Registry and the status of the new service is set as active. Finally, the compatibility status
for these two services is recorded as "compatible". After that, the replace service operation is
finished. Note that the service interface of the old service is reused by the new service.

43

3 Specification and Design

Figure 3.6: Activity diagram of register new service use case

44

3.3 System Design

Figure 3.7: Activity diagram of replace service use case (compatible)

45

3 Specification and Design

Figure 3.8: Activity diagram of replace service use case (incompatible)

Figure 3.8 describes an incompatible case of replacement operation. After finding the old
service version, a CCF assessment is performed. In the case of incompatibility, the system
will inform that "This service is an incompatible version, please try unregisterService and
registerNewService, or deployParallel operations". This operation will then be aborted.

46

3.3 System Design

Figure 3.9: Activity diagram of deploy service in parallel use case

47

3 Specification and Design

Figure 3.9 shows the last use case for deploying a new service in parallel with an existing
service. The system administrator registers directly the new service version into the Service
Registry. This operation is similar to registerNewService. In addition, it requires a CCF
assessment and an existence check for old service. If the related old service could not be
found in the Service Registry, the system administrator will be informed about that "This old
service version does not exist, please try registerNewService operation!" and all transactions
will be then aborted. If such old service could be found, the process works continuously. The
result of the CCF assessment is used for calculating the service version identifier and setting
compatibility status in the Version Registry. The operation is successfully completed after the
registries have stored the new service.

3.3.4 The formal expression of service descriptions for implementing CCF algorithm

In Section 2.8.2 the CCF assessment for checking the compatibility of services is introduced. For
implementing it, we will explain how to express a service description based on ASD meta-model.
This service description is only related to the structural layer of the ASD meta-model.

A structural ASD includes elements and their relationships. The relationships indicate the
structural dependences among the elements. The formal definition for elements and their
relationships has been proposed by [ABP12].

• An element e is a tuple e := (name: string, (atti,i≥1: : attribute)∗, (prj,j≥1: : property)∗).

• A relationship r(es, et) between element es (the source element) and et (the target
element) is a tuple := (names: string, namet: string, rel: relation, mul: multiplicity).

• Where

– name, names, namet are the unique element identifiers of elements e, es, et, respec-
tively (of type string).

– (atti, i = 1,. . . ,m)∗ a set of zero or more generic types of attributes (int, char, string,
etc.).

– (prj , i = 1,. . . ,n)∗ a set of zero or more property value, that is, attributes with
predefined value ranges and characteristics.

– rel is the type of relation between the elements (a, c, s – aggregation, composition,
or association with the semantic defined in [ABP08]).

– mul is the multiplicity of the relationship, defined as mul := [mincrd, maxcrd] where
mincrd, maxcrd ∈ IN (the set of natural numbers) is the minimum and maximum,
respectively, multiplicities allow for each member of relationship.

According to this definition, we can further define the structural subtyping as follows [ABP12].

48

3.3 System Design

• For e = (name, att1,. . . ,attk, pr1,. . . ,prl) and e′ = (name′, att′1,. . . ,att′m, pr′1,. . . ,pr′n),
we define the subtype relation between e and e′ as

e ≤ e′ ⇔ name ≡ name′
∧

k > m, atti ≤ att′i, 1 ≤ i ≤ m
∧

l > n, prj ≤ pr′j , 1 ≤ j ≤ n.

This means that the name identifiers of elements must be identical, and the number of
attributes and properties contained by e′ is respectively smaller than that contained by
e, but the one of e′ is a supertype of the respective attributes and properties of e. By
definition it holds that (e = ∅) ≤ e′.

• For r(es, et) = (names, namet, rel, mul) and r(e′s, e′t) = (name′s, name′t, rel′, mul′), we
define the subtype between r and r′ as

r(es, et) ≤ r(e′s, e′t)⇔ es ≤ e′s
∧

et ≤ e′t
∧

rel = rel′
∧

mul ⊆ mul′.

This denotes that the elements e′s and e′t which participates in the new relationship is
respectively a supertype of es and et and the multiplicity domain of the relation is a
superset of the respective one in the old relationship. As an assumption, ∅ ≤ r(es, et), iff
mul=[0, N), N ≥ 1.

These definitions enable us to express service descriptions formally by abstracting its elements
and the relationships of them. Therefore, the CCF algorithm in Algorithm 2.1 is able to be
implemented.

3.3.5 Dynamic routing of messages

Because multiple service versions might exist at the same time or an existing service version is
probably replaced by another service version, a request message from clients or a response
from services could not be successfully routed by ESBs. Therefore, the capabilities of the
multi-tenant aware ESB have to be improved to ensure routing correctness.

An ESB has two main components namely Binding Components and Service Engines. We will
explain the extension of the ESB from these two aspects.

3.3.5.1 Binding Components of the multi-tenant ESB

In the Service Registry the versionedServiceName distinguishes the multiple versions of a
service from each other. It could be used as serviceLocationPart in URI to unambiguously
locate a service version. In the case of replacement, the URI of the decommissioned service
will be unchangingly assigned to the new active service. Therefore, the Binding Components
which point to various service versions do not need to be changed.

49

3 Specification and Design

3.3.5.2 Service Engines of the multi-tenant ESB

A Service Engine should contain a message interceptor, which is responsible for listening to the
communication channel, intercepting each request from service consumers and each response
from service providers, determining the real targeted service version of each intercepted message,
and if necessary, invoking the transformer to convert incoming message to corresponding
outgoing message, and vice versa (see Figure 3.10).

Figure 3.10: Extending SE for dynamic routing

The compatibility status is here important information. It could be retrieved by the in-
terceptor to determine the targeted service of a message. The business logic of a message
interceptor is described in Listing 3.1. We assume a message is targeted at a service named
exampleService#m.n where m is the major release number and n is the minor release number.

The Listing 3.1 indicates four main cases for processing messages. If an identical service is
found in the Service Registry, the message intercepted by the message interceptor could be
directly routed to this service endpoint. If a compatible service version is returned, the SE

50

3.3 System Design

is able to deliver this converted message through the NMR to its corresponding target, after
the conversion has been executed by the transformer. In the case of incompatible service, the
system will send a message to inform that the client should be updated in time. When the
targeted service does not exist in the Version Registry (anymore), the client will be noticed.

Listing 3.1 Business logic of a message interceptor
A message is intercepted, its target service: "exampleService#m.n"

IF exampleService#m.n exist in the Version Registry THEN{
IF serviceStatus = "active" THEN {

SE delivers the message to the endpoint;
}ELSE {

IF at least one compatible service version exist THEN {
find the latest service version by comparing "startTime";
invoke transformer;
SE delivers the converted message to the target service;

} ELSEIF at least one incompatible service version exist THEN {
notice "update client";

} ELSE { notice "this service does not exist anymore";
}END IF

}END IF
} ELSE {notice "this service does not exist";
} END IF

A transformer is required to convert the request messages of service consumers to the corre-
sponding messages supported by compatible service versions and vice versa. It can be embedded
into a Service Engine or designed as a functionality of the service version control management
system. If a transformer is invoked by a message interceptor, it adapts an incoming message
as below. We assume that a service named servicePre is replaced by a compatible version
named serviceCurr and a request message from service consumer is targeted at the service
servicePre.

Listing 3.2 Business logic of a transformer
get the incoming message from SE;
get the WSDL file of servicePre from Version Registry;
get the WSDL file of serviceCurr from Version Registry;
IF incoming message = request message from service consumer THEN {

FOR each input-type element e in request message{
find the corresponding input-type element e’ in WSDL file of serviceCurr;
adapt e to e’,

}END FOR
return the resulted message to SE;

}END IF
IF incoming message = response message from service provider THEN{

FOR each out-put element e’ in response message{
find the corresponding out-put element e in WSDL file of servicePre;
adapt e’ to e,

} END FOR
return the resulted message to SE;

}END IF

51

3 Specification and Design

3.3.5.3 Message processing logic

A cache is located between the Version Registry and the message interceptor for keeping the
retrieved results for a while, in order to reduce the retrieval time and frequency. It stores the
queried version-related information from the Version Registry, such as the compatibility status
and its associated two service versions.

A request message from the consumer site is normalized by the BC-IN and wired to a
corresponding SE. The message interceptor of the SE intercepts the normalized message and
retrieves the versioning information from the Version Registry or from the cache (if the latest
results of retrievals still exist). Based on the retrieved information, the message interceptor
can decide whether it invokes the transformer. The SE forwards then the formalized message
through the NMR to the BC-OUT.

Similar to the request message, a response message from the provider side is normalized by the
BC-OUT and wired to a corresponding SE. According to the service versioning information
from the cache, the message interceptor decides whether the message payload needs to be
transformed before forwarding. The normalized message is finally routed to the BC-IN where
the request message came from.

In the previous section the four cases have been determined based on the Listing 3.1, namely
"identical", "compatible", "incompatible" and "not exist (anymore)". For a better understanding
of these four cases, we combine sequence diagrams about message flows to illustrate how an
incoming message targeted at a particular service endpoint is being processed. It also explains
how the message interceptor processes messages.

52

3.3 System Design

Figure 3.11: Sequence Diagram in the case of "compatible"

The Figure 3.11 shows a sequence diagram for explaining the behaviors of the system com-
ponents, in case that a compatible service is considered as the target service. An incoming
message from BC-IN is normalized and wired to the corresponding SE of the BC-IN. The
message interceptor of the SE obtains a compatible service and uses it as the new target service
of the normalized massage. After being converted into the compatible format, the message is
forwarded to the NMR by SE and then routed to the corresponding BC-OUT by NMR.

53

3 Specification and Design

Figure 3.12: Sequence Diagram in the case of "incompatible"

The Figure 3.12 is related to an incompatible case. After the normalization, the message is
intercepted for retrieving its target service. If the resulted service is an incompatible version, a
notification "update the client" will be returned to the BC-IN.

54

3.3 System Design

Figure 3.13: Sequence Diagram in the case of "identical"

The Figure 3.13 explains the behaviors of the system components after an identical service is
being retrieved by the message interceptor. The SE which supports the routing functionality
can route the normalized incoming message directly to the corresponding BC-OUT.

55

3 Specification and Design

Figure 3.14: Sequence Diagram in the case of "not exist (anymore)"

The last case is that the message inceptor cannot get any versioning information about the
normalized incoming message. That means the target service of the message does not exist
(anymore). Therefore the system returns a notification to the BC-IN.

3.4 Summary

In this chapter the requirements of the service version control management system is identified.
In order to better understand the functionalities of this system, three use cases are introduced
and concretely explained by activity diagrams. In Section 3.3 the JBIMulti2 management
system is extended for managing service version purpose. Additionally, the CCF algorithm
could be performed by the formal expression of service descriptions. In the end, the Service
Engine which supports the routing compatibility is improved by adding a message interceptor
which is combined with a transformer to implement the dynamic routing of messages. The
behaviors of the system components are explained by sequence diagrams for various cases.

56

4 Implementation

This chapter describes firstly the foundational technologies which are related to the extension
of the JBIMulti2 system. Then we explain how to implement the Version Registry and the
CCF assessment function, and how the functionalities of the JBIMulti2 are extended for service
evolution management.

Figure 4.1: Overview of the extended JBIMulti2 architecture

57

4 Implementation

Figure 4.1 is an overview of the service version control management system which reveals the
technological architecture. It comprises system components and associated technologies.

4.1 Fundamental Technologies

We introduce in this section the technologies related to the extension of the JBIMulti2 system
for service evolution management.

Java Platform, Enterprise Edition v.5 (Java EE 5) offers a powerful set of APIs to reduce
development time and application complexity, as well as improving application performance.
It simplifies the development of distributed, transactional, and portable applications [FJB10].
The following APIs are necessary for this implementation.

• Java API for XML-based Web Services (JAX-WS)
JAX-WS is used to develop Web Services and clients that use XML-based protocol such
as SOAP. The complexity of SOAP is here irrelevant, because it could be hidden by
JAX-WS from the application developers. In addition, JAX-WS maps Java interfaces to
WSDL and vice versa.

• Java Architecture for XML Binding (JAXB)
A fast and appropriate method is provided by JAXB to transform XML documents to
or from Java objects.

• Java Message Service (JMS)
The JMS specifies a set of interfaces and associated semantics for Java developers
to integrate messaging products. It enables communications to be loosely coupled,
asynchronous, and reliable.

• Enterprise JavaBeans (EJB)
An EJB is a server side component. It encapsulates the business logic which performs
the functionalities of an application. The bean developer could focus on solving business
problems because the EJB container is responsible for system-level services. Thus, the
development of large, distributed applications has become easier. Additionally, the client
developer could design thin clients running on small devices, since the business logic
of the application is contained by the EJB on the server side. The EJB provides also
scalability of applications, data integrity of transactions, and variety of clients.

• JavaService Faces (JSF)
This is a user interface component framework on server side for web applications.
It provides architecture for managing component state, processing component data,
validating user input, and handling events.

PostgreSQL is an open-source object-relational database management system [Pos]. It provides
ACID compliance. Moreover, it is cross-platform and can almost run on major operating
systems. As a database server, we use it to manage the data of Service Registry, Version
Registry, Tenant Registry, and Configuration Registry.

58

4.2 Implementation of Version Registry

Apache ServiceMixis an open-source distributed ESB. It integrates the functionalities of a
SOA model and the modularity of OGSi framework to decouple the applications and reduce
their dependencies [Fouc]. Its components such as Apache Karaf, Apache ActiveMQ and
Apache Camel have been described in Section 2.6.

Apache Maven is a software project management tool. It provides programmers with a complete
build lifecycle framework. Various java projects could be built during their build lifecycle by
resolving the Project Object Model (POM) file which contains the tasks and required plugins
of projects. Furthermore, Apache Maven could specify the dependencies between modules
stored in local or remote repository to manage a large-scale project [Foub].In this thesis, the
module related to the JBIMulti2 web application is extended to support service evolution
management. All java source code is compiled with the Java Development Kit (JDK) 6.

4.2 Implementation of Version Registry

The Version Registry described in Section 3.3.2.1 is implemented by PostgreSQL. Listing 4.1
shows its Data Definition Language (DDL). The source database consists of two tables. In
the table of service_compatibility, service_name_pre and service_version_id_pre identify
a previous service version which for example should be replaced, while service_name_curr
and service_version_id_curr identify the new registered service version. They associate
compatibility_status to record the compatibility of two services.

Listing 4.1 DDL of Version Registry
CREATE DATABASE versionregistry;
CREATE TABLE service_version (

service_version_id varchar(255) NOT NULL,
service_name varchar(255) NOT NULL,
service_status varchar(20),
start_time date,
end_time date,
wsdlFile text NOT NULL,
PRIMARY KEY (service_version_id, service_name)

);
CREATE TABLE service_compatibility (

service_name_prev varchar(255) NOT NULL,
service_version_id_prev varchar(255) NOT NULL,
service_name_curr varchar(255) NOT NULL,
service_version_id_curr varchar(255) NOT NULL ,
compatibility_status varchar(20) NOT NULL,
PRIMARY KEY (service_name_prev, service_version_id_prev, service_name_curr,

service_version_id_curr),
FOREIGN KEY (service_name_prev, service_version_id_prev) REFERENCES service_version

(service_name, service_version_id),
FOREIGN KEY (service_name_curr, service_version_id_curr) REFERENCES service_version

(service_name, service_version_id)
);

59

4 Implementation

The Java Persistence API (JPA) provides an object-relational mapping facility to manage
relational data in Java applications. The entities and entity relationships can be mapped into
the relational data in the underlying database by using object-relational mapping annotations
(javax.persistence.∗). An entity class e.g. ServiceVersion (service_version entity) must be
annotated with @Entity annotation. @EmbeddedId annotation denotes the composite primary
key property or field of an Entity, for example, compositePrimaryKey of ServiceVersion entity
consists of service_version_id and service_name. The EntityManager API manages entity
beans by creating or removing persistence entity instances, finding entities with the primary
key, and allowing queries to be on entities.

Figure 4.2: Relational data in Java to be mapped

Figure 4.2 lists four java files under the package domain.versionregistry. The ServiceVere-
sionPK and ServiceCompatibilityPK define the composite primary key for ServiceVersion
and ServiceCompatibility which are mapped to service_version and service_compatibility
respectively (see Listing 4.1).

Listing 4.2 Persistence unit of versionRegistry
<persistence-unit name="versionRegistry" transaction-type="JTA">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>jbimulti2/versionRegistry</jta-data-source>
<class>de.unistuttgart.iaas.jbimulti2.application.domain.

versionregistry.ServiceCompatibility</class>
<class>de.unistuttgart.iaas.jbimulti2.application.domain.

versionregistry.ServiceCompatibilityPK</class>
<class>de.unistuttgart.iaas.jbimulti2.application.domain.

versionregistry.ServiceVersion</class>
<class>de.unistuttgart.iaas.jbimulti2.application.domain.

versionregistry.ServiceVersionPK</class>
......
</persistence-unit>

60

4.3 Compatibility Check

A JPA persistence unit is a logical grouping of user defined persistable classes with related
setting. A persistence.xml in the META-INF directory in the classpath defines persistence
units. Listing 4.2 shows how to define versionRegistry as a JPA persistence unit.

4.3 Compatibility Check

A WSDL file contained in the Service Registry is in Character Large Object (CLOB) format.
We need firstly a printer to transform the WSDL string into XML-based WSDL document.

Listing 4.3 Implementation of CCF function
input: reqElements1, reqRelationships1, proElements1, proRelationships1 for Service1

reqElements2, reqRelationships2, proElements2, proRelationships2 for Service2

boolean compatibility = true;
// CCF Algorithm line 1-5
// check the subtyping of elements
FOR each element reqEle1 of reqElements1 {

IF ((name of reqEle1)== (name of reqEle2) &&
(type of reqEle1) is subtype (type of reqEle2)) {

compatibility = true;
} ELSE {compatibility = false; break;}

}
//check the subtyping of relationships
FOR each relationship reqRel1 of reqRelationships1 {

IF ((source name of reqRel1) == (source name of reqRel2) &&
(target name of reqRel1) == (target name of reqRel2) &&
(multiplicity of reqRel1) is subtype of (multiplicity of reqRel2)) {

compatibility = true;
} ELSE {compatibility = false; break;}

}

// CCF Algorithm line 6-10
// check the subtyping of elements
FOR each element proEle2 of proElements2 {

IF ((name of proEle1) == (name of proEle2) &&
(type of proEle2) is subtype (type of proEle1)) {

compatibility = true;
} ELSE {compatibility = false; break;}

}
//check the subtyping of relationships
FOR each relationship proRel2 of proRelationships2 {

IF ((source name of proRel1) == (source name of proRel2) &&
(target name of proRel1) == (target name of proRel2) &&
(multiplicity of proRel2) is subtype of (multiplicity of proRel1)) {

compatibility = true;
} ELSE {compatibility = false; break;}

}

return compatibility;

61

4 Implementation

A WSDL file is an XML-based document. According to the formal expression of service
descriptions proposed in Section 3.3.4, the functions of ASD class could analyze XML element-
tags in order to convert a XML-based WSDL document into a formal structural ASD expression.
In other words, the elements and their relationships can be extracted by getAllElements and
getAllRelationships respectively. Furthermore, all extracted elements could be classified
as input-type or output-type. The input-type elements, output-type elements, and their
corresponding relationships enable the CCF assessment to be implemented.

We assume that reqElements and reqRelationships save separately all input-type elements and
their relationships of a service description, while proElements and proRelationships store all
output-type elements and their relationships respectively. For subtype (≤) of data type, we
assume int ≤ double ≤ string ≤ document. For subtype (≤) of multiplicity, we assume [1, 1]
≤ [0, 1], where [1, 1] denotes a mandatory appearance of an element and [0, 1] denotes an
optional appearance of an element.

4.4 Implementation of Service Version Control Management

Two EJB components namely VersionRegistry and ServiceRegistry(see Figure 4.1) are separately
realized to encapsulate the business logic to access the Version Registry and the Service
Registry.

The VersionRegistry invokes the EntityManager to add a new service version into the Version
Registry, to query version-related information with the service name and version identifier, or
to add or delete service compatibility into or from the Service Registry respectively, etc.

The ServiceRegistryis extended by adding two operations to the Service Registry. It is able to
remove a previous service version and add the new service version into the Service Registry.
Moreover, it could deploy a new service version in parallel with an existing service version.
Special attention should be paid to the composite key of a service entity, which consists
of tenant identifier, user identifier and service name. Although the tenant identifier and
user identifier are optional, the null value could lead to errors in database or in operations.
Therefore, we set both as "" value.

The JBIMulti2 system should provide three services to manage the service evolution. This
has been explained in three use cases in Chapter 3. For the same reason, the SystemAd-
minFaçadeBean is extended by adding registerNewService, replaceService and deployParallel
functionalities. Their business methods are described in Listing 4.4, Listing 4.5 and Listing
4.6, respectively.

The business methods of façade enterprise beans have to be annotated with @PermissionType
to inform the method interceptor which permission a caller must have. A parser is designed to
read the service name from a WSDL file. Assertion functions are introduced to check whether
the related service has already existed. Based on the version identifier of the previous service
version and the result of CCF assessment, the version identifier of the new service version can
be calculated with the versionIdCalculate function (see Listing 4.7).

62

4.4 Implementation of Service Version Control Management

Listing 4.4 The business method of registerNewService in SystemAdminFaçadeBean
@PermissionType(type = PermissionTypeEnum.SYSTEM_ADMINISTRATOR)
public ServiceEntry registerNewService (String wsdlFile)

throws AuthorizationException, ExecutionException{
...
String serviceName = parser.getServiceName(wsdlName);
String versionedServiceName = serviceName + "#" + "1.0";
//check if an active service with serviceName does exist in the Version Registry
assertionManager.assertServiceNameExists(serviceName);
//if such service does not exist in the Version Registry
serviceRegistry.registerService("", "", versionedServiceName, wsdlFile);
versionRegsitry.addServiceVersion("1.0", "serviceName", "active", startTime);
...

}

Listing 4.5 The business method of replaceService in SystemAdminFaçadeBean
@PermissionType(type = PermissionTypeEnum.SYSTEM_ADMINISTRATOR)
public ServiceEntry replaceService (String versionedServiceNamePre,

String wsdlFileCurr) throws AuthorizationException, ExecutionException{
...
//check if this service to be replaced does exist in the Service Registry
assertioManager.assertServiceNotExists(versionServiceNamePre);
//if this service does exist in the Service Registry
get serviceName and versionIdPre from versionedServiceNamePre;
String wsdlFilePre = serviceRegistry.getService("", "",

versionedServiceName).getWsdlFile();
//CCF assessment
String compatibilityStatus = CCF(wsdlFilePre, wsdlFileCurr);
if (compatibilityStatus == "compatible"){

String veresionIdCurr = versionIdCalculate(versionIdPre, compatibilityStatus);
String versionedServiceNameCurr = serviceName + "#" + versionIdCurr;
versionRegistry.replaceService(versionedServiceNamePre, versionedServiceNameCurr,

wsdlFileCurr);
set serviceStatus of servicePre as "decommissioned" in the Version Registry;
set entTime of servicePre in the Version Registry;
versionRegistry.addServiceVersion(versionIdCurr, serviceName, "active", startTime);
add compatibilityStatus with associated composite key into service_compatibility

table;
}

...
}

63

4 Implementation

Listing 4.6 The business method of deployParallel in SystemAdminFaçadeBean
@PermissionType(type = PermissionTypeEnum.SYSTEM_ADMINISTRATOR)
public ServiceEntry deployParallel (String versionedServiceNamePre,

String wsdlFileCurr) throws AuthorizationException, ExecutionException{
...
//check if this related service does exist in the Service Registry
assertioManager.assertServiceNotExists(versionServiceNamePre);
//if this service does exist in the Service Registry
get serviceName and versionIdPre from versionedServiceNamePre;
String wsdlFilePre = serviceRegistry.getService("", "",

versionedServiceName).getWsdlFile();
//CCF assessment
String compatibilityStatus = CCF(wsdlFilePre, wsdlFileCurr);
String veresionIdCurr = versionIdCalculate(versionIdPre, compatibilityStatus);
String versionedServiceNameCurr = serviceName + "#" + versionIdCurr;
versionRegistry.deployParallel(versionedServiceNameCurr, wsdlFileCurr);
versionRegistry.addServiceVersion(versionIdCurr, serviceName, "active", startTime);
add compatibilityStatus with associated composite key into service_compatibility

table;
...

}

Listing 4.7 The algorithm of versionIdCalculate
IF (compatibilityStatus == "compatible"){

the Minor of versionIdPre is increased by 1;
String versionIdCurr = Major + "." + Minor;

} ELSE {
the Major of versionIdPre is increased by 1;
String versionIdCurr = Major + "." + "0";

}

64

4.4 Implementation of Service Version Control Management

The package de.unistuttgart.iaas.jbimulti2.application.webservice.wsdl contains all generated
Java classes and interfaces. SystemAdminServicePortTypeBean and jbimulti2.wsdl should be
modified correspondingly. After running Maven plugin, the structure of the Web Service is
changed (see Figure 4.3).

Figure 4.3: Service interface of System Admin

65

5 Validation

In this chapter we validate the implementation of our service version management system
as discussed in Chapter 4. In first section, the environment for the validation should be
introduced. In second section, the CCF assessment function is tested with several service
examples. In the last section, we validate the three version control services of the JBIMulti2
system.

5.1 Validation Environment

We use the following tools to establish the validation environment (see Figure 5.1).

Figure 5.1: The validation environment

67

5 Validation

• PostgreSQL 9.1.1
It is introduced in Section 4.1.All databases are created and managed by PostgreSQL
9.1.1.

• JOnAS 5.2 [Con]
JOnAS is an open-source implementation of the Java EE application server. The
JBIMulti2 EAR package is deployed by a JOnAS 5.2 instance. It makes a database
connection to the PostgreSQL 9.1.1.

• SoapUI 3.6 [Sof]
SoapUi is an open-source Web Service testing application. It provides a graphical
interface to test Web Service functions of the extended JBIMulti2 system.

• Apache Tomcat 7.0.53 [Foud]
Apache Tomcat is an open-source Web Server and servlet container. It hosts several
service example deployments for testing CCF assessment function.

• Apache ServiceMix 4.3.0
It integrates a messaging broker. Management messages from the JBIMulti2 manage-
ment application are targeted at this message broker. The OSGi blueprint bundle
jbi.servicemix.jmsmanagement-1.0.jar listens to these messages to perform JBI compo-
nent installations and service assembly deployments. The management of JBI components
and service assemblies is out of the scope of this work.

5.2 Validation of CCF assessment

In order to test the CCF assessment function, a Web Service called calculateService is
developed and deployed by Apache Tomcat. An initial version calculateService1 has only two
functionalities: addition and subtraction of two integer-type numbers. As an extended version,
calculateService2 is added two operations: multiplication and division, but the input-types and
output-types are still integer. Table 5.1-Table 5.5 describe the possible evolution paths of the
calculateService. Based on the guideline-based approach discussed in Section 2.8.2, the version
number of each service is deduced and it follows the service name in each table. It should be
noticed that in Table 5.5 there are two deduced versions. Since all parameters are optional
in default, the version number of calculateService should be 2.1. If the input parameter z is
mandatory, the version number should be 3.0.

calculateService1 (1.0) + -
input x int int
input y int int
output int int

Table 5.1: calculateService1

68

5.2 Validation of CCF assessment

calculateService2 (1.1) + - × ÷
input x int int int int
input y int int int int
output int int int int

Table 5.2: calculateService2

calculateService3 (1.2) + - × ÷
input x double double double double
input y double double double double
output int int int int

Table 5.3: calculateService3

calculateService4 (2.0) + - × ÷
input x double double double double
input y double double double double
output double double double double

Table 5.4: calculateService4

calculateService5 (2.1/3.0) + - × ÷
input x double double double double
input y double double double double

input z (optional/mandatory) double double double double
output double double double double

Table 5.5: calculateService5

The formal representation of a service description is the basis of implementing the CCF assess-
ment. This is realized by analyzing the XML-based service descriptions of these calculation
services. All records of a service description could be divided into input-type and output-type
records. The ASD representation of calculateService1 is shown in Figure 5.2. On the left side,
there are the elements and their relationships extracted from the WSDL file. They are divided
into input- and output-types respectively, which are shown on the right side.

As a compatible example, Figure 5.3 shows the result of the CCF assessment which checks the
compatibility of calculateService1 and calculateService2. In case of "compatible", the minor
number will be increased by 1. That means the version of calculateService2 will then be set as
1.1.

69

5 Validation

Figure 5.2: ASD structural representation of calculateService1

Figure 5.3: Result of CCF (calculateService1.0, calculateService1.1)

70

5.3 Validation of Versioned Service Control Service

Figure 5.4: Result of CCF (calculateService1.2, calculateService2.0)

Because the output-type of calculateService4 "double" is not subtype of "integer" which is the
output-type of calculateService3, these two services are evaluated in the CCF assessment as
"incompatible" with each other. Therefore, the major number is increased by 1 and so the
version of calculateService4 becomes 2.0 (see Figure 5.4).

CCF (serviceA,
serviceB)

Result of CCF
assessment

Result of guild-line
based approach

calculateService1
calculateService2 compatible (1.0, 1.1) compatible (1.0, 1.1)

calculateService2
calculateService3 compatible (1.1, 1.2) compatible (1.1, 1.2)

calculateService3
calculateService4 incompatible (1.2, 2.0) incompatible (1.2, 2.0)

calculateService4
calculateService5 compatible (2.0, 2.1) compatible (2.0, 2.1)

calculateService4
calculateService5 incompatible (2.0, 3.0) incompatible (2.0, 3.0)

Table 5.6: Result of CCF (serviceA, serviceB)

Table 5.6 compares the results of CCF assessment with the deduced results. Obviously they
are consistent.

5.3 Validation of Versioned Service Control Service

The registerNewService, replaceService and deployParallel are exposed as Web Services pro-
vided by the JBIMulti2 system to manage service evolution. SoapUI 3.6 is used to interact
with JBIMulti2 over the Web Service API. Figures 5.5, 5.6 and 5.7 show the requests of
registerNewService, replaceService and deployParallel respectively. In each request message,
the user identifier and password are set as systemAdmin for a system administrator. All
parameters contained by <wsdl: wsdlFileLocation> define together where a new service version

71

5 Validation

is deployed. <wsdl: versionedServiceName> in Figure 5.6 denotes the service name of an old
service version which is replaced by the new service version. <wsdl: serviceName> in Figure
5.7 is the service name of an existing service version with which the new service version is
deployed.

Figure 5.5: Register New Service Request executed by system administrator with soapUI 3.6

72

5.3 Validation of Versioned Service Control Service

Figure 5.6: Replace Service Request executed by system administrator with soapUI 3.6

73

5 Validation

Figure 5.7: Deploy Service in Parallel Request executed by system administrator with soapUI
3.6

74

6 Conclusions

Service evolution is a continuous process of maintenance and improvement of services [Pap08].
It enables a new service to be deployed, an old service to be decommissioned and multiple
services to be available at the same time. An inefficient evolution management could result in
breaks between service consumers and providers. This diploma thesis has focused on extending
a multi-tenant aware ESB solution with service evolution management based on the JBIMulti2
system developed by Dominik Muhler [Muh12].

In Chapter 2 we have provided the needed fundamentals such as cloud computing, SOA, ESB,
JBI and Apache ServiceMix, as well as introducing the essential works on which this thesis
depends: ESBMT , JBIMulti2, an overview of service evolution based on [ABP12], service
version management framework and an existing extension design of the JBIMulti2 system for
service version management. After deep investigations of the related works, we have analyzed
in Chapter 3 the requirements of service evolution management and applied three use cases
for service version control management. The CCF assessment has been added into those use
cases to check whether two operated service versions are compatible. A Version Registry
has been used to store all version-related information, such as the version identifier and the
compatibility status. Furthermore, we discussed how to extend the SEs of an ESB instance by
adding message interceptors and transformers, with the purpose of providing correct routing
between service consumers and providers. Chapter 4 has described the technologies that are
necessary to implement the service version control management system. The Version Registry
has been implemented as a database at the source layer. The formal representation of service
descriptions has been realized by analyzing XML-based WSDL files and it has combined with
the CCF Algorithm proposed by [ABP12] to perform the compatibility checking between two
service versions and the calculation of service version identifiers. The use cases discussed in
Section 3.2 have been implemented as the functionalities provided by the JBIMulti2 system
to manage the service evolution. In Chapter 5, we have designed a calculation service with
multiple versions to validate the Compatibility Checking Function. The results of the CCF
assessment are consistent with the guideline-based approach. We have also employed soapUI
3.6 to validate the service evolution management services provided by the JBIMulti2 system.

In this thesis we have extended the JBIMulti2 system to manage the service evolution.
Services provided by the JBIMulti2 system such as registerNewService, replaceService, and
deployParallel, as well as the CCF assessment between two services have been implemented.
Moreover, in Section 3.3.5, we have designed a message interceptor and a message transformer to
ensure the dynamic routing of messages. The message interceptor is responsible for intercepting
each incoming message sent to SEs and determining its real target by accessing the Version
Registry and invoking the transformer. The message transformer is able to convert the incoming
message into the corresponding outgoing message needed by message receivers. Both of them

75

6 Conclusions

could be realized in the future. Last but not least, the CCF assessment could be extended
to support behavioral and non-functional layers of ASD meta-model [ABP12]. The service
version control management system should be further improved and completed.

76

Bibliography

[4Ca] 4CaaSt. The 4CaaSt project. http://www.4caast.eu. (Cited on page 22)

[ABP08] Vasilios Andrikopoulos, Salima Benbernou, and Mike P Papazoglou. Managing the
evolution of service specifications. In Advanced Information Systems Engineering,
pages 359–374. Springer, 2008. (Cited on pages 29 and 48)

[ABP12] Vasilios Andrikopoulos, Salima Benbernou, and Michael P Papazoglou. On the
evolution of services. Software Engineering, IEEE Transactions on, 38(3):609–628,
2012. (Cited on pages 6, 7, 8, 10, 26, 27, 28, 29, 30, 48, 75 and 76)

[All11] OSGi Alliance. OSGi Service Platform: Core Specification Version 4.3, 2011, 2011.
http://www.osgi.org/Download/Release4V43/. (Cited on page 21)

[And10] Vasilios Andrikopoulos. A theory and model for the evolution of software services.
Technical report, Tilburg University, 2010. (Cited on page 28)

[Arc] Service Architecture. Definition of SOA. www.service-architecture.com/
articles/web-services/service-oriented_architecture_soa_definition.html.
(Cited on page 17)

[Bar09] Neil Bartlett. OSGi in practice. Bd (January 11, 2009), 2009. https:
//s3.amazonaws.com/neilbartlett.name/osgibook_preview_20090110.pdf. (Cited
on page 21)

[BE04] Kyle Brown and Michael Ellis. Best practices for Web services versioning. IBM
developerWorks, January 2004. http://www.ibm.com/developerworks/webservices/
library/ws-version/. (Cited on page 30)

[BR00] Keith H Bennett and Václav T Rajlich. Software maintenance and evolution: a
roadmap. In Proceedings of the Conference on the Future of Software Engineering,
pages 73–87. ACM, 2000. (Cited on page 26)

[Bus] The Open Enterprise Service Bus. http://www.open-esb.net/. (Cited on page 19)

[Cha04] David Chappell. Enterprise service bus. " O’Reilly Media, Inc.", 2004. (Cited on
page 18)

[Com] MuleSoft Community. http://www.mulesoft.org/. (Cited on page 19)

[Con] OW2 Consortium. JOnAS: Java Open Application Server. http://wiki.jonas.
ow2.org. (Cited on page 68)

77

http://www.4caast.eu
http://www.osgi.org/Download/Release4V43/
www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
https://s3.amazonaws.com/neilbartlett.name/osgibook_preview_20090110.pdf
https://s3.amazonaws.com/neilbartlett.name/osgibook_preview_20090110.pdf
http://www.ibm.com/developerworks/webservices/library/ws-version/
http://www.ibm.com/developerworks/webservices/library/ws-version/
http://www.open-esb.net/
http://www.mulesoft.org/
http://wiki.jonas.ow2.org
http://wiki.jonas.ow2.org

Bibliography

[Cor12] FuseSource Corp. Fuse ESB Enterprise: Using Java Business Integration, July
2012. http://fusesource.com/docs/esbent/7.0/jbi/jbi.pdf. (Cited on pages 6,
19 and 20)

[FJB10] Debbie Carson Ian Evans Scott Fordin, Kim Haase Eric Jendrock, and Jennifer
Ball. The Java EE 5 Tutorial, 2010. http://docs.oracle.com/javaee/5/tutorial/
doc/bnaax.html. (Cited on page 58)

[FLF+07] Ru Fang, Linh Lam, Liana Fong, David Frank, Christopher Vignola, Ying Chen,
and Nan Du. A version-aware approach for web service directory. In Web Services,
2007. ICWS 2007. IEEE International Conference on, pages 406–413. IEEE, July
2007. (Cited on page 30)

[Foua] The Apache Software Foundation. Apache ActiveMQ. http://activemq.apache.
org/. (Cited on page 22)

[Foub] The Apache Software Foundation. Apache Maven. http://maven.apache.org/.
(Cited on pages 22 and 59)

[Fouc] The Apache Software Foundation. Apache ServiceMix. http://servicemix.apache.
org/. (Cited on pages 19, 21 and 59)

[Foud] The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/.
(Cited on page 68)

[Fou11a] The Apache Software Foundation. Apache Camel User Guide 2.7.0, 2011. http:
//camel.apache.org/manual/camel-manual-2.7.0.pdf. (Cited on page 22)

[Fou11b] The Apache Software Foundation. Apache Karaf Users’ Guide 2.2.5, 2011. http:
//repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual-2.2.5.pdf.
(Cited on page 21)

[Gro] The Open Group. The SOA Work Group: Definition of SOA. http://www.
opengroup.org/soa/source-book/soa/soa.htm. (Cited on page 17)

[JD08] K Jerijærvi and J Dubray. Contract versioning, compatibility and
composability. InfoQ Magazine, 2008. http://www.infoq.com/articles/
contract-versioning-comp2. (Cited on pages 26 and 30)

[JSBR09] Matjaz B Juric, Ana Sasa, Bostjan Brumen, and Ivan Rozman. WSDL and UDDI
extensions for version support in web services. Journal of Systems and Software,
82(8):1326–1343, 2009. (Cited on page 30)

[Lie13] Sumadi Lie. Enabling the Compatible Evolution of Services based on a Cloud-
enabled ESB Solution. Diplomarbeit, University of Stuttgart, Institute of Archi-
tecture of Application Systems, 2013. (Cited on pages 6, 30, 31 and 39)

[MG11] Peter Mell and Tim Grance. The NIST definition of cloud computing. 2011. (Cited
on pages 15 and 16)

78

http://fusesource.com/docs/esbent/7.0/jbi/jbi.pdf
http://docs.oracle.com/javaee/5/tutorial/doc/bnaax.html
http://docs.oracle.com/javaee/5/tutorial/doc/bnaax.html
http://activemq.apache.org/
http://activemq.apache.org/
http://maven.apache.org/
http://servicemix.apache.org/
http://servicemix.apache.org/
http://tomcat.apache.org/
http://camel.apache.org/manual/camel-manual-2.7.0.pdf
http://camel.apache.org/manual/camel-manual-2.7.0.pdf
http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual-2.2.5.pdf
http://repo1.maven.org/maven2/org/apache/karaf/manual/2.2.5/manual-2.2.5.pdf
http://www.opengroup.org/soa/source-book/soa/soa.htm
http://www.opengroup.org/soa/source-book/soa/soa.htm
http://www.infoq.com/articles/contract-versioning-comp2
http://www.infoq.com/articles/contract-versioning-comp2

Bibliography

[Muh12] Dominik Muhler. Extending an Open Source Enterprise Service Bus for Multi-
Tenancy Support Focusing on Administration and Management. Diplomarbeit,
University of Stuttgart, Institute of Architecture of Application Systems, 2012.
(Cited on pages 6, 9, 23, 24, 25, 35, 39 and 75)

[NS07] A Narayan and I Singh. Designing and versioning compatible Web services. IBM
DeveloperWorks, 28, March 2007. http://www.ibm.com/developerworks/websphere/
library/techarticles/0705_narayan/0705_narayan.html. (Cited on page 30)

[Ort07] Sixto Ortiz. Getting on board the enterprise service bus. Computer, 40(4):15–17,
2007. (Cited on page 18)

[PAB11] Michael P Papazoglou, Vasilios Andrikopoulos, and Salima Benbernou. Managing
evolving services. Software, IEEE, 28(3):49–55, 2011. (Cited on pages 25 and 26)

[Pap08] Mike P Papazoglou. The challenges of service evolution. In Advanced Information
Systems Engineering, pages 1–15. Springer, 2008. (Cited on pages 25 and 75)

[PAS04] Chris Peltz and Anjali Anagol-Subbarao. Design Strategies for Web Services
Versioning. SYS-CON Media, Inc., April 2004. http://soa.sys-con.com/node/
44356. (Cited on page 26)

[Pos] PostgreSQL. http://www.postgresql.org/. (Cited on page 58)

[PTDL07] MP Parazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service
oriented computing: State of the art and research challenges. Computer, 40(11):38–
45, 2007. (Cited on pages 17 and 18)

[RB14] B Rajmohan and M Balashankar. The Cloud and SOA – Creating the Architecture
for Today and Future. International Journal of Research in Engineering &
Advanced Technology, 1,Issue 6, Dec-Jan 2014. http://www.ijreat.org/Papers%
202013/Issue5/IJREATV1I6035.pdf. (Cited on page 16)

[RD08] Tijs Rademakers and Jos Dirksen. Open-source ESBs in action. Manning, 2008.
(Cited on page 18)

[SAGSL13] Steve Strauch, Vasilios Andrikopoulos, Santiago Gómez Sáez, and F Leymann.
ESBMT: A Multi-tenant Aware Enterprise Service Bus. International Journal of
Next-Generation Computing, 4(3):230–249, 2013. (Cited on pages 22 and 23)

[SAL+12] Steve Strauch, Vasilios Andrikopoulos, Frank Leymann, Dominik Muhler, et al.
ESBMT: Enabling Multi-Tenancy in Enterprise Service Buses. In CloudCom,
pages 456–463. Citeseer, 2012. (Cited on pages 22, 23 and 24)

[SCFY96] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-
based access control models. Computer, 29(2):38–47, 1996. (Cited on page 34)

[Sof] SmartBear Software. soapUI. http://www.soapui.org/. (Cited on page 68)

[THW05] R Ten-Hove and P Walker. JavaTM Business Integration (JBI) 1.0-JSR 208 Final
Release. Sun Microsystems, Inc., Tech. Rep, 2005. (Cited on page 20)

79

http://www.ibm.com/developerworks/websphere/library/techarticles/0705_narayan/0705_narayan.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0705_narayan/0705_narayan.html
http://soa.sys-con.com/node/44356
http://soa.sys-con.com/node/44356
http://www.postgresql.org/
http://www.ijreat.org/Papers%202013/Issue5/IJREATV1I6035.pdf
http://www.ijreat.org/Papers%202013/Issue5/IJREATV1I6035.pdf
http://www.soapui.org/

Bibliography

[WCL+05] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and
Donald F Ferguson. Web services platform architecture: SOAP, WSDL, WS-
policy, WS-addressing, WS-BPEL, WS-reliable messaging and more. Prentice Hall
PTR, 2005. (Cited on page 17)

All links were last followed on August 14, 2014.

80

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

Stuttgart, August 15. 2014, Penghao Tian

	1 Introduction
	1.1 Motivation
	1.2 Problem definition
	1.3 Outline
	1.4 Abbreviation

	2 Background and Related Work
	2.1 Cloud Computing
	2.2 Service-Oriented Architecture
	2.3 Enterprise Service Bus
	2.4 Java Business Integration
	2.5 OSGi (Open Service Gateway initiative)
	2.6 Apache ServiceMix
	2.7 ESBMT and JBIMulti2
	2.8 Service Evolution
	2.9 The Extension of the JBIMulti2 management system for service version management

	3 Specification and Design
	3.1 Requirements
	3.2 System Specification
	3.3 System Design
	3.4 Summary

	4 Implementation
	4.1 Fundamental Technologies
	4.2 Implementation of Version Registry
	4.3 Compatibility Check
	4.4 Implementation of Service Version Control Management

	5 Validation
	5.1 Validation Environment
	5.2 Validation of CCF assessment
	5.3 Validation of Versioned Service Control Service

	6 Conclusions
	Bibliography

